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1.  Introduction
The water cycle is a key component to many facets of life. Hence better understanding of the water cycle is a key 
science goal of the development of the Energy Exascale Earth System Model (E3SM) to address U.S. Depart-
ment of Energy (DOE) mission needs related to climate change impacts on energy production and use (Leung 
et  al.,  2020; Zamuda et  al.,  2013). In particular, we seek to answer the question, “how does better resolving 
features important to the water cycle at the watershed scale improve the representation of freshwater supplies at 
that scale?” At the watershed scale, important climatic features generated by complex topography, land surface 
cover and land use, and other surface heterogeneity and their interactions with atmospheric circulation are not 
well captured at the standard resolution (110 km) used in E3SM (J. Golaz et al., 2019). We expect some of these 
features to improve by increasing the horizontal resolution of the component models, which can lead to improve-
ments in the overall simulation of the water cycle. Quantifying the sensitivity of the water cycle to resolution in 
E3SMv1 is the primary goal of this manuscript.

Abstract  The water cycle is an important component of the earth system and it plays a key role in many 
facets of society, including energy production, agriculture, and human health and safety. In this study, the 
Energy Exascale Earth System Model version 1 (E3SMv1) is run with low-resolution (roughly 110 km) and 
high-resolution (roughly 25 km) configurations—as established by the High Resolution Model Intercomparison 
Project protocol—to evaluate the atmospheric and terrestrial water budgets over the conterminous United States 
(CONUS) at the large watershed scale. The warm season water cycle slows down in the HR experiment relative 
to the LR, with decreasing fluxes of precipitation, evapotranspiration, atmospheric moisture convergence, and 
runoff. The reductions in these terms exacerbate biases for some watersheds, while reducing them in others. For 
example, precipitation biases are exacerbated at HR over the Eastern and Central CONUS watersheds, while 
precipitation biases are reduced at HR over the Western CONUS watersheds. The most pronounced changes 
with resolution to the water cycle come from reductions in precipitation and evapotranspiration. The reduction 
in evapotranspiration reduces the biases across nearly all of the CONUS. Additional exploratory metrics show 
improvements to water cycle extremes (both in precipitation and streamflow), fractional contributions of 
different storm types to total precipitation, and mountain snowpack.

Plain Language Summary  This study seeks to better understand how the U.S. DOE's Earth system 
model, Energy Exascale Earth System Model, simulates the conterminous United States (CONUS) water 
cycle. To accomplish this goal, we examine the atmosphere and land water budget terms at the watershed and 
seasonal space and time scales. At higher resolution and during the warm season, all of the terms in the water 
budget become smaller: precipitation, evapotranspiration, moisture convergence, and runoff. The reductions 
in evapotranspiration lead to improvements over nearly the entire CONUS, while other terms show mixed 
results when increasing resolution. We also examine exploratory metrics with expected resolution sensitivity—
including precipitation and streamflow extremes, storm events, and snowpack—and find modest improvements.
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Any improvements to the simulated water cycle from increasing horizontal resolution depend on both the scales 
being resolved as well as the scales being analyzed. For example, Demory et al.  (2014) found that the water 
cycle was sensitive to horizontal resolution down to roughly 60 km (as measured by the ratio of global land to 
global total precipitation). Vannière et al. (2019) found a similar sensitivity, while also noting (a) global precipi-
tation increases with increasing model resolution and (b) improved seasonal mean circulations lead to improved 
regional precipitation features. The agreement between results becomes less coherent when the focus shifts from 
a global to a regional perspective. For example, Monerie et al. (2020) found that simulated precipitation improve-
ments converge around 60 km resolution over northeast Brazil, but improvements over the Andes do not converge 
even down to 25 km resolution (the highest they tested). Similar scales of resolution (on the order of tens of 
kilometers) have found improvements to precipitation (e.g., Demory et al., 2020; Schiemann et al., 2018), though 
these are not uniform (Ito et al., 2020). Ajibola et al. (2020) found that increasing resolution to roughly quarter or 
half degree grid spacing showed no reliable improvement in rainfall over West Africa. Similarly, for a resolution 
change of ∼1.125° to ∼0.25°, Benedict et al. (2019) found improvements for the Rhine region in Europe, but the 
same improvements were absent in the Mississippi region in North America, highlighting the need for a deeper 
look at which aspects of the hydrologic cycle are sensitive to which scales in different environments. Relevant 
to this study, X. Huang and Ullrich (2017) and many previous studies cited therein found increased horizontal 
resolution (∼0.25°) improved precipitation over the conterminous United States (CONUS), particularly in the 
mountainous regions of the Western US. Small et al. (2014) also showed improvements in Rocky Mountain rain-
fall variability at quarter degree grid spacing relative to one degree grid spacing. Similarly, F. Huang et al. (2020) 
found model performance in precipitation over the Rocky Mountain region was related to horizontal resolution in 
the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) ensemble.

Like mean rainfall, water cycle extremes show improvements with increased horizontal resolution (Bador 
et al., 2020; Balaguru et al., 2020; X. Huang & Ullrich, 2017; Iorio et al., 2004; Kiehl & Williamson, 1991; 
Mahajan et al., 2015, 2018, 2022; Rhoades et al., 2021; Schiemann et al., 2018; Srivastava et al., 2020; Terai 
et al., 2017; M. F. Wehner et al., 2010, 2014; M. Wehner et al., 2021). For the relatively small range of horizontal 
resolutions found across the CMIP6 (Eyring et al., 2016) ensemble, horizontal resolution is not a good predictor 
of model performance for rainfall extremes (Akinsanola et al., 2020). Uncertainty in extremes from observations 
can sometimes be as large as intermodel differences (Bador et al., 2020; Srivastava et al., 2020). Of particular 
interest, though, are the findings of M. Wehner et al. (2021), which note that typical measures of extreme precip-
itation increase with horizontal resolution over the CONUS, but carefully constructed model skill metrics that 
account for resolution do not show significant sensitivity. In other words, a large degree of the sensitivity was 
related to the metrics calculations themselves instead of improvement from the model. Bador et al. (2020) also 
note that increased horizontal resolution on its own is not sufficient for systematic improvement in simulating 
precipitation extremes.

Sharma et  al.  (2019) point out that increased resolution in regional simulations can easily be disrupted by 
uncertainties in boundary forcing. In fully coupled global models the boundary conditions are freely evolving 
according to each model component, which puts greater emphasis on the need for understanding how the system 
interacts as a whole. With global models, what is considered high resolution is often much coarser than regional 
models. Even convective-permitting global models (grid spacing on the order of a few kilometers), such as 
those simulations run as part of DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic 
Domains (DYAMOND; Stevens et al., 2019), cannot run long enough to provide insight to the seasonal cycle or 
modes of interannual variability. The High Resolution Model Intercomparison Project (HighResMIP; Haarsma 
et al., 2016) was proposed to organize a common framework for models (both coupled and uncoupled alike) to 
assess resolution sensitivity on simulated climate processes. E3SM high- and low-resolution experiments have 
been run generally consistent with the HighResMIP protocol. There are two deviations from the HighResMIP 
protocol worth noting: (a) E3SM uses prognostic aerosols instead of the prescribed values suggested for HighRe-
sMIP; and (b) the control simulations (from which the transient simulations used herein are branched) follow a 
different initialization procedure for the ocean (documented in Section 2.5 of Caldwell et al., 2019).

The approach taken for this manuscript is to examine the CONUS seasonal water cycle at the level 2 Hydrologic 
Unit Codes (HUC2) watershed scale. We aim to quantify the biases in the terms important for the water budget 
in both the atmosphere and land, as well as the sensitivity of these biases to resolution at the scales used in the 
HighResMIP experimental design. Further analyses allow us to quantify the factors leading to changes in the 
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moisture budget terms. We will show that the CONUS water cycle slows down at higher resolution with all terms 
in the moisture budget decreasing in magnitude from low to high resolution.

Many additional metrics can be used to gain insight into the simulated water cycle. Pendergrass et al.  (2020) 
suggested a series of “exploratory metrics” for the water cycle that can aid in understanding its behavior. Some of 
these we anticipate having sensitivity to horizontal resolution and we will examine them within this manuscript. 
These include investigating precipitation unevenness distributions, storm events (including tropical cyclones 
(TCs), extratropical cyclones (ETCs), and atmospheric rivers (ARs)), extreme precipitation, extreme streamflow, 
and snowpack. Many of these features are also critical needs for water resource management.

This manuscript serves two primary functions. First, it provides a quantitative assessment of the simulated water 
cycle over the CONUS in E3SM at two resolutions for the seasonally varying components of the water budget 
in both the atmosphere and land. The second is to identify which other aspects of the water cycle are sensitive 
to resolution in E3SM using several exploratory metrics. The manuscript is organized in the following manner. 
Section 2 details the key features of the simulations used. Section 3 examines the response to increasing resolu-
tion of the global water cycle over land. Section 4 examines the seasonal water cycle at the watershed scale and 
quantifies changes to the biases in the model owing to resolution. Section 5 details additional metrics to examine 
further sensitivities in the simulated water cycle to resolution changes in E3SM. Finally, in Section 6, we summa-
rize the findings of this study and make recommendations for future work.

