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Abstract

Adaptive Strategies for Oscillatory Systems: Integrating Machine Learning and Control

Techniques with Applications in Neuroscience
by

Timothy Dandeneau Matchen

Oscillators are ubiquitous in nature. As such, a significant body of literature has been
devoted to studying their dynamics and how to control those dynamics. Many systems,
however, do not maintain the core assumptions guiding the development of this litera-
ture—systems that are either too complex or too poorly understood to allow for simple
mathematical representations. Machine learning can serve as a powerful tool to supple-
ment our understanding of dynamical systems in situations where traditional methods
fail. In this dissertation, we develop first a control strategy for oscillators using stan-
dard techniques and assumptions about our dynamical system, then explore the ways
in which machine learning can replace some of the strictest requirements on developing
control strategies. We demonstrate how machine learning can extract meaningful infor-
mation from complex systems in neuroscience and use that information as the basis for
control. Lastly, we discuss some emerging strategies for further marrying the disciplines

of dynamics and control and machine learning.
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Chapter 1

Dynamics, Control, and

Neuroscience

1.1 Computational Modeling of the Brain

The brain is complicated. This is by no means a revelatory statement, but it is an
important one nonetheless, and even accepting that the brain is complicated feels as
though it does not do justice to the sheer complexity of the brain — it contains a mind-
boggling 100 billion neurons, each with thousands of synaptic connections, amounting
to a total of roughly 10% total connections within the brain [I]. While advances in
neuroimaging allow us to more accurately map the brain than ever before, empirical
study presents a number of ongoing challenges, such as difficulties in reproducibility of
results with small cohort sizes or low statistical power, as well as the ongoing need for
invasive strategies for study, which frequently cannot be carried out on human patients [2)].
Beyond the not-so-simple act of studying the brain, developing novel techniques for
therapeutic procedures or other active forms of modification to the brain can be incredibly
costly and resource-intensive, potentially requiring hardware, live creatures to study, and

1



Dynamics, Control, and Neuroscience Chapter 1

more.

All of these factors make neuroscience in many ways an ideal discipline for leveraging
computational modeling coupled with a firm understanding of the principles of dynamics
and control. While in vivo testing is inherently limited by requiring live patients or
test subjects, a robust computational model can allow us to consider infinite variations,
parameter adjustments, and algorithms for a fraction of the cost and time commitment.
Moreover, an understanding of dynamics can allow us to take these models a step further,
providing the possibility for further simplification thanks to intelligent application of the
principles of dynamics and control. In turn, the lessons we learn in the context of
neuroscience can typically be generalized to a far broader class of problems: just as

neuroscience can learn from dynamics, so too can dynamics learn from neuroscience.

Scope in Computational Modeling

As already noted, there are hundreds of billions of neurons to contend with in the
brain. Trying to build a model from first principles of the entire brain is nearly computa-
tionally prohibitive, especially so without the aid of supercomputing. At the same time,
important information can be derived from the interactions between individual neurons
within the brain. As a result, a key idea in computational modeling of the brain is that
of scope: namely, the trade-off between granularity in a model and computational com-
plexity. Although simulating 100 billion neurons is typically infeasible, simulating 100 is
not, and this may be the appropriate approach at times. Other times, a researcher may
wish to study intently a single neuron and may implement a level of granularity that
makes even interconnecting two neurons computationally taxing. Broadly speaking, we

can describe four levels of granularity in computational modeling:
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1. The analysis of a single neuron or sub-component of a neuron, considering both time
and spatial evolutions of chemical concentrations, electric potential, and protein

activation/inactivation;
2. A system of interconnected neurons, considering synaptic effects and coupling;
3. Modeling of a local brain region, such as a specific structure or lobe; and
4. System-level modeling and analysis.

The analysis in this dissertation will primarily focus on the second and third tiers of
granularity — either small populations of oscillatory neurons or modeling of local field

potentials for a specific region of the brain.

1.2 Core Dynamical Systems Concept: Phase Re-
duction

More specifically, in general we will be considering oscillatory systems: those with
a stable limit cycle and that exhibit periodic behavior. Oscillators are an important
component of numerous biological processes beyond just neurons in the brain, including
circadian rhythms, cardiac pacemaker cells, and motor control, and developing effective
methods of controlling these oscillators is an important goal. This is especially true in
neuroscience, where pathological activity may be linked to improper functioning of neural
oscillators, cf. [3].

One particularly useful technique when studying oscillators is phase model reduction.
Because dynamical systems (especially those modeling neurons) can be high-dimensional,
designing control algorithms for them from first principles can be difficult or computa-

tionally intensive. We can instead leverage the fact that the dynamical system has stable,
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recurrent behavior to simplify the dynamics to a lower-dimensional representation. We
can replace the dynamics in R” with a one-dimensional system instead, where the state
is represented instead by its phase 6. This phase ranges from 0 to 27 and represents
the oscillator’s progression through its periodic orbit. Absent any perturbations, because
the oscillator inhabits a stable periodic orbit, we can additionally characterize it by its
natural frequency w, equal to 27 divided by its period. In the context of our work in
neuroscience, because the firing neuron has a fixed, stable limit cycle, following the work
in [4, 5l 6] we can therefore reduce the dynamics when the oscillator’s state is near the

limit cycle to the representation:

b=w+Z(O)ut), (1.1)

where # describes the evolution of the oscillator and wu (t) is the control input. Z (6)
is known as the phase response curve and describes the sensitivity of the phase to a
stimulus. By implementing the phase model reduction, we can design control strategies
by studying the effects on a far simpler model. For example, once the phase model
reduction is derived, it is straightforward to apply traditional optimization techniques,
such as utilizing variational calculus to control an oscillator’s period [7, 8] or applying
control to manipulate a neural population’s distribution [9] 10, I1]. Provided we do not
stray too far from the limit cycle, the results will reliably transfer to the full, un-reduced
model.

What qualifies as “sufficiently close” to the limit cycle, however, is a challenging
question. Fortunately, we can augment our phase model reduction to attempt to quantify
this distance from the limit cycle and utilize that information effectively. We do this by
supplementing the phase model reduction with a technique known as isostable reduction,

developed primarily in [I2]. We can measure the relative distance to the limit cycle by
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evaluating a second differential equation, this time for the value of the isostable coordinate

U, which is equal to 0 on the limit cycle:

b= kU +Z(0)u(t), (1.2)

where k describes the rate at which the system returns to the limit cycle and Z is an
analog to the phase response curve known as the isostable response curve.

As implied by the name, the isostable response curve determines the response of the
system’s isostable coordinate to an input stimulus. We have neglected thus far to define
what this isostable coordinate is, however, and we should note as well it possesses an
analog in the traditional phase model reduction known as the isochron. Put simply, for
a system of differential equations in R™ an isostable is the set of all points in R™ that
approach the limit cycle at the same rate and asymptotically approach the limit cycle at
the same time; the isochron represents a similar concept — it is the set of all points that
converge to the same phase on the limit cycle as ¢t — oo. For example, we may displace a
state from the limit cycle, but it will eventually asymptotically near the limit cycle and
continue oscillating. The isostable coordinate tells us how long it will take to return to
the proximity of the limit cycle, while the isostable coordinate (or phase) tells us where
on the limit cycle the system would be were it to be on the limit cycle. Understanding
the interplay between these two concepts can allow us to generalize our definition of the
phase response and isostable response to the entirety of R™ space, allowing us to consider
the dynamics at any distance from the limit cycle. In doing so, we adjust our phase

response curve to be functions of both coordinates instead of just phase:

0=w+Z(0,0)u(t) (1.3)

b= kU +Z(0,0)u(t). (1.4)

5
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These are known instead as the global phase response curve and the global isostable
response curve, respectively.

There are a number of methods for calculating the phase and isostable response curves,
both numeric and analytical; we will discuss some of these later in this dissertation, but
some strategies are the so-called “adjoint method” cf. [5], direct numerical methods [I3]

14], and methods derived from Koopman operator theory [15, [16].

1.3 Oscillators in the Brain: Parkinson’s Disease and
Deep Brain Stimulation

The primary motivation for this emphasis on oscillatory activity in the context of neu-
roscience is improving our understanding of the relationship between Parkinson’s Disease
(PD) and deep brain stimulation. Parkinson’s Disease is a neurodegenerative disease as-
sociated with the early death of dopamine neurons, specifically in the substantia nigra.
The primary treatment strategy for PD is levodopa (L-Dopa), a dopamine precursor. L-
Dopa medication, however, is not without drawbacks, with potential issues in long-term
use arising from both fluctuations in medication level over the course of a day (”on-off”
effects) and emergent symptoms such as dyskinesia [I7]. Additionally, L-Dopa does not
arrest progression of PD, and symptoms may deteriorate despite regular medication. In
these cases, deep brain stimulation (DBS) may be used as an additional treatment strat-
egy in conjunction with continuing medication. An effective DBS implementation confers
numerous benefits that both augment the effectiveness of L-Dopa and ameliorate certain
side effects [18], 19, 20, 21].

If computational modeling represents the core goal of assessing the dynamics of the

brain, then deep brain stimulation is one of our most promising strategies for control.
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DBS in particular has seen numerous applications, from the aforementioned reduction of
symptoms in PD [22] 23] 24] 25] to treatment for Tourette Syndrome [20], essential tremor,
and various other disorders. In DBS, neural dynamics are modulated by an electrode
implanted in the brain tissue; pulsatile stimuli are sent via the electrode into the target
brain region. The tuning of stimulation parameters, such as frequency and amplitude, is
carried out by a neurologist over the course of several sessions in a manual, time-intensive
process [27]. Despite its proven effectiveness, the mechanisms by which DBS alleviates
symptoms are not fully understood. Additionally, there are risks associated with DBS,
both related to the surgical procedure and hardware as well as to the chronic usage in
combating the symptoms of PD [28], 29].

For these reasons, there have been various attempts in recent years to not only better
understand the processes that allow for the success of DBS, but also to understand ways
to reduce the possible negative side-effects. While the exact mechanisms regulating deep
brain stimulation are as yet unclear, many studies point to one possible explanation being
pathological oscillatory behavior in the affected brain regions, specifically, elevated levels
of synchrony. Here it is again important to recall the varying levels of granularity in
computational modeling and indeed in data collection: terms such as synchronization
will have different meanings depending on what level of granularity we are considering.

On a neuronal level, synchrony may correspond to populations of neurons firing si-
multaneously or nearly simultaneously, and based on this framework there has been
experimental and theoretical evidence [30, 31l 32] that the reduction of this synchrony is
correlated to the alleviation of symptoms. One approach to achieve partial desynchro-
nization is to split the oscillator neurons into clusters, in which only a subpopulation of
the neurons are spike-synchronized. In fact, [31] suggests that the standard DBS protocol
leads to a clustering of oscillators, in which the population of neurons divides into syn-

chronized subpopulations. Additionally, we note that the beneficial effects of clustering
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for Parkinson’s relief can also be inferred from [33].

This “clustering” approach has found success in coordinated reset, which involves
using multiple electrode implants delivering a series of identical impulses separated by a
time delay between implants. This has been studied extensively [30), [34] 25, 24] with pre-
liminary clinical success [23]. Modeling and clinical results for coordinated reset suggest
that relatively strongly clustered groups of neurons do not lead to pathological outcomes
in the user and can be effective in treatment for Parkinson’s Disease. Coordinated reset
does, however, possess some of the same challenges of traditional DBS methods, namely
an inflexibility in stimulation strategy and the requirement of hand-tuning appropriate
stimulation parameters.

In the context of a local brain region, synchrony is instead the inferred explanation
for an elevation in the activity of a particular region of the frequency domain. Increased
power in the so-called “beta band” (approximately 15-35 Hz) is associated with Parkinso-
nian symptoms. Elevated activity in this frequency range has been correlated to slowness
of movement [35] and has more generally been observed in numerous studies of Parkin-
son’s, see [36], 37, 138, [39).

A more flexible approach based on this analysis, adaptive deep brain stimulation, is
presented in [40, 41]. Here, stimulation is triggered by a spiking of power in the beta
band, with the stimulation turning on once the power exceeds a threshold. This holds
the appeal of significantly reducing energy usage by DBS, which in turn minimizes the
likelihood of adverse side effects as well as the requirements of battery replacement.
A core drawback and core challenge presented by this strategy, however, is that it is
inherently reactive, not proactive; ideally, a stimulation strategy would be rooted in
identifying impending pathological activity prior to its onset rather than post hoc.

With a host of challenges associated with present implementations and a variety of

modeling options, Parkinson’s Disease and DBS are a fertile test bed for novel approaches
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to analyzing dynamics and designing control in complex systems. While the focus of the
dissertation is broader than just the question of Parkinson’s Disease, it will serve as a
useful set of benchmarks that can effectively highlight the advantages and drawbacks of

different methods we have explored.

1.4 Machine Learning and Artificial Neural Networks

In particular, the challenges of PD will present in stark relief the limitations of employ-
ing classical methods from dynamics and control in the context of increasingly complex
systems. While concepts such as optimal control and phase model reduction are pow-
erful tools for approaching novel dynamical systems, it became clear that we needed to
develop new methods to add to our toolbox if we were to effectively tackle the problems
of PD and other open questions, and machine learning (ML) provides effective strategies
for answering these. That being said, our roots remain firmly planted in the world of dy-
namics and control, and the core tenet throughout our forays into the world of machine
learning was supplementing rather than supplanting classical approaches to dynamics
and control.

This dissertation will primarily consider a particular branch of ML known as artificial
neural networks (ANNs). Despite the moniker, neural networks are not yet widely-used
by the neural control community, though interest is growing; recent results [42] [43] have
begun leveraging reinforcement learning to generate control strategies.

An ANN consists of a system that maps an input vector to an output vector via one
or more layers; the system is a “deep” network if at least one of these layers is “hidden,”
meaning it does not map directly to the output. Each layer is comprised of a number
of neurons, each consisting of a matrix that linearly transforms the output from the

previous layer followed by a nonlinear activation function. Training a neural network

9
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consists of running repeated iterations of two steps: a forward propagation step followed
by a backward propagation step. In the forward propagation step, the current parameters
of the neural network are used to make a prediction of the output based on the input,
which is then compared to the actual output. This provides a loss function which is then
fed back into the neural network to compute appropriate derivatives for updating the
weights on the matrices in each layer of the neural network. A schematic of this process
is provided in Fig[I.1l An appealing aspect of neural networks is that, for some finite
number of artificial neurons, any smooth function can be accurately approximated by a
neural network consisting of only a single hidden layer [44]. In practice, however, it is
typically more efficient to sacrifice breadth — a large number of neurons in a layer — for
depth, a larger number of hidden layers. Effectively, the deep neural network architecture
allows nonlinearities to compound at each layer, providing for the approximation of
highly nonlinear functions with less computational cost than a simpler, single-hidden
layer network.

One key drawback of ANNs is that they are typically considered to be “black box”
solutions — an input goes in, and output comes out, but what happens in between is
difficult to extract. As mechanical engineers, this can be unnerving — we like to know
what’s happening, and the usefulness of an answer without context is severely limited.
Throughout this research, whenever machine learning is used, we have attempted to
approach it from a “grey box” perspective instead, where core principles of dynamics

and control are preserved despite the implementation of a neural network.

1.5 What Lies Ahead

The rest of this dissertation will be structured as follows. In Chapter 2, we will

explore the problems of clustering and control using the phase model reduction and

10
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Figure 1.1: Schematic of a neural network with one hidden layer. This neural

network contains one hidden layer (in red) with three neurons and an output layer (in

yellow) with one neuron. The input & (blue) is applied to each neuron in the hidden

layer. The outputs of the hidden layer’s activation function are passed to the output

layer, which yields the system’s estimate g (green). The result is then fed backward

for back propagation.
isostable techniques, then provide some commentary on the advantages and drawbacks
of this strategy. In Chapter 3, we will approach the problem of clustering again, but
this time, we will make use of ANNs and generate control strategies based on both the
results from Chapter 2 and another classical strategy in dynamics and control, dynamic
programming. Chapter 4 will then serve as a case study for the power of machine learning
in approaching data-driven problems in dynamics and control. Using real patient data, we
will develop a predictive model for the future state of our observable. Following this, we
will use the same core structure to create an adaptive control strategy via artificial neural
networks. In Chapter 5, we will conclude by reviewing our efforts to marry traditional
dynamics and control with machine learning and discuss our ongoing work in both phase

model reduction and system identification, which both seek to further bridge the gap

between the two disciplines.
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1.6 Permissions and Attributions

1. Portions of Chapter 5 were produced in collaboration with Andrew Yates, with
select figures courtesy of Faxtraction of Phase and Isostable Response Curves via

Deep Neural Networks (Yates, Matchen, and Moehlis, in preparation).
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Chapter 2

A Starting Point: Oscillator Control

Design in a Classical Setting

The bulk of this dissertation will focus on the implementation of machine learning in
dynamics and control to overcome the challenges and limitations of more traditional
approaches. It would be remiss, however, to do so without first contextualizing the
unique strengths and weaknesses of non-machine learning approaches and understanding
how ML may be integrated with these strategies. To this end, we begin with an analysis
of a control strategy for identical oscillators (specifically, in this example, neurons), with
the goal of achieving partial desynchronization to a clustered state, where neurons are
locally in phase with other neurons but out of phase with other groups of neurons. We
consider as a starting point the case of identical, uncoupled neurons subject to a common
input; such a scenario, with sufficiently small input amplitudes, is an ideal candidate for
the phase model reduction technique described in Chapter 1. The material in this chapter

has been published previously in [45] and [46].
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2.1 Stabilizability of Clusters

2.1.1 Terminology and Overview

Before describing the specific control design we will employ, we start by showing
that it is in general feasible to achieve a clustered state with a population of identical
neurons. In particular, we demonstrate that any order-preserving clustering scheme for
uncoupled, identical neurons is asymptotically stabilizable with an appropriate control
input provided minor restrictions are placed on the phase response curve. Here we
understand asymptotically stabilizable to mean that, for an appropriate choice of input
u, the system of neurons approaches our desired state as ¢ — oo. To do this, it must
be shown that the control system is passive with a radially unbounded positive definite
storage function and zero-state observable [4T]. These requirements are summarized as

follows:

Radially Unbounded Positive Definite Storage Function

A storage function V is any function that converts the state of the system into a
scalar measure of the “energy” stored in the system; a simple physical example might be
a function converting the position and velocity of an object into a total energy consisting
of potential and kinetic energy components. In this case, we desire the storage function
to equal 0 at exactly one point: our target state. The requirement that the function
is positive definite means that everywhere else in the state space, the storage function’s
value is greater than 0. Because the function is radially unbounded, we further require

that as we move farther from this state, the value continually increases.

14
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Passive

A system is passive [47] if, for a given observable vector y, storage function V', and
any choice of u:

uly >V, (2.1)

where V denotes the first time derivative of V. This requires, for example, that if 7 = 0,
Y < 0. Physically, this corresponds to the system not producing energy and instead

being energy neutral or an energy consumer.

Zero-State Observable

For a vector observable y to be zero-state observable, the target state must be the
only point in state-space where y = 0 and remains zero for all future times. Although
y may equal zero at other points in state-space, it must become nonzero in finite time.
For example, if we used height as our observable for a bouncing ball, we would say the
system is zero-state observable because, unless the velocity of the ball stays at zero (i.e.,
the ball has stopped bouncing), the height will not remain zero (the ball will bounce

back up).

