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Introduction
Stroke is the fifth leading cause of death in the 
United States and a significant cause of severe 
disability in adults.1 Each year, around 800,000 
Americans experience a new or recurrent stroke.2 
Rapid diagnosis and treatment of stroke is cru-
cial and leads to improved outcomes and prog-
nosis among patients treated within the ‘Golden 
Hour’.3,4

However, strokes, especially posterior circulation 
strokes, are associated with significant (>10%) 
diagnostic error.5 The latter could be due to  
(1) some patients with acute stroke present with 
non-focal symptoms such as dizziness, diplopia, 
dysarthria, or ataxia,6 which may not trigger a neu-
rology consult or a need for a more detailed neuro-
logical examination; (2) stroke is commonly 
misdiagnosed in younger patients7,8; and (3) the 
emergency department (ED) is a challenging  

environment for providers, especially with the 
multiplicity of care protocols, and the dynamic 
nature of patient care.8,9 Triage, consultations, 
admissions, discharge, and other steps in emer-
gency care are time-sensitive, complex, and always 
changing to further improve efficacy and quality of 
care. Therefore, identifying potential stroke symp-
toms can be challenging,10–12 especially when the 
providers are in training.13,14 Besides, the risk of 
misdiagnosis can be higher among walk-in 
patients,15 when the providers do not receive a pre-
arrival notification from emergency medical ser-
vices,16 or when a neurologist is not readily 
available for an urgent consultation.17–19 Scoring 
systems for the diagnosis of stroke and recurrent 
stroke do not have a high sensitivity to diagnose the 
posterior circulation stroke.20,21 Furthermore, 
these tools are also not automatic, and require that 
the physicians suspect stroke as a differential diag-
nosis to apply the scoring system.
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Artificial intelligence (AI), a computational 
framework meaning to emulate human insight, is 
one of the most transformative technologies.22,23 
The era of augmented intelligence in healthcare is 
driven by the notion that intelligent algorithms 
can support providers in diagnosis, treatment, 
and outcome prediction, especially with growing 
digital and connected patient data and advances 
in computational abilities.24–26 The augmented-
diagnostic model for stroke may be particularly 
helpful in low volume or non-stroke centers’ ED, 
where emergency providers have limited daily 
exposure to stroke. An automated, computer-
assisted screening tool that can be seamlessly 
integrated into clinical workflow to quickly ana-
lyze patient symptoms and clinical data and sug-
gest a diagnosis of stroke (‘StrokeAlert’ pop-up) 
in an ED setting could be valuable. Such a system 
will also help bring access and timely diagnosis 
for patients who choose to self-present to an ED. 
In this paper, we present a practical framework 
and summarize the stages needed to create a 
machine learning (ML)-enabled clinical decision 
support system for the screening of stroke patients 
in ED using data from electronic health records 
(EHRs) combined with the patient’s presenting 
symptoms at the point of care. We have assem-
bled a team of experts and are leading such effort 
at Geisinger. Figure 1 summarizes the key steps 
of such a system.

Building the training and testing cohorts
ML-enabled clinical decision support systems, 
with providers-in-the-loop, are essential advances 
in ensuring that decisions at the bedside are 
timely and data-driven. However, transparent 
reporting of prediction models is key to building 
confidence and improving reproducibility regard-
less of the study design or findings.27

Case/control design
The initial phase is to create representative exam-
ples for model training. The inclusion and exclu-
sion criteria should be restrictive enough to ensure 
that cases and controls have clear separation and 
are aligned with clinical pipelines. For instance, 
the case (confirmed stroke and transient ischemic 
event) cohort should have at least these condi-
tions: (1) patient encounters should be of a mini-
mum duration to ensure the severity of the 
condition and to remove noises from repetitive 
coding (e.g. >24 h); (2) discharge codes should 

be focused on primary diagnosis; (3) patient 
should have had confirmatory neuroimaging 
[e.g., brain magnetic resonance imaging (MRI)]. 
The same level of detail should be given to the 
design of inclusion and exclusion criteria to create 
a labeled dataset for the control group(s). The 
goal of creating control groups is to capture stroke 
mimics, stroke misdiagnoses, while capturing 
some level of diversity by including patients with 
similar general presentations as stroke, including, 
for instance, patients with a discharge diagnosis 
of migraine headache, seizure, and peripheral 
neuropathy.

