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Abstract 

 

Enhancing Hydrological Prediction through Physics-Informed Machine Learning Models and 

Leveraging Data Science for Predictions in Ungauged Basins 

 

by 

 

Liang Zhang 

 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Laurel G. Larsen, Chair 

 

 

Data science is a fundamental tool in hydrology nowadays. The significance of data science lies 

in its ability to confront the multifaceted challenges posed by global warming, facilitating a 

deeper comprehension of hydrological processes, and enhancing the accuracy of runoff 

predictions. This dissertation embarks on a journey aimed at advancing our insights into 

hydrological processes, refining the physical-consistency of runoff predictions, and addressing 

the intricate task of forecasting hydrological behaviors in ungauged basins through the 

application of data science techniques. Comprising three main bodies of work, this dissertation 

unfolds a comprehensive exploration of these objectives. The first contribution (Chapter 2) 

centers on the synthesis of extensive hydrological datasets and subsequent analysis of 

hydrological trends under recent warming. Chapter 3 explores a physics-informed machine 

learning model designed for predicting streamflow tested across different scenarios. Lastly, the 

fourth chapter evaluates the potency of various watershed clustering mechanisms for predicting 

within ungauged basins (PUB). 

 

Chapter 2 addresses a long-standing limitation in comparative hydrology: the scarcity of 

geographically extensive, inter-compatible monitoring data on comprehensive water balance 

stores and fluxes. These limitations have, for example, restricted comprehensive assessment of 

multiple dimensions of wetting and drying related to climate change and hampered 

understanding of why widespread changes in precipitation extremes are uncorrelated with 

changes in streamflow extremes. In this chapter, both the requirements of developing a new data 

synthesis product and using this data product to detect trends in the frequencies and magnitudes 

of a comprehensive set of hydroclimatic and hydrologic extremes are addressed. The 

Comprehensive Hydrologic Observatory Sensor Network (CHOSEN), a database encompassing 
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hydroclimatic and hydrologic variables from 30 diverse study areas across the United States is 

introduced. And a reproducible data pipeline that ensures data quality and accessibility is 

developed. Analyzing the CHOSEN dataset, the hotspots of hydroclimatic extremes in regions 

like the Pacific Northwest, New England, Florida, and Alaska are uncovered. The analysis 

reveals regional coherence in extreme streamflow wetting and drying trends, shedding light on 

the complex interplay between climate-induced changes and hydrologic processes.  

 

Chapter 3 is built upon the development of the CHOSEN dataset to create subsequent analyses 

and a new runoff prediction model. The challenge of a lack of interpretability and physical 

consistency in machine learning models used for streamflow prediction is confronted. To address 

this issue, a physics-informed long short-term memory (PILSTM) model is proposed, 

incorporating water balance restrictions for runoff prediction. A physical rainfall-runoff model is 

combined with the long short-term memory (LSTM) model, and it is applied to eight intensively-

monitored watersheds in the United States, selected based on data length and hydroclimatic 

diversity. LSTM, physical, and PILSTM models are used under non-stationary scenarios and 

data-scarce situations. Results show that the PILSTM exhibits similar or better performance to 

the LSTM counterpart in terms of multiple metrics and under various scenarios. Additionally, 

based on the analysis of feature importance, it is shown that adding physical constraints could 

potentially guide machine learning models to generate predictions that are more consistent with 

known physical processes. 

 

Chapter 4 explores the effectiveness of watershed clustering, a conventional practice in 

watershed regionalization, in combination with neural networks for predicting in ungauged 

basins. Traditionally, watershed clustering involves grouping basins with similar characteristics 

to facilitate knowledge transfer from monitored to ungauged basins within the same cluster. 

Recent advancements in data science, however, suggest that clustering may not be necessary. 

This study aims to investigate this matter and presents a comparative analysis of various 

watershed clustering methodologies. The concept is explored by directly integrating static 

watershed attributes into predictive models for streamflow (entity-aware LSTM). The analysis 

covers 415 sites from the CAMELS (Catchment Attributes and Meteorology for Large-sample 

Studies) dataset. Results indicate that pre-clustering generally does not enhance the performance 

of entity-aware LSTM models for predicting in ungauged basins. Models incorporating 

clustering results either match or perform worse overall compared to global models that directly 

integrate clustering features as static inputs. Notably, among the different features used for 

clustering, hydrological signatures prove most effective in extracting information for use in the 

LSTM model. 

 

Chapter 2 addresses crucial gaps in data availability, while the subsequent chapters explore novel 

approaches for forecasting streamflow across diverse scenarios and ungauged basins, leveraging 

the power of data science. In Chapter 3, the integration of physical and machine learning models 
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is pursued, while Chapter 4 focuses on harnessing data science methodologies for predicting in 

ungauged basins. Collectively, these chapters offer an exploration of the intersection between 

data science and hydrology. This dissertation emphasizes the transformative potential of 

interdisciplinary strategies, which bridge data-driven insights with the dynamics of hydrological 

systems. 
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Chapter 1 

Introduction 
Hydrological research has reached a juncture where both physical models and machine learning 

models coexist and flourish. Physical models are rooted in the governing equations of 

hydrological processes and leverage expert knowledge of catchments, while machine learning 

models directly discern patterns from input data, minimizing a predefined loss function to make 

predictions. Model training in machine learning is accomplished by minimizing the loss function, 

which is usually defined as the difference between the outputs of the model and the target values. 

In contrast, physical models attain performance optimization by calibrating model parameters, a 

process involving the exploration of various values or curve-fitting. 

 

The parameters derived from physical models hold additional value for watershed 

characterization, as they often correlate with catchment attributes such as soil properties, 

vegetation cover, watershed topography, soil moisture content, and characteristics of 

groundwater aquifers (Werkhoven et al., 2008). These parameters, once determined, contribute 

to an enhanced understanding of catchment dynamics. Physical models can be further 

categorized based on their spatial distribution, ranging from simple spatially lumped conceptual 

models to semi-distributed models and fully distributed models, the latter exhibiting the highest 

degree of spatial distribution (Fleming & Gupta, 2020). Distributed models function as 

mechanistic representations of catchments, simulating natural processes continuously in both 

time and space. Consequently, these models necessitate an extensive dataset comprising 

information about watershed topography and measurements of numerous variables across space. 

In contrast, lumped models distill hydrological processes into aggregated components at the 

catchment level, such as groundwater recharge and snowmelt, combining these elements to 

calculate discharge.  

 

The use of statistical models in hydrology has evolved significantly, from the century-plus-old 

use of simple regression models for representing hydrological trends to the more recent use of 

machine learning models. Sophisticated machine learning models, particularly deep neural 

networks, have emerged for predictive purposes in hydrology as data science knowledge has 

advanced and a wealth of hydrological data for analysis has become available, owing to extended 

measurement networks and increased use of remote sensing products (Lange & Sippel, 2020). 

Deep learning and machine learning, in particular, have made significant contributions to 

modeling and predicting hydrological processes, climate change impacts, and earth systems. 

Recent studies show the critical importance of these strategies in improving hydrology model 

accuracy, resilience, efficiency, computational cost-effectiveness, and overall model 

performance (Ardabili et al., 2020). 

https://www.zotero.org/google-docs/?broken=zoKofj
https://www.zotero.org/google-docs/?broken=CAkiQM
https://www.zotero.org/google-docs/?broken=Uhm6sk
https://www.zotero.org/google-docs/?broken=AONhH9
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Despite the demonstrated superior predictive performance of machine learning models compared 

to physical models in numerous hydrological studies and significant advancements in their 

application to address hydrological questions (Figure 1), the direct implementation of these 

models for practical purposes, such as guiding water resource management and flood prediction, 

lags behind the progress achieved in research (Fleming et al., 2021). A prominent concern 

revolves around the inherent omission of physical processes and components in data-driven 

models. Unlike physical models, where hydrologists can discern the physical processes and 

evaluate the plausibility of predictions based on their understanding, certain machine learning 

models sacrifice interpretability for predictive power. The challenge is particularly pronounced 

with deep neural networks, which exhibit remarkable predictive capabilities but prove 

challenging to interpret and explain. Hydrologists remain cautious about relying solely on these 

artificial neural networks for predictions that guide practical decision-making, especially when 

the prediction path and the underlying hydrological behaviors are not well understood. The trade-

off between interpretability and predictive power introduces hesitancy in embracing machine 

learning models for real-world applications in hydrology. 

 

 
Figure 1. Comparison between the LSTM model and the SAC-SMA (Sacramento Soil Moisture 

Accounting Model) model for predicting streamflow in CAMELS sites (Kratzert, Klotz, 

Herrnegger, et al., 2019). 

 

Addressing this challenge and seeking to bridge the gap between machine learning and solving 

problems in hydrology, a novel research field has emerged known as physics-informed machine 

learning. Hybrid models, integrating physical knowledge into machine learning frameworks, 

have been explored across various physics-related domains, including material science, quantum 

chemistry, biomedical science, turbulence modeling, and earth science (Karpatne et al., 2017; 

Willard et al., 2020). The infusion of physical insights into machine learning models has resulted 

in enhancements in model accuracy, interpretability, and robustness for out-of-sample cases (Jia 

et al., 2019; Konapala et al., 2020; Lu et al., 2021; Xie et al., 2021). This progress opens avenues 

for the practical implementation of machine learning models. Notably, Frame et al., (2021) 

applied Long Short-Term Memory (LSTM) models to enhance the US National Water Model 

(NWM) using two distinct combinations of input variables, showcasing superior performance 

https://www.zotero.org/google-docs/?broken=txptPh
https://www.zotero.org/google-docs/?broken=Yzv2S5
https://www.zotero.org/google-docs/?broken=Yzv2S5
https://www.zotero.org/google-docs/?broken=S7Jkpi
https://www.zotero.org/google-docs/?broken=S7Jkpi
https://www.zotero.org/google-docs/?broken=bPh1pT
https://www.zotero.org/google-docs/?broken=bPh1pT
https://www.zotero.org/google-docs/?broken=2mIYY3
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compared to the stand-alone NWM in terms of Nash-Sutcliffe Efficiency (NSE) and other 

metrics. 

 

Regardless of the rapid and advanced development of machine learning models in hydrology, the 

foundational support for their progress lies in the availability of well-documented and high-

quality dataset. A persistent challenge in the hydrological community is the scarcity of high-

quality, publicly available, and large-sample datasets. Hydrologists often must invest 

considerable time in screening and cleaning data before conducting analyses. Nevertheless, two 

large-sample datasets that have significantly contributed to advancing hydrological studies are 

the CAMELS dataset (Addor et al., 2017; Newman et al., 2015) and the MOPEX dataset (Duan 

et al., 2006). These resources are invaluable in supporting comparative hydrological studies and 

enhancing the understanding of hydrological processes. These hydrological datasets still have 

limitations, however, such as non-up-to-date data, meteorological inputs being modeled rather 

than field measurements, and unclear and non-reproducible data preprocessing procedures. For 

sites where an abundance of data variables are collected in the field, such as sites from Long-

Term Ecological Research observatories (LTER) and Critical Zone Observatories (CZO), the 

data are collected and recorded separately and lack standardized formats for comparative 

analysis. While efforts such as CUAHSI HydroShare aim to curate these diverse data sources, 

hydrologists still face challenges in checking, harmonizing formats, and ensuring comparability 

for analysis when utilizing these data for comparative studies.  

 

Another persistent challenge relevant to input data quality revolves around predicting 

hydrological phenomena in locations lacking long-term observations altogether, commonly 

known as PUB (Prediction in Ungauged Basins) (Hrachowitz et al., 2013). Two primary 

strategies are used to address this challenge. For simple models with a limited number of 

parameters, researchers have explored relationships between calibrated parameters and 

catchment attributes. This allows the prediction of model parameters for ungauged basins based 

on catchment characteristics (bottom-up approach). Regionalizations, grouping watersheds with 

similar hydrologic signatures and fitting forecasting models for each cluster, achieve a similar 

goal (top-down approach). Unlike physical models, where parameters are linked to static 

catchment features, applying the bottom-up method to ungauged basins with machine learning 

models is not intuitive and especially not practical for highly parameterized models such as deep 

neural networks. Researchers have successfully pre-trained machine learning models with 

extensive data from monitored sites and applied them to ungauged basins (Kratzert, Klotz, 

Herrnegger, et al., 2019), providing an opportunity to employ deep learning models for PUB 

problems. However, further analysis is required, such as assessing the applicability of the 

bottom-up approach and exploring how classification and regionalization can enhance machine 

learning models for PUB. 

 

https://www.zotero.org/google-docs/?broken=99g450
https://www.zotero.org/google-docs/?broken=juO4On
https://www.zotero.org/google-docs/?broken=juO4On
https://www.zotero.org/google-docs/?broken=2chUg9
https://www.zotero.org/google-docs/?broken=srS339
https://www.zotero.org/google-docs/?broken=srS339
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In light of the challenges present in hydrology, this dissertation aims to leverage data science 

techniques to improve hydrological predictions and establish a robust data foundation for future 

research. Chapter 2 involves synthesizing a hydrological dataset from intensively monitored 

watersheds and implementing a publicly available data preprocessing pipeline (Zhang et al., 

2021). Additionally, trends pertaining to climate change across the United States are analyzed 

using this synthesized hydrological dataset. Chapter 3 introduces a new physics-informed 

machine learning model that incorporates a single equation hydrological model into LSTM to 

maintain mass balance. The chapter also explores the pretraining of machine learning models on 

a large sample dataset and tests the hybrid model across non-stationary and data-scarce 

scenarios. Integrated gradients are utilized to compare the difference in feature importance with 

and without physical information. Chapter 4 investigates the effectiveness of classification when 

employing neural networks for PUB. Three different sets of hydrological features, including 

static attributes and statistics reflecting dynamic interactions between meteorological time series 

and hydrological signatures, are tested for their efficacy in watershed clustering. 
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Chapter 2   

CHOSEN: A synthesis of hydrometeorological data from 

intensively monitored catchments and comparative 

analysis of hydrologic extremes1 

2.1 Abstract 

Comparative hydrology has been hampered by limited availability of geographically extensive, 

intercompatible monitoring data on comprehensive water balance stores and fluxes. These 

limitations have, for example, restricted comprehensive assessment of multiple dimensions of 

wetting and drying related to climate change and hampered understanding of why widespread 

changes in precipitation extremes are uncorrelated with changes in streamflow extremes. Here, 

we address this knowledge gap and underlying data gap by developing a new data synthesis 

product and using that product to detect trends in the frequencies and magnitudes of a 

comprehensive set of hydroclimatic and hydrologic extremes. CHOSEN (Comprehensive 

Hydrologic Observatory Sensor Network) is a database of streamflow, soil moisture, and other 

hydroclimatic and hydrologic variables from 30 study areas across the United States. An 

accompanying data pipeline provides a reproducible, semi-automated approach for assimilating 

data from multiple sources, performing quality assurance and control, gap-filling and writing to a 

standard format. Based on the analysis of extreme events in the CHOSEN dataset, we detected 

hotspots, characterized by unusually large proportions of monitored variables exhibiting trends, 

in the Pacific Northwest, New England, Florida and Alaska. Extreme streamflow wetting and 

drying trends exhibited regional coherence. Drying trends in the Pacific Northwest and Southeast 

were often associated with trends in soil moisture and precipitation (Pacific Northwest) and 

evapotranspiration-related variables (Southeast). In contrast, wetting trends in the upper Midwest 

and the Rocky Mountains showed few univariate associations with other hydroclimatic extremes, 

but their latitudes and elevations suggested the importance of changing snowmelt characteristics. 

On the whole, observed trends are incompatible with a ‘drying-in-dry, wetting-in-wet’ paradigm 

for climate-induced hydrologic changes over land. Our analysis underscores the need for more 

extensive, longer-term observational data for soil moisture, snow and evapotranspiration. 

 
1 Zhang, L., Moges, E., Kirchner, J. W., Coda, E., Liu, T., Wymore, A. S., et al. (2021). Chosen: A 
synthesis of hydrometeorological data from intensively monitored catchments and comparative 
analysis of hydrologic extremes. Hydrol. Process. 35 (11). doi:10.1002/hyp.14429 
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2.2 Introduction 

Climatic and hydrologic extremes pose severe risks to human society and infrastructures and 

trigger irreversible transitions in ecosystems (AghaKouchak et al., 2020; Ainsworth et al., 2020; 

Hughes et al., 2019; McClymont et al., 2020). The magnitude and frequency of these extremes 

are increasing as a result of climate change (e.g., Ahn & Palmer, 2016; Pagán et al., 2016; Swain 

et al., 2018; Wentz et al., 2007), which results from basic physical principles. In accordance with 

Clausius-Clapeyron scaling, warmer air holds more moisture, which is associated with projected 

increases in rainfall intensity (Sillmann et al., 2013), the intensity and frequency of tropical 

cyclones (Marsooli et al., 2019), and the amount of water conveyed in atmospheric rivers (Gao et 

al., 2015; Payne et al., 2020). Warmer temperatures also increase potential evapotranspiration 

and are linked to increasing drought severity (Cook et al., 2015; Diffenbaugh et al., 2015). The 

balance between processes that promote catchment drying (e.g., enhanced evapotranspiration) 

and those that promote wetting (e.g., increased precipitation extremes) varies among catchments. 

Therefore, it can be difficult to generalize outcomes of increasing precipitation and temperature 

extremes for hydrological processes.  

 

The difficulty in predicting how increased climatic extremes will impact hydrologic extremes is 

particularly apparent in the discrepancy between the projected and observed association between 

precipitation and discharge extremes. While climate models predict a strong correlation between  

extreme precipitation and extreme flood magnitude (e.g., Pall et al., 2011), observations show  

low correlation spatially and temporally (e.g., Archfield et al., 2016; Berghuijs et al., 2016; 

Blöschl et al., 2017; Do et al., 2020), except for rare floods with recurrence intervals longer than 

10 years (Wasko & Nathan, 2019). Specifically, flood trends are not changing in accordance 

with climate model predictions (Sharma et al., 2018). The need to understand the link between 

changing precipitation and changing flooding has been argued to be one of the grand challenges 

in hydrology (Sharma et al., 2018).  

 

Measurements of soil moisture and other variables indicative of water balance stores and fluxes 

may provide clues critical to reconciling Sharma et al. 's (2018) grand challenge, and, more 

broadly, understanding how shifting climate translates into a range of hydrological outcomes. 

Results of modeling and observational studies that derive (Berghuijs et al., 2016; Byun et al., 

2019; Heidari et al., 2020; Ivancic & Shaw, 2015) or account for measured soil moisture (Wasko 

& Nathan, 2019) or changes in subsurface storage (Slater & Villarini, 2016) suggest that changes 

in hydrologic extremes are attributable to simultaneous shifts in several hydrologic variables, 

with soil moisture or subsurface storage of critical importance. One gap in these analyses is that, 

with the exception of Wasko and Nathan’s (2019) study of Australian catchments, they rely on 

simple models or proxies for soil moisture rather than actual measurements. Meanwhile, the role 

of soil moisture, snow storage, and actual evapotranspiration in governing low-flow extremes 

remains underexplored. Exploration of causes of hydrologic extremes requires hydrologic 

https://www.zotero.org/google-docs/?broken=7ppNWr
https://www.zotero.org/google-docs/?broken=7ppNWr
https://www.zotero.org/google-docs/?broken=GUZ5AH
https://www.zotero.org/google-docs/?broken=GUZ5AH
https://www.zotero.org/google-docs/?broken=Bs2kBl
https://www.zotero.org/google-docs/?broken=Ts09Hb
https://www.zotero.org/google-docs/?broken=5p6gfN
https://www.zotero.org/google-docs/?broken=5p6gfN
https://www.zotero.org/google-docs/?broken=53XgIr
https://www.zotero.org/google-docs/?broken=YlfhPT
https://www.zotero.org/google-docs/?broken=Y7QevW
https://www.zotero.org/google-docs/?broken=Y7QevW
https://www.zotero.org/google-docs/?broken=Y7QevW
https://www.zotero.org/google-docs/?broken=4ql2DR
https://www.zotero.org/google-docs/?broken=vym4ru
https://www.zotero.org/google-docs/?broken=Pfmz4w
https://www.zotero.org/google-docs/?broken=PmY0cR
https://www.zotero.org/google-docs/?broken=PmY0cR
https://www.zotero.org/google-docs/?broken=E8q9st
https://www.zotero.org/google-docs/?broken=E8q9st
https://www.zotero.org/google-docs/?broken=SeI3fY
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databases that synthesize variables beyond the precipitation, temperature, and streamflow 

measurements that are more typically available. 

 

Long-term observational records play an important role in understanding and projecting the 

impact of climate change on hydrological systems. They provide important ground truth for 

hydroclimatic models, highlighting uncertainties in their representation of certain processes (e.g., 

rainfall-runoff processes). Trends detected in the observational record are also commonly 

reliable indicators of future hydroclimatic change (Batibeniz et al., 2020). Despite their potential 

importance, long-term and spatially extensive databases that contain a range of hydrologic 

variables relevant to water-balance partitioning (e.g., soil moisture, snow data, vapor pressure 

deficit) are virtually nonexistent. One reason for limited spatial coverage is that extensive 

measurements of soil moisture and snow-water content are impractical to measure with gauging 

stations and uncertain when inferred from current remote sensing techniques, with estimates 

characterized by limited volumetric representativeness and high uncertainty (Ford & Quiring, 

2019). Further, hydrologically comprehensive datasets are available at only a limited, albeit 

growing, number of catchments, often referred to as hydrologic observatories. Synthesis across 

these observatories has been hindered by a lack of standardization in variable naming 

conventions, file formats, time steps, metadata, and data processing procedures, which in turn 

has slowed the development of the subfield of comparative hydrology (Gupta et al., 2014). 