2.1.2 Derivation of Stabilizability

A system that meets these three criteria can be shown to be stabilizable with an
appropriate choice of input [47]. We demonstrate these requirements all generally hold
for the case of N identical, uncoupled neurons in the reduced phase model formulation.
We label the neurons such that, at time ¢ = 0, the neuron phases are ordered as ¢; <
Oy < 03 < ... < Oy. Note that if the phases of two neurons are exactly the same,
because the neurons are identical and receive identical inputs, they are impossible to

separate; therefore, we exclude the possibility of two phases being equal by assumption.
15
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Furthermore, because the neurons are identical, the response of a neuron is bounded by
the neurons of phase initially less than the neuron and those greater than the neuron, so
for t > 0, it follows from these assumptions that 01 (t) < 65 () < ... < Oy (t) (here we do
not use the modulo 27 value for 6, so 6; is allowed to be greater than 27) [7].
Typically when discussing stabilizability, the target state would be a specific coordi-
nate in state-space, such as the origin. Here, however, we do not want the neurons to
stop oscillating, so we do not wish to drive the system to specific values of . Instead, we
wish to instead reach a target state describing the relations between their phases as they
continue to oscillate. It is therefore natural to define our storage function in terms of
the differences between the phases of neurons rather than the individual phases (which
are constantly evolving). More precisely, we construct our storage function as the linear
combination of positive semidefinite functions, each prescribing the target separation for

the phases of two neurons:

l
vi=0; (0= 0),  V(bi,...08) =) B, (2.2)
=1

with 3; > 0 and where 6, and 6, are the phases of any two neurons whose separation
is to be prescribed by the function v;. The value of [ is arbitrary in this context; in
Section [2.2], for the specific problem of clustering [ = K. The individual storage function

candidates have three properties:
1. At the target separation 6; — 0, = A6*, v; (Af*) = 0;

2. For 6; — 0, # A6*, v; (0; — 0;) > 0 and grows unbounded away from Ag* within

the interval 6; — 6, € (0, 27); and

3 ov;

_ v,
e JA) =0

’ 0Al
AG*

£ 0.

AO£AG*
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Fig. [2.Jillustrates the case of [ = 2, A§* = 7 to demonstrate how these control objectives

translate into a stabilized clustered configuration.

=iy
“~ -

Figure 2.1: Visualization of the control objective design. Each circle represents a
neuron, and they oscillate around the unit circle. Here, [ = 2, so two target separations
are specified: the separation between the yellow and green neurons and the separation
between the blue and red neurons. ¥V = 0 if and only if both of these separations are
7 (as is nearly the case in the circle to the right). Because the neurons are identical,
the positions of the black neurons are bounded by the non-black neurons, and so they
are guaranteed to be present in this clustered arrangement.

We now calculate the value of V. As each individual storage function is dependent

on only one phase difference, we write V as:
! !
. ov; - ov;  /; .
= ———NAb; = —— (0, — ) 2.
v ; e, ;ﬁ IAGRLD (2:3)

Substituting in from 1) V can be rewritten as:

l

Va3 g (200) 200, (2.4)

where u* is the common input received by every neuron. To satisfy passivity, we choose

our observable to be a vector y = [y1, 2, - - ;4] such that:
; Z (0 Z (6 2.5
= B (20~ 2 (0). (25)
Recognizing identical inputs as a special case of u? = [uy, uo, - -+ , 4] where u; = u*Vi, it

follows that uZy = V everywhere in the state-space. Therefore, the system as constructed
17
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is not only passive but also lossless. Additionally, y is zero-state observable: at the target

vy __
Y ONG; T

state 0; otherwise y = 0 only if Z (0;) — Z () = 0, but no such pair of neurons

can stay indefinitely in the set y = 0. We can see this by considering:

d oz
7 (Z(0;) = Z (0)) = 20

07

0;

Or. (2.6)

O

Because Z (0;) = Z (6x), it follows from (1.1) that §; = 6, instantaneously, so the right

. . . a7z
side of (2.6) equalling 0 would require &%

_ 0Z

09

For y to equal 0 at all future
0 O

times, this would further imply that this equality must hold over the entire period,
_ oz
— o6

x

: 0z
ie. 3oz € (0,27) such that 55

Vx. Graphically, this would mean that
z+0x
horizontally shifting the phase response curve reproduces the original curve. Because

oz
00

— 0z
00
0 21

periodicity greater than 27, which is physically not realized. Therefore, as the system

and Z (0) = Z (2r), this is true if and only if Z (6) is constant or has

is both passive with an unbounded storage function and zero-state observable, we can
conclude that the system can be stabilized by the choice of u = —¢ (y) where ¢ (y)
is locally Lipschitz and y¢ (y) > 0 [47]. We note that this does not strictly hold for
the case of an identical input; while u” = [u,u,--- ,u] does allow for locally Lipschitz
solutions, there is a measure-0 set in which y¢ (y) = 0. In practice, however, we find this
only forms an invariant set when the phase response curve is in some way degenerate
or not physically realizable (such as having a higher than 27 periodicity) or the control
objectives are poorly defined (such as when reaching the control state would require
neurons to cross each other). Other instances of y¢ (y) = 0 are solely instantaneous and
do not affect the computational outcome; we expand on the additional circumstances in
which this may occur and demonstrate they are not zero-state observable in Appendix

1B
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2.2 Control Strategy for K Clusters of Neurons

Having shown that clustered states for identical neurons can be stabilized, we will
now outline our design strategy for doing so. Our goals in developing a control strategy

for clustering are threefold:

1. Create a flexible method such that the strategy functions in a way that is agnostic

both to the specific neuron model used and the desired number of clusters K;

2. Require as little precomputing as possible so the method is robust to inaccuracies

in modeling; and

3. Allow for the control to be easily tuned for parameters of interest, such as maximum

input amplitude and the speed with which clustering is achieved.

These three conditions can be seen as measures of robustness for the method. A control
scheme that meets these three criteria can be altered on the fly by changing only a small
number of target parameters, allowing the input to rapidly be tuned to the performance
specifications desired. Additionally, deviations from expected results can be compensated
for if the input is not constrained to precomputed values, as would be the case with
optimal control strategies derived from, for example, variational principles.

The approach proposed here consists of considering what we propose to call the input
of maximal instantaneous efficiency (IMIE) rather than precomputed data. Although
not necessarily as efficient as true optimization strategies, IMIE requires only knowledge
of the phase response curve of the neurons and the current state of the system.

The rest of this section will be structured as follows: first, we will define the two
necessary functions for IMIE: a state function and a cost function. Next, we will lay out
the details of the control strategy. Lastly, we will see how the reduction of the model for

special cases returns results that agree with intuition and past results.
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State Function

The state function r, to be defined below, is functionally equivalent to a specific
storage function that we will use to generate our control. Control of a system of N
neurons into K clusters requires the direct control of 2K neurons, split into pairs, with
each pair of neurons adjacent to each other in phase order. The control is generated
in such a way that each pair is driven apart to a target separation of 2% radians. In
this way, K clusters are formed by exploiting the boundedness of response described
in Section and illustrated in Fig. 2.1 For example, if we wished to subdivide a
population of 16 identical neurons into 4 clusters and the neurons were ordered by initial
phase (01 < 0 < ... < 035), the K control pairs would be {2, 3}, {6, 7}, {10, 11}, and
{14, 15}, and the final clusters would be {15, 16, 1, 2}, {3, 4, 5, 6}, {7, 8, 9, 10}, and
{11, 12, 13, 14}. We define a positive semidefinite function r; ; for each control pair; this
function is dependent only on the phase difference Af; ; = ; — 0; and is identically zero
at Ag; ; = 22

To allow for consistency in the definition of 7; ; across choices of K, the value of A0, ;

is mapped by the function g (A6, ;) so that g (2%) = m. This is done using the piecewise

definition:
KAg; 0<Af;; <22
g(Ag ) =30 o >0
K%—'—ﬂ' 2%<A(9i,j§277

With this mapping, we define the positive-definite function for each pair as follows:

1 1 27
N 0< AH% < =22
Tij = 980" ’ ’ K ) (2.8)

1 12
(2r—g(A0; ;)P ~ wP ?ﬂ < Agivj <27
which is continuous and differentiable everywhere on the domain (0, 27) except at Af; ; =

2%. The value of the parameter p can be adjusted to meet control objectives; in the
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simulations in Section IV, p = 0.7. The function r; ; can be made first-order differentiable
by the replacement of the constant ﬂip with a term that is linear in g, though in practice
this is not necessary. This replacement generates a function that does, however, serve as
a valid storage function candidate in , while maintaining derivatives with the same
sign as in . Clearly, is greater than zero for all choices of p with Af; ; # 2% and
grows unbounded as A#; ; — 0 or 2.

From here we can define a state function of the system as:

1 K
r = ? lz_; T21—1,21- (29)

Note that here we have omitted the neurons that are not being directly controlled, and
as such our control pairs are relabelled as {1,2}, {3,4},....{2K — 1,2K}. Because each
component of the summation is greater than zero everywhere except at the desired target
state, the combined function is also positive-definite and only equal to zero when all pairs

of neurons achieve the target separation.

Cost Function

With the state function defined, we turn our attention to the cost function. The
purpose of the cost function is to prescribe the important characteristics of the control
by penalizing undesired behavior. While any cost function can be used, we select one
that penalizes energy usage and the time required to reach the target state. This can be

accomplished by defining the cost function:

C(t) = /0 [u (T)2 + ar (T)] dr. (2.10)
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The first term introduces a quadratic cost to increased input amplitude; this is inspired
by the general fact that the square of the input amplitude is proportional to power.
The second term penalizes the value of r being large. The value of a can be adjusted
to increase or decrease the relative importance of this penalty; the higher the value of
«, the greater emphasis the control places on reducing the value of the state function
quickly. The instantaneous cost associated with the state and input at a given time t

can be given by taking the derivative and evaluating:

dc

= ) +ar(t). (2.11)

With the state and cost functions defined, the input of maximal instantaneous ef-
ficiency can be generated as follows. An optimal path is one that minimizes C (t) as
t — 0o. While the time-dependent input would need to be computed in advance to truly
optimize, IMIE aims to produce a near-optimal input by minimizing the cost incurred
at each time step instead. We rewrite C' (t) in terms of the value of 7, which in the
uncoupled case monotonically decreases at all times with the appropriate choice of w.

Then the total cost as t — oo is equal to:
0
dc
lim C (t) = / —dr; (2.12)

by exploiting the chain rule, we equate % to:

dC dC/a

=1, 2.1
dr dr/qt (2.13)

In this formulation, the input we choose is designed so that, at all times, the instantaneous
magnitude of % is minimized. This can be interpreted as the input that is most efficient

in terms of cost relative to change in . The value of % is given by 1’ Differentiating
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r with respect to time yields:
or d&l
2.14
Z 06, dt ( )

As in ([2.4)), we can reorganize this and exploit the fact that in each neuron phase control

pair 0o, Oor11 the partial derivatives with respect to phase satisfy az—’" = — 80?;“
express ZZ as:
=u Z (09) — Z (091-1)) , 2.15
28921 2) = Z (021-1)) (2.15)
which has the characteristic form —a (64, ..., 0sx ) u (t). Therefore, <= is equal to:

dC u? 4 ar
—_—=—— 2.16
dr auw ( )

where the dependence of a and 7 on the state [0y, ..., 05| is omitted from the equation
for simplicity.
From this, the extrema can be found by differentiating with respect to u; the input
used is then set equal to this calculated minimum. Differentiating and rearranging yields:
a’ar (t)

u(t) = = sign(a)/ar (t). (2.17)

Note here the positive root is taken because Z—f is negative (since % is always positive

dr

and o

is negative by construction), and therefore the quantity au must be positive for
the entire expression to be negative.

Recalling the definition of r (), u evolves as a function of the average separation Af
of the control pairs as approximately E"’/Z\/a. From this it can be seen that, holding
p constant, increasing « corresponds to a y/a increase of the maximum amplitude of

the input signal. This in turn decreases the response time of the system at the cost,

generally, of increasing total power usage and maximum input amplitude. In contrast,
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increasing the value of p while holding maximum amplitude constant (by adjusting «
accordingly) will cause a sharper decline in the input signal, reducing power usage but
increasing response time. As such, the system can be tuned to meet the desired control
specifications — power usage, maximum amplitude, response time — simply by varying «
and p accordingly, regardless of the neuronal model being used.

We now turn our attention to the case where a = 0 and demonstrate that the method
returns a result that is consistent with intuition. In this case, no weight is placed on fast
response time, and the cost is entirely connected to minimizing the energy usage of the

system. With o = 0, the original formulation of % can be simplified greatly, yielding:

acC'  —u
praint (2.18)
Unlike the case where o # 0, this is linear and therefore has no minimum; since the
only constraint is that —* should be positive, a lower-cost control is always achieved
by decreasing the magnitude of u. It can be seen that, as predicted by this result,
using constant-amplitude control takes longer (but requires less energy) when a smaller
amplitude is used, thereby agreeing that the optimal control from an energy perspective
is to use as small an input as possible.

In practice, we do not want the state to be reached in infinite time. If we abstract
away from the physical representations of the phase model (which breaks down at high
amplitudes of u) and consider only what will allow us to reach the target state in as little
time as possible, we would expect that the solution would be to allow the input signal

to be as large as possible for all times. We can model this by removing u? from the cost

function so that C* (t) = ar (t). Now, € is given as:

dC _—ar

dr au

(2.19)
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Figure 2.2: Phase response curves for the reduced Hodgkin-Huxley equations (top)
and the thalamic model (bottom)

Table 2.1: Default Simulation Parameters

N 50
K 4

a 0.1
p 0.7

As in the case where o = 0, this has no minimum, and instead approaches 0 as u — oo.
Therefore, IMIE correctly predicts that for the fastest possible response, u should be
allowed to be as large as allowed by the constraints on the system at all times. This
trend, as well as the minimal-energy trend, are demonstrated in simulation and shown as
solid lines in Fig. While we do not propose IMIE as a fully optimal control strategy,

this demonstrates that the method matches basic sanity checks in its application.

2.2.1 Application to Uncoupled Identical Neurons

We now apply the IMIE approach to two different neural models: a two-dimensional
reduced Hodgkin-Huxley model [48, [49] and a three-dimensional model for periodically
firing thalamic neurons [33], both presented in Appendix . Unless otherwise stated, all

simulations we present in this section utilized the parameters listed in Table 2.1, The
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dynamics for both models were initially represented using the phase model reduction,
with all the neurons treated as identical (possessing the same natural frequencies and

phase response curves). The dynamics for all neurons were given by:

0t)=w+Z ) u(t), (2.20)

where the natural frequencies and phase response curves are appropriate to the models.
The phase response curves for the two models were derived from the adjoint equation
using XPPAUT and can be seen in Fig. 2.2l In addition to the distinctions between
the initial dimensionality of the two models, they also differ in that the Hodgkin-Huxley
model is an example of a Type II neuron, whereas the thalamic model is representative
of a Type I neuron [50]. This can be seen by the qualitative differences in their phase
response curves: whereas Type Il neurons have PRCs with positive and negative portions,
Type I neurons have PRCs that are typically nonnegative [51].

By using models of two different types of periodically firing neurons, we aim to show
that the qualitative results of this control scheme are similar across qualitatively different
base models. This agreement can be seen in Fig. [2.3] which shows the response of a
population of neurons of each type to the proposed control strategy.

Fig. shows in finer detail the control signal applied to the Hodgkin-Huxley phase
model to achieve clustering. Initially, when the neurons are still in a one-cluster configu-
ration, the signal varies comparatively rapidly, both in amplitude and direction. However,
as the system approaches the 4-cluster state, the signal becomes increasingly regular with
a frequency four times that of the system’s natural frequency and with a signal that only
slowly decreases in amplitude. We view these “maintenance” signals when the system is
near the clustered state as especially feasible with current hardware. The results for the

thalamic model are qualitatively equivalent to those presented here.
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Figure 2.3: Evolution of reduced Hodgkin-Huxley (top) and thalamic (bottom) phase
models at three times for K = 4. (a), (b), and (c) show the projection of the phases
onto the unit circle at times ¢t = 0, ¢t = 125, and ¢t = 500 ms (0, 187.5, and 750 for
thalamus), respectively. (d) shows the absolute value of the input over the length of
the simulation. The differently-colored pairs represent neurons that are being actively

controlled.
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Figure 2.4: Control signal over three time intervals, Hodgkin-Huxley model. The
actual values of the signal (in contrast to the absolute values presented in Fig.
are presented over three 50-ms time intervals. The blue interval begins at ¢ = 0 ms,
the red at ¢t = 200 ms, and the yellow at ¢ = 450 ms. We note that the signal becomes
increasingly regular as the system approaches a clustered state.

Furthermore, IMIE improves upon the performance of strategies that similarly require
only instantaneous state data to calculate a control. Using the same methodology of
selecting whether to apply a positive or negative input based on the derivative of the
state function r, the Hodgkin-Huxley neuron population was also simulated with the
application of a constant-amplitude “bang-bang” control. In “bang-bang” control, the
amplitude of the control signal is fixed while its direction (positive or negative) is allowed
to switch. For a range of amplitudes, the constant-amplitude control and IMIE were
simulated until the values of their state functions were within a tolerance of a 0 (ry,; =
0.01). The “settling” time and value of fOT u?dt was recorded for each trial; these results
are shown in Fig. 2.5l For comparison between the two methods, in these simulations p
was held constant and « was varied such that the initial value of u was equal to the listed

max amplitude (o = “f(”g)x) Without an appreciable sacrifice of response time, IMIE

achieves clustering at a dramatically reduced energy cost when compared to bang-bang
control.

With the effectiveness of the control established for phase models, the control was
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Figure 2.5: Comparison of constant-amplitude control and IMIE. The solid lines de-

note the constant-amplitude control. The dashed lines represent the implementation

of IMIE on the population of uncoupled, identical Hodgkin-Huxley neurons reduced

to a phase model for control to the 4-cluster state. Note that the energy cost (in

red) is always lower for IMIE than the analogous constant-amplitude control, and de-

spite these massive energy discrepancies the response time (in black) is always either

better or approximately equal to that of constant-amplitude control, except in the

extreme low-amplitude case. This demonstrates that IMIE represents a performance

improvement over bang-bang control in terms of both energy cost and response time.
extended and applied to a full state model for both the Hodgkin-Huxley and thalamic
neurons. The value of the state function r(t) was calculated based on an estimation of
the phase corresponding to a neuron’s position in state-space. This rough approximation
of the phase was found by identifying the point on the curve nearest to the neuron’s
position in state-space. Because the variation in V' differs far more significantly than the
variation in n or other gating variables, the distance to the curve was normalized in each
dimension by the span of the limit cycle in that dimension. Example simulations for
these full state-space models can be seen in Fig. Note that there is a “jitter” in (d)
in both plots; this can be attributed to inaccuracies inherent in estimating the phase of
the neurons, which can result in large movement in the value of r(¢) because of its large

derivative at small values of Af.

Additionally, adjusting the values of p and « can alter the response characteristics of
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the populations of neurons in a consistent fashion. To illustrate this, a “settling time”
and energy cost were calculated for different pairs of parameter values. Because p was
varied between trials, to maintain a consistent benchmark of performance the system was
simulated not to a specific value of r but rather to a specific average deflection from the

target state. Af;, was defined as:

Ay, = %AH*, (2.21)

which subsequently was used to define a specific value of 1, dependent on the value of
p as:
1 1

= —— — —. 2.22
ol g (Abi)” 7P ( )

The settling time 7" was defined as the time to reach r,,;, and the energy cost was
calculated as fOT u? (t)dt.

The effect of variations in p and « on the phase model results can be seen in Fig. [2.7]
As can be expected, for a given value of p, increasing « leads to a decreased response
time but increased energy cost. Decreasing p corresponds to the input decreasing less
sharply in time; despite a steeper rate of decrease, however, between 0 and A* the value
of r increases for a given Af as p increases. Therefore, increasing p corresponds to an
increase in energy usage as well as a decrease in response time.