Data extraction/processing
Maintaining data integrity during data aggrega-
tion is key. The past medical history should be 
defined carefully and not include new informa-
tion from the index encounter. Quality control 
methods should (1) ensure variables have the 
same units and correct if needed; (2) remove clin-
ically implausible values according to expert 
knowledge and aligned with the available litera-
ture; (3) apply filters to capture the relevant data 
elements within the desired timeframe; (4) iden-
tify and remove extreme outliers for longitudinal 
data and where multiple values are available; (5) 
use median as opposed to mean if multiple values 
are available; and (6) use imputation techniques 
apply to the training and testing dataset sepa-
rately. If a laboratory value is missing, an esti-
mated value should be generated to be used in the 
model. Nonetheless, in an operational stroke pre-
diction model, laboratory values might not be 
essential, since, in real life, the diagnosis of stroke 
is made before any laboratory results are availa-
ble. However, for model building, the results 
might be important to confirm other diagnoses. 
Some imputation methods include using median 
or mean values, K-nearest neighbors, multivari-
ate imputation by chained equation (MICE),28 or 
imputation designed for EHR.29 Extraction and 
processing of clinical notes, especially triage/ED 
provider notes with information about the 
patient’s symptoms, are critical for a technology 
designed for acute conditions. During natural 
language processing (NLP), a set of positive and 
negative keywords such as dizziness, vertigo, 
headache, confusion, etc., are extracted from a 
subset of cases and controls, are used to build a 
custom dictionary for the NLP. These keywords 
are expanded to medical concepts using the 
Unified Medical Language System (UMLS) 
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Figure1. Key steps for a stroke ML-enabled decision support system for EDs.
ED, emergency department; ML, machine learning.

dictionary,30 allowing for efficient translation and 
interoperability. The NLP pipeline will generate 
added insights, such as the polarity of the words 
and context.

Designing the ML-enabled diagnostic tool
The ML development process will consist of vari-
ous iterative steps for training, testing, and pre-
dicting the probability of patients presenting to 
ED with stroke.

Exploratory data analysis will help modelers under-
stand feature distribution, multicollinearity among 
features, missing data, data quality. Features that 
are irrelevant or partially relevant (such as proce-
dure codes that are no longer in active use), or 
highly sparse can be removed or merged. Feature 
selection will help reduce overfitting, training time, 
and improve the model accuracy. Feature engi-
neering, also an important step, can be used to 
construct robust high-level feature representations 
from complex and high-dimensional concepts  
(e.g. diagnoses, medications). During the model 

development, typically, an 80–20 split is per-
formed to test the model performance; that is 
20% of the data is marked as unseen and is used 
for model testing, while 80% is used for model 
development. Furthermore, as the number of 
cases is likely to be significantly less than the 
number of controls, it is crucial to address the 
class imbalance. Standard techniques to address 
class imbalance include up-sampling (by use of 
SMOTE algorithm, etc.) the minority class and/
or down-sampling the majority class.31

Training predictive models are done by using the 
training dataset to identify the best performing 
candidate model. Models like logistic regression, 
decision trees, random forest, autoencoders, and 
neural networks can be used in the training pro-
cess. Typically, an interpretable framework such 
as logistic regression is used for benchmarking. 
Finally, nested K-fold cross-validation applied to 
80% of the data should be performed for hyper-
parameter tuning and making modeling frame-
work choices – to avoid the underfitting and 
overfitting. Various model metrics such as the 

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 13

4 journals.sagepub.com/home/tan

area under the receiver operating characteristics 
curve, sensitivity, specificity, F-score, positive 
predictive value (PPV), negative predictive value 
(NPV), and missed classification rates can be 
used to identify the final candidate model for 
implementation and testing, prospectively. These 
metrics should be used for model selection only 
after careful evaluation to better understand the 
clinical needs in actual care settings. In the case 
of stroke, the cost of misdiagnosis is asymmetric, 
meaning that underdiagnosis (labeling true 
stroke patients as non-stroke) might have a higher 
consequence than overdiagnosis. Therefore, the 
system should enjoy a high sensitivity and NPV 
while keeping the specificity in a reasonable 
range. Finally, depending on the model used, 
knowing the most influential driving features 
helping the stroke prediction for each patient 
would be helpful and can provide insights into 
the prediction and ultimately assist the physician 
in decision making.

