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ARTICLE

The BIN1 rs744373 SNP is associated with
increased tau-PET levels and impaired memory
Nicolai Franzmeier1, Anna Rubinski1, Julia Neitzel1, Michael Ewers1 & the Alzheimer’s Disease Neuroimaging

Initiative (ADNI)

The single nucleotide polymorphism (SNP) rs744373 in the bridging integrator-1 gene (BIN1)

is a risk factor for Alzheimer’s disease (AD). In the brain, BIN1 is involved in endocytosis and

sustaining cytoskeleton integrity. Post-mortem and in vitro studies suggest that BIN1-

associated AD risk is mediated by increased tau pathology but whether rs744373 is asso-

ciated with increased tau pathology in vivo is unknown. Here we find in 89 older individuals

without dementia, that BIN1 rs744373 risk-allele carriers show higher AV1451 tau-PET across

brain regions corresponding to Braak stages II–VI. In contrast, the BIN1 rs744373 SNP was

not associated with AV45 amyloid-PET uptake. Furthermore, the rs744373 risk-allele

was associated with worse memory performance, mediated by increased global tau levels.

Together, our findings suggest that the BIN1 rs744373 SNP is associated with increased

tau but not beta-amyloid pathology, suggesting that alterations in BIN1 may contribute to

memory deficits via increased tau pathology.
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A lzheimer’s disease (AD) is the most common cause of late
onset dementia and is characterized by the development
of pathological amyloid plaques and tau tangles in the

brain1. While late onset AD is an age-related disease, results from
twin and family studies have emphasized that ~50% of pheno-
typic variance in AD can be explained by genetic variations2.
Recent genome-wide association studies (GWAS) have identified
several loci that are associated with increased risk of AD, among
which the single nucleotide polymorphisms (SNPs) in the brid-
ging integrator 1 (BIN1) gene show the second highest odds-
ratios for sporadic AD, superseded only by apolipoprotein E
(APOE) variants3–7. Specifically, the most frequently reported
BIN1 AD risk variant is the SNP rs744373 which shows a global
allele frequency of 37% and is associated with an increase in AD
risk by an odds-ratio of 1.17–1.195,7–10. Thus, understanding
the mechanisms by which BIN1 and in particular the rs744373
SNP contributes to AD risk will lead to a better understanding
of the pathomechanisms of AD and help uncover novel ther-
apeutic targets.

The BIN1 gene encodes the nucleocytoplasmic adaptor protein
BIN1 also known as amphiphysin-2, a membrane deforming
protein that is most highly expressed in muscle and brain tissue in
an isoform dependent way11,12. In the brain, BIN1 subserves
multiple functions such as regulating endocytosis, cytoskeleton
integrity, and apoptosis13. A key hypothesis for the role of BIN1
in AD is the aggravation of tau pathology, i.e. a key primary brain
pathology associated with cognitive impairment in AD14,15. In
post-mortem studies in AD, higher brain BIN1 expression was
found to be associated with the presence of neurofibrillary tau
tangles16. Importantly, previous studies have described higher
BIN1 mRNA expression in brain tissue of BIN1 risk SNP carriers
with and without AD15,17. Further, AD patients carrying a BIN1
risk SNP showed higher post-mortem tau pathology but not Aβ
when compared to non-carrier AD patients15. Together these
findings suggest that BIN1 SNP-associated alterations in BIN1
expression contribute to the development of tau pathology.
Although the mechanisms that link BIN1 to tau pathology are
only poorly understood, recent findings suggest that alterations in
the protein level of a neuron-specific BIN1 isoform that binds
exclusively to clathrin18, enhance transmission of tau between
neurons via enhanced endocytosis of tau19. Thus, alterations in
BIN1 may promote prion-like spreading of tau within the brain.
Alternatively, alterations in BIN1 may be associated with beta-
amyloid (Aβ1–42)20. Post-mortem analyses in AD have shown
that BIN1 accumulates in the vicinity of amyloid plaques21. In
primary neuronal cultures, BIN1 was found to regulate the
intraneuronal cleavage of the amyloid precursor protein (APP) by
β-secretase22. However, the BIN1-mediated increase in the
intraneuronal pool of Aβ1–42 only weakly translated into higher
extraneuronal levels of Aβ1–42, i.e., a core feature of AD, and
several histochemical brain autopsy and cell culture studies sug-
gested that alterations in BIN1 expression were associated with
stronger tau pathology rather than Aβ15,16. Together, these
findings from preclinical studies suggest that the risk conferred by
BIN1 genetic variants may be exerted via promoting tau pathol-
ogy rather than Aβ in the brain.

Up to now, the translation of these findings to patients with
AD using in vivo biomarkers of tau pathology has been difficult.
In mild cognitive impairment (MCI) and AD dementia, the BIN1
rs744373 SNP was reported to be associated with higher cere-
brospinal fluid (CSF) levels of total and phospho-tau but not with
Aβ23, whereas others could not detect an association between the
BIN1 rs744373 SNP and CSF tau or phospho-tau levels24.
However, CSF-phospho-tau levels are only moderately associated
with neurofibrillary tangles in the brain as assessed post-
mortem25 or by tau-PET imaging26,27. Furthermore, CSF tau

levels may reflect differences in tau production rather than the
amount of pathological tau deposits in the brain28. A previous
MRI neuroimaging study showed that a BIN1 SNP was associated
with decreased cortical thickness in the entorhinal cortex and
temporal pole, i.e., sites of early tau pathology29. However, that
study did not assess tau pathology itself. Thus, the question
remains, whether the BIN1 rs744373 SNP is associated with
increased tau pathology in subjects with AD.

