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RESEARCH ARTICLE

β-Arrestin Regulates Estradiol Membrane-
Initiated Signaling in Hypothalamic Neurons
Angela M. Wong, Matthew C. Abrams, Paul E. Micevych*

Department of Neurobiology David Geffen School of Medicine at UCLA and Laboratory of
Neuroendocrinology of the Brain Research Institute, at University of California Los Angeles, Los Angeles,
California, United States of America

* pmicevych@mednet.ucla.edu

Abstract
Estradiol (E2) action in the nervous system is the result of both direct nuclear and mem-

brane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels

through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-

arrestin-mediated mERα internalization has been described in the cortex, a role of ß-

arrestin in EMS, which underlies multiple physiological processes, remains undefined. In

the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modu-

lates lordosis behavior, a measure of female sexually receptivity. To better understand

EMS and regulation of ERαmembrane levels, we examined the role of ß-arrestin, a mole-

cule associated with internalization following agonist stimulation. In the present study, we

used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the

N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1

(Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and in-

ternalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which

predominates in the membrane. Treatment with E2 also increased phosphorylation of extra-

cellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown

prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microin-

fusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked

down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with

nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p< 0.0001). These re-

sults indicate a role for Arrb1 in both EMS and internalization of mERα, which are required

for the E2-induction of female sexual receptivity.

Introduction
Estrogens act at cell membrane receptors to activate intracellular signaling, which is implicated
in many brain functions including the regulation of female sexual receptivity [1, 2]. In estradiol
(E2) membrane-initiated signaling (EMS), estrogen receptor-α (ERα) transactivates metabo-
tropic glutamate receptors (mGluRs; [3–5]) regulating signaling pathways [6–12]. Plasma
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membrane ER (mER) levels are determined by a balance of trafficking to the membrane, re-
quiring ER palmitoylation and interaction with caveolin-1 (CAV1; [13, 14]), and internaliza-
tion, requiring β-arrestin-1 (Arrb1; [15]). To study EMS, we used previously characterized
immortalized hypothalamic neurons (N-38s). These cells expressed neuropeptide Y, full length
ERα and ERαΔ4, a splice variant lacking exon 4. ERαΔ4 is enriched in the plasma membranes
of cultured neurons and astrocytes, and its mRNA is widely distributed in the CNS [16–19].
Trafficking of ERα and ERαΔ4 to the membrane and internalization is regulated in parallel by
E2 [17, 18]. As in other neuronal hypothalamic cells that have membrane ERs, N-38 neurons
respond to E2 treatment by increasing free cytoplasmic calcium levels ([Ca2+]i), and by activat-
ing extracellular signal-regulated kinases 1/2 and protein kinase C (PKC).

Internalization is an important aspect of membrane receptor dynamics and limits cellular
responses initiated by agonist stimulation of G protein-coupled receptors (GPCRs). Receptor
stimulation leads to GPCR kinase (GRK) activation, which results in the phosphorylation of re-
ceptors including mERα [15, 20]. With other GPCRs, β-arrestins bind to phosphorylated re-
ceptors, uncouple G proteins and link receptors to clathrin-dependent internalization
pathways [21–24]. A more recently discovered function of β-arrestins is to organize members
of the ERK1/2 (aka mitogen-activated protein kinase, MAPK) pathway [24–27]. While it is un-
known whether β-arrestins are involved in organizing signaling molecules for mERs, E2 acti-
vates ERK1/2 [3, 28], potentially through a β-arrestin-mediated mechanism. Thus, β-arrestins
may be crucial not only for limiting E2 signaling via mERα internalization, but may be in-
volved in the initial EMS through an ERK1/2 pathway. This rapid, membrane-initiated action
of E2 is important for activating the limbic-hypothalamic lordosis-regulating circuit, in which
stimulating β-endorphin release activates μ-opioid receptors (MOR) in the medial preoptic nu-
cleus ([29], reviewed in [30, 31]).

Within this lordosis-regulating circuit, E2 activates NPY-expressing neurons in the ARH,
which we modeled with NPY mRNA expressing N-38 neurons in the present studies. Follow-
ing E2 activation of N-38 neurons, calcium levels increase [17] and ERK1/2 is phosphorylated
[15]. In vivo, EMS activates a transiently inhibitory circuit that is ultimately necessary for the
full display of lordosis behavior [2, 29, 32].

We hypothesize that Arrb1 knockdown would abrogate EMS and consequently lordosis be-
havior. Thus, in this study, we examined the role of Arrb1 regulation of E2-induced ER inter-
nalization and subsequent ERK1/2 signaling in N-38 neurons. Arrb1 siRNA was used to
reduce Arrb1 protein levels. In addition, we tested whether Arrb1 knockdown in vivo regulated
sexual receptivity using Arrb1 antisense oligodeoxynucleotides (asODN) infused into the ARH
prior to estradiol benzoate (EB) priming.

Materials and Methods

N-38 cultures
N-38 neurons were obtained from CELLutions Biosystems (Burlington, ON, Canada). Cultures
were prepared from a frozen stock of N-38 neuronal cells and maintained in DMEM supple-
mented with 4.5 mg/ml glucose, 10% FBS, 1% penicillin/streptomycin, 0.15% sodium bicar-
bonate at 37°C, 5% CO2. Cells were plated in T75 flasks at 1,000,000 cells/flask 16 h prior
to transfections.

