
UC Davis
UC Davis Previously Published Works

Title
PDG_GEN: A Methodology for Fast and Accurate Simulation of On-Chip Networks

Permalink
https://escholarship.org/uc/item/4bv1j6dv

Journal
IEEE Transactions on Computers, 63(3)

ISSN
0018-9340

Authors
Macdonald, Kevin
Nitta, Christopher
Farrens, Matthew
et al.

Publication Date
2014

DOI
10.1109/tc.2012.140

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bv1j6dv
https://escholarship.org/uc/item/4bv1j6dv#author
https://escholarship.org
http://www.cdlib.org/

PDG_GEN: A Methodology for Fast and
Accurate Simulation of On-Chip Networks

Kevin Macdonald, Christopher Nitta, Matthew Farrens, Member, IEEE, and Venkatesh Akella

Abstract—With the advent of large scale chip multiprocessors, there is growing interest in the design and analysis of on-chip

networks. Full-system simulation is the most accurate way to perform such an analysis, but unfortunately it is very slow and thus limits

design space exploration. To overcome this problem researchers frequently use trace-based simulation to study different network

topologies and properties, which can be done much faster. Unfortunately, unless the traces that are used include information about

dependencies between packets, trace-based simulations can lead one to draw incorrect conclusions about network performance

metrics such as average packet latency and overall execution time. The primary contributions of this work are to demonstrate the

importance of including dependency information in traces, and to present PDG_GEN, an inference-based technique for identifying and

including dependencies in traces. This technique uses traces obtained from multiple full-system simulations of an application of interest

to infer dependency information between packets and augment traces with this information. On the SPLASH-2 benchmark suite,

PDG_GEN is 2.3 times more accurate at predicting overall execution time and almost 4,000 times more accurate at predicting average

packet latency than traditional trace-based methods.

Index Terms—Modeling methodologies, simulation

Ç

1 INTRODUCTION

FROM servers to mobile phones [1], future chips will
contain dozens, if not hundreds or even thousands, of

processors, memories, and/or hardware accelerators con-
nected by on-chip networks. The on-chip network is a
critical component of the chip, as it constitutes a significant
fraction of the area and power consumed. As a result, a
“one-size-fits-all” approach to designing one is inadequate,
and a thorough exploration of the design space is required.
For example, the buffer sizes, number of virtual channels,
topology of the network, arbitration and flow control
schemes, and amount of heterogeniety can all be optimized
for a given application or market segment. The most
accurate way to evaluate potential on-chip network designs
is through the use of full system simulation, using a real
operating system running real applications. To compare
two different network designs, for example, a set of full
system simulations should be run for each configuration.
Doing so will give the best measure of how the designs
compare. Unfortunately, full system simulation is very
slow. The execution time can grow quadratically with
increased node counts, preventing designers from doing
full system simulations with a large number of nodes. For

example, FFT benchmark from SPLASH-2 on 64 cores takes
months to complete!

One commonly used method for circumventing this
problem is to use a full system simulator to extract a record
of network activity (a trace) and feed it into a trace-based
network simulator to evaluate various network configura-
tions. Trace-based simulations run much faster than full
system simulations, and are widely used [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Unfortunately, these traces only
include information about the order of and time between
packet transmissions. In real systems, there are dependencies
between packets as well—some outgoing packets cannot be
generated until incoming data has been received, for
example. These dependencies are analogous to data
dependencies in pipelined processors, and will be referred
to as reception dependencies.

While a trace from a given full system simulation will
implicitly include the reception dependencies for that
particular network configuration, the whole purpose of
network simulation is to be able to vary network para-
meters and evaluate the results. The absence of explicit
information about reception dependencies means that
packets are often injected into the network by the simulator
at a higher rate than would occur in a real system, because
the simulator does not know it needs to wait for certain
events to occur. The ramification of this unrealistically high-
packet injection rate is that measured latencies can climb
dramatically for the network being analyzed, since many
messages are spending an artificially large amount of time
sitting in network buffers. Simulating a trace taken from a
slower network on a higher performing network is also a
problem, because it may not show the simulated network’s
true potential since packets are injected at a lower rate than
they would be in a real system. Thus, drawing any
meaningful conclusion about system parameters such as

650 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

. K. Macdonald, C. Nitta, and M. Farrens are with the Department of
Computer Science, University of California, Davis, One Shields Avenue,
Davis, CA 95616.
E-mail: {klmacdonald, cjnitta, farrens}@ucdavis.edu.

. V. Akella is with the Department of Electrical and Computer Engineering,
University of California, 2064 Kemper Hall, One Shields Avenue, Davis,
CA 95616. E-mail: akella@ucdavis.edu.

Manuscript received 31 Oct. 2011; revised 01 Apr. 2012; accepted 2 June
2012; published online 12 June 2012.
Recommended for acceptance by R. Ginosar and K.S. Chatha.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-10-0798.
Digital Object Identifier no. 10.1109/TC.2012.140.

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

overall speedup or ideal buffer size based on trace

simulation results is exceedingly difficult, if not impossible.

Unfortunately, many studies that use dependency-free

traces do include results relating to network speedup [3],

[4], [6], normalized execution time [2], [5], or network

latency [2], [7], [8], [9], [10].
The rest of this paper is organized as follows: Section 2

provides a motivating example that shows why including

dependency information in traces is so important, and

Section 3 introduces our proposed solution. We discuss

related works from the literature in Section 4. Section 5

provides a detailed description of our PDG_GEN algorithm,

and the accuracy of PDG_GEN, as well as the feasibility of

using it in conjunction with common simulation tools, is

evaluated in Section 6.

2 MOTIVATION

2.1 Simple Example

To better understand the potential pitfalls of simulating

networks using traces that do not include dependencies,

consider the example trace shown in Table 1, obtained from

a full system simulation which used a network with a single

cycle latency. Executing this trace on a network simulator

which also has a latency of one cycle (see Space-Time

Diagram in Fig. 1a) will indicate that the program

completes at time 27 (one cycle after packet 4 is sent). If

the simulated network has a four cycle latency, then the

program will complete at time 30 (four cycles after packet 4

is sent). As expected, there is a difference in completion

time, and there will also be a change in average latency.
This is shown graphically in Fig. 1b.

But what if node C was actually gathering information
from nodes A and B, calculating a sum, and then sending
the result off to node D? And what if the sum generated by
D was then sent back to node A? In this case there would be
dependencies within the trace—packet 3 cannot be sent
until both packets 1 and 2 arrive, for example, and packet 4
cannot be sent until it receives packet 3. There will also be
some amount of “computation” time (in this case, to
perform the addition) that must elapse between the
reception of the last dependent packet and the transmission
of the next one. Thus, in this example, if the computation
time is 1 cycle then packet 3 can be sent 1 cycle after both
packet 1 and 2 have been received, and packet 4 can be sent
1 cycle after receiving packet 3.