The introduction of AV1451 tau-PET imaging allows to assess
fibrillary tangles in the living brain30. Here we employ AV1451
PET imaging in elderly subjects in order to translate previous
preclinical and post-mortem findings on the association BIN1
and primary AD pathology. We assess whether carriers of the
BIN1 rs744373 SNP show elevated regional levels of AV1451 tau-
PET in those brain regions that are known to show increased
susceptibility to tau pathology as defined by the post-mortem
established Braak staging31. We test the associations of the BIN1
rs744373 SNP in non-demented subjects to understand whether
the BIN1 SNP is associated with tau in the early stages of the
development of tau pathology. In addition, given previous evi-
dence of a potential involvement of BIN1 rs744373 in Aβ
pathology21,23, we assess whether the BIN1 rs744373 SNP is
associated with higher regional Aβ deposition as assessed by
AV45-PET in the same subjects. We hypothesize that carriage of
the BIN1 rs744373 risk-allele selectively enhances tau pathology.
Since BIN1 genetic variants were previously associated with faster
cognitive decline, we lastly test whether alterations in AV1451
tau-PET levels mediate the association between the BIN1
rs744373 SNP and worse memory performance.

Results
Sample characteristics. For the current study, we analyzed data
from 89 participants of the ADNI cohort, including 49 cognitively
normal (CN) and 40 mild cognitively impaired (MCI) subjects
(see Table 1 for sample characteristics). All subjects underwent
AV1451 tau-PET, AV45-amyloid PET, structural MRI and
cognitive testing at the same study visit of ADNI phase 3. The
genotype of the BIN1 rs744373 SNP was extracted from ADNI
GWAS data provided by the ADNI genetics core, where we
found 22 CN subjects and 18 MCI subjects to carry at least one
copy of the BIN1 rs744373 G-allele which confers higher risk of
AD dementia as shown by GWAS4. Henceforth, these subjects
will be referred to as BIN1 rs744373 risk-allele carriers. BIN1
rs744373 allele distribution (GG/GA/AA= 8/32/49) did not
deviate from Hardy–Weinberg equilibrium (p= 0.422, Chi-
squared test). There were no differences in baseline demo-
graphics (age, gender, education) between CN vs. MCI or
between BIN1 rs744373 risk-allele vs. normal-allele carriers.
In total, 48 subjects (24 CN &, 24 MCI) showed abnormally
elevated Aβ-levels as determined via AV45 PET (i.e., global
standardized uptake value ratio (SUVR) > 1.11).

BIN1 rs744373 is associated with higher tau-PET uptake. In a
first step, we tested the hypothesis that BIN1 rs744373 risk-allele
carriers show higher tau pathology (i.e., global or for regions
corresponding to Braak stages I–VI, Fig. 1a) than carriers of the
normal BIN1 rs744373 allele. For global tau, we quantified the
overall tau load as global AV1451 tau-PET uptake using an
established Freesurfer-based protocol (i.e., standardized volume
uptake ratio normalized to the inferior cerebellar gray)32. When
testing via ANCOVA whether the BIN1 rs744373 SNP had an
effect on global AV1451 tau-PET uptake, we found risk-allele
carriers to show elevated global tau levels with a Cohens d of
0.562, controlling for age, gender, education, ApoE ε4 status,
diagnosis, and gray matter (GM) volume of the global tau ROI
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(F(81,7)= 7.694, p= 0.007, see Fig. 2a). To test whether the
effects of BIN1 rs744373 on AV1451 tau-PET uptake were
independent of amyloid pathology, we further included overall
amyloid load as a covariate, which was quantified as the global
AV45 amyloid-PET uptake. Importantly, inclusion of global
AV45 amyloid-PET uptake as a covariate did not alter the asso-
ciation between BIN1 rs744373 risk-allele carriage and elevated
global AV1451 tau-PET uptake (F(80,8)= 7.658, p= 0.007,
ANCOVA, see model 2 in Table 2 for statistics). Results remai-
ned unchanged when alternatively including Aβ-status as a cov-
ariate. This suggests that the associations between BIN1 rs744373
and increased global AV1451 tau-PET uptake are independent
of diagnostic group or Aβ-status. Results for the main analysis
(i.e., SNP effect on global AV1451 tau-PET) were consistent when
repeated for the previously reported BIN1 rs7561528 risk var-
iant14, which was also available from ADNI GWAS data (48 risk-
allele carriers vs. 41 normal-allele carriers, F(80,8)= 3.217, p=
0.045, ANCOVA)14.

We next tested, whether the effects of BIN1 rs744373 on tau
pathology showed regional differences. To this end, we assessed
the AV1451 tau-PET SUVR within brain regions corresponding
to Braak stages I–VI (Fig. 1a) that recapitulate the spatial tau-
spreading pattern from early-to-late-stage tau pathology across
the cortex33. Here, we could consistently detect significantly (p <
0.05, ANCOVA) elevated tau load in BIN1 rs744373 risk-allele
carriers across regions corresponding to Braak stages 2–6, with
effect sizes ranging between 0.430 and 0.594. This suggests that
the BIN1 rs744373 risk allele is associated with general brain-wide
increases in tau. These analyses are summarized in Fig. 2a and
Table 2. Despite the highly consistent effects of the BIN1
rs744373 SNP on tau, only the associations for global and Braak
stage 5 AV1451 tau-PET SUVR remained significant after
applying a Bonferroni-corrected α-threshold of 0.0071 (i.e., α=
0.05 adjusted for 7 tests). Again, these results remained fully
consistent when additionally controlling for amyloid levels (i.e.,
global AV45 amyloid-PET SUVR) as summarized in Table 2
(shown as model 2). Results remained also unchanged when
controlling for Aβ status. These findings suggest that the effects of

BIN1 rs744373 on AV1451 tau-PET uptake are independent of
Aβ or diagnosis.