2.  Experimental Design
The simulations used in this study are fully coupled and follow the experimental design described in Caldwell 
et al. (2019) with one primary difference: the simulation pair does not use repeating 1950 conditions, but instead 
uses transient forcings following the HighResMIP (Haarsma et al., 2016) protocol for the years spanning 1950 
through 2014. Analysis of these simulations is done using the final 30 years of each simulation (1985–2014). 
Individual coupled simulations like these raise a question about the role of long-term variability in assessing 
aspects of the water cycle over the CONUS region. While a large ensemble and long pre-industrial control 
simulations exist for E3SMv1, they use a different set of tuning parameters relative to the experiments examined 
in this manuscript, requiring an additional level of caution for interpreting results compared between the two. 
Additionally, our focus is only on demonstrating changes to the long-term mean seasonal cycle between the HR 
and LR simulations, which 30 years of simulation data should be sufficient to cover. We reproduce a selection of 
the salient features of the E3SMv1 model design here to aid in understanding this particular manuscript. More 
thorough descriptions may be found in J. Golaz et al. (2019) and Caldwell et al. (2019).

The atmosphere component is described in detail by Rasch et al. (2019) and its cloud and convective character-
istics are analyzed by Xie et al. (2018). It is based on the spectral-element dynamical core (Dennis et al., 2012) 
with 72 vertical levels. The following processes are parameterized: deep convection (Zhang-McFarlane; Neale 
et al., 2008; Richter & Rasch, 2008; G. J. Zhang & McFarlane, 1995); macrophysics, turbulence, and shallow 
convection (Cloud-Layers Unified by Binormals; J.-C. Golaz et al., 2002; Larson & Golaz, 2005; Larson, 2017); 
microphysics (Morrison-Gettelman Version 2; Gettelman & Morrison, 2015; Gettelman et al., 2015); aerosol 
treatment (four-mode Modal Aerosol Model; Liu et al., 2016; Wang et al., 2020); and radiative transfer (Rapid 
Radiative Transfer Model for general circulation models; Mlawer et al., 1997; Iacono et al., 2008).

The ocean and sea ice components use the Model for Prediction Across Scales (MPAS; Petersen et al., 2019; 
Ringler et al., 2013). A mesoscale eddy parameterization (Gent-McWilliams; Gent & Mcwilliams, 1990) is used 
only for the low-resolution simulation (it is disabled for the high-resolution). The mesoscale eddy parameteriza-
tion used for the LR experiment may not exactly mimic the impact of the resolved eddies in HR and may result 
in important differences in the ocean circulation. Nevertheless, testing these features is beyond the scope of the 
current manuscript. Neither the high-resolution nor the low-resolution configurations use a submesoscale eddy 
transport scheme.

The land model is nearly identical to its parent model, the Community Land Model version 4.5 (Oleson 
et al., 2013), run with satellite phenology and non-prognostic carbon and nitrogen representation. There are 10 
soil layers in the land model. The Model for Scale Adaptive River Transport (MOSART, H. Li et al., 2013; H. Y. 
Li et al., 2015) is used for river transport (in its grid-based representation). Given runoff simulated by the land 
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model, MOSART explicitly simulates channel velocity, channel water depth, 
and water surface area following a simplified form of the one-dimensional 
Saint-Venant equation.

Both the high-resolution (HR) and low-resolution (LR) configurations 
examined herein share the same tuning parameter values. In other words, 
our LR configuration mirrors that of the “LRtunedHR” simulation described 
and used in Caldwell et al. (2019). As a consequence, the LR configuration 
analyzed here differs from the standard E3SMv1 (J. Golaz et al., 2019). We 
chose this approach to focus on the impact of resolution, rather than different 
tuning choices.

There are three separate grids used for both the HR and LR configurations for the five components (the atmos-
phere and land share one grid, the ocean and sea ice share one grid, and the river transport model uses its own 
grid). Table 1 lists the key grid differences between the HR and LR configurations. The atmosphere and land 
are on a cubed sphere grid, the ocean and sea-ice use Spherical Centroidal Voronoi Tessellations, and the river 
model uses a regular lat-lon mesh. The vertical levels for all components are the same between the two resolutions 
except for the ocean model (80 levels for HR and 60 levels for LR). The river model provides freshwater input 
to the ocean.

To satisfy numerical stability requirements at higher resolution requires a shorter model time step to run the 
simulations. Table 2 shows the time steps used for the various components for each resolution. As in Caldwell 
et al. (2019), our analyses for model resolution sensitivities convolve both the resolution sensitivity and the time 
step sensitivity, and while we generally use terminology such as “resolution sensitivity” throughout this manu-
script, it has been shown that the time step sensitivity can be as large or larger than the resolution sensitivity 
in  some instances (Jung et al., 2012).

The HighResMIP protocol calls for pseudo-equilibrium 1950 repeating conditions as the control run from which 
to branch the transient experiments. Because the 1950 conditions are not exactly in equilibrium, the model drifts 
throughout the ∼50  years of simulation. As the model state drifts, simulated sea surface temperature biases 
become larger in magnitude. Therefore, to minimize the biases in the model state at the beginning of the transient 
period, the transient runs branch off near the beginning of the control runs analyzed by Caldwell et al. (2019). 
We use the earliest available restart point, 5 years after initialization for the HR configuration and 10 years after 
initialization for the LR configuration.

We are interested in assessing the water cycle at the watershed scale. To that end, we focus our analysis on the 
hydrologic unit maps, which we will refer to by their hydrologic unit code level 2 (HUC2) demarcation (see 

Figure 1 for a map of the HUC2 watersheds and Table 3 for a list of water-
shed names). The HUC2 basins are adapted by the U.S. Geological Survey 
(USGS) from those established by Seaber et al. (1987). There are 18 HUC2 
basins covering the CONUS. The boundaries of these basins are marked on 
map plots throughout this manuscript. While there are higher-level HUC 
categories denoting smaller hydrologic regions of the CONUS, the hori-
zontal spatial resolution of the LR simulation is insufficient to resolve these 
features to make for a fair comparison against the HR simulation.

To analyze the model output at the watershed scale, we generate mapping 
files using TempestRemap (Ullrich & Taylor,  2015; Ullrich et  al.,  2016) 
for both model grids onto each HUC2 watershed region. We also generate 
mapping files for each observational product onto each HUC2 watershed 
region. These mapping files are then used to remap the monthly timeseries of 
the moisture budget terms from the model and observations onto the HUC2 
watershed regions. We use these monthly timeseries to quantify the biases 
in each moisture budget term. To quantify uncertainties, the model output 
and data are grouped by month of the year; the mean is the average across all 
years, and each year is treated as an independent sample for statistical tests 
and confidence intervals. To test the statistical significance of differences 

Grid

atm/land 
∼Δx 
(km)

atm/
land # of 
columns

Ocean/sea 
ice ∼Δx

Ocean/sea 
ice # of 
columns

River 
∼Δx

River # of 
columns

HR 25 777,602 8–16 km 3,693,225 0.125° 4,147,200

LR 110 48,602 30–60 km 235,160 0.5° 259,200

Table 1 
Grid Comparisons for the High-Resolution (HR) and Low-Resolution (LR) 
Configurations of the Model

Time step (minutes) HR LR

atm dynamics and advection 1.25 5

atm physics-dynamics coupling 15 30

ocn 6 10

ocn barotropic 0.2 0.67

Ice dynamics 7.5 15

Ice thermodynamics 15 15

River 60 60

atm/ice/lnd coupling 15 30

ocn coupling 30 30

River coupling 180 180

Note. Additional time step details can be found in Table 2 of Caldwell 
et al. (2019).

Table 2 
Time Steps Used in the High-Resolution (HR) and Low-Resolution (LR) 
Configurations
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at the watershed level, t-tests are computed using all available years for each observational data set, and for all 
30 years of the model output.

A number of observational products are used to quantify the biases in the simulations. For precipitation, we 
use the Global Precipitation Climatology Project (GPCP) one-degree daily (1DD) data for years 1997–2017 
(Huffman et al., 2001, 2009) and the Tropical Rainfall Measuring Mission (TRMM) 3B43 data for years 1998–
2013 (Huffman et  al.,  2007). For evapotranspiration (ET), we use the Derived Optimal Linear Combination 
Evapotranspiration (DOLCE) data (https://doi.org/10.4225/41/58980b55b0495) for years 2000–2009 (Hobeichi 
et al., 2018), the Global Land Evaporation Amsterdam Model (GLEAM) data for years 1980–2018 (Martens 
et  al.,  2017; Miralles et  al.,  2011), and the MODerate Resolution Imaging Spectroradiometer (MODIS) data 

for years 2000–2014 (De Kauwe et  al.,  2011; Mu et  al.,  2011). Note that 
the DOLCE data are not independent of the other ET data, as that data set 
combines six different ET products, including the GLEAM and MODIS 
data. For terrestrial water storage anomaly we use the Gravity Recovery 
and Climate Experiment (GRACE) data for the years 2002–2014 (Swenson 
& Wahr,  2006). For runoff we use a 1/16th degree daily runoff database 
generated by the Variable Infiltration Capacity (VIC) hydrologic model over 
CONUS for years 1985–2011 (Livneh et  al.,  2013). The VIC runoff was 
forced by a gridded daily near-surface observed meteorological data (Livneh 
et al., 2013). Livneh et al. (2013) compared the VIC runoff to observed and 
naturalized flows and found the VIC runoff does a good job representing 
these flows (see their Figure 5).