 

Here we respond to the dearth of long-term, regionally extensive, hydrologically comprehensive 

databases by presenting CHOSEN (DOI: 10.5281/zenodo.4060384), the Comprehensive 

Hydrologic Observatory SEnsor Network database, a compilation of publicly available 

hydrometeorological and hydrological measurements from 30 LTER (Long-Term Ecological 

Research observatories; Servilla & Brunt, 2011), CZO (Critical Zone Observatories; Zaslavsky 

et al., 2011), and university field stations in the United States (Kakalia et al., 2021; McNamara, 

2017; R. S. Petersky & Harpold, 2018). We developed CHOSEN using a novel operational 

pipeline that overcomes the challenges associated with a lack of standardization across 

observatories. The data pipeline ensures accessibility and reproducibility of the data cleaning 

procedures including quality control, gap-filling, and file formatting, thereby facilitating the 

expansion of CHOSEN to additional times and catchments. An open-source Jupyter Notebook 

tutorial with a user interface facilitates the modification of this pipeline to suit the needs of other 

investigators. Reproducible data analysis pipelines such as this one are an essential part of a 

modern practice of environmental science that requires rapid data assimilation capabilities to 

enable rapid response (Fer et al., 2021). 

 

Although CHOSEN was developed to facilitate a range of comparative hydrology studies, we 

demonstrate another application here in evaluating associations between observed trends in 

streamflow extremes (both wet and dry) and a wide range of climatic and other hydrologic 

extremes from a water-balance perspective. Given the limited number of hydrologic 

https://www.zotero.org/google-docs/?broken=3vOZK4
https://www.zotero.org/google-docs/?broken=ZAU0HK
https://www.zotero.org/google-docs/?broken=ZAU0HK
https://www.zotero.org/google-docs/?broken=JvSirN
https://gitlab.com/esdl/chosen
https://zenodo.org/record/4060384#.YQZM8JNKhpI
https://www.zotero.org/google-docs/?broken=qPFStp
https://www.zotero.org/google-docs/?broken=jS1fgB
https://www.zotero.org/google-docs/?broken=jS1fgB
https://www.zotero.org/google-docs/?broken=5KKRmp
https://www.zotero.org/google-docs/?broken=5KKRmp
https://gitlab.com/esdl/chosen/-/tree/master/PipelineTutorial
https://www.zotero.org/google-docs/?broken=tHo1oD
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observatories and the well-known difficulty in performing attribution analysis on trends in the 

observational record (Sillmann et al., 2013), this phenomenological analysis represents early 

progress toward resolving the challenge of understanding the relationship between hydrological 

and climatic extremes. The primary contributions of this work are to establish a baseline trend 

assessment for extreme values (high and low, for both magnitude and frequency of the extreme 

events) and to provide ground-truthing for extreme event detection and attribution analyses that 

rely on modeled/derived water-balance quantities.  

 

We use CHOSEN to ground-truth four main predictions. First, both low extremes and high 

extremes in discharge and associated hydroclimatic variables are increasing in magnitude and 

frequency over a broad spectrum of study areas, with significant trends in frequency more 

common than trends in magnitude, as has been observed in streamflow records (e.g., Archfield et 

al., 2016; Hirsch & Archfield, 2015; Mallakpour & Villarini, 2015).  

 

Second, with respect to “hotspots” of hydrologic and hydroclimatic extremes, we expect that 

northern latitudes and high-elevation study areas will exhibit the largest proportion of monitored 

variables with trends in magnitude, given the expectation that climatic forcing at these locations 

will exceed the envelope of historical variability earlier (Batibeniz et al., 2020). Extreme event 

frequency trends will reflect climate model projections and previously reported hydrologic 

observations, with many significant trends concentrated within the eastern, southern, and upper-

Midwest portions of the US (Archfield et al., 2016; Batibeniz et al., 2020; Mallakpour & 

Villarini, 2015). Because climate change forcing may alter water-balance partitioning in 

competing directions (e.g., enhancing rainfall while also enhancing evapotranspiration), regional 

hotspots for trends in discharge extremes will not necessarily coincide with regional hotspots for 

trends in other hydroclimatic extremes.  

 

Third, trends toward wetter conditions will predominantly occur in humid locations, whereas 

trends toward drier conditions will predominantly occur in more arid locations. This prediction 

originates from the “drier-in-dry, wetter-in-wet” (DIDWIW) hypothesis from climate models 

(Feng & Zhang, 2015), which replaces the wet-gets-wetter, dry-gets-drier paradigm (Held & 

Soden, 2006; Knutson & Manabe, 1995; Wentz et al., 2007) commonly applied to oceans but 

now thought inapplicable to the terrestrial setting (Byrne & O’Gorman, 2015; Hu et al., 2018).  

 

Fourth, based on findings that discharge extremes result from interactive processes (Byun et al., 

2019), changes in the magnitude and frequency of discharge extremes will be associated with 

changes in the magnitude and frequency of extremes in other hydroclimatic variables in a 

regionally coherent manner that reflects their contribution to water-balance processes (Table 1). 

Given that climate-induced changes in water balance stores and fluxes may have opposing 

effects, associations among trends that accord with the signs in Table 1 will be indicative of 

dominant water-balance processes triggering changes in discharge extremes. We expect that 

https://www.zotero.org/google-docs/?broken=iW5ssM
https://www.zotero.org/google-docs/?broken=zbSLYt
https://www.zotero.org/google-docs/?broken=zbSLYt
https://www.zotero.org/google-docs/?broken=dgoONH
https://www.zotero.org/google-docs/?broken=XqBvJR
https://www.zotero.org/google-docs/?broken=XqBvJR
https://www.zotero.org/google-docs/?broken=BvQ4oF
https://www.zotero.org/google-docs/?broken=5xYQRd
https://www.zotero.org/google-docs/?broken=5xYQRd
https://www.zotero.org/google-docs/?broken=6prfmQ
https://www.zotero.org/google-docs/?broken=hhicLL
https://www.zotero.org/google-docs/?broken=hhicLL
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extremes in antecedent moisture, as represented through soil moisture or snow variables, will 

exhibit associations with both high and low discharge extremes at many study areas.  

 

Table 1. Hypothesized sign* of correlation between trends in extreme discharge frequency and 

magnitude and trends in extremes of associated hydroclimatic variables, based on analysis of 

seasonal anomalies. 

Correlated extreme Sign of 

correlation, 

frequency 

comparison 

Sign of 

correlation, 

magnitude 

comparison 

Associated 

hydrological process 

Expected correlates to low-flow extremes 

Low precipitation (unseasonably dry) + + Precipitation 

Low solar radiation (unseasonably cloudy) - - Evapotranspiration 

Low relative humidity (unseasonably dry air) + + Evapotranspiration 

Low SWE (low snow water content) + + Snow storage 

Low snow depth (low snowpack) + + Snow storage 

Low soil moisture (unseasonably dry soils) + + Soil storage 

High air temperature (unseasonably hot) + - Evapotranspiration 

High solar radiation (unseasonably sunny) + - Evapotranspiration 

High relative humidity (unseasonably humid) - + Evapotranspiration 

High SWE (high snow water content) - + Snow storage 

High snow depth (high snowpack) - + Snow storage 

High soil temperature (unseasonably hot soils) + - Evapotranspiration 

High soil moisture (unseasonably wet soils) - + Soil storage 

Expected correlates to high-flow extremes 

Low precipitation (unseasonably dry) - + Precipitation 

Low SWE (low snow water content) - + Snow storage 

Low snow depth (low snowpack) - + Snow storage 

Low soil moisture (unseasonably dry soils) - + Soil storage 

High precipitation (unseasonably wet) + + Precipitation 

High SWE (high snow water content) + + Snow storage 

High snow depth (high snowpack) + + Snow storage 

High soil moisture (unseasonably wet soils) + + Soil storage 

* The “+” sign of correlation for frequency comparison represents the same direction (both 

positive or negative) of significant trends (p-value≤0.05) in frequencies of two extremes. The 

“+” sign of correlation for magnitude comparison represents the positive Pearson correlation 

coefficient (>0.7) with significance (p-values≤0.05) of trends in magnitudes of two extremes. 

2.3 Data pipeline 

The data synthesis followed the workflow (Figure 1) of data cleaning (downloading, quality 

control, data aggregation, naming standardization), gap-filling (section 2.2), and compilation 

(section 2.3). We implemented this workflow by using a set of Jupyter Notebooks as a pipeline 

on data from each study area (e.g., Harris et al., 2020). To make the pipeline reproducible, we 

provided an interactive Jupyter Notebook as a tutorial for data gap-filling which allows users to 

https://www.zotero.org/google-docs/?broken=zti6W9
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interactively tune parameters in the gap-filling functions and graphically view the result. The 

data products and Jupyter Notebooks are available on the Zenodo 

(DOI:10.5281/zenodo.4060384) and GitLab platforms. 

2.3.1 Data cleaning 

First, any available time series of streamflow, precipitation, air temperature, solar radiation, 

relative humidity, wind direction, wind speed, SWE, snow depth, vapor pressure, soil moisture, 

soil temperature, and water isotopes were downloaded for each study area. Subsequent quality 

control consisted of exclusion of erroneous values (i.e., unrealistic values such as negative 

precipitation or relative humidity greater than 100%, obvious typos or errors due to equipment 

malfunction), and cross-checking with pre-flagged entries in the downloaded product. Next, we 

aggregated time series data to daily time steps if the original time series were on a sub-daily 

scale: cumulative variables were summed for the day, and rate variables were averaged for the 

day. Finally, variable names were standardized using the format suggested by (Addor et al., 

2020) for large sample hydrology datasets.  

2.3.2 Gap-filling methods 

Gaps in the cleaned and aggregated daily data (excluding isotope data) were filled using one of 

three techniques, depending on the length of the gap and availability of complementary data. We 

applied the three techniques sequentially, meaning gaps not filled by the first technique would 

undergo the second method, etc. (Figure 2). First, for gaps of less than seven days, linear 

interpolation was applied. Though using linear interpolation may be improper for variables like 

precipitation, we made this operational decision for reasons of internal consistency, noting that 

our data processing pipeline gives researchers the necessary information to implement alternative 

processing conventions. 

 

To fill gaps longer than seven days, we applied spatial regression for study areas that have 

multiple adjacent stations, and then applied temporal regressions for study areas that have long 

records (Pappas et al., 2014). To implement spatial regression, we first evaluated the correlation 

coefficients between the station with missing values and all the other stations in the same study 

area. We then used the data from the station with the highest correlation coefficient to estimate 

the linear regression parameters. If the highest correlation coefficient was less than 0.7, or if no 

data were available from other stations contemporarily, the missing values were reconstructed by 

the climate catalog technique. In the climate catalog (i.e., temporal regression) method, we filled 

gaps using data from the most highly correlated year at the same site, selected from among years 

with at least 9 months of data and a correlation coefficient greater than 0.7 to the missing-data 

year. Gaussian random noise was added to the resulting regression-based estimate, scaled by the 

standard deviation of the record of each date in the gap across all years, in order to maintain the 

variation statistics of the original time series. However, this technique may not be useful for 

https://zenodo.org/record/4060384#.YVPvPdNKhhF
https://gitlab.com/esdl/chosen/-/tree/master
https://www.zotero.org/google-docs/?broken=CGZ7VZ
https://www.zotero.org/google-docs/?broken=CGZ7VZ
https://www.zotero.org/google-docs/?broken=1MdCtr
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reconstructing non-random variations in time series that are large-scale (i.e. wet and dry years) or 

small-scale (i.e. before and after a storm). 

 

To assure the quality of the gap-filled data, we deleted any values that exceeded the maximum or 

fell below the minimum of the original time series. Finally, flags were generated to differentiate 

between raw, missing, and filled data, indicating the technique used to create each reconstructed 

data point. 

 

Figure 2. Data pipeline and visualizations of cleaning methods: a) interpolation, b) spatial 

regression and c) climate catalog (i.e., temporal regression). 

2.3.3 NetCDF data product 

We stored and published the processed data in NetCDF (Network Common Data Form) format. 

NetCDF data have hierarchical structures and are self-explanatory, which means the descriptions 

of the attributes of the data tables are accessible from the file by different programming 

interfaces, for example, C++, Java, Python, and MATLAB. NetCDF is emerging as the data 

standard for large-sample hydrology, as well as for other large-sample products across the 

geosciences, particularly climate science and remote sensing (Liu et al., 2016; Signell et al., 

https://www.zotero.org/google-docs/?broken=rYtFH8
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2008). The NetCDF library is designed to read and write multi-dimensional scientific data in a 

well-structured manner. The library enables writing data in several coordinate dimensions, 

accommodating multiple measurement stations.  

  

We stored the data and metadata from each study area in one NetCDF file. In the NetCDF files, 

the hydrometeorological variable data and associated data flags are two-dimensional arrays (i.e., 

by time and location). There is a timestamp variable for conveniently checking the first starting 

date and last ending date for data in this study area. The grid variable contains information about 

monitoring stations, providing the names, latitudes, and longitudes and elevations if available. 

2.4 Dataset description 

We synthesized data from 30 intensively monitored study areas across the United States (Figure 

3). Sixteen of the 30 study areas are from the LTER network (Servilla & Brunt, 2011), 11 from 

the CZO network (Zaslavsky et al., 2011), and the remaining three are East River, Dry Creek, 

and Sagehen Creek (Kakalia et al., 2021; McNamara, 2017; Petersky & Harpold, 2018). Table 

S1 includes additional information about the study areas in the CHOSEN dataset such as data 

source links, geographical information, and climate conditions. 

 

Figure 3. Geographical distribution of the study areas. “CZO” represents Critical Zone 

Observatories; “LTER” represents Long-term Ecological Research Stations; “Other” represents 

observatories managed by other entities. 

 

https://www.zotero.org/google-docs/?broken=rYtFH8
https://www.zotero.org/google-docs/?broken=CkSt9e
https://www.zotero.org/google-docs/?broken=5zXDwe
https://www.zotero.org/google-docs/?broken=Oebhuc
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The availability of different variables in CHOSEN varies by site. The H.J. Andrews and Bonanza 

LTER datasets contain all 13 variables, with most other datasets having around 10 variables. 

Discharge record lengths range from three years at Calhoun to 78 years at the San Diego River 

(California Current Ecosystem LTER), with a median of 19 years (Figure 4).  

 
Figure 4. The span of time series availability and duration across study areas. 

  

Discharge and precipitation time series are available in all CHOSEN study areas, and seven 

catchments have soil moisture and snow measurements with records exceeding five years. 

Although publicly available water isotope data are limited, we identified six study areas with 

water isotope time series longer than one year (Figure 5). The measured isotopes include 18O and 

deuterium in streamflow, precipitation, and snowpack. Note that, unlike other variables, the 

resolution of isotope data is sparse, usually weekly or biweekly. 
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Figure 5. Distributions of record spans for a selection of variables in CHOSEN. 

2.5 Extreme events analysis with CHOSEN data 

2.5.1 Methods 

Extreme events are occurrences above or below certain thresholds of exceedance over a period of 

time. In this paper, we evaluated extreme events based on seasonal anomalies, in which we first 

removed the seasonality calculated by a moving average of 30 days (Appendix A). Then we 

picked out local minima/maxima in the time series as independent events and identified the high 

or low extremes as the independent events above the value at the percentile ranking of 95% or 

below the value at the percentile ranking of 5%. We studied the extreme events of each hydro-

meteorological variable with a record longer than 10 years for each study area in CHOSEN, with 

the exception of water isotopes. If the study area had multiple measurement records for a single 

variable, we chose the longest. 

 

We used the Mann-Kendall trend test (M-K test) to identify the significance (with a p-value less 

than 0.05) and sign (increasing or decreasing) of monotonic trends in extreme event magnitudes 

and frequencies over time (Kendall, 1975; Mann, 1945). For convenience, we refer to significant 

test results as trends, though we recognize that the M-K test is specific only to the monotonicity, 

rather than to the magnitude of the trend. The M-K tests were performed on two kinds of 

statistics: annual counts and the annual median of the extreme event magnitudes, to detect trends 

in frequency and magnitude, respectively. The analyses were conducted for both high and low 

extremes and implemented using the python package scikit-learn (Pedregosa et al., 2021). It is 

worth noting that autocorrelated time series remain a challenge in the M-K test. Autocorrelated 

https://www.zotero.org/google-docs/?broken=5n6Jgm
https://www.zotero.org/google-docs/?broken=EPgijX
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time series may artificially inflate test statistics, resulting in false positives in the trend detection 

(Storch & Navarra, 1999; Yue et al., 2002). Our usage of the annual interval for the statistics 

decreases the likelihood of within-water-year autocorrelation that would arise from using shorter 

intervals. 

 

Following the M-K trend analyses, the percentage of extreme-value time series available at each 

study area (for all variables, excluding isotopes, with record length longer than 10 years) with 

significant trends was computed as a first step in identifying locations that are “hotspots” for 

change across multiple hydrologic and hydroclimatic variables. For example, this value would be 

25% for a study area with sufficient precipitation and discharge record lengths that exhibited a 

trend only in high-flow extremes (because one of the four possible extremes -- high flow, low 

flow, high precipitation, and low precipitation -- exhibited a trend). Hotspots were operationally 

defined as study areas that exhibited trends in over two-thirds (66.67%) of the available extreme-

value time series. 

 

Next, based on significant trends in the magnitude and frequency of extreme discharge, study 

areas were classified as “wetting” or “drying” with respect to discharge. Specifically, increases 

in the magnitude of extreme high or low-discharge, decreases in the frequency of extreme low-

discharge, and increases in the frequency of extreme high-discharge were all classified as 

“wetting” trends, and vice-versa. We caution readers that these labels are not intended to apply to 

total water availability within the study area and that they are not necessarily representative of 

water availability outside of extreme flow events.  

 

Last, we evaluated whether wetting or drying trends with respect to discharge were associated 

with trends indicative of wetting or drying in other water-balance stores and fluxes in a manner 

consistent with a simple water-balance explanation (i.e., Table 1). Namely, we evaluated 

correlations between significant trends in extreme discharge and significant trends in other 

monitored hydroclimatic variables. A positive correlation means that both variables trended in 

the same direction; a negative correlation means they trended in opposite directions. We 

compared these correlations with our predictions in Table 1 and counted how many correlations 

matched the predictions. Meanwhile, we identified counterfactuals to the predictions. Here, a 

counterfactual is an observed trend in the extremes of an associated hydroclimatic variable that 

has a sign opposite that predicted in Table 1 and, for sites where a trend in high or low-discharge 

extremes was also detected, is likewise inconsistent with the high or low-flow predictions. This 

complex definition accounts for the fact that trends in extremes contain no information about 

within-year timing, and that high-discharge and low-discharge extremes may be sensitive to 

different hydroclimatic extremes that occur at different times of the year. For example, 

increasing frequency of low-SWE events associated with an increasing frequency of high-

discharge events is a counterfactual if there is no significant trend in low-discharge. However, it 

is not a counterfactual if that same catchment also shows an increasing frequency of low-

https://www.zotero.org/google-docs/?broken=g0bJmZ
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discharge events; indeed, low flows may be most sensitive to wintertime delivery of snow, 

whereas high-flow events may be most sensitive to warm-season rainfall. 

2.5.2 Results  

Among 26 study areas with records longer than 10 years, trends in the magnitude and frequency 

of extreme hydro-climatological and hydrological events were common. All variables in 

CHOSEN exhibited significant trends in magnitude and in frequency for at least one study area. 

These trends were distributed among 23 unique sites, with 22 sites exhibiting trends in frequency 

and 22 sites exhibiting trends in magnitude (Figure 6). On the whole, 81 trends in frequency and 

101 trends in magnitude were observed. 

 

Observed trends were indicative of changes to the full suite of water-balance stores and fluxes 

considered (evapotranspiration, snow storage, soil moisture storage, precipitation, discharge), 

with “hotspots” of change (defined here as areas with significant trends in over two-thirds of the 

observed variables) in the southeast (Florida Coastal Everglades), northeast (Hubbard Brook), 

Pacific Northwest (H.J. Andrews), and Alaska (Bonanza; Figure 6). These hotspots were 

geographically consistent across magnitude and frequency trends, except for Bonanza, which fell 

just short of the hotspot threshold for magnitude.  

 

Within sites, trends in frequency and magnitude of extremes generally provided similar 

information about changes in water balance processes (i.e., Figure 6A compared to Figure 6B). 

Across sites, trends indicating changes in evapotranspiration were most common (19 study 

areas), followed by changes in precipitation (15 study areas), discharge (11 study areas), snow 

storage (two study areas), and soil moisture storage (two study areas). Most trends commonly 

associated with controls on evapotranspiration suggested increases, though at many sites, 

increasing high-relative-humidity events that accompanied increasing high-temperature events 

(Appendix B1) exerted competing influences. Trends indicative of changes in extreme runoff, 

snow storage, and soil moisture storage showed more geographic and temporal heterogeneity 

(e.g., increases in “high” extremes coupled with decreases in “low” extremes) in the direction of 

the change compared with trends related to the evapotranspiration. We have repeated this 

experiment excluding the climate-catalog data and found consistent results (Appendix B2). 
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Figure 6. Distribution of significant magnitude (A) and frequency (B) trends among study sites 

and related hydrological stores and fluxes. The size of the bubbles indicates the percentage of the 

extreme-value time series available at a study area (for variables, excluding isotopes, with record 

lengths longer than 10 years) that exhibit significant trends in frequency or magnitude. Variables 

were classified as relevant to evapotranspiration (soil and air temperature, relative humidity, 

solar radiation), snow (SWE, snow depth), soil moisture, precipitation, or discharge, and those 

stores and fluxes exhibiting significant trends are indicated by color; note that size of the colored 

regions within each bubble has no relation to the proportion of trends relevant to that process. 