When testing, whether the BIN1 rs744373 SNP had an effect
on amyloid load, we did not detect any differences between
risk-allele and normal-allele carriers for global AV45 amyloid-
PET SUVR, controlling for age, gender, education, ApoE
ε4 status, diagnosis, and GM volume of the respective amyloid
ROI (F(81,7)= 0.148, p= 0.701, ANCOVA). To address potential
effects of BIN1 rs744373 on regional amyloid levels, we quantified
amyloid SUVRs within four distinct early- to late-amyloid stage
ROIs (Fig. 1b) that have been previously shown to recapitulate
amyloid spread34. In line with the results for global AV45
amyloid-PET uptake, we found no significant effect of the
BIN1 rs744373 SNP on AV45 amyloid-PET uptake within the
different amyloid stage ROIs (all p > 0.05, ANCOVAs, see Fig. 2b
& Table 3 for statistics), when controlling for age, gender,
education, ApoE ε4 status, diagnosis, and GM volume of the,
respective, amyloid-stage ROIs. All results remained consistent
when additionally including global AV1451 tau-PET SUVRs as a
covariate (see Table 3). Again, there was no interaction between
diagnosis and BIN1 rs744373 or between global AV45 tau-PET
uptake and BIN1 rs744373 on AV45 amyloid-PET uptake.

BIN1 rs744373 effects on tau are independent of amyloid. Next,
we tested whether BIN1 rs744373 risk-allele carriage was asso-
ciated with higher tau independent of the level of amyloid. Using
linear regression controlling for age, gender diagnosis and ApoE
ε4 status, we found that both global AV45 amyloid-PET SUVR
(t(81)= 2.506, β= 0.248, p= 0.014) and BIN1 rs744373
(t(81)= 2.882, β= 0.280, p= 0.005) had independent main
effects on global AV1451 tau-PET SUVR. No interaction between
Aβ status (binary) or global AV45 amyloid-PET SUVR (con-
tinuous) and BIN1 rs744373 on AV1451 tau-PET was found.
To illustrate the main effect of BIN1 rs744373 effects on AV1451
tau-PET that was independent of AV45 amyloid-PET, we have
plotted the association between BIN1 rs744373 and global
AV1451 tau-PET uptake at each quartile of global AV45 amyloid-
PET (Fig. 3).

b Amyloid stages

Stage 1

Stage 2

Stage 3

Stage 4

a Braak stages

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Fig. 1 Staging systems for tau- and amyloid-PET. Spatial mapping of Braak- (a) and amyloid stage-specific ROIs (b) that were used to determine regional
AV1451 tau- and AV45 amyloid-PET uptake within the sample of n= 89 subjects
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Spatial match of BIN1 mRNA expression and tau pathology.
Our finding of the association between BIN1 rs744373 and higher
AV1451 tau-PET levels, plus previous reports of altered BIN1
mRNA levels in AD15 suggest that alterations in cerebral BIN1
expression are related to tau pathology. In order to further sub-
stantiate this hypothesis, we argued that regional expression
patterns of BIN1 in the brain should overlap with those brain
regions of increased vulnerability to tau pathology, given the
previously reported association between BIN1 mRNA expression
and neurofibrillary tangles in post-mortem brains15,16. In order to

test this hypothesis, we obtained whole-brain mRNA expression
levels of BIN1 from the Allen Brain Atlas, which is based on post-
mortem brain-wide microarray assessments of six healthy brain
donors without any history of psychiatric or neurological
disorders35,36. Specifically, we used the median of microarray-
based log2 mRNA expression of BIN1 across the six donors that
have been recently summarized for each region of the Freesurfer-
based Desikan–Killiany atlas37. For the same atlas regions, we
determined the group-median AV1451 tau-PET SUVR across
all subjects in the current study. We restricted the analysis to
the left hemisphere since full mRNA expression data of all six
brain donors is only available for this hemisphere. Surface
renderings of both group average left hemispheric tau and BIN1
mRNA expression are depicted in the upper panel of Fig. 4. We
used spatial regression on 10,000 bootstrapped samples based
on which group-median tau levels were iteratively determined
to assess the association between group-median AV1451 tau-PET
SUVR and BIN1 mRNA expression patterns. Here, we found
a significant average positive Pearson-Moment correlation (r=
0.374, see Fig. 5) with a 95% CI of [0.370:0.379] (p < 0.001). These
results suggest that regions with higher BIN1 mRNA expression
have a higher likelihood of showing elevated tau levels. In order
to assess the spatial overlap of regions with high BIN1 expression
or high AV1451 tau-PET uptake, we thresholded both the group-
median tau PET and the BIN1 mRNA expression maps at a
percentile threshold of 75%, (Fig. 4 lower panel). Visual inspec-
tion suggests that mesio- and inferior temporal brain regions
corresponding to early Braak stages show both high BIN1 mRNA
expression as well as high AV1451 tau-PET uptake.

Tau mediates BIN1 rs744373 effects on memory impairment.
To assess whether the BIN1 rs744373 SNP is detrimental for
cognition via increasing tau pathology, we tested whether risk-
allele carriage is associated with worse memory and whether these
effects are mediated via increased tau pathology. To this end, we
applied causal mediation analysis with 10 000 bootstrapping
iterations controlling for age, gender, education, diagnosis, global
AV45 amyloid-PET SUVR, and ApoE ε4 status. Memory per-
formance was assessed based on ADNI-MEM, which is an
established composite score developed by the ADNI core that
summarizes the performance on multiple memory tests38. Sup-
porting our hypothesis, we found that the BIN1 rs744373 risk-
allele was significantly associated with worse ADNI-MEM scores
(β=−0.25, p= 0.030), where this association was mediated via
global AV1451 tau-PET uptake (bootstrapped average causal
mediation effect: β=−0.083 [−0.180;0.00], p= 0.016). The effect
was considered a full mediation, since the direct effect of the BIN1
rs744373 risk allele on ADNI-MEM was no longer significant
(β=−0.17, p= 0.15) in the presence of the mediator (i.e., global
AV1451 tau-PET uptake). A path model of this mediation ana-
lysis is shown in Fig. 6.