In practice, we may wish to prescribe a maximum amplitude for the control signal
rather than just utilizing a scaling value of a arbitrarily. In the uncoupled phase model,

we assume that r decreases at all times; from this, it follows that |u| = |u(0)], as a

max

decrease in 7 corresponds to a decrease in |u|. If, instead of varying a, |u],,,,, is varied

instead, the trend from Fig. reverses. Here, the value of « is prescribed by its
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Figure 2.6: Evolution of reduced Hodgkin-Huxley (top) and thalamic (bottom) state-
space models over three time intervals. (a), (b), and (c) show three 25-millisecond
voltage traces of the 50 neurons being simulated subject to the described control
without coupling. As in the phase model simulations, the neurons initially become
desynchronized, spreading out around the limit cycle before coalescing into clusters.
(d) shows the absolute value of the input over the duration of the simulation, with
general qualitative agreement to the plots in Fig.
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relationship to v and r:

ar(0) =lul,,.. = a:im(()) (2.23)

where r is dependent on the choice of p. For a given maximum amplitude, an increase
in the value of p now corresponds to a state function whose value drops more sharply,
which in turn means an input whose magnitude drops more sharply. As such, energy

usage decreases with increased p for a fixed u,,,, and response time increases in turn.

This can be seen in Fig. 2.8
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Figure 2.7: Effect of variations in p and a. The effect of varying the two parameters
on settling time (with 4, set by the value of p) is shown in the left panel, while the
integral of u? is shown to the right. Each curve represents a constant value of p, with o
allowed to vary. These results maintain the correspondence between increasing energy
cost and decreasing response time illustrated in Fig. [2.5

2.2.2 Application to Coupled Identical Neurons

We now introduce coupling to the phase model reduction and adapt IMIE to accom-
modate its effects. We consider all-to-all electrotonic coupling; in the state-space model,
this is introduced into the value of V as [52]:

N

AVi=a.» (V;=Vi). (2.24)

Jj=1
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Figure 2.8: Effect of variations in p and |ul,,,,. For a given maximum amplitude,
increasing p leads to an increase in settling time (left) but a decrease in energy usage
(right).

In the context of the phase model reduction, this can be rewritten as:

Mz

0; = w+ Z (0;) u+a. V(6,)) Z (6;) . (2.25)

]:1
Here, a. is the strength of the electrotonic coupling. This, however, is not a particularly
convenient notation, as we would like to omit V' from the phase model reduction. As-
suming a. is small (coupling is weak), we can further simplify this equation by selectively
averaging the value of the coupling over one period [53], f (6, — 6;) = f (A#; ;). This can

be calculated as:

1

6; can then be rewritten in terms of this averaged function instead.

Returning to 1) the expression for <+ has changed, and . must include an

dr

additional term; %

is now computed as:

— ) — F (O — O11)] } (2.27)

Mz

dr o~ 9
—T:Z—T{U(Z(QQZ)—Z 9211 +(le

m:l
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which now has the characteristic form —au + b instead of simply —au. Rederiving the

instantaneously optimal input yields:

u(p) = LE Vb atar (2.28)

a

The problem presented by coupling is that a core assumption of the control design

dr

77 monotonically decreases with the appropriate choice of sign for u) no

(namely, that

longer holds; there is a measure-0 probability that the value of a is identically 0 at some

time. If a approaches 0, the mandate that % monotonically decrease proves excessively

restrictive: the value of u grows unbounded, which both violates the regime in which the
phase model reduction can be considered valid and runs counter to the goal of a cost-

minimized strategy. To address this, we instead approach the problem by considering an

fdr

or» much as was done for the coupling function:

averaged value o

dr
Eflvg Z 6921{ Z (b2 +©) =2 (021-1 + ©))
N i (2.29)
+ 40> [F(0mO — b —©) —F (6 +O — b1 — ©)] }d@,
m=1
Rearranging and recognizing that % 02” F(A0)dO = f(AD), we simplify as:
dr N B
E(wg = Ut de Z 06y mz:l f (O —02) —f (0 — 921—1)] ) (2.30)
where:
=5 Qﬁim( Z (0 +0) —Z (0y-1+©)) |dO (2.31)
“Tor )y a6, & (0x - | _

The absolute value is taken to reflect the ability to choose at each time increment the

appropriate sign of u, a feature that is otherwise not captured by this equation. The sign
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of w is still computed from the unaveraged value of a. As such, this equation still reduces
to in the limit b — 0.

Additionally, we can consider special cases that arise with the introduction of coupling
and ensure that our intuition hold for these circumstances. We consider three cases: the
limit where « is large compared to a and b, the limiting behavior as a?ar — 0, and the
resulting equation for @ = 0. If « is large, the magnitude of the input will similarly be
large as the control objective will consist of approaching r (t) = 0 as quickly as possible.
In this case, |u| — !g + sign (a) var ! when 7 is large. We include the absolute value on
u to acknowledge the influence of a on the instantaneous sign of w. In this case only a
relatively small correction term is applied to the control for the b = 0 case (amounting to,
on average, matching the strength of the coupling), as the control dynamics are dominated
by « instead of b. As we approach the target state, however, a?ar — 0 regardless of the

choice of «, and the dynamics become instead dominated by the coupling; in this limit

b+[b]
a

uf |

This limiting behavior would be demonstrative of the response if our response time
was irrelevant and energy was the only consideration, i.e. if & = 0. In that case, the

: b+
response at all times would evolve as |u| = )% ‘

When b < 0, coupling serves to pull the
system toward the target state; in the presence of this favorable coupling, u = 0 as the
most energy-efficient strategy is to input no additional energy. If b > 0, then |u| = ‘%b‘
Whereas in the uncoupled case the optimal control input when a = 0 is to asymptotically
approach a magnitude of 0, the presence of coupling allows for the presence of a local
minimum instead with a value slightly higher than the averaged offset value of %
Simulations with weak coupling (here, a. = 0.01) were conducted for both the
Hodgkin-Huxley and thalamic models. Results for the coupled state-space model can

be seen in Fig. 2.9 Note that while the general shape of the input signal is consistent

with the uncoupled case, the presence of weak coupling in addition to the uncertainty
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Figure 2.9: Simulation of thalamic state-space model with weak (a. = 0.01) coupling
for K = 4. Despite large fluctuations in the amplitude of the control signal, clustering
proceeds similarly to in the uncoupled case: first, the system desynchronizes, and then
strong clustering emerges.

Table 2.2: Energy Cost to Reach K-Cluster State

K=2| K=3 | K=4| K=5| K=6

Hodgkin-Huxley 13.8691 | 14.1803 | 18.1086 | 23.2431 | 29.2406
Hodgkin-Huxley (a. = 0.01) | 10.7016 | 19.1343 | 27.2689 | 32.4005 | 35.6388
Thalamic 29.064 | 71.7944 | 70.1354 | 69.6513 | 92.1052
Thalamic (a. = 0.01) 24.337 | 76.6713 | 82.9656 | 78.5948 | 100.763

caused by the phase estimation leads to significant fluctuations in the amplitude of the
control signal. Despite these fluctuations, the control scheme still is able to success-
fully cluster the population of neurons at a relatively low cost, albeit higher than in the
uncoupled case.

As can be seen by comparing Figs. and weak coupling does not significantly
affect the response time of the system, only the energy cost. To demonstrate this, the
population of neurons was simulated until reaching a value of r,,; = 0.05 for different
values of K, with p and « held constant. The results for the energy cost associated with
these separate trials are shown in Table [2.2], while the settling times are shown in Table
2.9

As coupling strength moves out of the weak regime where the above averaging as-
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Table 2.3: Settling Time (ms) to Reach K-Cluster State
K=2 | K=3 | K=4 | K=5| K=6
Hodgkin-Huxley 191.275 | 207.2 | 279.825 | 386.2 | 518.426
Hodgkin-Huxley (a. = 0.01) | 191.55 | 200.45 | 267.825 | 379.5 | 518.65
Thalamic 387.25 | 1074.15 | 1128.05 | 1167.45 | 1634.25
Thalamic (a. = 0.01) 382.775 | 1073.52 | 1127.82 | 1168.07 | 1644.55

sumptions hold, the cost associated with achieving clustering increases unboundedly as
the value of a. approaches some asymptotic limit. To demonstrate this, the system was
simulated for different coupling strengths varying from the weak regime to the moderate
coupling regime. This was done for two different values of o to demonstrate robust-
ness with respect to the choice of a. Fig. shows the energy cost for the reduced
Hodgkin-Huxley phase model for a = 0.1 and o = 0.01 as a. is varied. We consider
log a. to demonstrate it approaches an asymptotic limit; by using the log value, we treat
the uncoupled case as the asymptotic behavior as log (a.) — —oo. The resulting plot is

characteristic of a model of the form ( 1 + d, suggesting an asymptotic limit in a,

(alog(z)+b)°
rather than growth governed by an exponential or power law model. This is consistent
with simulations failing to converge to the target state for a. sufficiently large.

The inability to reach the target value of r,,; should not, however, be seen as a
complete failure to achieve clustering. Rather, as the coupling strength increases, the
system reaches a state wherein the value of r fluctuates in a complicated manner about
some average value. The stronger coupling is in this regime, the generally larger the
variations between the maximum and minimum of the cycle; similarly, the range of inputs
grows increasingly large as well. These phenomena are shown in Fig. [2.11] As can be seen,
beyond a certain value for a., increasing the coupling strength actually causes the minima
of |u| and r to decrease; this is likely the result of the neurons reaching a configuration

where the coupling actually aids in clustering instead of working against it, with the

strength being high enough to reach much more closely to the ideal state before coupling
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Figure 2.10: Cost to reach 1, for varying coupling strengths at two different values

of o for the Hodgkin-Huxley model (K = 4). As can be seen, in the weak coupling

regime (a. < 0.01) the system asymptotically approaches the uncoupled dynamics of

the system (denoted by the dashed lines), but as moderate coupling is approached the

required energy grows unbounded. This is consistent with the underlying assumptions

used in the process of averaging, namely that perturbations are small.
pulls the neurons away from the target state once more. This is consistent with [54], which
found that depending on the initial configuration, coupled neuron networks could end in
smeared one-cluster or multi-cluster states if there was sufficient connectivity between
neurons, depending on the initial conditions. Here, the application of control effectively
allows the system to transition from the basin of attraction of one of these configurations
(the one-cluster state) to a different configuration (the multi-cluster state).

Beyond a certain value of a., IMIE as described cannot achieve clustering and the
neurons instead coalesce. This is to be expected, as the fundamental assumption of its
formulation — namely, that the effects of coupling are weak — is no longer accurate. As
can be seen in Fig. [2.12] at higher coupling pronounced peaks and troughs can be seen
in each cycle of the neuron population. The disparity between the peaks and troughs
continues increasing as the coupling strength is increased. Below a critical value, these

oscillations in r are damped as time progresses, leading to a relatively steady solution.

Above a critical value, however, the oscillations instead increase, with each peak reaching
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Figure 2.11: Asymptotic behavior for Hodgkin-Huxley phase model, varying values of
coupling strength. A population of Hodgkin-Huxley neurons (N = 50, K = 4) evenly
spaced in phase space was simulated for 3000 ms; the final 1000 ms were averaged
and analyzed to determine asymptotic behavior. The variation in the maximum and
minimum magnitude for the input, as well as the average, is shown in the top panel,
whereas the variation in the value of r is shown in the bottom panel.
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a higher value of r than the previous peak, eventually tending toward oo and indicating

clustering cannot be achieved with the averaged technique described.

2.3 Some Thoughts on IMIE

We have demonstrated a potentially effective strategy for designing controls for achiev-
ing clustering of populations of neuronal oscillators. Simulations of both phase models
and full state models have demonstrated a significant improvement in cost when employ-
ing our input of maximal instantaneous efficiency (IMIE) as compared to other methods
that make use of the same level of information when generating a closed-loop control
strategy. Additionally, this method works not only for identical uncoupled neurons, but
can be extended to accommodate weak to moderate coupling as well.

The use of two separate neural models, the Hodgkin-Huxley and thalamic models,
demonstrates the robustness of the control strategy. While the Hodgkin-Huxley model
is not physically relevant to the specific research areas of interest, the thalamic model
provides a direct link to problems such as essential tremor. Research such as [55] shows
the correspondence between the firing behavior of singular neurons in the thalamus and
the tremors in essential tremor, and [56] indicates that DBS modifies and entrains the
firing of oscillators in the thalamus. The flexibility of the control strategy we have
presented allows it to achieve the same or similar results as conventional DBS, potentially
at a fraction of the cost.

The control strategy developed here in Chapter 2 is not without its limits, however,
and its limitations motivate our move into machine learning in the remainder of this
dissertation. In the case of PD, the behavior of the basal ganglia is complex and involves
the interplay of neurons in the STN, GP1i, and other portions of the basal ganglia. As such,

developing a control to generate desynchronization of firing activity is more complicated
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Figure 2.12: Evolution of Hodgkin-Huxley phase state models for weak (a. = 0.005)
and moderately strong (a. = 0.27) coupling. The first 500 ms of simulation are shown
in the top panel; The bottom panel expands the region of 2500 < ¢ < 3000. When
coupling is weak, the evolution of 7 is relatively smooth; however, as a. increases the
corresponding evolution of r becomes increasingly jagged, with each cycle containing
peaks and troughs. Eventually, as a. is increased farther, successive troughs and
corresponding peaks increase in value instead of decreasing, and clustering cannot be
achieved. This occurs in the Hodgkin-Huxley phase models around a,. = 0.275.
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than in the case of the two models presented here. In principle, if we can develop an
accurate phase model reduction to represent the various components of the basal ganglia,
we can apply all of the techniques we have just developed. That, however, is a decidedly
nontrivial problem. We may take as a starting point the computational model of the
basal ganglia presented in [33, 57] or [58]. In either case, we are, as a starting point,
working with not one type of oscillator, but three — the STN, globus pallidus interna
(GP1i) and globus pallidus externa (GPe). These three neurons have distinct behavior,
with excitatory and inhibitive effects connecting these three subpopulations to each other.
These connections further invalidate our assumptions of light to moderate coupling; the
coupling is so strong, in fact, that it is necessary for actually producing the oscillatory
patterning we see in all three neuron subtypes (the STN spontaneously fires periodically,
but the GPi does not).

Putting all this aside, another core issue we face is a practical one. Namely, this
approach requires possession of a great deal of knowledgee about the state of the system,
including the positions in phase space of all neurons at all times. While this may be
feasible in simulation or in vitro, extending this to in vivo applications is not possible. If
we want to tackle these challenges, we need to further generalize our approach while re-
taining the understanding and insight this investigation of phase models provides us — the

control strategies here will be revisited with the tools of neural networks in Chapter 3.

2.4 Optimal Control with Global Phase Reduction

Before tackling these questions, however, we will look at another application of phase
model reduction and again consider its benefits and drawbacks. The primary reason we
bother with phase model reduction at all is that it allows us to take complex systems and

simplify them significantly, and doing so allows us to use problem-solving methods that
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may be infeasible in higher-dimension domains to achieve control objectives. An example
of this is [8], which uses optimal control in conjunction with phase model reduction to
design stimuli to target specific firing times for the oscillator. For large input stimuli that
may drive the system far from the limit cycle, however, these results may be inaccurate, as
demonstrated in [59]. There the researchers avoided the problem by adding an additional
constraint to the optimal control solution in the form of the isostable coordinate, to which
they assigned a cost for being nonzero.

There are circumstances, however, where we may wish to deviate from the limit
cycle. First, the optimal control signals generated in [59] required significantly more
energy than their corresponding (but, admittedly, less accurate) isochron-only strategies.
Giving the control the freedom to deviate from the limit cycle may allow for more cost-
efficient solutions to the Euler-Lagrange equations. Second, there are circumstances
where we may specifically want to move away from the limit cycle and toward some
other feature of the system’s state space, such as an unstable fixed point. This is the
case, for example in [60], which seeks to drive neurons to the so-called “phaseless set”
adjacent to the unstable fixed point encircled by the limit cycle in the Hodgkin-Huxley
equations. Traditional augmented phase reduction does not give us the tools to do so;
in that paper, the authors instead resort to the Hamilton-Jacobi-Bellman equation [61],
which is computationally complex to solve, especially compared to optimal control via the
variational principle and associated Euler-Lagrange equations. Using a globalized version
of the phase model reduction, we can avoid the PDEs required of the HJB equation and

greatly simplify designing a control that moves us toward the unstable fixed point.
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2.4.1 Analytic Derivation of Global Isostables and Isochrons

We consider here the class of dynamical systems known as A-w systems, which are

characterized by dynamics given by:

dr G @_

=G, o =H(). (2.32)

Following the example of [62], we can write out a general form for the global isochrons

following from ({1.3)):
do(x) 00, 00,
dt = w = ET + 6—¢¢ (233)

We now note that A\-w systems are radially symmetric and that 0 (ry, ¢1) = 6 (r1, ¢1 + 27);
these two facts taken together imply g—g = 1. This allows us to rearrange 1' and

(substituting in for 7 and ¢) convert it to an ODE:

d)  w—H(r)
i W’ (2.34)
which has the solution:
0(x) = ¢+ / °"Z¥—i)(”dr. (2.35)

We can carry out a similar analysis for the global isostable coordinates, starting from

[3):

di) (x) o N
7 ki (x) aTG(T) + 90 (r) (2.36)
Because of radial symmetry, g—i = 0, and we may again rewrite to find an equation for

P
do(r) _ kv (1)
dr G (r)

. (2.37)
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2.4.2 Example: Supercritical Hopf Bifurcation

For the supercritical Hopf bifurcation, G(r) = ar + cr® and H(r) = b+ dr?; this is
slightly more general than Example 4.1.1 from [63], which uses a different but related
approach to find what we refer to as global isochrons and isostables. The ODE ([2.37)

for the global isostable coordinates is:

dy (r) 2ay) (r)
= — 2.
dr ar + cr3’ (2.38)
which has the general solution
a
b(r) = (5 + c> , (2.39)

where ¢; is an arbitrary scaling coefficient that can be chosen to normalize as desired.

Note that rearranging (2.39) allows us to represent r in terms of ¢ instead:

c1a

Y —cic

(2.40)

r =

Now, substituting (2.39)) into (2.38) and simplifying yields the IRC directly:

2ac; . (Y — 010)3 )
= L,) = -2/ aY

Ly(r)=—

(¥ — i)’

I,,=-2

(cos T + sin ¢y) .

We now carry out a similar analysis to find the global isochron coordinates. Our

ODE (2:34) is
do(x)  d(r*+2)

dr ar +crd’
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which is solved as:

0(r,9)=0¢— glogr—l—cg. (2.41)

To enforce ¢ = # on the periodic orbit, we select co = % log (—%) The relation between

¢ and 6 can then be flipped and written as:

T YT ) R

Lastly, by taking the gradient of (2.41]), the global PRC is given by

1/d 1 d
Zyy(r,¢) =—- (— cos ¢ + singb) T4+ - (cosng - - singb) 7.
r\c r c
In general, the PRC can be put in terms of the coordinates ¢/ and 6 by substituting for

r and ¢ using (2.40) and (2.42)), respectively.

2.4.3 Example: Control to an Unstable Fixed Point

We now consider a control application which makes use of the above global isostable
and isochron results. Typically, when we consider the phase reduction, one of the as-
sumptions is that the trajectory remains close to the stable periodic orbit, i.e. 1 ~ 0.
There may be situations, however, where this is not desirable; in this case, the underlying
assumptions of the non-global approach no longer hold and it is necessary to use global
coordinates. For example, for the supercritical Hopf bifurcation there is an unstable fixed
point interior to the stable periodic orbit; attempting to control to this point using the
traditional augmented phase reduction analysis would yield an inaccurate result, but with

the global coordinates we can effectively drive the system to the neighborhood of this
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unstable point. In terms of the stable periodic orbit’s isostable coordinates, the unstable
fixed point corresponds to 1) — oo; this can be seen from (2.39). Therefore, designing a
control to reach the unstable point at time 77 would correspond to maximizing the value
of ¢ at Tj.