A full system trace generated using a single cycle latency
network will contain none of this information. In this trace
packet 1 will arrive at node C at time 21, packet 2 at time 23,
a single cycle will be spent performing the addition, at time
24 node C will transmit its value, and at time 27 the
simulation will complete (see Fig. 1c). However, if the
latency used by the full system simulator is changed to four,
packet 3 will not be sent until time 27 (since packet 2 is
received at time 26), which delays the reception of packet 3
until time 31. This in turn delays the transmission of packet
4 until time 32, and the completion time climbs to 36 (see
Fig. 1d). The fact that there are dependencies in the trace
that are not explicitly identified means the trace-based
simulation will report a completion time that is artificially
low, because it is injecting packets into the network at too
high of a rate. This simple example highlights the
importance of including reception dependencies in traced-
based network simulation.

2.2 Real-World Example

The results of the intuitive example from the previous
section can be corroborated by comparing full system
simulation results (which is the true indicator of perfor-
mance) with the output of a trace-based simulation, where

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 651

Fig. 1. Example space-time diagram (without dependencies (a) and (b), and with dependencies (c) and (d).

TABLE 1
Example Trace

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

the trace is generated on one network topology, and then
used in a network simulation of a different topology. The
full system simulator Simics 3.0 [12] and the memory and
on-chip network timing model GEMS 2.1.1 [13] were used
to perform this experiment.

We configured Simics to model a 16 core processor using
a fully connected single cycle network, and ran a 1 million
complex data point FFT benchmark from the SPLASH-2
parallel benchmark suite [14] and created a trace of
network activity. This trace was used by Garnet [15] (the
network simulator inside GEMS) in network-only standa-
lone mode connected single cycle latency network. In this
simulation each packet was injected into the network at the
timestamp specified in the trace, and as expected the
results of this simulation matched the results obtained from
Simics. The same trace was then used to rerun the network-
only simulation on three different topologies: a torus, mesh,
and fattree. Additionally, the actual FFT full system
simulation was rerun on a torus, mesh, and fattree. A
comparison of the trace results and full system simulation
results are presented in Fig. 2a.

As Fig. 2b shows, the total execution time reported by the
trace-based simulations change very little for different
topologies because each packet is always injected into the
network at a fixed time. Fig. 2b shows that average network
latency was not severely affected until the trace was run on a
network with a low enough bandwidth that congestion began
to occur. These results indicate that a trace by itself represents
the packet injection distribution for the specific network
configuration on which the trace was collected—however,
when it is used on a different network configuration, it no
longer represents the actual packet injection distribution for
the application and hence can yield erroneous results.

3 PROPOSED SOLUTION

Augmenting a trace with information about the packet
dependencies inherent in the application would make the
packet injection times closer to what would actually happen
if the application was rerun on each new network
configuration, and would lead to simulation results that
are more meaningful and reliable. An obvious approach is
to modify the existing simulator to explicitly extract the
dependencies when generating the trace; unfortunately, this
approach is unrealistic because dependency tracking in a
shared memory system requires maintining dependency
lists for each memory location. Furthermore, the depen-
dency list for an operation result is the union of the
operands’ dependency lists. While it is clear that explicit

dependency information cannot be extracted, it can be
inferred from a series of full system simulations of an
application of interest, and then adding this information to
the trace. Using a different network configuration for each
full system run exposes information about the dependency
relationships between different packets, which can be
extracted by comparing the different traces. Using this
approach, we are able to create a Packet Dependency Graph
(PDG), which is essentially a trace augmented with
dependency information. This PDG can be used by a
traditional cycle-accurate network simulator with only
minor code changes, and allows researchers to utilize fast,
reconfigurable network simulators in their research while
retaining much of the fidelity of full system simulators.

The algorithm that produces a PDG from a set of input
traces will be referred to as the PDG_GEN algorithm, and it
has been validated against the SPLASH-2 parallel bench-
mark suite running on the Simics full system simulator using
the GEMS memory and on-chip network timing model.
PDG_GEN achieves an average error rate of 19.9 percent in
end-to-end execution time and an average error rate of 1.91
percent in average packet latency, compared to full system
simulations. This is a substantial improvement over tradi-
tional timestamp traces, which have average error rates of
45.4 and 7,550 percent in execution time and average packet
latency, respectively.

4 RELATED WORK

The relevant related work can be classified into three broad
categories—software-based functional/timing simulation,
FPGA-based emulation of either the functional or the timing
model (or both), and high-level workload modeling using
statistical techniques. BookSim 2.0 [16] is one of the first and
most basic network-on-chip simulators. It does not use
traces from real applications, but instead uses synthetic
traffic to predict the average latency of a network. Garnet
[15] is the successor to BookSim, and it incorporates detailed
timing and power models. In its stand-alone configuration it
also uses traces without any dependency information, so it
suffers from the pitfalls described previously.

Simics [12] is a commercial tool that allows full-system
functional simulation. However, as the benchmarking data
in [17] shows, it is very slow and does not scale beyond
approximately 16 cores due to prohibitively long simulation
times. Furthermore, it does not have any support for
modeling on-chip networks and lacks a timing model for
the underlying architecture of the network. GEMS [13]
provides a timing model and network model on top of

652 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 2. 1M point FFT execution time (a) and average network latency (b), for Simics full system simulation and trace-based network simulation.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

Simics, making it one of the most widely used simulators in
the architecture community today. However, since it runs
on top of Simics, it is (obviously) even slower and less
scalable, and unsuitable for fast design space exploration.
Graphite [18] is a recent effort from MIT to take advantage
of multiple machines to accelerate functional simulation
of as many as 1,024 cores. However, Graphite does not
maintain strict ordering of events in the system, and as a
result it is unsuitable for evaluating on-chip networks
(a point the authors themselves mention in their paper).
Hestness et al. [19] recognize the necessity for dependency
information within traces, and propose a technique that
uses a trace of memory references from a single full system
simulation to generate a trace of cache coherency traffic
which includes the direct dependencies between coherence
messages. While their technique shares many similarities
with the contributions of this work, it is more limited in
scope than the proposed PDG_GEN algorithm because it
does not have the ability to infer complex dependencies
between memory references, which necessitates multiple
full system runs.

In parallel with these developments, in the design

automation community (where fast design space explora-

tion and application-specific customization of networks is

important) researchers are exploring the possibilities of

high-level network traffic models [20]. Marculescu was the

first to propose a mathematical characterization of node to

node traffic for the MPEG-2 application [21]. Soteriou et al.

[22] generalized this to a comprehensive network traffic

model based on hop count, burstiness and packet injection

distributions. Kim et al. [23] take a somewhat different

approach by proposing a closed-loop network simulation

using synthetic traffic patterns representing a certain

predetermined amount of work. Wei et al. [24] propose

dynamically mapping realistic multithreaded applications

to a cycle-accurate NOC simulator in order to gather

detailed information about network performance.
Gratz and Keckler [25] provide a detailed analysis of

why existing approaches to simulation are not appropriate,

and make a case for realistic workload characterization that

includes the temporal and spatial imbalances in network

traffic distribution. Their work supports the central argu-

ment in this paper, which is that failing to properly model

packet injection rate leads to substantial inaccuracies. The

solution advocated by Gratz and Keckler is to provide

synthetic traffic models enhanced by the network traffic

characteristics, while we propose the creation of traces from

full-system simulation that are augmented with a model for

packet injection that is application specific.