Discussion
The major finding of the current study was that the BIN1
rs744373 risk allele was associated elevated AV1451 tau-PET
uptake. In contrast, we detected no association between BIN1
rs744373 and regional Aβ assessed by AV45-PET, suggesting that
BIN1 is associated with higher tau pathology rather than Aβ. In
addition, we found BIN1 rs744373 to be associated with worse
memory performance, where this effect was mediated by BIN1
rs744373-associated elevation of global AV1451 tau-PET. Toge-
ther, our findings support the hypothesis that the BIN1 rs744373
risk-allele is associated with elevated cerebral tau pathology,
thereby worsening memory decline. Our findings represent an
important contribution to the understanding of the role of BIN1
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Fig. 2 Effects of BIN1 rs744373 on tau- and amyloid-PET uptake. a Boxplots
showing the differences in global or regional AV1451 tau-PET SUVRs
between BIN1 rs744373 risk allele (n= 40, yellow) vs. normal-allele
carriers (n= 49, blue). P-values are based on ANCOVA models controlled
for age, gender, education, diagnosis, memory performance (i.e., ADNI-
MEM) and gray matter volume of the respective ROI. b Differences in
global or regional AV45 amyloid-PET uptake between BIN1 rs744373 risk
allele (n= 40, yellow) vs. normal-allele carriers (n= 49, blue). Boxplots are
displayed as median (center line) ±interquartile range (box boundaries)
with whiskers including observations falling within the 1.5 interquartile
range. P-values are again derived from ANCOVA models controlled for age,
gender, education, diagnosis, ApoE ε4 carrier status, and gray matter
volume of the respective ROI. *p < 0.05 (uncorrected); ‘= significant after
Bonferroni correction (p < 0.0071)
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in AD, as we demonstrate in living non-demented elderly subjects
an association of BIN1 rs744373 and regional elevation of tau
pathology, i.e., a key AD pathology associated with cognitive
impairment.

For our first finding, the association between BIN1 rs744373 and
higher AV1451 tau-PET ROI values but not AV45 amyloid-PET,
suggests a selective association between the BIN1 rs744373 SNP and
PET-assessed tau pathology. Of note, we did not find an interaction
between BIN1 rs744373 and AV45 amyloid-PET on AV1451 tau-
PET levels, suggesting that the association between BIN1 and
tau does not depend on the presence of Aβ pathology. Supporting
this notion, effects of BIN1 rs744373 on AV1451 tau-PET levels
remained consistent when controlled for Aβ-status or continuous
AV45 amyloid-PET levels. These findings are in general agreement
with several previous findings suggesting that BIN1 is linked to
tau pathology rather than amyloid pathology. Here, it has been
previously reported that brain BIN1 protein levels are correlated

with neurofibrillary tangle pathology but not with diffuse or neuritic
amyloid plaques in AD brains16. In a similar vein, BIN1 risk var-
iants have been previously shown to correlate with post-mortem
assessed brain levels of AT8 positive tau pathology but not with
Aβ15. In contrast, one previous study showed that BIN1 becomes
insoluble and accumulates in the vicinity of amyloid plaques in a
mouse model of AD and in brain sections from AD patients39. Still,
it is unclear whether BIN1 alterations are a cause or a consequence
of amyloid pathology. Our current results suggest that the BIN1
rs744373 risk allele is associated primarily with PET-assessed tau
rather than amyloid levels.

The current results are also in agreement with previous reports
of BIN1 rs744373 risk-allele carriage being associated with
increased CSF-phospho-tau and CSF-total tau levels but not with
CSF-Aβ levels and amyloid PET23. We caution however that our
current finding of absence of an association between BIN1
rs744373 and AV45 amyloid-PET may partially be due to the

Table 3 BIN1 rs744373 risk allele as a predictor of AV45 amyloid-PET SUVR

Dependent variable AV45 SUVR:
rs744373 risk

AV45 SUVR:
rs744373 normal

Model 1: F Model 1: P Model 2: F Model 2: P Cohens d

Global 1.14 (0.24) 1.16 (0.22) 0.148 0.701 0.148 0.702 0.079
Stage 1 1.25 (0.21) 1.26 (0.19) 0.111 0.739 0.111 0.740 0.052
Stage 2 1.18 (0.23) 1.20 (0.21) 0.263 0.609 0.261 0.610 0.086
Stage 3 1.15 (0.17) 1.17 (0.16) 0.701 0.405 0.694 0.407 0.156
Stage 4 1.00 (0.11) 1.01 (0.10) 0.118 0.732 0.118 0.732 0.068

Model 1 Covariates: age, gender, education, diagnosis, ROI gray matter, ApoE ε4. Model 2 Covariates: Global AV1451 tau-PET, age, gender, education, diagnosis, ROI gray matter, ApoE ε4

Table 2 BIN1 rs744373 risk allele as a predictor of AV1451 tau-PET SUVR

Dependent variable AV1451 SUVR:
rs744373 risk

AV1451 SUVR:
rs744373 normal

Model 1: F Model 1: P Model 2: F Model 2: p Cohens d

Global 1.13 (0.12) 1.06 (0.12) 7.694 0.007*a 7.658 0.007*a 0.562
Braak 1 1.23 (0.23) 1.17 (0.24) 2.526 0.116 2. 496 0.118 0.250
Braak 2 1.28 (0.23) 1.18 (0.20) 4.809 0.031* 4.749 0.032* 0.465
Braak 3 1.18 (0.15) 1.13 (0.13) 4.996 0.028* 4.992 0.028* 0.430
Braak 4 1.19 (0.16) 1.12 (0.13) 6.920 0.010* 6.883 0.010* 0.496
Braak 5 1.12 (0.12) 1.05 (0.11) 9.155 0.003a 9.087 0.003*a 0.594
Braak 6 1.03 (0.08) 0.98 (0.11) 5.330 0.024* 5.263 0.024* 0.463