To illustrate this, we consider the Hopf bifurcation normal form with the parameters
a=0.1,b=1,c=d= —1. Additionally, we assume we can only apply a control input in

the z direction. The components of the PRC and IRC in the Z direction are, respectively,

Z(r,¢) = —% (g cos ¢ + sin gb) (2.43)
and
I(r,¢)= —i—? Cos . (2.44)

Note that for convenience, for (2.44]) we have taken ¢; = 1.
We now design a minimum-energy control that brings the system close to the fixed

point. Our cost function is given by:

C= /Tl w(t)?dt, (2.45)

where u(t) is the control input, and 77 is the time at which we want the trajectory to be
within a specified Euclidean distance from the unstable fixed point. We apply calculus

of variations to minimize

() = [ o+ x (- - 200,00u0)
+ A (¢ ke — I (¢, 0)u (t)) dt. (2.46)
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The associated Euler-Lagrange equations are:

_ MZ($,0) + Xl (3,0)

2 (t) = MZ (1, 0) — AT (,0) =0 = u(t) 5 o (247)
dA YA ol
== ~Miggu () = deggu (t). (2.48)
Ao 07 o1

Because it is more convenient in general to represent the PRC and IRC in terms of the
original polar coordinates, we calculate the partial derivatives with respect to 6 and

by utilizing the chain rule:

0Z 9Zor 0709 oI dl or I d¢

o " orovt ogor  ov orov t 9600 (250

0z 0206 o1 _o1dv -
a0  0¢ 06 00  0¢ 00

The partial derivatives of r and ¢ are computed from and . A shooting
method on the reduced model was employed to obtain the values of A\; and A\, required
to give the value of 1 corresponding to r = 0.01 at time 77; Figure [2.13|shows the results
of a realization for 77 = 12. Then, the original Hopf bifurcation normal form model
was simulated using the input corresponding to these initial values for A\; and A\, for the
reduced model. At the target time 77, the control was turned off (v = 0) and the system

was allowed to relax back to the periodic orbit. As can be seen, this control strategy

effectively forces the system into the vicinity of the unstable fixed point.
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Figure 2.13: Control to an unstable fixed point for the Hopf bifurcation normal form:
the top panel shows the computed optimal input to reach r = 0.01 at 77 = 12, with the
inset showing more detail. The bottom left panel shows the trajectory of the system
which starts at (x,y) = (rpo, 0) until it reaches the target for r, and the bottom right
panel shows the slow relaxation back to the periodic orbit after the control is turned
off at Ty = 12.

2.5 Final Thoughts on the Global Phase Reduction

We again note that this method is computationally simpler than using a Hamilton-
Jacobi-Bellman approach to achieve a similar goal of steering a trajectory to an unstable
fixed point [60], 64]; however, it requires knowledge of the global PRC and IRC, which
might not always be possible. If we have the right-hand side of the dynamics for our

system, it may be possible to derive an analytic equation for these global coordinates;
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existing methods, however, do not provide an effective strategy for handling cases where
we do not already know the dynamics of our system. We will revisit this in Chapter 5,
in which we will explore how machine learning can solve these problems.

The greatest hurdle in designing controls for systems optimally has been, as we have
seen now several times, the value of information. The more information we have about
these systems, the more we can do to develop clever, insightful, or simple solutions that
leverage the tools of classical dynamics and control analysis. But often, this information
hinges on assumptions about the system that, in practice, may not be realizable: either
assumptions about the interactions between components of the systems (such as in the
case of coupling) or near-perfect information about either the underlying dynamics of
the system or state information at any given time. The focus in the remainder of this
dissertation will be on showing how machine learning can allow us to relax these con-
straints and work with our foundation in dynamics and control to develop more effective
techniques for controlling systems where we may not be able to observe every detail of

the system we would prefer to.
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Chapter 3

Toward Machine Learning: Using
ML to Solve Traditional Control

Problems

We revisit the core ideas from Chapter 2 in Chapter 3, with the crucial distinction that
we will now move away from the phase reduction model and narrow our scope slightly.
This allows us to reduce the expectation we have of the information available — whereas
in the previous work we assumed we essentially knew every state of the system, the work
presented here assumes far less about the information available to us in our efforts to
achieve desynchronization. In fact, we may say that here we will observe less than one

state, as we will see.

3.1 Artificial Neural Network Design and Training

A primary goal of this research was to utilize as little information as possible when

training the neural network and designing the control. To this end, we assumed that the
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only measurement we could recover from the neuron was the timing of its spikes. The
control signal used, however, was assumed to be known, and is characterized by three
variables: signal amplitude Iy, signal width ¢,,;4n, and signal delay time ¢4ejq,. The delay
time is the length of time after the previous spike that the input stimulus is applied.
The system’s output was the expected value of the neuron’s next firing time, ¢ ;,,4;. The

input # and output § of our neural network can therefore be written as:

T= [[()7 Lwidths tdelay ]Ta (3].)

g =k [tfinal|f] . (32)

The neural network was trained via random trials of & selected uniformly from the ranges
0 < Iy <25mA, 1 <tyign <9 ms, and 0 < 404y < 33 ms. For each 7', the neural
model was simulated (here, a conductance-based model of the STN adapted from [33];
the STN model used is provided in and the next spike time 3’ =t final Was recorded.
Here, the superscript notation denotes the ith training example from the data.

Prior to being used to train the neural network, ¥ was normalized to account for

differences in the ranges of Iy, tyigtn, and tgeqy. The transformed @ was computed as:

i = M, (3.3)

Oz,

where fi,, and 0., are the arithmetic mean and standard deviation, respectively, of the
jth element of ¥.

The model was trained using 10,000 random trials, with 70% of the trials used as the
training set and the remaining 30% held out for cross-validation. Parameters for the neu-

ral network were initialized using the Xavier initialization protocol [65] and updated via
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batch gradient descent. Hyperparameters for the number of hidden layers, the number of
neurons per layer, and the learning rate were tuned using a Bayesian search optimization
and optimizing the harmonic mean H M of the quadratic loss function £ applied to both

the training set and the cross-validation set. More concretely:

HM = —/————— (3.5)

Lirain Lo-v

Here, m = 7000 for the training set and m = 3000 for the cross-validation set. This
process yielded a neural network with 5 hidden layers and neuron numbers whose values
are presented in Table [3.1] The hidden layers utilized tanh activation functions, while
the output layer contained a linear activation function to account for the complete range
of possible period measurements. A learning rate of n = 0.0015 was used to achieve

convergence, and the model was trained for 50,000 epochs.

Table 3.1: Neural network hyperparameters.

Layer # 1 2 31415
# of Neurons | 80 | 100 | 60 | 30 | 80

After confirming the model’s accuracy on the training set, we cross-validated against
the held out data to check for overfitting. As can be seen in Fig. [3.1] the model main-
tained a high degree of accuracy in this cross-validation.

We note that the use of a neural network to perform this regression has two primary
advantages over other common regression strategies we considered. First and foremost,
the neural network allows us to achieve a far greater degree of complexity in the nonlin-
earities than other general regression methods, such as polynomial regression or Fourier

coefficient regression. Because neuron dynamics exist in a high-dimensional, highly com-
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Figure 3.1: Analysis of cross-validation data prediction. In the left panel, predictions

are plotted against true values; perfect accuracy would return a straight line along

y = x. As can be seen, almost all predictions have low error, with some outliers.

The center and right panels plot the errors against amplitude and stimulation width,

respectively, revealing that the most challenging stimuli to model tend to be those

with high amplitude and short duration. These represent stimulations near the firing

threshold for the neuron — sufficient stimulation will generate an all-or-nothing action

potential, while insufficient stimulation will simply return to the limit cycle, meaning

a small change in stimulation parameters can have a strong, divergent effect on the

resulting firing time.
plex space, this generality that the deep neural network provides is especially valuable
in the context of modeling stimulus responses in neurons. A comparison of the accuracy
of our neural network to two other regression strategies can be found in Table [3.2] Sec-
ond, because future estimations are provided by an explicit, feed-forward model based
on provided input values, the neural network produces an estimate that is efficient to
compute once the initial training is complete. Other strategies, such as interpolating
from the scattered data, are necessarily slower; this difference in processing speed can be

significant in the context of on-line neural control, where computational efficiency is of

particular importance.

3.1.1 Evaluation of Multiple Neurons Simultaneously

To extend the ANN to consider a larger population of neurons, the firing times of all
neurons in the population were defined relative to a reference time, selected as the firing
time of the latest-firing neuron in the population. The appropriate result estimation,
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Table 3.2: Comparison of performance of neural network to other regression

methods.
Training Error | C-V Error
Polynomial Fit 0.7787 0.9297
MATLAB
scatteredInterpolant N/A 0.4674
Neural Network 0.02688 0.0490

The error was calculated according to the loss function (3.4]). The polynomial
interpolation was estimated using a least-squares analysis of polynomial terms of the

) J4k l
type ay,k,llotwidthtdemy

then, was evaluated as t4qy With this offset subtracted. For example, if the reference
neuron fired at 0 ms and a second neuron fired at —4 ms, then an input that occurs at
tdgelay = O for the reference neuron occurs at t4eqy = 9 for the second neuron. The ANN
therefore can be efficiently used for larger neural populations.

As an extension of this process, an “event horizon” mapping was also generated from
the ANN’s regression analysis. To extend the neural network to the case of multiple
inputs within a single cycle, it was necessary to estimate not just when the neuron
was stimulated but also when the stimulus ends relative to the limit cycle. This was
accomplished by making the simplifying assumption that the neuron rapidly returns to
the limit cycle following the end of a given stimulus. An event horizon time ¢, disallows
subsequent input stimuli with start times tgeqy < thor. The event horizon time was

computed as:

thor - TO - (?J - tdelay - twidth) s (36)

where Tj is the natural period of the neuron. For example, if a stimulus at tgeqy = 15
with t,;4n = 3 causes the period to change from 24 to 21, although the stimulus ends
at t = 18, its event horizon time would be 21 because it ends 4 ms prior to the neuron’s

firing time. Any subsequent stimuli that may be applied would need to have a value of
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tdelay > 21 since all delay values were considered relative to the original firing time. This

is illustrated in Fig Additionally, we note T can itself be derived from the neural

tdelay + twidtn

Figure 3.2: Illustration of event horizon mapping. Time increases from 0 going left
to right. The event horizon time is computed by translating the remaining time until
the neuron fires after the completion of the input stimulus (black solid line) to the
corresponding remaining time relative to the original firing time 7. This lines in this
figure are to scale with the example described in the paper (tdelay = 15, twidath = 3,
To =24, y = 21).

network by setting tgerqy > 1) for a candidate stimulus (if ¢geiqy > 7o, the stimulus occurs
after the next spike, and the network should predict a firing time that precedes the value

Of tgeray). A realization of this event horizon mapping for ¢4, = 1 is shown in Fig|3.3
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Figure 3.3: Event horizon mapping (left) and period gain mapping (right) for
twidth = 1. The event horizon mapping is calculated via ; the period gain map-
ping shows the amplitude of the reduction in period generated by stimulating at the
given tdelay and I().
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3.2 Maximally Efficient Desynchronization

We now turn our attention to application of our regression model to the desyn-
chronization of two neural oscillators. We consider the voltage traces of two identical
uncoupled STN neurons, V; and V5. We define the spike time as the time at which V; is
locally maximal and above a threshold voltage (here, 0). The initial spike times for the
neurons are separated by some small increment At; because the neurons are identical,
uncoupled, and at steady state, this spike time difference will persist from cycle to cyle
unless the neurons receive an input. We define, without loss of generality, V5 to be the
“leading” neuron, meaning V5 fires before V; and the firing times can be related by:

i _ Ve
tspike - tspike

+ At, At > 0. (3.7)

If during the subsequent cycle the inter-firing times of V; and V; differ by At y;pq1, the

total separation between the two neurons is given by:
Attot(zl = At + Atfinal- (38)

Our goal is to increase the value of Aty as efficiently as possible when the two neurons
are subject to a common stimulus. Following our previous work in Chapter 2, we therefore

design our control to minimize our value function @ (x,y):

- (t}/zl’nal - t}/z?nal)

O T Wt

(3.9)

where « is a weighting term, ¢ > 0 is an offset to prevent division by zero if I = 0,

t

and final — tV2

final = —Atfing. The values of t}/;nal and t}/f.ml are computed assuming the

neuron previously fired at t = 0. We additionally note that, since we are only considering
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square waves, the integral can be replaced:
t
/ I(t)*dt = It wian. (3.10)
0

Because the only difference between the two neurons is the initial offset At, the final time

estimation is just the difference in the expected values:
t]“/}nal - tﬁnal =F [y‘l’_i] ) ylx_é = Jf_i + [07 07 At]T . (311)

We minimized @) via gradient descent for multiple initial separations At subject to two

restrictions:

1. @ was minimized while holding amplitude constant, then amplitude was varied;

and

2. twian, Was not allowed to decrease below ;4 = 0.5.

The first condition was applied to recognize that control may be subject to specific con-
straints, such as a particular amplitude or performance characteristics (desynchronization
time or total energy). The second condition was to ensure the model did not minimize
the cost by reducing ¢4, to a physically-unrealizable negative number.

The most energy-efficient signal for desynchronizing a pair of neural oscillators as a
function of amplitude I is shown in Fig|3.4. To validate the results of the control, the

error in the output when applied to the original ODE was calculated as:

\/(Atf'mal,est - Atfinal,sim)2
|Atfinal,sim|

, (3.12)

ETTrel =

where At finqr sim and At finqese are the simulation and machine learning-derived values of
t}@ml — t}{fml, respectively. Both this error and the absolute error (At finarest — At finat,sim)

o8



Toward Machine Learning: Using ML to Solve Traditional Control Problems Chapter 3

25 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 29
—At=0.2 ms

f\\ —— At =2.0ms| -28
\ At =5.0 ms

N
T
N
=

Stimulation Delay (ms)

N
o

Stimulation Width (ms)

23

0.5 22

0 2 4 6 8 10 12 14 16 18 20

Amplitude (mA/uF)

Figure 3.4: Optimal tyiq, (solid line, scaling on left y-axis) and tgeiqy (dashed line,
scaling on right y-axis) for desynchronizing a pair of neural oscillators as a function of
stimulus amplitude Iy for three different initial separations. As can be seen, all three
separations show the same general trend in terms of the optimal signal, with shorter
signals typically preferred at higher amplitude.
are shown in Fig (3.5, The high relative error demonstrates the limits of the neural net-
work’s modeling: for low-separation systems (here represented by the At = 0.2 curves),
the model underperforms, most likely due to limitations in the resolution of the model.
With the size of the training set and the hyperparameters chosen, the model does not
distinguish well between the responses of two neurons that start close together (here,
separated by less than 1% of the natural period of the neuron). A similar problem arises
for small-amplitude signals regardless of the separation: because the response to small-
amplitude signals is relatively small, the relative effectiveness is limited by the underlying
accuracy of the model. We note, however, that the model performs exceedingly well out-

side of these extreme cases, with relative errors under 10% and absolute errors on the

order of 1% of the STN neuron’s period.
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Figure 3.5: Relative (left) and absolute (right) errors by amplitude for three different
initial separations. Although absolute error is low across all samples and lowest for
the smallest separation (At = 0.2 ms), the relative error for the smallest separation is
highest because the true measured improvement is near 0; for a portion of the signal
range, in fact, the change is sufficiently small that there is no measured change, causing
the denominator of the relative error to be identically 0 (this can be seen in the plot
up to roughly 2 mA). However, for most amplitudes and stimulation lengths, both
the relative and absolute errors are insignificant and near 0 as stimulation amplitude
increases.

3.3 Dynamic Programming Desynchronization

The use of multiple inputs to optimally desynchronize a pair of neurons over a single
cycle was carried out by leveraging dynamic programming. In the interest of compu-
tational efficiency, we opted for a two-level approach to dynamic programming: on a
cycle-to-cycle level, the control was greedy, attempting to maximize the desynchroniza-
tion, while individual inputs within the cycle were found recursively by working backward
from the final state, here At = %

The process within a given cycle proceeded as follows: potential choices of I, and
tdelay Were gridded while ¢4, was held constant. Additionally, a minimum time of 3
ms between input stimuli was imposed. For a selected (ly,?4eiqy) pair, a binary search

function was used to find the spike time difference that, when the pair of neurons is

subjected to the given stimulus, would result in the desired final spike time difference.
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This process was then iteratively repeated for every input stimulus whose event horizon
was less than tg4eqy — 3 (with the difference accounting for the enforced minimum time
between firing).

The goodness of a given sequence of control stimuli was determined via a value func-
tion:

P = Atfinobl - Atinitiul - 6187 (313)

where 3 represents a weighting of the input stimulus power relative to the time improve-
ment and At;,;;; represents the separation at the start of the given cycle; in general, a
higher value of § should produce lower-energy desynchronizations requiring more cycles
to complete, while a lower value of § should produce higher-energy desynchronizations
requiring fewer cycles to complete.

The input stimulus sequence that maximized P determined the endpoint for the
previous cycle’s optimization problem. For each cycle the same process was applied until
the start point for a given cycle terminated at a spike time difference of less than 1 ms.
The process for a given cycle is presented in Fig

The success of our dynamic programming approach shows that the perturbations to
the limit cycle introduced by the applied control were sufficiently weak to allow the neuron
to return to its limit cycle in a short timeframe, thereby extending the functionality of
the regression model to input sequences. The value of an input sequence was calculated
using the neural network according to . The end separation Aty was taken
to be half the neuron’s natural period, or roughly 15 ms. Two different values of 3
were used to verify the existence of distinct control schemes depending on the relative
weighting of energy cost. The faster-responding system used a value of § = 0.01, while
the slower-responding system used a value of 5 = 0.1.

After the input sequence was calculated from dynamic programming applied to the
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Figure 3.6: Process flowchart for dynamic programming application. This process
was carried out independently from cycle to cycle until the terminating condition was
reached.

62



Toward Machine Learning: Using ML to Solve Traditional Control Problems Chapter 3

ANN] it was applied to the full ODE to verify the result. Rather than using the input
sequence as an open-loop stimulus, the firing time of the reference neuron was used as the
basis for setting the next cycle’s input sequence (that is, tgea, Was computed relative to
the recorded spike time, not the neural network’s estimate of the spike time. Because of
the observed accuracy limitations at small input magnitudes and small separations seen in
Fig|3.5] inputs for the dynamic programming analysis were constrained to the range of 5 <
Iy < 10. Results can be seen in Fig|3.7, These results are consistent with expectations:
as in the case of the efficient stimulus calculation, the dynamic programming yields
a highly accurate final result, and the smaller § value returns a more-responsive input
sequence offset by a higher energy cost. We note that, again consistent with prior results,
performance does degrade if I is allowed to take on smaller values or if the starting
condition requires the neurons to be significantly closer (on the order of At = 0.1 instead

of At ~ 1).
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Figure 3.7: Computed stimuli and output for dynamic programming approach to
desynchronization, § = 0.05 (left) and S = 0.001 (right). For both trials, tyan = 3.
Note that both accurately yield a final target separation of =~ 15 ms, but 5 = 0.01
results in an input sequence that is higher in energy and faster in response.

Larger inputs can also present challenges for multiple-input control applications. This

is a byproduct of the underlying neural network, which only predicts the nezt firing
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time; larger stimuli will yield a correct prediction of the firing time, but the firing of the
subsequent spike will not occur exactly a full period later even if no additional stimulus
is applied. Although beyond the scope of this paper, future work may be warranted on

predicting these aftereffects of stimulation in addition to the immediate effect.