Arrows denote whether the trends suggest an increase or decrease in the time-averaged behavior 

of the associated store or flux (e.g., more frequent low-precipitation extremes would suggest a 

decrease in precipitation and be denoted with a down arrow in B). When multiple variables 

associated with the store or flux (e.g., temperature and relative humidity for evapotranspiration) 

or trends in high and low extremes for the same variable suggest opposing behavior (e.g., 

increasing low-precipitation and high-precipitation extremes), both arrows are depicted, though a 

larger arrow indicates the direction implied by a majority of trends.  

 

Similar to the whole suite of variables (Figure 6), extreme discharge exhibited more trends in 

magnitude (17) than frequency (14), though more study areas (10) exhibited trends in frequency 

than in magnitude (nine; Appendix B1). Study areas often exhibited significant trends in both 

low and high discharge events that indicated either consistent wetting or drying (e.g., increasing 

magnitude of both low- and high-discharge events, or increasing frequency of high-discharge 

events coupled with decreasing frequency of low-discharge events), with the exception of 

Hubbard Brook, which exhibited increasing frequency of both high- and low-discharge extremes. 

Similarly, for study areas showing trends in both frequency and magnitude, the trends pointed 

consistently toward wetting or drying (Figure 7). Namely, study areas that had trends toward 

drier conditions with respect to discharge were clustered in the Southeast (Georgia and Florida) 

and Northwest (Oregon, Idaho, and central California). Meanwhile, study areas that exhibited 

trends toward wetter or predominantly wetter conditions in terms of discharge were located in 

the high-elevation West (Colorado, New Mexico), coastal Southwest (southern California), 

upper Midwest (Michigan), and Northeast (New Hampshire). With respect to the drying 

observed in the southeast and wetting observed in the montane west, this geographic pattern 

diverged from the DIDWIW prediction. 
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Figure 7. Trends in low-flow (A) and high-flow (B) extremes and associated trends in 

hydroclimatic stores and fluxes consistent with water-balance explanations of how those stores 

and fluxes impact streamflow (Table 1). Shades of blue suggest wetting trends (with respect to 

the particular discharge extreme plotted, based on trends in frequency and/or magnitude), while 

shades of red suggest drying trends. Purple represents a combination of a wetting trend (i.e., 
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increased low-flow magnitude) and drying trend (i.e., increased low-flow frequency). Colored 

outlines show one or more associated significant trends in other hydroclimatic extremes that are 

consistent with a simple water-balance explanation (i.e., Table 1). Circles without outlines imply 

that the study area has no univariate associations between extreme discharge and other 

hydroclimatic extremes consistent with a simple water-balance explanation.  

 

Five out of nine study areas exhibiting significant trends in low-flow events and three of the 10 

study areas exhibiting trends in high-flow events showed associated trends in other hydroclimatic 

variables consistent with the predictions in Table 1. In the Southeast, drying trends in discharge 

extremes were associated with trends indicative of increased evapotranspiration, while the drying 

trends in discharge extremes observed in the northwest had more diverse associations: decreased 

precipitation, decreased soil moisture, and increased evapotranspiration (Figure 7; Tables 2 and 

3). In the northeast, more frequent low-discharge extremes were associated with trends indicative 

of increased evapotranspiration and more frequent low-precipitation extremes. Meanwhile, 

wetter discharge extremes had almost no associations with trends in hydroclimatic variables, 

with the exception of Hubbard Brook, where wetter high-flow extremes were associated with 

more frequent and higher-magnitude precipitation extremes.  

 

Overall, observed associations between discharge extremes and extremes in other hydroclimatic 

variables partially upheld our fourth prediction. Specifically, in many locations, trending 

extremes in discharge could be associated with trending extremes in one or more water balance 

processes. As expected, interactions among these processes were complex and often 

confounding; study areas with associations consistent with changing hydroclimatic inputs also 

commonly exhibited counterfactuals (Tables 2 and 3). Just two study areas exhibited associations 

that were only counterfactual to the water-balance expectations; both California Current 

Ecosystem and Jemez exhibited wetter low- and high-flow extremes based on trends in discharge 

frequency and magnitude (Figure 7), despite trends indicative of higher evapotranspiration. The 

remainder of the study areas with significant trends in discharge extremes exhibited no other 

trends in hydroclimatic variables. In contrast to our third prediction, widespread associations 

between variables indicative of antecedent moisture (i.e., soil moisture, snow depth, SWE) and 

discharge extremes were not observed. Only at H.J. Andrews was an association between soil 

moisture and discharge extremes observed. 

 

Table 2. Hypothesis testing of correlation between trends in extreme discharge frequency and 

trends in the frequency of extremes of associated hydroclimatic variables. Only study areas with 

significant trends in discharge are included. Counterfactuals are compiled across the low-flow 

and high-flow analyses and represent correlations between significant trends in discharge and 

significant trends in other monitored variables that have signs opposite those depicted in Table 1. 

Study 

Areas 

Discharge 

record 

(yrs) 

# Total 

trends 

Low-flow 

extremes 

frequency 

# 

Consistent 

with low-

Low-flow 

related 

processes 

High-flow 

extremes 

frequency 

# 

Consistent 

with high-

High-flow 

related 

processes 

# 

Counterfac

tuals 

Counterfac

tuals 
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flow 

hypotheses 

flow 

hypotheses 

related 

processes 

H.J. 

Andrews 

62 13 increasing 4 ET, Soil 

Storage 

decreasing 1 Soil 

Storage 

4 P, ET, 

Soil 

Storage 

California 

Current 

Ecosystem 

78 4 decreasing 0  increasing   1 ET 

Florida 

Coastal 

Everglades 

68 7 increasing 1 ET decreasing 0   3 P, ET 

Georgia 

Coastal 

Ecosystems 

61 2 increasing 1 ET          

Hubbard 

Brook 

59 7 increasing 2 P, ET increasing 1 P 1 ET 

Kellogg 55 5    increasing 0  0  

Reynolds 

Creek 

52 3 increasing 1 P    0  

Boulder 

Creek 

19 1    increasing 0  0  

Jemez 12 1    increasing 0  0  

Providence 12 1 increasing 0     0  

 

Table 3. Hypothesis testing of correlation between trends in extreme discharge magnitude and 

trends in the magnitude of extremes of associated hydroclimatic variables. Only study areas with 

significant trends in discharge are included. Counterfactuals are compiled across the low-flow 

and high-flow analyses and represent correlations between significant trends in discharge and 

significant trends in other monitored variables that have signs opposite those depicted in Table 1. 

Study 

Areas 

Discharge 

record 

(yrs) 

# Total 

trends 

Low-flow 

extremes 

magnitude 

# 

Consistent 

with low-

flow 

hypotheses 

Low-flow 

related 

processes 

High-flow 

extremes 

magnitude 

# 

Consistent 

with high-

flow 

hypotheses 

High-flow 

related 

processes 

# 

Counterfac

tuals 

Counterfac

tuals 

related 

processes 

H.J. 

Andrews 

62 13 decreasing 5 ET, Soil 

Storage 

decreasing 2 Soil 

Storage 

3 P, ET 

California 

Current 

Ecosystem 

78 4 increasing 0  increasing 0   1 ET 

Florida 

Coastal 

Everglades 

68 7 decreasing 1 ET decreasing 0   3 P, ET 
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Georgia 

Coastal 

Ecosystems 

61 4 decreasing 1 ET decreasing 0   0   

Hubbard 

Brook 

59 8 increasing 2 ET increasing 1 P 2 P, ET 

Jemez 12 3 increasing 0   increasing 0   1 ET 

Luquillo 23 2 increasing 0       0  

Reynolds 52 4 decreasing 1 P decreasing 1 P 1 P 

Providence 12 2 decreasing 0  decreasing 0  0  

2.5.3 Discussion 

CHOSEN contains an uncommon breadth of variables that allows for analysis of trends in 

multiple extremes, which is typically beyond the scope of observational extreme events studies. 

One advantage of analyzing multiple types of extremes simultaneously is the potential to 

evaluate multiple types of wetting or drying processes that affect different hydrological stores 

and fluxes. Such an analysis addresses the critique that the pronouncement of “wetting” or 

“drying” based on trends in a single variable (e.g., discharge, soil moisture, evapotranspiration 

flux) may be misleading (Roth et al., 2021). Indeed, our overall portrait of trends in hydrologic 

and hydroclimatic extremes (Figure 6) confirms that processes typically assigned the label 

“drying” or “wetting” may coexist within single locations (e.g., co-occurrences of “up” arrows 

for precipitation and “down” arrows for discharge or soil moisture). Further, with respect to 

single variables within single locations, trends in extremes often indicated both “wetting” and 

“drying” by exhibiting an increase in the magnitude of high extremes coupled to a decrease in 

the magnitude of low extremes. With respect to discharge, however, trends in low and high 

extremes tended to point toward consistent wetting or drying within individual study areas (i.e., 

Figure 7A compared to 7B), evidencing a shift in the whole distribution of streamflow, as has 

also been overwhelmingly observed at the global scale (Gudmundsson et al., 2019). 

 

Though most observational studies have been limited to one type of extreme, climate modelers 

have used a multivariate Climate Extremes Index (Gleason et al., 2008) to identify likely 

“hotspots” of combined wet, dry, hot, and cold extremes from downscaled global climate models 

(Batibeniz et al., 2020), which our observations largely corroborate. Consistent with our finding 

of multivariate extreme “hotspots” in south Florida, Oregon, and New Hampshire, study 

indicated that by 2050, Florida, New England, and the Pacific Northwest are likely to develop 

the most extreme conditions across a suite of variables (Batibeniz et al., 2020; Appendix C). 

Note that they did not consider Alaska, our fourth hotspot, but they did find that the extreme 

conditions would extend into the Rocky Mountain west, where our observations indicated a less 

comprehensive set of trends to date. Furthermore, the study found that these patterns were 

primarily driven by warming and drying conditions, as the majority of areas did not exceed the 
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historical envelope of variability for intense precipitation events until 2050. Namely, the Florida 

hotspot primarily arose from extreme warm conditions, consistent with the decreased 

discharge/increased evapotranspiration associations that we observed. Meanwhile, the Pacific 

Northwest and New England hotspots predominantly arose from extremely dry conditions, 

consistent with our observed decreased soil moisture and increased evapotranspiration trends at 

H.J. Andrews and increased evapotranspiration trend at Hubbard Brook, together with an 

increased frequency of low-discharge extremes. 

 

Although our observations generally upheld climate model-based projections of extreme event 

hotspots, they deviated from projections and previous observations in a few ways. First, our 

analysis resolved no trends in extremes for any of the five sites in the Mid-Atlantic region 

(Figure 6), in contrast to projected drying trends in streamflow extremes (Naz et al., 2016), 

observed wetting trends in high-streamflow extremes (Archfield et al., 2016), projected increases 

in hurricane-related flood hazards (Marsooli et al., 2019), and observed increasing trends in the 

climate extremes index for the 1981-2005 period, encompassing both drought and intense wet 

events (Batibeniz et al., 2020). Our lack of trends in the Mid-Atlantic region was likely strongly 

driven by the limited data record length (among the shortest of all sites for variables other than 

discharge) for most of the Mid-Atlantic observatories (Figure 4). To test whether short record 

length had impeded our ability to detect trends, we carried out two-sample t-tests. Results 

showed that the time series with identified trends for both frequency and magnitude of extreme 

events were significantly longer (p<0.01) than those with no trends. For most of the study areas, 

the record lengths for discharge, precipitation, and air temperature were sufficient, whereas, for 

other hydroclimatic variables, the scarcity of long records substantially restricted the trend 

analysis.  

 

In addition to insufficient record lengths for some variables and study areas, geographic 

undersampling may also explain discrepancies between our findings and the literature. In the 

Mid-Atlantic region, both high-flow (Archfield et al., 2016) and low-flow (Kam & Sheffield, 

2016) trends exhibit strong variability in sign and significance, making it likely that observations 

from just a few sites would not be representative of the regional mean. Undersampling of the 

Midwest in CHOSEN might also explain why we observed just one study area with a significant 

change in the frequency of high flows in this region (i.e., Kellogg), despite the prevalence of 

increased flood frequency observed for the region in other observational studies (Ahn & Palmer, 

2016; Hirsch & Archfield, 2015; Mallakpour & Villarini, 2015). 

 

The geographic undersampling inherent in CHOSEN may additionally provide an explanation 

for why our second prediction--that we would observe more trends in extreme event frequency 

than magnitude, as observed in geographically extensive discharge records (Hirsch & Archfield, 

2015)--was not upheld. In contrast to this prediction, we observed a comparable number in trends 

in magnitude as in frequency (Figure 6). Small-sample bias may have been exacerbated in 
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CHOSEN by the preferential siting of many of the observatories in areas where rapid climate-

driven change is expected. Furthermore, given that observed trends in extreme discharge are 

highly variable in sign and significance throughout the US (Ahn & Palmer, 2016; Archfield et 

al., 2016), it is not unexpected that the slight dominance of magnitude trends among our subset 

of sites would emerge from chance. A second potential explanation for the surprisingly large 

number of trends in magnitude is that many of these trends involved temperature or variables 

thought to be directly driven by temperature (Figure 6), and recent climate models (Batibeniz et 

al., 2020) suggest near-term (median: by 2025) emergence from the envelope of historic 

variability for temperature for most of the US. 

 

Though undersampling provides a partial explanation for why aspects of our first and second 

predictions were not upheld, discrepancies from the DIDWIW prediction are likely not 

attributable to random sampling artifacts. Consistently across sites and variables, study areas in 

the arid Southwest showed trends toward wetter extremes, reflected in precipitation and 

discharge magnitude and frequency trends, while those in the humid Southeast showed trends 

toward drier extremes, reflected in discharge and evapotranspiration-related trends (Figure 6). 

This discrepancy underscores the importance of considering multiple variables in assessing 

wetting and drying trends (sensu Roth et al., 2021); the DIDWIW hypothesis was developed 

based on analysis of long-term, remotely sensed soil moisture changes between 1979 and 2013 

(Feng & Zhang, 2015), whereas the increase in intense precipitation events forecasted for the 

Southwest (Batibeniz et al., 2020) may trigger high-flow extremes through Hortonian overland 

flow without a long-term increase in soil moisture, which would be consistent with our limited 

observations. Meanwhile, in humid environments like the Southeast, evapotranspiration may 

impact peak flow volumes while soils remain moist. Further, the soil moisture observations from 

1979 to 2013 in Feng and Zhang (2015) may not have captured more recent changes in the 

Southwest present in CHOSEN. In fact, it is likely that the trends detected in this analysis are 

recent, as a 1981-2005 observational study of historical trends in intense precipitation events also 

shows no significant trends for the region (Batibeniz et al., 2020). Our results, taken together 

with model projections (e.g., Batibeniz et al., 2020), suggest that the DIDWIW paradigm will 

become less applicable as climate change advances.  

 

Our ability to attribute observed trends in discharge to changes in dominant water balance 

processes was limited by the logical incongruity of correlative associations and causality and by 

a lack of long-term records of soil moisture and/or snow storage in most study areas. 

Nonetheless, the associations depicted in Figure 7 are generally consistent with previous studies 

that attribute changes in extreme discharge to underlying hydrological processes. In a statistical 

study based on precipitation and temperature measurements and modeled soil moisture and 

snowmelt, Berghuijs et al. (2016) found that increasing soil moisture storage is a strong predictor 

of extreme high-discharge throughout the Pacific Northwest, consistent with the soil 

moisture/high-flow association we found at H.J. Andrews (Figure 7B). Further, the association 
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between precipitation extremes and high-flow extremes that we found at Hubbard Brook and 

Reynolds Creek (where snow data records were too short for trend analysis) may be indicative of 

the importance of extreme precipitation for the rain-on-snow events found to be the dominant 

factor explaining trends in high flow for these regions (Berghuijs et al., 2016). Meanwhile, 

climate-model based attribution of decreasing magnitude of low flows in the Southeast to 

warmer temperatures (Hayhoe et al., 2007) is consistent with our observations (Figure 7A), as is 

a statistically based attribution of decreased low flows in Idaho to decreased precipitation inputs 

(Kormos et al., 2016). However, in contrast to the Kormos et al. study, we found no association 

between precipitation and low-flow extremes in Oregon (H.J. Andrews). Instead, we found 

associations to soil moisture and evapotranspiration extremes, the former of which was not 

considered in their study. 

 

Attributional studies in the literature suggest mechanisms that may explain observed trends in 

discharge extremes that were not associated with other trends in our study (Figure 7). Increasing 

frequency and/or magnitude of high-flow extremes observed at the Kellogg (Michigan), Boulder 

Creek (Colorado), and Jemez (high-elevation New Mexico) observatories may be attributable to 

increasingly rapid snowmelt events triggered by warmer temperatures or rain on snow 

(Mallakpour & Villarini, 2015). These mechanisms would not be captured by our data, which 

lacked long-term snow records for these sites, or our analysis, which did not consider 

multivariate interactions between temperature or precipitation and snow storage. Meanwhile, less 

snow storage over time as a result of precipitation falling increasingly as rain instead of snow 

may explain drying trends in both high- and low-flow extremes at the Providence observatory 

(McCabe & Wolock, 2009; Miller et al., 2003). Lastly, climate models suggest that the wetting 

trends projected for the Southwest (e.g., California Current Ecosystem) are attributable to 

increased total precipitation delivery (Heidari et al., 2020), which might not be reflected in 

precipitation extremes.    

 

Attributional studies typically assume that evapotranspiration plays no role in high-discharge 

extremes (e.g., Berghuijs et al., 2016 and Table 1 of this study). However, this assumption may 

not be valid for coastal and low-gradient parts of the Southeast, where watershed areas are large, 

flows are slow-moving, and the highest flows occur during the warmest part of the year and are 

not associated with snowmelt or frontal systems. At both the Georgia Coastal Ecosystem and 

Florida Coastal Everglades observatories, decreasing trends in the magnitude and/or frequency of 

high flow extremes are observed despite increasing (Florida) or no significant (Georgia) trends in 

high-precipitation extremes (Figure 6). Both of these areas, however, have exhibited increasing 

temperature trends (Appendix B1) that are among the strongest in the US (Batibeniz et al., 2020).  

 

In summary, though our study was not attributional, it supports other attributional studies in 

suggesting that drying shifts in extreme streamflow in the Pacific Northwest and Southeast are 

likely linked to decreased precipitation inputs, decreased soil moisture, and increased 
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evapotranspiration due primarily to warming. Wetting shifts in streamflow extremes are more 

challenging to explain via simple statistical analyses, as evidenced by a prevailing lack of 

associations to other hydroclimatic variables (Figure 7). Though our findings fall short of 

reconciling Sharma et al.’s grand challenge (2018) to attribute changing streamflow extremes to 

changes in hydroclimatic forcing, they suggest three hypotheses that are potentially addressable 

through more sophisticated statistical analyses or longer periods of record as CHOSEN continues 

to grow. First, the preferential location of wetting high-flow extremes in regions with snowpack 

suggests that these trends may be linked to increasingly rapid snowmelt, due to interactions 

between temperature or precipitation and snow storage. Second, higher rates of 

evapotranspiration may decrease high-flow extremes in locations without a snowmelt peak or 

dominantly frontal mechanisms of precipitation delivery. And finally, given the modeling results 

of Berghuijs et al. (2016) and the observed association at H.J. Andrews, changes in soil storage 

(Dymond et al., 2014) likely also drive changes in streamflow extremes in many regions.  

2.6 Conclusion 

To the best of our knowledge, the CHOSEN database is the largest open-source collection of 

comprehensive data from hydrological observatories, containing variables important to 

understanding water-balance partitioning that are not typically present in existing large-sample 

databases. It thus fulfills critical data needs for comparative hydrology. In particular, it lays a 

foundation for studies that establish hydrologic baselines, synthesize information on multiple 

aspects of “wetting” and “drying,” ground-truth model projections of highly uncertain, derived 

hydrological quantities, and attempt to attribute observed changes to underlying hydrological 

processes.   

 

Our simple synthesis of trends in hydroclimatic extremes generated generally consistent results 

with model projections and statistical studies that use derived quantities for soil moisture, 

instilling confidence in model projections. Consistency was strong in the identification of 

geographic hotspots for multivariate change in extremes and in the hydrologic stores and fluxes 

dominantly associated with those extremes. However, observations were less consistent with 

projections of discharge trends (Naz et al., 2016). Namely, many areas where we resolved drying 

trends in high-flow extremes (i.e., red points in Figure 7B) were projected to exhibit wetting 

trends by 2050, with the exception of south Florida, where both model projections and observed 

trends indicated drying. We propose that this inconsistency may reflect late emergence (i.e., 

around or after 2050) from the historic envelope of variability for wet extremes in most regions 

of the US (Batibeniz et al., 2020) rather than fundamental flaws of the model.  