Real-Time PCR
Total RNA was isolated using TRIzol reagent (Life Technologies; Carlsbad, CA), according to
the manufacturer’s protocol using 1 mL of TRIzol/100 mm plate. RNA from cells was extracted
using chloroform. RNA pellets were washed with 100% isopropanol followed by 75% ethanol
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in DEPC-treated water. Pellets were allowed to dry for 10 minutes at room temperature and
were resuspended in DEPC-treated water. RNA concentration and quality were assessed using
a spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific; Waltham, MA). 1–2 μg total
RNA were used to synthesize cDNA with the SuperScript III Reverse Transcriptase kit (Invitro-
gen; Carlsbad, CA) using Oligo(dT)20 primers. The RT reaction was performed at 50°C for
50 minutes, followed by a 5 minute termination at 85°C. cDNA was used immediately for
RT-PCR or stored at −20°C for� 1 month.

Primers for neuropeptide Y and γ-actin were described previously [33]. Reactions were run
on an Mx3000p thermal cycler (Agilent; Santa Clara, CA) using the program: 3 minutes at
95°C for DNA polymerase activation, then 40 cycles each consisting of 20 seconds at 95°C for
denaturation and 20 seconds at 54°C annealing/extension temperature. Following amplifica-
tion, a melting curve (54°C to 95°C) to identify PCR amplicons. In addition, PCR products
were electrophoresed on a 2% agarose gel containing ethidium bromide (1.12 g agarose, Sigma
#A9539; 50.4 mL dd H20; 5.6 mL 10x TAE buffer, Sigma #T8280; 1 uL EtBr) and visualized
using the FluorChem E imager (ProteinSimple; Santa Clara, CA). A DNA ladder (GeneRuler
100 bp DNA ladder, Thermo Scientific) was run alongside samples for verification of amplicon
size. All PCR products yielded single peaks in the melting curve analysis and single bands in
agarose gel electrophoresis (S1 Fig.).

siRNA Transfections
To knockdown the expression of Arrb1 in N-38 neurons, Arrb1 siRNA (cat. # SI02699116)
and scrambled siRNA (cat. # 1027310) were purchased from Qiagen (Valencia, CA). Transient
transfections were performed using Lipofectamine RNAiMax (Life Technologies, Grand Is-
land, NY) with 50 nM scrambled or Arrb1 siRNA in OptiMEM reduced serum media (Life
Technologies). Forty-eight hours after transfections, cells were steroid-starved for 20 h in char-
coal-stripped media (phenol red-free DMEM supplemented with 5% charcoal-stripped/dex-
tran-treated FBS (Gemini Bio-Products, West Sacramento, CA), 4.5 mg/ml glucose, 1%
penicillin/streptomycin, 0.15% sodium bicarbonate) prior to biotinylation or internalization
experiments.

Surface biotinylation
Membrane ERα levels in the cell membrane of N-38 neurons were analyzed using a biotinyla-
tion procedure as described by Bondar, et al. [18]. Forty-eight hours after siRNA transfections,
cells were treated with charcoal-stripped media (see above) for 16 h at 37°C, 5% CO2. Cells
were treated with 1 nM water-soluble E2 (cyclodextrin-encapsulated; cat. #E4389, Sigma-Al-
drich, St. Louis, MO). Following control or E2 treatment, cells were washed 3 times with ice-
cold HBSS buffer and incubated with freshly prepared 0.5 mg/ml of cell-impermeable, non-
cleavable EZ-Link Sulfo-NHS-LC-Biotin (ThermoFisher; Waltham, MA) in HBSS at 4°C for
30 min with gentle agitation. The biotin solution was aspirated and excess biotin was quenched
by rinsing cells 3 times with ice-cold glycine buffer (50 mM glycine in HBSS). Cells were har-
vested in 15 ml HBSS and centrifuged at 850xg for 5 min at 4°C. Cell pellets were resuspended
in 250 μL RIPA lysis buffer containing the following protease inhibitors: 1 mM phenylmethyl-
sulfonyl fluoride, 1 μg/ml peptstatin, 1 μg/ml leupeptin, 1μg/ml aprotinin, 1 mM sodium ortho-
vanadate (Santa Cruz Biotechnology, Santa Cruz, CA), and Halt phosphatase inhibitor cocktail
(ThermoFisher). Cells were homogenized by passage through a 25 gauge needle. Lysates were
clarified by centrifugation at 14,000xg for 5 min and collecting the supernatant. Protein con-
centration of the supernatant was determined using the BCA method (ThermoFisher). 200 μL
of each sample with a protein concentration of 1500 μg/ml was incubated with 200 μl of
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immobilized NeutrAvidin beads (ThermoFisher) for 2 h at room temperature on an orbital
shaker, followed by centrifugation for 1 min at 1000xg to separate proteins bound to the beads.
The beads were washed 4 times with RIPA lysis buffer (containing the protease and phospha-
tase inhibitors listed above) before eluting bound proteins with Laemmli buffer (Bio-Rad, Her-
cules, CA) containing β-mercaptoethanol for 1 h at 37°C.

