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Abstract

Using Pd(0)/Mandyphos, we achieve a three-component aminoarylation of alkynes to generate 

enamines, which hydrolyze to either α-arylphenones or α,α-diarylketones. This Pd-catalyzed 

method overcomes established pathways to enable the use of amines as traceless directing groups 

for C–C bond formation.

Graphical Abstract
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In nature, regiocontrol results from the selective binding of substrates in an enzymatic 

pocket, while synthetic chemists devise strategies that include tuning of reagents, catalysts, 

and directing groups. Hydroamination is an attractive way to functionalize alkynes, whereby 

both anti-Markovnikov and Markovnikov selective variants have been demonstrated.1,2 In 

these studies, regioselectivity for the aminopalladation step3 depends on the amine, where 

bulky amines add to the less hindered position of a terminal alkyne (Scheme 1A).2a Inspired 

by these findings, we hypothesized that amines could be used as directing groups for C–C 

bond formation in the related, but less explored, carboamination of alkynes.4–6 Herein, we 

report a three-component carboamination of alkynes that upon hydrolysis affords access to 

either α-arylphenone 4 or α,α-diarylketone 5, depending on choice of the amine (Scheme 

1B). This Pd-catalyzed strategy occurs by a distinct mechanism and offers complementary 
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scope to emerging hydrative arylation of alkynes and α-arylation of ketones.7,8 Moreover, 

we showcase the use of amines as traceless directing groups for alkyne functionalization.9

Pioneering aminoarylation of alkynes include intramolecular variants4a–c and annulative 

examples.4a,d,e To date, only one intermolecular, two-component aminoarylation has been 

demonstrated. In this case, enamines are generated from Michael acceptors, such as alkyl- or 

aryl-propynoic esters.6 We imagined developing a three-component coupling between an 

amine, unactivated alkyne, and aryl-electrophile by Pd-catalysis (Scheme 1B). As part of our 

design, we proposed that aryl-electrophile 2 would undergo oxidative addition to Pd(0) to 

generate a π-acidic complex, which would bind the alkyne. This π-complex can undergo 

addition with an amine to form two possible regioisomers.

We reasoned that choice of the amine could control regioselectivity in the nucleopalladation 

step, whereby bulkier amines favor addition to the less hindered position. However, a 

number of transformations could compete,10 including Buchwald-Hartwig amination,11 

hydroarylation,12 hydroamination,1 and aryl-alkyne coupling (Scheme 1C).13 Overcoming 

these established pathways would result in the first alkyne aminoarylation to occur by three-

component coupling. Hydrolysis of the resulting enamines furnish the α-arylphenone 4 and 

α,α-diarylketone 5, two useful building blocks for natural products and pharmaceuticals.14

To begin our studies, we chose 1-phenyl-1-propyne (1a), 3-methoxyphenyl triflate (2a), and 

morpholine (3a) as model substrates (Table 1). Treatment of 1a, 2a and 3a with Pd and a 

variety of bisphosphine ligands gave no desired aminoarylation.15 For example, with a Pd/

DPPF catalyst, aryl triflate 2a reacts with alkyne 1a to form polyenes, with no amine 

incorporated. We observed a breakthrough by using a P–N ligand; specifically, the Fc-PHOX 

ligand provided aminoarylation in a 23% yield (4aa:5aa = 3:1), but starting material 2a 
remained. We examined other ligands that bear P–N and P–P moieties and found Knochel’s 

Mandyphos16 L1 promising. In tuning the aryl-substituents, we found that L3 gave the best 

results (85% yield, 4:1 rr). Polyene mixtures from aryl triflate-alkyne coupling was 

prevented by use of high concentration (c > 0.8 M with amine 3a). Weak bases suppress the 

amination of aryl triflates, while use of lithium tert-butoxide (t-BuOLi) base led to 

Buchwald-Hartwig product, N-arylmorpholine.17, Thus, the choice of base and ligand were 

both critical.

Next, we focused on achieving regiocontrol via the amine (Table 2). We studied cyclic 

amines and found morpholine (3a) optimal for high yields and selectivity for the α-

arylphenone 4a (4a:5a = 4:1, 68% 4a, entry 1).18 We examined acyclic secondary amines 

and discovered that the steric bulk of the amine could switch the regioselectivity to favor 

α,α-diarylacetone 5a. For example, the use of N-methyl-α-methylbenzylamine (3b) resulted 

in preference for 5a over 4a (2.1:1 rr). To improve regioselectivity, we designed and 

prepared N-methyl-α-isopropylbenzylamine (3e).19 Increasing the size of the α-substituent 

from a methyl group to an isopropyl group resulted in an increase of 2.1:1 to greater than 

20:1 rr.20

As shown in Table 3, we used alkynes (1a-1h) and aryl triflates (2a-2h) to prepare α-

arylphenones 4 in 39–77% yields (4–10:1 rr). Heteroaromatic groups could be incorporated 
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(4f-4g). Substitution was tolerated on the aryl triflate (2a-2h), including electron donating 

and withdrawing groups. Using methyl 3-phenyl-2-propyn-1-yl ether (1i) gave α-

arylphenone 4m, where the methoxymethyl group was cleaved in situ (48% 4m). Thus, 

alkyne 1i can be used as a masked phenylacetylene.

