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Abstract

Purpose: To describe the current state of science regarding independent external validation of
artificial intelligence (Al) technologies for screening mammaography.
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Materials/Methods: We performed a systematic review across five databases (Embase,
PubMed, IEEE Explore, Engineer Village, and Arxiv) through December 10, 2020. Studies

that used screening exams from real-world settings to externally validate Al algorithms for
mammographic cancer detection were included. The main outcome was diagnostic accuracy
defined by area under the receiver operating characteristic curve (AUC). Performance was

also compared between radiologists and either standalone Al or combined radiologist and Al
interpretation. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy
Studies-2 tool.

Results: After data extraction, 13 studies met inclusion criteria (148,361 total patients).

Most (77%10/13) studies evaluated commercially available Al algorithms. Studies included
retrospective reader studies (46%,6/13), retrospective simulation studies (38%,5/13), or both
(15%,2/13). Across 5 studies comparing standalone Al to radiologists, 60% (3/5) demonstrated
improved accuracy with Al (AUC improvement range, 0.02-0.13). All 5 studies comparing
combined radiologist and Al interpretation to radiologists alone demonstrated improved accuracy
with Al (AUC improvement range, 0.028-0.115). Most studies had risk of bias or applicability
concerns for patient selection (69%,9/13) and the reference standard (69%,9/13). Only two studies
obtained ground truth cancer outcomes through regional cancer registry linkage.

Conclusions: To date, external validation efforts for Al screening mammaography technologies
suggest small potential diagnostic accuracy improvements but have been retrospective in nature
and suffer from risk of bias and applicability concerns.

Summary Sentence
Independent Al algorithm validation for automated mammography screening interpretation would

benefit from development of large, diverse, real-world screening cohorts with linkage to regional
cancer registries for robust ground truth.

Introduction

Emerging artificial intelligence (Al) technologies in health care hold promise for

improving clinical efficiency and patient outcomes?: 2. In medical imaging, developing

and incorporating Al algorithms for automated mammography screening interpretation

has become a primary use case3. Mammograms are highly amenable to Al algorithm
development and training due to their standardized imaging positions and projections,

large amounts of available digital data, and binary outcome of cancer or no cancer?.

Multiple recent publications have shown promise for Al-driven screening mammography
interpretation both as a standalone tool and as an adjunct tool for interpreting radiologists®.

An earlier scoping review of Al’s potential in mammography screening identified
methodologic limitations of Al performance assessment including use of non-representative
imaging data for model training, limited independent external validation, and potential
training data bias®. Thus far, most Al algorithm validation studies for mammography
screening have used internal validation with a subset of exams from the training cohort

to test algorithm performance, which can inflate Al performance due to model overfitting®.
To truly demonstrate Al algorithm generalizability, external validation is needed using
independent target populations not used in training!?. Moreover, many commonly used
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publicly available datasets (such as the Optimam Mammography Database and Digital
Database for Screening Mammography (DDSM)11) are heavily used in Al algorithm
training and therefore are not appropriate sources for independent, external validation12.
Ideally, Al algorithm performance should be externally validated using real-world screening
data to demonstrate generalizability and to inform clinical adoption3.

We aimed to summarize the current state of the science regarding independent external
validation of artificial intelligence (Al) technologies for screening mammography using
real-world clinical data and whether the evidence is of high enough quality for widespread
clinical adoption. To meet this objective, we performed a comprehensive systematic
literature review of studies using real-world screening data for independent, external
validation of promising Al algorithms for automated mammography interpretation.

Our systematic review was conducted and reported in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement4. Our
review protocol was registered in the International Prospective Register of Systematic
Reviews (PROSPERO CRD42021230390). The study was exempt from Institutional Review
Board approval as only publicly available data were collected and assessed.