To study internalization of mERαΔ4, N-38 cells were biotinylated with cell-impermeable,
SH-cleavable EZ-Link Sulfo-NHS-SS-Biotin (ThermoFisher; 0.5 mg/ml in HBSS) for 30 min at
4°C. After biotinylation and quenching, cells were treated with 1 nM E2 for 30 min before
washing with chilled HBSS. Biotinylated proteins from cell surface were twice stripped with a
membrane impermeant stripping buffer (100 mMmercaptoethanesulfonic acid [MESNA;
Sigma-Aldrich], 50 mM Tris, 100 mMNaCl, 1 mM EDTA and 0.2% BSA, adjusted to pH 8.0).
Cells were washed with 50 mM iodoacetamide to quench the MESNA. Internalization pro-
tected the biotin-labeled proteins fromMENSA stripping. Preparation of cell extracts and bio-
tinylated proteins were isolated as described above.

Antibodies
A rabbit polyclonal antibody to the COOH-terminal of ERα was used (c1355; 1:1000; EMD
Millipore, Billerica, MA) to detect ERα/ERαΔ4. For Arrb1, we used a rabbit antibody raised
against the amino acid sequence of the NH2-terminal of Arrb1 (E274; 1:1000; Abcam). A rabbit
polyclonal antibody directed against a synthetic phosphopeptide to residues surrounding
Thr202/Thr204 of human p44 MAPK was used to detect dual phosphorylated-ERK1/2 (p44/
42) (9101; 1:1000 Cell Signaling Technology, Danvers, MA). For total ERK1/2 (p44/42), a rab-
bit polyclonal antibody directed against the COOH terminus was used (9102; 1:1000; Cell Sig-
naling Technology). GAPDH was used as a loading control and was detected with a mouse
monoclonal antibody (6C5; 1:10,000; EMDMillipore). Secondary antibodies were horseradish
peroxidase-conjugated goat-anti-rabbit (sc-2030; 1:10,000; Santa Cruz Biotechnology) or goat-
anti-mouse (sc-2005; 1:10,000; Santa Cruz Biotechnology).

Western Blots
Biotinylated membranes or cytoplasmic proteins were loaded onto 10% SDS polyacrylamide
gels (Bio-Rad) and transferred to polyvinylidene difluoride (PVDF) membranes (GE Health-
care, Pittsburgh, PA). Nonspecific binding sites were blocked with 5% nonfat milk in TBS-T
(Tris-buffered saline with 0.1% Tween 20) for 1 h on an orbital shaker. Primary antibodies
were diluted in 5% bovine serum album (ERα, phospho-ERK1/2, or total ERK1/2) or 5% w/v
nonfat milk (Arrb1, GAPDH) in TBS-T and incubated overnight at 4°C. Blots (PVDF mem-
branes) were washed three times with TBS-T prior to incubation with secondary antibody (di-
luted in 5% nonfat milk in TBS-T) for 1 h. Blots were washed three times with TBS-T and once
with TBS prior to visualization on a Fluor ChemE imager (ProteinSimple, San Jose, CA) using
enhanced chemiluminescence (ECL; Western C, Bio-Rad).

Densitometric analysis
Digitized images from a Fluor ChemE imager were analyzed using AlphaView 2.0 software
(ProteinSimple). Total band intensity expressed as arbitrary optical density units for each sam-
ple were calculated by subtracting the background from each target signal. Phospho-ERK1/2
(phospho-p44/42) loading was normalized with total ERK1/2 to determine the amount of
phosphorylated ERK1/2 protein. Variations in protein loading were corrected with GAPDH.
Optical density ratios were normalized by dividing each set by the control ratio for each of the
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data sets and multiplied by 100 to obtain the relative change in optical density compared to the
control group.

Ethics Statement
This study was carried out in strict in accordance with the principles and procedures of the Na-
tional Institute of Health Guide for the Care and Use of Laboratory Animals. The protocol was
approved by the Chancellor’s Animal Research Committee at the University of California, Los
Angeles (Protocol Number: ARC # 1999-020). All surgery was performed under isoflurane an-
esthesia, and all efforts were made to minimize suffering.

Animals
Male and ovariectomized (ovx) female (200–250 g) Long-Evans rats were purchased from
Charles River (Wilmington, MA). Upon arrival, rats were housed two per cage in a climate-
controlled room, with a 12-h light, 12-h dark cycle (lights on at 0600h). Food and water were
available ad libitum.

Bilateral guide cannulae (22 gauge; Plastics One Inc., Roanoke, VA) directed at the ARH
(coordinates from bregma; −2.8 mm, lateral 0.8 mm, ventral −7.4 mm from dura; tooth bar:
−3.3 mm) were implanted using standard stereotaxic procedures while female rats were anes-
thetized with isoflurane (2–3% in equal parts oxygen and nitrous oxide). Cannulae were se-
cured to the skull with dental acrylic and stainless steel bone screws. Stylets were placed in the
guide cannulae, which extended less than 0.5 mm beyond the opening of the guide cannulae.
Animals were individually housed after surgery, received banamine (500 μg/0.1 ml s.c. injection
every 12 h; Phoenix Pharmaceuticals, St. Joeseph, MO) and oral antibiotics (trimethoprim and
sulfamethoxazole, 0.4 mg/ml; Hi-Tech Pharmacal, Amityville, NY) in the drinking water and
were allowed to recover 6–7 days before steroid priming.