Model 1 Covariates: age, gender, education, diagnosis, ROI gray matter, ApoE ε4. Model 2 Covariates: Global AV45 amyloid-PET, age, gender, education, diagnosis, ROI gray matter, ApoE ε4
*Significant at p < 0.05 (uncorrected)
aSignificant after Bonferroni correction for 7 tests (p < 0.0071)

Table 1 Sample characteristics

CN BIN1 Normal (n= 27) CN BIN1 Risk (n= 22) MCI-BIN1 normal (n= 22) MCI-BIN1 risk (n= 18) p-value

Age 80.3 (6.09) 80.25 (5.55) 76.48 (8.13) 77.03 (6.35) 0.118
Gender (m/f) 14/13 11/11 11/11 10/8 0.984
Education 17.07 (2.38) 16.64 (2.94) 15.45 (3.47) 15.78 (2.67) 0.349
Aβ-status (pos/neg) 12/15 12/10 12/10 12/6 0.846
ApoE ε4 pos/neg 8/19 5/17 8/14 3/15 0.587
MMSE 29.15 (1.19) 28.41 (2.22) 27.95 (2.06) 28.22 (1.40) 0.112
ADNI-MEM 0.93 (0.51)c,d 0.79 (0.43)d 0.43 (0.75)a 0.09 (0.43)a,b <0.001
AV45 global SUVR 1.15 (0.23) 1.15 (0.24) 1.18 (0.21) 1.13 (0.26) 0.929
AV1451 global SUVR 1.05 (0.12)d 1.09 (0.07)d 1.08 (0.10)d 1.18 (0.15)a,b,c 0.002

CN Cognitively Normal, MCI Mild Cognitive Impairment, M male, f female, MMSE Mini-Mental State Exam, ADNI-MEM Alzheimer’s Disease Neuroimaging Initiative-Memory composite
asig. (p < 0.05) different from CN-BIN1 normal
bsig. different from CN-BIN1 risk
c sig. different from MCI-BIN1 normal
d sig. different from MCI-BIN1 risk
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fact that in many subjects amyloid may have reached already
plateau levels40, leading to reduced variability in AV45 amyloid-
PET levels. Thus, it is still possible that BIN1 is associated with
Aβ pathology especially at the early presymptomatic phase before
a plateau is reached.

The molecular mechanisms underlying the association between
BIN1 genetic variants and increased AD risk are not known. For
the link between BIN1 and tau pathology, in vitro studies showed
that BIN1 binds to tau via a proline rich SH3 domain15,41–43,
possibly reducing the integrity of the cytoskeleton41,42. Our
findings of a spatial match between the BIN1 mRNA expression
pattern in the brain and regions of increased AV1451 tau-PET
uptake support the notion that BIN1 SNP-related alterations of
BIN1 expression are associated with tau pathology. It is unclear,
however, whether the binding of BIN1 to tau entails the devel-
opment of pathological fibrillary tau15. Alternatively, BIN1 may
enhance spreading of pathological tau across connected neu-
rons44 via endocytosis, i.e., a pathway that has recently been
suggested to lead to prion-like spreading of tau in the brain45,46.
The neuron-specific BIN1 isoform 1 interacts with clathrin,
thereby attenuating the post-synaptic endocytotic uptake of
tau19,42. Recent histological brain-autopsy studies showed that
while BIN1 protein expression is overall increased in AD, the
BIN1 isoform 1 is decreased in AD16. Together, these results

suggest that reduced BIN1 isoform 1 levels may enhance the
endocytosis-mediated spreading of tau pathology in AD. How-
ever, it is unknown whether the BIN1 genetic variants are asso-
ciated with reduced BIN1 isoform 1 expression and future studies
need to clarify the exact pathomechanisms of BIN1 alterations.

Our second major finding was that the association between
BIN1 rs744373 and memory impairment was mediated via ele-
vated global tau levels. This suggests that BIN1 rs744373 con-
tributes to the development of tau pathology in at-risk subjects,
resulting in stronger cognitive impairment. These results are in
agreement with previous findings of BIN1 rs744373 being asso-
ciated with faster decline in global cognition47 and episodic
memory48. Our results are also consistent with previous studies

BIN1 mRNA expression
(Allen Brain Atlas)

Group-median AV1451
tau-PET SUVR

75% threshold 75% threshold

0.9 1.3 10.3 10.9

1.1 1.2 10.7 10.9

Fig. 4 Spatial patterns of tau-PET and BIN1 mRNA expression. Spatial
mapping of median BIN1 mRNA expression (i.e., log2) derived from the
Allen Brain Atlas and group-median AV1451 tau-PET SUVR (derived from n
= 89 subjects), either for all ROIs (upper panel) or restricted to regions
falling above the 75th percentile of either BIN1 mRNA expression or group-
median AV1451 tau-PET uptake (lower panel). Color scales represent SUVR
scores for AV1451 tau-PET and log2 mRNA expression for BIN1 mRNA
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Fig. 3 BIN1 rs744373 effects on tau across the amyloid spectrum. Boxplot
showing the association between BIN1 rs744373 (risk-allele n= 40, yellow;
normal-allele n= 49, blue) and global AV1451 tau-PET uptake across
amyloid quartiles. The statistical main effects presented in the upper left
corner of the graph are derived from linear regression, with the BIN1
rs7443733 SNP and global AV45 amyloid-PET SUVR as predictors,
controlling for age, gender, diagnosis, and ApoE ε4 status. Cohens d effects
sizes displayed in the plot were derived for each quartile. Note, that no
interaction between BIN1 rs744373 and global AV45 amyloid-PET uptake
was found, suggesting that the effects of BIN1 rs744373 on tau are similar
between high- and low-amyloid groups. Boxplots are displayed as median
(center line) ±interquartile range (box boundaries) with whiskers including
observations falling within the 1.5 interquartile range
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showing a close association between tau PET and cognitive
decline33,49. Our mediation analysis suggests that the BIN1
rs744373 SNP is linked to memory impairment due to the
increase in tau pathology in the BIN1 rs744373 risk-allele carriers.
We caution that the study design is correlational in nature and
thus a causative interpretation should not be drawn. However,
our findings provide a putative pathomechanistic link between
the BIN1 rs744373 SNP and the increase in dementia risk as
reported by GWAS3.