Data Sources and Searches

With the assistance of a professional medical reference librarian, we searched Embase,
PubMed, IEEE Explore, Engineer Village, and Arxiv databases from inception through
December 10, 2020; the latter three were included given the nature of Al algorithm
development and testing involving data scientists and engineers outside the traditional
medical research community. In each database, subject headings and free text terms were
used to search across three broad concepts: artificial intelligence, mammography, and
diagnostic accuracy. The detailed search strategy including search terms for each of the

five databases is available in the online Supplement (eTable 1). We only searched for studies
with an English translation and where a full manuscript was available.

Study Selection

Studies that used screening mammography exams from real-world clinical settings to
independently evaluate Al algorithm cancer detection accuracy were included. We excluded
Al algorithm evaluation studies that only used publicly available datasets (e.g., DDSM,
mini-Mammographic Image Analysis Society (MIAS) database, Optimam Mammography
Database), as these datasets have been heavily used in training and developing Al
algorithms. Similarly, we excluded studies that involved internal Al algorithm validation
using a subset of the original cohort used to train and develop the algorithms, as such
exercises are known to suffer from model overfitting®. If studies performed both internal and
external validation, we only recorded findings from the external validation portion.

Studies were included if they validated Al alone or in combination with radiologists. Studies
validating a single Al algorithm or ensemble models combining multiple algorithms were
eligible. We excluded studies that: detailed model training only; involved Al algorithms
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developed to only detect specific (restricted) imaging features and not all breast cancers on
mammography (e.g., mass detection only, calcification detection only); only involved Al for
future cancer risk prediction rather than cancer detection on images; and studies that focused
on Al use for improving radiologist workflow (e.g., triage of negative mammograms,
decreased interpretation time) rather than automated cancer detection.

The main outcomes of interest were overall accuracy as defined by the area under

the receiver operating characteristic curve (AUC), sensitivity, and specificity of Al
algorithms for breast cancer detection on real-world screening mammaography cohorts. In
the few studies that included double-reading by radiologists, only first-reader radiologist
performance outcomes with and without Al are presented in our review to ensure
comparability across all studies.

Data Extraction

Two authors (AA and CL) independently reviewed all titles and abstracts resulting from the
literature search for inclusion and exclusion criteria, with conflicts resolved by a third author
(LM). For studies published in online archives before medical journals, only the most recent
published medical journal manuscript was included in our study.

We developed a standardized data extraction tool to collect study characteristics (eTable

2). Two reviewers (AA and CL) independently extracted data from each study at the time

of full manuscript review. Any data extraction parameter disagreements were resolved by
consensus. Data systematically collected for each manuscript include titles, author names,
publication date, Al algorithm type (e.g., convolutional neural network), Al algorithm
commercial availability, and if Al algorithms were originally trained on public and/or private
datasets.

Detailed data collected regarding external validation datasets include a description of the
clinical cohort (e.g., clinical setting), screening program interval (e.g., annual, biennial),
exam years, imaging modality (digital mammaography (DM), digital breast tomosynthesis
(DBT), or both), total number of screening exams evaluated, total number of cancer-
positive exams evaluated, and the follow-up period for determining interval cancers (e.g.,
12-months). We did not require specific reference standards for outcome measures, but did
record how studies determined cancer ground truth (e.g., biopsy results, cancer registry
linkage).

Data Synthesis and Analysis

We performed a narrative synthesis of the published literature on external validation

of promising Al algorithms using real-world clinical mammography exams. Due to
methodological heterogeneity across study populations, including enriched reader study
exam sets and differences in reported comparator groups and outcome measures, we
adopted a descriptive approach for our primary analyses. Estimates of test accuracy (AUC,
sensitivity, specificity) for each study were tabulated. For studies reporting AUCs for Al
compared with radiologists, descriptive plots of study level differences in the AUC were