3.  Global Land Analysis
Before analyzing the CONUS water budget, it is useful to examine the biases 
over land in several climate metrics, as well as their response to increasing 
horizontal resolution. Figure 2 shows biases for precipitation, evapotranspi-
ration, 2 m air temperature, surface net radiative flux, and surface wind speed 
for JJA. Figure 3 shows the same patterns, but for DJF.

Panels a–d of Figure  2 show the precipitation as measured by GPCP, the 
biases for both HR and LR, and the difference (HR minus LR). The overall 
bias pattern is quite similar between HR and LR with prominent features 
like the dry biases over the Eastern CONUS, Amazon, and Europe being 
present at both resolutions. Consistent with the previous studies outlined in 
the Introduction, the precipitation response to increasing resolution is not 

Figure 1.  Hydrologic Unit Codes watershed map. We refer to watersheds 1–6 (in blue) as the Eastern conterminous United 
States (CONUS), watersheds 7–12 (in orange) as the Central CONUS, and watersheds 13–18 (in green) as the Western 
CONUS.

HUC2 Watershed name

01 New England

02 Mid Atlantic

03 South Atlantic-Gulf

04 Great Lakes

05 Ohio

06 Tennessee

07 Upper Mississippi

08 Lower Mississippi

09 Souris-Red-Rainy

10 Missouri

11 Arkansas-White-Red

12 Texas-Gulf

13 Rio Grande

14 Upper Colorado

15 Lower Colorado

16 Great Basin

17 Pacific Northwest

18 California

Table 3 
Names of the Hydrologic Unit Codes Watersheds
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Figure 2.  (Top row) precipitation, (second row) evapotranspiration, (third row) 2 m air temperature, (fourth row) surface net radiation), and (fifth row) near-surface 
wind speed for the (left column) reference data, (second column) HR bias, (third column) LR bias, and (fourth column) difference between HR and LR. Precipitation 
and evapotranspiration are provided in units of mm/day, temperature is in units of K, surface net radiation is in units of W/m 2, and wind speed is in units of m/s.

Figure 3.  Same as Figure 2, but for the DJF season.
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uniform over land. The CONUS shows a decrease in precipitation, but there are numerous other regions that show 
increases in precipitation. One example is over the Indian monsoon region, which shows the largest precipitation 
change by magnitude.

Panels e–h of Figure 2 are the same as panels a–d, but for evapotranspiration. Like precipitation, the overall bias 
pattern is qualitatively similar between HR and LR. The ET differences between HR and LR show good spatial 
coherence with the precipitation changes, suggesting a close coupling of the response of surface moisture fluxes 
to resolution. This spatial coherence is less apparent during the DJF season (Figure 3 panels d and h), particularly 
over South America.

Panels i–l of Figure 2 show the 2 m air temperature biases and response to increasing resolution. LR has a prom-
inent cold bias over land that is substantially reduced for HR. The warming over land is consistent with a global 
increase in SSTs in HR compared to LR (see Figure 4).

Figure 4.  Comparison between observed global SST to LR and HR simulations for Annual (ANN) mean. Top figures show 
ANN mean from the Hadley Center Global Sea Ice and Sea Surface Temperature (HadISST); Middle (LR) and bottom (HR) 
figures show simulated minus observed values.
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Panels m–p of Figure 2 show the net surface radiation (positive values denote a net downward flux). Like precip-
itation and ET, the bias patterns are qualitatively similar in HR and LR. The difference pattern shows an increase 
in surface net radiation at the high northern latitudes in JJA. Much of the CONUS shows a decrease in surface 
net radiation. In DJF (Figure 3) most of the resolution sensitivity for surface net radiation is seen in the South-
ern Hemisphere, as expected since insolation and surface temperatures are both generally at their largest values 
during local summer.

Finally, panels q–t of Figure 2 show the surface wind speed. There is virtually no response of the windspeed over 
land to resolution changes. The biases are virtually identical in both the HR and LR, with both showing much 
stronger winds than those in ERA5. These biases persist, regardless of season (JJA or DJF).

4.  CONUS Water Budget and Its Sensitivity to Resolution
The atmospheric water budget can be written as follows.

𝜕𝜕𝑡𝑡𝑆𝑆atm + ∇ ⋅ {𝐯𝐯𝑞𝑞} = 𝐸𝐸 − 𝑃𝑃� (1)

where ∂tSatm is the time-tendency of atmospheric water storage, v is the horizontal wind vector, q is the specific 
humidity, curly braces denote a column integral, P is surface precipitation, and E is surface evapotranspiration. 
At the scales of interest for this study, changes in atmospheric moisture tendency (∂tSatm) are orders of magnitude 
smaller than the other terms at the time and space scales examined here, and we neglect that term for our analyses. 
Therefore, the land surface water budget can be written as follows.

𝜕𝜕𝑡𝑡𝑆𝑆sfc = 𝑃𝑃 − 𝐸𝐸 − 𝑅𝑅� (2)

where ∂tSsfc is the time-tendency of surface water storage (including soil moisture, snowpack, and groundwater), 
and R is runoff (combined surface and sub-surface).

As described in the introduction, we seek to quantify the biases and resolution sensitivity of the terms in the 
moisture budget (Equations 1 and 2) at the watershed scale and for the seasonal cycle. The HUC2 watersheds 
represent natural boundaries for the water cycle in the land and also make for an ideal level of granularity to use 
for this study as both LR and HR model grids can resolve each basin.

Even restricting the spatial and temporal scales, there are several aspects that need to be quantified. First, we aim 
to quantify the biases in the E3SM at LR against observations and ERA5 reanalysis (Hersbach et al., 2020). While 
reanalyses like ERA5 are still modeling products, ERA5 has the advantage over other observations of consistency 
between its water cycle budget terms. Here, “consistency” means that the moisture budget is expected to have a 
small residual relative to collecting terms from observations. For the stoplight diagrams shown in the following 
section, we have done the analysis both with and without ERA5 for precipitation, evapotranspiration, terrestrial 
water storage anomaly, and runoff, and found no changes to our conclusions. We only show the analyses that 
include ERA5. Second, we aim to quantify any changes to the water budget terms between LR and HR. Where 
differences arise, we then assess whether these differences are improvements or degradations to the simulation. 
We perform these analyses for each month of the year and each watershed in the CONUS, and then make stoplight 
diagrams to summarize the results.

4.1.  Seasonal Watershed Water Cycle Budget

A summary for precipitation is presented in Figure 5. Each row denotes a different HUC2 watershed basin and 
each column represents a month of the year. The numbers are the mean difference in E3SM across resolution 
(HR-LR). The cells of the table are colored depending on the relationship between E3SM across resolutions, and 
with the observational and reanalysis products used to evaluate them. White denotes a month where no signif-
icant bias exists between either LR or HR with the observations. Yellow denotes months where no significant 
difference exists between LR and HR, but both are significantly biased relative to observations. Purple denotes 
months where LR is biased relative to observations, while HR is not (the amelioration of a previous bias). Green 
denotes months where LR is biased relative to observations and HR makes a significant improvement upon that 
bias (i.e., HR is still biased relative to observations, but the magnitude of that bias is significantly lower than 
in LR). Orange denotes the opposite of green—both LR and HR are biased against observations, but the bias is 
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significantly larger in HR than in LR. Finally, red denotes regions where no bias exists for LR, but a bias does 
occur for HR (the creation of a new bias). Again, for all differences, statistical significance is determined using 
a two-tailed Student's t-test (with a 95% significance threshold) and treating each year as an independent sample 
for a particular watershed and month. A value for a particular month and watershed is only considered significant 
if the test rejects the null hypothesis between the model and all observational and reanalysis products. For exam-
ple, if the model is considered significantly biased for precipitation, it means the bias is significant between the 
model and GPCP, the model and TRMM, and the model and ERA5. This approach means months and watersheds 
where observational products disagree are more likely to be colored white. For example, even though there are 
some large changes in wintertime precipitation for the Southeast US (consistent with Bacmeister et al., 2014), 
few cells show any significant change (Figure 5). To facilitate discussion, we group the watershed basins into 
three broader regions: Eastern CONUS (HUC2 basins 1–6), Central CONUS (HUC2 basins 7–12), and Western 
CONUS (HUC2 basins 13–18).

Figure 5 shows that for the Eastern CONUS, summertime precipitation biases are created when transitioning 
from LR to HR. In the fall, winter, and spring, there are no significant precipitation biases for the model at either 
resolution. For the Central CONUS, a similar degradation in precipitation is found for the summer months. The 
primary difference between the Eastern and Central CONUS regions is the presence of significant biases for the 
Central CONUS in the LR configuration.