We point out several caveats that should be considered when
interpreting the results of the current study. Firstly, there are several
BIN1 genetic variants associated with an increased risk of AD9,14,15.

The different SNPs on the BIN1 gene may be in disequilibrium and
may add independently from each other to the risk of AD14. Here,
we focused on rs744373 because this SNP is most frequently
reported to be associated with AD across different GWAS studies3,7

(see also AlzGene database at http://www.alzgene.org/)50. Although
rs744373 is the primary BIN1 SNP associated with increased AD
risk, a previous study suggested that the Indel rs59335482 is asso-
ciated with increased BIN1 mRNA in post-mortem analyzed brains
from AD patients, suggesting that rs59335482 is the functionally
effective BIN1 genetic variant associated with AD risk. However, the
Indel rs59335482, which was not available in the current GWAS, is
in almost complete linkage equilibrium with rs74437315, suggesting
both SNPs share redundant predictive value. Furthermore, control
analysis using an alternative SNP rs7561528 that was available from
the GWAS analysis, i.e., another frequently reported BIN1 SNP as a
risk factor of AD14, confirmed the association between the BIN1
SNP and increased regional AV1451 tau-PET, suggesting that the
current findings were not specific to rs744373 as a tau-related
genetic variant of BIN1.

Secondly, we caution that even though the current findings
suggests that BIN1 rs744373 is associated with tau pathology,
other pathomechanisms of BIN1 may contribute to the increased
risk of AD51. The BIN1 protein is highly expressed in the white
matter (WM) and oligodendrocytes52 and BIN1 is a key driver of
a oligodendrocyte-associated genetic co-expression network that
is dysregulated in AD53. These results suggest that BIN1 is
associated with altered oligodendrocyte integrity that may con-
tribute to white-matter alterations that are a core part of AD-
related pathological changes54,55. Also, BIN1 has been shown to
interact with physiological tau in vitro, i.e., a key constituent of
microtubules15. It is thus possible, that alterations of BIN1 in the
white matter increase the development of pathological tau, which
manifests distantly as neurofibrillary tau tangles in the soma. The
current results are not in conflict with those alternative patho-
mechanisms, as the ubiquitously expressed BIN1 protein sub-
serves multiple diverse functions in the brain12,14, and may thus
be involved in multiple AD-related pathological pathways.

Thirdly, the AV1451 tau-PET tracer has previously shown off-
target binding in the meninges, basal ganglia, and choroid plexus,
which may confound the assessment of tau pathology in cortical
and subcortical brain regions56. To address this, we excluded ROIs
covering the basal ganglia in our analysis to avoid known off-target
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BIN1 rs744373 SNP ADNI−MEM
c = –0.25 (0.11)*

c ′ = –0.17 (0.11)

Indirect effect: 0.08 [–0.18;0]*

Fig. 6 Tau mediates effects of BIN1 rs744373 on memory impairment. Path diagram of the mediation model (assessed on the full sample of n=
89 subjects), showing that associations between BIN1 rs744373 risk-allele carriage and worse memory are mediated via global AV1451 tau-PET uptake.
Path-weights are displayed as beta values with standard errors in brackets. All paths are controlled for age, gender, education, diagnosis, global AV45
amyloid-PET uptake, and ApoE ε4 carrier status. Asterisks indicate p-values below 0.05. Significance of the indirect effect was determined using
bootstrapping with 10,000 iterations
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binding sites to confound our analyses. However, in the current
study the AV1451 signal within the hippocampus may be affected
by off-target binding in the choroid plexus, hence these results
await replication using second generation tau tracers with a better
off-target binding profile. Importantly, however, the BIN1 rs744373
association with higher tau was not limited to the hippocampal
AV1451 tau-PET, but was widespread within the brain, rendering
it highly unlikely that spill-off from regions of unspecific AV1451
tracer binding accounted for the current results.

In conclusion, our results show an association between BIN1
rs744373 risk-allele carriage and in vivo assessed tau pathology in
elderly subjects with and without amyloid pathology. The current
findings suggest that tau pathology provides a key link that
underlies the association between BIN1 genetic variants and
cognitive impairment. Future studies may further test whether
BIN1 risk variants are associated with higher rates of increases in
pathological tau and faster cognitive decline and conversion to
dementia. It is currently unclear whether BIN1 genetic variants
are associated with tauopathies other than AD. A recent study
reported no association between BIN rs744373 and fronto-
temporal dementia57, however, the association between BIN1 and
tau pathology in conditions other than AD remains to be tested in
the future. From a clinical point of view, our findings encourage
future research in targeting BIN1 protein modification as a
potential therapeutic approach to reduce levels of tau pathology.
Preclinical studies showed that knock-down of BIN1 reduced
tau-related toxicity in a drosophila model of neurodegeneration15.
Understanding the exact mechanisms of the association
between BIN1 and tau pathology are of pivotal clinical impor-
tance, since tau is the best predictor of clinical severity in contrast
to Aβ deposition58. Neuroimaging of tau PET may be a marker
to monitor treatment effects of disease modifying therapies
targeting BIN1.