JAm Coll Radiol. Author manuscript; available in PMC 2023 February 01.
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generated. For studies that compared the sensitivity and specificity of Al versus radiologists,
scatterplots of study-specific (sensitivity, 1-specificity) pairs with exact (Clopper-Pearson)
uncertainty regions were plotted in ROC space, and points were joined to highlight within-
study comparisons. Scatterplots were examined for inconsistency (statistical heterogeneity)
in the direction of the differences in Al and radiologist estimates. When inconsistency was
observed, no further analysis was undertaken. When studies were consistent in the direction
of the differences, meta-analysis of accuracy was undertaken using the hierarchical summary
receiver operating characteristics (HSROC) model proposed by Rutter and Gatsonis® to
estimate summary AUCs. Because the threshold used to define test positivity varied between
studies, summary estimates of sensitivity and specificity were not derived. Fitted SROC
curves were overlaid on the scatterplots of study-specific estimates and were restricted to the
range of data points. Analyses were undertaken using the ‘mada’ packagel® in R 4.0.4 (R
Project for Statistical Computing, Vienna, Austria).

Quality Assessment

Results

Overall methodological quality of the studies was assessed independently by two reviewers
(AA and CL) using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)
tooll’. The QUADAS-2 quality review emphasizes the risk for bias and concerns for
applicability of the primary diagnostic accuracy studies (see Table 4). The QUADAS-2
guiding questions for evidence quality assessment were: 1) Patient selection: Could selection
of patients (e.g., sampling design) have introduced bias, or is there concern that the

patient population is not representative of the true target population? 2) Index test: Could
interpretation of the index test (e.g., Al score, cut-off) have introduced bias, or is there
concern that the index test could be interpreted subjectively? 3) Reference standard: Could
the reference standard used (e.g., cancer ground truth) have introduced bias or does the
target condition defined by the reference standard not match the review question? 4) Flow
and timing: Could patient care flow (e.g., Al use timing) have introduced bias?

Our literature search identified 5,072 citations (Figure 1); 1,376 citation titles were reviewed
after deduplication, which, yielded 160 citations for dual, independent abstract review.

After full abstract review, 66 manuscripts were identified as meeting major inclusion and
exclusion criteria and were reviewed by two investigators; 6 were discussed with a third
investigator for different review results between the initial two investigators. We extracted
data on 25 manuscripts, of which 52% (13/25) were found to use real-world screening
exams for true, independent external validation. The remaining 48% (12/25) of studies were
found to use the same clinical exam datasets split into training and validation datasets (e.g.,
internal validation only) and thus were excluded.

Study Characteristics

All 13 external validation studies included in our systematic review evaluated convolutional
neural network (CNN) deep learning models®>~7: 18-27 (Table 1). Most (77%, 10/13)
evaluated commercially available Al algorithms’: 18-20. 23-27 and were trained and
internally validated using at least some private, proprietary datasets (92%, 12/13)5~7: 19-27,
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All studies were published between 2019-2020 and were retrospective reader studies (46%,
6/13)18. 20, 22, 24,26, 21 retrospective simulation studies (38%, 5/13)%: 7:19. 23,25 o

both (15%, 2/13)% 21, We identified no published prospective, population-based evaluation
studies through 2020.

External Validation Dataset Characteristics

Reader studies were performed using small screening exam collections in the

UsS: 18, 20-22, 24,26, 27 Germany24, South Korea??, and JapanZ® (Table 2). Almost all (88%,
7/8) reader studies involved multiple years of DM while only one involved DBT exams?8.
Exam numbers included in these enriched reader studies ranged between 122-500 total
exams (66—160 exams were cancer-positive). These enriched case sets were interpreted by
5-24 individual radiologists. All 8 reader studies determined ground truth based on breast
biopsy results or negative subsequent screening exams. The cancer follow-up periods were
reported by 3 of the reader studies (38%, 3/8), with reported follow-up periods of 12-27
months®: 22, 24,