3.4 Clustering of Neurons

3.4.1 Control Policy

Clustering, in which oscillators form discrete, finite groups with similar characteristic
behaviors, was accomplished by defining a cost function related to the input stimulus and
the change in a state function. This state function was adapted from the standard order

parameter 7y (5) where Ry, represents the k' order parameter and is defined as [66]:

(- %

Because we are solely interested in the magnitude of Ry, for simplicity of notation in this

N
Z ko]

=1

(3.14)

chapter we will henceforth understand R to be the real-valued magnitude ’Rk (5)’ as
defined in (3.14). Here, 6 is interpolated from when the neuron previously fired relative
to the natural period of the neuron. Assuming the {** neuron fired at ¢t = 0, then, ; is

represented as a linear transformation:
0, (t) = —. (3.15)

Order parameters are frequently used for analysis in clustering problems, cf. [67]. In the
order parameter context, Iy <§> = 1 implies the oscillators are perfectly clustered in a

single-cluster configuration, while Ry (5) = 0 suggests desynchrony or a larger number of
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clusters instead. It should be noted, however, that one drawback of the order parameter
is that, for £ > 2, the distributions that generate R, = 1 are non-unique. For example,
the one-cluster case of Ry = 1 also yields Ry = 1, R3 = 1, etc. In contrast, an optimally-
distributed two-cluster system, with an equal number of neurons in each cluster and the
clusters m radians out of phase with each other, would still have Ry = 1, but R; would
instead equal 0. R,, however, would also equal 1.

This ambiguity provides a challenge for utilizing order parameters as a basis for control
rather than as simply a diagnostic tool for the effectiveness of a control. Controlling to a
two-cluster state, for example, requires not only mandating R, = 1 but also that R; = 0;

more generally, a k-cluster state is better defined according to:

R, = . (3.16)

In general, we seek a cost function Cj (5) that satisfies:

04 (7) = o 7). 817

such that that C} is minimized when is satisfied. A second constraint results
from the existence of undesirable local minima resulting from the definition of the order
parameters. Suppose, for example, £ = 2 and R; ~ 1. In this case, Ry ~ 1 as well. If
a1 = —ag = 1, then O} =~ 0 and the global minimum is C}, = —1. However, R = Ry =1
is a local minimum of the cost function, as desynchronizing from the single-cluster state
causes the value of Ry to change more rapidly than that as R; (this can be shown by
differentiation; for an example, see Fig . Therefore, some care must be used in

selecting oy to derive a valid cost function.
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—R, 0

A6 Af

Figure 3.8: Effect of o selection on existence of local minima in C. To illustrate the
potential existence of local minima related to coefficient selection, here we examine
the k = 2, N = 2 case. As can be seen in the left panel, for A0 < 7, Ry decreases
more rapidly than R;, creating a local minimum at Af = 0 when a3 = —agy. The
right panel shows C}, (normalized such that Cj (A =0) = 0 and minCj, = —1) for
different choices of ay relative to as. At ap &= —4as, the fixed point at Af = 0 loses
its stability.

We derive here an approximate sufficient condition for the k = 2 case, noting that
a similar analysis can be iteratively carried out for £ > 2 as well. At the undesirable,

one-cluster fixed point, the derivative with respect to the jth neuron’s phase ¢; may be

written as:
90,
k= pa (sin6; cosB; — cos O sinb;) + 122 (sin 26, cos 26; — cos 26, sin 26;) | .
89]‘ =1 R1 RQ

(3.18)

Additionally, at this undesired fixed point, —%((;Y’? = 0. A necessary and sufficient condition
J
1 9Ck

for this point to be unstable is that, for [e] < 1, Fz
il

< 0. We make use of the Taylor
+e€

J
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approximations:

sin (v + ¢€) = sinx + ecosz + O (€

2

sin (22 + 2€) = sin 2z + 2ecos 2z + O (€
cos (z +€) = cosz —esinz + O (e

)
). (3.19)
)
)

cos (2z + 2¢) = cos 2z — 2esin 2z + O (€

Additionally, we note that at the undesirable, one-cluster fixed point:

sinf; ~sint) Vlie N
and (3.20)

cosf; ~ cost) VIl N.

These approximations allow us to rewrite the derivative as:

oC,
00,

). = —26a—11 Z (0082 0, + sin’ 6’5) — 86%22 Z (C082 26, + sin? 291), (3.21)
JTe I#j I#j

where we have additionally used the fact that (3.18) is equal to 0 at the fixed point.

Further simplifying, we find:
aq (6)
—2¢(N—1)— —8¢(N—-1)—=— < 0; 3.22
(N -1 P8 (V-1 3 <0 (322)
rearranging and solving the inequality with Ry = Ry = 1 yields the condition:

oy > —4da. (323)

To aid performance, for our analysis we empirically found a simpler and more con-

servative bound was useful; for the N = 50 system, the coefficients a; for the k-cluster
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problem were written as:

o) = . (324)

We note that we have made no claims or statements about reachability or controllability
with this analysis, only that the condition provided is sufficient to overcome an empirically

observed pitfall of order parameter-based control.

3.4.2 Population Clustering Simulation Results

A population of 50 neurons was simulated using the neural network. For each cycle,
an input was selected by finding the minimal value on a three-dimensional grid of values

for (Lo, twidth, taelay) of the cost of the input according to the overall cost:

Q = Cy + altuidn, (3.25)

where @ was set to 0.01 and C}, was of the form defined in .

Fifty different trials were run with initial firing times for each neuron randomly se-
lected from a normal distribution (u = 0,0 = ). Once optimal input stimuli were
generated via the neural network, the inputs were applied to the full ODE model. Phase
values at the end of the simulation were calculated as the time that had elapsed since the
neuron had last fired divided by the natural period Ty and multiplied by 27. Boxplots of
these simulation results for two-cluster and three-cluster control objectives are shown in
Fig 3.9 For both control objectives, the median values for the desired order parameter
(Rs for two clusters and Rj for three clusters) were statistically significantly higher than

the other two order parameters. The largest difference between the neural network’s pre-

dicted results and the full simulation’s output is that lower order parameters, notably Ry,
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Figure 3.9: Boxplots of order parameters for 50 trials of two-cluster (left) and three-

-cluster (right) control objectives. Although there are some errors when comparing

the predictions from the neural network (in green) to the actual output from the ODE

system (in red), we can see that the neural network performs well and successfully

maximizes the correct order parameter in both control objectives.
are not as effectively eliminated in the simulation when compared to the neural network’s
expectation. This is again consistent with the previous analysis of the regression; these
errors are largely due to the inability to accurately distinguish the effects of input stimuli
when two neurons are very close (< 1 ms). As a result, while in the neural network the
correct number of neurons may end up in each cluster (ideally, balanced equally) which
in turn leads the lower order parameters to approach zero, the network simply does not
have the precision in practice to correctly cleave the initial distribution when the stimulus
is applied to the simulation, resulting in slightly imbalanced (but still strong) clusters.
A characteristic resulting output for the 3-cluster case (with values of Ry, Rs, and Rj
close to the median values for the ODE output) is additionally shown in Fig m We

note that despite the values of R; and Ry both hovering around 0.2 for this realization,

a distinct 3-cluster state does emerge by the end of the simulation time.
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Figure 3.10: ODE simulation output with final order parameter values Ry = 0.1747,
Ry = 0.2686, and R3 = 0.8392. This particular realization was selected for its closeness
to the median results, suggesting it is representative of an average clustering sequence.
The top panel shows voltage traces for the 50 simulated neurons; we note that though
they start normally distributed, they end in a clear 3-cluster configuration. The bottom
panel shows the computed control input to generate the 3-cluster configuration.
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3.4.3 Extension to Noisy Oscillators

An important measure of robustness when designing control algorithms is sensitivity
to noise, so we applied the neural network’s generated stimulation patterns to a noisy
version of the ODE to evaluate its response. The same initial conditions and generated
stimulation patterns from the previous section were again used, but an additive Gaussian

white noise term was included in the equation for V:

V=-tont), (3.26)

where o is the standard deviation of the noise and 7 (¢) is the Gaussian distribution with
mean 0 and standard deviation 1, and the sampling of the distribution is independent
and identically distributed such that (n(t)n(s)) = 6 (t — s). Numerical simulation for
the noisy oscillators was carried out using a 4th order Runge-Kutta solver adapted for
noise. The 2nd order solver was explicitly derived in [68], and the derivation there can,
as noted in the original paper, be extended to higher order Runge-Kutta solvers; a 4th
order adaptation is presented in [69]. Differing magnitudes of noise were added to the
simulation; as can be seen in Fig. even for highly noisy systems, the control sequence
developed under the no-noise condition retained success in achieving the appropriate

clustering.

3.4.4 Control in the Presence of Coupling

The other important measure of robustness is how well the control maintains validity
when we consider interactions between the neurons. To this end, we carried out the same
protocol as previously but included all-to-all electrotonic coupling in addition to noise.

For all trials, the standard deviation o of the voltage noise was set equal to 5 mV. For

71



Toward Machine Learning: Using ML to Solve Traditional Control Problems Chapter 3

'l é@éﬁ Eo=11 TTTT
0.9 I o=2 0.9 Clo=1 |
B L [lo=5 [ Jo=2
0.8} 0+ + * [ Jo=10 0.8+ Lo=5 |
=10
07k | 0.7+ - o .
Il
0.6 + il 0.6 I i
0.5} 1 0.5 R, oo+ 1
T T T _ [ N B b+ o+
047 RN 04r7 7 7 7 N ]
0.3F_ _ _ _ [ oLl 11 N ‘
TT T 3 N S
O‘ZDDQQ D 0.2
F o
ot L1111 b E o l
oL L1l olt L 11 1LL
R, Ry R R, Ry Ry

Figure 3.11: Boxplots for 50 trials with additive Gaussian noise of differing magni-
tudes for two clusters (left) and three clusters (right). Even for the high-variance
case 0 = 10, the clustering control sequence is still successful in generating clusters,
indicating the robustness of the control algorithm.

the electrotonic coupling, we again use the equation presented in (2.24) and considered

different values of the coupling strength a.:

N
AVi=a.» (V; = Vi)

j=1

Otherwise, as in the case of considering noisy oscillators, the neurons were stimulated
using the same stimulation parameters developed for the noise-free, uncoupled scenario.
Three levels of coupling were considered: a, = 0.01, a. = 0.1, and a. = 1.0, which
correspond to weak, moderate, or strong coupling, respectively. As can be seen in Fig.
3.12| weak coupling has little impact on the results, while the control sequence still
generally performs well with moderate coupling (though performance is degraded when
compared to the uncoupled baseline). We additionally note that the 2-cluster control
objective outperforms the 3-cluster objective, demonstrating it is easier to achieve fewer
clusters. This is particularly pronounced in the case of moderate coupling, where there is

far less of a dropoff in performance in the case of two clusters than for three, while strong
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Figure 3.12: Boxplots for weak, moderate and strong coupling for two clusters (left)

and three clusters (right). The results behave as expected, with the predictions of

the neural network performing worse as coupling strength increases. Despite this,

the control strategy shows significant resilience in the presence of weak to moderate

coupling, with clear elevations in the appropriate order parameter compared to the

other order parameters.
coupling is impossible for the control sequences for either objective to overcome without
modification. This indicates that when only moderate or weak coupling is expected,
we need not modify our approach, but in applications where the coupling strength is
expected to be much larger, it may be necessary to supplement the base model with
some additional estimation of the effect of coupling. This is in contrast to the influence
of noise, which showed far less effect on the outcome even for large values of the noise.
Most likely, this is because noise does not introduce new stable configurations in the
same way coupling does and its average effect is 0 in the case of white noise, independent
of the magnitude of the standard deviation. Therefore, noise is roughly as likely to
cause a neuron to fire earlier than anticipated as it is to cause the neuron to fire later
than anticipated, so in the aggregate, its effect on the accuracy of the control is less
pronounced. We would likely see larger effects if the neural network used the voltage

traces of the neurons directly in making predictions, but since only the firing times are

recorded, individual fluctuations have little effect on the overall system.
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3.5 Conclusion

We have successfully trained an artificial neural network to make accurate predictions
about the change in spike time of a neuron subject to a square wave stimulus using
minimal input data. The network displayed a high degree of accuracy across both its
training set and a cross-validation set, with average error amounting to less than 1% of
the total natural period. Using this model we then predicted the optimally efficient input
for desynchronizing a pair of neurons given a cost function to be minimized and an initial
separation. Though the network’s model struggled with low-amplitude inputs and low-
separation conditions, it was nonetheless accurate over a large range of parameter values.
This relative error for low-amplitude inputs, which approaches unity as Iy, — 0, can
be understood as the result of the limits in the system’s resolution; the neural network
predicts a small shift in the next spike time, but in simulation no shift is observed.
Increasing sampling of low-amplitude signals would likely improve these predictions, as
would bagging with a secondary model specifically trained on low-amplitude signals.

We then applied our neural network to solving two traditional control techniques in
neuroengineering: desynchronization utilizing dynamic programming and clustering with
a single underactuated input. Using the performance benchmarks from the prior efficiency
analysis, we were able to select parameter spaces wherein the predictions from the neural
network maintained a high degree of fidelity when transferred to the ODE model. The
application to these two stylistically and mechanically distinct problems highlights what
we perceive as another strength of our approach: a high degree of flexibility in application.
Although an ANN may take some time to train to the point where it may be considered
reliable, the computational cost of applying the model once trained is substantially lower
than alternative approaches, and the broad range of applications serves to increase the

benefits of using the neural network’s regression model relative to the initial cost of
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training it. Additionally, the model demonstrated significant robustness in the presence
of both noise and weak-to-moderate coupling without requiring any adjustments in the

protocol, a level of generalizability that is not present in the work in Chapter 2.
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Chapter 4

Machine Learning and Parkinson’s:
Practical Analysis and Control

Design

While the network developed in Chapter 3 was able to successfully desynchronize the
population of oscillators even when noise and coupling effects were added, the type of
data it used for analysis is more akin to the types of readings that are possible in vitro
rather than in vivo. Additionally, even relatively small regions of the brain, such as the
subthalamic nucleus, have far more than 50 neurons, so getting accurate readings from
individual neurons — even something as limited as when a spike occurs — is not generally
feasible except in highly controlled environments. More commonly, the types of readings
we can expect to get from contact electrodes are known as local field potentials (LFPs).
We can view this as “zooming out” our view of the brain when we consider the question
of scope: the LFP can be viewed as, in some ways, an aggregation of information about
the activity of neurons across the region of the brain, so when those neurons fire in

concert, we see elevations in the power in the LFP. We often consider the LFP not in

76



Machine Learning and Parkinson’s: Practical Analysis and Control Design Chapter 4

the time domain but rather the frequency domain, converting it into a representative
power spectral density (PSD); if neurons are oscillating together, they will fire with a
consistent period and we should see an elevation in the appropriate frequency interval
of the PSD. As mentioned previously, in Parkinsonian patients, this is the “beta band,”
corresponding to the interval of approximately 15 to 35 Hz.

LFP data defies the simplfied analysis of a phase model reduction or straightforward
input-output relationships that we explored in Chapters 2 and 3. Instead, we will develop
throughout this chapter a predictor that estimates the likely behavior of the LFP’s PSD
through the use of a feature extraction technique in machine learning. Using this feature
extraction, we will first analyze patient data provided by a research group at UC San
Francisco, then see how we can use LFP signal data in conjunction with our feature-
extracting autoencoder to create an adaptive control scheme to modulate the behavior

of the LFP, even as a patient’s physiology changes.

4.1 Parkinsonian Patient Data, Neural Network De-

sign, and Simulated Data Generation

4.1.1 Patient Cohort Description

Data was collected from basal ganglia electrodes implanted in 6 patients. Measure-
ments were recorded over the span of, on average, 21 sessions per patient totaling an
average of 26 minutes and 50 seconds per patient. All measurements were taken at
rest. Data was collected using the Activa PC+S (Medtronic, Inc.); the capabilities of
the sensor have been thoroughly described in previous work, cf. [70, [71]. All data were
sampled from one bipolar contact pair in the STN with a sampling frequency of 800 Hz
in the time domain; a second recording bipolar contact pair in the primary motor cortex
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was simultaneously sampled in the time domain but is omitted from this analysis. More
information on the surgical procedure and collection protocol is available in [72].
Patients ranged in age from 45 to 62 years and in duration of disease from 4 to 15

years.

4.1.2 Neural Network Design

To carry out our analysis of the LFP signal and its correspondence to pathological
activity, we first constructed an autoencoder to encode the key features of the power
spectral density (PSD) of the incoming LFP signal. Because the amount of data available
for developing a predictive model is relatively small compared to traditional ML problems
and there may be significant physiological differences from patient to patient, we wished
to attempt to mitigate the possibility of overfitting by projecting onto a small number of
variables in a large-dimensional space. In this application, the autoencoder is similar to
principal component analysis (PCA) [73], or dynamic mode decomposition (DMD) [74],
with the advantage of allowing for nonlinear projections.

A generic diagram of an autoencoder network is shown in Fig. 4.1} The nonlinear
projection to the encoded variables is found by minimizing the mean-squared error recon-
struction error of this network; the remainder of our analysis will utilize these encoded
variables rather than the raw PSD signal. In particular, we implemented a 1-dimensional
convolutional autoencoder to preserve the correlational relationships between adjacent
frequency readings. A summary of the autoencoder is provided in Table 1.1 The LFP
data was first normalized to a mean of 0 and standard deviation of 1, then passed into
the autoencoder for training. The autoencoder was validated on a separate dataset. The
reconstruction error for the validation set is shown in Fig. [£.2l Once the autoencoder

was trained, the encoder was extracted to use as the basis for our analysis. The encoded
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d Encoded d Reconstructed
Encoder |—» Variables |—" Decoder LFP

Figure 4.1: Generic autoencoder structure.

Item Value
Convolutional Layers-Encoder 3
Trainable Parameters-Encoder | 2099
Trainable Parameters-Decoder | 8099

Encoded Variables 3

Table 4.1: Autoencoder model summary.

system consisted of three variables, reduced from an original frequency range of 20 Hz
with 1-Hz intervals (15-34 Hz).

We pause here to briefly describe the correspondence of features of the incoming signal
to values of the encoded variables. The encoding of a representative sampling of the data
is shown in Fig. [4.3] with the value of the extracted feature depicted by the color for
each of the sampled input beta-band PSD signals. While the precise relationship between
the variables and the input data is complex and nonlinear, we generally assert that high
values of Feature 1 correspond to high power in the middle of the beta frequency range,
high values of Feature 2 correspond to high power in low end of the beta frequency
range, and high values of Feature 3 correspond to high power at the high end of the beta
frequency range. We can confirm this by considering the regression of linear mappings
of the variables to frequency power; the correlation between features and this power is

shown in Fig. [4.4] This reveals the high linear correlation in different portions of the
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Figure 4.2: Autoencoder mean-squared error reconstruction error for normalized input

(u =0, 0 =1). The autoencoder faithfully extracts key features of the LFP’s power
spectral density and successfully reconstructs the original PSD.
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Figure 4.3: Relative values of encoded variables for a sampling of PSD signals. Red
denotes the lower end of the value range, while blue indicates the higher end.
frequency range for each of the encoded variables. We can additionally see that the first
and third variables may additionally encode information about the overall shape of the
PSD; we see this by examining the average first differences of the PSD and noting the
strong linear correlation to the first and third encoded variables (see Fig. [4.5)).