17β-estradiol benzoate (EB) dissolved in safflower oil was injected (s.c.) in a volume of
0.1 ml per rat. Females received 5 μg EB every 4 days between 0800h and 0900h for three cycles
to mimic the natural estrous cycle of female rats as previously described [34].

Microinjection
We compared the ability of siRNA and antisense oligodeoxynucleotides (asODN) to knock-
down Arrb1 in vivo. The asODN produced greater knockdown of Arrb1 thus, this method was
used to knock down Arrb1 in vivo. The asODN or nonsense scrambled oligodeoxynucleotides
(nsODN) were dissolved in artificial cerebrospinal fluid for a final concentration of 3 μg/μl for
the initial microinfusion and 2 μg/μl for the remaining microinfusions. The asODN cocktail
consisted of three phosphorothiorated ODN targeted to the mRNA translation initiation site of
Arrb1: 5’- GTGTCCCTTTGTCGCCCAT-3’, 5’-ACACTCGTGTCCCTTTGTC-3’, and 5’-
TCCCTTTGTCGCCCATGGTC-3’. Phosphorothiorated nucleotides are indicated in italics
and translation start site is underlined. The control, nsODN sequences were 5’- CACAGGG
AAACAGCGGGTA-3’, 5-TGTGAGCACAGGGAAACAG-3’, and 5’- AGGGAAACA
GCGGGTACCAG-3’. A BLAST search revealed that none of the control nsODNs were pre-
dicted to bind any known rodent mRNA target. The ARH was microinfused bilaterally with
1μl at a rate of 0.25 μl/min using an infusion pump (Harvard Apparatus, Holiston, MA). Mi-
croinjection needles (28 gauge, Plastics One Inc) protruded 1 mm or less beyond the opening
of the cannula and remained in place for 1 min after infusion to allow for diffusion away from
the injector. After microinjection, obturators were reinserted into guide cannulae and animals
were returned to their home cage.
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To ensure a significant knockdown of Arrb1, animals received four microinfusions, one
each consecutive day starting 24 h after the second EB injection. Microinfusions were 24 h
apart. The final microinfusion was 30 min prior to the third EB injection, (i.e., 30.5 h before
testing for lordosis behavior).

Behavioral testing
Sexually experienced males were acclimated to Plexiglass arenas for 15 min before testing.
Thirty hours after the third EB injection, to test for sexual receptivity, females were placed into
an arena with a stud male. Males were allowed to mount females 10 times, and the number of
times the female displayed lordosis (lifting of the head, arching of the back, and diversion of
the tail to one side) was recorded. Sexual receptivity for each female was quantified as a lordosis
quotient (LQ), defined as the number of lordosis displays/number of mounts x 100 (e.g., [2, 32,
35]).

Confirmation of guide cannulae placement
Cannulae positions were visually confirmed during dissection. Rats with cannulae not posi-
tioned in the ARH (e.g., located dorsally or laterally to ARH, or if microinjections had compro-
mised wall of the third ventricle, or the ventral surface of the brain) were excluded from the
study. ARH tissue from animals with correct cannulae placements were homogenized in RIPA
buffer and lysates were used for western blots to confirm Arrb1 protein knockdown.

Statistics
Data are presented as means ± standard error (SEM) of a percent relative ratio. Statistical com-
parisons between 2 independent groups were made using the unpaired Student’s t-test. When
comparing 3 or more independent groups, we used a one-way analysis of variance (ANOVA),
with Student-Newman-Keuls post hoc test where appropriate. Data were analyzed using Stat-
View (Version 5.0; SAS Institute Inc., Cary, NC).

Results
To verify that N-38 neurons expressed NPY mRNA, quantitative PCR with published primer
sequences [33] produced a 75 base pair amplicon (S1 Fig.). As we had previously reported, N-
38s expressed ERα and ERαΔ4 in membranes (Fig. 1, [17]). Both isoforms were increased in
parallel following a 30 min treatment with 1 nM E2 (Fig. 1, [17]). The predominant mERα var-
iant in cultured hypothalamic cells (neurons and astrocytes) including N-38s is the 52 kDa
ERαΔ4 (Fig. 1, [16–18]). ERαΔ4 is coded for by an alternatively spliced ERαmRNA lacking
exon 4 of ESR1 and is found throughout the brain [19]. As reported in previous studies, ERαΔ4
is found in the cell membrane in vivo and in vitro, but its levels are higher than full length ERα
in vitro where both the full-length and the ERαΔ4 are regulated in parallel (Fig. 1, [16–18]). In
this study, full-length ERα was barely detectable following surface biotinylation, so ERαΔ4 was
used as a marker of cell surface membrane ERα levels (Figs. 2 and 3).