Workflow and system implementation
In a typical ED setting, a patient arrives at the 
hospital, either by ambulance or by a private vehi-
cle. Although our proposed ML-enabled clinical 
decision support system is designed to work for 
all patients regardless of the arrival mode, we 
believe such a system will be more beneficial 
among patients self-presenting with milder and 
atypical symptoms. These patients meet a nurse 
at the point-of-care desk where they are asked 
preliminary questions while their vitals are 
recorded. The patients’ symptoms and any perti-
nent information are entered in the EHR and can 
be available to the NLP pipeline for modeling. 
The patient is then sent back to the waiting area. 
The ED providers rely on the clinical presenta-
tion and vitals to prioritize the patients and per-
forming the physical examination (which may not 
include neurological examination), ordering labs, 
and, in some cases, imaging procedures.

The average time (in the United States) in EDs 
before admission is approximately 5.5 hours, and 
time until the patient is sent home is approxi-
mately 3 hours.32 The waiting time varies depend-
ing on the season and the physicians’ workload. 
The imaging procedures ordered in ED also vary 
as per hospital protocol. Furthermore, if only 
brain computed tomography (CT) is ordered, it is 
still likely that the ischemic stroke is missed for a 
patient with atypical symptoms, as the head CT 

cannot reveal a hyperacute stroke in the majority 
of cases, and it has reduced sensitivity for lacunar 
strokes.33 Despite the rapid increase in the use of 
advanced neuroimaging, it may be challenging to 
reduce misdiagnosis of stroke as the use of urgent 
MRI to diagnose stroke in ED is still limited.34 
Nevertheless, in reality, a provider should con-
sider the possible stroke diagnosis to order addi-
tional neuroimaging.

Patients’ notes at the point-of-care contain vital 
information that, if combined with the patients’ 
profile and medical history, can be ingested by an 
intelligent system to identify at-risk patients. 
Implementation of such a system must be seam-
less without affecting the ED workflow. If a 
patient has a relatively significant chance of 
stroke, a ‘stroke alert’ will be generated when the 
patient’s chart is viewed by the next ED provider. 
The provider will then have a chance to act upon 
the alert, and, if needed, call stroke-alert, request 
an urgent neurological consult, or order confirm-
atory imaging.

System adoption and evaluation

Promoting adoption
A methodical plan for promoting adoption should 
be part of a thoughtful implementation. In gen-
eral, physicians have relatively positive attitudes 
toward the idea of decision support systems.35,36 
However, many challenges including low specific-
ity,37,38 work-flow interruption,39–41 computer lit-
eracy and confusing interface,42,43 low confidence 
in the evidence,44 awareness of the information,45 
requirement for a lot of data,41,46 interference with 
physician autonomy,35,47 or lack of relevance,41 
limit the effective use and adoption of such sys-
tems in many healthcare systems. “Alert fatigue” 
can be caused by poorly designed and imple-
mented clinical decision support system.35,48–50 
Too many alerts will discourage adoption.

Improving coordination and capacity building
To identify barriers and facilitators in this pro-
cess, it is essential to design a model based on the 
unified theory of acceptance and use of technol-
ogy.50,51 A proposed model for user acceptance 
and adaptation should include the following 
stakeholders in the planning stages: (1) end-users 
(care providers); (2) hospital and service-line 
leaders; (3) EHR engineers, innovation team;  
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and (4) next-providers (inpatient/outpatient neu-
rologists/hospitalists). The discussion objectives 
should focus on understanding the current work-
flow; how the intervention(s) may impact the 
people and processes; what the care providers’ 
perceptions are; and how to achieve their buy-in 
while communicating the current gaps, clinical 
goals, and how the proposed system can help.