5 PDG_GEN IMPLEMENTATION

The PDG_GEN algorithm uses a two-step approach, which
consists of a sampling step followed by the use of an
inference heuristic to infer the PDG from the samples
generated in the first step. Before describing these steps, we
present the formal model of the computing environment
assumed by PDG_GEN. Pseudocode for the algorithms
described in this section can be found in [26].

5.1 Formal Model

5.1.1 Traces

A trace is defined as a time-ordered list of events. An event
Ei is a 4-tuple <Ti; Li; Ri; Pi>, where i is the entry number
in the list, Ti is the time stamp of the global clock, Li is the
local node, Ri is the remote node, and Pi is the unique
packet ID. If Li is the sender of the packet and Ri is the
receiver of the packet, then Ei is a transmit event. Each
transmit event results in one or more receive events. For
example, the transmit event, Ei ¼ <Ti; Li; Ri; Pi> results in
a receive event at node Ej ¼ <Tj;Ri; Li; Pi>, where Tj is the
clock cycle at which the packet is received by node Ri. Note
that Tj � Ti is the network latency for the packet Pi.

It is assumed that if an application is run with network
configuration A, and then with network configuration B, the
two resulting traces will have the same set of packets being
sent and received, albeit at different times.1 More formally,
for each event Ea ¼ <Ta; La; Ra; Pa> in trace A, there will be
a corresponding event Eb ¼ <Tb; Lb; Rb; Pb> in trace B in
which La ¼ Lb, Ra ¼ Rb, and Pa ¼ Pb, but Ta may be
different than Tb. This assumption also implies that the
mapping of the application to network nodes is fixed, and
that in both run A and B each node was performing the
same set of tasks.

5.1.2 Computation Model

Each node n in the on-chip network is modeled as a single
computational element, which generates packet transmit
events and consumes packet receive events. A node
transmits the same packets in the same order each time
an application is run. Each time a node transmits a packet, it
is modeled as the result of some computation that has a set
of input values. Inputs could be values previously
calculated at the node, or be values received from other
nodes. Each transmit event is therefore modeled as having a
computation time and a set of 0 or more receive dependencies,
which are receive events that must occur at a node before
the computation for the transmit can begin.

Node n will transmit packet p once the following three
requirements have been satisfied: 1) n has already trans-
mitted the packet that it is supposed to transmit before p,
2) each packet in p’s set of receive dependencies has been
received by n, and 3) p’s computation time has elapsed since
both (1) and (2) have been satisfied.

5.2 Sample Trace Generation

The PDG_GEN algorithm takes as input a set of traces of the
form described in Section 5.1.1. The traces are generated by
running an application of interest multiple times, each time
using a different network configuration. Each trace will
therefore capture the behavior of the same application
under a different set of network conditions.

The first trace (referred to as the base trace is generated by
running the application of interest on a Fully Connected
Network (FCN) with single cycle link latencies. This
configuration was chosen because it represents an “ideal”
network and will expose computational delays and hence
the real dependencies that may otherwise be hidden due to

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 653

1. In practice this assumption does not hold and is addressed in
Section 5.4.2.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

queuing, routing, and other nondeterministic mechanisms.
Using information from the base trace, the nodes are
partitioned into m sets with pairs of nodes that are
communicating the most placed in different sets.

An additional m traces are then generated by running
the application of interest on FCNs in which the outgoing
links of the nodes in one of the m partitions have a large
latency, p, while the remaining links have single cycle
latency. If there are n nodes, then each partition will contain
n
m nodes. The lopsided latencies in the partitioned network
configurations serve to expose information about depen-
dencies between packets—some packets will be delayed
while waiting for dependencies from slow nodes, while
others with no dependencies on packets from slow nodes
will not be delayed.

5.3 PDG_GEN Algorithm

The PDG_GEN algorithm has two tasks: to infer a depen-
dency set and to calculate a computation time for each packet.
In general, for a given transmit event Ei, any event at that
node that has occurred before Ei could be in its dependency
set. This is a problem, since there are usually millions of
packets in a trace. To deal with this, two simplifying
assumptions are made. The first is that transmit events at a
given node are ordered (as described in Section 5.1.2). This
allows each transmit event Ei at a node to always be
dependent on exactly one previous transmit event at that
node, namely the immediately preceding one. While this
assumption may not accurately model all real situations, it is
important because it simplifies the PDG_GEN algorithm and
also allows for simple and efficient implementation of the
code necessary to support PDGs in a network simulator. It
should also be noted that traditional trace-based simulations
also make this assumption.

The second simplification is to only consider a window
of previous receive events, instead of the entire history. We
evaluated two windowing techniques—one that uses a
fixed window size w in which only the w receive events
immediately preceding a transmit event are considered for
its dependency set, and another that uses a dynamic
window in which a transmit event only considers packets
received during the window of time since the k previous
transmits at that node (for example, if k ¼ 1, a transmit can
only depend on packets that have arrived since the previous
transmit event at the same node, if k ¼ 2 a transmit can only
depend on packets that have arrived since the second most
recent transmit event, etc.).

The PDG_GEN algorithm uses the base trace and m
additional sample traces (as described in Section 5.2) to
generate a receive dependency set (Si) and a computation
time (Di) for each packet. PDG_GEN follows three steps:

STEP 1. For each transmit event Ei in each of the traces,
add all the receive events within the window (k or w) to Ei’s
set of potential receive dependencies Si.

STEP 2. Remove all receive events from Si that violate
causality, i.e., arrive after the transmit event Ei, in any of the
m traces.

STEP 3. Find the computation time (Di) associated with
the transmit event Ei.

The initial computation delay for each event is computed
using the base trace. Let Ei ¼ <Ti; Li; Ri; Pi> be a transmit

event at node Li. Recall that this event will occur at cycle Ti,
after all the packets in its reception dependency set have
arrived. Let Tj be the clock cycle at which the last member
of the reception dependency set arrives. The initial
computation delay Dj is then calculated as Ti � Tj. The
following two properties are then used:

Property 1. If node N transmits a packet Pi at time Ti and if the
initial computation delay as computed above is Di, then any
packet received by node N at time Tj > Ti �Di cannot be a
reception dependency for Pi.

Property 2. If node N transmits packet Pi at time Ti, and Pi’s
computation time is Di, then any packet received by n at time
Tj < Ti �Di cannot be Pi’s last reception dependency.

These properties are used to prune the set of possible
dependencies. The last reception dependency for each
packet is found in each of the m traces, and if it violates
Property 1 in any trace, it is removed from the set Si. If any
of the elements in Si violate Property 2, it means that the
estimated computation time Di was too small, so the
corresponding reception dependency is removed from Si.
This process continues until no pruning occurs for an entire
iteration of all the traces.

5.3.1 PDG_GEN Example

Table 2 shows transmission times (P13) and reception times
(P6, P7, P8, P9) for a node in three different traces. STEP 1 of
the algorithm will result in adding packets P6, P7, P8, and P9

as potential reception dependencies for packet P13. In
STEP 2 of the algorithm any events that violate causality
will be removed—in this example, P9 will be removed from
the reception dependency set since it arrives after the
transmission of P13 in trace Sample 2.