Arrb1 protein knockdown increases membrane ERαΔ4 in N-38 cells
Levels of Arrb1 were not sensitive to E2 treatment, however, transfection of N-38 neurons with
Arrb1 siRNA significantly reduced levels of the protein in both control and E2-treated cultures
by 80% [Fig. 2A; t(34) = -7.296, p<0.0001]. Treatment with E2 (1 nM) reduced cell surface
membrane levels of ERαΔ4 by 53% [Fig. 2B; scrambled siRNA vehicle: 100.0 ± 11.7 vs. E2 treat-
ed 46.9 ± 3.4%, F(3,23) = 6.147, p<0.005]. However, in Arrb1 siRNA-transfected N-38s,
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membrane levels of ERαΔ4 were significantly increased compared with scrambled siRNA-
transfected cells [Fig. 2B; t(25) = 3.373, p<0.005], suggesting that internalization was affected,
but not trafficking to the membrane. Arrb1 knockdown prevented E2-induced internalization
of mERαΔ4 [Fig. 2B; Arrb1 siRNA vehicle: 147.5 ± 23.2, vs. Arrb1 siRNA E2: 124.9 ± 25.5, F
(3,23) = 6.147, p = 0.384], and this was highlighted by the difference between mERαΔ4 levels in
scrambled siRNA/E2-treated versus Arrb1 siRNA/E2 treated N-38 cells, suggesting that Arrb1
mediated mERαΔ4 internalization [Fig. 2B; scrambled siRNA E2: 46.9 ± 3.4 vs. Arrb1 siRNA
E2: 124.9 ± 25.5, F(3,23) = 6.147, p< 0.01].

Arrb1 protein knockdown attenuates membrane ERα internalization
To confirm that Arrb1 knockdown prevented mERαΔ4 internalization, N-38 neurons were
surface biotinylated with an SH-cleavable biotin, treated with E2 and then stripped of surface
biotin with MESNA. Only proteins that were internalized remained biotinylated because they
were not exposed to MESNA. The biotinylated proteins were concentrated using an avidin col-
umn. Thirty min E2 treatments increased internalized mERαΔ4 levels following transfection
with scrambled siRNA compared with non-E2 treated cells [Fig. 2C; 30 min E2: 177.3 ± 18.2
vs. Vehicle (no E2): 100.0 ± 7.3%; t(12) = −3.937, p<0.005]. In contrast, Arrb1 siRNA knock-
down inhibited E2-induced mERαΔ4 internalization [Fig. 2C; 30 min E2: 99.4 ± 22.1vs. Con-
trol: 100.0 ± 18.1%; t(12) = 53, p = 1.000]. These results demonstrated a critical role for Arrb1
in mediating E2-induced mERαΔ4 internalization.

E2-mediated ERK1/2 (MAPK) activation depends on Arrb1
Since Arrb1 knockdown impaired mERαΔ4, and by extension ERα, internalization, intracellu-
lar signaling was examined to determine the consequence of inhibiting internalization. Arrb1
protein levels were significantly reduced in Arrb1 siRNA-transfected cells compared to scram-
bled siRNA-transfected cells [Fig. 3A and 3B]. In N-38 neurons transfected with scrambled
siRNA, E2 treatment induced a rapid 2-fold increase of phosphorylated ERK1/2 (phospho-
p44/42) levels. The increase was detected within 5 min of E2 treatment and remained elevated

Fig 1. Cell surface biotinyation of N-38 cells treated with estrogen vs. control.Western blot analysis of
biotinylated protein were probed with ERα to show: the 66 kDa band corresponding to the full-length ERα
protein, and the 52 kDa band corresponding to a splice variant of ERα lacking exon 4 (ERαΔ4). The 52 kDa
band is the primary ERα band detected in biotinylation/internalization experiments. Since both bands are
regulated in parallel, ERαΔ4 was used as an indicator for both isoforms.

doi:10.1371/journal.pone.0120530.g001
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for up to 2 h [Fig. 3C and 3E; 5 min E2: 196.4 ± 46.2, 15 min E2: 238.4 ± 30.7, 30 min E2:
248.2 ± 37.1, 60 min E2: 287.8 ± 26.9, 120 min E2: 225.1 ± 32.9% vs. Control: 100.0 ± 8.0%;
F(5,43) = 6.667, p<0.0005]. In Arrb1 siRNA-transfected N-38 cells, E2 did not induce ERK1/2
phosphorylation [Fig. 3D and 3E; 5 min E2: 95.7 ± 9.4, 15 min E2: 108.4 ± 13.2, 30 min E2:
81.6 ± 7.5, 60 min E2: 56.0 ± 14.8, 120 min E2: 74.7 ± 20.1% vs. Control: 100.0 ± 5.1%; F(5,36) =
1.832, p = 0.1313]. These data indicate that Arrb1 is involved in EMS downstream signaling.

Arrb1 knockdown attenuates EB-induced lordosis behavior
The ARH is the critical site for EMS modulation of sexual receptivity [2, 10]. The initial E2 ac-
tion stimulates NPY neurons that in turn activate an opioid circuit, whose transient inhibition
is necessary for the full expression of lordosis behavior 30–48 h after EB treatment of ovariecto-
mized rats [36]. To test whether Arrb1 is involved in lordosis, an EMS-mediated behavior, we
knocked down Arrb1 protein in the ARH using Arrb1 asODN. In vivo, we found that Arrb1
knockdown was more robust with Arrb1 asODN compared with Arrb1 siRNA (data not
shown); therefore asODN were used in the behavioral experiments. Microinjecton of Arrb1
asODN reduced Arrb1 protein by 55% compared with control nsODNs [Fig. 4A; asODN:
45.8 ± 5.7% vs nsODN: 100.0 ± 10.3; t(15) = −4.853, p<0.0005]. In females microinjected with
Arrb1 asODN, lordosis quotients were severely attenuated 31 h after EB treatment [Fig. 4B;
nsODNs: 85.0 ± 6.0 vs. asODN: 3 ± 2.1; t(15) = 14.086, p<0.0001]. Although sexually procep-
tive behavior was not quantified, females treated with Arrb1 asODN displayed less ear wig-
gling, hopping and darting than nsODN or stimulus females (intact females treated with 50 μg
EB). These results are consistent with the idea that EMS in vivo requires Arrb1.