Methods
Study design. We included 89 participants from ADNI phase 3 (ClinicalTrials.gov
ID: NCT02854033) in whom 18F-AV1451 tau-PET was obtained. 18F-AV1451 PET
was added only in phase 3 of ADNI, and is thus only available in a smaller subset of
the large ADNI cohort. The current set of 89 subjects resulted from inclusion
criteria of the availability of T1-weighted MRI, 18F-AV45 amyloid-PET, cognitive
and GWAS data in addition to 18F-AV1451 tau-PET. All imaging modalities had
to be obtained at the same study visit. Selection bias was tested against the entire
ADNI cohort of 1784 subjects. Here, we found no differences in gender or
education between our selected sample and the entire ADNI sample, however, the
mean age of the selected sample (~78.7 years) was significantly (p < 0.05) higher
than the mean age of the entire ADNI cohort (~73.7 years). Subjects were clinically
classified by ADNI centers as cognitively normal (CN, MMSE > 24, CDR= 0, non-
depressed) or mild cognitively impaired (MCI; MMSE > 24, CDR= 0.5, objective
memory-loss on the education adjusted Wechsler Memory Scale II, preserved
activities of daily living)59. Subjects with AD dementia were excluded from the
analysis due to the small number of cases that met our inclusion criteria (n= 3).
The BIN1 rs744373 genotype was extracted from GWAS data provided by the
ADNI genetics core, where whole-genome sequencing was conducted using the
Ilumina Omni 2.5 M Bead Chip. For a detailed description of the whole-genome
sequencing methods, please refer to a previous publication by the ADNI genetics
core60. Subjects were assigned to the BIN1 rs744373 risk-group (n= 40) when
carrying at least one G-allele14. Ethical approval was obtained by the ADNI
investigators at each study site, all participants provided written informed
consent and all work complied with ethical regulations for work with human
participants.

Image acquisition. All imaging data was downloaded from the ADNI loni image
archive (https://ida.loni.usc.edu). Structural MRI in ADNI3 was recorded using a
3D T1-weighted MPRAGE sequence with 1 mm isotropic voxel-space and a TR=
2300 ms. Detailed sequence parameters can be found online at (http://adni.loni.usc.
edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf).

18F-AV1451 tau-PET was acquired 75–105min post-injection of 18F-AV1451,
in 6 × 5minute time frames. 18F-AV-45 Florbetapir amyloid PET scans were obtained
during 4 × 5min time frames measured 50–70min post-injection of 18F-AV45 (http://
adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET_Tech_Manual_0142011.
pdf).

For both AV1451 tau- and AV45 amyloid-PET we downloaded partially
preprocessed data where dynamically acquired image frames are first registered to an

AC-PC orientation and standard voxel image grid and subsequently averaged to obtain
a single image for each PET modality. Having PET images in a standard image matrix
facilitates the combination of PET images from different scanners. For further details
please see refer to the ADNI website (http://adni.loni.usc.edu/methods/pet-analysis-
method/pet-analysis/).

Image preprocessing. All MRI and PET images were inspected for artifacts prior
to preprocessing. We applied two processing pipelines to PET data, following pre-
established protocols to evaluate regional and global AV1451 tau- and AV45
amyloid-PET uptake. First, we used a SPM12-based pipeline to obtain stage-
specific AV45 amyloid-PET SUVR scores34. Second, we applied a Freesurfer-based
pipeline to obtain global AV45 amyloid-61 as well as global and regional AV1451
tau-PET SUVRs (i.e., Braak stage ROIs)33.

For the pre-established SPM12-based pipeline62–67, native-space structural
MRI images were first segmented into gray matter (GM), white matter (WM)
and CSF maps using SPMs new segment approach. Using SPMs high-dimensional
DARTEL warping algorithm, we estimated subject-specific flow-fields to non-
linearly transform all GM, WM, and CSF maps to a sample-specific template
that was determined in an iterative procedure. Using affine transformation, this
sample-specific template was subsequently normalized to Montreal Neurological
Institute (MNI) standard space. Next, subject-specific AV45 amyloid-PET
images were co-registered to the corresponding high-resolution T1 image and
subsequently DARTEL warped to MNI standard space. We did not spatially
smooth the images to avoid spill over between adjacent regions during ROI-based
analyses.

For the Freesurfer-based pipeline (Version 5.3), we applied volumetric
segmentation to the high-resolution native-space structural MRI images, where
subcortical and cortical areas are segmented automatically using the probabilistic
Desikan–Killiany Atlas68. The segmented anatomical ROIs from the high-
resolution structural MRI images were then applied to the co-registered AV45
amyloid- and AV1451 tau-PET images to extract ROI-based values. To obtain
SUVR scores, all ROI values were normalized to the mean uptake of the whole
cerebellum for AV45 data, and to the mean uptake of the inferior cerebellar gray
for AV1451 data, following previous recommendations32,61.

Amyloid staging. For AV45 amyloid-PET, we assessed global amyloid-PET levels
that are commonly used for subject stratification into Aβ-positive/negative plus
a more fine-grained anatomical amyloid staging system that was introduced
recently34. For global amyloid load we computed global AV45 amyloid-PET
SUVRs using an established Freesurfer pipeline. In brief, we averaged Freesurfer-
defined SUVR (normalized to the whole cerebellum) scores across lateral and
medial frontal, anterior, and posterior cingulate, lateral parietal and lateral tem-
poral regions61. Based on these scores, Aβ-positivity was defined as a global AV45
amyloid-PET SUVR > 1.1169. Summary statistics on amyloid status can be found
in table 1.

We further assessed local amyloid levels using a 4-stage model, that suggests
amyloid deposition to initiate in the temporobasal and mediofrontal areas with
subsequent affection of the associative neocortex, primary sensorimotor areas and
lastly the basal ganglia34. To this end, we used the MNI normalized AV45 amyloid-
PET images from our SPM12 pipeline where we determined the mean scores
within the four amyloid stage ROIs (shown in Fig. 1b) that were built using the
MNI-space based Harvard–Oxford brain atlas following a previously described
protocol34. Again, these mean values were intensity normalized to Freesurfer
derived whole-cerebellar AV45 uptake to obtain SUVR scores.