In addition, we accessed a natural product, O-desmethylangolensin (4o), an intestinal 

bacterial metabolite of daidzein (soy phytoestrogen),14a,b and precursors of natural 

neolignans 4q and 4r.14c the coupling of 1h with aryl triflate 2g and morpholine (3a) gave 

ketone 4n after hydrolysis (70% 4n, 10:1 rr). O-Desmethylangolensin (4o) was obtained by 

demethylation of 4n using BBr3.21 From alkyne 1e and triflate 2h, we prepared ketone 4p, a 

precursor for natural neolignans.

With amine 3e, we apply analogous conditions to make α,α-diarylacetones 5 (Table 4). 

Three-component coupling of arylalkynes (1a, 1b, 1j–1p) with substituted aryl triflates (2a–

2f) yielded α,α-diarylacetones 5 in 48–79% isolated yields for the major isomer. From 

ketone 5a, which was prepared by three-component aminoarylation with amine 3e, we 

prepared a MeO-analogue of BRL-15572, an antidepressant from GlaxoSmithKline (eq 1).23

(1)

On the basis of our observations and literature,3,4c we propose the mechanism shown in 

Scheme 2. The Pd(0)-complex activates the aryl triflate 2 to form arylpalladium(II)-

intermediate 6. Nucleopalladation with amine 3 then occurs to afford vinylpalladium(II)-

intermediate 7. Regioselectivity for nucleopalladation depends on the sterics of the amine 3a 
versus 3e. Amines bearing small substituents (e.g., 3a) favor attack of the carbon adjacent to 

aryl group, while amines bearing large substituents (e.g., 3e) favor the carbon distal. 

Reductive elimination of vinylpalladium 7 generates enamine 8 and regenerates Pd(0).

Future studies involve (1) designing chiral amines for stereoselective applications23 and (2) 

elucidating the mechanism to guide other alkyne functionalizations.
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Scheme 1. 
Three-component aminoarylation
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Scheme 2. 
Proposed mechanism
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Table 1.

Ligand effects on alkyne aminoarylation.[a]

[a] 1 (0.1 mmol), 2 (1.25 equiv), 3 (1.7 equiv), and MS 4A (25 mg / 0.1 mmol) were applied to the reactions. 

Yields and regioisomeric ratio (rr) determined by 1H NMR using triphenylmethane as an internal standard.

[b] Determined by GC-FID and GC-MS. DIPEA=N,N’-diisopropylethylamine, MS=molecular sieves, THF: 

tetrahydrofuran, OTf=trifluoromethanesulfonyl, DPPF=1,1’- diphenylphosphinoferrocene.
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Table 2.

Amine effects on regioselectivity[a]

[a] 1 (0.08–0.1 mmol), 2 (1.25 equiv), 3 (1.7 equiv), and MS 4A (25 mg / 0.1 mmol) were applied to the 

reactions.

[b] Determined by 1H NMR using triphenylmethane as an internal standard.
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Table 3.

Preparation of α-arylphenone 4 using morpholine (3a)[a]

[a] 1 (0.08–0.1 mmol), 2 (1.25 equiv), 3 (1.7 equiv), and MS 4A (25 mg / 0.1 mmol) were applied to the 

reactions. See SI for detailed reaction conditions. Yields and regioisomeric ratio (rr) determined by 1H NMR 

using triphenylmethane as an internal standard. 1H NMR yield of the major isomer 4 are in parenthesis.

[b] 0.25 mmol 1a was used. [c] 0.5 mmol 1a was used. [d] Methyl 3-phenyl-2-propyn-1-yl ether (1i) was used. 

[e] Reaction condition: BBr3 (10 equiv), DCM, rt, 12 h.
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Table 4.

Preparation of α,α-diarylketone 5 using amine 3ea

[a] 1 (0.08–0.1 mmol), 2 (1.25 equiv), 3 (1.7 equiv), and MS 4A (25 mg / 0.1 mmol) were applied to the 

reactions. See SI for detailed reaction conditions. Regioisomeric ratio (rr) determined by 1H NMR using an 

internal standard. Isolated yields of major isomer 5a-l.
[b] 0.25 mmol 1a was used.
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