 

Impending emergence from the envelope of historical variability for both wet and dry extremes 

underscores the need for synthesis products from hydrologic observatories that can document 

baselines for wetting or drying across different components of the water balance. Our analysis, 
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for example, suggests that in the Southwest, which is projected to show wetter extremes by 2050 

(Batibeniz et al., 2020; Naz et al., 2016), a signature of wetting extremes in both precipitation 

and streamflow (Figure 6) is emerging. It further suggests that this emergence is recent, as these 

trends were absent in 1981-2005 observations (Batibeniz et al., 2020). The emergence of this 

wetting trend, together with drying in the Southeast with respect to discharge and 

evapotranspiration extremes, suggest that the WIWDID paradigm may be inadequate to describe 

ongoing climate-induced hydrological change across a suite of variables. 

 

Lastly, though simple associations between hydroclimatic and hydrologic extremes were often 

consistent with a water-balance framework (Table 1) and prior attributional studies (Section 4.3), 

they were not sufficient to attribute most wetting trends in streamflow extremes to underlying 

mechanisms. These shortcomings underscore the need for analyses based on longer-term 

(i.e., >10 years), comprehensive, and openly available records of soil moisture and snow 

variables. The data record lengths in CHOSEN will continue to grow, and calls for more soil 

moisture data nationally are increasingly being heard (e.g., Sungmin & Orth, 2021; Petersky & 

Harpold, 2018; Wasko & Nathan, 2019). We echo that call and build upon it, highlighting that 

comprehensive observations related to changes in evapotranspiration (e.g., relative humidity, 

solar radiation, soil and air temperature, wind speed, and/or direct moisture flux data) may be 

relevant to explaining a wider range of hydrologic extremes than previously thought. 
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Chapter 3   

A Physics-informed Machine Learning Model for 

Streamflow Prediction 

3.1 Abstract 

In various contexts, deep learning models have demonstrated superior performance over 

physically-derived process-based models in predicting streamflow. Despite their efficacy, these 

models often face criticism for their lack of interpretability and insight into the underlying 

physical processes governing streamflow response. To address this challenge, we introduce a 

novel approach employing a long short-term memory (LSTM) model that integrates water 

balance constraints for streamflow prediction. Our proposed physics-informed LSTM (PILSTM) 

combines a discharge-storage model with the LSTM architecture. We apply this hybrid model to 

eight intensively-monitored watersheds in the United States. Additionally, we conduct a 

comprehensive comparison of the LSTM, physical, and PILSTM models, evaluating their 

performance under scenarios simulating climate change and data-scarce conditions and with and 

without pretraining on large datasets. We find that for most watersheds, greater performance 

gains arise from pretraining LSTM-based models on large datasets than from integrating physical 

constraints, with reduced sensitivity to variability in input climate data. However, for watersheds 

with characteristics poorly represented in the pretraining database, pretraining can deteriorate 

performance relative to site-specific models. For those watersheds, integrating physical 

information can serve as a safeguard against poor performance from pretraining, particularly 

when data length for the target watershed is limited. Further, they can produce seasonal patterns 

of sensitivity to precipitation and evapotranspiration, better aligning with physical understanding. 

Although LSTM-based models trained on wet conditions generally perform well for dry 

conditions, for dry watersheds with long storage time and limited streamflow variability, 

physical models produce the best performance. 

3.2 Introduction   

Streamflow prediction is crucial for managing water resources, including water supply, reservoir 

operations, irrigation, energy production, flood and drought mitigation, and ecosystem 

management. The accuracy of these predictions is becoming increasingly important due to 

uncertainties associated with climate change, particularly in areas that rely on snowpack, 

experience flash flooding, or suffer from ecosystem degradation. The hydrologic science 

community has also invested in development of strategies to apply learning from well-

instrumented watersheds to those with comparative data scarcity (Hrachowitz et al., 2013; 

Kratzert, Klotz, Shalev, et al., 2019). 
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There are two primary categories of traditional streamflow prediction models: process-based and 

data-driven. Process-based models can be further classified based on their degree of spatial 

distribution, which includes simple spatially lumped conceptual models, semi-distributed 

models, and fully distributed models, with the latter having the highest degree of spatial 

distribution (Fleming & Gupta, 2020). These models are typically interpretable because they 

incorporate physically meaningful components or simulate the physical processes within 

watersheds. However, process-based model calibration can be computationally costly and 

frequently requires prior knowledge of catchments and large amounts of data (Duan et al., 1992). 

When implementing these models in areas influenced by preferential flow paths, inter-catchment 

groundwater exchanges, fragmented hydrological connectivity, or regions with uncertain water 

balance estimates, the complexity could increase substantially due to the violation of physical 

assumptions under such conditions (Beven, 1986; Liu et al., 2020; Weiler & McDonnell, 2007).  

 

Data-driven models used for streamflow prediction encompass a wide spectrum of complexities, 

often categorized as statistical models and machine learning (ML) models (Fleming & Gupta, 

2020). Among statistical models are parsimonious approaches like simple and multiple linear 

regression (Garen, 1992; Loague & Freeze, 1985), as well as time-series methods like ARMA 

(AutoRegressive Moving Average) and ARIMA (Integrated Autoregressive Moving Average) 

(Delleur & Kavvas, 1978; Spolia & Chander, 1974). ML models, widely adopted for streamflow 

forecasting, include the support vector machine (SVM) (Asefa et al., 2006; Liong & 

Sivapragasam, 2002), decision trees (Schoppa et al., 2020; Wang et al., 2015) and artificial 

neural networks (ANNs). ML models have become increasingly favored for streamflow 

prediction research due to their robust predictive capabilities, relative simplicity of the parameter 

calibration process and an absence of biases which often affect physical models (Mosavi et al., 

2018). Nevertheless, despite the superior accuracy achievable with ML models, their lack of 

physical components makes it challenging to enhance process understanding of watersheds 

through them. Hypothesis testing using ML models is still in its early stages (Nauta et al., 2019), 

whereas physical models have a well-established history of being employed for hypothesis 

testing and understanding the role of individual hydrological components in the rainfall/runoff 

relationship and streamflow prediction. 

 

ML models, especially those employing deep learning techniques, are gaining traction due to the 

increasing availability of large hydrological datasets for streamflow and streamflow forecasting. 

Pioneering researchers of applying ANNs for streamflow prediction have demonstrated its 

enhanced predictive capabilities over simpler machine learning and widely-used conceptual 

physical models (Dawson & Wilby, 1998; Hsu et al., 1995; Minns & Hall, 1996; Shamseldin, 

1997; Tokar & Johnson, 1999). ANNs come primarily in two forms: feed-forward neural 

networks (FNNs) and recurrent neural networks (RNNs). RNNs, by design, can retain historical 

input information through their sequential input processing, making them better suited for 
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sequential data and time-series analysis tasks (Rumelhart et al., 1988). For hydrological 

prediction, Nagesh Kumar et al. (2004) shows that RNNs outperform FNNs in forecasting river 

flow. Within the RNNs category, Long Short-Term Memory (LSTM) networks introduced by 

Hochreiter & Schmidhuber (1997) stand out for their ability to grasp long-term dependencies and 

resistance to vanishing gradients, positioning them at the forefront for rainfall-streamflow 

modeling (Kratzert et al., 2018). While few studies have compared the performance of LSTMs 

with other ML methods for streamflow prediction (e.g.  Rahimzad et al., 2021), the LSTM 

models are widely regarded as being the state-of-the-art for these types of applications compared 

to other ML models, which also suggests traditional physically-based models are not fully 

exploiting the information available in the data (Nearing et al., 2021). 

Nowadays, only a few ML-based hydrologic prediction approaches are used by government 

agencies in an operational context for hydrologic forecasting, resource management, or decision 

support. An often-cited barrier is the perceived lack of interpretability of ML models in terms of 

physical understanding (Fleming, Watson, et al., 2021). To address the complexity of 

interpreting neural networks, various methods have been developed, including integrated 

gradients (Sundararajan et al., 2017), contextual decomposition (CD) (Murdoch et al., 2018), 

agglomerative contextual decomposition (ACD) (Singh et al., 2019), interpreting transformations 

(TRIM) (Singh et al., 2021), and penalizing explanations (CDEP) (Rieger et al., 2020). Despite 

efforts to explain neural networks in hydrology, interpretability remains an ongoing concern in 

the field. Given this challenge, many agencies choose to apply ML models for testing and 

evaluation purposes in parallel with established operational forecasting protocols, or to emulate 

computationally expensive physical models. Examples include the application of an ANN 

ensemble to Englishman River, a flood-prone stream on Vancouver Island, BC, which was 

operationally successfully tested during the 2013-2014 storm season (Fleming et al., 2015); the 

development of a diverse ML-based prototype ensemble for water resources forecast which was 

used for live operational testing by the Natural Resources Conservation Service (NRCS) at a 

number of sites in the western US (Fleming et al., 2023; Fleming, Garen, et al., 2021); the use of 

an ANN to replace the salinity component of the California Department of Water Resources 

(DWR) Delta Simulation Model II (DSM2) model (CADWR, 2013), allowing its integration into 

CalSim3, a complex model used for water resources operations in California (Jayasundara et al., 

2020); and a deep learning (DL) flood forecasting system developed to provide accurate real-

time flood warnings to agencies and the public which became operational in India and 

Bangladesh during the 2021 monsoon season (Nevo et al., 2022). 

 

To address the challenge of limited interpretability and unknown conformity to physical 

processes while leveraging the predictive power of ML models, hybrid approaches to forecasting 

have emerged, known as physics-informed or theory-guided ML models. These physics-aware 

ML models combine the strengths of machine learning to extract patterns from observational 

data with the domain knowledge and physical constraints enforcement, and, for hydrology and 

earth science, are regarded as a potential solution for bringing ML into operational use (Fleming, 
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Watson, et al., 2021; Slater et al., 2022). The motivation for developing physics-guided machine 

learning models arises from the recognition that purely data-driven models may inadvertently 

capture spurious relationships from training data, resulting in physically inconsistent predictions 

and poor generalization performance (Karpatne et al., 2017). In the context of hydrological 

prediction, the generalization ability of models pertains to their capability to accurately forecast 

water-related variables for conditions and geographic areas not encountered during the training 

phase, including data-scarce watersheds. A hydrological model with strong generalization ability 

can provide reliable predictions across different watersheds and under varying environmental 

conditions. The limited generalization capability of ML models is due to extrapolation and 

observational biases, particularly when data are noisy and insufficient. Adding previous physical 

knowledge and strong theoretical restrictions is one method to reduce inductive biases in ML 

models and address this problem (Karniadakis et al., 2021). In general, integrating ML models 

with physical models holds promise for enhancing physical interpretability and incorporating 

ML models into operational use (Karniadakis et al., 2021; Karpatne et al., 2017).  

 

The integration of physics with ML has been actively pursued in many fields, including materials 

science, quantum chemistry, biomedical science, turbulence modeling and earth science 

(Karpatne et al., 2017; Willard et al., 2020). One integration strategy is to apply ML to a physical 

model for parameter calibration or error correction. In differential programming (Baydin et al., 

2018), an example of the former, a differentiable hydrologic model (i.e., one in which the 

derivatives of the output with respect to the inputs can be computed analytically) is implemented 

within a DL platform, in which the DL model learns from data the parameters of the hydrologic 

model. Demonstration of this approach on the Hydrologiska Byråns Vattenbalansavdelning 

(HBV) hydrologic model showed drastic improvement compared to the standalone HBV model 

and suggested that the approach can reduce reliance on large training datasets (Tsai et al., 2020). 

An extension of the approach to enable DL to replace components of the HBV model (Feng et 

al., 2023) further improved model performance for the watersheds in the CAMELS database (A. 

J. Newman et al., 2015). In both of these examples, a standalone LSTM model produced better 

performance than the hybrid model, but unlike the standalone LSTM, the hybrid models 

conserved mass and provided information on internal fluxes and stores such as soil moisture and 

surface runoff. Alternatively, DL can be leveraged to learn and correct for the error in physical 

model outputs, an approach often called post-processing. With post-processing, outputs of the 

physical model are provided to the DL model as inputs, together with accessory time-series such 

as hydrometeorological predictors and hydrologic stores and fluxes internal to the physical 

model. The resulting hybrid models often demonstrate enhanced performance compared to 

standalone process-based and LSTM models (Konapala et al., 2020; Adera et al, in review), 

including for ungauged basins (Lu et al., 2021). However, there are exceptions. While post-

processing the output of the National Water Model resulted in performance gains, the hybrid 

model performed nearly equivalently to a standalone LSTM model and worse than the 

standalone LSTM model for ungauged basins (J. M. Frame et al., 2021).  
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The other strategy for integrating physics with ML is to incorporate physics into the training or 

architecture (Willard et al., 2020) of ML models. For example, physical models can be used to 

generate synthetic data for training ML models. In hydrology, this approach has been used to 

increase the representativeness of training data for extreme storm events, with demonstrated 

improvement in performance (Xie et al., 2021). Physical constraints can also be introduced in the 

training of ML models, through modification of the loss function in a way that penalizes 

divergence from physical laws. For example, in a hybrid model of lake water temperatures, a loss 

function that prioritized energy balance and monotonicity of density in adjacent depth layers 

produced improvement over both a standalone LSTM model and state-of-the-art physical model 

(Jia et al., 2019). Lastly, more advanced techniques that involve incorporating physics directly 

into the architecture of DL models include modifying model cells, conceptualized as water stores 

within a catchment, to conserve mass (Hoedt et al., 2021). While application of this technique to 

the CAMELS dataset produced higher performance than other mass-conserving hydrological 

models, the mass-conserving LSTM exhibited a slightly lower Nash-Sutcliffe Efficiency (NSE) 

than a standalone LSTM on the CAMELS dataset. Further, the mass-conserving LSTM 

performed worse than the standalone LSTM for extreme events but better than two physical 

models (J. M. Frame et al., 2022). 

 

Building upon previous studies that have integrated physical models with ML models, we 

present a novel physics-informed LSTM model (PILSTM) designed for predicting streamflow. 

The PILSTM model dynamically combines a reduced-complexity, process-based hydrological 

model (Kirchner, 2009) with the LSTM model. We incorporate an additional term into the loss 

function to penalize deviations from the model predictions relative to the physical model outputs. 

Furthermore, we employ a term to adjust the weight of this loss term, preventing the hybrid 

model from overly adopting biases from the physical model outputs. By integrating the physical 

term into the loss function, we constrain the model to make predictions aligning with the 

fundamental assumptions of the physical model, which are the principles of mass balance and the 

dynamic correlation between discharge and storage. 

 

Our analysis compares the performance of the PILSTM model with that of a pure physical model 

and a stand-alone LSTM model under data-scarce and non-stationary scenarios for eight 

intensively monitored watersheds distributed across the United States. Additionally, we employ 

integrated gradients methods (Sundararajan et al., 2017) to interpret model predictions and 

evaluate the influence of each input feature. We predict that the PILSTM model will produce 

more generalizable and physically-consistent predictions of daily discharge in a wide range of 

catchments compared to a standalone LSTM. Furthermore, we anticipate that the PILSTM model 

will outperform both the stand-alone LSTM and the physical model when data are limited and 

when the training data have different patterns with the testing data.  
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3.3 Study areas and data  

We evaluate our model on eight watersheds sourced from the CHOSEN dataset (Zhang et al., 

2021). The CHOSEN dataset is a compilation of observational data from intensively monitored 

sites within the Long-Term Ecological Research Network (LTER) and the Critical Zone 

Observatory (CZO) program. The dataset encompasses a wide array of observations, including 

discharge, precipitation, air temperature, solar radiation, wind speed, relative humidity, vapor 

pressure, and other hydroclimatic and hydrologic variables. The selected eight catchments from 

the CHOSEN dataset provide at least 12 years of daily data and exhibit a diverse range of 

geologic and climatic conditions (Figure 8 and Table 4). Unlike large-sample datasets such as 

CAMELS, the CHOSEN dataset contains hydrometeorological variables that are measured rather 

than modeled or interpolated from observations and variables that can be used directly in 

equations predictive of evapotranspiration (ET) fluxes–both assets that we valued in our model 

evaluation process. Importantly, the CHOSEN watersheds also provide test cases for the 

application of LSTM-based models outside the dominant dataset (CAMELS) for which LSTM 

models have already been extensively tested tuned (e.g., Frame et al., 2021; Kratzert et al., 2018, 

2019) and may better represent “new” watersheds under consideration for forecast development. 

 

Given the limited record length of the CHOSEN dataset compared to other large-sample 

hydrologic datasets, we applied transfer learning to improve model performance. Transfer 

learning, which involves pre-training a model on a large dataset and then fine-tuning it on a more 

specific dataset, can significantly boost a model's generalization capabilities (Tan et al., 2018). 

For model pretraining, we use data from 531 CAMELS-US catchments (Addor et al., 2017; A. J. 

Newman et al., 2015). These catchments align with those utilized in previous studies by Kratzert 

et al. (2018) and Newman et al. (2017).  

 

 
Figure 8. Geographical distribution of the eight study areas. 
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ET data are required in many water-balance models and are also one of the inputs in the reduced-

complexity rainfall-runoff model that we use in this study. We calculate potential 

evapotranspiration (PET) using the FAO-56 Penman-Monteith method (Allen, 2005), 

incorporating time series data of precipitation, air temperature, relative humidity, solar radiation, 

and wind speed available from the CHOSEN dataset. The PyEto python package is employed for 

PET computation based on these provided variables (Zotarelli et al., 2010). For pretraining with 

the CAMELS dataset, where data for relative humidity, solar radiation, and wind speed are not 

available, PET (Potential Evapotranspiration) data is estimated using the Priestley-Taylor 

equation instead. 

 

Table 4. Basic physiographic information for the eight study areas. The statistics for 

precipitation, streamflow, and potential evapotranspiration are the annual water fluxes averaging 

across 12 years. The climate is based on the Koppen climate classification scheme. 

 

Study areas 

Dry Creek  

H.J. 

Andrews 

Harvard 

Forest 

Hubbard 

Brook 

Jornada 

Basin Kellogg Konza Prairie Sevilleta 

Drainage  

area (km2) 

27 62 0.65 0.77 1976.2 101.8 222.7 13745.1 

Elevation  

(m) 

1036 422 330 590 1315 247 382 1478 

Precipitation 

(mm/y) 

680 2255 1277 1540 255 1010 835 186 

Streamflow  

(mm/y) 

154 1754 

 

633 1167 0.56 336 125 1.35 

Reference 

evapo- 

transpiration 

(mm/y) 

977 663 1118 

 

917 1722 1221 784 1215 

Climate Cold 

Semi-arid 

Climate 

(BSk) 

Warm-

summer 

Mediterra

nean 

Climate 

(Csb) 

Humid 

Continental 

Mild 

Summer, 

Wet All 

Year  

(Dfb) 

Humid 

Continental 

Mild 

Summer, 

Wet All 

Year  

(Dfb) 

Cold 

Semi-arid 

Climate 

(BSk) 

Humid 

Continent

al Mild 

Summer, 

Wet All 

Year  

(Dfb) 

Humid 

Continental 

Hot 

Summers 

With Year 

Around 

Precipitatio

n (Dfa) 

Cold 

Semi-arid 

Climate 

(BSk) 

Data time 

range 

2005-10-

01, 2017-

09-30 

2005-10-

01, 2017-

09-30 

2008-01-

01, 2019-

12-31 

1998-01-

01, 2009-

12-31 

2000-01-

01, 

2011-12-

31 

2007-01-

01, 2018-

12-31 

2008-10-

01, 2020-

09-30 

2008-01-

01, 

2019-12-

31 
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3.4 Methods 

3.4.1 Introduction of a reduced-complexity rainfall-runoff model 

The physical model we use in the PILSTM is a single-equation rainfall-runoff model based on 

water balance:  

  
𝑑𝑆

𝑑𝑡
 = 𝑃 − 𝐸 − 𝑄.                                                            (1) 

P: Averaged precipitation in the catchment (Length/Time) 

E: Averaged evapotranspiration in the catchment (Length/Time) 

Q: Watershed area-normalized discharge at the outlet of the catchment (Length/Time) 

S: Water stored in the catchment per unit area (Length) 

 

The main assumption of this model is the monotonic relationship between discharge (Q) and 

total water storage (S) in the catchment, represented by a sensitivity function (g(Q)), in which Q 

is an increasing single-valued function of S (dQ/dS > 0 for all Q and S):  

                                              
𝑑𝑄

𝑑𝑆
 =  𝑔(𝑄).                                                                    (2) 

We can substitute the g(Q) function into the storage term in eqn.1 to obtain a single-equation 

rainfall-runoff model (Kirchner, 2009): 

 

𝑑𝑄

𝑔(𝑄)𝑑𝑡
 = 𝑃 − 𝐸 − 𝑄.                                                          (3) 

 

This model can be integrated numerically to estimate the value of discharge at the current time 

step:  

 

𝑄𝑡 − 𝑄𝑡−1 =  𝑔(𝑄𝑡−1)(𝑃𝑡−1 − 𝐸𝑡−1 − 𝑄𝑡−1);                                          (4) 

 

                                𝑄𝑡 − 𝑄𝑡−𝛥𝑡 =  𝑔(𝑄𝑡−𝛥𝑡)(𝑃𝑡−𝛥𝑡 − 𝐸𝑡−𝛥𝑡 − 𝑄𝑡−𝛥𝑡)𝛥𝑡. 

 

We employ the methodology outlined by Kirchner (2009) to estimate the g(Q) function. 