In STEP 3, the computation time is estimated first, which
in this case is 20 (P8 is the last in the set to be received before
transmission of P13 in the first trace). Next, Properties 1 and
2 are used to iteratively prune the set of initial dependencies
generated in STEP 1. At this point Property 1 holds—
however, trace Sample 3 violates Property 2, because the
computation time exhibited in trace Sample 3 is 25 (P8 is
received 25 before transmission of P13). Therefore, P8 is
removed from the reception dependency set. The third step
repeats by calculating the new computation time, now
estimated to be 50 (P7 is received at 950). Property 1 does not
hold now, since P6 is received only 30 before the transmis-
sion of P13 in trace Sample 2. P6 is removed from the
dependency set, and all Properties hold for the third step for
all traces. Thus the PDG_GEN algorithm will indicate P13 is
dependent upon only P7, with a computation time of 50.

654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

TABLE 2
Trace Fragment—

TX Denotes Transmit Event and RX Denotes a Receive Event

For simplicity only the time is shown, the rest of the details of the packet
are omitted.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

5.4 Adapting PDG_GEN to Real Traces

In a modern multicore processor, communication between

cores working on a parallel task occurs through reads and

writes to memory locations within a shared memory space.

This means that on-chip network traffic actually consists of

cache coherence protocol messages associated with cache

line requests generated by cores performing memory

operations. A major implication of this is that no unique

packet ID exists to allow for correlation of a packet across

the different traces.

5.4.1 Packet Matching

This complication can be addressed by storing additional

metadata about each packet in the trace, such as the cache

coherence message type and the memory location that the

message pertains to. By combining this information with

the source and destination of the packet, it is usually

possible to find a packet that matches in each of the traces.

The situation where not possible to find a match is

discussed in the following section.

5.4.2 Different Length Traces

Another challenge to dealing with real traces is the fact that
the number of packets in each trace may differ. Consider a
situation in which core A writes to a memory location (X)
two times, and core B writes to that same memory location
(X) once. In one trace, the writes may occur in the order
A! X;A! X;B! X, while in another trace the order
might be A! X;B! X;A! X. In the first case, traffic will
be generated by the first write by A (but not the second,
since X will be in A’s cache) and by the write by B. In the
second case, however, network traffic will be generated for
all three memory operations because the write by B will
invalidate the cache line in A containing X, and it will no
longer be present when A writes a second time. Unfortu-
nately, no perfect solution to this problem exists. If only
packets present in all traces are used, then the total number
of packets in the final PDG will be lower than in any of the
input traces. This is an undesirable result because it means
that a smaller volume of traffic will be injected into the
network when the PDG is used. For this reason, every
packet from the base trace is ensured to be present in the
final PDG, so that the overall traffic volume in the PDG
matches that of the base trace.

Including unmatched packets from the base trace brings

up the issue of how the PDG_GEN algorithm should handle

these packets. There are two separate subproblems: how to

handle an unmatched packet’s dependency set and compu-

tation time, and how to handle adding it to other packet’s

dependency sets. When dealing with real traces, it is not

unusual for one of the m sample traces to have significantly

different traffic than the rest, causing very few packets to

match across every single trace. The PDG_GEN algorithm

therefore allows a packet to generate and prune a

dependency set if it matched in a majority of the traces.

Similarly, a packet will only be added to other dependency

sets if it matched in a majority of the traces. A much more

detailed description of this problem and how it is dealt with

is available in [26].

5.4.3 Very Large Traces

Benchmarks found in common parallel benchmark suites
such as SPLASH-2 [14] or PARSEC [27] typically have
regions of interest that involve the execution of many
billions of instructions. Even benchmarks with modest
amounts of communication can generate network traces
consisting of hundreds of millions of packets. For example,
each trace from an FFT benchmark with a problem size of
16 million complex data points contains more than 300
million packets, which results in a trace file size of about 28
GB. Running the PDG_GEN algorithm with a base trace and
four sample traces (m ¼ 4), at least 28 GB � 5 ¼ 140 GB of
RAM would be required to keep all of the packet
information from all of the traces resident in memory. To
mitigate this large memory footprint, the PDG_GEN
algorithm can be modified to stream through each trace
with a selectable packet window size, W (not to be confused
with w or k, the static or dynamic windows of consideration
for potential receive dependencies for each packet).

Since every packet from the base trace ends up in the
output PDG, the base trace can be read through in a linear
fashion, and the only packets that must be retained in
memory are those that are still within the window of
consideration for upcoming transmits from each node. The
PDG algorithm can be modified to run one packet at a time,
because all the necessary information will come from
packets that have been encountered and matched earlier
in the base trace.2

This assumption allows the introduction of a packet
window W , which is the maximum number of packets
“ahead of” and “behind” the current position in the base
trace that must be kept track of for each of the other traces.
Each time a new packet is encountered in the base trace
3 actions occur: 1) if W packets from the base trace are
already being stored, the oldest one is discarded, 2) if 2W
packets from each the other traces are already being stored,
discard each oldest one, and 3) read forward in each of the
other traces to find a new packet.

This allows an upper bound of 2W � m þ W packets
that must be stored at any time while running the
PDG_GEN algorithm. Using a window size of W does
introduce a tradeoff between memory footprint and match-
ing accuracy, because if W is too small, packets from the
base trace may not find their match in some of the sample
traces simply because they are outside the window of
consideration. Similarly, if the base trace is shorter than any
of the sample traces and if W is small enough, some packets
at the end of those traces will never be considered because
the packet window never reaches them.

5.5 Traffic Specific Modifications

While the PDG_GEN algorithm as described thus far only
uses timing information in its analysis, it is possible to
include other traffic-specific information into the process.
For example, in the case of our Simics + GEMS simulation
setup described earlier in Section 2.2, the traffic is made up

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 655

2. Each packet that is encountered in the base trace could theoretically
match to a packet that is transmitted at any time in each of the other
traces—realistically, however, the ordering of packet transmits in each trace
should be fairly similar, meaning that a matching packet should usually be
located at roughly the same fraction of the way through each trace.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

of coherence messages for a MOESI directory-based cache
coherence protocol. Much of the traffic consists of request
and response messages sent between cache controllers and
directories that have straigtforward dependency relation-
ships, which are easily discernable by using information
about the message’s source, destination, coherence message
type, and cache line in question. This knowledge enabled us
to create a modified version of PDG_GEN specific to the
MOESI directory coherence protocol. It uses coherence
message types and memory locations to infer all protocol-
specific dependencies, and only performs the PDG_GEN
algorithm on initial requests. These modifications were
straightforward to implement, and it would be possible to
create a modified version of PDG_GEN for any other type
of traffic.

6 EVALUATION

Two separate testing environments were employed to
evaluate the PDG_GEN algorithm. The first approach was
to generate a reference PDG and compare it to a PDG inferred by
the PDG_GEN algorithm, which is described in Section 6.1.
The second approach was a real-world validation, in which
traces captured from benchmarks running in a full system
simulator were used by PDG_GEN to create a PDG for the
benchmark. This approach is described in Section 6.2, to see a
more detailed evaluation, refer to [26].