Discussion
The major findings of the present study are that Arrb1 participates in downstream signaling
initiated by estradiol action at the membrane, including the activation of ERK1/2, which con-
tinued even after receptor internalization. Importantly, Arrb1 expression in the ARH was nec-
essary for lordosis behavior, a finding consistent with the proposed role of Arrb1 in EMS.
These results underscore the importance of EMS as a mode of E2 activation of physiological
processes including sexual receptivity. Our results support the idea that Arrb1 is a scaffolding
protein organizing downstream signaling molecules and as an adaptor protein aiding in ER in-
ternalization after its activation. This is the first indication that membrane-initiated estradiol
signaling involves Arrb1, although such a role has been described for other membrane recep-
tors [24–26, 37].

N-38 neurons are a viable model in which to examine EMS. These immortalized hypotha-
lamic cells express NPY, ERα and ERαΔ4. E2 increases [Ca2+]i, and activates PKCθ in these
neurons. The present study confirms that trafficking of full-length ERα and the ERαΔ4 are reg-
ulated in parallel by E2, as they are in primary cultures of hypothalamic neurons and astrocytes
[16–18, 38].

Interestingly, ERαΔ4 is enriched in the membranes of primary cultures or are cell lines de-
rived from neurons and astrocytes [16–18, 38]. However, in tissue from the ARH, full length

Fig 2. N-38 cell surface protein biotinylation and internalization after transfection with scrambled
siRNA (control) or Arrb1 siRNA and estradiol (E2) treatment. (A) Arrb1 protein levels in N-38 cells
transfected with scrambled siRNA (50 nM) vs. Arrb1 siRNA (50 nM) at 72 h post-transfection. (B) Cell surface
mERαΔ4 levels in scrambled siRNA-transfected vs. Arrb1 siRNA-transfected cells in unstimulated cells or
cells treated with E2 (1 nM for 2 h). (C) Internalization of mERαΔ4 in scrambled siRNA-transfected cells
treated with E2 for 30 min vs. Arrb1 siRNA-transfected cells stimulated with E2. Values represent means
(n = 6–7 experiments) ± SEM. *(p<0.05). **(p<0.005).

doi:10.1371/journal.pone.0120530.g002
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ERα, not ERαΔ4, was the predominant ERα isoform on the cell membrane, [35]. In that study,
we found that caveolin-1 which is necessary for ERα trafficking to the membrane did not affect
membrane ERαΔ4 levels suggesting another scaffolding molecule is needed to traffic this iso-
form. At this point, we do not understand the conditions that shift the proportion of ERαΔ4 to
ERα in cultured cells compared with tissue. Its presence in membrane fractions is likely due to
the deletion of exon 4, which results in an in-frame deletion of ERα that gives rise to a truncat-
ed protein [39–41]. The missing exon codes for the nuclear localization sequence and part of
the ligand-binding domain [16–18, 42, 43]. There is little consensus about the nature of ERαΔ4
signaling or transcriptional activity. Since ERαΔ4 lacks the nuclear localization sequence, it has
been hypothesized that after translation ERαΔ4 would not be transported back to the nucleus.
This hypothesis was support in ERαΔ4-overexpressing COS7 cells in which ERαΔ4 was local-
ized only in the cytoplasm [44]. However, in another study, overexpression of rat pituitary
ERαΔ4 in COS-1 cells the isoform was detected in both cytosol and nucleoplasm [43]. Func-
tionally, ERαΔ4 was initially thought to be a silent variant since ERαΔ4 expression in JEG3 pla-
cental choriocarcinoma cells did not stimulate transcription [45]. Importantly, it did not bind
E2 or interact with the estrogen response element (ERE), and had no dominant negative effects
on full-length ERα activity. Similar effects were found when rat ERαΔ4 was expressed in A10
smooth muscle cells [46]. In another study, human ovarian ERαΔ4 was overexpressed in COS-
1 cells [47]. ERαΔ4 did not activate transcription but did inhibit full-length ERα transcriptional
activation via protein-protein interaction. Despite these results, when rat pituitary ERαΔ4 was
overexpressed in Chinese hamster ovary (CHO) cells and GH4C1 rat pituitary cells, ERαΔ4
modulated transcription [43]. Interestingly, this transcriptional activity was found in the ab-
sence of E2. Further, phosphorylated-ERαΔ4 was also found to bind a consensus ERE.

Such differences may reflect cell-type specific co-activators/co-repressors involved in estro-
gen signaling. For example, other ERα splice variants had different transcriptional activity be-
tween HeLa cervical cancer and M17 neuroblastoma cells, which was attributed to the
differential co-activators/co-repressers present in each cell type [48]. In our hands, EMS re-
quires the interaction of mGluR1a with full length ERα [2, 3, 18] but these studies did not dem-
onstrate, ERαΔ4-mGluR1a interactions suggesting that EMS is not mediated by ERαΔ4.