Retrospective simulation studies were performed using screening cohorts from the US® 6,
UKS, Sweden® 719 and China?! (Table 2). Three studies drew their Swedish screening
cohort from the same institution® 7+ 19, Two studies, McKinney et al.6 and Schaffter et al.®,
used their entire screening populations and created their study cohorts from consecutive
screening exams (or randomly sampled from consecutive screening exams) over multiple
years (total exams 28,953 and 93,665, respectively). The other five studies’: 19 21, 23, 25
used case-cohort samples or convenience samples enriched with cancer-positive cases
(total exams ranged from 1,633-8,805). While Rodriguez-Ruiz et al. reported exams
interpreted by >100 radiologists in two of their studies?3 25, these samples were comprised
of convenience samples of exams collected from multiple prior reader studies. Of the
retrospective simulation studies, 2 studies® 7 (29%, 2/7) had ground truth determined
through robust linkage to regional cancer registries. The remaining simulation studies
either did not report how they determined ground truth9: 21 (29%, 2/7) or used breast
biopsy results and subsequent negative screening to determine cancer status® 23 25 (43%,
3/7). McKinney et al.5 reported cancer follow-up periods of 27 months for their US
evaluation cohort and 39 months for their UK evaluation cohort. All other simulation studies
reported 1-2 year cancer follow-up® 7- 19 25 (57%, 4/7) or did not report cancer follow-up
periods?l: 23 (29%, 2/7).

Diagnostic Accuracy

The most common outcome measure reported was AUC, representing overall diagnostic
accuracy. Across reader studies, fivel8: 2022, 24, 27 provided comparisons of radiologist
interpretive performance with vs. without Al while fiveS: 20. 24, 26, 27 provided comparisons
of radiologist performance vs. standalone Al (Table 3, Figure 2). Another reader study?!
provided Al standalone performance without a comparison group. Reported AUC for
radiologists ranged from 0.62-0.87, AUC values for standalone Al ranged from 0.66—

0.94, and reported AUC of radiologist+Al performance ranged from 0.80-0.89. All 5

reader studies!® 20 22, 24, 27 comparing combined radiologist+Al vs. radiologist alone
demonstrated statistically significant improved AUC for radiologist+Al (Figure 2). However,

JAm Coll Radiol. Author manuscript; available in PMC 2023 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Anderson et al.

Page 7

in the reader studies comparing radiologists vs. standalone Al, there were mixed results with
three studies® 20: 24 showing superior Al performance and two studies28: 27 demonstrating
significantly worse AUC for standalone Al (Table 3).

For the simulation cohorts (9 different cohorts across 7 retrospective simulation studies),
AUC was again the most frequently reported Al performance measure but most studies
also reported sensitivity and/or specificity of radiologists and/or Al (Table 3). AUC values
for standalone Al ranged between 0.81-0.97. Only one simulation study? reported AUC
values for radiologists vs. standalone Al, with standalone Al demonstrating non-inferior
performance defined as the lower 95% CI of the difference in AUCs not less than a margin
of —0.05 (difference in AUC = 0.03) (Figure 2).

Comparisons of sensitivity and specificity for both study types (Figures 3a and 3b) reflected
patterns of results for AUCs (Figure 2). Studies comparing radiologists vs. standalone Al

(7 cohorts across 5 studies) showed inconsistent results, with Al exhibiting either higher

or lower accuracy, or lower specificity with relatively smaller gains in sensitivity (Figure

3a). Studies comparing radiologists versus radiologists+Al (7 cohorts across 5 studies)
consistently showed an increase in accuracy for radiologists+Al (squares above and/or to the
left of diamonds in Figure 3b), with fitted SROC curves showing a small increase in the AUC
that is consistent with the magnitudes of study-level differences observed in Figure 2.