Our implementations with both patient data and simulated data then used this en-
coder as the basis for making a prediction about the state of the system at some future
time. In working with both the simulation data and patient data, this corresponded to
a regression problem. Each individual time snapshot was labeled as possessing a maxi-
mum amplitude in the beta band above or below a critical threshold (for the patients,
this threshold was the upper quartile value of the local maximum across all snapshots);
all of these individual snapshots within a given time interval were then used as the basis
for the regression. An example of this labeling is shown in Fig. [£.6] In all cases, the
average proportion of slices above the threshold was used as the target for prediction. We
considered a slight relaxation of the burst classification in prior literature — rather than
considering solely continuous periods above or below the threshold to classify as burst or
non-burst, we carried out regression on the maximum moving average proportion above
the threshold. For example, we slid a 0.25-second window across each 1-second labeled

sample (with each time step labeled with either a 1 if above the threshold or 0 if below)
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Figure 4.4: R? values for a linear regression of each feature at each frequency. Where
the curves are not visible, their values are below 0, meaning the linear regression is
outperformed by a constant-value hyperplane. As can be seen, in different subsets of
the frequency range, the encoded variables show strong linear correlation, with Feature
1 in the medium-high frequency range, Feature 2 in the low-medium frequency range,
and Feature 3 at high frequencies.
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Figure 4.5: Average (mean) first differences versus value of each feature across samples.
The orange line denotes the line of best fit for each linear fit. Both the first and third
features show a clear correlation between encoded value and first difference, while the
trend for the second encoded variable is distinctly less clear.
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Figure 4.6: Labeling of the peak for snapshots in a 1-second sample, with red denot-
ing above the target threshold and blue below. Prolonged periods above the target
threshold indicate bursting activity.
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Figure 4.7: Moving average for two different sliding window sizes: 0.25 seconds (left)

and 0.5 seconds (right). The sliding window was applied to the labeled data for

the interval depicted in Fig. [£.6] As can be seen, there is a clear short burst at the

beginning of the interval, and two short bursts near the end of the interval with a slight

dip below the threshold. As a result, the shorter, 0.25-second window is maximized

at the beginning of the interval at a value of 1.0. In contrast, the dip ensures the lack

of a second maximum in the 0.25-second window, but the elevation in the 0.5-second

window indicates a sustained period above the threshold, even if the continuous time

above the threshold is shorter. For purposes of analysis, the first window would return

a value of 1.0, while the second would return a value of 0.7.
and calculated the mean value within that window. We then considered the entirety
of the 1-second sample and selected the maximum value of the moving average within
that window. We considered four different-length windows, ranging from 0.25 seconds
to 1 second in increments of 0.25 seconds. These differing windows can be viewed as
corresponding to identifiers for bursts of varying length — a proportion near 1 in the
short window may mean a short burst, while a proportion near 1 in a longer window
corresponds to a longer burst. For example, the differences in the processing of the
same data for two different window sizes is shown in Fig. [£.7, demonstrating how us-
ing multiple-sized windows simultaneously can allow for discrimination between short,

medium, and long bursts. We envision these windows as classifiers that may be used

either in conjunction or isolation, depending on the desired objective.
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4.1.3 Simulated Data Generation

Simulated PSDs were generated in Python based on simulation of the local field po-
tential readings for a dopamine-depleted individual, using parameters from the basal
ganglia-thalamocortical LFP model presented in [75], [76]. The code used was adapted
from [77], with modifications to allow for additional data collection and parameter con-

trol, as well as to integrate the neural networks for encoding and supervised learning.

4.2 Burst Prediction from Parkinsonian Patient Data

4.2.1 Prediction Model Single-Patient Training and Validation

Trials were run for the different averaging windows described above and with different
"relative gaps” between the starting points of the input data and output prediction data.
That is, for the window used in calculating the power spectral density, the relative gap
is the increment between starting points relative to the length of the PSD calculation
window, which was equal to 1 second, or 796 snapshots, for each trial here. In this
context, a relative gap of 0.5 corresponds to 50% of the time-series data being shared
between the input and output, while a relative gap of 1.0 is the minimum gap such
that no data is shared between the input and output time-series windows. Results are
presented here for relative gaps ranging from 1.0 to 2.0 for each averaging window. Since
the interval was 1 second here, a relative gap of 1.0 indicates a delay of 1.0 second, and
SO on.

As a baseline for comparison, we selected a “no-change” hypothesis — that is, that
the proportion of snapshots tagged as containing a burst signal in the previous window
is the same as in the current window. This was selected for two primary reasons. First,

the no-change hypothesis can be calculated explicitly from the input data provided to
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the network, and as such operates from a certain “level playing field” with our neural
network. Second, the no-change hypothesis performs quite well because starting points
are randomly selected: below a relative gap of 1.0 the no-change hypothesis approaches
perfect accuracy as the relative gap approaches 0, and as we found, a significant propor-
tion of the data (greater than 25%) is still well-explained by this hypothesis even with a
larger relative gap.

We carried out initial training and validation on a single patient, randomly sampling
from 22 separate recording sessions for that patient, for a total of 28 minutes and 30
seconds of measurement time. The measurements were conducted with the patient at rest,
and the sessions took place over the span of 2 years. Samples contained instances of the
patient both on and off medication, and with stimulation either on or off as well. All data
were collected via an electrode inserted at the basal ganglia. These trials were subdivided
into four conditions, consisting of the differing combinations of on-off medication and on-
off stimulation. Each condition was sampled from equally, with 5,000 random samples
pulled from each subdivision for a total of 20,000 random samples for training. To
minimize computation time, training was accomplished via minibatch gradient descent
in a 3-hidden-layer neural network for only 5 epochs; we note that accuracy continued to
improve incrementally beyond 5 epochs, but 5 was sufficient to demonstrate appreciable
improvements over our baseline. The neural network was provided with 6 inputs: the
three encoded variables representing the power spectral density of the LFP at the end
of the current time window, the max burst proportion in the current time window, the
medication state (1 or 0), and the stimulation state (1 or 0).

The mean absolute error in predictions on the validation set, as well as the first and
third quartile errors, are shown in Fig. [£.8] As was previously alluded to, across all trials,
the lower quartile of the data (that is, the most accurate 25% in terms of prediction error)

possessed an error near 0 for the no-change hypothesis, and was functionally unchanged
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by the prediction model. However, appreciable gains are seen in the mean error and the
upper quartile. Despite the high accuracy of the no-change hypothesis on a significant
portion of the dataset, the model still saw reductions of between 10% and 20% in the
mean absolute error across trials, with the gains increasing as the averaging window size
and relative gap increased. Reductions in the upper quartile error bound were even more
dramatic, with reductions ranging from 10-20% in panels (a)-(c) while reaching as high
as 35% in the 1.0 second averaging window (panel (d)). These gains in absolute error are
shown in Fig. [1.9

The prediction model improves accuracy primarily by mitigating the largest sources
of errors in the no-change hypothesis. Across all four averaging windows, the most likely
measurements were values near either 0 or 1, with a smaller peak around 0.25. This
can be seen in the histograms presented in Fig. [4.10] which shows the composition of
a representative trial for each averaging window (because initial indices are randomly
selected, the relative gap does not influence the population statistics). Naturally, this
indicates that the highest concentration of solutions should be at either extreme; less
immediately apparent is that, for any given burst proportion observed in the current
window, the most likely outcome in the subsequent window is to reach a value of either
0 or 1. This is evident by looking at the histogram of errors for the no-change hypothesis
presented in Fig. [£.11] with the characteristic “X” persisting across trials. As can be seen
in the same figure, our prediction model successfully eliminates these high-error terms,
with a corresponding increase in the success of predicting when a transition to 0 or 1 will
occur and, more importantly, in which direction it will occur.

We assert here that the prediction model is, in fact, using the encoded LFP signal in
producing its prediction and not simply replicating a Markov decision process strategy
utilizing the other input data it receives (current burst proportion, stimulation state,

and medication state). To demonstrate this, we observe the model’s predictions when
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Figure 4.8: Model (dashed) versus no-change hypothesis baseline (solid) for averaging
windows of length 0.25, 0.5, 0.75, and 1.0 seconds (panels (a)-(d), respectively). Three
measurements of the error are shown: the mean absolute error (MAE, blue), the bound
of the lower quartile of error values (green), and the bound of the upper quartile of
error values (red).

88



Machine Learning and Parkinson's: Practical Analysis and Control Design Chapter 4

0.95

0.9

0.85

0.8

Error Ratio

0.75

07 ——0.255 Window ~ . N
- ~
— ().55 Window = ~
T N - -y,
0.65 - e (.75 Window ~ -
e 1 .08 Window

0.6 I I \ I I I \ I I
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Relative Gap (s)

Figure 4.9: Ratio of model error to baseline error for different averaging windows.
Both mean absolute error ratios (solid) and upper quartile error ratios (dashed) are
shown.

89



Machine Learning and Parkinson’s: Practical Analysis and Control Design Chapter 4

0.25s Averaging Window 0.5s Averaging Window 0.75s Averaging Window 1.0s Averaging Window
7000 7000 7000 7000 =

6000 6000 6000 6000

5000 5000 5000 5000

4000 4000 4000 4000

3000 3000 3000 3000

2000 2000 2000 2000
0 0 0 0

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 4.10: Histograms of burst proportions for each averaging window. The total
number of samples in each histogram is 2,000. As can be seen, across all windows
the single most likely value is 0, with the likelihood increasing as the averaging win-
dow length increases. Conversely, the likelihood of a value near 1 decreases as the
averaging window length increases, eventually ceasing to represent the second-most
likely outcome in the 1.0s averaging window. A peak is observed in all 4 histograms at
0.25 because the threshold for classification of a burst is a maximum above the third
quartile threshold, so in an “average” window, 25% of snapshots should be above the
threshold.
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Figure 4.11: Normalized histogram of errors from neural network model and no-change
hypothesis (averaging window 0.5s, relative gap 1.5). Because of the uneven distribu-
tion of burst proportions seen in Fig. for enhanced readability these histograms
are normalized such that the sum of values in each column is 1. In other words, if
a particular grid space in the 0.2 column has a value of 0.3, that means that 30% of
samples that have a value of 0.2 in the current window possess that corresponding
error in the prediction. The “X” shape indicates most intermediate states transition
to either a 0 or 1; if the no-change hypothesis has an error equal to the current burst
proportion, the new burst proportion must be 0, whereas if the error is equal to its
complement, the new burst proportion must be 1.
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all variables aside from the encoded variables are held constant. Fig. illustrates
this with the probability density function for one particular instance of this; there is
a clear distribution of outcomes dependent on the encoded variable values that could
not be replicated without these values. Furthermore, while the stochastic nature of the
system inhibits perfect accuracy, we see in Fig. that on average, these predictions
are consistent with the results.

We can also look more specifically at what features map to what outcomes; while the
encoded variables will not directly align with outcomes (since the other variables — burst
proportion, medication state, and stimulation state — also influence the result), we can
see some clear trends in the data. Most notably, there is a clear “low-probability zone”
across window sizes shown in Fig. for roughly average values of the first feature
and low values of features 2 and 3. If we consider our previous analysis of the feature
extraction in Figs. [£.3]and [4.4] this corresponds to a negative average 1st difference and

low amplitudes in the middle of the frequency range.

4.2.2 Generalization of Model to Other Patients

The primary goal of implementing the autoencoder in our model was to reduce the risk
of overfitting by extracting the key features of the data, rather than using the raw power
spectral densities. When passing data through an encoder, some loss of information is
to be expected; indeed, if we are only considering data the network is explicitly training
on, we would be better suited by using the PSDs as-is rather than adding the step of the
encoder. But our hope was that including the encoder would improve the transference
of the learning of the model to novel patients after training on a single patient, and this
hope was confirmed by our application of the model to a larger cohort of patients. To

assess the benefits of the autoencoder, we considered two additional models beyond our
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Figure 4.12: Histogram representing a probability density function. The histogram
represents a subset of the outcomes for the neural network model trained on an aver-
aging window length of 0.5s and a relative gap of 1.5, and it is normalized such that
the area represented by the bars is equal to 1. This histogram specifically represents
predictions from the portion of the data for which medication was off (0), stimulation
was off (0), and the previous burst proportion was greater than 0.9. All variation in
these outcomes is directly attributable to the encoded variables, rather than the other
three input variables.
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Figure 4.13: Normalized histogram of predictions and true values (top) and average
true value by model prediction (bottom) for the prediction model for a specific subset
of values. The same data is used as in Fig. [4.12] with medication off, stimulation
off, and previous burst proportion greater than 0.9. The relative gap was 1.5 and
the averaging window had a length of 0.5s. The upper panel shows that the majority
of true values are either close to 0.0 or 1.0, but the apportionment between the two
extremes varies across the prediction value. For the average true values, the orange
curve represents the mean for the data, while the dashed blue line indicates perfect
averaging, where the predicted burst value exactly matches the average true burst
value. The close adherence to this dashed blue line shows that, although the inherent
stochasticity of the system makes it difficult to predict either extreme with certainty,
the averaged prediction hews closely to the expected value.
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Figure 4.14: Scatter plots of feature values and predictions for proportion of the time
above threshold (indicated by color). For all panels, the x-axis denotes the value of
feature 1, while in the left panels the y-axis is feature 2 and in the right panels the
y-axis is feature 3, as denoted at the top of the figure. The relative gap for all four
rows is 1.5s. All four gaps show clear regions of low probability, such as midrange
values of Feature 1 with low values of Feature 2, and high probability, such as high
values of Feature 1 and Feature 2 for the 0.25s window.
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neural network in comparison: a support vector machine that used the raw PSD signals
in addition to the other inputs, and an alternative support vector machine (SVM) [7§]
that utilized the encoded variables instead. We again compared all three models to our
no-change hypothesis, and both SVMs were implemented via Python’s scikit package
and trained on the same single-patient data as the neural network. As can be seen in
Figs. and [4.16] not only does the prediction model outperform all other models and
continue to maintain an advantage over the no-change hypothesis, but the SVM using the
extracted features also outperforms the SVM using raw PSD signals across most trials.
From this, we assert that utilization of an autoencoder for feature extraction may be
useful in novel ways as further research is conducted on predicting burst behavior and
should be considered a valuable area of further investigation.

Lastly, we make two observations about the overall accuracy of the network when
applied to the unseen patient data. First, while the mean absolute error is higher than
for the original, same-patient validation data, so too is that of the no-change hypoth-
esis, suggesting the initial patient possessed fundamental physiological differences from
the “average” patient in the cohort. Secondly, the relative improvement of the neural
network (particularly with relative gaps nearer to 2.0) over this baseline (see Fig.
compared to Fig. suggests the feature extraction is robust, however, and these phys-
iological differences do not fully undermine the bases for prediction resulting from the
prediction model. We believe this robustness is a promising indicator of the potential
for a generalized burst predictor not requiring re-training on a patient-to-patient level,

which is likely infeasible.
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Performance of Different Models
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Figure 4.15: Mean absolute error (MAE) for averaging windows of 0.25-1.0s ((a)-(d),
respectively). The no-change hypothesis is again denoted by the solid line, while
the prediction model is represented once more by the dashed line. The SVM with-
out autoencoding is given by the dotted line, while the SVM with autoencoding is
represented by the dash-dot line.
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Performance of Different Models- 3rd Quartile Error
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Figure 4.16: Upper quartile bound for averaging windows of 0.25-1.0s ((a)-(d), re-
spectively). As in Fig. the different lines represent no-change (solid), prediction
model (dashed), SVM without autoencoding (dotted), and SVM with autoencoding
(dash-dot).
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Figure 4.17: Ratio of prediction model error to baseline error for different averaging
windows when applied to unseen, multi-patient data. Both mean absolute error ratios
(solid) and upper quartile error ratios (dashed) are shown.
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4.3 Supervised Learning of Adaptive DBS

Having demonstrated success with the autoencoded PSD signals, we wished to see if
we could use the information proactively, rather than simply diagnostically. As an initial
step, we turned to computational modeling of the basal ganglia to attempt to design
an adaptive controller to modulate activity in the local field potential’s power spectral
density. A modified, adaptive version of the prediction model was implemented for the
computational model of the basal ganglia from [76] [75]. A greedy algorithm was used
to select an input driving stimulus frequency v that would drive the system such that
the maximum power in the beta band was below a target threshold T with a specified
probability ¢ during the next window of consideration; this corresponded to finding the
lowest frequency for which the predicted probability of a burst not occurring exceeds the
target probability. We note that this probability is equivalent to the complement of the
average for the 1.0-second window in the previous section; we have flipped the convention
here to improve the clarity in the visible trends in the subsequent results. More formally,

we define our control policy as:

H P7 — : ) P < T s = 5 41
(P, ) uer[%,lzr(l)o}y D (felﬂ?,}éi)) (f) v Vo) q (4.1)

where P is the power spectral density of the current window and v is the average
frequency in the current window. For all the simulations presented in this paper, a
target threshold of -15.781 dB was used, as this corresponded to the mean magnitude
across 10 trials for the PSD when stimulated with a constant frequency of 135 Hz. 135 Hz
was used as the benchmark control frequency because it is within conventional frequency
stimulation ranges for deep brain stimulation.

The stimulation frequency was capped at 200 Hz, and the stimulation frequency
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was refreshed every 2 seconds. The adaptive model was trained on a batch of signal-
PSD correlations every 0.5 seconds with a learning rate of & = 0.0001. Training was
accomplished using a weighted random sampling of previous windows, with a bias toward

recent samples. The probability weight, p, for the PSD at index k, Py, was calculated

as:
P
PO 1 CiO (42)
> it 1 (F)
where:
k—N
p(P) = exp — - (4.3)

and L is a user-defined constant that may be adjusted as desired (for all trials here,
it was set to the length of one window of data, or 2048). Because of the stochasticity
of the system, multiple trials were run at each condition for comparison. Trials using
conventional DBS were also run for comparison at a range of frequencies.

Examples of two such trials are shown in Fig. [4.18 We see that, although the
stimulation frequencies vary differently between the two trials, they both maintain a
tight bound around the target probability of ¢ = 0.5, indicating these fluctuations are
responsive to the stochasticity of the system rather than error in the training. Unless
otherwise noted, all simulations were carried out for 1,000 seconds of simulation.

The control algorithm demonstrated the ability to target probabilities across a broad
spectrum. With the same target PSD threshold of -15.781 dB, the algorithm was able to
effectively and consistently learn appropriate controls to maintain probabilities below the
threshold ranging from ¢ = 0.25 to ¢ = 0.75 (see Fig. [£.19). In all trials, accuracy in the
first half of the simulation was outperformed by accuracy in the second half of simulation,
demonstrating the algorithm’s ability to effectively learn and improve its predictions.

We make two observations about these results. Perhaps most importantly, the control

strategy is successful in maintaining consistent results despite the presence of noise in

100



Machine Learning and Parkinson's: Practical Analysis and Control Design

Chapter 4

170

160

o
S

e
S

)
S

Stimulation Frequency (Hz)

100

90

Figure 4.18:

in the frequency effectively keep the moving-average probability near 0.5

Moving Average Proportion Below Threshold

200

400 600
Time (s)

800

1000

Moving Probability

0.9

0.8

200

400 600
Time (s)

800

1000

Examples of stimulation frequencies (left) and probabilities (right) for
two trials (one in red, one in blue) with target probability ¢ = 0.5. The adaptations

200

800

Frequency (Hz)

—_
B
o

-
n
=]

e
(=}
=]

80

200

400 600
Time (s)

800

1000

Figure 4.19: Results of trials for different probabilities with the same threshold. All
trials attempted to control the maximum magnitude of the PSD in the beta band to
stay below the threshold (-15.781 dB) for a proportion of the time defined by ¢. The
mean across trials for the running average proportion is bolded, while individual trials

are shown as unweighted lines.
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the model. While the presence of noise ensures that it is impossible to maintain perfect
tracking of the target probability of all times, the results, when coupled with the trials
of conventional DBS, demonstrate that informing stimulation frequency selection using
prior signal information can effectively allow us to operate closer to this theoretical limit.

Second, we observe that the model is successful in rapidly learning to accurately
control the LFP signal. Referring again to Fig. [£.19] we can see that the rise time for

the cumulative probability is less than 200 seconds across all trials.

4.4 Adaptation to Slow Parameter Variations

In practice, DBS is typically combined with pharmacological treatment of Parkin-
son’s disease, typically with L-Dopa. Traditional DBS requires tuning of both off-
medication and on-medication parameters with the intent of minimizing symptoms while
off-medication and reducing negative side effects while on-medication, such as dyskinesia.
Progression of the PD condition in patients may also require adjustment of the parame-
ters associated with effective symptom control. One shortcoming of traditional adaptive
DBS strategies is that they lack a mechanism for addressing these changes in the under-
lying physiology in adaptively updating stimulation parameters; rather, parameters are
designed based on a specific state or model which may lack the ability to extend to a
slowly-changing system.