For the Western CONUS, there are significant improvements in the precipitation, primarily in the late spring 
and early summer months. When comparing HR and LR, the precipitation response to increasing resolution is 
consistently negative across the Eastern, Central, and Western CONUS. Similar reductions transitioning from 
LR to HR were shown by Chang et al. (2020) using the Community Earth System Model (CESM) version 1.3. 
The bias responses hinge on whether biases exist at LR. For the Eastern and Central CONUS, the precipitation 
reduction leads to new or exacerbated biases, while for the Western CONUS, the precipitation reduction leads to 
reduced biases.

Figures 6–9 show the same breakdown as Figure 5, only for the surface evapotranspiration, atmospheric moisture 
convergence, terrestrial water storage anomaly tendency, and runoff (combined surface and sub-surface), respec-
tively. Figures S1–S5 in Supporting Information S1 provide the full seasonal timeseries for each experiment and 
data set. Like precipitation, ET decreases across virtually all watersheds when going from LR to HR. The changes 

Figure 5.  Stoplight diagram for precipitation. Each column represents a month. The first 18 rows each represent a Hydrologic Unit Codes watershed, “CONUS” is the 
CONUS mean, “GL LAND” is the global land (northward of 60°S) mean, and “GLOBAL” is the global mean. The values in each cell are the mean difference between 
LR and HR (HR-LR). White denotes a month where no significant bias exists between either LR or HR with the observations. Yellow denotes months where no 
significant bias exists between LR and HR, but both are significantly biased relative to observations. Purple denotes months where LR is biased relative to observations, 
while HR is not. Green denotes months where LR is biased relative to observations and HR makes a significant improvement upon that bias. Orange denotes the 
opposite of green—both LR and HR are biased against observations, but the bias is significantly larger in HR than in LR. Finally, red denotes regions where no bias 
exists for LR, but a bias does occur for HR. Statistical significance is determined using a two-tailed Student's t-test with a 95% significance threshold and treating each 
year as an independent sample for a particular basin and month. Comparison data sets for precipitation include Global Precipitation Climatology Project, Tropical 
Rainfall Measuring Mission, and ERA5. Units are in mm/day.
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in biases, however, are not the same between precipitation and ET. For the Eastern CONUS, the reduction in 
ET leads to reductions or removals of the summertime biases. The Central CONUS, however, still shows some 
degradation in simulated ET. Closer examination finds that the DOLCE data, despite drawing from data includ-
ing MODIS and GLEAM, consistently underestimates ET relative to those other two data sets over the Eastern 
CONUS making it an outlier (Figure S2 in Supporting Information S1). If we reproduce the ET stoplight diagram 
without the DOLCE data (Figure S6 in Supporting Information S1), we see a more consistent pattern emerge with 
improvements in late summer ET over the Eastern CONUS, and degradations in late summer ET over the Central 
CONUS. Both Eastern and Central CONUS show improvement in ET biases from November through January 
(a signal absent in the precipitation field). The Western CONUS shows the most coherent agreement between 
precipitation and ET, with reductions in ET resulting in reduced biases for most western watersheds across much 
of the year.

For the atmospheric moisture convergence (Figure 7) and terrestrial water storage anomaly tendency (Figure 8), 
the differences tend to be too small relative to interannual variability, such that very few significant differences 
exist between model (at either resolution) and observations. The mean moisture convergence for the CONUS 
changes sign throughout the year. In the cold months, there is a net import of water into most watersheds, while 
in the warm months, the sign flips such that there is a net export of water for most watersheds. As expected from 
continuity, E − P shows a pattern consistent with the moisture convergence throughout the year (not shown). 
The net export of moisture during the summer means that the mean circulation provides limited insight into the 

Figure 7.  As in Figure 5, but for atmospheric moisture convergence. The comparison data set for moisture convergence is ERA5. Units are in mm/day.

Figure 6.  As in Figure 5, but for evapotranspiration. Comparison data sets for evapotranspiration include MODIS, Global Land Evaporation Amsterdam Model, 
Derived Optimal Linear Combination Evapotranspiration, and ERA5. Units are in mm/day.
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precipitation processes for E3SM. Instead, we must examine time-varying circulation patterns. Further examina-
tion of such circulations is provided in Section 5.2.

For terrestrial water storage anomaly tendency (Figure 8), the GRACE data record is relatively short compared 
to the model output, which increases the uncertainty in the observed data. For ERA5, terrestrial water storage 
anomaly changes are computed as a residual between surface precipitation, ET, and surface plus sub-surface 
runoff. Somewhat surprisingly, there tends to be a better agreement between the LR and HR model output with 
the GRACE data than the ERA5 reanalysis (Figure S4 in Supporting Information S1). Despite these differences 
in the data, the LR and HR model results are statistically indistinguishable from one another over nearly all 
months and watersheds.

Finally, for the runoff term, the patterns of improvement and degradation over the Central and Western CONUS 
reflect the changes seen in precipitation (Figure 9) only spread out over more months. In other words, the degra-
dation in Central CONUS runoff is likely linked to the degradation in precipitation. Likewise, the improvement 
in Western CONUS runoff is likely linked to the improvement in precipitation. For the Eastern CONUS, there 
is little consistency in the response to changing resolution across watersheds and even across seasons within the 
same watershed. The Great Lakes watershed is the exception for the Eastern CONUS, with simulated runoff 
degraded in HR from June through December.

Figure 8.  As in Figure 5, but for terrestrial water storage anomaly. Comparison data sets for terrestrial water storage anomaly include Gravity Recovery and Climate 
Experiment and ERA5. Units are in mm.

Figure 9.  As in Figure 5, but for runoff. Comparison data sets for runoff include Variable Infiltration Capacity and ERA5. Units are in mm/day.
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For all five components (precipitation, ET, moisture convergence, terrestrial water storage anomaly tendency, and 
runoff) summertime values all decrease going from LR to HR. The differences, however, are only statistically 
significant for precipitation, ET, and runoff when examining individual months and watersheds. This reduction 
in precipitation and evapotranspiration coincides with a significant increase in precipitable water and a reduction 
in soil moisture in HR relative to LR (Figure S7 in Supporting Information S1). While it is unclear whether either 
of these facts is the cause of the other, it is valuable for framing the changes to individual moisture budget terms, 
as we will discuss in more detail later. Each of the stoplight diagrams show the CONUS and global land averages 
(precipitation also shows the global average) and the decrease in these metrics at higher resolution is still seen 
across these larger spatial averages. Though there is substantial cancellation across regions (as can be seen in 
Figures 2 and 3) the consistency across CONUS and the global land suggests that the changes over CONUS are 
not unique to that region.

4.2.  Warm Season Changes

Figure 10 shows a map of these metrics for the JJA season. Figure 10 shows that the decline in precipitation 
is broadly uniform across the Eastern and Central CONUS, while being a little weaker over the Western 
CONUS. This regional difference is because of the selected season being plotted. If we were to plot AMJJ, 
the decline in precipitation would be greater over the Western CONUS (not shown). Compared to metrics like 
terrestrial water storage anomaly and runoff, the precipitation sensitivity to the better-refined topography is 
somewhat weak during JJA. In DJF, as can be seen in Figure 3d there is much more precipitation sensitivity 
to orography over the Western CONUS, possibly owing to more orographically forced precipitation in local 
winter.

Figure 10 shows the decrease in ET between HR and LR is stronger over the central CONUS than either the 
Eastern or Western CONUS regions. Again, the principal difference between the precipitation and ET differ-
ences is that the decrease in ET leads to improvements relative to observed ET because the LR had large positive 
biases. It is important to point out that there are some limitations with the simulated ET in these experiments. 
Transpiration accounts for more than half of ET (Lian et al., 2018) but the use of satellite phenology potentially 
limits the sensitivity of transpiration, and hence ET, to resolution.

Figure 10.  Each of the metrics (precipitation, evapotranspiration, atmospheric moisture convergence, terrestrial water storage anomaly, and runoff) shown for the 
reference (left-most column), HR and LR bias (second and third columns, respectively), and HR and LR difference (HR minus LR). All values have units of mm/day, 
except for terrestrial water storage anomaly, which has units of mm.
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For atmospheric moisture convergence, the change from LR to HR is largest over the Eastern CONUS. The reduc-
tion in moisture convergence is consistent with a divergent circulation experiencing an increase in atmospheric 
moisture, but the panel l of Figure 10 does not vary as smoothly as Figure S7a in Supporting Information S1, 
suggesting a role for a dynamical response as well. While we leave a full exploration of the circulation response 
to future work, there is a notable change in the North American Subtropical High (NASH), which primarily 
impacts the Eastern CONUS. Figure S8 in Supporting Information S1 shows a westward expansion of the NASH 
with increased resolution. Future work is needed to fully understand the role of changes in the NASH and the 
moisture convergence over the Eastern CONUS in E3SM. There is no statistically significant change in moisture 
convergence over the Central or Western CONUS regions. Terrestrial water storage anomaly shows the largest 
differences over steep terrain in the Western CONUS, with some smaller changes of either sign occurring else-
where. Similarly, runoff shows the largest changes over terrain in the Western CONUS, but also shows decreases 
in value in HR relative to LR over the Eastern CONUS.