6.1 Reference PDG Evaluation

In order to evaluate the PDG_GEN algorithm’s performance
in terms of metrics like the number of dependencies found
or missed, there must be some known reference PDG to
compare to the inferred PDG created by the algorithm. This
cannot be done using real applications, because no
reference PDG exists for these applications. Not only that,
a PDG reflects a simplified computational model of what is
actually happening as a parallelized application is running,
so it is unclear what a correct reference PDG for an
application would even be.

Our solution was to generate reference PDGs using
synthetic traffic patterns, and run the reference PDGs on a
network simulator to create traces that can be used as
inputs to PDG_GEN. The resulting inferred PDG was then
compared to the original reference PDG to determine how
closely it matches.

6.1.1 Simulation Environment

There are two major components to the simulation
environment: a traffic generation tool that creates reference
PDGs from synthetic traffic patterns, and a cycle-accurate
on-chip network simulator that reads a PDG and injects
packets into the network based upon its reception depen-
dencies and computation times.

The traffic generator can create any of the following well
known traffic patterns: uniform random (rand), nearest
neighbor (nn), tornado (tor), transpose (trans), bit inverse
(inv), hotspot (hot), and negative exponential distribution
(NED) [28]. It also supports three additional traffic pat-
terns—Ball, Central and Tree for further stress testing. The
Ball pattern simulates a selectable number of tokens that are
randomly sent to the next node based on NED, modeling
passing a beach ball in a crowd. The Central pattern simulates

a central or hotspot node that receives requests and responds
to the source node, designed to model a central memory
controller or a master node. The Tree pattern models a barrier
synchronization, whose performance is critical in many
parallel applications.

There are also two other traffic generator parameters of
node. One is the average packet injection rate, where a rate of
0.1 indicates each node transmits a packet on average once
every 10 cycles. The other is the dependency rate, which is
the probability that a packet transmitted by node n is
dependent on each previously generated packet received by
n. This probability compounds as each previously generated
packet is considered - a dependency rate of 0.5 means that a
packet has a 50 percent chance of being dependent on the
most recent receive, and a 25 percent chance of being
dependent on the second most recent, etc.

The output of the traffic generator is a known PDG—a list
of packets which each have a source, a destination, a unique
Packet ID, a computation time, and a list of reception
dependencies. We modified the traffic injection code for the
popular cycle-accurate network simulator BookSim 2.0 [16]
so that it could inject the packets in the PDG at the
appropriate time based upon when dependencies are met
and when computation times finish for each packet (see [26]
for details). However, any network simulator can be
similarly modified with relatively small effort.

6.1.2 Sensitivity Analysis

In each of the following sections, the inferred PDG is
compared to the reference PDG to determine how many
dependencies were found, as well as the number of
additional quasidependencies that were added. Quasidepen-
dencies are defined as packets that are classified as
dependencies in the inferred PDG, but are not explicitly
stated as dependencies in the reference PDG. Fig. 3 illustrates
the two types of quasidependencies. In this figure packet 7 is
actually dependent only on packet 6, but the PDG_GEN
algorithm will also identify packets 2 and 5 as dependencies
as well since the partitioning is unlikely to be able to make
either packet violate causality. For example, a trace gener-
ated with Node A using slow outbound links will also slow
delivery of packet 4 and hence delay packet 6, and slowing
Node B in a partitioning will further exacerbate the problem.
Fortunately, regardless of topology, quasidependent packet
2 is highly unlikely to ever be the last dependency met since it
is transmitted before packet 4, which the true dependency
(packet 6) is itself dependent upon. However, quasidepen-
dencies of the form of packet 5 are of greater concern, since it

656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 3. Space-Time Diagram to illustrate quasidependencies.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

is possible that for some topology packet 5 will be received
after packet 6 (the true dependency). Fortunately, Property 1
and Property 2 (Section 5.3) used in the PDG_GEN algorithm
are more likely to prune packet 5 from the set of reception
dependencies than packet 2, thus reducing the potential
impact on predicted execution time.

6.1.3 Number of Partitions m

As described in Section 5.2, m is the number of partitions
into which the nodes should be placed, as well as the
number of additional simulations to run and acquire traces
from. Fig. 4a shows the number of true and quasidepen-
dencies (normalized to the reference PDG) found for values
of m varying from 0 (only base FCN trace) to 64 (base FCN
trace plus 64 sample traces each with a slow node). Fig. 4b
shows the average percent error in packet computation time
for varying values of m. The reference PDG that was used
consisted of 64 node NED traffic with a dependency rate of
0.5 and an injection rate of 0.01. PDG_GEN was run with a
window size of k ¼ 1, which was able to identify most of the
dependencies in the base trace (m ¼ 0). Fig. 4c does show
that when m ¼ 0 the computation time error is fairly high,
but increasing m beyond two yields almost no gain in either
dependency identification or computation time accuracy.

These results indicate that the main reason to use a larger
value of m is to reduce the number of quasidependencies in
the inferred PDG. As later analysis in Section 6.1.6 shows,
even with a large number of quasidependencies present, the
inferred PDG and reference PDG still tend to perform
similarly during actual network simulations. Furthermore,
when full system simulations are being used to generate
traces, increasing m means increasing the number of

computationally expensive full system simulations that are
required to generate the PDG. Therefore, m should be
picked according to the details of the situation at hand—
how long the initial full system simulations take (and how
many can be performed in parallel), how sensitive the
network simulator’s performance is to tracking extra
dependencies, and how many times the PDG will be reused.

6.1.4 Partitioned Link Latency, p

Section 5.2 also describes p, which is the latency of all the
outgoing links from the nodes in one “slow” partition. Each
sample simulation has a different partition selected as the
slow partition. Figs. 5 and 6 show the accuracy of PDG_GEN
for varying values of p. Figs. 5a and 5b show the number of
dependencies found for NED and Tree traffic patterns,
respectively, while Figs. 6c and 6d show the average percent
error in the computation time that PDG_GEN calculated for
each packet. PDG_GEN was run with m ¼ 4 and k ¼ 1, and
both NED and Tree consist of 64 node traffic with an
injection rate of 0.01 and a dependency rate of 0.5.

For NED, the initial increase of p from 1 to 2 yields large
improvements, because when p ¼ 1 the sample traces are
identical to the base trace. Increasing p beyond 2 yields
small improvements in the number of true dependencies
found initially, at the cost of small increases in the number
of quasidependencies found. However, further increases in
p slowly but steadily increases the number of quasidepen-
dencies found. This is because some packets will start out
with a larger set of initial receive dependencies when p
increases, and any of these packets that cannot be pruned
will increase the number of quasidependencies found.
Note that as the number of quasidependencies becomes

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 657

Fig. 4. Normalized number of dependencies found (a) and average percent error in computation time (b) for NED traffic pattern for varying
values of m.

Fig. 5. Normalized number of dependencies found for NED (a) and Tree (b) traffic patterns for varying values of p.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

very large, the error in computation time begins to grow
significantly as well.

