
UC Berkeley
UC Berkeley Previously Published Works

Title
10 Years Later: Cloud Computing is Closing the Performance Gap

Permalink
https://escholarship.org/uc/item/4bv2n6h4

Authors
Guidi, Giulia
Ellis, Marquita
Buluç, Aydin
et al.

Publication Date
2021-04-19

DOI
10.1145/3447545.3451183
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bv2n6h4
https://escholarship.org/uc/item/4bv2n6h4#author
https://escholarship.org
http://www.cdlib.org/


10 Years Later: Cloud Computing is Closing the Performance Gap
Giulia Guidi

University of California, Berkeley
Lawrence Berkeley National Laboratory

Berkeley, California, USA

Marquita Ellis
University of California, Berkeley

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Aydın Buluç
University of California, Berkeley

Lawrence Berkeley National Laboratory
Berkeley, California, USA

Katherine Yelick
University of California, Berkeley

Lawrence Berkeley National Laboratory
Berkeley, California, USA

David Culler
University of California, Berkeley

Google, Inc.
Berkeley, California, USA

ABSTRACT
Can cloud computing infrastructures provide HPC-competitive per-
formance for scientific applications broadly? Despite prolific re-
lated literature, this question remains open. Answers are crucial
for designing future systems and democratizing high-performance
computing. We present a multi-level approach to investigate the
performance gap between HPC and cloud computing, isolating dif-
ferent variables that contribute to this gap. Our experiments are
divided into (i) hardware and system microbenchmarks and (ii) user
application proxies. The results show that today’s high-end cloud
computing can deliver HPC-competitive performance not only for
computationally intensive applications, but also for memory- and
communication-intensive applications – at least at modest scales –
thanks to the high-speed memory systems and interconnects and
dedicated batch scheduling now available on some cloud platforms.

ACM Reference Format:
Giulia Guidi, Marquita Ellis, Aydın Buluç, Katherine Yelick, and David Culler.
2021. 10 Years Later: Cloud Computing is Closing the Performance Gap. In
Companion of the 2021 ACM/SPEC International Conference on Performance
Engineering (ICPE ’21 Companion), April 19–23, 2021, Virtual Event, France.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3447545.3451183

1 INTRODUCTION
The benefit of high-performance computing for scientific research
has grown rapidly, beyond traditional simulation problems to data
analysis in light sources, cosmology, genomics, particle physics, and
more [2, 43]. Given the vast amounts of data and/or computation
involved in such applications, they can require the full computing
power and memory of high performance computing (HPC) systems.
Cloud computing [8, 18, 30] is gaining popularity among scientists
as an alternative to HPC for a wide range of sciences such as physics,
bioinformatics, cosmology, and climate research [17, 32].

There are many efforts in the literature to measure the perfor-
mance of scientific applications in the cloud. The lack of a low-
latency network has been consistently identified as the main bottle-
neck [15, 16, 23, 35, 44]. These studies have shown that the cloud

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8331-8/21/04.
https://doi.org/10.1145/3447545.3451183

delivers competitive performance for HPC applications with min-
imal communication and I/O, but significantly underperforms for
memory- and communication-intensive workloads. Virtualization
overhead has also been identified as a performance-limiting fac-
tor, but studies do not generally agree on its impact. He et al. [25]
(2010) concluded that virtualization technology has no significant
performance overhead, while the results in the Magellan report [44]
(2011) and by Gupta et al. [23] (2014) show that virtualization over-
head along with slow network is one of the major limitations of
the cloud. Performance variability due to resource sharing and the
lack of tools for using and managing cloud environments–such as
batch scheduling and base images–have also further limited the
competitiveness of the cloud for scientific computing [23, 35, 44].

Understanding the nature of the gap between HPC and cloud sys-
tems and whether the results from the literature are still valid today
is critical for guiding future system design and running scientific
applications efficiently in the cloud. Furthermore, the number of
users that supercomputing facilities can support is limited, and the
deployment of any new supercomputer is a multi-year multi-million
dollar investment. Closing the performance gap between HPC and
the cloud would give many more scientists access to adequate com-
puting resources.

Our work measures the performance of HPC-oriented codes on
both cloud and HPC platforms. Building on previous literature,
we investigate whether the findings apply to today’s cloud plat-
forms and isolate the contribution of different variables to the HPC
cloud performance gap. Our results show that cloud platforms with
similar processors and networks can achieve HPC-competitive per-
formance, not only for compute-intensive applications, but also
for communication-intensive applications. At small and medium
scales, modern cloud computing has overcome one of its main limi-
tations by providing higher-speed memory and interconnects for
HPC-oriented instances. Cost models, job wait times, availability of
pre-installed software, and other usability factors are also relevant
to evaluating HPC-cloud competitiveness, but are out of scope here.

2 BACKGROUND
High Performance Computing (HPC) and cloud computing differ in
their original purpose aswell as their economic objectives and access
policies. HPC systems were designed to deliver high performance
for dedicated scientific computing, while cloud computing made
networked hardware and software available for general use.

The differences in their economic objectives and access poli-
cies inevitably affect scheduling, hardware selection, and software

1

ar
X

iv
:2

01
1.

00
65

6v
2 

 [
cs

.D
C

] 
 5

 M
ar

 2
02

1

https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1145/3447545.3451183


ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France Guidi et al.

configuration decisions. HPC systems are typically operated by a
non-profit organization (university or national laboratory), funded
by a government agency, and allocated to a particular research
community. These systems have very high utilization (over 90%)
with non-trivial wait times for users; they support very large-scale
computations with homogeneous hardware that undergoes major
upgrades every few years. In contrast, cloud systems are built for
profit, configured to meet market demand, and operated at lower
utilization rates to ensure little or no wait time. Cloud resources are
upgraded continuously and incrementally, leading to rapid access
to new technologies, but also to heterogeneity within the cloud.