Two simulation studies assessed ensemble model performance, which combined multiple
individual models. Schaffter et al.°> developed ensemble models using 8 top performing
models in the Digital Mammography Dialogue on Reverse Engineering Assessment and
Methods (DREAM) Challenge. The ensemble model outperformed the top performing
algorithm in the Swedish (AUC 0.92 vs. 0.90) and the US evaluation cohorts (AUC 0.90
vs. 0.86). Performance improved further when radiologist performance was added to the
ensemble model in both the Swedish and US evaluation cohorts (AUC 0.94 for both
ensemble + radiologist models). Salim et al.” also explored performance of an ensemble
of three commercial Al algorithms together. They found that their ensemble Al model
performed as well as combined radiologist and any of the 3 single commercial Al algorithms
(Table 3).

Quality Assessment

All studies had high risk or unclear risk of bias or applicability concerns (eFigure 1). Most
studies18: 20-27 (69%, 9/13) had high or unclear risk of bias or applicability concerns in
patient selection due to their sampling designs or not obtaining consecutive exams from
screening settings (Table 4). All studies suffered some risk of bias or applicability in the
index test due to arbitrary Al score cut-offs and/or artificial combination with independent
radiologist interpretations in simulation studies (e.g., no actual radiologist-Al interface).
Most studies18-21 23-27 (6995, 9/13) had high or unclear risk of bias in the reference
standard due to the lack of a robust cancer ground truth through linkage with regional cancer
registries or long-term cancer follow-up beyond two years to define true negative and false
negative screening exams.

JAm Coll Radiol. Author manuscript; available in PMC 2023 February 01.
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Discussion

In our comprehensive systematic review of external validation studies for Al mammography
technologies using real-world screening exams, we found that most studies of standalone Al
or combined radiologist and Al interpretation demonstrated incremental diagnostic accuracy
improvements over radiologist interpretation alone. However, all 13 studies published
through 2020 were either retrospective reader or simulation studies with no prospective
observational studies or clinical trials. Overall, there was some high or unclear risk of bias
or applicability for all included studies. Only two studies linked to regional cancer registries
to define cancer ground truth, leading to concerns for the reference standard and cancer
determination in all other studies.

The most rigorous and largest simulation studies included study samples built from
sequential screening exams from one or more institutions and compared or combined
multiple Al algorithms. Salim et al.” found the best performance when combining three
different commercial Al algorithms. Similarly, Schaffter et al.? created an ensemble model
comprised of 8 top performing individual algorithms, and observed the highest diagnostic
accuracy when the ensemble model was combined with radiologist performance. These
studies suggest that ensemble models that aggregate predictions across multiple algorithms
can improve performance over individual algorithms®. Nevertheless, the applicability and
feasibility of ensemble modeling in clinical settings is questionable, especially using
multiple commercial Al algorithms together. Both Salim et al.” and Schaffter et al.> also
compared multiple Al algorithms, which is desirable for evaluation studies as some available
Al algorithms may perform better than others within distinct screening populations28.

Our systematic review highlights the urgent need for higher quality external validation
studies of Al algorithms for mammography before widespread clinical adoption®: 12,
especially as multiple Al algorithms have gained regulatory approval and are now becoming
commercially available both in the US and internationally2®. The studies included in our
systematic review were performed in rather homogeneous populations (distinct European/
Caucasian or Asian populations). Future external validation studies need to demonstrate
generalizability of Al algorithms across large, diverse screening populations in terms of
race/ethnicity, breast cancer risk factors, imaging vendors, and imaging modalities (e.g.,
DBT vs. DM) and in screening settings where Al would be used (e.g., specific screening age
ranges and screening intervals). The largest barriers to conducting such rigorous evaluations
are both the availability of population-based screening data with clinical, demographic,

and risk factor metadata, and linkage to cancer outcomes determined by regional cancer
registries to ensure gold-standard ground truth2. More effort is required to collect and
curate rich, population-based mammography datasets linked to both clinical metadata and
long-term cancer outcomes for Al algorithm external validation purposes.