As already demonstrated with the stoplight diagrams, these changes do not always manifest as decreases in the 
bias. The center two columns of Figure 10 visually confirm that finding. The reduction in precipitation over the 
Western CONUS, the reduction in ET over the Eastern and Western CONUS, and the reduction in runoff over 
the  Western CONUS are where we see significant improvements from increasing resolution relative to the refer-
ence set.

We can reduce statistical uncertainty by grouping months into seasons and the watersheds into the three regions 
shown in Figure 1: the Eastern CONUS (watersheds 1–6), the Central CONUS (watersheds 7–12), and the West-
ern CONUS (watersheds 13–18). We perform this grouping to better understand how the water cycle budget term 
changes relate to one another. We continue to focus on the warm season (JJA).

Figure 11 shows the changes in each metric averaged over each region (in the colored bars), as well as the LR bias 
(hatched bars). Where the bars have opposite signs shows a reduction in the bias going from LR to HR. Across 
all three regions, this only happens for ET. Figure 11 shows that ET improves over the Central CONUS, while 
Figure 6 shows little improvement. As can be seen from Figure S2 in Supporting Information S1, this results 
from large uncertainties between observational products during the warm season. The MODIS ET product used 
in Figures 10 and 11 tends to have lower values than the GLEAM and DOLCE products over the Central CONUS 
(Figure S2 in Supporting Information S1), making the LR bias larger.

Atmospheric moisture convergence shows a bias reduction for both the Central and Western CONUS, while 
precipitation only shows improvement over the Western CONUS (in agreement with the stoplight and map plots 
shown earlier). To make the units consistent, we show the time-tendency of the terrestrial water storage anomaly. 
The biases are exacerbated for this term over the Eastern and Central CONUS, with no significant change over 
the Western CONUS. Runoff is worse over all three regions at HR compared to LR. The overall slowdown of 
the water cycle is readily apparent in Figure 11. Every single difference term is negative or statistically indistin-
guishable from zero.

Figure 11.  Mean difference between LR and HR (colored bars), and mean bias for LR (hatched bars) for precipitation, ET, atmospheric moisture convergence, 
terrestrial water storage tendency, and runoff for (a) Eastern CONUS, (b) Central CONUS, and (c) Western CONUS. The error bars provide the 95% confidence 
interval for the mean differences. All values have units of mm/day.
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4.3.  Local Versus Remote Influences of Resolution Change

All of the analyses so far are diagnostic in nature. A conclusive explanation for the drying of the land and slow-
down of the water cycle is difficult to attribute to local resolution impacts in these coupled simulations. As shown 
in Figure 4, the HR simulation is much warmer than the LR simulation. It is possible that this global temperature 
signal may play a role on top of the local effects of grid refinement, potentially through changing equator-to-pole 
gradients (see the bottom panel of Figure 4). There is evidence that decreasing equator-to-pole temperature gradi-
ents lead to decreases in mid-latitude terrestrial precipitation (e.g., Routson et  al.,  2019), though testing that 
specific hypothesis is beyond the scope of the current work. While it is worth noting that there is no widespread 
reduction in precipitation and ET across the watersheds from warming in the abrupt quadrupling of CO2 experi-
ment in E3SMv1 at low-resolution (Figure S9 in Supporting Information S1), this fact alone does not rule out the 
role of remote SST changes on the water cycle differences between HR and LR observed here.

It is tempting to envision running the LR simulation with SSTs prescribed from the HR simulation to quantify the 
impact of remote SSTs on the CONUS water cycle changes. Under such a scenario, the global mean temperature 
would be similar, despite land temperatures being able to vary between the two experiments. Such an experiment, 
however, removes the two-way interactions between the atmosphere and ocean. This coupling is important to 
regional water cycle features. For example, Harrop et al. (2019) did exactly the above experiment where the SSTs 
from a coupled E3SMv1 simulation (the abrupt quadrupling of CO2 experiment) were used to run a prescribed 
SST experiment. They found noticeable differences over the South Asian Monsoon between the two experiments, 
despite their shared SST patterns. Using their simulation output, we find that the changes in precipitation going 
from interactive to prescribed SSTs over the CONUS exceed those going from LR to HR (Figure S10 in Support-
ing Information S1). Therefore, such an experiment may not be well suited for quantifying how much of the water 
cycle change comes from improved local resolution and how much comes from global scale sensitivity to resolu-
tion. It could, however, also be that the monthly data used to prescribe the SSTs miss important shorter  timescales 
that are necessary to represent the surface-air coupling. Disentangling such an effect is beyond the scope of this 
work, and we leave it to future research efforts.

An alternative option that has greater appeal involves running E3SM with a regionally refined mesh, where the 
high resolution region is constrained to a small region of interest (e.g., the CONUS), and the remainder of the 
globe uses the low resolution grid spacing. Such a configuration could allow for simulations to be compared 
where the global values (such as surface temperature) remain similar. A regionally refined mesh was used with 
E3SMv1, but global means are not the same between the regionally refined version and the uniform low-resolution 
owing to differences in model parameter values (Tang et al., 2019). The North American regionally refined mesh 
used for E3SMv2 has the same parameter values as the E3SMv2 uniform low-resolution mesh and their global 
temperature values are similar (Tang et al., 2022). Similar analyses of the water cycle metrics presented here will 
likely be valuable for those simulations.

To add context to the precipitation responses, Figure 12 shows precipitation responses (HR minus LR) for a selec-
tion of other HighResMIP models using active ocean (top row) and prescribed SSTs (bottom row). Details on the 
other HighResMIP models used are provided in Table 4. There is little consistency across these models in the 
precipitation response to resolution, and none of these models show the same uniform decrease in precipitation 

Figure 12.  JJA mean precipitation change (HR minus LR) for a selection of other HighResMIP models. (a–d) Simulations with an active ocean model. (e–h) 
Simulations with prescribed SSTs. All values have units of mm/day.
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that E3SM shows. Like E3SM, the CMCC, MOHC, and MPI models exhibit the strongest decreases in precipi-
tation with increasing resolution over the Eastern and Central regions of CONUS. Unlike E3SM, however, none 
of  the models show a decrease in precipitation with increasing resolution over the Western CONUS. The agree-
ment in precipitation change is modest between the active ocean and prescribed SST experiments, suggesting 
SST patterns may play only a minor role in determining CONUS water cycle changes. The disagreement between 
the models suggests future research is still needed to understand the specific pathways by which each of these 
models' water cycle changes manifest.

5.  Additional Metrics
It is worth examining several other metrics that we anticipate to be sensitive to resolution. These include measures 
of the precipitation distribution and its relation to storm systems, snowpack, and streamflow. These metrics will 
be covered in the following subsections. In particular, we expect certain storm features responsible for extreme 
precipitation to exhibit precipitation production that matches observations closer in HR than LR. These systems 
include TCs, ETCs, and ARs.

5.1.  Precipitation Distribution and Its Relation to Storm Events

To better understand the water cycle changes with resolution, we begin by examining a simple measure of the 
precipitation distribution for each watershed. The metric we use is the unevenness, designed by Pendergrass 
and Knutti (2018) to quantify the contribution of heavy rainfall days to the total annual amount. Unevenness 
is defined as the number of days required to reach 50% of the total annual rainfall. It is computed by sorting 
the daily rainfall from most to least precipitation. The data is then cumulatively summed, divided by the 
total annual rainfall, and the unevenness value is the value of the sequence equal to 0.5 (computed by linear 
interpolation). It is important to note that smaller values of this parameter mean that precipitation is more 
“uneven.”

Pendergrass and Knutti  (2018) found that the wettest 12 days account for half of the annual precipitation in 
observations (a collection of surface observing stations and TRMM data). Models, on the other hand, tend to 
have much less unevenness, requiring roughly twice as many days as observed to reach 50% of their annual total 
precipitation. Part of the bias is a result of too frequent light rain in models (Stephens et al., 2010), which is true 
of E3SM as well (Terai et al., 2017). Caldwell et al. (2019) showed an increase with increasing resolution in the 
heaviest rain rates over tropical regions in E3SM and we hypothesize that similar increases (and hence improve-
ments in unevenness) will be detectable over the CONUS.