We explored the ability of our control strategy to learn these slow adaptations by
modifying our model to introduce a time variation in the parameters that differed between
the dopamine-depleted and healthy states. The value of a given parameter X at time ¢

was treated as varying sinusoidally, given by:

2mt
X({t)=Xy+05 <1—|—COS%> (Xpp — Xu), (4.4)
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where 7 is the period of the slowly-varying parameter changes and Xy and Xpp rep-
resent the “healthy” and “dopamine-depleted” parameter states, respectively. In this
formulation, a properly-functioning control algorithm that is effectively learning the slow
variation of parameters should reduce stimulation when X ~ Xy and operate at or near
the stimulation frequencies shown previously when X ~ Xpp.

The algorithm was able to learn the desired behavior for a range of variation fre-
quencies. Simulations were extended to 10,000 seconds to allow for observation of the
effects of parameter variation over the course of, at a minimum, two cycles; 9 trials were
conducted with periods incremented from 7 =1,000 seconds up to 7 =5,000; the moving
average of the probability was then calculated. In each trial, the target probability was
set to ¢ = 0.6.

We summarize the results of these trials in Fig. [4.200 We found our network was
able to consistently track and adapt to the changing system without a significant loss in
tracking performance. The average stimulation frequency showed a reliable variation that
was consistent with that of the parameter variation. This is evidenced in Fig. [£.21] which
compares the oscillation in stimulation frequency with that of the parameter variation.
We note that, in general, stimulation frequency closely matches the underlying parameter
variation in both stimulation frequency and phase. We additionally note that for several
samples the peak stimulation frequency actually led the parameter variation rather than
lagging it; the cause of this was unclear in our trials.

We emphasize here that the adaptive model was given no information about the
variation in parameters of the underlying basal ganglia model. Instead, changes in the
relationship between stimulation and LFP measurements allowed the network to learn the
variation and develop characteristic fluctuations in stimulation frequency that mimicked
the variation rate of the underlying parameter variation. We believe this agnosticism to

model information is a particularly attractive feature of our proposed adaptive model
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Figure 4.20: Smoothed moving averages for frequency (top) and probability (bottom)
for each trial. As can be seen, tracking error is relatively low, and clear oscillations with
the same period as the parameter variation can be seen in the stimulation frequency,
demonstrating the network’s ability to effectively adapt to the changing parameters.
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Figure 4.21: Average peak-to-peak interval (blue) and phase offset (red). The phase
offset was measured as the time difference between the peak of the parameter variation
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when compared to alternative forms of adaptive DBS. As patient physiology changes,
either in the short term because of medication or longer term because of progression
of the disease, appropriate stimulation parameters and targets must be adjusted as a
result in most methods; here, the adaptive model is able to make these adjustments
on-line without additional input. With this in mind, we have presented an artificial
neural network that is trained to predict the response of the the basal ganglia to varying
stimulation, allowing for a more robust basis for control design without sacrificing the

capacity to adapt to changes in the underlying model parameters.

4.5 Conclusion

We have developed a robust, flexible neural network-based algorithm that is capa-
ble of accurately achieving a range of control objectives while simultaneously learning
and refining itself. From a common starting point of a trained autoencoder for feature
extraction, we have demonstrated robust accuracy in both prediction tasks on patient
data and control tasks on simulation data and demonstrated the general utility of an
autoencoder in addressing prediction problems in neuroscience. In its current formula-
tion, the control algorithm already has significant flexibility, allowing for the arbitrary
choice of both threshold values and probabilities and maintaining fidelity across these
choices. Furthermore, the neural network successfully adapts to variations in the under-
lying biological model provided it is trained with an appropriate learning rate. Beyond
this, however, the core architecture of this model allows for further exploration of dif-
ferent control objectives, including non-greedy control strategies with discounted future
rewards or subjecting the control to additional constraints. There are also a number of
exciting directions for modifying the existing architecture to increase the functionality of

the algorithm, including the introduction of new state parameters, such as stimulation
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amplitude, and adaptation to other frequency ranges, e.g. the gamma range, to attempt
to ameliorate symptoms of Parkinson’s disease such as dyskinesia. Additionally, we be-
lieve the use of a common autoencoder for both components of our study suggests the
core architecture of our control algorithm may be carried over into in-patient adaptive

control.
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Chapter 5

Continuing Projects: Filling in the

Blanks with Machine Learning

Throughout this dissertation, we have seen examples of how machine learning can allow
us to develop robust, accurate, and precise predictions when information may be at a
premium. These predictions, in turn, allow us to develop and implement control proto-
cols. Whereas the work in Chapters 3 and 4 focused on how to generate control strategies
when the right-hand side of the governing ODEs is unknown or we cannot measure the
appropriate states of the system, here we shift our attention to using machine learning
techniques to learn precisely those pieces of information we assumed unknowable. Specif-
ically, we will examine two ongoing projects. The first of these utilizes artificial neural
networks to learn an analytical expression for the right-hand side of the governing ODEs,
while the second attempts to extract global phase and isostable response curves from a

limited dataset.
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5.1 Symbolic Regression via Artificial Neural Net-
works

We have begun exploring a novel strategy for identifying the analytic expressions
for systems of equations based on an analysis of their time-series data. The goal is to
develop a strategy that is as general as possible, including minimal presuppositions about
any characteristics of the model. This is in contrast to previous methods, such as those
proposed in [79], where system identification proceeds from a dictionary of constituent
terms. We accomplish this by using a multilayered, operation-based approach, with
the capacity to learn compound operations through training. For ease of training, all
operations are designed to be continuous and differentiable. This can be viewed as a
form of symbolic regression, but with a structure that is amenable to the use of artificial
neural networks.

Our network can learn four different types of operations, each of which will be sub-
sequently explained: 1) Linear combinations; 2) Polynomial combinations; 3) Simple
products of variables; and 4) Common operators. The network can possess a two-tier hi-
erarchical architecture with K > 1 stacked layers, each of which carries out each of these
operations L > 1 times. The network takes initially as input the n system states and an
additional constant value of 2 to aid with scaling, for n + 1 total states. If desired, time
could be included as well, allowing for n + 2 initial states. If K > 1, then the kth layer
takes as input not only the initial n+ 1 states but also the 3L (k — 1) states generated by
operations in the previous layers, which allows for highly complex analytic expressions
with minimal training parameters. Each of these processes and operations is outlined

below.
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5.1.1 Operational Layers

Throughout this section, the totality of states, including any observables generated
within the network, will be referred to simply as x, with z,,, denoting the m™ value in the
vector z. Weight vectors for trainable layers will be referred to as W, with W,,, denoting

the corresponding weight.

Linear combinations

As suggested by the name, these are just linear combinations of the pre-existing states:

y=> Wnim. (5.1)

This is helpful in deeper stacked implementations, where sums of individual components

of x may undergo significant nonlinearities.

Polynomial combinations

The output of a polynomial combination layer is given by:

y=[]lzml"" (5.2)

The absolute value of each state is used to ensure that each output value y remains in the
domain of real numbers; sign considerations are handled separately. To enforce parsimony
(also known as Occam’s Razor - choosing the simplest explanation for a phenomenon),
regularization is applied to the model; for all non-constant values of z, the L; norm is
considered, and this value is multiplied by the product of 1.1"wst where W, is the
weight corresponding to the constant value of 2. This is designed to drive the value of

this state toward 0 rather than 1, which in turn effectively weighs the entire term to
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equal 0, thereby removing it from the final expression.
For example, suppose we wish to represent the equation 2, = x,?%; if our system is
[x1, 9, 2], then the corresponding learned weight matrix should yield W = [0.0, 2.0, 0.0]

after training.

Simple products

In many instances, the absolute value of a state is insufficient; the simple product
operation allows us to combine states raised only to the first power. Similar to the

polynomial combinations, these operations are dictated by a product rule:

Yy = va, (5.3)

where v,, is given by:

U, =0 (W) @ + (1 — 0 (W) - (5.4)

o (W,,) represents the sigmoidal activation function so that for W,, < 0, v,, = 1 and for
W, >0, v,, = x,,. No regularization is applied to this layer since responses are already
bounded.

For example, suppose ¥1 = x1x2. Then the resulting weight matrix after training
may be similar to W = [1.5,2.1,-0.99]; ¢ (1.5) ~ ¢ (2.1) &~ 1 while ¢ (—0.99) =~ 0, so
plugging into for each term and multiplying according to yields:

(lzy +(1—1)) (lze + (1 = 1)) (0(2) + (1 = 0)) = z129.

Common operators

This set of operational layers is reliant on a set of common symbolic operations - such

as exponentiation, sine, sign, and the sigmoid operator - which are selected between. The
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layer consists of two consecutive implementations of dense layers; the first dense layer

returns a linear combination of the input states:

Vo= TmWa, (5.5)

while the second is a linear combination of the different operations g applied to the output

of the first:

Yy = Z Im (Ya) Wi (5.6)

This layer uses a square-root norm regularization, heavily penalizing initial deviations
from 0 with a decreasing subsequent penalty as the distance from 0 increases. This
regularization is designed to enforce sparsity while not heavily penalizing correct terms.
Note that, although we need to choose the set of common symbolic operations that can
be used in this operational layer, by putting this together with the other operational
layers we are able to obtain a much richer set of possible terms than one would expect

from methods that require full pre-specification of possible terms.

5.1.2 Complex Representations via Stacking Layers

A core strength of this methodology is the capacity for learning complex representa-
tions of dynamics without knowing those representations a priori. For example, suppose
we wish to model an exponentially decaying derivative, such as:

T =exp (—M> —ax, (5.7)

T

which is similar in form to conductance-based modeling in computational neuroscience.
The exponential behavior may be dificult to identify without prior knowledge of the sys-
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tem, especially if there are a number of other terms and the exponential amounts only to
a transient behavior. With just two stacked layers, however, the network we have pro-
posed can learn this behavior. Initially, each input state is simply [z, 2]. The first of the
stacked layers generates 3L new observables, among which is 2°22, which was generated
by a polynomial combination operating layer. The second layer can then generate the
right hand side of by passing the observables through a common operators opera-
tional layer, selecting for the exponential operator and appropriate weights on z2, x, and
2. Finally, all the generated states and observables are passed through a dense layer,
where weights of 1 and —a are selected for the exponential and x terms, respectively; all

other output observables/states will possess weights nearly identical to 0.

5.1.3 Application: Hodgkin-Huxley Equations

The reduced Hodgkin-Huxley equations are provided in Appendix[A.T} the full equa-
tions are of a similar format with two additional gating variables. Traditional system
identification procedures would be unlikely to successfully generate such a complex set
of equations, but the methods proposed here are, in principle, able to reconstruct these
equations. The dynamics of V' are comparatively straightforward to reconstruct; we can
do so by grouping polynomials and rewriting, finding the general structure of %:

av

E = Cl + 02714 + C'3n4V + C'5m3h + C’GmghV + C7V (58)

The first and final terms in this equation can be generated solely from initial inputs (the
constant value and voltages, respectively). All other terms represent polynomial combi-
nations, so the dynamics of the voltage can be fully described by the model. Because V'
can be negative or positive and the polynomial generator only allows for absolute values,

the monomials n* and m? can be generated in the first stack, allowing the simple product
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operators to generate the terms in a second stack.

Each of the exponentials in a(V) and (V) can be generated by observing that the
arguments are just a linear combination of a constant value and V; if we have 6 common
operator layers in our first layer, we can generate all the exponents required. To generate
the denominators in the a(V') terms requires a second stacked set of operations, requiring
3 linear combinations to get the terms in the denominators. We may also generate the
terms in the numerators using additional linear combinations, in either the first or second
stack.

Therefore, we have introduced sufficient architecture with two stacks to model:

-V V-0, dv
1. exp ( >; 2. exp ( ) — 0y 3.V —46,and 4. every term in e
Tz,2 Tx

A third stack allows for us to fully synthesize the components for implementing the

a functions: we arrive at the expression using a polynomial combination of V' — 6,

V-0,

- ) — o0, with exponents of 1 and —1 respectively, and we simultaneously

and exp <

) — o0, and V — 6, to account for the loss of

implement the sign operator on exp (@

sign when taking the absolute value. Finally, in the fourth stack of operations, we can

dn dm

use simple product rules to generate all the desired terms for %, <&,

and ‘jl—’t‘.

A summary of this process is presented in Fig. [5.1 Despite the apparent complexity
of this process, we note that our formulation accomplishes something no other methods
can similarly accomplish: the capacity to reconstruct highly complicated dynamics with
no prior insight into the system’s dynamics. The form of the Hodgkin-Huxley equations
would almost certainly elude approaches with a pre-specified dictionary because of its
specificity and uncommon dynamics; unless the user knew ahead of time that these

dynamics were the correct dynamics, they would not be included in a dictionary-based

approach.
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Figure 5.1: Abstraction of model generation for the Hodgkin-Huxley equations.

5.1.4 Network Training and Model Selection

The ANN that generates the model is trained as a regression problem on the deriva-
tives of the states, with the error calculated as the mean absolute error between the true
time derivatives at each state/time and the network’s estimates using the current param-
eters. While the model was known in the preliminary work we have done (and therefore
exact derivatives could be calculated when generating the dataset), this could in principle
be done using methods such as numerical approximation or automatic differentiation [80].

Because all of the component layers in our network are continuous and differentiable
almost everywhere, we can employ standard machine learning techniques to train the
network. This includes any traditional optimizers or methods for feed-forward neural
networks, such as Adam, Nesterov momentum, RMSprop, and stochastic gradient de-
scent.

We enforce parsimony in the resulting estimate of the dynamical system by utilizing
the specialized regularizers described previously. The goal of these regularizers is to drive
as many of the output variables in the network as possible to 0 or, barring that, a constant
value. In reality, however, the weights of the network will not reach values yielding
identically constant or identically 0 values. To compensate for this, we then “prune”

the output, identifying terms with minimal contribution to the overall dynamical system
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and manually setting their weighting in the output to 0. For example, a polynomial

combination layer might yield a term resembling:

y = 3y 16,201 5, ~0.0190.003, (5.9)
All of the terms have negligible impact on the overall value when compared to x5, and are
nearly equal to 1 for most states. Therefore, in the pruning process this equation would

201 which could be approximated as y = x3 if desired.

instead be recorded as y = x5

One area of further research is in automation of this pruning process. Observation
of the impact of each quantity on the output is one possible strategy for pruning; if, for
example, the magnitude of the output of a set of operations is small for all tested data
points (below some predetermined threshold), it may be a good candidate for pruning.
Similarly, terms that have a disproportionately large effect on outliers but little effect on
accurate data points may be suitable for elimination as well.

Parsimony is also generated by specifying the network structure. By enforcing a par-
ticular maximum number of stacks and operations in each stack, we limit the complexity

of resulting expressions. This in turn limits the number of trainable parameters, reducing

the risk of overfitting.

5.1.5 Preliminary Results

As a proof of concept, we have implemented our method with two different canonical
dynamical systems that were selected to test the ability for our method to respond to
common dynamical models. The two models tested so far are a realization of a Bogdanov-
Takens system with parameters selected to generate a stable fixed point, and a system
of three Kuramoto oscillators. In both cases, training was done based on the results of a

single simulated trajectory. Different architectures, both single-stack and double-stack,
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were attempted for both systems. We note here that overfitting is less of a concern in our
method than in most deep learning applications as the number of trainable parameters in
our network remains quite small (on the order of 100 for a single-stack network). Still, the
trajectory simulation data was separated into five separate folds, and K-fold validation

was used to select the best model for the dynamical system.

Bogdanov-Takens System

The Bogdanov-Takens normal form is given by [81]:

Y = Yo, (5.10)
G2 = B+ Boyr + 11” + 113 (5.11)
For our test simulation, we selected 5, = [y = —1, which yields a system of equations

T T
with a stable fixed point at ¢ = [1_2‘/5, O} and a saddle at ¢ = [1+2\/5’ O} . The network

was initially trained as a single stack with 10 copies of each operational layer. The
original quiver plot for the simulated trajectory as well as the reconstructed quiver plot
based on the network’s predictions are shown in Fig. As can be seen, the network

was able to faithfully learn the dynamics of this trajectory.
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Figure 5.2: Quiver plots of the Bogdanov-Takens system’s true dynamics (left) and
the artificial neural network’s estimates of these dynamics (right). Here, the x-axis
corresponds to y; while the y-axis corresponds to ¥s.
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After training, the weights were output and manually pruned, discarding terms with
small effects on the overall output of the system. Because of the regularization strategies
used, this was a relatively straightforward task, as the majority of output values could
be assumed to be almost identically 0 or 1. By discarding the bulk of the terms and
keeping only those with significant weights in the output equations, a simplified version

of the method’s estimate was acquired:

1 = 0.9997ys, (5.10k)

1o = —1.012 — 1.012y; + 0.99528y, %% + 1.02y,y. (5.11h)

From this we see that not only was our network able to successfully reconstruct the
dynamics of the trajectory it was trained on, it was able to accurately reconstruct the
global dynamics of the system. The estimated dynamical system implies the existence of
the broader dynamics of the Bogdanov-Takens normal form, including the existence of a
saddle point and possible parameters that may be varied to adjust the behavior of the

system.

Kuramoto Oscillators

The Kuramoto model is a common simplification of coupled oscillatory systems, such

as those found in neuroscience applications [4, 82]:
, K&
ejzwﬁN;sm(ek—ej), j=1,---,N, (5.12)
j

where 6; is the phase of the j* oscillator, N is the total number of oscillators, and K
represents a coupling strength between the oscillators. We simulated a system of three

such identical (w; = wy = w3) oscillators with K = 0.5 and w = 1. For these parameters,
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the three oscillators eventually converge to an in-phase state, continuing to oscillate such
that their phases 6 approach each other (6; = 0y = 63).

The dynamics were modeled first considering the modulo 27 values of 8. The results
of these simulations are shown in Fig. 5.3} as can be seen, the dynamics are largely
recovered, though some artifacts exist because of the discontinuity at 27. The size of
these artifacts is relatively minimal compared to the broader dynamics, and could be

filtered out by manually pruning the output.

[} 100 200 300 400 500 600 700 800 [} 100 200 300 400 500 600 700 800 i [} 100 200 300 400 500 600 700 800

Figure 5.3: Derivatives as functions of time (left to right, 6, 65, and 93) for the three
simulated oscillators. Time (x-axis) is in arbitrary units. The blue curves represent
the true derivatives, while the orange curves are the network’s predictions.

5.1.6 Generating Lyapunov Functions

The generation of novel Lyapunov functions is an area of great interest in the dynamics
and control communities. Typically, Lyapunov functions are generated in an ad hoc
fashion for dynamical systems, requiring some combination of insight and luck on the
part of the researcher. A first guess is often to take a linear combination of the squares
of all state variables, but this is not guaranteed to work. For example, consider the

Lotka-Volterra system [83], 84]:

v = wv(a—ev—bp), (5.13)

p = p(—c+dv), (5.14)
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with parameters a,b,c,d, e all positive and real, and assume that ad — ce > 0. The

function Vi (v, p) = 3(p? 4+ v?) is not a Lyapunov function, but the following function is:

V(v,p) =d(v—"0Inv) +b(p—plnp) —d(0 —0Inv) — b(p — plnp), (5.15)

where (¢/d, (ad — ec)/(bd)) = (0,p) is a fixed point.

Machine learning presents an attractive strategy for automating the process of finding
Lyapunov functions. A general strategy, for example, may consist of finding a mapping
of a set of variables such that the output is positive definite for ¥ # 0 and its time
derivative is negative semidefinite; computation of this derivative is straightforward for
a neural network provided the dynamics of the system are known, and such a network is
readily trainable.

The chief hurdles in using neural networks to learn Lyapunov functions are:

1. Neural networks are typically excellent at interpolation and poor at extrapolation;

and

2. Neural networks are black boxes that evaluate a finite number of points and are
therefore difficult to generalize conclusively to a continuous region in R™ about the

origin.