Specifically, we select for data points where precipitation (P) and evapotranspiration (E) are 

considerably smaller than Q. This allows us to omit the terms P and E (eqn. 3) for these data 

points, treating them as approximate recession data (eqn. 5). As a result, we estimate g(Q) solely 

based on these recession data, assuming a quadratic functional form in the empirical relationship 

between discharge and the flow recession rate (-dQ/dt) (eqn. 6). This approach circumvents 

issues related to uncertainty and scaling of the precipitation and evapotranspiration data, which 

will be revisited later. 
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                                       𝑔(𝑄)  = 
𝑑𝑄

𝑑𝑆
 ≈ 

−𝑑𝑄/𝑑𝑡

𝑄
|𝑃 << 𝑄, 𝐸 << 𝑄  ;                                           (5) 

𝑙𝑛(𝑔(𝑄))  =  𝑐1 +  𝑐2𝑙𝑛(𝑄) +  𝑐3 𝑙𝑛(𝑄)2 .                                           (6) 

 

Since the input data series represent single-station PET and precipitation, we follow Kirchner 

(2009) in using two additional parameters (kE and kP, respectively) to scale the values to 

approximate actual evapotranspiration and catchment-averaged precipitation:  

 

𝑑𝑙𝑛𝑄 = 𝑔(𝑄)(
𝑘𝑃⋅𝑃−𝑘𝐸⋅𝐸

𝑄
 −1) .                                               (7) 

 

We jointly calibrate these two parameters with the three parameters of (6). The resulting rainfall-

runoff conceptual model becomes: 

 

𝑙𝑛𝑄𝑡+1 = 𝑔(𝑄𝑡)(
𝑘𝑃⋅𝑃𝑡−𝑘𝐸⋅𝐸𝑡

𝑄𝑡  −1) + 𝑙𝑛𝑄𝑡  .                                     (8)  

 

For each site, the five parameters of the physical model are estimated using a Bayesian 

optimization algorithm (Pelikan et al., 1999) based on the training dataset. 

3.4.2 Basics of the LSTM model 

We build the LSTM model with the PyTorch python package (Paszke et al., 2019). During the 

training process, the coefficients in the model are updated through backpropagation to minimize 

the loss, using a stochastic gradient-based optimization algorithm (Kingma & Ba, 2017). The 

LSTM structure enabling feedback from former timesteps is particularly advantageous for 

emulating streamflow generation processes. We implemented the LSTM model using the code 

from the NeuralHydrology package, considered as the state-of-the-art and benchmarking code 

for using LSTM in predicting discharge (Kratzert et al., 2022). More details of the LSTM model 

are illustrated in Appendix D. 

3.4.3 The PILSTM model 

We introduce a Physics-Informed LSTM (PILSTM) model (Figure 9) that integrates the outputs 

from a physical model into the LSTM model. The discrepancy between the PILSTM model 

prediction and the output of the physical model, which embodies a mass-conserving solution, is 

incorporated into the loss function as a term with a tunable weight (eqn. 9). This loss function is 

then employed to train the parameters of the PILSTM model. Through the introduction of this 

additional loss term, we constrain the model's predictions to better adhere to the conservation-of-

mass principle and the dynamic relationship between discharge and storage outlined by the 
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physical model. The incorporation of this additional loss term aims to ensure that the model 

generates more physically consistent results, thereby improving the physical interpretability of its 

predictions. Furthermore, the constraints derived from mass balance have the potential to assist 

the model in making more reliable predictions under climate variability and data scarcity, 

thereby enhancing the model's generalization ability. 

 
Figure 9. An overview of the PILSTM model. The blue box represents a reduced-complexity 

rainfall-runoff model. The green box represents an LSTM neural network. PPT and ET are 

precipitation and evapotranspiration, respectively. 𝑄𝑜𝑏𝑠
𝑡  and 𝑄𝑝ℎ𝑦

𝑡  represent observed discharge 

and the output from the physical model at the t timestamp respectively. 𝑄⬚
𝑡  is the output of the 

PILSTM model.   

 

However, the physical model may exhibit bias and provide poor predictive power if its 

assumptions are not suitable for specific catchments. Thus, we introduce an extra hyperparameter 

λ, allowing us to optimize for the weighting of the physical term in the loss function (eqn.9). The 

value of the hyperparameter is fine-tuned using the validation data during training, ranging from 

0 to 1 with an increment of 0.1. 

 

𝐿𝑜𝑠𝑠 =  (1 − 𝜆) 𝑀𝑆𝐸( 𝑄𝑃𝐼𝐿𝑆𝑇𝑀
𝑡  , 𝑄𝑂𝑏𝑠

𝑡 )  +  𝜆 𝑀𝑆𝐸( 𝑄𝑃𝐼𝐿𝑆𝑇𝑀
𝑡  , 𝑄𝑃ℎ𝑦

𝑡 )   .                  (9) 

 

λ : hyperparameter in the loss function 

𝑄𝑃𝐼𝐿𝑆𝑇𝑀
𝑡  : prediction from the PILSTM model at timestamp t  

𝑄𝑂𝑏𝑠
𝑡  : observation of discharge at timestamp t 

𝑄𝑃ℎ𝑦
𝑡  : integrated discharge from the physical model at timestamp t 

𝑀𝑆𝐸 : mean squared error 

 

In the workflow for the PILSTM model with pretraining, we initially train the LSTM model on 

CAMELS sites, utilizing data from October 1, 1999, to September 30, 2008. We employ an 

early-stopping method to determine the optimal number of training epochs, indicated by the 

highest median NSE across sites, using validation data from October 1, 1980, to September 30, 
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1989. For other hyperparameters, we adopt values following the pretraining example in the 

NeuralHydrology codebase (Kratzert et al., 2022) (Table 5). Subsequently, we fine-tune the 

model for each CHOSEN site individually, employing early stopping to identify the optimal 

training epochs with validation data. Regarding hyperparameters in the fine-tuning phase, we 

maintain the same set as in the pretraining phase, except for a reduced piecewise learning rate. 

For the PILSTM model without pretraining, we skip the pretraining step and directly train the 

model for each individual watershed with the hyperparameters in the fine-tuning phase. 

 

Table 5. Hyperparameters in the LSTM model 

Training 

phase 

Hidden 

size 

Input 

sequence 

Learning rate Dropout LSTM 

layers 

# 

Maximum 

training 

epochs # 

Batch 

size 

Pretraining 128 365 0-10: 1e-3 

11-20: 5e-4 

21-30: 1e-4 

 

0.4 1 30 256 

Fine-tuning 128 365 0-10: 5e-4 

11-20: 1e-4 

21-30: 5e-5 

 

0.4 1 30 256 

3.4.4 Integrated gradients  

We employ the integrated gradients method (Sundararajan et al., 2017) to quantify the 

importance of each input feature to predictions in order to study how meteorological forcings 

affect discharge in the models. The method calculates the gradient of the prediction with respect 

to the model input integrated from a chosen baseline: 

 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖(𝑥)  = ∫
𝜕𝐹(𝑥′+𝛼×(𝑥−𝑥′))

𝜕𝑥𝑖

1

𝛼=0
𝑑𝛼.                                   (10) 

 

In comparison to previous deep neural network interpretation methodologies, this metric 

emphasizes feature importance sensitivity, which is the influence computed along the pathway 

from the baseline. Following Kratzert, et al. (2019), we use zero values as the baselines (i.e., 0 

mm of precipitation and evapotranspiration) and an integration step of 1000. We perform the 

integrated gradients analysis on the testing dataset for a single run of the base experiment for 

each watershed. feature importance was computed for each data point and then averaged across 

the day of the year. In order to accentuate the effect of physical information in the comparison 
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between the PILSTM and the LSTM, we set 𝜆 to one for all of the PILSTM models used in this 

experiment. 

3.4.5 Experiments 

In this study, we evaluate the performance of five different models:  

(1) a stand-alone LSTM model with precipitation (PPT) and air temperature (AT) as inputs 

(2) a stand-alone LSTM model with PPT and potential evapotranspiration (PET) as inputs 

(3) a PILSTM model with PPT and AT as inputs 

(4) a PILSTM model with PPT and PET as inputs 

(5) a stand-alone physical model with PPT and PET as inputs 

 

In particular, we compare the performance of the PILSTM model to that of the LSTM model 

with the identical set of inputs. Although the physical model uses PET as a necessary input, 

because PET is a derived time series, models 1 and 3 are used as additional benchmarks that 

make no a priori assumptions about the partitioning of PPT.  

 

We evaluate model performance in three types of experiments (Table 6). The first assesses the 

relative performance of the five models and the optimal weighting of physical information in 

each watershed. The second evaluates model performance under alternate ways of sampling 

climate variability. Given projections indicating more frequent and intense heat and precipitation 

extremes with vanishing cold extremes under ongoing global warming (Li et al., 2021), we 

anticipate corresponding shifts in discharge levels toward drier or wetter scenarios. As a result, 

we partition the data to simulate scenarios ranging from dry training years and wet testing years 

to the opposite scenario of wet training years and dry testing years. In the third experiment, we 

evaluate model performance under situations with limited training data. All experiments were 

performed under both site-specific and pretraining scenarios, utilizing an ensemble approach 

initialized with distinct random seeds. The reported results are the averages obtained from 10 

ensemble runs on the testing dataset. 

 

Table 6. Experimental Design and Corresponding Methodological Results. 

Experiment Methodological Details 

Base Experiment For each CHOSEN site, the model is trained on the initial six years of 

data, validated on the subsequent two years, and tested on the last three 

years. 

Non-stationary 

Scenario 

We implement a sliding window approach, moving the five years of 

validation and testing data across the entire data span to create seven 

different data splits. We calculate the average discharge levels for the 

https://www.zotero.org/google-docs/?broken=09p7Zz
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training and testing data, employing a dry-wet-index to indicate the 

relative dryness ranking in the training data compared to the testing data. 

For instance, a dry-wet-index of 1 means that the data split has the 

relatively driest training years and wettest testing years, while a dry-wet-

index of 7 indicates the opposite scenario with the wettest training years 

and driest testing years. 

Data Scarcity 

Scenario 

We progressively decrease the training data duration from six to one year 

while preserving the last five years of the data sequence for validation and 

testing. Within the five years of data, the initial two years are designated 

as the validation dataset, and the subsequent three years are utilized as the 

testing data. 

 

3.4.6 Evaluation Metrics 

To evaluate model performance, we use the Nash-Sutcliffe Efficiency (NSE), the Pearson 

correlation coefficient (r), and bias term in the Kling–Gupta efficiency (Gupta et al., 2009). We 

also calculate the bias in the flow duration curve (FDC) high-segment volume (FHV), bias in 

FDC mid-segment slope (FMS), and bias in FDC low-segment volume (FLV) metrics (Appendix 

E; Yilmaz et al., 2008). We additionally develop new indices that represent model overall 

accuracy, the stability of models and their physical consistency with the water balance.  

 

The overall model accuracy is measured by the mean NSE across 10 ensemble runs. Model 

stability is quantified using the standard deviation of the NSE values in the 10 ensemble runs.  

 

We assess the physical consistency of our predictions by examining the closure of the water 

balance within each water year cycle. The physical consistency score is defined based on the 

water storage deficit averaged across all water years (eqn.11), where a score of 1 indicates a 

perfect match between the output mass and the input mass. Although it is common to assume 

water balance closure on annual timescales, it is widely recognized that many watersheds–

particularly small ones–violate this assumption (Safeeq et al., 2021) and hence this metric serves 

as an imperfect means to quantify physical consistency. Nevertheless, we include it as an 

expedient way to assess tradeoffs among multiple dimensions of model performance.  

Physical consistency score =
1

𝑛
∑ 1 −

| ∑(𝑃𝑃𝑇−𝐸𝑇−𝑄)|

∑ 𝑃𝑃𝑇
𝑛
𝑤𝑎𝑡𝑒𝑟 𝑦𝑒𝑎𝑟 𝑖𝑑𝑥=1       .        (11) 

In the base experiment, we employ additional metrics to assess the model's overall performance 

tradeoffs concerning prediction accuracy, stability, and its adherence to the water balance on the 

testing data on the pretrained model. We visualize these metrics across a spectrum of 𝜆 values 

and check model performance with changing 𝜆 values. To facilitate a comparison of metrics and 

https://www.zotero.org/google-docs/?broken=aCth4h
https://www.zotero.org/google-docs/?broken=A4oRMq
https://www.zotero.org/google-docs/?broken=tNIZyp
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determine the optimal 𝜆 value considering all three metrics, we normalize the model accuracy, 

stability, and physical consistency scores to a range of zero to one by subtracting the minimum 

value and then dividing by the maximum (Figure 14). This normalization allows for a consistent 

scale, enabling a comprehensive analysis of the model's performance across different evaluation 

criteria.  

3.5 Results 

3.5.1 Model performance comparison for base experiment  

Pretraining improved the accuracy of LSTM-based models, boosting median NSE values from 

well below to above 0.5 (Figure 10). The distribution of LSTM-based model performance with 

pretraining lay within the distribution of model performance for LSTM models with static inputs 

in the CAMELS database (Kratzert, Klotz, et al., 2019), but with a lower median value than the 

0.73 from the CAMELS benchmark. Nonetheless, three out of eight watersheds met or exceeded 

the benchmark median (H.J. Andrews and Harvard Forest; Table 7B), suggesting that 

performance of the LSTM-based models with pretraining approached state-of-the-art. Pretraining 

mitigated underestimation of values of high- and medium flow (captured by the FHV and FHM 

statistics) in most watersheds but resulted in biases greater than one (meaning the mean 

simulated streamflow is higher than the mean observed streamflow), compared to less than one 

for site-specific models. 

 

In both pretraining and site-specific scenarios, the PILSTM model consistently outperformed its 

LSTM counterpart, although the advantages of PILSTM over LSTM models were less 

pronounced with pretraining (Figure 10). With pretraining, the PILSTM generally outperformed 

the physical model, though without pretraining, the physical model exhibited better performance 

with respect to r, bias, and FHV and similar performance with respect to the NSE. Even 

compared to pretrained LSTM-based models, the physical model exhibited the best performance 

with respect to bias. The pretrained PILSTM model, when incorporating PPT and PET inputs, 

demonstrated superior performance compared to its counterpart using PPT and AT inputs. 

Conversely, the site-specific PILSTM model featuring PPT and AT inputs exhibited slightly 

better performance compared to the configuration with PPT and PET inputs. 

https://www.zotero.org/google-docs/?broken=QjSIRD
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Figure 10. Model performance in the base experiment across eight watersheds (A) without 

pretraining (B) with pretraining. PPT stands for precipitation, while AT and PET refer to air 

temperature and potential evapotranspiration, respectively. 

 

While site-specific models that leveraged physical information resulted in the best performance 

for nearly all watersheds, the value of physical information diminished substantially with 

pretraining, which alone resulted in large performance gains. Specifically, without pretraining, 
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PILSTM models showcase the optimal performance for three out of eight watersheds. The 

physical model exhibits the best performance for four watersheds (tied with the PILSTM model 

for one of those four), and the LSTM model excels in delivering the best performance for the 

Jornada Basin (Table 7A). With pretraining (Table 7B), the best performing model NSE values 

for each watershed increase substantially, with the exception of Jornada Basin and Sevilleta. The 

PILSTM exhibits the best performance for one watershed, while the LSTM model performs best 

in five watersheds. The physical model performs best in the remaining two watersheds, which 

happen to be the driest (Jornada Basin and Sevilleta). In contrast to the overall improvement in 

model accuracy for most watersheds, the NSE for the LSTM-based models for Jornada Basin 

decreases substantially with pretraining, while those for Sevilleta increases only marginally. 

Meanwhile, whether the use of PET or AT inputs results in better performance varies across 

watersheds. 

 

Table 7A. Model NSE in the base experiment across eight watersheds without pretraining. 

Boldface indicates the best-performing model for each watershed. 

Watershed 

LSTM 

(PPT,AT) 

LSTM 

(PPT,PET) 

PILSTM 

(PPT,AT) 

PILSTM 

(PPT,PET) Physical 

Dry Creek 0.51 0.5 0.53 0.53 0.69 

H.J. Andrews 0.38 0.41 0.43 0.45 0.67 

Harvard Forest 0.15 0.13 0.16 0.18 0.22 

Hubbard Brook 0.09 0.11 0.1 0.12 0.03 

Jornada Basin -0.03 -0.04 -0.04 -0.06 -0.17 

Kellogg 0.28 0.37 0.34 0.41 0.17 

Konza Prairie 0.06 0.05 0.07 0.07 0.07 

Sevilleta 0.05 0.03 0.08 0.08 0.19 

 

Table 7B. Model NSE in the base experiment across eight watersheds with pretraining. Boldface 

indicates the best-performing model for each watershed. Where the best-performing PILSTM has 

an optimal λ value of zero, the LSTM is denoted as best performing, even when its NSE is a few 

percentage points lower than the PILSTM (as a result of stochasticity in training and 

optimization). 

Watershed 

LSTM 

(PPT,AT) 

LSTM 

(PPT,PET) 

PILSTM 

(PPT,AT) 

PILSTM 

(PPT,PET) Physical 

Dry Creek 0.69 0.68 0.7 0.73 0.69 

H.J. Andrews 0.82 0.61 0.8 0.72 0.67 

Harvard Forest 0.79 0.72 0.79 0.71 0.22 
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Hubbard Brook 0.54 0.48 0.55 0.46 0.03 

Jornada Basin -1.51 -4.29 -1.36 -3.48 -0.17 

Kellogg 0.45 0.69 0.53 0.65 0.17 

Konza Prairie 0.58 0.42 0.6 0.55 0.07 

Sevilleta 0.07 0.06 0.12 0.04 0.19 

 

Optimal λ values change with pretraining, across watersheds, and with model inputs (Table 8). 

With pretraining, the PILSTM model relies less on physical information, as evidenced by a 

decrease in the optimal λ values for most cases, with the exception of Dry Creek and Kellogg. 

Across all watersheds, Dry Creek and H.J. Andrews consistently show higher 𝜆 values. 

Coincidentally, their physical model accuracies are also superior to those of other watersheds. In 

comparing models with PET vs. AT as inputs, there was no consistency in which set of inputs 

resulted in a higher optimal λ.  

 

Table 8. Optimal λ values for PILSTM models. The values are determined based on the 

validation data, where the NSE achieves its highest point in the comparison between model 

outputs and observed discharge. Boldface corresponds to models that were the best-performing 

within each set of experiments (i.e., without pretraining, with pretraining), based on NSE (Tables 

7A and 7B). 

Watershed 

Without pretraining With pretraining 

PILSTM  

(PPT,AT) 

PILSTM  

(PPT,PET) 

PILSTM  

(PPT,AT) 

PILSTM  

(PPT,PET) 

Dry Creek 0.33 0.55 0.09 0.86 

H.J. Andrews 0.57 0.6 0.03 0.49 

Harvard Forest 0.35 0.26 0 0 

Hubbard Brook 0.18 0.08 0 0.02 

Jornada Basin 0.28 0.26 0.36 0.03 

Kellogg 0.16 0.21 0.14 0.25 

Konza Prairie 0.14 0.1 0 0 

Sevilleta 0.11 0.32 0.04 0.03 

3.5.2 Experiments under non-stationary scenarios  

Without pretraining (Figure 11A), all the PILSTM models slightly outperform their LSTM 

counterparts in the non-stationary scenarios. The median of the PILSTM models also generally 

exceeds that of the physical model, though the maximum value of NSE for the physical model is 
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generally highest. Although the performance of the physical models generally declines with 

wetter training years/drier testing years, no trend is apparent in the LSTM-based models. 

Likewise, no trend is apparent in the optimal 𝜆 values across the wet-dry indices. These values, 

consistently near 0.21, indicate models that are primarily data-driven but with some influence of 

the water-balance constraint.  

 

Compared to the site-specific model results, pretraining increases the median NSE of the LSTM-

based models but decreases the minimum and lower quartile (Figure 11B). The lower NSE 

values in the pretraining experiments mainly stem from the Jornada Basin watershed, which also 

demonstrates poor model accuracy in the base experiment. As with the site-specific results, there 

is no trend in optimal 𝜆 values across the wet-dry indices for the PILSTM models that use AT 

inputs. For those that use PET, a slight increase in optimal 𝜆 values as the training years become 

wetter indicates slightly greater leveraging of physical information under these conditions. 
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Figure 11. NSE values across eight watersheds for models tested on different splits of training 

and testing years. A dry-wet-index of 1 means the training years are the driest and the testing 

years are the wettest based on the annual discharge volume, and a dry-wet-index of 7 means the 

training years are the wettest and the testing years are the driest. The lines represent the means 

and standard errors of the optimized values of 𝜆 in the PILSTM models across eight watersheds. 



47 

Figure A shows results of models without pretraining. Figure B shows results of fine-tuning 

models with pretraining. 

3.5.3 Experiments under data-scarce scenarios 

In evaluating the effectiveness of site-specific LSTM-based models and a physical model in 

scenarios with limited data availability, we observed an improvement in prediction accuracy with 

an increase in the amount of training data (Figure 12A). This enhancement is evident in the 

rising median NSE values across diverse watersheds. The performance advantage that the 

PILSTM models exhibit over the LSTM models diminishes as the record length decreases and is 

negligible for four training years or less. Compared to the LSTM-based models, the physical 

model exhibits more stability of the median and upper-quartile NSE values over the range of data 

lengths, but minimum and lower-quartile NSE values drop substantially for two training years or 

less. Meanwhile, optimal 𝜆 values for the PILSTM remain consistently near 0.26 over the range 

of record lengths. 