Table 5 shows the unevenness metric for the HR and LR experiments, as well as TRMM data. The unevenness 
is smaller for HR than LR, meaning it takes fewer days to accumulate 50% of the annual precipitation when the 
HR grid is used. The improvement in a shift toward higher rain rates with increasing resolution has been noted 
previously, but is not always the case (L. Zhang et al., 2016), so it is encouraging to see this response from 
E3SM. Because the unevenness is normalized by the total rainfall in its definition, an increase in unevenness 
(fewer days to reach half of the year's total) implies a shift in the rain fall distribution toward higher rain rates, 
regardless of the sign of the mean change. While the values presented in Table 5 are those computed on the 
native grid of each data source, Pendergrass and Knutti (2018) showed that the unevenness metric is sensitive 
to regridding (with larger values for coarser grid spacing). Thus for determining whether the differences in 
unevenness are statistically significant between LR and HR, the HR data were regridded to the LR mesh for 

Model name Institution HR grid LR grid Reference

CMCC-CM2 CMCC 1,152 × 768 288 × 192 Cherchi et al. (2019)

ECMWF-IFS ECMWF 720 × 361 360 × 181 C. D. Roberts et al. (2018)

HadGEM3-GC3.1 MOHC 1,024 × 768 192 × 144 M. J. Roberts et al. (2019)

MPI-ESM1-2 MPI 768 × 384 384 × 192 Gutjahr et al. (2019)

Table 4 
Simulation Details for the Selection of Other HighResMIP Models Used
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significance testing. All watersheds show a statistically significant difference in unevenness between LR and 
HR, even when both data are on the same mesh. The regridding effect increases the unevenness metric by 
about 1.5–4.5 days (not shown). The increase in the value of unevenness owing to regridding is smaller than 
the increase when comparing the LR experiment to the HR experiment. The TRMM data show that even at HR, 
E3SM still significantly overestimates the unevenness metric, meaning total precipitation is still too uniformly 
spread across days of the year.

The Upper Colorado (14) watershed shows the largest unevenness sensitivity to resolution, with large changes 
also present in the Great Basin (16), Pacific Northwest (17), Arkansas-White-Red (11), Tennessee (6), and 
Missouri (10) watersheds—all exceeding a 6-day mean increase in unevenness. The Western CONUS tends to 
see larger unevenness sensitivity to model resolution than the Eastern or Central CONUS regions, suggesting 
better-resolved topography at HR improves the distribution of precipitation rates for these watersheds. The aver-
age bias in unevenness for the watersheds (not including the Souris-Red-Rainy (9) and Pacific Northwest (17) 
watersheds) is 17.6 days for the LR simulation and 12.3 days for the HR simulation. These biases are comparable 
to the biases in the CMIP5 archive relative to station data (Pendergrass & Knutti, 2018).

The GPCP 1 degree daily (1DD) product was also examined for comparison with the HR and LR simulations, 
but is not shown owing to a switch in data processing within that product at 40°N that complicates the interpre-
tation of the northern watersheds. The GPCP 1DD uses the Threshold-Matched Precipitation Index between 
(40°S–40°N) and switches to scaling with Television and Infrared Observation Satellite Operational Vertical 
Sounder (TOVS; Huffman et al., 2001) at higher latitudes. This switch in how rainfall is determined for the GPCP 
1DD product significantly impacts the unevenness metric (not shown), though the switch is not discernible in 
other features such as monthly mean precipitation.

The unevenness results suggest stronger rainfall events occur for E3SM HR compared to LR. It is worth asking 
if similar changes can be observed in the precipitation extremes. To evaluate the simulation of seasonal precipi-
tation extremes in the HR and LR experiments, we use generalized extreme value (GEV) distributions to model 
extremes of daily precipitation and compute the return levels associated with a 20-year extreme event. We use 
a block (seasonal) maxima approach, where we estimate a GEV distribution of the maxima of a block of data. 
Here, the block size is a season. We first aggregate daily aggregated precipitation over the watershed basin scales. 
The seasonal maxima of daily precipitation are computed for each watershed for each year. A GEV distribution 
is then estimated at each watershed using the seasonal maxima data (sample size of 20 for GPCP data, and 30 for 
HR and LR runs) using the maximum likelihood method. A GEV distribution, G(z), of block maxima, z, has three 
parameters - location (μ), scale (σ) and shape (ξ) - and is represented as follows for ξ ≠ 0:

𝐺𝐺(𝑧𝑧) = exp

{

−

[

1 + 𝜉𝜉

(

𝑧𝑧 − 𝜇𝜇

𝜎𝜎

)]−1∕𝜉𝜉
}

� (3)

G(z) is computed as the limit of the equation as ξ → 0, if ξ = 0 (Coles, 2001). These parameters are approximately 
multivariate normal, and the associated variance-covariance matrix is computed at the maximum likelihood 
estimates. We also conduct a Kolmogorov-Smirnov goodness of fit test to evaluate the null hypothesis that the 
empirical distribution is statistically equivalent to the derived GEV distribution at the 95% confidence level. We 
find that the null hypothesis is accepted for all GEV estimates. The return level of a τ-year event can be computed 
by inverting the model as follows (when ξ ≠ 0):

�(�) = � + �
�
(

−log(1 − 1∕�)−� − 1
)

� (4)

Watershed 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

TRMM 14 14 15 12 15 16 12 13 – 13 11 9 9 15 9 12 – 8

E3SM HR 27 25 24 27 27 25 21 20 23 25 18 16 19 29 15 26 35 15

E3SM LR 30 29 30 33 33 32 27 26 26 31 25 21 24 40 20 34 43 19

Note. Values provided in the table are all for the native grid of the data. The TRMM data are omitted for watersheds 9 and 17 
owing to part of that watershed occurring outside of the TRMM data boundaries.

Table 5 
Unevenness for Tropical Rainfall Measuring Mission, E3SM HR, and E3SM LR
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and its limit when ξ = 0 (Coles, 2001). The variance-covariance matrix of the GEV parameters can also be used to 
compute the associated standard errors of R(τ), and we use these standard errors here to conduct statistical tests.

Figure 13 shows the return level of a 20-year extreme event for GPCP for the winter and summer seasons for 
all the HUC2 watersheds. Somewhat surprisingly, the switch in rainfall calculation poleward of 40° for GPCP 
described above has virtually no impact on the GEV calculation for extremes described below (not shown). 
An exact explanation for why unevenness is more sensitive to the change in GPCP rainfall than the extremes 
is beyond the scope of this manuscript. The pattern of extreme precipitation over the CONUS is similar to 
other measures of extreme rainfall previously reported (Akinsanola et al., 2020). Also shown are the differences 
between LR and GPCP. Hatchings indicate watersheds where the difference is statistically significant at the 95% 
confidence level based on a two-tailed Student's t-test. The LR shows a strong, statistically significant negative 
bias over watersheds in the eastern half of the CONUS, simulating weaker than observed extremes in both the 
winter and summer seasons. The model also exhibits a negative bias over California (18) and a positive bias over 

Figure 13.  Return levels of 20-year extreme events. Return levels of 20-year extremes of daily precipitation aggregated over Hydrologic Unit Codes watershed scales 
for Global Precipitation Climatology Project (GPCP) precipitation data during (a) winter and (d) summer season. Difference between (b, e) LR and GPCP and between 
(c, f) HR and LR for winter and summer season. Hatching in (b), (c), (e), (f) indicates watersheds where the difference in return levels are statistically different from 
zero at the 95% confidence level.
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the Pacific Northwest (17) in the winter season. Over the western watersheds the model shows a positive bias in 
the summer simulating stronger than observed extremes, which are statistically significant. This is consistent with 
simulations with other models at similar resolutions which generally underestimate precipitation extremes over 
the Southeast CONUS and overestimate it over Western US (Srivastava et al., 2020).

Figure 13 panels c and f show the difference between the HR and LR simulations for the winter and summer 
seasons. The HR experiment simulates stronger extremes than the LR experiment over the Eastern CONUS, 
generally reducing the bias there. However, the improvements are not statistically significant. Over California 
(18), HR produces stronger extremes than LR, which are statistically significant, reducing the bias there. Winter-
time extremes over the Western CONUS are larger at HR than LR, though California (18) and the Lower Colo-
rado (15) are the only significant differences.

While warm-season precipitation is reduced in HR relative to LR across all of the CONUS, as seen in Sections 4.1 
and 4.2, the precipitation extremes do not behave uniformly. During the summer season, the changes in simulated 
extremes between HR and LR are the opposite of winter, with HR producing less intense extreme summertime precip-
itation events over all watersheds except the Pacific Northwest (17), reducing much of the biases between LR and 
GPCP. Despite the differences not being statistically significant, similar improvements are hinted at for the Southeast 
CONUS, consistent with previous grid-point based studies (Mahajan et al., 2015; M. F. Wehner et al., 2010, 2014).

Extreme precipitation can lead to extremes in river discharge. Rivers transport the runoff from the land to the ocean 
through river channels. Streamflow is the flow discharge rate in the river, which is of particular importance to soci-
ety in terms of water supply for municipal and agriculture purposes, transportation, and hydropower generation 
and environmental flows. On the other hand, extreme streamflow events, or floods, are one of the most frequent 

types of natural disasters created by rivers. In this study, we examine flood 
events between LR and HR by comparing the 20-year streamflow extreme 
events over the HUC2 regions using the same GEV distribution method used 
to examine extreme precipitation (Equation 3). For each gridcell, maximum 
daily streamflow discharge for each year was computed and fit with the GEV 
distribution. The MOSART river model uses latitude-longitude grids for river 
modeling, with 0.5 degree for LR and 0.125 degree for HR. Since streamflow 
distribution is intrinsically tied to the river network, it is more reasonable to 
investigate it at the model native grid resolutions.