The other traffic patterns studied exhibit behavior
similar to NED as p is increased, with one notable
exception. For Tree, increasing p steadily increases the
number of true dependencies found, while simultaneously
decreasing both quasidependencies and computation time
errors. This result highlights one of the challenges faced by
PDG_GEN; different traffic patterns may require different
parameters, but it is not clear how to determine the correct
values for these parameters without a reference PDG to
compare against.

6.1.5 Window Sizes, w and k

As Section 5.3 describes w is a static window size contain-
ing the number of receive events at a node preceding a
transmit event that will be considered as possible depen-
dencies for the transmit, while k is a dynamic window size
containing the number of previous transmit events to go
back when considering potential receive dependencies for

a transmit. PDG_GEN can use either a static or dynamic
window (w or k).

Fig. 7a shows the performance of PDG_GEN on 64 node
NED traffic for varying values of w. The results demonstrate
that as the window size grows the number of true
dependencies detected increases, but the number of quasi-
dependencies climbs even faster. In Fig. 7b, varying values of
kare used, and the results show that using a dynamic window
of k ¼ 1 tends to perform well due to its adaptive nature.

The reason the number of quasidependencies increases
so quickly in Fig. 7b is that as the window size increases,
each receive is initially present in more and more transmit’s
receive dependency sets. For example, for k ¼ 1, each
receive begins in one transmit’s dependency set. For
k ¼ 2, each receive begins in two transmit’s dependency
sets, and so on. Due to the computational model’s constraint
that transmits must occur in order, if a transmit is
dependent on a receive event, then any subsequent
transmits from the same node can have that receive pruned
from their dependency set without affecting the PDG’s
behavior in a simulation. If a large window size is used,
then pruning this way can decrease the number of
dependencies in the PDG, which can speed up simulation
times. Figs. 7c and 7d show the effect of pruning all receive
dependencies appearing in dependency sets of previous
transmits. The number of quasidependencies is greatly
reduced without affecting the number of true dependencies,
because most of the packets in the reference PDG have at
most one packet that depends on them.

As with the sensitivity analysis of p, the Tree traffic
pattern exhibits different behavior than NED when window
size is varied. Figs. 8a and 8b show the effects of w and k on
accuracy for Tree with p ¼ 10, while p ¼ 100 in Figs. 8c and
8d the figures show that to find most of the true
dependencies for Tree, one would need to use p ¼ 10 and
k ¼ 4, or p ¼ 100, and k ¼ 3. This is very different than the
rest of the traffic patterns, which perform much better with
p ¼ 10 and k ¼ 1.

Note that if there are a large number of dependencies on
packets that tend to arrive well before each transmit, then a
larger window size becomes necessary. With the exception
of Tree, the traffic generator creates such dependencies with
a low probability, which seems to match our observations of
real-traffic patterns. For instance, cache coherence protocol
traffic in a shared memory multiprocessor predominantly
has a request-response communication pattern, which will
result in most messages being dependant only on a single
message that was received very recently.

658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 7. Effect of window size on accuracy for NED traffic pattern with
Static (a) and Dynamic (b) window sizes. (c) and (d) show the effect of
pruning all receive dependencies appearing in dependency sets of
previous transmits.

Fig. 6. Average percent error in computation time for NED (a) and Tree (b) traffic patterns for varying values of p.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

6.1.6 Performance Comparison

In order to evaluate the performance, the traffic generator
was used to produce 64 node reference PDGs with an
injection rate of 0.01 and dependency rate of 0.5 for each
previously described traffic pattern. Based on the results of
the sensitivity analyses, parameter values of m ¼ 4; k ¼ 1,

and p ¼ 10 were used by the PDG_GEN algorithm and an
inferred PDG was created for each reference PDG.

Fig. 9a shows that PDG_GEN discovers almost all of the
true dependencies for most of the traffic patterns, but often
also finds a large number of quasidependencies. Fig. 9b
shows that PDG_GEN is fairly accurate in calculating
computation time as well (with the exception of nn and tor).

To compare the overall performance of an inferred and
reference PDG, both were run through different network
configurations to compare overall performance statistics
such as total execution time and average packet latency.
The performance of the inferred PDG was also compared to
that of a modified reference PDG from which all of the
reception dependencies have been removed (referred to as
a stripped PDG).

BookSim was used to run a simulation of an 8� 8 mesh
with two virtual channels, for each reference and inferred
PDG. The total execution time and average packet latency of
the inferred and stripped PDGs were then normalized to the
reference PDG, and the results are shown in Figs. 10a and
10b. These figures show that on average the execution times
of the inferred PDGs were within 0.55 percent of the
reference PDGs, and average packet latencies were within
0.27 percent. In contrast, the stripped PDG varied widely
from the reference PDG, with average errors of 89.18 percent
in execution time and 27,464 percent in latency. The stripped
PDG results show once again that failing to accurately
model packet injection rates can lead to incredibly inaccu-
rate conclusions about how a traffic pattern will perform on
a network.

The largest discrepancies for the inferred PDG were a
2.25 percent error in execution time and 1.59 percent error

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 659

Fig. 8. Effect of window size on accuracy for Tree traffic pattern with
Static ((a), (c)) and Dynamic ((b), (d)) window sizes, with p ¼ 10 and
p ¼ 100.

Fig. 9. Normalized number of dependencies found (a) and average percent error in computation time (b) for each traffic pattern.

Fig. 10. Normalized execution time for different traffic patterns for Stripped PDG, Reference PDG, and Inferred PDG on 8� 8 mesh (a) and 3 level
FatTree (b) networks.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

in latency, both seen in the Tree traffic pattern. This is to be
expected, as the previous sections have shown that the Tree
traffic pattern performs best with different PDG_GEN
settings than the others. Figs. 11a and 11b show the same
PDGs running on a 3 level FatTree network, and the
inferred PDG performed very similarly to the mesh case,
with an average execution time error of 0.32 percent and
average latency error of 0.30 percent. These results indicate
that an inferred PDG can match a reference PDG very
closely in overall network behavior, despite the presence of
quasidependencies and computation time error.

6.2 Simics Evaluation

After performing direct quantitative comparisons between
reference and inferred PDGs, the next step was to use the
PDG_GEN algorithm on traces from full system simulations
of real applications. As with the initial motivating experi-
ment in Section 2.2, Simics 3.0 [12] and GEMS 2.1.1 [13]
were used as the full system simulation framework, and
Garnet (the network simulator within GEMS) was modified
to record a trace of each packet transmit and receive event
that occurs during a full system simulation.

With this modification, multiple Simics simulations of an
application of interest can be run to acquire the necessary
input traces for use by the PDG_GEN algorithm.

However, the traces acquired in this manner are not
directly usable by PDG_GEN. As described earlier, there
are no explicit packet IDs to identify packets across the
traces, and the traces are of different lengths. To accom-
modate this, the matching algorithm described in Section
5.4.1 was used to generate usable traces. The PDG_GEN
algorithm was also modified to use the windowing scheme
described in Section 5.4.3 in order to accommodate the very
large traces that are generated by running real applications.