Researchers running scientific applications in the cloud can ac-
cess instances with low-latency networks to achieve performance
competitive to HPC [25]. However, cloud heterogeneity can limit
what is available within an HPC cloud offering, e.g., it may be more
difficult for a user to obtain a large number of high-performance
instances. In the cloud, users can easily customize their environment
without administrative overhead and quickly provision additional
resources to solve large problems [44]. HPC platforms offer limited
support for on-demand self-service [44], but they do offer important
features such as resource pooling and broad network access.

The basic business model differences between cloud and HPC
persist today and lead to complex cost trade-offs that are beyond
the scope of this paper. However, the growing commercial interest
in problems such as large-scale machine learning training have led
to changes in cloud configurations. This has increased the popu-
larity of HPC-as-a-Service in the cloud and has in turn resurfaced
questions about use of the cloud for modest scale parallel scientific
applications.

2.1 Low-Level Benchmark
A common approach to comparing the performance of computer
systems is to use low-level benchmarks [1, 40]. Here, we focus on
the investigation of processor, memory, and network performance.

Processor. Considering a multi-core processor, we refer to it as
a node, where a core is the basic execution unit in the system. The
number of nodes is later denoted 𝑃 . Here we use the shared memory
version of the LINPACK benchmark [14] to compare the floating
point performance of the systems under consideration. LINPACK
measures performance as the number of 64-bit floating point opera-
tions a computer can perform per second (FLOPS). The performance
when running an actual application is likely to be lower than the
performance achieved by the LINPACK benchmark.

Memory Hierarchy. CacheBench [31] measures the perfor-
mance of the local memory hierarchy. It computes a number of
operations – read, write, read/modify/write, memset, and memcpy
– varying the underlying array size, thereby revealing the perfor-
mance of the cache. Operations run for 2 seconds and the average
bandwidth (MB/s) is reported. Here we focus on memcpy.

Memory Bandwidth. To measure the maximum memory band-
width of our systems, we use the STREAM benchmark [29], which
performs four vector operations: copy, scale, sum, and triad. STREAM
requires that (a) each array is at least four times the size of the cache
memory, and (b) the size is such that the “timing calibration” output
by the program is at least 20 clock ticks. STREAM provides the best
possible memory system bandwidth.

Inter-NodeCommunication. Following standard practice [25],
we use a subset of MPI operations to measure the inter-node commu-
nication performance of our systems. Specifically, we use MPI_Send-
recv and MPI_Alltoall to measure point-to-point and collective
latency and bandwidth using the OSU microbenchmarks [36].

2.2 User Application
Besides comparing HPC and cloud systems on a subset of MPI
collectives, we select two representative user applications from
scientific computing as benchmarks: an N-Body simulation written
in C++ and a Fast Fourier Transform (FFT), written in C. N-Body
is a computationally intensive application, while the FFT is more
communication intensive [5, 9, 42].

An N-Body simulation models a dynamic system of particles,
usually under the influence of physical forces, such as gravity [26].
It is a common computation in physics, astronomy, and biology.
The naive solution computes the forces acting on the particles by
iterating through each pair of particles, resulting in a complexity of
𝑂 (𝑛2), where 𝑛 is the number of particles. In our implementation
we consider the density of the particles to be sufficiently low so that
a linear time solution can be achieved with 𝑛 particles.

The FFT calculates the discrete Fourier transform (DFT) of a
sequence or its inverse (IDFT). In Fourier analysis, a signal is trans-
formed from its original domain (often time or space) to a frequency
domain representation and vice versa. As a benchmark for the
FFT, we use the implementation of Frigo and Johnson [19–21], Fast
Fourier Transform in the West (FFTW).

3 EMPIRICAL METHODOLOGY
Processor, memory, network, application and programming model,
and system age are all variables that affect performance. Here, we
measure the performance gap by isolating the contribution of the
different variables by dividing our experiments into two categories:
(i) hardware and system and (ii) user application.

First, we isolate the contribution of processor and memory to
identify similarities or significant differences in in-node perfor-
mance. Then, we investigate the contribution of the inter-processor
network by measuring the latency and bandwidth of communica-
tion primitives between machines. Finally, we study performance of
HPC and cloud computing from an application perspective. Unless
differently noted, the results reported in this paper represent the
average value across 10 runs.

To this end, we use two metrics to characterize our applica-
tions: hardware events and the communication to computation
ratio (𝐶𝑚/𝐶𝑝). The 𝐶𝑚/𝐶𝑝 ratio is defined as communication time
divided by computation time for a given execution of a parallel
application on a given parallel machine with explicit communica-
tion [11]. Both metrics can help interpret the potential performance
gap between HPC and cloud systems.

3.1 Experimental Setting
Our experiments are conducted on the Intel Xeon “Haswell” (Cori
Haswell) and Intel Xeon Phi “Knight’s Landing” (KNL) partitions
(Cori KNL) of the Cori Cray XC40 HPC system at NERSC, an Ama-
zon Web Services (AWS) commodity cluster with r5dn.16xlarge
(R5) instances (optimized for memory-intensive workloads), and

2



10 Years Later: Cloud Computing is Closing the Performance Gap ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France

Table 1: Details of the evaluated machines: name, system age in years, number of cores per node, processor frequency, theoret-
ical peak performance (GFlops/s) per node, processor, memory, advertised injection bandwidth (Gigabits/s), and caches sizes.
†Custom model for Amazon AWS. KNL’s L2 is shared between two cores. ∗Advertised user-process injection bandwidth [10].