 

In scenarios where pretrained models undergo fine-tuning for each watershed, we observe a 

significant enhancement in median and upper-quartile model accuracy compared to site-specific 

models (Figure 12B). Similar to site-specific models, LSTM-based models benefit from an 

increasing number of training years. However, relative to the site-specific models, the minimum 

and lower-quartile NSE values decrease substantially with pretraining under data-scarce 

conditions. This decrease in performance is less pronounced for the PILSTM models 

(particularly with AT inputs) than for the LSTM models when more than one year of training 

data is available and is less pronounced for the LSTM using PET instead of AT inputs. 

Meanwhile, with regard to the median and upper-quartile NSE values, the PILSTM has an 

advantage over the LSTM model for more than five training years. As with the base case, 

optimal λ values are more variable for the pretrained models compared to the site-specific 

models. PILSTM models using AT inputs leverage more physical information as the data length 

decreases, while those using PET inputs exhibit no trend in optimal λ values but leverage more 

physical information than their AT-input counterparts for longer record lengths. 
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Figure 12. NSE values across eight watersheds for models trained on varying record lengths in 

(A) Site-specific and (B) Pretraining cases. The lines depict the means and standard errors of the 

optimized λ values in the PILSTM models. Both NSE values and λ values are averaged across 10 

ensemble runs. 
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3.5.4 feature importance 

The feature importance of PPT and PET on discharge varies across watersheds and over time 

(Figure 13). In the site-specific models (Appendix F), feature importance patterns are noisy, with 

PPT typically having a positive influence on discharge and PET typically having a negative 

influence. Generally, feature importance patterns for the site-specific models do not exhibit 

pronounced seasonal variations. However, in the pretrained models, many watersheds exhibit a 

similar annual pattern in the feature importance of PPT, in which PPT has a low but positive 

influence on discharge in autumn and winter and an increasing influence through the snowmelt 

season, peaking in late spring or early summer. For most watersheds (Dry Creek, Harvard Forest, 

Hubbard Brook, Kellogg, Konza Prairie), the feature importance of PPT is lower and less 

seasonal (i.e., flatter) for the LSTM model than for the PILSTM model. Exceptions include 

Jornada Basin, for which the feature importance of PPT is similar between the LSTM and 

PILSTM, Sevilleta, for which the LSTM has a stronger and more seasonal feature importance, 

and HJ Andrews, for which the LSTM generally has a stronger but highly noisy feature 

importance. Another difference between the LSTM and PILSTM models is that for some 

watersheds (Hubbard Brook, Jornada Basin, Sevilleta), the feature importance of PPT is negative 

during the spring for the PILSTM model but not the LSTM model. 

The feature importance of PET also exhibits a characteristic temporal pattern that is generally 

consistent across watersheds, with the most negative values (i.e., the most negative influence on 

discharge) in spring through summer and near-zero values through the winter. For several of the 

watersheds, PET exhibits a positive feature importance during the snowmelt season, when it 

potentially serves as a proxy for AT, which was not included separately as a model input. 

Patterns in the feature importance of PET are generally similar for the LSTM and PILSTM 

models, with a few exceptions. In Hubbard Brook and Harvard Forest, the PILSTM model has a 

more negative feature importance during the summer, whereas, in contrast, feature importance 

for the LSTM model remains positive in Hubbard Brook. Meanwhile, in HJ Andrews, feature 

importance is substantially more variable (i.e., higher magnitude positive and negative spikes) 

for the LSTM model than for the PILSTM model. 
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Figure 13. Impact of input features using the integrated gradients method for pretrained PILSTM 

models. All PILSTM models employ a λ value of one. 
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3.5.5 Tradeoffs among model accuracy, stability, and physical consistency across a 

gradient of data-driven to physical models 

As the weight on the physical constraint in the loss function (𝜆) varies from zero to one, the 

model accuracy, stability, and physical consistency scores exhibit unique variations and tradeoffs 

for each watershed in the base case with pretraining (Figure 14). Except for the Jornada Basin 

watershed, the optimal 𝜆 value at which the combined value of the three scores is the highest 

(i.e., the "optimal") is greater than zero, suggesting that a PILSTM typically performs best in a 

multi-objective tradeoff. Regarding individual scores, trends with 𝜆 vary widely. In two out of 

the eight watersheds, accuracy increases as 𝜆 increases. Three watersheds show highest stability 

at the purely data-driven end of the spectrum (𝜆 = 0), another three at the physical end of the 

spectrum, and the remaining two at intermediate values. Meanwhile, physical consistency 

achieved its maximum value at the physical end of the spectrum for just three watersheds and 

was maximal at the data-driven end of the spectrum for the two driest watersheds (Jornada Basin 

and Sevilleta). 
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Figure 14. Normalized scores depicting model accuracy, stability, and physical interpretability 

across varying 𝜆 values in the base case with pretraining and PET inputs. A 𝜆 value of 0 
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indicates a purely data-driven model, while a 𝜆 value of 1 represents an approximation of a 

physical model. 

3.6 Discussion 

Whether and how physical knowledge should be used to assist and improve data-driven models 

has been an ongoing discussion (Beven, 2020; Nearing et al., 2021). It is acknowledged that in 

hydrology, the applicability of a one-size-fits-all physical model is limited, and certain physical 

assumptions may hold true for specific watersheds rather than universally (Hrachowitz et al., 

2013). Consequently, the quest for a universal hydrological theory that seamlessly supports data-

driven models poses a significant challenge. While acknowledging the imperfections inherent in 

individual models, we propose that by judiciously combining them, their collective power could 

surpass the performance of each model in isolation. In this study, we demonstrate that integrating 

a physical model with the LSTM model for discharge prediction often yields improved 

performance compared to both the stand-alone LSTM model and the physical model. It is 

noteworthy, however, that the efficacy of this hybrid model is more apparent in certain scenarios 

and less pronounced in others. 

 

Diagnosing and predicting differences in model performance across experiments and watersheds 

Throughout the sets of experiments, the watersheds in the CHOSEN dataset exhibited great 

variability in multi-metric model performance, sensitivity to undersampling of climate variability 

and data scarcity, and in the extent to which integration of physical information improved model 

performance. We found that, for places with frequent storms, where recession parameters are 

uncertain, and/or snow (which the physical model did not represent) falls and melts throughout 

the winter, the pure data-driven model did best. In dry places that are baseflow dominated, where 

storage processes longer than the timescales over which the LSTM is sensitive to were dominant, 

the purely physical model did best. Meanwhile, the PILSTM performed best in semiarid to wet 

environments with distinctive seasonality in PPT and/or streamflow (Table 7B). 

 

Feature importance plots provide a means of “looking under the hood” of LSTM-based models 

to diagnose and understand these discrepancies and differences in model performance. Our 

examination of the feature importance plots for the LSTM and PILSTM model with 𝜆 set to 

unity allowed us to visualize how models at opposite ends of the data-driven to physical 

spectrum represented seasonal forcing of stream discharge by PPT and AT or PET. These 

visualizations allowed us to see, for example, that seasonal forcings are much smoother when 

models leverage pretraining data from 531 CAMELS-US catchments than when they do not 

(Appendix F compared to Figure 13), suggesting that even with the six or more years of data 

associated with the CHOSEN watersheds, LSTM-based models that do not involve pretraining 

face data limitations that can potentially lead to overfitting, a widely recognized problem with 

https://www.zotero.org/google-docs/?broken=EnRHWd
https://www.zotero.org/google-docs/?broken=w9aKcn
https://www.zotero.org/google-docs/?broken=w9aKcn
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neural networks (Srivastava et al., 2014). These limitations, however, can be largely overcome 

with pretraining. 

 

Among those three pretrained models that benefited from leveraging substantial amounts of 

physical information (i.e., Dry Creek, HJ Andrews, and Kellogg watersheds, which had moderate 

to high optimal values of λ), the feature importance plots provide information about how 

physical information might have produced improvements. The seasonal pattern in PPT having 

maximal influence on discharge toward the end of the snowmelt season, when watersheds are the 

most connected, is strongest for the PILSTM in both Dry Creek and Kellogg and potentially 

more reflective of reality. Although the physical model does not explicitly represent snow 

dynamics, its representation of a single dominant storage reservoir that releases water slowly is 

likely adequate for these snowmelt-dominated watersheds and provided additional information 

about long-term storage and storage release (for example, the requirement to route PPT to 

storage when storage is depleted) that the pure LSTM was unable to learn. For Dry Creek, the 

timing of when the influence of PET became negative (reflecting when it switched from a proxy 

for air temperature and snowmelt to when it dominantly represented actual evapotranspiration 

and water depletion) also differed between the PILSTM and LSTM. The later shift in the 

PILSTM better coincides with the end of the snowmelt peak in discharge and may be more 

physically representative. Meanwhile, the feature importance plots for HJ Andrews were not as 

seasonally variable as in Dry Creek and Kellogg but still reflected more physically realistic 

conditions for the PILSTM model. Namely, the PILSTM model was much smoother than its 

LSTM counterpart, suggesting that at HJ Andrews, the incorporation of physical information 

may have suppressed the overfitting apparent in the LSTM. 

 

Feature importance plots also provide insight into how physically informed models may be 

inadequate for those watersheds with optimal λ values of zero or near-zero. In Harvard Forest, 

Hubbard Brook, and the Konza Prairie, the PILSTM exhibited a more seasonal influence on 

discharge than the LSTM. In these three watersheds that receive substantial convective as well as 

frontal PPT, that do not accumulate large snowpack, and that are humid, it is expected that 

hydrologic connectivity would remain high through the year and that the feature importance of 

PPT would thus be flatter. Greater difficulty in calibrating parameters for the physical model in 

these watersheds—including the challenge of shorter intervals between storms during which 

streamflow recession behavior can be observed and fewer data points that meet the assumptions 

of calibration (P<<Q and ET<<Q) likely contribute to the uninformativeness of physical 

information in these catchments. With the limitations on the calibration data, it is likely that 

parameter calibration is overrepresenting the behavior of large storage reservoirs that release 

water slowly and underrepresenting smaller, faster draining storage reservoirs, resulting in a 

more pronounced seasonal pattern in the feature importance plot for the PILSTM with λ equal to 

one. If this analysis were, however, performed on subdaily data, we expect that the physical 

model would be easier to calibrate, given the availability of nighttime data for which ET can 

https://www.zotero.org/google-docs/?broken=8VTfYA
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effectively be assumed equal to zero, as in Kirchner’s (2009) original analysis. We expect that 

optimal λ values for models developed with subdaily data would be substantially higher for 

watersheds like these three, and that the overall performance advantage of PILSTM models 

would be higher. 

 

Diagnosing the poor performance of Sevilleta and Jornada Basins, both of which also have an 

optimal λ value of zero, requires insight beyond the feature importance plots. Despite their 

optimal λ value, the physical models for those watersheds paradoxically performed best, and 

none of the models had good performance (Table 7B). We can resolve the paradoxical optimal λ 

value of zero by concluding that the LSTM architecture did not emulate the physical model well 

for these sites, potentially because it was unable to capture the longer storage times driving 

baseflow in these landscapes. The feature importance plots support the conjecture of poor 

physical model emulation by showing a negative influence of PPT in the PILSTM for February-

March, which is not physically realistic. This negative influence of PPT is paired with a positive 

influence of PET on discharge, which, in contrast to watersheds where PET serves as a proxy for 

AT and melt rate during this time of year, is unrealistic for these watersheds that receive little to 

no snow. In general, we expect that parameter optimization for LSTM-based models would be 

particularly poorly constrained in these watersheds because of limited variability in flow over the 

data record. The poor performance of all types of models for these watersheds may also reflect 

their large area and the inadequacy of single-station values of PPT and PET at that scale. 

 

Extrapolating these findings to other watersheds, we predict that when a physical model is not 

representative and particularly when there is high uncertainty in parameterization, a purely data-

driven approach would be preferable when training data are sufficient. On the other hand, when 

watersheds are arid and baseflow-driven, with limited streamflow variability, and when the 

timescale that the LSTM's memory captures is not commensurate with the timescale of dominant 

watershed processes, a purely physical model would be preferable. Otherwise, a PILSTM is 

probably best, and, as will be discussed in the subsequent sections, is likely most robust to 

shortcomings in the training data, including short record length and undersampling climate 

variability. We recommend more comprehensive studies that span many watersheds to develop 

guidance on how watershed characteristics relate to the weighting of physical vs. data-driven 

modeling elements (i.e., the value of λ). 

 

Greater advantages for model pre-training than incorporation of physics, with caveats  

Across the base, non-stationary, and data scarcity experiments, it was clear that pretraining 

LSTM-based models on a geographically broad dataset resulted in large multi-metric 

performance gains for most watersheds that were far greater than gains from integrating physics 

into LSTM-based models or changing the inputs to those models. Leveraging the 

spatiotemporally rich data in the CAMELS database resulted in less overfitting of LSTM models, 

as evidenced in much smoother feature importance plots (Figure 13 compared to Appendix F), 
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and likely made up for missing information in the training data from the target sites. Pretraining 

produced advantages in nearly all performance metrics and resulted in diminished sensitivity of 

median performance to record length of and climate variability in the fine-tuning data, indicating 

that the learning leveraged in pre-training resulted in fewer incidences of extrapolation. These 

findings reinforce recent recognition (Qualls, 2022) that pretraining may help overcome long-

recognized problems in ML of predicting discharge during dry periods when models are trained 

in wet periods (e.g., Vaze et al., 2010) or other out-of sample conditions. In the site-specific (i.e., 

non-pretrained) LSTM-based models, a decline in performance was apparent when just a single 

training year was withheld from the fine-tuning data (Figure 11A). In contrast, in the pretrained 

LSTM-based models, the performance of the median and upper-quartile sites was remarkably 

stable with declining training years, until two or fewer years were available (Figure 11B). Even 

with just one or two years of fine-tuning data, though, median and upper-quartile performance 

was better than for the site-specific LSTM-based models, suggesting that most of the dynamics 

relevant to these watersheds were already present in the pretraining dataset. Meanwhile, the 

decline in performance below two years of fine-tuning data suggests that site-specific training 

information is still useful for improving performance.  

 

However, for those watersheds at the lower end of the distribution of model performance, 

pretraining can worsen performance under conditions of undersampling climate variability or 

data scarcity. This worsened performance likely results from the model “learning” behaviors 

from the pretraining dataset that are not applicable to the target site when the target site is poorly 

represented in the pretraining data and fine-tuning being insufficient to correct for 

counterproductive transfer learning. In the CHOSEN dataset, it was the dry sites with large 

watershed areas (Jornada Basin and Sevilleta) that consistently delivered poor performance in 

pretraining for the non-stationary and data scarcity experiments.  

 

Safeguarding against poor performance through site-specific data and integration of physics 

Our results suggest that the poor performance of some pretrained models may be alleviated when 

the fine-tuning data record is sufficiently long (i.e., six or more years for all LSTM-based models 

to consistently see performance gains through pretraining) and well-distributed (summarized in 

the decision tree in Figure 15). Here, well-distributed means that the fine-tuning dataset ideally 

samples nearly the full range of climate variability; when climatically similar years were 

excluded from training in the non-stationary experiments, lower-quartile performance values 

were lower than those from site-specific models. The only exception was when the driest years 

were excluded from training, suggesting that learning specifically from hydrologically active 

periods in the fine-tuning dataset (particularly important for the arid sites from which poor 

performances originated in our dataset) can alleviate poor performance arising from pretraining. 

Additional or alternative types of information can correct for this counterproductive transfer 

learning. Our results suggest that transfer learning may be more effective when based on direct 

water balance quantities rather than derived quantities. For example, in contrast to the 

https://www.zotero.org/google-docs/?broken=wyFlAy
https://www.zotero.org/google-docs/?broken=JKXBCC
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counterproductive transfer learning seen in the LSTM with AT inputs for cases with fewer than 

six years of fine-tuning data, for the LSTM with PET inputs, the most poorly performing 

watersheds exhibited better performance in the pretrained than in the site-specific models with 

just three or more years of fine-tuning data. This finding suggests that the globally trained LSTM 

had difficulty in extracting information from AT dynamics learned from other sites that was 

relevant to the water balance at the target site. Second, physical information, introduced via the 

PILSTM, can also improve the performance of lower-quartile sites in the pretrained models, with 

even greater gains apparent than in the LSTM with PET inputs. Still, a minimum of two- to four 

years of training data is needed to improve the worst performances, given the challenges of 

calibrating physical models and achieving high performance under data-scarce scenarios. 

Interestingly, PILSTM models developed with AT inputs had highest minimum and lower-

quartile performances, suggesting that the imposition of assumed evapotranspiration values in 

the water-balance model coupled with flexibility for the LSTM to translate AT into discharge 

best corrected for counterproductive transfer learning in the pre-training process. 

 

The findings in this study are complementary to other studies that have demonstrated that 

physically constrained ML models outperform standard ML models when testing data are 

distributed differently from training data. For example, Lu et al., 2021 used an LSTM and a 

physics-informed hybrid LSTM to forecast discharge in a data-scarce rural area and found that 

the hybrid model performed better when the variability of the prediction and calibration periods 

was substantially different. Similarly, Wang et al., (2020) suggested that theory-guided neural 

networks were more effective than standard deep neural networks for subsurface flow prediction 

due to their ability to generalize to scenarios outside of the training dataset. Collectively, these 

works and our experiments suggest that a combination of ML and physical models may be 

highly effective in handling nonstationarity when predicting discharge and that physics-guided 

ML models can leverage the information from limited training data and improve predictive 

power compared to both process-based and data-driven models. 

https://www.zotero.org/google-docs/?broken=qmdaqA
https://www.zotero.org/google-docs/?broken=97dfNI
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Figure 15. Phenomenological decision tree for developing the highest-performing predictive 

model of streamflow from precipitation (PPT) and either air temperature (AT) or potential 

evapotranspiration (PET) inputs, based on analysis of the CHOSEN watersheds. Recommended 

LSTM-based models are pre-trained unless otherwise indicated (i.e., referred to as site-specific 

models). Larger-sample studies would be needed to develop certainty around decision points 

involving specific record lengths, assessment of the degree of similarity between target 

watersheds and those in a pretraining database that is predictive of good (i.e., near-median and 

above) performance, and the adequacy of sampling climate variability in the test data.   
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Transfer learning with DL models has greatly accelerated the improvement of PUB (Kratzert, 

Klotz, et al., 2019), but remnant performance differentials between gauged and ungauged 

watersheds underscore the importance of site-specific data for fine tuning. Here we show that, 

for certain watersheds with characteristics poorly represented in the pretraining dataset, transfer 

learning can diminish performance (relative to site-specific DL models) as the amount of fine-

tuning data decreases (to five years and below). However, incorporating water-balance 

constraints into the loss function and tuning the weight of those constraints can generally 

compensate for counterproductive transfer learning when two or more years of data are available 

(provided those years reasonably sample expected climatic variability, with the possible 

exception of the driest conditions), serving as a safeguard against poor performance (Figure 15). 

Similarly, training the model on input time-series directly relevant to the water balance (e.g., 

PET) can also compensate for poor performance (Figure 12B), though not to the same extent as 

adopting a PILSTM approach. 

 

These experiments better define the state-of-the-art in predicting streamflow in data-scarce 

watersheds. First, transfer learning through pre-training a DL model on existing hydrologic 

databases before fine-tuning with available data from the target watershed is likely to result in 

substantial performance gains for most watersheds and boost generalization capabilities, as has 

been recognized previously (Tan et al., 2018). However, we show that for a subset of watersheds, 

leveraging this geographically broad information will diminish performance. More research is 

needed to identify characteristics of watersheds that fall into this subset and understand how they 

differ from the watersheds in the pretraining dataset. Nonetheless, when two or more years of 

data are available from the target watersheds, informing the DL model with physics and/or 

basing the model on water balance-relevant time series is likely to compensate for 

counterproductive transfer learning. Importantly, this finding pushes back against the idea that 

two or three years of data from a watershed is insufficient for streamflow forecast development 

and may greatly expand the number of watersheds for which robust, hybrid forecasts are 

available.  

 

Many data-scarce watersheds for which discharge prediction would be desirable are located 

outside the geographic extent of the large-sample hydrology database CAMELS, though recent 

years have produced extensions to Great Britain (Coxon et al., 2020), Brazil (Chagas et al., 

2020), Chile (Alvarez-Garreton et al., 2018), Switzerland (Höge et al., 2023) and Australia 

(Fowler et al., 2021). Without the immediate availability of a database for pretraining, our 

findings suggest that predictive models for these watersheds would benefit from a PILSTM 

approach (in terms of multidimensional predictive performance—when training data exceed five 

years—and stability in nonstationary conditions). Whether those watersheds would still benefit 

from transfer learning from DL models developed for other geographic areas is worthy of 

investigation and underscores the need for developing understanding of how geologic and 
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climatic similarity to catchments in large-sample hydrology databases is related to predictive 

performance. Because storm characteristics can play as large a role in runoff response behaviors 

as geologic characteristics (Moges et al., 2022), geographic proxies for climate (i.e., longitude, 

latitude) in the set of features considered in entity-aware DL may require substitution with a suite 

of more specific climate metrics that capture storm timing, frequency, intensity, and overall 

water delivery characteristics to effectively transfer learned behaviors outside the geography of 

the pretraining database. Our work suggests that, even if dissimilarity between the target 

watersheds and those in existing databases is predictive of poor performance in an LSTM, 

integrating physical constraints into the loss function in a PILSTM and/or using direct water 

balance quantities as input data when two or more years of fine-tuning data are available may 

yield models with suitable performance. However, these predictions need to be tested more 

broadly. 