Tau staging. For tau, we also obtained global as well as stage-specific AV1451 tau-
PET SUVR scores.

For global tau, we averaged the size-weighted Freesurfer-ROI SUVRs across all
Desikan–Killiany atlas regions, excluding the cerebellum, thalamus and basal
ganglia (i.e., typical regions of AV1451 off-target binding) following a previously
described approach32. For stage-specific AV1451 tau-PET uptake, we applied a
recently described Braak-ROI staging system that allows application of the post-
mortem established tau staging system to tau PET imaging33. Here, we obtained
size-weighted Freesurfer-ROI SUVRs for each Braak stage ROI, from Braak stage I
(i.e., entorhinal cortex) to Braak stage VI (i.e., primary sensorimotor & primary
visual cortex). A list of ROIs that are included within each Braak stage ROI can
be found online (https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/
UCBERKELEYAV1451_Methods_FINAL.pdf). A surface rendering of the Braak
ROIs is shown in Fig. 1a. Note that we excluded the thalamus or basal ganglia ROIs
for all AV1451 tau-PET analyses, due to known off-target binding of the AV1451
tracer in these regions.

mRNA expression levels of BIN1. Regional gene expression was obtained from
publicly available microarray measurements of regional mRNA expression
based on post-mortem data from the Allen Brain Atlas (http://human.brain-
map.org/; RRID: SCR007416). The Allen Brain atlas includes more than 60,000
microarray probes collected from 3700 autopsy-based brain tissue samples
from a total of 6 subjects aged 24–57 with no known history of neurological
or psychiatric conditions35,36. Microarray-based log2 expression values of
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20,737 genes within each of the 3700 samples were mapped back into MNI
standard space by the Allen Brain Institute using stereotactic coordinates of the
examined probes. The whole gene expression data has been recently mapped to
the Freesurfer-based Desikan–Killiany atlas as median gene expression for
probes falling within each of the 68 atlas ROIs37. Here, we specifically extracted
median expression of BIN1 mRNA within these Desikan–Killiany ROIs, to test
associations between BIN1 expression and AV1451 tau-PET uptake. Since
microarray assessments and thus BIN1 mRNA expression of all 6 Allen brain
atlas subjects were available only for the left hemisphere (vs. 2 subjects for
the right hemisphere), we restricted the analysis of BIN1 mRNA expression
data to the more robust estimates of the left hemisphere in line with previous
studies70–72.

Statistical analysis. Group demographics and baseline characteristics were
compared between groups (i.e., diagnosis & BIN1 rs744373 status) using ANOVAs
for continuous measures and Chi-squared tests for categorical measures. Global
and regional AV45 amyloid- and AV1451 tau-PET SUVR scores were log-
transformed prior to analysis to approximate a normal distribution.

For our main analysis, we tested whether BIN1 rs744373 risk-allele carriage was
associated with increased AV1451 tau-PET uptake. To this end, we applied
ANCOVAs to test whether presence of the BIN1 rs744373 risk allele had an effect
on global or regional (i.e., Braak stage ROIs) AV1451 tau-PET SUVRs, controlling
for age, gender, education, diagnosis, and ApoE ε4 carrier status and GM volume of
the respective tau ROI. To assess any effects of the BIN1 rs744373 SNP on amyloid,
we tested the same models this time using global or regional (i.e., amyloid-stage
ROIs) AV45 amyloid-PET SUVRs as the dependent variable. Lastly, we tested
whether BIN1 rs744373 risk-allele carriage was associated with higher AV1451 tau-
PET SUVR independent of amyloid. To this end, we conducted linear regression
with global AV1451 tau-PET SUVR as a dependent variable and global AV45
amyloid-PET SUVR and BIN1 rs744373 status as independent variables controlling
for age, gender, education, ApoE ε4 carrier status, and diagnosis. Using the
same covariates as described for the previous model, we further tested the
interaction between BIN1 rs744373 and global AV45 amyloid-PET or Aβ status
(Aβ− or Aβ+).

Next, we tested whether higher local BIN1 mRNA expression levels were
associated with an increased likelihood of developing abnormal tau. To this end, we
determined BIN1 mRNA expression using the Allen brain atlas data in
Desikan–Killiany atlas space and determined the group-median regional tau PET
SUVRs for corresponding anatomical regions. We then surface-mapped both
group-median tau PET SUVRs and BIN1 mRNA expression and tested the
Pearson–Moment correlation between regional BIN1 mRNA expression and tau
load, applying a two-tailed alpha threshold of 0.05. We repeated this analysis
based on 1000 randomly drawn bootstrapped samples to determine the 95% CI
of the correlation coefficient between BIN1 mRNA expression and AV1451 tau-
PET uptake.

Lastly, we assessed whether BIN1 rs744373 risk-allele carriage was associated
with worse memory performance, and whether this association was mediated by
tau pathology. To test this, we conducted mediation analysis, testing whether the
association between BIN1 rs744373 and ADNI-MEM was mediated via global
AV1451 tau-PET uptake. Significance of the mediation effect was determined using
10,000 bootstrapped iterations, where each path of the model was controlled for
global AV45 amyloid-PET SUVR, age, gender, education, and diagnosis and ApoE
ε4 carrier status.

All statistical analyses were conducted with R statistical software. P-values were
considered significant when meeting a two-tailed alpha threshold of 0.05. When
a single hypothesis was tested multiple times, we also report Bonferroni-corrected
p-values in case of significant uncorrected p-values.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and are available from the ADNI database
(adni.loni.usc.edu) upon registration and compliance with the data use agreement. A list
including the anonymized participant identifiers of the currently used sample and the
source file can be downloaded from the ADNI database (http://adni.loni.usc.edu/). The
R-script used for the current study can be obtained from the first author upon request.
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