The PDGs obtained from the setup described above can
be used by any network simulator that has been modified to
support the injection of a PDG file into the network. We
modified Garnet to support PDGs, in order to allow a direct
comparison between full-system Simics simulations (which
use the Garnet simulator) and network-only Garnet simula-
tions using PDGs.

6.2.1 Simics Comparison Results

In this section overall performance results are presented for
the PDG_GEN algorithm and each benchmark from the
SPLASH-2 parallel benchmark suite. To generate the results

Simics and GEMS were configured with 16 directories using
the MOESI_SMP_directory cache coherency protocol, and
16 1 CPI in-order processors each with 16 KB L1 instruction
and data caches and private 4 MB L2 caches (for a total of
32 distinct nodes in the on-chip network). Pipelined out of
order processors were not modeled because we are only
looking at the messages out the back side of the memory
hierarchy, and any out of order behavior should be
absorbed by the various levels of the cache. PDGs were
generated for each benchmark using m ¼ 4 and p ¼ 50, and
then simulated on Garnet running in standalone network
mode using two new network topologies—a mesh and
fattree, with the network clock speed cut in half and a link
pipeline depth of 10 cycles (to simulate a resource-
constrained network). The networks had four virtual
channels and 16 byte flits. These results were then
compared to Simics simulations of the same benchmarks
on the same two network configurations.

Fig. 12a shows the execution times and Fig. 12b shows
the average packet latencies for Simics, PDG, and tradi-
tional trace simulations for each benchmark (normalized to
the execution time of the Simics simulations) running on an
8� 4 mesh network. The base trace was used for the
traditional trace simulations. These results show that while
the PDGs are not perfect at predicting execution time, they
are far superior to the traditional method of using a
timestamp-based trace. Notice also that even when the
PDGs significantly miss-predict execution time, they still
result in very accurate packet latency estimates. Both the
FFT and FMM benchmarks on fattree show situations
where using a traditional trace leads to highly inaccurate
packet latency estimates.

Another interesting thing to note is that sometimes the
PDG will underestimate execution time due to a significant
increase in the number of packets generated by a benchmark
on one of the new networks compared to the base trace. For
example, the Cholesky benchmark generated 33 percent
more packets when run on the mesh network than when run
on the base FCN network. It is quite possible that this
difference in trace size is the true reason for the PDG
underestimating execution time (Fig. 12a), and not that it
failed to infer enough dependencies or accurately calculate
computation times. And even in these cases the PDG still did
a good job of predicting average packet latency (Fig. 13a).

However, some PDGs did misspredict execution time
due to inaccuracies in the PDG_GEN algorithm. For

660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 11. Normalized latency for different traffic patterns for Stripped PDG, Reference PDG, and Inferred PDG on 8� 8 mesh (a) and 3 level FatTree
(b) networks.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

example, PDG significantly underestimated LU’s execution
time on fattree, despite only a 15.1 percent trace size
difference. PDG also significantly overestimated Volrend’s
execution time on fattree even though there was only a 4.7
percent trace size difference. This highlights an issue first
uncovered by the NED and Tree synthetic traffic patterns in
Section 6.1.4: different traffic patterns may require different
PDG_GEN settings.

Overall, the PDGs had an average error of 20.8 percent in
execution time on the mesh network, and an average error
of 18.9 percent in execution time on the fattree network. In
contrast, the traditional traces had an average error of
43.4 and 47.3 percent in execution time on the mesh and
fattree networks, respectively. This means that on average,
the PDGs were 2.3 times more accurate at predicting
execution time. The PDGs were even better at predicting
average packet latency, with average errors of 1.66 and 2.16
percent on the mesh and fattree networks, respectively. The
traditional traces had an average error of 3.81 percent in
packet latency on the mesh network, and 15,100 percent on
the fattree network (due to the catastrophically large
overestimates for FFT and FMM; see Fig. 13b). This means
that the PDGs were 2.3 times better at predicting average
packet latency on the mesh network, and 6,990 times better
at predicting average packet latency on the fattree network.
This shows that as a network becomes more resource
constrained, the PDGs become increasingly better than
traditional traces at predicting packet latency because they
throttle injection rates appropriately and never flood the
network with packets the way traditional traces do.

6.2.2 Traffic Specific PDGs

In Section 5.5, we discussed the possibility of modifying the
PDG_GEN algorithm to take advantage of traffic-specific
behavior. To demonstrate the viability of this approach, we
developed a version of the PDG_GEN algorithm that works
specifically with the MOESI directory cache coherence
traffic used in these Simics simulations. We used the
modified PDG_GEN algorithm to generate modified PDGs
for each SPLASH 2 benchmark, and ran them on the same
mesh and fattree networks. Averaged across all of the
benchmarks on both of these networks, the modified PDGs
were 22 percent more accurate at predicting execution time
and 2 percent more accurate at predicting packet latency
than the original PDGs. While these gains are modest, the
required effort to modify the algorithm was equally
modest. Overall, these results show that the PDG_GEN
algorithm can be applied to real-world benchmarks that are
commonly employed by researchers today, and afford
significant accuracy gains over traditional trace-based
simulation methods.

7 CONCLUSION

The goal of this work was to improve the accuracy of trace
based cycle-accurate network simulation, a commonly used
on-chip network evaluation method. A full system simula-
tion environment (Simics+GEMS) was used to demonstrate
that simply recording a network trace from an application
fails to incorporate key information about packet injection
rates, and can lead to inaccurate results. The PDG_GEN

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 661

Fig. 13. Normalized latency for different SPLASH-2 benchmarks for traditional trace, Simics simulation, and PDG on 8� 4 mesh (a) and 3 level
FatTree (b) networks.

Fig. 12. Normalized execution time for different SPLASH-2 benchmarks for traditional trace, Simics simulation, and PDG on 8� 4 mesh (a) and 3
level FatTree (b) networks.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

algorithm was presented, which infers dependency infor-
mation between packets based upon a set of traces gathered
from multiple full system simulations of an application.
Evaluations using both synthetic and real traffic patterns
show that PDG_GEN can increase the accuracy of network
simulations significantly compared to the standard techni-
que of simple trace-based simulation.

While the results presented here are encouraging, there
are several avenues of future work. Different classes of traffic
patterns (for example, Tree versus NED) may call for
different settings of the PDG_GEN algorithm’s parameters,
or even modifications to the communication model, such as
removing total ordering of transmits. Additionally, Kamil et
al. [29] have shown that parallel scientific applications often
go through program phases in which traffic patterns and
volumes change drastically. An initial high-level traffic
analysis phase could be added to PDG_GEN, which
identifies traffic characteristics and program phases to
determine optimal settings. Work can also be done to apply
PDG_GEN to new communication paradigms, such as on-
chip message passing traffic and traffic for emerging
architectures such as such as System-on-Chip (SoC) or
General Purpose Graphics Processing Units (GPGPU).

ACKNOWLEDGMENTS

This research is partially supported by US National Science
Foundation Award no. CCF-1116897.

REFERENCES

[1] C.H. van Berkel, “Multi-Core for Mobile Phones,” Proc. Conf.
Design, Automation and Test in Europe (DATE ’09), pp. 1260-1265,
2009.