System evaluation
A mixture of targeted chart-review, systematic 
evaluation, and assessment of trends and rate of 
misidentification is important. The process 
should be designed to be agile and iterative. 
Prospective evaluation is critical and cannot be a 
one-time process. As long as a decision support 
system remains in operation, the model outcome 
should be re-assessed at regular intervals, and 
integration of variables with most and least prom-
ising relevance can be reassessed. Fine-tuning 
should be subtle and iterative to ensure smooth 
and clear improvements in both effectiveness and 
performance. Presenting the summary findings to 
the stakeholders to demonstrate transparency, 
gaps, areas of misclassifications, and the overall 
added value is important.

Challenges and opportunities

Technical challenges – tool or  
model-dependencies
Selection of the right mix of tools, techniques, and 
languages for productionalizing. Specific tools/
languages (e.g., Spark) might be conducive to 
handling large data volumes; however, they might 
not have mature data science libraries such as the 
ones offered in Python to develop stable models. 
The proper selection of tools will cause down-
stream technical challenges, especially if the 
designed pipeline is not agnostic to the imple-
mentation language.

Model drifting. Models deteriorate in terms of 
their predictive power and clinical utility if not 
continuously adjusted. In healthcare, addressing 
model drift takes on a larger dimension since 
changing trends in population health manifests 
itself as both concept drift and data drift. Con-
tinuous domain adaptation is an active field of 
research to address such challenges.52 Healthcare 
systems that are in stable regions with low drop-
out rates (such as Geisinger Health System) are 

better equipped to incorporate continual learning 
in training the model for improved clinical utility.

Model generalizability. Developing generalizable 
models require a comprehensive and multi-level 
view of the patients with an added effort to ensure 
adequate patient representation to reduce algo-
rithmic bias. The utilization of data from two or 
more centers will be important to develop gener-
alizable models. Techniques such as transfer 
learning can be designed to evaluate model gener-
alizability and transferability across health sys-
tems.53 These solutions are critical for the 
development of models that can function well in 
smaller systems, to drive technological advances 
for the mainstream, in rural and urban areas alike.

Operational challenges
Implementation of an ML model to provide pre-
dictions and recommendations in real-time in 
EHR requires specialized programming exper-
tise and purchase of specialized products  
from the vendor, which could be prohibitive for 
smaller healthcare systems with limited 
resources, especially since, for a real clinical util-
ity, there will always be a need for maintenance 
with added financial burden. Operational chal-
lenges also entail usability and adoption. A less 
discussed challenge is the need for continuous 
learning. Feedback loop process creation can be 
a tool to facilitate creating an automated process 
to generate data used for continual learning of 
the model to improve performance; the latter 
needs commitments from users to add needed 
information into the system. Adding additional 
steps to the already busy schedules of the users is 
a challenge; however, the development of tools 
with clinical-experts-in-the-loop from the initial 
phase could provide opportunities for better 
adoption.

Ethical challenges
Defining how an “ethical” AI system should per-
form in this context is somewhat subjective and 
encompasses our experience in the field and per-
ception about how the AI software operates. 
Overall, the generic goal would be to ensure fair-
ness, efficiency, efficacy, and patient safety. In an 
ideal scenario, a system would benefit all identi-
fied groups equally; however, in practice, such a 
goal is often impossible, and it will be necessary to 
define an acceptable bias. Rigorous regulatory 
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institutions, such as the United States Food and 
Drug Administration (FDA), are starting to guide 
the development and maintenance of AI systems 
to ensure compliance and best practices for data-
driven models. Nevertheless, the highest standard 
of AI-driven triage system for stroke will require 
to go a step further, and can be achieved only by 
a joint effort between care providers and model-
ers; the former will be able to define the needs, 
current limitations, and acceptable biases regard-
ing stroke diagnostic, while the latter will provide 
insights about objective functions, computational 
fairness constraints, and estimation of projected 
model performance. A possible solution is to 
instantiate a Clinical-AI Review Board within 
institutions.

Our roadmap and framework targets ED; emer-
gency medical services and telemedicine could 
also be a viable target for similar systems. The 
ML-enabled prediction model can seamlessly tri-
age patients in real-time and alert the provider 
and the care team.
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