Platform Age Core/Node Frequency (GHz) Theoretical Peak (GFlops/Node) Processor Memory (GiB) Network (Gbps) L1 L2 L3
Cori Haswell 4 32 2.3 1,177 Xeon E5-2698V3 120 ∗82 64KB 256KB 40MB
Cori KNL 4 68 1.4 3,046 Xeon Phi 7250 90 ∗82 64KB 1MB -
AWS r5dn.16xlarge 1 32 2.5 2,560 Xeon Platinum 8259CL 512 75 64KB 1MB 36MB
AWS c5.18xlarge 1 36 3.0 3,456 Xeon Platinum 8124M† 144 25 64KB 1MB 25MB

one with AWS c5.18xlarge (C5) instances (optimized for compute-
intensive workloads). Details for each instance are listed in Table 1.

We chose these four platforms because of their easy availability
and the diversity of architectures. In particular, we selected the
two AWS instances to represent two extremes of the AWS catalog
(memory-optimized versus compute-optimized) and selected these
two instances because they allowed us to allocate multiple nodes
in the same placement group in a reasonable amount of time. AWS
clusters run as dedicated instances to reduce the potential perfor-
mance slowdown from sharing resources, and use Slurm as the
workload manager [45]. The need for tools to simplify the use of
cloud environments and better software stacks for clouds has been
noted in past literature [44]. We use AWS ParallelCluster to provi-
sion and manage AWS clusters. It automatically sets up the required
compute resources and shared file system in about five to ten min-
utes in our experience. AWS also provides a collection of Amazon
Machine Images (AMIs) installed with libraries and software such as
MPI, BLAS, and TensorFlow. Notably, AWS ParallelCluster provides
support for several schedulers, such as SGE and Torque (which will
both be discontinued at the end of 2021), as well as Slurm and the
in-house AWS Batch, which currently has limited support for GPU
jobs. We used Slurm for consistency across AWS and Cori systems.

Cori Haswell and KNL also use Slurm as workload manager. Cori
has the Cray Aries “Dragonfly” topology for its interconnect [34].
AWS does not disclose details about the underlying interconnect
topology, except for an expected injection bandwidth (Table 1),
and that the AWS C5 instances use Amazon in-house Elastic Fabric
Adapter (EFA) [3, 4] as network interface. The AWS cluster instances
belong to the same placement group; the login node and the compute
nodes belong to two different subnets. A subnet is a logically visible
subdivision of an IP network. The subnetwork of compute nodes is
private and has no access to the Internet.

3.2 A Hardware and System View
Given different in-node configurations, we first investigate perfor-
mance using a microbenchmarking approach.

Processor. Figure 1 compares the LINPACK peak performance
(left) with the theoretical peak performance (right) for each platform
and also allows cross-platform comparison. Cori Haswell and AWS
R5 achieve peak performance significantly closer to their theoretical
peak than the other two machines. Closing the gap between theo-
retical peak and LINPACK peak on Cori KNL is notoriously difficult;
achieving such progress requires a significant optimization effort
for applications in general [7, 12, 13]. Cori KNL achieves about 350
GFlops/second more in our benchmark than the number reported
in the Top500 [39]. This discrepancy could be due to different im-
plementations of the LINPACK benchmark, since we use the Intel

Summit Breakdown H. sapiens

Figure 1: LINPACK peak performance compared to the theo-
retical peak (left) using one node and all available cores per
node (Table 1). CacheBench memcpy() benchmark (right) us-
ing a single core and reporting the median of 10 runs.

Math Kernel Library benchmark package. Further profiling of AWS
C5 with VTune [37] revealed a relatively low core utilization for
this platform, which could explain the large gap between theoretical
and achieved peak.

The cloud instances perform best in absolute terms. AWS R5 and
C5 instances are equipped with newer hardware than Cori systems;
this may explain the greater processing power. It is noteworthy that
the elastic nature of cloud computing − as opposed to multi-year
projects to develop and install supercomputers − offers the potential
for rapid hardware turnaround.

Memory Hierarchy. Figure 1 shows the results for the Cache-
Bench benchmark (on the right) and illustrates the performance of
the cache hierarchy for our four machines. For each platform and
size, we ran the benchmark 10 times and report the median; there
is little variance among different runs for a given size and platform.

Cori Haswell has the best performance for L1 (which is the same
size on all machines). The L2 performance of Cori Haswell and AWS
C5 are comparable, while the performance of Cori Haswell falls
below that of the AWS C5 platform below its second cache level.
AWS C5 achieves better performance than Cori Haswell as long as
the data fits into its L2 cache, and its performance falls below Cori
Haswell when it enters the third cache level as expected because
Cori Haswell has a larger L3 cache.

Considering the data in Table 1, one would expect a higher band-
width for AWS R5 and Cori KNL given their larger L2. However, the
way the caches are shared between the cores and cache associativity
could affect overall memory throughput. For Cori Haswell, L2 is pri-
vate to each core, while for Cori KNL it is shared by two cores. Cori
KNL has two cache levels instead of three like the other machines.
Cori Haswell’s cache is 8-way associative, while Cori KNL has a di-
rect mapped cache. This direct mapping reduces cache management

3



ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France Guidi et al.