Figure  14 shows maps of extreme streamflow over the CONUS. Visual 
comparison between LR and HR in Figure 14 shows larger values of extreme 
streamflow are more common in the LR configuration. Examining the cumu-
lative distribution function of the 20 year return flow (Figure 15) confirms 
this feature. These results suggest that the general decrease in runoff seen 
across the CONUS leads to a general decrease in streamflow extreme inten-
sity. For individual watersheds, there is considerable variability in whether 
more intense streamflow extremes are found at LR or at HR (see Figures 
S11–S28 in Supporting Information S1), despite runoff generally decreas-
ing with increasing resolution across the CONUS. These results suggest 
that the physical characteristics of the river channel may be a larger factor 

Figure 14.  Twenty year return flow for river discharge over CONUS for the LR (left) and HR (right) experiments. Units are m 3/s.

Figure 15.  Cumulative distribution of 20 year return flow for river discharge 
over conterminous United States for the LR (blue) and HR (orange) 
experiments. Units are m 3/s.
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in determining streamflow extremes across these resolutions than the changes in runoff. One exception appears 
to be the California (18) watershed, which is the one watershed with an increase in runoff at HR relative to LR, 
and also sees a significant increase in extreme streamflow at HR relative to LR (see Figure S28 in Supporting 
Information S1).

5.2.  Feature Based Precipitation

To better understand the upstream atmospheric features responsible for precipitation, we employ Tempes-
tExtremes (Ullrich et al., 2021) to track TCs, ARs, and ETCs, as described in Appendix A. The catalogs of 
tracked features are then used to extract precipitation associated with each of these features following the 
criteria given in Table 6. While precipitation could be due to multiple features, in this analysis we associate 
precipitation first with TCs, then with ARs, then with ETCs, in order; as ARs and ETCs are often not distinct 
features, here ETC precipitation refers to ETC-related precipitation that is not already associated with an AR. 
Figure 16 shows total annual precipitation from LR, HR, and ERA5 reanalysis, and the percentage contribu-
tion associated with the occurrence of these three feature types. ERA5 is used here for both feature tracking 
and precipitation because it provides precipitation that is coincident in time with the features being tracked. 
In other words, the precipitation fields are consistent with the reanalysis circulation patterns that are being 
tracked.

Figure 16 shows improvements in the contribution to precipitation from the tracked features. TCs, in particular, 
show significant improvement at HR compared to LR which has been examined in detail by Balaguru et al. (2020). 
ETCs show improvement as well, though the changes are somewhat modest relative to the biases.

Table 7 shows the regional contributions of each feature type, as well as a residual category—the precipita-
tion contribution not associated with TCs, ARs, or ETCs. The residual category shows a decline in percentage 
contribution to the total over each region when comparing HR to LR. This decline in precipitation not associated 
with large-scale forcing from TCs, ARs, or ETCs brings the model closer to ERA5 over the Eastern and Central 
CONUS regions, but farther from ERA5 over the Western CONUS. Consistent increases across regions occur 
for both TC and AR contributions to precipitation (consistent with earlier findings by Chang et al. (2020)). The 
bias in AR contributions is particularly large for the Western CONUS. This is not surprising since it has been 
previously noted that a similar model, the CESM, has been shown to have ARs that are too strong and last too 
long during landfall at ∼25 km resolution (Rhoades et al., 2020a, 2020b, 2021).

We use the Shannon Diversity Index (SDI) normalized by the natural log of the number of weather types present 
to quantify how similar the populations of weather types are between the LR, HR, and ERA5. We set a minimum 
percentage of 0.1% to have a weather type be considered present. The normalized SDI is computed as

SDI =
−
∑𝑁𝑁

𝑖𝑖=1
𝑝𝑝𝑖𝑖 ln(𝑝𝑝𝑖𝑖)

ln(𝑁𝑁)
� (5)

where pi is the proportion of total precipitation for weather type i (including the residual category), and N is 
the total number of categories. The normalized SDI is provided in the last row of Table 7. In the Eastern and 
Central regions, the HR population becomes closer to that of the ERA5, and the normalized SDI is closer to 1 (a 
more diverse population). In the Western CONUS, the SDI is farther from ERA5, though still closer to 1 at HR 
compared to LR. These results are consistent with the general trend of HR producing a larger fraction of its total 
precipitation from TCs, ARs, and ETCs.

Feature Criteria

TCs Precipitation within 5° great-circle-distance of a TC point

ARs Precipitation clusters >40 mm/6 hr which are connected to detected 
AR features, unless already classified as TC precipitation

ETCs Precipitation within 10° great-circle-distance of a ETC point, 
unless already classified as TC or AR precipitation

Table 6 
Criteria for Classifying Precipitation Associated With Particular Features
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HUC2 region

Eastern CONUS Central CONUS Western CONUS

LR HR ERA5 LR HR ERA5 LR HR ERA5

Tropical Cyclones 0.6% 2.3% 2.2% 0.4% 0.7% 0.7% 0.4% 0.8% 0.2%

Atmospheric Rivers 42.8% 44.7% 41.1% 20.8% 23.4% 25.2% 17.6% 19.9% 10.1%

Extratropical Cyclones 13.2% 11.6% 11.6% 15.9% 17.3% 14.9% 13.3% 16.4% 20.1%

Residual 43.4% 41.5% 45.2% 62.9% 58.5% 59.2% 68.8% 62.9% 69.6%

Normalized SDI 0.74 0.77 0.76 0.67 0.72 0.70 0.61 0.68 0.59

Table 7 
Annual Mean Percentage Contribution to Precipitation Totals in Each Conterminous United States (CONUS) Region, 
Filtered by Associated Features

Figure 16.  Total annual precipitation from E3SM-LR, E3SM-HR, and ERA5 (in mm/day), and fractional contribution of 
precipitation associated with three tracked feature types: tropical cyclones, atmospheric rivers, extratropical cyclones, and 
residual precipitation.
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We have also examined the time period of greatest precipitation change between LR and HR examined in 
Sections 4.1 and 4.2 (JJAS for the Eastern and Central CONUS and AMJJ for the Western CONUS). The results 
are tabulated in Table S1 in Supporting Information S1. Since the large-scale forcing tends to be weaker in the 
warm season, the fraction of precipitation coming from ARs and ETCs is significantly lower during the warm 
months. There are increases in TC precipitation fraction for the Eastern and Central CONUS, while there is no 
TC precipitation over the Western CONUS (which is not surprising given the season). In all three regions, the 
normalized SDI shows that the HR population becomes closer to that of the ERA5 relative to LR, and the normal-
ized SDI is closer to 1 (a more diverse population). These results suggest that HR does make modest improve-
ments to simulated storm features, regardless of the sign of the mean bias change. It is important to caution that 
the reapportionment of precipitation across events is not necessarily the cause or effect of the total precipitation 
decline. Future studies will be needed to better understand the connections between the simulated storms and the 
total precipitation.

5.3.  Snowpack

The final metric investigated for this study is mountain snowpack. Mountain snowpack is a key natural reservoir 
of water in the mountainous western United States (Livneh & Badger, 2020; Lynn et al., 2020; Mote et al., 2018; 
Siirila-Woodburn et al., 2021; Sturm et al., 2017), often shown through snow water equivalent (SWE). From 
a modeling perspective, SWE also provides a unique litmus test in validating a model's ability to represent 
cross-scale, spatiotemporal interactions between precipitation, radiation, and temperature over the water year 
(He et al., 2019; Krinner et al., 2018; McCrary et al., 2017; Xu et al., 2019), with important feedbacks to other 
components of the mountainous hydrologic cycle (e.g., soil moisture, runoff, and groundwater recharge). To 
validate a model's ability to represent the seasonal snow cycle over a given water year, Rhoades et al. (2018a, 
2018b) developed a multi-metric framework known as the SWE triangle that built off work of Trujillo and 
Molotch (2014). This model benchmarking framework represents a linear decomposition of the seasonal snow 
cycle (which resembles a triangle) and includes metrics such as the snow accumulation and snowmelt rate (sides), 
the accumulation, melt, and snow season length (base), and the peak SWE volume and date of peak SWE, or 
peak accumulation date (vertex). The SWE triangle multi-metric framework was also developed with resource 
manager input, or what have been referred to as use-inspired metrics (Jagannathan et al., 2020). As such, peak 
SWE volumes are communicated in million-acre feet (MAF), or the amount of water needed to flood an acre 
sized field by one-foot, which is commonly used terminology in water resource management in the United States.

Figure S29 panels a and b in Supporting Information S1 present two examples, a continental (Upper Colorado, 
14) and a maritime (California, 18) mountain range, of seasonal snowpacks simulated over the 30-year histori-
cal period by the HR and LR experiments decomposed using the SWE triangle framework and compared with 
ERA5. These two mountain ranges are sub-selected from the five shown in Figure 17 as they represent two of the 
largest relative changes in snow cycle representation with resolution between LR and HR. Interestingly, seasonal 
snowpacks in the Upper Colorado (14) and California (18) watersheds have opposite responses in E3SMv1 to a 
four-times refinement of horizontal resolution. In the Upper Colorado (14), climatological average peak SWE 
volumes are smaller in HR than LR (31 ± 3 MAF and 37 ± 4 MAF). Although peak SWE timing is compara-
ble between LR and HR, and overlaps with ERA5 (9 March), the reduction in peak SWE in HR, though still 
too high, more aligns with ERA5 (19 ± 2 MAF). Conversely, in the California (18) basin, peak SWE volumes 
increase by 6 MAF from LR to HR (7 ± 2 MAF to 13 ± 2 MAF), which is more comparable to ERA5 peak 
SWE estimates (15 ± 2 MAF) and another observation-based gridded SWE product (16 ± 3 MAF) produced by 
Margulis et al. (2016) for water years 1985–2015. Peak SWE timing is also enhanced in HR relative to LR and 
when compared with ERA5. The complete suite of SWE triangle metrics for both the California (18) and the 
Upper Colorado (14) watersheds, as well as the three other mountain watersheds of the western United States, 
are depicted in Figure 17.