Thus, the function of ERαΔ4 is not known at present. ERαΔ4 was first described in breast
cancer cell lines and meningiomas [39, 41]. The lack of transcriptional activity and dominant
negative effects on full-length ERα suggested that ERαΔ4 was a silent splice variant that played
no role in tumor progression [45]. In support of this, levels of ERαΔ4 mRNA did not differ be-
tween normal and breast cancer tissues [49]. Significantly, ERαΔ4 has also been detected in
normal brain tissue, bone and vascular smooth muscle cells, but its function in these tissue is
also not characterized [40, 46, 50]. One possibility is that ERαΔ4 may have a role in develop-
ment since full-length ERα and ERαΔ4 were found to be differentially regulated during rat pi-
tuitary development [51]. We do not know whether this is the case in the brain. In present
study, we did not examine the developmental regulation of ERαΔ4. Moreover, in all our in

Fig 3. Estradiol (E2)-induced ERK1/2 phosphorylation in N-38 cells was attenuated in cells
transfected with Arrb1 siRNA. (A) Western blots from scrambled siRNA-transfected N-38 cells probed with
Arrb1 and GAPDH. (B) Arrb1 western blots from scrambled siRNA-transfected N-38 cells showing
knockdown of Arrb1 protein. (C) Representative western blots of levels of ERK1/2 (p44/42 MAPK)
phosphorylation in scrambled siRNA-transfected N-38 cells and (D) N-38 cells transfected with Arrb1 siRNA
treated with estradiol (E2) for 0–120 min. (E) Densitometric analysis of the optical density from western blots
of phosphorylated ERK1/2 (p44/42) protein bands normalized to the optical densities of total ERK1/2 protein
in scrambled vs. Arrb1 siRNA-transfected cells. Controls for each group (cells not treated with E2) was set at
100%, and E2 treatments were expressed as a percentage of the control. Values represent means (n = 5) ±
SEM. * (p<0.05). **(p<0.005).

doi:10.1371/journal.pone.0120530.g003
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vitro studies, E2 regulated both full-length ERα and ERαΔ4 in parallel. Therefore, we have
used ERαΔ4 as a marker for full-length ERα, whose expression is lower in vitro.

Previously, we reported that full-length ERα interacts with mGluR1a to induce downstream
signaling (Fig. 5; reviewed in [36]). Activated mERα is internalized through a mechanism

Fig 4. Arrb1mediates EB-induced lordosis behavior. In vivo, Arrb1 asODN significantly reduced levels of
Arrb1 in the ARH of ovariectomized, EB-treated rats. (A) Arrb1 protein levels in ARH lysates from females
microinjected on four consecutive days with Arrb1 asODN versus females microinjected with nsODNs. (B)
Lordosis quotient from rats injected with nsODNs vs. Arrb1 asODNs. Values represent means (n = 8–10
animals) ± SEM. ** (p<0.005). ***(p<0.0001).

doi:10.1371/journal.pone.0120530.g004
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involving phosphorylation by GRK2, recruitment of Arrb1 and internalization of the receptor
complex [15]. While we used ERαΔ4 as a surrogate for full-length ERα, the E2 signaling we see
in N-38s is dependent on mGluR1a and by extension ERα. The data are consistent with the
idea that Arrb1 links mERα and ERαΔ4 to the AP-2 adaptor complex to assist clathrin-mediat-
ed endocytosis, a traditional role for β-arrestins [23, 37, 52].

Internalization is important for the immediate reduction of receptors on the cell surface
which can lead to a cessation of signaling or the recycling of ligand-free receptors now available
for restimulation [18]. Once in early endosomes, receptors release their ligands and can be traf-
ficked back to the membrane restoring cellular responsiveness. Thus, the rapid internalization
and trafficking back to the cell surface may aid in cellular responsiveness by returning receptors
to the plasma membrane. Alternatively, internalized receptors can be sorted to lysosomes
where they are proteolytically degraded leading to a down regulation of receptors and a pro-
longed attenuation of cellular responsiveness. Rapid trafficking to the cell surface and internali-
zation followed by down regulation have been described for mERα in cells of the nervous
system [16, 18]. While we do not entirely understand the process controlling the fate of

Fig 5. Proposedmechanism for the role of Arrb1 in internalization and signaling of mERα/ ERαΔ4 (depicted asmERα in figure for simplicity). (A)
Membrane ERα is part of a G-protein coupled receptor complex which includes mGluR1a and caveolin (reviewed in [5]). (B) Following E2 activation of mERα,
Arrb1 is recruited to this receptor complex where it binds organizes Raf/MEK/ERK signaling and the endocytic machinery needed to internalize mERα into
endosomes. In the absence of Arrb1, ERα internalization and ERK1/2 (MAPK) signaling are blocked. Eventually, the internalized mERα-mGluR1a loses
Arrb1 (C), signaling ceases and the receptor complex is (D) recycled and trafficked to the cell surface, or (E) sorted to lysosomes for degradation.

doi:10.1371/journal.pone.0120530.g005
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internalized receptors (recycling versus degradation), the present studies indicate that Arrb1
plays a central role in the initial internalization of the receptor.