Put simply, a neural network generally can only tell us conclusively that a finite number
of test points satisfy the conditions for a Lyapunov function, and they provide little in
the way of mechanisms to generalize these discrete results to a continuous space.

We believe our method could automate the process of generating candidate Lyapunov
functions for a given dynamical system. By providing an analytic expression satisfying
the constraints of a Lyapunov function at a set of finite points, one can then verify or

reject the candidate function by evaluating this function with the techniques one would
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traditionally use for testing analytic functions when developing them ad hoc. Randomized
initialization of the network, as well as using different architectures, may provide multiple
alternative candidate Lyapunov functions.

There are two primary components to our strategy for developing candidate func-
tions. The first is intelligent selection of the operational layers in the method; if the
method consists of creating a vocabulary, this may be seen as instituting a “grammar”
for functions. The second is the selection of the objective function to be minimized.

We require a function that is identically zero at the origin and positive definite away
from the origin; we can accomplish this by selecting our operations such that they all indi-
vidually satisfy this requirement. If this is the case, then any composition or combination
of the functions will also satisfy the required positive semidefiniteness.

Suppose f (Z # 0) > 0 and g (¥ # 0) > 0, and further suppose f(0) = ¢g(0) = 0. Then

the following are all true:

go f(0)=0,  fog(0)=0,
gof(¥#0)>0,  fog(Z#0)>0,
(f+9)(0)=0, (f+g)(F#0)>0.

All we require, then, is that every individual operation in our method, when applied
to a vector 7, returns 0 when ¥ = 0 and a positive value otherwise. This is easily
accomplished by editing the core architecture with specific constraints. Considering the
different layer types described above, simple examples of valid constraints are presented
in Table 5.1.6l

The function we then choose to minimize is the time derivative of the Lyapunov
function output. Specifically, we are interested in finding a Lyapunov function V' such

that V < 0 VZ. We only have a valid Lyapunov candidate, then, if at every test point the
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Layer Type Constraint

Polynomial Combination | All weights w; > 0

Linear Combination No direct output to Lyapunov function (weight in
output layer is identically 0)

Simple Products Constant value should be subtracted; absolute values
used for states.

Common Operators Appropriate constants/modifications made to satisfy
requirements (e.g., instead of exp (z), exp (%) — 1)

Table 5.1: Example constraints for Lyapunov function generation.

time derivative is less than 0. The time derivative itself is straightforward to compute,
as all of our terms have analytic derivatives and can therefore be found with successive
applications of the chain rule. If a Lyapunov function exists subject to the imposed

grammar, then our objective function L to minimize is:

L=supV, (5.16)

zeD

where D is the set of all points used for training and the minimized loss should be less

than 0.

5.2 Estimation of Global Phase and Isostable Re-
sponse Curves

As demonstrated in Chapter 2, knowing the global phase and isostable response curves
for a dynamical system is immensely powerful, opening up the ability to achieve a wide
array of control objectives, such as optimizing firing time or controlling to a point away
from the limit cycle, which require significantly more computation if considered in the
original state space. However, as also noted in Chapter 2, it is not necessarily the case

that a simple, analytic representation of the global coordinates exists, and our ability to
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Figure 5.4: Neural network architecture for global phase reduction modeling (figure

from Yates et al. 2021, in preparation).
identify where in phase space we are can be limited by our inability to fully observe the
dynamical system of interest. In collaboration with our undergraduate researcher Andrew
Yates, we have worked to develop a neural network architecture that allows us to extract
global isostable and isochron response curves from datasets composed of repeated trials
with constant stimulation of varying amplitudes, durations, and start times. In addition,
the model does not require every state of the system to be fully observable.

This represents a potentially significant step forward in our ability to globalize phase
model reduction techniques, which frequently requires explicit knowledge of the right-
hand side of the system of ODEs or can only be solved numerically for specific trajectories,
cf. [46]. Our proposed model, developed by Yates, subdivides the problem into a series of
inerconnected neural networks, each tasked with generating an estimate of a particular
component of the overall solution, and makes use of an event-based estimation strategy
to overcome the lack of full observability in models such as conductance-based neuron
models. This neural network model is shown in Fig. The model was first verified on
systems with known global response curves, including the supercritical Hopf bifurcation

analyzed in Chapter 2; the results for that analysis are shown in Fig. With the
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Figure 5.5: Estimated PRC/IRC on the limit cycle and globally for the supercritical
Hopf bifurcation, as well as prediction error. Panels (a) and (d) show the learned limit
cycle PRC and IRC, respectively, compared to the exact values. Panel (b) shows an
estimate of the phase response curve at different points in the state-space, while panel
(c) shows the associated error in these predictions. Panel (e) shows predictions of the
isostable coordinate in state-space, and panel (f) shows an example trajectory, with
the color corresponding to the isostable coordinate (figure from Yates et al. 2021, in
preparation).
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validity of the modeling verified, we applied the model to a system without a previously
known global PRC/IRC, specifically, the STN model utilized in Chapter 3 (equations in
Appendix . The corresponding results for this are shown in Fig. ; using these
estimates, we have been able to generate optimal control signals for modulating firing
time that substantially outperform alternative methods in terms of accuracy, and we
believe this research opens the door to significant development in the area of phase model
reduction moving forward by untethering it from the limit cycle in a robust, consistent,

and model-free manner.
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Figure 5.6: Limit cycle PRC/IRC and global coordinates, as well as error, for neural
network model applied to the STN neuron model. Panels (a) and (d) show the learned
limit cycle PRC and IRC, respectively. Panel (b) shows an estimate of the phase
response curve at different points in the state-space, while panel (e) shows the global
estimate of the isostable response curve. Panel (c) shows a predicted trajectory,
demonstrating the general ability of the network to accurately reconstruct the voltage
as a function of time. Lastly, panel (f) shows the sign of ¢ at different points in the
state space, revealing an error near the spiking of the neuron where the convention for
the isostable coordinate flips direction. This is most likely because of the significant
lack of data in this region (and proportionately little time spent in the vicinity) when
compared to left side of the state-space, below the firing threshold (figure from Yates
et al. 2021, in preparation).
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Concluding Remarks

In Chapter 2, we saw how we can develop straightforward, intuitive solutions to prob-
lems if we can successfully simplify the dynamics to a more approachable system. The
challenges of doing so inspired the work of Chapter 3, which considered what we can do
if that simplification isn’t possible and showed that machine learning can be an effective
tool in providing critical information for control design. Chapter 4 demonstrated not only
the strength but the flexibility of machine learning techniques, allowing us to generalize
from a single Parkinsonian patient’s LFP readings to make meaningful predictions on a
larger cohort and design adaptive control strategies for combating PD. And in Chapter
5, we looked forward, briefly describing some ongoing projects that seek to further bridge
the gap between the worlds of dynamics and control and machine learning.

Throughout this dissertation, it has hopefully become clear that there are distinct
strengths and weaknesses to not only the techniques we typically bring to bear on prob-
lems in dynamics and control as engineers, but also with the potential solutions provided
by machine learning. There is no one-size-fits-all solution for analyzing dynamical sys-
tems; sometimes, simpler methods are sufficient, and the addition of techniques such as

neural network regression are overkill. Other times, a solution may be difficult to find

127



Concluding Remarks Chapter 6

or even intractable without the use of powerful machine learning techniques, but when
processed by a neural network, that solution may lack any context or provide little insight
to the researcher.

Whenever we make use of machine learning to tackle a problem, we should not lose
sight of the central question of “why.” ML may provide us often with easy answers, but
an answer is frequently less valuable than a solution. To this end, we have attempted
to contextualize the results of our neural networks wherever possible, analyzing not only
the predictions they make, but why it sometimes errs or what it is using to make those
predictions. Machine learning is most effective when it is a tool in an arsenal of tech-
niques and not treated as a simple panacea for difficult problems. We have attempted
to demonstrate this perspective throughout the work presented here, and as our ongoing

projects continue to develop, we will strive to maintain and promote this mindset.
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Appendix A

ODE Equations

A.1 Hodgkin-Huxley Equations (Reduced)

The Hodgkin-Huxley model is the canonical example of a conductance-based neuron
model, developed in the 1950s by Hodgkin and Huxley based on experiments on giant
squid axons. It models the response to stimulation of a single neuron and is referred to
as a “conductance-based” model because its voltage changes are associated with changes
in the permeability of the axon cell membrane to various ions, which in turn affects the
magnitude of the associated current. While the original H-H model used 4 variables, the
version used here is a reduced model with only two ODEs; the other two variables are
assumed to reach steady-state values arbitrarily quickly compared to the voltage and the

other gating variable, and are taken as such. The two remaining equations are:

V =TI+ 1(t)— gnam> b (V = Vya) — gen* (V = Vi) — G (V = Vi) ; (A1)

n=a, — (a, + Bn)n. (A.2)

129



ODE Equations Chapter A

Variable Value Description
VNa 115 mV Sodium current reversal potential
Vi -12 mV Potassium current reversal potential
Vi 10.5989 mV Leak current reversal potential
JNa 120 nS/pum? |  Maximum sodium current conductance
JK 36 nS/pum? | Maximum potassium current conductance
Je 0.3 nS/pm? Maximum leak current conductance
Iy 20 mA Base current
ho 0.8 Constant for h — n heuristic

Table A.1: Table of constants for Hodgkin-Huxley equations.

These ODEs make use of the following auxiliary equations:

h=ho—n (A.3)
(0%
= —m Ad
" Um + B (A.4)
0.1(25 V)
m = P01 v) _ | (A.5)
By = 0.4 5. (A.6)

The associated constants are listed in Table [A.1l

A.2 Thalamic Neuron Model

Like the Hodgkin-Huxley model, the thalamic neuron model is a conductance-based

model, and as such shares the same basic structure as the Hodgkin-Huxley model, but is
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a three-dimensional model instead:
V =1+ 1(t) = gnamih (V — Vivg) — gx (0.75%) (1 = ) (V = Vi)
= g (V = Vi) = Ge (V = Vi) (A7)
. he —h
h=-—" A8
- (A3)
Too — T
. _ oo _ A9
e (4.9)
The associated auxiliary equations are:
1
heo = T (A.10)
14+e 4
1
1+e 4
ap = 0.128¢ i (A.12)
B = — (A.13)
" 1+ e~ 5 '
1
Th = A.14
" an+ Bh ( )
T, =28+ 105 (A.15)
1
1
Poo = 977 "V 6062 (A.17)

Associated constants are listed in Table [A.2]

A.3 STN Neuron Model

Our third conductance-based model, the STN neuron is adapted from the intercon-

nected model of the basal ganglia presented in [33], 57], in turn adapted from [85]. With
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Variable Value Description
Ve 50 mV Sodium current reversal potential
Vi -90 mV Potassium current reversal potential
Vi -70 mV Leak current reversal potential
Vi 0 mV Calcium current reversal potential
JNa 3 nS/um? Maximum sodium current conductance
JK 5 nS/pm? Maximum potassium current conductance
Je 0.05 nS/pm? Maximum leak current conductance
Jt 5 nS/pum? Maximum calcium current conductance
Iy 5 mA Base Current

Table A.2: Table of constants for thalamic neuron model.

five ODEs to evaluate, it is the most computationally complex of the conductance-based

models we considered in this dissertation. For legibility, we will write the voltage as a

summation of the variable-dependent currents and subsequently provide equations for

said currents. The governing ODEs are:

V= — (L + Ing + I + Lagp + Ioa + 1) + Lo+ 1 (1)
he — h

h=¢
n=0
i = ¢,

N —

[Ca] = e (—Icq — I, — kca [Ca))

(A.18)

(A.19)
(A.20)
(A.21)

(A.22)

with ¢ = 0.75, ¢, = 0.5, and € = 5F — 5. We note here that whereas in the prior two

conductance-based models, the variables consisted of the voltage V' and then a set of

gating variables, here [Ca| refers to the concentration of calcium ions within the neuron.
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The auxiliary equations are:

1
Sop =
1 —1—6_%
1
Moo = — v 30
1 +67V1530
1
hOO == —’U
1+e 51
1
noo == —1}
=
500
Th =1+ —
1+e 3
100
Tn — 1 =+ T
14+e2
17.5
Tr = 7]_ + Vv _63
1+e22
1
T = V163
1+e-73
1 1
Tnew = 0.25_ *

r—0.25 —
1+ e-o07 1+ e —o007

Using these, we can calculate the various currents as:

Ir=g,(V =V,
Ing = gNamoo3h (V - VNa)
I = gen* (V = Vi)

Ingp = gapp (V — Vi) [ (Ca)

]C'a = gCaSoog (V - VCa)

IT == gTToo3/rnew2 (V - VC’a) .
The associated constants are listed in Table [A.3]
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(A.23)
(A.24)
(A.25)
(A.26)
(A.27)
(A.28)
(A.29)
(A.30)

(A.31)

(A.32)
(A.33)
(A.34)

(A.35)

(A.36)

(A.37)
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Variable Value Description
Vg 55 mV Sodium current reversal potential
Vi -80 mV Potassium current reversal potential
Vi -60 mV Leak current reversal potential
Vea 140 mV Calcium current reversal potential
JNa 37.5 nS/pum? Maximum sodium current conductance
JK 45 nS/ jum? Maximum potassium current conductance
Je 2.25 nS/ pum? Maximum leak current conductance
gr 0.5 nS/pum? Maximum T-type calcium current conductance
JAHP 9 nS/pm? | Maximum afterhyperpolarization potassium current conductance
Jca 0.5 nS/pum? Maximum high-threshold calcium current conductance
Iy 25 mA Base Current

Table A.3: Table of constants for STN neuron model.
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Stabilizability — Proof of Zero-State

Observability

We begin by noting there are several trivial counterexample systems that are not stabi-
lizable, but whose phase response curves and conditions cannot be considered physically
relevant. First, if the phase response curve is a constant value (so that stimulation any-
where in the period has the same effect), it is impossible to effect changes in the relative
positioning of oscillators. Beyond that, one may devise highly artificial examples, such
as the case of two oscillators separated by 7 radians and a phase response curve given
by sin 26, that do not allow for the relative positioning of oscillators to be adjusted. We
set these aside and consider, then, the problem subject to some light assumptions.

We will specifically consider here the summation of observables:

>~ g 209 =2 00), (B.1)

and we will show it is zero-state observable. We will make several initial observations

and assumptions:

135



Stabilizability — Proof of Zero-State Observability Chapter B

1. Since the summation value is 0 regardless, we may set u* to 0 as well; this has the

effect of making 6; = w for each neuron.
2. We assume the phase response curve is continuous and differentiable.

3. Since the PRC is continuous, differentiable, and, by definition, 27-periodic, we may
approximate it with arbitrary accuracy with an infinite Fourier series of the form

ap+ > o, (ay cosnb + by, sinnb).

Taken together, these observations require that, for a system to fail to be zero-state
observable, advancing all oscillators by a constant phase (since they oscillate with the
same natural frequency) should remain within the invariant set of solutions where the

observable is equal to 0 but where at least one of the coefficients 8‘1”(3_ # 0 (since this

coefficient is, by construction equal to 0 only at the target separation). Without loss of
generality, we may rewrite the observable at a state where it is equal to 0 as a function of
the k oscillators whose PRCs are utilized in the k—1 phase difference equations necessary

to fully constrain the system to a specified state:

> aZ(6:) =0, (B.2)

again noting at least one value ¢; should be nonzero. Because the coefficients ¢; depend
only on the separation between neurons and not their absolute locations in phase space,
we additionally note that they do not vary as the system oscillates if all oscillators
advance with the same rate. We now substitute in our Fourier series and advance all the

oscillators by Ax such that our new observable value is equal to:

Z ¢ i lan cosn (0; + Az) + b, sinn (0; + Ax)]. (B.3)

i=1 n=1
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We then expand and rewrite the sines and cosines, yielding;:

k 00
Z i Z [a,, (cosnb; cos nAx — sin nb; sin nAx) + b, (sin nb; cosnAx + cosnb; sin nAz)] .

=1 n=1

(B.4)

We may now rewrite this as a Fourier series for Az, grouping sine and cosine terms

appropriately:
oo k
Z [¢; (a, cosnb; + b, sinnb;) cosnAx + ¢; (b, cosnb; — a, sinnb;) sinnAx]. (B.5)
n=1 i=1

For the value of this equation to be identically 0 for all values of Ax, the Fourier coef-

ficients for each Az must be equal to 0. This gives us two equations for each value of

n:
k k
ay, Z c;cosnb; + b, Z cisinnb; =0, (B.6)
i=1 i=1
k k
—a, Z c; sinnf; + by, Z c;icosnb; = 0. (B.7)
i=1 =1

This system of equations is readily solved by noting that the coefficients are identical but

flipped between a,, and b,,, with the addition of a negative:

C’lan + Oan = 0, (Bg)

—Cgan + Clbn = 0. (Bg)

Solving this system of equations yields C} = 0 and C; = 0, so for our system to be

zero-state observable:

k
Z c;sinnb; =0 (B.10)
i=1
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and

k
Zci cosnb; = 0. (B.11)
i=1

We will demonstrate this is impossible by contradiction. If both equal 0, then their sums

equal 0 as well, as do the sums of their squares:

k 2 k 2
(Z ¢; COS n6i> + (Z ¢; sin n0i> =0. (B.12)
i=1 i=1

Carrying out this multiplication and combining terms yields:

k k k
Z (c? cos ’nb; + cf sin ?n#; + ¢; cos nb; Z c; cosnb; + ¢; sin nb; Z ¢; sin n9j> = 0.
i=1 i i

(B.13)
Simplifying further by combining the squared sines and cosines and noting coswucos j +

sinusin j = cosu — 7 allows us to rewrite this as:

k k
Z &+ ch cosn (6; —0;)| = 0. (B.14)
i=1 jti

The challenge, however, is that the first term in (B.14)) is independent of n, whereas
the second term is not. This implies that, for every n such that a,, # or b, # 0, the value

of the summation must remain constant:

k k k k k k
ZCZ'ZCJ‘COS(QZ' —9]) = ZciZCjCOSQ(Qi —9]) == ZCZ'ZCJ'COSH<9¢ — Qj)
i=1 j#i i=1 jF#i i=1 JF#i

(B.15)
If the solution set for the phase differences is finite, it is impossible for this equality to
hold if the Fourier series is infinite. Suppose x € D is the set of all points that are the
solution for n = 1; if a solution exists, this means that there is some subset of points on

which the transformation x — 2x is invariant on D. However, the transformation x — 3x
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must also be contained in D, as must 2x — 3x. This in turn means the transformation

x — 1.5x is invariant on D. Indeed, it follows that:

PxeD, pgezt. (B.16)

q

As there are infinite such ratios of p and ¢, we must have either infinite solutions or exactly
one. Since x = 0 is a solution but is disallowed by assumption, the only alternative is
that we must have infinite solutions.

As a result, we need only show the solution set is finite. We can demonstrate this is

the case. If we allow ¢? = --- = 2, then:
k k
i 262 ejeos (= 05) = kel (B.17)
1= 17

Since this is exactly what is required for to be equal to 0, we know that the
R~ hypersurface representing values of the double sum on the set of all possible phase
differences A@ intersects the hyperplane representing the required solution not at an
infinite set of points in the modulo 27 set, but rather a finite number (since the value

represents a global minimum). Therefore, the set containing all solutions to:

k k
Zci ch cos (0; — 0;) = —kc? (B.18)

i=1  j#i

cannot simultaneously contain all the requisite solutions to the infinite Fourier series.
Any oscillator with phase response curve with an infinite Fourier series representation,

then, is zero-state observable; it is only in so-called “toy” problems with trivial phase

response curves (such as a Kuramoto oscillator) where the splay state represents an

invariant set. This analysis, however, precluded the application of an input stimulus.
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The presence of an input stimulus immediately removes a system of oscillators from the
splay state, at which point we have left the invariant set, even if the value of the observable
in the new state is still identically 0. Therefore, there exists no solution outside of trivial

or disallowed conditions where the system is not stabilizable.
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