 

Although agencies have favored investment in physical models for operational continental-scale 

hydrological forecasting in the form of the National Water Model (NOAA 2016) and National 

Hydrologic Model (Regan et al., 2018), recent studies suggest that performance can be improved 

by leveraging hybrid (i.e., post-processing and/or mass-conserving) approaches or adopting an 

LSTM model pretrained on the CAMELS database (Frame et al., 2021; 2022;). Further, water 

management agencies such as the National Resource Conservation Service are beginning to 

adopt ensemble water supply forecasts for the western U.S. that leverage diverse types of 

machine learning and physics-aware artificial intelligence (Fleming et al., 2023). These studies 

hint that operational adoption of these approaches is within reach. Our findings point to a 

refinement of this future, in which watersheds are pre-classified according to whether they are 

likely to benefit from pre-training and whether fine-tuning with a PILSTM or LSTM may 

safeguard against possible performance deterioration arising from pretraining. Once broader 

studies have been done to refine our decision-tree approach (Figure 15), development of a 

modeling workflow to implement the decision tree in a geographically broad forecasting system 

will be straightforward.  

3.7 Conclusion 

In this study, we introduced a novel Physics-Informed Machine Learning (PILSTM) model, 

designed to combine the strength of ML models and the physical model to enhance accuracy 

under various scenarios. Additionally, we explored the implications of pretraining models on a 

large hydrological dataset, leveraging available data to unlock the full potential of the data-

driven model.  

 

The results indicate consistent superiority of the PILSTM model over LSTM-based models 

across various watersheds when employing the same model inputs for site-specific scenarios. In 

the absence of pretraining, the PILSTM model also demonstrates an advantage in data-scarce and 
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climate-change scenarios. Pretraining the model on a large dataset significantly enhances 

predictive accuracy, particularly for locations with limited data. In pretraining scenarios, the 

PILSTM models exhibit a marginal performance advantage compared to the LSTM model in 

most cases. Machine learning models pretrained on extensive datasets show a reduced need for 

additional inputs of physical information. However, caution is advised when applying pretrained 

models to watersheds with hydrological patterns not well represented in the pretraining dataset, 

as their predictive power may be compromised. Under certain circumstances, integrating 

physical constraints through a PILSTM may ameliorate counterproductive transfer learning to 

produce performance gains for those watersheds. The study emphasizes the dual benefits arising 

from leveraging extensive datasets and incorporating physical constraints in data-driven models. 

The integration of physically-based models with ML models emerges as a promising strategy, 

producing predictions that are not only accurate but also interpretable and better aligned with our 

understanding of water-balance processes. 
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Chapter 4 

Utility of clustering for predictions in ungauged basins in 

the age of machine learning 

4.1 Abstract 

This study investigates the potential benefits of employing watershed pre-classification in 

conjunction with deep neural networks, specifically Long Short-Term Memory (LSTM) models, 

for streamflow estimation in ungauged basins. Utilizing data from the CAMELS dataset, we 

compare the performance of a global entity-aware LSTM model trained on meteorological time 

series data with that of local models trained on pre-clustered watersheds. Our approach involves 

experimenting with different features for watershed clustering, including site attributes and 

hydrological signatures. We also evaluate the use of meteorology-discharge transfer entropy 

statistics for clustering, leveraging directional information flows from precipitation to discharge. 

Our findings show that pre-clustering with these three types of features does not significantly 

enhance model performance. Instead, employing these features directly as inputs into LSTM 

models yields better results than using them to pre-cluster watersheds. In addition, the entity-

aware LSTM model utilizing hydrological signatures demonstrates the highest predictive power, 

suggesting their effectiveness in distinguishing watershed characteristics and identifying 

hydrological processes. While our study acknowledges its limitations, it underscores the 

potential for future research to explore the integration of hydrological signatures as static inputs 

in LSTM models for streamflow prediction in ungauged basins. 

4.2 Introduction 

A significant portion of the world's rivers, stream reaches, and tributaries lack adequate gauging 

records, meaning there are insufficient hydrological observations both in terms of quantity and 

quality. This makes it challenging to do water supply or flood forecasting in many regions or 

relate streamflow to other environmental parameters of interest. The urgency to reduce 

uncertainty in predicting flow in ungauged basins is particularly critical for developing countries, 

where unreliable predictions significantly hamper efficient water resource management and the 

ability to mitigate the impacts of floods and droughts (Hrachowitz et al., 2013). Prediction in 

ungauged basins (PUB) is one of the longest-standing grand challenges in hydrology (Sivapalan 

et al., 2003). To catalyze research progress on PUB, the hydrologic science community named 

the decade 2003-2013 as the “Decade of PUB,” (Hrachowitz et al., 2013) with funding and 

research incentives intended to galvanize major progress on how to transfer learning from 

individual, well-studied watersheds to other watersheds. While important advances were made 

(Hrachowitz et al., 2013), the Decade of PUB predated the data and machine learning revolution, 
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which is now rapidly changing the nature of learning and prediction across nearly all disciplines. 

Here we investigate several strategies for knowledge transfer to improve PUB, comparing and 

blending long-standing methods in hydrology with discipline-agnostic approaches from data 

science.   

 

In ungauged basins, the absence of observations makes it impractical to select or calibrate 

hydrological models using in situ data, as typically done in well-gauged basins. Consequently, 

watershed regionalization and classification methods have emerged as a solution to facilitate 

predictions in ungauged basins. Regionalization involves the extrapolation of hydrological 

information from gauged (observed) basins to ungauged basins within a region (G. Blöschl & 

Sivapalan, 1995). For example, some studies directly regress model parameters to physiographic 

attributes to subset variables for regionalization (Fouad et al., 2018; Ye et al., 2014). Meanwhile, 

classification is primarily employed to group similar watersheds based on their inherent 

characteristics or attributes and then develop individual hydrological models for each group. 

Regionalization and classification methods are often used in conjunction to improve hydrological 

predictions in various contexts. Both methods enable predictions in ungauged basins by 

leveraging calibrated hydrological models from well-observed watersheds with similarities in 

hydrological behaviors (Razavi & Coulibaly, 2013). 

 

Utilizing an appropriate watershed classification methodology can enhance predictions in 

ungauged basins when combined with physical and process-based hydrological models. For 

instance, Kanishka & Eldho (2020) employed Isomap and principal component analysis (PCA) 

techniques to classify 30 watersheds in the Godavari river basin, India, identifying 

hydrologically similar watersheds. Applying these classification results to the Soil and Water 

Assessment Tool (SWAT), they observed an improved accuracy in streamflow estimation for 

ungauged basins. Additionally, Razavi & Coulibaly (2016) showed that specific combinations of 

watershed classification techniques, regionalization methods, and hydrologic models, such as 

MAC-HBV (McMaster University-Hydrologiska Byråns Vattenbalansavdelning) and SAC-SMA 

(Sacramento Soil Moisture Accounting Model), significantly enhanced the accuracy of estimated 

daily mean, low, and peak flows in ungauged basins. 

 

A well-designed classification scheme not only facilitates model prediction but also transfers 

knowledge about hydrologic processes from gauged to ungauged basins and can enhance 

understanding of hydrological processes. For example, Wu et al., (2021) investigated regional 

patterns of dominant streamflow generation mechanisms, utilizing six hydrological signatures to 

classify 432 catchments into eight classes. Their findings provide detailed insights into the 

climatic and physiographic controls on regional streamflow patterns, contributing to a 

transferable understanding of these mechanisms. Jehn et al., (2020) analyzed 643 catchments 

from the CAMELS dataset (Addor et al., 2017), identifying hydrological clusters based on 

hydrological behaviors and revealing connections with catchment attributes. They discovered 
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that, when considering the complete dataset, climate stands out as the primary factor influencing 

hydrological behavior, and the manifestation of climatic forcing is more pronounced in the 

behavior of specific catchments than in others. 

 

Meanwhile, the rise of artificial intelligence has propelled machine learning models to the 

forefront of streamflow prediction, owing to their exceptional predictive capabilities. Instead of 

pre-classifying watersheds based on site attributes, deep neural networks (DNNs) allow direct 

input of these attributes, enabling the model to autonomously discern differences between sites. 

In a study by Kratzert, Klotz, Herrnegger, et al., (2019), long short-term memory (LSTM) 

models forced with nearly ubiquitously available time series (i.e., temperature, precipitation) 

were trained with static catchment attributes on CAMELS sites using k-fold validation, treating 

the left-out fold as ungauged basins. The results demonstrated that the LSTM outperformed both 

the calibrated SAC-SMA (one of the most widely used physical models of streamflow) and the 

National Water Model in terms of median Nash-Sutcliffe Efficiencies when tested on 531 basins 

treated as ungauged. This research highlights the potential of LSTM models in PUB and suggests 

that commonly available catchment characteristics offer sufficient information for machine 

learning algorithms to distinguish between catchment-specific rainfall-runoff behaviors. 

 

It remains uncertain whether pre-classifying watersheds can enhance DNN performance by 

leveraging their capacity to discern similarities and differences based on input time series and 

attributes. Watershed classification offers one pathway for incorporating expert knowledge about 

hydrological behaviors into prediction models. Here we hypothesize that certain classification 

methods may offer supplementary insights into watershed heterogeneity and similarity, beyond 

what the prediction model discerns, and can therefore enhance model accuracy. This study uses 

the state-of-the-art DNN models in in terms of streamflow prediction to address whether 

classification remains useful for PUB. It also examines which classification method can offer 

more insights into the hydrological behaviors of watersheds, despite the absence of comparative 

analyses on different watershed classification schemes and their impact on predictive models. 

 

In this study, we experiment with a machine learning model (LSTM) and see whether 

classification can bring benefits to improve model prediction. We conduct our experiment using 

data from the CAMELS dataset (Addor et al., 2017; Newman et al., 2015). For PUB with LSTM, 

we train a global model with 5 meteorological time series data as inputs and compare it with 

local models trained using clustering results.For watershed clustering, we experimented with 

different features for clustering to see which one provides more useful information to model 

prediction. We use the site attributes of watersheds available from the CAMELS dataset and 

hydrological signatures provided in Wu et al., (2021). We assessed the use of meteorology-

discharge transfer entropy statistics for clustering, considering the capacity of directional 

information flows from precipitation to discharge to offer insight into dominant mechanisms of 

catchment runoff generation (Moges et al., 2022). 
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4.3 Data 

The data utilized in this study are sourced from the publicly available Catchment Attributes and 

Meteorology for Large-Sample Studies (CAMELS) dataset (Addor et al., 2017; Newman et al., 

2015). Among all the CAMELS sites, we preselected 432 watersheds, based on three criteria 

established by Wu et al. in 2021. Firs, the catchment area for each selected site falls within the 

range of larger than 20 km² and smaller than 10,000 km². Second, no more than 30% of the total 

precipitation in the catchments occurs in the form of snow. Lastly, the Nash-Sutcliffe efficiency 

of streamflow predictions in the coupled Snow-17 model and the SAC-SMA model is 

constrained to be no less than 0.5 (Wu et al., 2021).  

 

In this study, we employ data for training that spans January 1, 1997 to December 31, 2014, 

which aligns with the data range utilized for analysis in Wu et al., 2021. For testing, we utilize 

data from January 1, 1985, to December 31, 1996 at a daily time increment. The meteorological 

forcing variables in our analysis encompass precipitation, maximum and minimum air 

temperature, vapor pressure, and solar radiation. The forcing data, covering the period from 

January 1, 1985, to December 31, 2014, exhibit no missing values as they are continuous gridded 

weather data products developed by NASA's Earth Science Division. 

 

After scrutinizing the discharge data, we detected missing values within the designated date 

ranges. To ensure data quality, we established a criterion stipulating that the number of missing 

values must not exceed 20% for both the testing and training periods. In accordance with this 

pre-screening standard, we proceed to retain data from 415 sites for subsequent analysis. Within 

this dataset, the average proportion of missing values is 1.3% for the training data and 0.3% for 

the testing data across these 415 sites. 

4.4 Methods 

4.4.1 Features for clustering  

4.4.1.1 Site attributes 

In this study, we experimented with three sets of features for watershed clustering. The first 

approach leverages 27 watershed attributes available from the CAMELS dataset. These 27 

attributes encompass a range of details pertaining to topography, climate, vegetation, soil 

composition, and geological features (further elaborated in Appendix G1). These 27 attributes 

are used as static inputs in the LSTM model by Kratzert et al., 2019. In our study, we employ 

these identical 27 attributes for both watershed clustering purposes and for establishing static 

inputs, facilitating a comparative analysis with the methodology in Kratzert's research (Kratzert 

et al., 2019). 
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4.4.1.2 Hydrological signatures 

The secondary clustering method employed in this study relies on the utilization of six 

hydrological signatures as outlined in Wu et al., 2021 (Appendix G2). These hydrological 

signatures are examined using CAMELS data spanning the period from 1997 to 2014. In 

addition to the daily precipitation time series, the analysis of hydrological signatures, as detailed 

in Wu et al., 2021, incorporates an hourly precipitation dataset sourced from the NCEP Stage II 

and Stage IV multisensor gridded data. It is noteworthy that this clustering method can be 

interpreted as the one most informed by expertise on physical hydrological processes. 

4.4.1.3 Transfer entropy statistics 

Our third clustering feature uses an information-theoretic method called transfer entropy (TE). 

This method quantifies the information transferred (i.e., reduction of uncertainty) from the past 

values of X to Y, given the historical values of Y (eqn.12; eqn.13).       

𝑇𝐸(𝑋 → 𝑌)𝑘,𝜏,ℎ = ∑ 𝑝(𝑥𝑡−𝜏
𝑘 , 𝑦𝑡 , 𝑦𝑡−ℎ)log [

𝑝(𝑦𝑡|𝑦𝑡−ℎ,𝑥𝑡−𝜏
𝑘 )

𝑝(𝑦𝑡|𝑦𝑡−ℎ)
] ;                   (12) 

                                  𝑥𝑡−𝜏
𝑘 =

1

𝑘
∑ 𝑥𝑡−𝜏−𝑝

𝑘−1
𝑝=0   .                                                     (13) 

 

𝑇𝐸(𝑋 → 𝑌)𝑘,𝜏,ℎ represents the transfer entropy from variable X to variable Y conditioned on Y 

with a history length of h. The variable X has a time lag of 𝜏 and an aggregation length of k. 

 

We applied this method to examine the information flow from five meteorological time series 

(precipitation, maximum and minimum air temperatures, solar radiation and vapor pressure) to 

streamflow time series across varying time spans and delay days. Here we calculate the TE 

conditioned on the streamflow value of the previous day (ℎ = 1). Note that we only use the data 

in the training period to compute the transfer entropy statistics. 

 

We computed transfer entropy (TE) attributes using different aggregation intervals and lag days, 

specifically 1, 3, 7, 30, 60, 90, and 180 days. As a result, we generate a total of 245 TE attributes 

(i.e., combinations of seven aggregation intervals, seven lags and five meteorological time series) 

for each specific site. To ensure the significance of these TE attributes, we shuffle the 

meteorological time series 1000 times and calculate random TE statistics. This procedure yields 

a critical TE threshold at the 95th percentile, and we only carry forward the TE attributes 

exceeding these thresholds for the clustering analysis. To avoid collinearity, we delete TE 

features with correlations greater than 0.90. After preprocessing the TE features with above 

steps, we end up with 39 significant TE features for clustering. 

4.4.2 Watershed clustering and local model weights 

To mitigate collinearity among the three sets of features outlined earlier prior to watershed 

clustering, we performed a Principal Component Analysis (PCA). Subsequently, we retained the 
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PCA components that account for 95% of the variance within the data. The clustering procedure 

was then executed using these selected PCA components. 

 

In the process of determining the optimal number of clusters, we used the Silhouette Score 

(Rousseeuw, 1987). When clustering with site attributes, the Silhouette Score indicated that the 

optimal number of clusters is four. In the case of hydrological signatures, the Silhouette Score 

exhibited a local maximum at four clusters. For the TE method, we observed a decreasing 

Silhouette Score as the number of clusters increased from two, meaning the optimal number of 

clusters is two for the TE method. To fairly compare across three clustering methods, we decided 

to use four clusters for grouping watersheds. 

 

We applied Gaussian mixture models (GMMs) for clustering, which provide us with the 

probability of each site belonging to a cluster. Subsequently, we utilized these clustering 

outcomes as weights for training local LSTM models. By 'local LSTM model,' we refer to the 

training of a model for each watershed cluster. We experimented with two approaches to map the 

GMMs outcomes to local model weights. The first approach involves directly using the 

probability as the model weights. The second approach (results provided in Appendix I) entails 

using the exponential of the probability as the model weights. Utilizing the exponential of the 

probability offers the advantage of enabling the local model to utilize and learn from more data 

points, even when a data point has a probability of 0 to belong to a particular cluster. However, 

employing the exponential probability mapping method tends to align the behavior of the local 

model more closely with the global model trained on all the sites. 

4.4.3 PUB with LSTM model 

To simulate predictions in ungauged basins, we first randomly divided the sites into four folds. 

The model was trained using the sites in three folds, and subsequently, the model was tested on 

the fold left out. The sites in this left-out fold were treated as "ungauged basins" in each 

experiment. This process was repeated four times, enabling us to test the model on all sites, 

treating them as "ungauged". 

 

To evaluate the effectiveness of clustering results, we trained two types of models. The first, 

known as the global model, was trained on all sites across the three folds with uniform weights. 

The second type, leveraging clustering results, is denoted as regional/local models. These models 

are individually trained for each cluster, incorporating designated weights for every training site 

in the three folds. The assignment of weights is determined by the clustering results as explained 

in 4.3.2. Subsequently, these regional models are utilized to make predictions on the testing sites 

if the testing sites are identified as belonging to the respective cluster (Table 9). 

 

In the global benchmark model, we employ five meteorological time series as data inputs, 

covering precipitation, solar radiation, minimum and maximum air temperature, and vapor 
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pressure. To align with the methodology proposed by Kratzert (2019) and facilitate a 

comparative analysis, we use an additional set of 27 site attributes—matching the features used 

for clustering—as supplementary static inputs in the LSTM global model. The global model, 

utilizing static attributes as inputs, is also referred to as an entity-aware LSTM model. This 

designation stems from its ability to distinguish between different watersheds by leveraging these 

static inputs, thereby enhancing its capacity to gather additional information. We also try with 

inputting other clustering features as static inputs in the model besides the site attributes. For 

each global model with static attributes as inputs, we train a corresponding local model to see 

whether pre-clustering can help with increasing model performance. We utilized the Mann-

Whitney U test (Wilcoxon Rank-Sum test) to assess whether there are significant differences 

between the medians of the model results. 

 

Table 9. Model Set-ups 

No. 

Model name 

Input features Using clustering 

results? 

Clustering 

features 

With static 

inputs? 

1 

global_benchmark 

5 Meteorological 

variables 

No / No 

2 

global_attr 

5 Meteorological 

variables, 

site attributes 

No / Yes, use site 

attribute 

3 

global_hydro 

5 Meteorological 

variables, 

hydrological 

signatures 

No / Yes, use 

hydrological 

signatures 

4 

global_TE 

5 Meteorological 

variables, 

TE attributes 

No / Yes, use TE 

statistics 

5 

local_attr 

5 Meteorological 

variables, 

site attributes 

Yes site attributes Yes, use site 

attribute 

6 

local_hydro 

5 Meteorological 

variables, 

hydrological 

signatures 

Yes hydrological 

signatures 

Yes, use 

hydrological 

signatures 

7 

local_TE 

5 Meteorological 

variables, 

TE attributes 

Yes TE statistics Yes, use TE 

statistics 
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4.4.4 Hyperparameter selection 

We fine-tuned hyperparameters in the global benchmark experiment and maintained their 

consistency across other experiments. Specifically, we tuned the model's hidden size and 

learning rate and set the values of other hyperparameters according to Kratzert, Klotz, 

Herrnegger, et al., 2019 (Table 10).  

 

In the hyperparameter tuning process, we divided the sites into four folds. The model underwent 

training on three folds of data, with validation performed exclusively on the last fold. This 

process exclusively utilized data from the training period. The results reveal that an optimal 

configuration is attained with a hidden size of 256 and a piecewise learning rate (Table 10). 

 

Table 10. Hyperparameters in the LSTM model 

Hidden size Learning rate 

(for epoch) 

Input 

sequence 

Dropout LSTM 

layers # 

training 

epochs  

Batch size 

 256 0-10: 1e-3 

11-20: 5e-4 

21-30: 1e-4 

270 0.4 1 30 256 

 

4.5 Results 

4.5.1 Watershed classification results 

An examination of clustering results, comparing outcomes across three distinct clustering 

methods is performed: clustering based on static attributes, TE (Transfer Entropy) statistics, and 

hydrological signatures. An analysis of the distribution of sites among clusters revealed 

consistent patterns across all three methods and a nonuniform distribution of sites across clusters. 

Notably, the largest cluster encompasses nearly half of the sites, while the smallest cluster 
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comprises approximately ten sites (Figure 16).

 
Figure 16. The number of sites in each cluster identified by different types of features. 

 

We assess the variance of principal components by each feature, highlighting the most influential 

ones (Figure 17) which represent the primary contributors to site clustering. Among static 

attributes, the top feature shaping site clusters is the fraction of forest (frac_forest), related to 

land cover and vegetation. Following closely is soil depth to bedrock (soil_depth_pelietier), 

reflecting soil characteristics. The third significant feature is the fraction of snow, indicative of 

site climate and precipitation form. Additionally, leaf area index features, pertaining to land 

cover, are among the top contributors. In terms of hydrological signatures, the foremost features 

for clustering are the variability of base flow (VARb) and the base flow index (BFI), crucial for 

understanding streamflow partitioning and groundwater dynamics. In TE statistics, the top three 

features are all associated with precipitation, with a lag day of 1 and aggregation lengths of 1, 3, 

and 7 respectively. This indicates that, in comparison to interactions involving other 

meteorological variables and discharge, the relationships between precipitation and discharge are 

the most significant factors in distinguishing among watersheds during clustering. 
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Figure 17. Breakdown of the variance by each feature. (A) Percentage of variance explained by 

each static attribute. (B) Percentage of variance explained by each hydrological signature. (C) 

Percentage of variance explained by each TE statistic. 