Notably, the increase in SWE in the California (18) and Pacific Northwest (17) regions occurs despite a decrease 
in annual total precipitation owing to a larger fraction of that total precipitation falling as snowfall instead of 
rain in the HR experiment (Figure S30 in Supporting Information S1). Figure S30 in Supporting Information S1 
shows that the increase in snowfall fraction is concentrated over the Cascade and Sierra Nevada mountain ranges. 
The changes in snow fraction are anti-correlated with 2 m air temperature (r = −0.86). Most of the CONUS 
experiences warming consistent with the warming SSTs, but over regions of complex topography, the increase in 
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horizontal resolution allows for colder temperatures at higher elevations, also seen over the Cascade and Sierra 
Nevada mountain ranges (not shown).

6.  Discussion and Summary
In this manuscript, we have examined the resolution sensitivity of the seasonal water cycle over the CONUS at the 
HUC2 watershed scale using E3SMv1 simulations run at low and high resolution. The results show a slow down 
of the warm season water cycle with increasing resolution, with decreases in precipitation, evapotranspiration, 
moisture convergence, terrestrial water storage anomaly tendency, and runoff. The largest differences happen 
during JJAS for the Eastern and Central CONUS, and AMJJ for the Western CONUS. Whether the decreases 
in these terms result in reductions in biases or not depend on the region and the budget term. Precipitation, for 
example, shows worsening biases with HR over the Eastern and Central CONUS, but reductions in biases over 
the Western CONUS. ET, on the other hand, shows reduced biases with HR over all three CONUS regions. These 
differences highlight some of the difficulty in correcting biases in models like E3SM, since reductions in precip-
itation and ET improve one while worsening the other.

The warm season slowdown of the water cycle over the CONUS is not present over all land regions in E3SM. 
Similarly, the broad precipitation decrease pattern over CONUS when increasing resolution in E3SM is not seen 
in several other HighResMIP simulations. It is worth noting that there is not much agreement on the precipitation 
response to increasing resolution among those other HighResMIP models. Future sensitivity experiments and 
additional analyses will be needed to determine the exact mechanisms responsible for the slowdown of the water 
cycle with resolution in E3SM.

Inspired by the suggestions of Pendergrass et al. (2020), we examined additional metrics involving precipitation 
distributions, extreme precipitation and streamflow, storm feature contributions to precipitation, and snowpack to 
further assess the simulated water cycle in E3SMv1 at both low and high resolution. The HR experiment gener-
ates days with more intense precipitation, leading to reduced values of unevenness across all watersheds. Extreme 
precipitation, as measured by the 20-year return period level, shows both increases and decreases depending on 
season and watershed. Generally, however, the changes in extreme precipitation act to reduce biases in the LR 
experiment relative to observed precipitation extremes. Similarly, extreme streamflow also shows a lot of water-
shed to watershed variability in its response to increasing horizontal grid spacing. The HR experiment generally 

Figure 17.  The seasonal snow cycle is characterized by its daily snow water equivalent (SWE) and linearly decomposed 
using the SWE triangle methodology to assess the western United States mountainous hydrologic units for the E3SM 
low-resolution (LR, 1.00°, blue) and high-resolution (HR, 0.25°, aquamarine) simulations spanning 1985–2014 (see Figure 
S29 in Supporting Information S1 for examples of two individual watersheds). ERA5 is shown in gray. The bars indicate the 
30-year climatological average conditions simulated across all five mountainous hydrologic units of the western United States 
(in order of appearance in each row from top to bottom, Upper Colorado, Lower Colorado, Great Basin, Pacific Northwest, 
and California) for each of the seven SWE triangle metrics (columns and histograms) with 95% confidence intervals indicated 
(black lines).
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shows modest improvements in the distribution of tracked storms: TCs, ARs, and ETCs. Finally, the snowpack 
metrics show better agreement with ERA5 and observations over many of the Western CONUS watersheds at HR 
relative to LR. Taken all together, these results suggest that the HR experiment is doing a better job at reproducing 
the physical processes that occur within the water cycle, but the mean biases in exchanges of water between the 
land and atmosphere, as well as their lateral transports, still remain a challenge.

We have discussed potential future work to help isolate the role of local grid refinement relative to remote 
changes in climate state such as SST patterns. Our results have shown that the global mean temperature increase 
in HR relative to LR is insufficient to explain the water cycle slow down, since it is not reproduced in other 
E3SMv1 warming experiments. Additionally, the ocean-atmosphere coupling is too important to the simulated 
water cycle to allow for prescribing the SST patterns from the HR at LR. Regional refinement is an exciting 
experimental design that may help discern the local and remote influences of grid refinement on the simulated 
CONUS water cycle. The regionally refined E3SMv2 experiments will need to be examined in future work to 
help disentangle this particular issue. Additionally, this work highlights the need for more ensemble members. 
Changes in the moisture convergence and terrestrial water storage anomaly tendency terms were only statistically 
discernible when aggregated over regions and seasons, but it is possible that with an ensemble of simulations, 
such differences could be quantified at the watershed and monthly scales.

While this study highlights many important sensitivities of the water cycle to model resolution, one aspect that 
is not covered is how resolution might change the sensitivity of the water cycle to climate change. More work 
is needed to understand what, if any, impacts increased horizontal resolution in E3SM has on the water cycle 
response to transient warming. Given its importance to society, continued effort is needed for understanding how 
earth system models like E3SM represent the water cycle and its sensitivity to changes within those models.

Appendix A:  Feature Tracking With TempestExtremes
Command line arguments for TempestExtremes (TE) are described in the TE user guide (Ullrich, 2021). Tracking 
with TE is performed on the native E3SM grid (ne30 or ne120). For identifying tropical cyclones (TCs) we use 
the following TE commands (excluding input/output data arguments for brevity):

DetectNodes
--searchbymin PSL
--closedcontourcmd "PSL,200.0,5.5,0;_DIFF(Z200,Z500),-6.0,6.5,1.0"
--mergedist 6.0
--outputcmd "PSL,min,0;U10,max,2;_DIV(PHIS,9.81),min,0"

StitchNodes
--in_fmt "lon,lat,slp,wind,zs"
--range 8.0
--mintime "10"
--maxgap "3"
--threshold "wind,>=,10.0,10;lat,<=,50.0,10;lat,>=,-50.0,10;zs,<=,15.0,10"

PSL is the pressure at sea-level, Z200 and Z500 are the geopotential height at 200 hPa and 500 hPa, respectively, 
U10 is the 10 m wind speed, and PHIS is the surface geopotential. For identifying atmospheric rivers (ARs) we 
use the following TE commands, first detecting ridges in the IVT field, then filtering out points within 5 degrees 
great circle distance of TC features:

DetectBlobs
--thresholdcmd "_LAPLACIAN{8,10.0}(_VECMAG(TUQ,TVQ)),<=,-30000,0"
--minabslat 20
--geofiltercmd "area,>,850000km2"
--tagvar "AR_binary_tag"

NodeFileFilter
--bydist 5.0
--invert
--var "TC_binary_tag"
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TUQ and TVQ are the zonal and meridional column-integrated moisture fluxes, respectively. For identifying 
extratropical cyclones (ETCs) we identify sea level pressure minima that do not possess an upper level warm core 
and traverse a sufficiently far distance over their lifetime:

DetectNodes
--searchbymin PSL
--closedcontourcmd "PSL,200.0,5.5,0"
--noclosedcontourcmd "_DIFF(Z300,Z500),-6.0,6.5,1.0" --mergedist 9.0
--outputcmd "PSL,min,0;U10,max,2;_DIV(PHIS,9.81),min,0"

StitchNodes
--in_fmt "lon,lat,slp,wind,zs"
--range 9.0
--mintime "24h"
--maxgap "1"
--min_endpoint_dist 12.0

Data Availability Statement
Complete native model output is archived on HPSS system at NERSC (National Energy Research Scientific 
Computing Center). The dataset is available through the DOE Earth System Grid Federation (ESGF; Cinquini 
et  al.,  2014) at https://esgf-node.llnl.gov/search/e3sm/?model_version=1_0. The output presented in this 
manuscript will be made available from https://e3sm.org/data/get-e3sm-data/. Some of the figures presented 
herein were generated in part using E3SM Diags (C. Zhang et al., 2022; C. J. Zhang et al., 2022). NCO (C. S. 
Zender, 2008; C. Zender et al., 2022) was used to generate climatologies and for data regridding.
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