Table 2: STREAM benchmark: as many OpenMP threads as
the number of physical cores per node (top) and one thread
(bottom), 8 bytes per array element, array size = 120000000
(elements), offset = 0 (elements), memory per array = 915.5
MiB, total memory required = 2746.6 MiB. The best time for
eachkernel over 10 runs (excluding the first iteration) is used
to compute the bandwidth. Results in GB/s [29].

Platform Threads Copy Scale Add Triad
Cori Haswell 32 56.6 43.6 49.4 49.7
Cori KNL 64 247.9 250.3 257.1 260.0
AWS r5dn.16xlarge 32 181.9 127.6 143.9 144.9
AWS c5.18xlarge 36 135.7 106.9 120.4 120.3
Cori Haswell 1 18.0 11.3 12.6 12.6
Cori KNL 1 12.1 6.8 8.4 7.4
AWS r5dn.16xlarge 1 11.1 12.5 13.2 13.1
AWS c5.18xlarge 1 11.0 12.6 13.5 13.6

complexity, but can significantly increase cache thrashing, resulting
in a high rate of cache misses and main memory accesses [33].

Looking only at these single core results, one might suspect that
the virtualization overhead could prevent cloud instances from fully
exploiting the potential of their caches. However, our results, which
measure the performance of the whole memory system, discourage
this hypothesis, as shown in the next microbenchmark.

Memory Bandwidth. To measure memory bandwidth when
data does not fit in the system cache, we run the STREAM bench-
mark [29]. The results in Table 2 show that the performance dif-
ference between Cori Haswell and AWS R5 and C5 (Figure 1) is
reversed in favor of the cloud clusters when all available cores are
used if the data does not fit in the platforms’ caches.

Cori KNL has the higher memory bandwidth thanks to its on-chip
multi-channel DRAM (MCDRAM) chip of 16GB. Looking at plat-
forms without on-chip memory, cloud instances show a significantly
higher memory bandwidth than the corresponding HPC platform.
System age and newer cloud hardware can explain this performance.
These results suggest that a faster hardware turnaround time could
benefit not only computationally intensive applications, but also
data-intensive applications. In addition, these results discredit the
hypothesis that virtualization overhead is a major limitation of
today’s cloud computing.

Inter-Node Communication. To study network performance,
we measure bandwidth and latency in a multinode setting. In our
experiments, we use openmpi-4.0.2 as the MPI implementation.
For Cori Haswell and KNL, we ran the benchmark suite with both
openmpi-4.0.2 and the default cray-mpi. They provided similar
performance, and we decided to report only the results for OpenMPI
for clarity and consistency with the cloud instances.

Figure 2 uses one process per node to show point-to-point band-
width (left) and latency (right). Our results show peak bandwidth
of about 86 Gbit/s for AWS R5 and 90 Gbit/s for AWS C5, while
Cori Haswell and Cori KNL show peak bandwidths of 74 and 64
Gbit/s, respectively. Considering that the two Cori systems share the
same network, one would expect the same network performance,
however, their performance in Figure 2 are significantly different.
This difference can be attributed to the overhead of MPI function
calls, which are expensive and penalise lower frequency Cori KNL

Summit Breakdown H. sapiens

Figure 2: OSU MPI microbenchmark injection bandwidth
(left) and point-to-point latency (right) in log-log scale. Us-
ing two nodes with one process per node on Cori Haswell,
Cori KNL, AWS R5, and AWS C5.

Summit Breakdown H. sapiens

Figure 3: OSUMPImicrobenchmark MPI_Alltoall latency on
twonodes (left) and on eight nodes (right) in log-log scale. On
Cori Haswell, AWS R5 and C5 we use 32 processes per node,
while on Cori KNL we use 64 processes per node.

cores that cannot match the performance of Cori Haswell nodes.
Our results are consistent with those presented by GASNet [22].

Cloud instances outperform HPC systems in both bandwidth and
latency. Until recently, the lack of a low-latency network has been
consistently identified as the main bottleneck of cloud computing
for scientific applications [23, 35, 44]. Our results show that modern
cloud computing has made significant advances in networking tech-
nology that provide cloud instances with HPC-competitive network
performance.

Figure 3 shows the MPI_Alltoall latency on 𝑃=2, 8. For small
message sizes, Cori Haswell dominates the other platforms on two
nodes; the gap decreases as the number of nodes is increased. The
differences between Cori Haswell and KNL are due to the cost of
MPI calls on the two different processors. Also, the different number
of processes per node in this experiment illustrates the difference
between the two Cori systems. On two nodes, the gap decreases as
the message size increases, especially when comparing Cori Haswell
and AWS R5, whose performance almost overlaps at large message
sizes. AWS R5 shows similar performance to Cori Haswell on eight
nodes, except for small message sizes. Looking only at the historical
results, one would expect the cloud instances to lose performance
and the gap to grow as the number of nodes increases. On the con-
trary, our results show significant improvements, so one can expect

4



10 Years Later: Cloud Computing is Closing the Performance Gap ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France

Table 3: Characterization of n-body using perf run on a sin-
gle core. Page size = 4KB, problem size: 1M.
Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)
Cori Haswell 414.7 367.2 11,347.8 461.7
Cori KNL 415.4 367.4 11,220.1 1,736.5
AWS r5dn.16xlarge - 367.2 - 486.9
AWS c5.18xlarge 427.2 367.2 21,457.4 480.6

Table 4: Characterization of FFT using perf run on a single
core. Page size = 4KB, problem size: 50K.
Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)
Cori Haswell 782.1 9,766.8 871.5 312.4
Cori KNL 784.9 9,766.8 20,915.0 2,348.1
AWS r5dn.16xlarge - 9,767.5 - 303.3
AWS c5.18xlarge 1,097.9 9,766.6 2,953.6 335.8

better performance scaling as the number of nodes increases. AWS
R5 performs as we would expect given its performance in the previ-
ous microbenchmark, while AWS C5 is far from Cori Haswell. Its
advertised network bandwidth is about 3× lower than Cori Haswell
and since it is a compute-optimized instance, we suspect it may
suffer from network contention.