[2] D. Zhao et al.,, “Design of Multi-Channel Wireless Noc to Improve
On-Chip Communication Capacity,” Proc. ACM/IEEE Fifth Int’l
Symp. Networks-on-Chip (NOCS ’11), pp. 177-184, May 2011.

[3] D. Vantrease et al., “Corona: System Implications of Emerging
Nanophotonic Technology,” Proc. 35th Int’l Symp. Computer
Architecture (ISCA ’08), pp. 153-164, 2008.

[4] G. Hendry et al., “Analysis of Photonic Networks for a Chip
Multiprocessor Using Scientific Applications,” Proc. Int’l Symp.
Networks-on-Chip, pp. 104-113, 2009.

[5] Y. Pan et al., “Firefly: Illuminating Future Network-on-Chip with
Nanophotonics,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 3, pp. 429-440, 2009.

[6] M.J. Cianchetti et al., “Phastlane: A Rapid Transit Optical Routing
Network,” ACM SIGARCH Computer Architecture News, vol. 37,
no. 3, pp. 441-450, 2009.

[7] N. Eisley et al., “In-Network Cache Coherence,” Proc. IEEE/ACM
39th Ann. Int’l Symp. Microarchitecture (MICRO ’06), pp. 321-332.
2006,

[8] J. Kim et al., “A Novel Dimensionally Decomposed Router for On-
Chip Communication in 3D Architectures,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 138-149, 2007.

[9] D. Park et al., “Design of a Dynamic Priority-Based Fast Path
Architecture for On-Chip Interconnects,” Proc. IEEE 15th Ann.
Symp. High-Performance Interconnects (HOTI ’07), pp. 15-20, 2008.

[10] N.E. Jerger et al., “Virtual Circuit Tree Multicasting: A Case for
On-Chip Hardware Multicast Support,” SIGARCH Computer
Architecture News, vol. 36, no. 3, pp. 229-240, 2008.

[11] J. Kim et al., “Flattened Butterfly Topology for On-Chip Net-
works,” Proc. IEEE/ACM Int’l Symp. Microarchitecture, pp. 172-182,
2007.

[12] P. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50-58, Feb. 2002.

[13] M.M.K. Martin et al., “Multifacet’s General Execution-Driven
Multiprocessor Simulator (Gems) Toolset,” SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92-99, 2005.

[14] S.C. Woo et al., “The Splash-2 Programs: Characterization and
Methodological Considerations,” Proc. 22nd Ann. Int’l Symp.
Computer Architecture (ISCA ’95), pp. 24-36, 1995.

[15] L.-S. Peh et al., “Garnet: A Detailed On-Chip Network Model
Inside a Full-System Simulator,” Proc. Int’l Symp. Performance
Analysis of Systems and Software (ISPASS), Apr. 2009.

[16] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[17] Z. Tan et al., “A Case for Fame: FPGA Architecture Model
Execution,” Proc. 37th Ann. Int’l Symp. Computer Architecture,
pp. 290-301, 2010.

[18] J. Miller et al., “Graphite: A Distributed Parallel Simulator for
Multicores,” Proc. IEEE 16th Int’l Symp. High Performance Computer
Architecture (HPCA), pp. 1-12, 2010.

[19] J. Hestness et al., “Netrace: Dependency-Driven Trace-Based
Network-on-Chip Simulation,” Proc. Third Int’l Workshop Network
on Chip Architectures, pp. 31-36, 2010.

[20] R. Marculescu et al., “Outstanding Research Problems in Noc
Design: System, Microarchitecture, and Circuit Perspectives,”
IEEE Trans. Computer Aided Design of Integrated Ciruits and Systems,
vol. 28, no. 1, pp. 3-21, Jan. 2009.

[21] G. Varatkar and R. Marculescu, “On-Chip Traffic Modeling and
Synthesis for Mpeg-2 Video Applications,” IEEE Trans. Very Large
Scale Integration Systems, vol. 12, no. 1, pp. 108-119, Jan. 2004.

[22] V. Soteriou et al., “A Statistical Traffic Model for On-Chip
Interconnection Networks,” Proc. IEEE Int’l Symp. Modeling,
Analysis, and Simulation of Computer and Telecomm. Systems
(MASCOTS ’06), pp. 104-116, Sept. 2006.

[23] H. Kim et al., “On-Chip Network Evaluation Framework,” Proc.
ACM/IEEE Int’l Conf. High Performance Computing, Networking,
Storage, and Analysis, 2010.

[24] G. Wei et al., “A Software Framework for Trace Analysis
Targeting Multicore Platforms Design,” Proc. IEEE/ACM Fifth Int’l
Symp. Networks on Chip (NoCS), pp. 259-260, May 2011.

[25] P.V. Gratz and S.W. Keckler, “Realistic Workload Characterization
and Analysis for Networks-on-Chip Design,” Proc. Fourth Work-
shop Chip Multiprocessor Memory Systems and Interconnects (CMP-
MSI), 2010.

[26] K. Macdonald, “Inferring Packet Dependencies to Improve Trace-
Based Simulation of On-Chip Networks,” master’s thesis, Univ.
California, Davis, 2011.

[27] C. Bienia et al., “The Parsec Benchmark Suite: Characterization
and Architectural Implications,” Proc. 17th Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 72-81, 2008.

[28] A.-M. Rahmani et al., “Negative Exponential Distribution Traffic
Pattern for Power/Performance Analysis of Network on Chips,”
Proc. 22nd Int’l Conf. VLSI Design (VLSID ’09), pp. 157-162, 2009.

[29] S. Kamil et al., “Reconfigurable Hybrid Interconnection for Static
and Dynamic Scientific Applications,” Proc. Fourth Int’l Conf.
Computing Frontiers, pp. 183-194, 2007.

Kevin Macdonald received the master’s degree
in computer science from the University of
California, Davis. His research interests include
computer architecture and on-chip networks.

Christopher Nitta received the PhD degree in
computer science from the University of Califor-
nia, Davis. He is a postdoctoral researcher and
lecturer at the University of California, Davis. His
research interests include network-on-chip tech-
nologies, embedded system and RTOS design,
and hybrid electric vehicle control.

662 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

Matthew Farrens received the PhD degree in
electrical engineering from the University of
Wisconsin and is a professor of computer
science at the University of California, Davis.
His research interests include computer archi-
tecture, with special emphasis on the memory
hierarchy. He is a member of the IEEE and ACM
and a recipient of the US National Science
Foundation PYI award.

Venkatesh Akella received the PhD degree in
computer science from the University of Utah
and is a professor of electrical and computer
engineering at the University of California,
Davis. His current research encompasses var-
ious aspects of embedded systems and compu-
ter architecture, with special emphasis on
embedded software, hardware/software code-
sign, and low-power system design. He is
member of the ACM and received the US

National Science Foundation CAREER award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MACDONALD ET AL.: PDG_GEN: A METHODOLOGY FOR FAST AND ACCURATE SIMULATION OF ON-CHIP NETWORKS 663

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:22:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