Both G protein and Arrb1 can mediate ERK1/2 activation [53–55]. The present results indi-
cate that Arrb1 is directly involved in EMS potentially by serving as a scaffold to recruit and or-
ganize downstream signaling molecules (e.g., Ras/Raf/MEK) at the cell membrane [24, 26, 56,
57]. Moreover, Arrb1 has been implicated as a mechanism through which endosomal signaling
extends cellular responsiveness (reviewed in [58, 59]). One distinction is that G protein-specif-
ic-mediated ERK1/2 activation is relatively rapid (maximal levels 2–5 min post-stimulus) and
transient with a duration of approximately 60 min [53, 60, 61], whereas β-arrestin-mediated
phosphorylation persists longer (>90 min) [26, 53, 55, 61, 62]. Our results are most consistent
with β-arrestin-mediated signaling. E2 induced ERK1/2 phosphorylation in 5 mins, and it per-
sisted longer than G protein-only mediated signaling (*2 h). Furthermore, Arrb1 siRNA in-
hibited ERK1/2 activation throughout the time course of the experiment (5 to 120 mins).
Phosphorylation sites in the GPCR COOH-terminus contribute to the stability of the GPCR-
arrestin-ERK1/2 complex, and affect the subcellular location and function of activated ERK1/2
such that stable GPCR-arrestin complexes are associated with prolonged endocytic signaling
and ERK1/2 signaling [62–65]. E2-induced ERK1/2 phosphorylation and internalization were
both increased within 5 min and were both disrupted by Arrb1 siRNA, consistent with the idea
that Arrb1 is involved in the initial GPCR signaling and its prolongation. This suggests that
EMS persists as long as Arrb1 remains associated with the receptor, including after sequestra-
tion into endosomes [65].

A physiological consequence of Arrb1 knockdown was assessed by examining lordosis, a fe-
male sexual receptivity reflex we had previously shown to be dependent on EMS in the ARH
[10, 35, 66–68]. ERα transactivation of mGluR1a in the ARH activates PKC, leading to rapid μ-
opioid receptor activation within the medial preoptic nucleus. This transient inhibition is nec-
essary to facilitate lordosis 30–48 h post-EB treatment [2, 10]. Antagonizing ERα, mGluR1a or
PKC in the ARH at the time of EB treatments attenuates lordosis. More recently, we found that
E2, PKC and CAV1 regulate ERα trafficking to the membrane, which is necessary for inhibit-
ing ERα-dependent lordosis behavior [17, 68]. Similarly, in the present experiments, female
rats receiving Arrb1 asODN into the ARH were unreceptive showing almost no lordosis behav-
ior. The present results may provide a mechanism that underlies activation of female sexual re-
ceptivity with E2 without progesterone. Large doses of EB (50 μg) induce lordosis within 48
hours while more physiological doses (2 μg) do not (e.g., [69]). Lower doses of EB maintain
EMS, resulting in the inhibition of lordosis. In the present study, low E2 doses prolong Arrb1-
mediated activation of EMS, which would extend inhibition of lordosis. In gonadally intact
rats, EMS-mediated inhibition of lordosis is relieved by progesterone [32].

An important consideration is that the neural circuitry regulating lordosis behavior relies
on E2 stimulation of ERα in ARH neurons. Arrb1 mediates cell signaling in a large number of
GPCRs and so we cannot be certain that the effect of Arrb1 knockdown on lordosis behavior
was specific to disruption of EMS. At present we cannot rule out that other receptor signaling
was also affected by Arrb1 knockdown producing an effect on lordosis but through a different
mechanism. Our Arrb1 asODN treated animals did not show reduced locomotion, signs of
sickness, weakness or changes in appetite suggesting that our treatments did not compromise
general activity in the ARH.

In summary, the present results demonstrate the importance of Arrb1 in EMS and regula-
tion of mER levels on the membrane. In immortalized hypothalamic NPY neurons, Arrb1
knockdown attenuated E2-induced mERαΔ4 internalization and phosphorylation of ERK1/2.
EMS is part of E2-mediated events in the nervous system that include nociception, addiction
and plasticity [70–74]. In terms of reproduction, perhaps the most studied E2 action in the
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CNS, EMS is important for both the regulation of the luteinizing hormone (LH) surge in estro-
gen positive feedback and the regulation of sexual receptivity [36, 67]. In the present experi-
ments, we demonstrated that Arrb1-mediated EMS was critical for E2-induced lordosis
behavior. E2-transactivation of the GPCR, mGluR1a, initiates cell signaling pathways (e.g.,
ERK1/2) necessary for spinogenesis and the activation of the lordosis-regulating circuitry [66].
Fundamentally, mERα is regulated like other membrane receptors. These studies extend our
understanding of mERα trafficking, signaling and internalization. Since EMS continues after
ERα is sequestered into early endosomes these studies identify an additional level of complexity
for estrogenic effects in the nervous system.

Supporting Information
S1 Fig. PCR data with neuropeptide Y (NPY) and γ-actin primers on cDNA from N-38
cells. (A) SYBR-green dissociation curves from NPY and γ-actin amplicons. (B) Image of NPY
and γ-actin amplification products run on a 2% agarose gel with ethidium bromide.
(TIF)
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