Our results suggest that the place we would expect HPC to retain
an advantage is in applications with many small messages. Algorith-
mic techniques, however, typically try to avoid this situation. These
results have important implications for communication-intensive
applications that have not historically benefited from cloud com-
puting due to their bandwidth requirements.

3.3 A User-Application View
In this section, we first measure and compare the serial runtime of
the applications and analyze the single-core performance of the ap-
plications to better understand the runtime differences and similari-
ties between the machines. Then, we study the parallel performance
of the applications in a multinode environment.

3.3.1 Serial Performance. In Tables 3 and 4, we report the single
core performance for the N-Body simulation and the FFT, respec-
tively. In both applications, Cori KNL has a significantly higher run-
time than the other machines. Its poor performance can be justified
by the lower frequency of its processor and the poor performance of
its memory system. Cori KNL’s clock speed is about half that of the
other cores in the study, and it needs all 68 of them to compete with
the (theoretical) GFlop rate of the other 32-36 core nodes. Recall
that the L2 caches on Cori KNL are shared by two cores, while
they are private on the other machines. In fact, the performance
for FFT is relatively worse since it is a more memory intensive ap-
plication than N-Body. Cori Haswell and the two cloud instances
show similar runtime for both applications. Cloud instances have
lower cache performance than Cori Haswell, while they have higher
bandwidth when data can no longer fit in the cache. Since we study
single-core performance here, the lower half of Table 2 shows that
Cori Haswell and the AWS instances have comparable performance
in the single-core STREAM benchmark.

Overall, these results are consistent with the results of our mi-
crobenchmarks and confirm that cloud virtualization overhead has
decreased to a point where application performance is not signifi-
cantly impacted. As a result, cloud instances have comparable run-
time to a HPC system for both applications.

Summit Breakdown H. sapiens

s

Figure 4: The N-Body strong scaling with 1M particles (left)
and the FFT strong scaling with 50K points (right) across the
machines. The number next to the name in the legend indi-
cates the number of processes per node.

3.3.2 Workload Characterization. Recall, when we measure the
runtime of an application, we measure both the processor and the
memory system. Runtime alone is not enough to get a reasonable
understanding of the variables that affect application performance.

Here, we extend our analysis by measuring the number of page
faults, instructions and cache misses for each application on each
platform and comparing the results. A high rate of page swapping-
in/out, cache misses, and a high number of instructions can signif-
icantly slow down applications [6, 28, 38]. On all systems, these
metrics are measured for a process on a single node using perf [41].
Cache misses and instructions are not available for AWS R5. In
particular, it is not easy to get access to accurate hardware counters.
On HPC systems they typically require administrative privileges,
while on cloud systems it can be difficult to separate the effects of
virtualization and gain access to accurate metrics.

Tables 3−4 give the number of page faults on the machines for
the N-Body simulation and the FFT. The number of page faults is
mostly the same and confirms the same behavior across the four
machines. Cori Haswell and Cori KNL automatically load a software
package to increase the page size from 4K to 2M. This setting was
unloaded and disabled to allow a fair comparison between the four
machines. Similarly, the page size could have been increased on
the AWS instances. For simplicity, we chose to reduce the page
size on Cori and do not expect this setting to change the overall
trend of our results. The only significant difference in the number
of instructions is between the Cori systems and AWS C5 for the FFT.
This difference could explain the runtime difference between Cori
Haswell and AWS C5, although it is not large.

Cache misses show a more relevant impact on performance than
page faults and instructions. The Cori systems have similar cache
misses for N-Body simulation, while they show a significant gap
for FFT. Cori KNL’s direct mapped cache significantly penalizes
its performance for a memory-intensive application such as FFT.
AWS C5 has a larger number of cache misses than Cori Haswell
for both applications. This result, combined with AWS C5’s slower
L1 (Figure 1), suggests that cache misses are one of the variables
contributing to the runtime difference between these two machines.

Our workload characterization reveals that cache misses and
memory system performance have the largest impact on single-core
performance. Nevertheless, the resulting runtime differences are

5



ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France Guidi et al.

small, and our analysis shows comparable single-core performance
between Cori Haswell and the cloud instances.

3.3.3 Parallel Performance. In examining parallel performance to
highlight the effect of the network, we report the median of 10 runs
of the application for 𝑃=1, 2, 4, 8. Due to a limit on the number of
instances we can create simultaneously, we were unable to get more
than eight instances in the same placement group, which is critical
for achieving low-latency network performance. AWS support can
increase this limit upon request. Given the varying number of cores
per node of our machines, we normalize our results and specify the
configuration that provides the best performance for each platform.

N-Body Simulation. Figure 4 on the left illustrates the strong
scaling performance across the machine and shows the runtime
split in computation and communication. Our N-Body implementa-
tion uses a recursive doubling algorithm for particle exchange and
therefore runs much faster with the power of two processes. As a
result, all machines achieve their best performance with either 32
or 64 processes per node.