 

When examining clusters identified based on watershed static attributes, a notable observation 

arises regarding their geographical distribution (Figure 18). Sites within the same cluster 

demonstrate a pronounced spatial coherence, with a tendency towards concentrated geographical 

proximity. The largest cluster encompasses most sites along the Appalachian Mountains and the 

northwest region, characterized by a predominant land cover of deciduous and evergreen forest. 

Meanwhile, the second largest cluster comprises sites in the central part of the US. Sites along 

the southern coastline form two distinct clusters, distinguished by their location on either the east 

or west coast, which suggests variations in land cover and soil characteristics between the two 

coastal regions. The clustering results based on hydrological signatures reveal less spatial 

cohesion, primarily influenced by proxies of precipitation partitioning. Clusters identified using 
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TE statistics exhibit an even more dispersed geographical arrangement. 
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Figure 18. Geographical distribution of sites in different clusters identified by (A) site attributes 

(B) TE statistics (C) hydrological signatures. 

4.5.2 LSTM model prediction results 

Each of the global LSTM models outperforms or has the same performance as the corresponding 

set of local models using the same inputs (Table 11). Additionally, all the global models with 

different sets of static inputs outperform the global benchmark model. When utilizing clustering 

results, only the local model that incorporates hydrological signature information outperforms 

the benchmark model. That local model matches the performance of the global model that uses 

hydrological signatures as direct static model inputs. 

 

Most of the sites achieved their best performance in models using hydrological signature 

information. Overall, the global model incorporating hydrological signatures as static inputs 

emerges as the most effective. 

 

Table 11. Summary table of model performance. The model with boldface indicates the best 

performance overall. The Mann-Whitney U test (Wilcoxon Rank-Sum test) was utilized to assess 

significant differences in model performance. If the two models do not exhibit significantly 

different median values, the models will be denoted with the same superscript. 

Model name NSE median NSE mean 

Number of sites 

with NSE 

values<0 

Number of sites 

where this model 

performs optimally 

global_benchmark 0.58𝑎 0.48 25 19 
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global_attr 0.67𝑏 0.51 18 78 

global_hydro 0.69𝑐 0.59 13 110 

global_TE 0.64𝑏 0.49 15 66 

local_attr 0.48  -24.33 123 35 

local_hydro 0.68𝑏𝑐 0.53 20 76 

local_TE 0.57𝑎 -3.20 39 32 

4.6 Discussion 

This study aimed to evaluate whether pre-clustering watersheds can provide helpful information 

for LSTM model prediction in ungauged basins. We found that pre-clustering was generally not 

helpful; models utilizing clustering could achieve only the same or lower overall performance 

than counterpart global models that directly incorporate these clustering features as static inputs. 

However, among the different features used for clustering, hydrological signatures are the most 

effective in extracting information for use in the LSTM model. 

 

Global Benchmark vs. Global Entity-Aware Model 

Comparing the global benchmark with the other three global entity-aware models reveals that 

regardless of the features used as input for the LSTM model (static attributes, hydrological 

signatures, TE statistics), the global entity-aware models consistently outperform the benchmark 

(Table 11). This finding corroborates previous studies on entity-aware LSTM models, 

showcasing the advantage of integrating static attributes into the LSTM model (Kratzert et al., 

2019a; Kratzert et al., 2019b). The results demonstrate that the entity-aware model can extract 

valuable information from these features and employ it effectively for prediction, indicating that 

all three types of features contain pertinent information about watersheds and their rainfall-runoff 

processes. 

 

Global Entity-Aware Model vs. Local Entity-Aware Model 

Despite our intention for the local model to cater to specific types of watersheds with similar 

hydrological behaviors, it does not exhibit comparable performance to the global entity-aware 

models (Table 11). Notably, both global and local entity-aware models utilize the same set of 

input features, differing only in the assignment of weights to watersheds. Analysis of weights in 

local models reveals that for most watersheds for which membership in the cluster of interest is 

not most probable, the weights are nearly or entirely zero, indicating that they do not contribute 

to learning. Consequently, each local model is trained on fewer watersheds overall compared to 

the global model. These results suggest that pre-clustering watersheds and restricting the model 

to digest information from specific watersheds are not as effective as training the model on a 

broader range of watersheds, allowing it to discern differences among them. 
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We find that the local model utilizing hydrological signatures for clustering performs nearly the 

same as the global model (Table 11). This finding underscores the effectiveness of hydrological 

signatures in capturing similarities in watershed behaviors, indicating that hydrological behaviors 

are valuable information for model prediction. Previous classification studies have noted that 

different sets of catchment attributes and climate can lead to very similar hydrological 

behaviors—a phenomenon known as equifinality in catchment response (Jehn et al., 2020). This 

study offers insight into why static attributes are less effective than hydrological signatures in 

watershed clustering, as clustering results based on static attributes may not necessarily reflect 

similarities in hydrological behaviors. 

 

Although hydrological signatures demonstrate superior performance and provide the most useful 

additional information in the global entity-aware model, static attribute feature values are the 

most readily obtainable for ungauged basins. Static attributes encompass details about watershed 

topography, soil, climate, land cover, and geology but lack explicit information reflecting the 

interaction between climate and discharge time series. TE statistics reflect compound interactions 

between meteorological and discharge time series in the form of direct information flows, 

requiring prior observations of precipitation and discharge but computable with a few years of 

data. Hydrological signature classification provides information based on prior hydrological 

knowledge and physical rules, indicating the relationship between base flow and total discharge, 

stormflow behavior, and offering insights into the catchment's hydrograph. However, 

hydrological signatures necessitate extended observations and analyses to compile. To leverage 

hydrological signatures for PUB, forthcoming work should be focusing on estimating these 

metrics for unmonitored basins. 

4.7 Conclusion 

The purpose of this study was to determine whether using deep neural networks (LSTM) to 

estimate streamflow in ungauged basins can benefit from watershed pre-classification in any 

way. Three distinct feature types, each representing a different viewpoint on the watershed 

characteristics, have been tested for watershed clustering. Additionally, we employed Gaussian 

mixture models (GMMs) as our clustering technique. We preprocessed the 415 watersheds from 

the CAMELS dataset into five clusters in order to exploit the results of watershed pre-clustering. 

Next, we trained a local LSTM for each cluster. By contrast, we employed these attributes 

directly as static inputs to the LSTM model, bypassing the pre-clustering of the watersheds, and 

used the entity-aware model to estimate streamflow in ungauged basins. 
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The outcomes demonstrated that pre-clustering with these three attributes was ineffective in 

enhancing model performance. Furthermore, it turns out that using these watershed static data 

directly as inputs into LSTM models works better than pre-clustering. The hydrological 

signature-using entity-aware long short-term memory (LSTM) model has the highest prediction 

power of all of them, suggesting that hydrological signatures are the most effective way to 

distinguish among various watersheds and identify their hydrological processes. 

 

It's important to note that the methods and features explored in this study are limited. Therefore, 

the results do not dismiss the possibility of pre-clustering watersheds to enhance prediction in 

PUB. Additionally, as the hydrological signatures are derived from observed time series, if we 

aim to utilize them as static inputs in the LSTM model for PUB, future work will involve 

estimating these features for ungauged basins. 
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Chapter 5 

Conclusion 
In conclusion, this dissertation contributes insights and methodologies to the field of hydrology 

through the exploration of large-scale hydrological datasets and the development of innovative 

modeling techniques. 

 

The creation of the CHOSEN database provides researchers with access to comprehensive 

hydrological observatory data essential for doing comparative analysis. This database fulfills the 

critical data needs for comparative hydrology and also provides an example of cleaning and 

processing hydrological data. With the CHOSEN dataset lays the groundwork for studies aimed 

at establishing hydrologic baselines, analyzing information on wetting and drying trends, and 

attributing observed changes to underlying hydrological processes.  

 

In parallel, the introduction of the Physics-Informed Machine Learning (PILSTM) model 

presents a novel approach to combining machine learning and physical models, resulting in 

enhanced accuracy under various scenarios. The study highlights the consistent superiority of the 

PILSTM model over traditional LSTM-based models, particularly in data-scarce and climate-

change scenarios. Furthermore, the study emphasizes the importance of leveraging extensive 

datasets and incorporating physical constraints in data-driven models to produce accurate and 

interpretable predictions aligned with our understanding of water-balance processes. 

 

Lastly, the investigation into the use of deep neural networks for streamflow estimation in 

ungauged basins reveals valuable insights into the effectiveness of watershed pre-classification. 

While pre-clustering with distinct watershed attributes was found ineffective in enhancing model 

performance, the study demonstrates that utilizing hydrological signatures directly as inputs 

yields the highest prediction power. This underscores the significance of hydrological signatures 

in distinguishing watershed characteristics and identifying hydrological processes. 

 

In conclusion, the findings from these chapters underscore the importance of comprehensive 

datasets, innovative modeling techniques, and interdisciplinary approaches in advancing our 

understanding of hydrological processes and improving predictive capabilities. Moving forward, 

future research should focus on expanding datasets, refining models, and exploring novel 

methodologies to address the ongoing challenges in hydrology, thereby enhancing our ability to 

predict and manage water resources effectively. 
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Appendices 

A. Extreme events detection based on seasonal anomalies 

 
 

Figure A. (A) The detection of independent events. (B) and (C) show two strategies to 

detect extreme events. We used the first strategy to generate the results in Chapter 2. 

The data are air temperature time series from the Boulder study area. 
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B. Significant trends of frequency and magnitude of the extreme events 

 
Figure B1. Significant trends of frequency and magnitude of the extreme events. Light 

grey color indicates that no data are available or data record is shorter than 10 years. 
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Figure B2. Significant trends of frequency and magnitude of the extreme events 

analyzed using data excluding those generated using the climate-catalog method. The 

comparisons were made in case of artifacts caused by reconstructed data using the 

climate catalog method. 
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C. Changes in geographical exposure with reference to 1981 to 2005. 

 
 

Figure C. Changes in geographical exposure with reference to 1981 to 2005. a) 

Continental-scale annual changes (with reference to 1981 to 2005) in geographical 

exposure to extremes based on the CEI in the observations (1981 to 2012), the 

historical period (1966 to 2005), and the future period (2011 to 2050) model simulations. 

County-scale changes (with reference to 1981 to 2005) in geographical exposure to b) 

the CEI, and extreme c) drought conditions, d) warm nights e) hot days, f) contribution 

from intense precipitation events. Stippling represents counties where projected 

changes are at least one times (black dots) or two times (diagonal lines) greater than 

the baseline variability (Batibeniz et al., 2020). 
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D. The LSTM model 

 

LSTMs are a subclass of recurrent neural networks that consider antecedent conditions by using 

lagged observations as input. This generates models that have “memory” of a user-defined 

length. Cell states (𝑐𝑡) in the LSTM store “long-term memory” while hidden states (ℎ𝑡) store 

“short-term memory”. With each time step, new data are fed into the model and the cell states 

and hidden states are updated. The current cell state (𝑐𝑡) consists of the former cell state 

(𝑐𝑡−1)modified by data added via the input gate (𝑖𝑡) and removed via the forget gate (𝑓𝑡). The 

adjustments made by the input and forget gates are both determined by the former hidden state 

(ℎ𝑡−1) value and new input data (𝑥𝑡). The current hidden state (ℎ𝑡) value is generated by 

multiplying the output state (𝑜𝑡) and the current updated cell state (𝑐𝑡). The output state is a 

function of the former hidden state and new input data. Finally, the prediction at each time step is 

a linear transformation of the current hidden state.  

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥
𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ

𝑡−1 + 𝑏ℎ𝑖 )   

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) 

𝑜𝑡 =  𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

 

At each time step, the hidden state and cell state value have the same length as the input 

sequence. For example, if each input sequence is 270 days long, each individual cell and hidden 

state will also be 270 days long. Although both the cell state and the hidden state are responsive 

to input data, the hidden state, which represents the short-term memory, is more sensitive to new 

data at each time step. 

E. Evaluation metrics 

(1) Nash-Sutcliffe model efficiency coefficient (NSE)  

 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠

𝑡 − 𝑄𝑝𝑟𝑒𝑑
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝑄𝑜𝑏𝑠

𝑡̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1

 

 

(2) Pearson correlation coefficient (r) 

 

𝑟 =
∑ (𝑄𝑜𝑏𝑠

𝑡 − 𝑄𝑜𝑏𝑠
𝑡̅̅ ̅̅ ̅̅ )(𝑄𝑝𝑟𝑒𝑑

𝑡 − 𝑄𝑝𝑟𝑒𝑑
𝑡̅̅ ̅̅ ̅̅ ̅)𝑇

𝑡=1

√∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝑄𝑜𝑏𝑠

𝑡̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1 √∑ (𝑄𝑝𝑟𝑒𝑑

𝑡 − 𝑄𝑝𝑟𝑒𝑑
𝑡̅̅ ̅̅ ̅̅ ̅)2𝑇

𝑡=1
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(3) Bias in the Kling-Gupta Efficiency (KGE) 

 

𝐵𝑖𝑎𝑠 =
∑ 𝑄𝑝𝑟𝑒𝑑

𝑡𝑇
𝑡=1

∑ 𝑄𝑜𝑏𝑠
𝑡𝑇

𝑡=1

× 100% 

 

(4) Bias in FDC high-segment volume (FHV) 

 

𝐹𝐻𝑉 =
∑ (𝑄𝑝𝑟𝑒𝑑

ℎ − 𝑄𝑜𝑏𝑠
ℎ )𝐻

ℎ=1

∑ 𝑄𝑜𝑏𝑠
ℎ𝐻

ℎ=1

× 100% 

 

where all the discharges in summation have the frequency < 0.02 (H is the total number of high 

discharge values). 

(5) Bias in FDC mid-segment slope (FMS)  

 

𝐹𝑀𝑆 =
[log(𝑄𝑝𝑟𝑒𝑑

0.2 ) − log(𝑄𝑝𝑟𝑒𝑑
0.7 )] − [log(𝑄𝑜𝑏𝑠

0.2 ) − log (𝑄𝑜𝑏𝑠
0.7 )]

[log(𝑄𝑜𝑏𝑠
0.2 ) − log (𝑄𝑜𝑏𝑠

0.7 )]
× 100% 

 

Q0.2 and Q0.7 represent the discharge values with a frequency of 0.2 and 0.7 in the flow curve 

respectively. 

 

(6) Bias in FDC low-segment volume (FLV) 

 

𝐹𝐿𝑉 = −1 ∙
∑ [log(𝑄𝑝𝑟𝑒𝑑

𝑙 ) − log(𝑄𝑝𝑟𝑒𝑑
𝐿 )]𝐿

𝑙=1 − ∑ [log(𝑄𝑜𝑏𝑠
𝑙 ) − log(𝑄𝑜𝑏𝑠

𝐿 )]𝐿
𝑙=1

∑ [log(𝑄𝑜𝑏𝑠
𝑙 ) − log (𝑄𝑜𝑏𝑠

𝐿 )]𝐿
𝑙=1

× 100% 

 

where all the discharges in summation have the frequency >0.7. L is the total number of low 

discharge values. 𝑄𝐿 is the minimum value of discharge except for zero values. Note that we 

filter out the zero discharge values before calculating the frequency of discharge to avoid zero 

division. 
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F. Feature importance in site-specific model 

 
Figure F. Impact of input features using the integrated gradients method for site-specific 

PILSTM models. All PILSTM models employ a lambda value of one. 
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G. Features used for watershed clustering 

G1. Site attributes of CAMELS sites 

Name of the attribute Description Type 

area_gages2 Catchment area  

 

Topography elev_mean Catchment mean elevation 

slope_mean Catchment mean slope 

aridity Aridity (ratio of mean PET to mean precipitation)  

 

 

 

 

 

 

 

 

 

 

 

 

Climate 

frac_snow Fraction of precipitation falling as snow  

high_prec_dur Average duration of high precipitation events 

(number of consecutive days >= 5 times mean daily 

precipitation) 

high_prec_freq Frequency of high precipitation days (>= 5 times 

mean daily precipitation) 

low_prec_dur Average duration of dry periods (number of 

consecutive days <1 mm/day) 

low_prec_freq Frequency of dry days (<1 mm/day) 

p_mean Mean daily precipitation 

p_seasonality Seasonality and timing of precipitation (estimated 

using sine curves to represent the annual 

temperature and precipitation cycles, positive 

[negative] values indicate that precipitation peaks in 

summer [winter], and values close to 0 indicate 

uniform precipitation throughout the year) 

pet_mean Mean daily PET [estimated by N15 using Priestley-

Taylor formulation calibrated for each catchment] 

frac_forest Forest fraction  
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gvf_diff Difference between the maximum and minimum 

monthly mean of the green vegetation fraction 

(based on 12 monthly means) 

 

 

 

 

Land cover 

 

gvf_max Maximum monthly mean of the green vegetation 

fraction (based on 12 monthly means) 

lai_diff Difference between the maximum and minimum 

monthly mean of the leaf area index (based on 12 

monthly means) 

lai_max Maximum monthly mean of the leaf area index 

(based on 12 monthly means) 

clay_frac Clay fraction (of the soil material smaller than 2 

mm, layers marked as organic material, water, 

bedrock, and "other" were excluded) 

 

 

 

 

 

 

 

 

Soil 

max_water_content Maximum water content (combination of porosity 

and soil_depth_statgso, layers marked as water, 

bedrock, and "other" were excluded) 

sand_frac Sand fraction 

silt_frac Silt fraction 

soil_conductivity Saturated hydraulic conductivity 

soil_depth_pelletier Depth to bedrock (maximum 50m) 

soil_depth_statsgo Soil depth (maximum 1.5m, layers marked as water 

and bedrock were excluded) 

soil_porosity Volumetric porosity 

carbonate_rocks_frac Fraction of the catchment area characterized as 

"Carbonate sedimentary rocks" 

 

Geology 

 
geol_permeability Subsurface permeability (log10) 

 

The information about characteristics is referenced from the CAMELS dataset. 

 

G2. Hydrological signatures of CAMELS sites 

Label Definition Process implication 
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R[Pint,RC] The Spearman correlation coefficients 

between event runoff coefficients and 

event rainfall intensity 

Stormflow processes which are 

sensitive to rainfall intensity, for 

example, HOF 

R[Pvol,RC] The Spearman correlation coefficients 

between event runoff coefficients and 

event rainfall volume 

Stormflow processes which are 

sensitive to rainfall volume, for 

example, SSF1, SOF, SSF1, and 

GWF 

R[S,RC] The Spearman correlation coefficients 

between event runoff coefficients and 

pre-event storage 

Stormflow processes which are 

sensitive to pre-event catchment 

storage, for example, SOF, SSF1, 

GWF, and SSF2 

TS The characteristic time scale of event 

runoff response, estimated based on a 

linear-reservoir-based net-rainfall-

runoff model 

The timing of stormflow response: 

low TS is related to HOF, SOF, 

SSF1, and SSF2 and high TS is 

related to GWF 

BFI The ratio between base flow and total 

streamflow 

The contribution of base flow on 

total streamflow 

VARb The standard deviation of log-scale base 

flow time series 

The variability of base flow, low 

variability implies large groundwater 

storage 

 

The information about characteristics is referenced from table 1 in (Wu et al., 2021). 

H. Additional results using different weights in training local models 

1. Local exps have no static input features (k means method, inverse of distance-> weight) 

Model name NSE mean NSE median 

Number of sites with 

NSE values<0 

Number of sites 

where this model 

performs optimally 

global_benchmark 0.48 0.58 25 14 

global_static_attr 0.51 0.67 18 89 

global_static_hydro 0.59 0.69 13 155 

global_static_TE 0.49 0.64 15 114 

local_attr 0.50 0.59 26 19 

local_hydro 0.50 0.59 25 12 

local_TE 0.49 0.59 25 12 

https://www.zotero.org/google-docs/?broken=z8dNMT
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2. Local exps also use static input features (k means method, inverse of distance-> weight) 

Model name NSE mean NSE median 

Number of sites with 

NSE values<0 

Number of sites 

where this model 

performs optimally 

global_benchmark 0.48 0.58 25 18 

global_static_attr 0.51 0.67 18 56 

global_static_hydro 0.59 0.69 13 85 

global_static_TE 0.49 0.64 15 51 

local_attr_w_static 0.50 0.66 18 64 

local_hydro_w_static 0.58 0.69 15 88 

local_TE_w_static -0.32 0.65 23 53 

I. Results using the exponential of probability of watershed belonging  to 

each cluster as the weights in local LSTM model trained for each cluster 

Model name NSE median NSE mean 

Number of sites 

with NSE 

values<0 

Number of sites 

where this model 

performs optimally 

global_benchmark 0.58 0.48 25 16 

global_attr 0.67𝑎 0.51 18 65 

global_hydro 0.69𝑏 0.59 13 92 

global_TE 0.64𝑎 0.49 15 47 

local_attr 0.66𝑎 0.52 20 61 

local_hydro 0.69𝑏 0.59 16 82 

local_TE 0.65𝑎 0.39 18 52 
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