The N-Body simulation is computationally intensive and has a
low 𝐶𝑚/𝐶𝑝 ratio, suggesting a modest impact of the network on
overall runtime. Given the 𝐶𝑚/𝐶𝑝 ratio and the serial performance
of this application, we expect comparable runtimes between Cori
Haswell and the two cloud instances. Cori KNL also has comparable
runtimes, while its 𝑃=8 scaling is significantly worse than the other
three machines. In particular, it uses twice as many processes per
node as the other machines and runs at about half the frequency,
with fewer cache levels and L2 caches shared by two cores.

The MPI_Alltoall microbenchmark shows a significant differ-
ence between the two Cori systems. Remember that the Cori systems
use the same network; however, Cori KNL uses 64 processes per
node instead of 32 and the MPI function calls overload the weaker
KNL cores. The gap is also significant between Cori Haswell and
AWS C5 at any scale, while the gap between Cori Haswell and AWS
R5 is mostly overlapping.

The MPI_Alltoall gap between the two Cori systems is re-
flected in their performance in the N-Body simulation. Therefore,
one would expect AWS C5 to have a larger communication time.
Nonetheless, the performance of AWS C5 is consistent with the
assumption that when the 𝐶𝑚/𝐶𝑝 ratio is low, the network has a
limited impact on the overall application runtime.

Overall, AWS R5 is the fastest platform, with Cori Haswell and
AWS C5 having the same performance at 𝑃=8. The remarkable
comeback of Cori Haswell might be due to fitting data into the
larger L3 cache of Cori Haswell. The N-Body simulation scales
superlinearly − on all machines except Cori KNL. We are familiar
with this implementation and know its superscaling behavior, which
can be briefly explained as the “cache effect”, meaning that as the
number of nodes increases, more data fits into the cache.

Our results confirm that cloud computing can be more suitable
than HPC systems for computationally intensive applications [44]
and that modern cloud computing can provide competitive network
performance to HPC.

Fast Fourier Transform. Figure 4 shows the strong scaling per-
formance of the FFT (right) and splits the runtime into computation
and communication. The library FFTW computes multiple FFTs
and measures their execution times to find the optimal plan that

achieves the best performance for each machine. We use these opti-
mal implementations. Since the optimal plan selected by FFTW is
based on a collection of MPI_Sendrecvs, the results in Figure 2 are
relevant to the following analysis.

FFT has a higher𝐶𝑚/𝐶𝑝 ratio than the N-Body simulation, and as
expected, Figure 4 shows that the communication overhead is much
higher than in the previous application and can take more than 50%
of execution time. There is a consistent spike in communication at
𝑃=4, which we suspect is due to implementation details of FFTW.
On all machines, the overall scaling of the FFT is sublinear, mainly
due to communication overhead. AWS R5 is the fastest platform,
both in terms of total and communication time. It is followed by
Cori Haswell. The computation times of Cori KNL and AWS C5 are
comparable, but AWS C5 has a higher communication overhead,
making it the slowest platform in this benchmark.

Despite comparable performance for point-to-point communica-
tion (Figure 2), the cloud instances exhibit different performance
for all processes on the node involved in the communication (Fig-
ure 3). AWS C5 exhibits significantly worse performance for the
MPI_Alltoall benchmark, which explains the difference in com-
munication performance between the two AWS instances for the
FFT results (Figure 4). AWS R5 is optimized for memory-intensive
workloads, while AWS C5 is optimized for compute-intensive work-
loads. Moreover, AWS C5 uses Amazon’s in-house EFA interconnect,
whose advertised bandwidth is 3× lower than R5’s. Our hypothesis
is that as the number of processes increases, the C5 interconnect is
more subject to contention than R5’s network.

AWS R5 is the best performing platform in this benchmark, as
one would expect based on the results of our microbenchmarks and
workload characterization. The communication time on AWS R5 is
comparable to or even lower than that on HPC systems. Thus, it is
not only the newer processor that contributes to the high perfor-
mance for this application, but also the interconnect speed. Previous
literature has shown that FFTs for cloud instances have significantly
lower performance than for HPC systems. The Magellan report [44]
describes the FFT as 4 to 20× slower than the HPC systems con-
sidered, running on 8 processes per node and 𝑃=8. Our result is an
important validation of the recent advances that cloud computing
has made in networking technology to close the performance gap
with HPC.

4 CONCLUSIONS AND FUTUREWORK
Our work investigated the performance gap between current HPC
and cloud computing systems to understand the nature of their
differences and guide the design of future cloud systems. In this
work, we analyzed the cross-stack performance, from single core
compute power, to memory subsystem, inter-node communication
performance, and overall application performance.

In particular, we highlight that cloud computing can offer a
greater variety of hardware configurations and newer technology
due to continuous procurement cycles. If a study requires the latest
technology or a particular memory size and processor type, these
are more likely to be available in the cloud, while a given HPC
system may offer only one or a small set of standardized resources
suitable for typical scientific applications. Our results contradict ear-
lier findings on cloud interconnects, namely that networks for HPC

6



10 Years Later: Cloud Computing is Closing the Performance Gap ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France

instances within the cloud have improved to the point of providing
competitive performance to that of HPC systems at modest scales.

On the other hand, cloud policies can limit what is available
within an HPC cloud offering, e.g., one may need to make a request
to the vendor to use more than a few instances, and the latest node
architectures may not be available with the fast network. In contrast,
in traditional HPC systems, the entire system typically has the same
network, whose performance is mostly determined by the age of
the system, as the procurement cycles are typically longer.

Our results showed that the compute and memory subsystem
performance of cloud instances is competitive with HPC systems.
This is consistent with historical results demonstrating cloud com-
petitiveness for compute-dominated workloads.

Cloud systems offered higher bandwidth and lower latency than
HPC systems for point-to-point communication. In the FFT bench-
mark, which is bisection-bandwidth limited, the performance of the
compute-optimized cloud platform dropped, possibly due to network
contention, while the platform optimized for memory-intensive
applications significantly outperformed all other machines. This
represents a significant advance in cloud computing technology, as
the performance of multinode FFT applications on HPC systems
has historically been better than on cloud systems [44]. A larger
scale performance study focusing on machine balance would be an
interesting future work to analyze the gap on a larger scale.

Our work shows that today’s cloud computing can provide com-
petitive performance to HPC, not only for compute-intensive appli-
cations, but also on memory- and communication-intensive work-
loads. The recent performance improvements of cloud instances
may be due to the increasing demands of deep learning [24, 27],
potentially benefiting seemingly unrelated computational science
as a byproduct. It is worth noting that our study focused on one
cloud provider and it would be important to replicate the study on
other providers to draw more generalized conclusions. Given our
results, an important future work would be a comparison focusing
on elasticity and resource management, which together with our
results would allow users to make informed decisions about which
system is better suited for their applications.

ACKNOWLEDGMENTS
This work is supported by the Advanced Scientific Computing Re-
search (ASCR) program within the Office of Science of the DOE
under contract number DE-AC02-05CH11231. We used resources
of the NERSC supported by the Office of Science of the DOE under
Contract No. DEAC02-05CH11231. This research was also supported
by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. AWS Cloud Credits pro-
vided through the AWS Cloud Credits for Research program. Thanks
to Rohan Bavishi, Rohan Padhye, Neesha Zerin, and James Demmel
for useful suggestions and valuable discussions.

REFERENCES
[1] Sadaf R Alam, Richard F Barrett, Jeffery A Kuehn, Philip C Roth, and Jeffrey S

Vetter. 2006. Characterization of scientific workloads on systems with multi-core
processors. In IEEE international symposium on workload characterization. IEEE,
225–236.

[2] Francis Alexander, Ann Almgren, John Bell, Amitava Bhattacharjee, Jacqueline
Chen, Phil Colella, David Daniel, Jack DeSlippe, Lori Diachin, Erik Draeger, et al.

2020. Exascale applications: skin in the game. Philosophical Transactions of the
Royal Society A 378, 2166 (2020), 20190056.

[3] Amazon Web Services. [n.d.]. Amazon EC2 C5 Instances — Amazon Web Services
(AWS). https://aws.amazon.com/ec2/instance-types/c5/.

[4] Amazon Web Services. [n.d.]. Elastic Fabric Adapter — Amazon Web Services.
https://aws.amazon.com/hpc/efa/.

[5] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. 2006. The landscape of
parallel computing research: A view from Berkeley. (2006).

[6] Vlastimil Babka, Lukáš Marek, and Petr Tuma. 2009. When misses differ: Inves-
tigating impact of cache misses on observed performance. In 15th International
Conference on Parallel and Distributed Systems. IEEE, 112–119.

[7] Taylor Barnes, Brandon Cook, Jack Deslippe, Douglas Doerfler, Brian Friesen,
Yun He, Thorsten Kurth, Tuomas Koskela, Mathieu Lobet, Tareq Malas, et al. 2016.
Evaluating and optimizing the nersc workload on knights landing. In 2016 7th
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS). IEEE, 43–53.

[8] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation computer
systems 25, 6 (2009), 599–616.

[9] Phillip Colella. 2004. Defining software requirements for scientific computing.
[10] Cray. [n.d.]. Cray XC Series Network. https://www.cray.com/sites/default/files/

resources/CrayXCNetwork.pdf.
[11] Mark Crovella, Ricardo Bianchini, Thomas LeBlanc, Evangelos Markatos, and

Robert Wisniewski. 1992. Using communication-to-computation ratio in parallel
program design and performance prediction. In Proceedings of the Fourth IEEE
Symposium on Parallel and Distributed Processing. IEEE, 238–245.

[12] Douglas Doerfler, Brian Austin, Brandon Cook, Jack Deslippe, Krishna Kandalla,
and Peter Mendygral. 2018. Evaluating the networking characteristics of the Cray
XC-40 Intel Knights Landing-based Cori supercomputer at NERSC. Concurrency
and Computation: Practice and Experience 30, 1 (2018), e4297.

[13] Douglas Doerfler, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook,
Thorsten Kurth, Mathieu Lobet, Tareq Malas, Jean-Luc Vay, and Henri Vincenti.
2016. Applying the Roofline Performance Model to the Intel Xeon Phi Knights
Landing Processor. In High Performance Computing, Michela Taufer, Bernd Mohr,
and Julian M. Kunkel (Eds.). Springer International Publishing, Cham, 339–353.

[14] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LINPACK bench-
mark: past, present and future. Concurrency and Computation: practice and experi-
ence 15, 9 (2003), 803–820.

[15] Marquita Ellis, Evangelos Georganas, Rob Egan, Steven Hofmeyr, Aydın Buluç,
Brandon Cook, Leonid Oliker, and Katherine Yelick. 2017. Performance charac-
terization of de novo genome assembly on leading parallel systems. In European
Conference on Parallel Processing. Springer, 79–91.

[16] Marquita Ellis, Giulia Guidi, Aydın Buluç, Leonid Oliker, and Katherine Yelick.
2019. diBELLA: Distributed Long Read to Long Read Alignment. In Proceedings of
the 48th International Conference on Parallel Processing. 1–11.

[17] Constantinos Evangelinos and Chris Hill. 2008. Cloud computing for parallel
scientific HPC applications: Feasibility of running coupled atmosphere-ocean
climate models on Amazon’s EC2. CCA-08 2, 2.40 (2008), 2–34.

[18] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, D Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2009. Above
the clouds: A Berkeley view of cloud computing. Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS 28, 13 (2009).

[19] Matteo Frigo. 1999. A fast Fourier transform compiler. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation.
169–180.

[20] Matteo Frigo and Steven G Johnson. 1997. The fastest fourier transform in the west.
Technical Report. Massachusetts Institute of Technology, Cambridge.

[21] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-
tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.
IEEE, 1381–1384.

[22] GASNet. [n.d.]. GASNet-EX Performance Examples. https://gasnet.lbl.gov/
performance/.

[23] Abhishek Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant V Kale, Richard
Kaufmann, Bu-Sung Lee, Verdi March, Dejan Milojicic, and Chun Hui Suen. 2014.
Evaluating and improving the performance and scheduling of HPC applications
in cloud. IEEE Transactions on Cloud Computing 4, 3 (2014), 307–321.

[24] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620–629.

[25] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. 2010. Case
study for running HPC applications in public clouds. In Proceedings of the 19th

7

https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/hpc/efa/
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://gasnet.lbl.gov/performance/
https://gasnet.lbl.gov/performance/


ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France Guidi et al.

ACM International Symposium on High Performance Distributed Computing. 395–
401.

[26] Shigeru Ida and Junichiro Makino. 1992. N-Body simulation of gravitational
interaction between planetesimals and a protoplanet: I. velocity distribution of
planetesimals. Icarus 96, 1 (1992), 107–120.

[27] Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. 2020. A domain-specific supercomputer
for training deep neural networks. Commun. ACM 63, 7 (2020), 67–78.

[28] Monica D Lam, Edward E Rothberg, and Michael E Wolf. 1991. The cache perfor-
mance and optimizations of blocked algorithms. ACM SIGOPS Operating Systems
Review 25, Special Issue (1991), 63–74.

[29] John D McCalpin. 1995. STREAM benchmark. 22 (1995). http://www.cs.virginia.
edu/stream/ref.html

[30] Peter Mell and Tim Grance. 2011. The NIST definition of cloud computing. (2011).
[31] Philip J. Mucci. [n.d.]. LLCbench Home Page. http://icl.cs.utk.edu/llcbench/index.

htm.
[32] Hamid Mushtaq, Frank Liu, Carlos Costa, Gang Liu, Peter Hofstee, and Zaid

Al-Ars. 2017. Sparkga: A spark framework for cost effective, fast and accurate
dna analysis at scale. In Proceedings of the 8th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics. 148–157.

[33] NERSC. [n.d.].
[34] NERSC. [n.d.]. Interconnect - NERSC Documentation. https://docs.nersc.gov/

systems/cori/interconnect/.
[35] Marco AS Netto, Rodrigo N Calheiros, Eduardo R Rodrigues, Renato LF Cunha,

and Rajkumar Buyya. 2018. HPC cloud for scientific and business applications:
Taxonomy, vision, and research challenges. ACM Computing Surveys (CSUR) 51, 1
(2018), 1–29.

[36] Dhabaleswar K. Panda. 2018. OSU Micro-Benchmarks.

[37] James Reinders. 2005. VTune performance analyzer essentials. Intel Press (2005).
[38] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing cachemisses using

hardware and software page placement. In Proceedings of the 13th international
conference on Supercomputing. 155–164.

[39] Top500. [n.d.]. Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries intercon-
nect | TOP500. https://www.top500.org/system/178924/.

[40] George Tsouloupas and Marios D Dikaiakos. 2006. Characterization of computa-
tional grid resources using low-level benchmarks. In Second IEEE International
Conference on e-Science and Grid Computing. IEEE, 70–70.

[41] Vincent M Weaver. 2013. Linux perf_event features and overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized Systems,
FastPath, Vol. 13.

[42] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and method-
ological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24–36.

[43] Katherine Yelick, Aydın Buluç, Muaaz Awan, Ariful Azad, Benjamin Brock, Rob
Egan, Saliya Ekanayake, Marquita Ellis, Evangelos Georganas, Giulia Guidi, Steven
Hofmeyr, Oguz Selvitopi, Cristina Teodoropol, and Leonid Oliker. 2020. The
parallelism motifs of genomic data analysis. Philosophical Transactions of the
Royal Society A 378, 2166.

[44] Katherine Yelick, Susan Coghlan, Brent Draney, and Richard S. Canon. 2011. The
Magellan Report on Cloud Computing for Science. US Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research (ASCR) 3.

[45] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple Linux
utility for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 44–60.

8

http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
http://icl.cs.utk.edu/llcbench/index.htm
http://icl.cs.utk.edu/llcbench/index.htm
https://docs.nersc.gov/systems/cori/interconnect/
https://docs.nersc.gov/systems/cori/interconnect/
https://www.top500.org/system/178924/

	Abstract
	1 Introduction
	2 Background
	2.1 Low-Level Benchmark
	2.2 User Application

	3 Empirical Methodology
	3.1 Experimental Setting
	3.2 A Hardware and System View
	3.3 A User-Application View

	4 Conclusions and Future Work
	Acknowledgments
	References