One other systematic review on diagnostic accuracy of Al on mammography was recently
published3C, demonstrating consistent results with our study. However, in addition to
diagnostic accuracy, our review adds to the existing literature by collecting more detailed
information on specific methodological features important to external validation of Al
algorithms. Our review also was more comprehensive, searching the literature from
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inception and across five large databases that include engineering and data science databases
outside of traditional medical science databases. By including these databases, we searched
conference proceedings and online archives not found in traditional medical literature
searches but frequented by Al algorithm developers in order to account for all publicly
available external validation studies. Our study did have limitations. Our review was limited
to English language publications and there may have been more recent publications not
included in this systematic review as Al for breast imaging is a fast-moving field. We did
not examine the impact of Al algorithms on future breast cancer risk prediction or improved
radiologist workflow efficiency (e.g., triaging negative screening exams, less interpretation
time), as these were beyond the scope of our review question. We examined Al from

an exam-level perspective and not a breast-level or lesion-level perspective. None of the
included studies detailed the impact of the presentation format of Al outputs on radiologist
interpretation, and none of the studies discussed acceptability of Al from the medical-legal
or ethical perspectives. Finally, to provide comparability across studies, we focused on Al
as a standalone tool or Al as an adjunct tool for radiologists in single reading settings or
first readers in double-reading settings (and not second readers). Future systematic reviews
could focus on these additional important aspects of breast cancer screening and the impact
of incorporating Al into routine screening practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take-Home Points

Independent, external validation of promising Al algorithms for automated
mammography interpretation using real-world screening cohorts is currently
in a nascent state, with only retrospective reader studies or simulation studies
documented in the published literature.

External validation studies for Al in mammography have thus far almost
exclusively involved digital mammography exams rather than digital breast
tomosynthesis exams.

Most published external validation studies for Al in mammography suffer
from patient selection bias, with use of either enriched reader study cohorts
or convenience samples rather than sampling from consecutive screening
examinations in real-world settings.

Most published external validation studies for Al in mammography lack
robust cancer registry linkage to determine cancer ground truth, creating a
high risk of bias in the reference standard.
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Records identified through
database searches
(n=5,072)

A\ 4

Record titles screened after duplicates
removed
(n=1,376)

i

Full abstracts screened
(n=160)

Full articles assessed
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A\ 4

(total n=66)
(tie-breaker review n=6)

A

Studies included in data
extraction (n=25)

Studies with true
external validation
(n=13)

Figure 1.
PRISMA Flowchart

Studies excluded due to the following reasons:

Only publicly available datasets used (n=13)
Technical development, not evaluation (n=15)
Abstract only, no full manuscript (n=4)

Al for radiology workflow, not detection (n=2)
No English translation for manuscript (n=2)
Al for histopathology, not mammography (n=1)
Al for breast MRI, not mammography (n=1)
Feature classification, not detection (n=1)
Clinical trial protocol for future study (n=1)
Risk prediction Al, not cancer detection (n=1)

Studies excluded because same dataset used
for training and validation (n=12)
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Study and Comparison Radiologist Al

AUC AUC Difference P-value

1. Al vs Radiologist

Watanabe, 2019 0.76 0.66 -0.10 <0.01
Kim, 2020 0.81 0.94 0.13  <0.001
Rodriguez-Ruiz, JNCI 2019 0.81 0.84 0.03 noninf
Sasaki, 2020 0.82 0.71 -0.11  <0.001

Rodriguez-Ruiz, Radiology 2019  0.87 0.89 0.02 0.002

2. Al+Radiologist vs Radiologist

McKinney, 2020 0.63 0.74 0.11  <0.001
Watanabe, 2019 0.76 0.81 0.05 <0.01
Pacile, 2020 0.77 0.80 0.03 0.03
Conant, 2019 0.79 0.85 0.06 <0.01
Kim, 2020 0.81 0.88 0.08  <0.001
T T
-0.15 -0.10

Page 14

-0.05 0.00 0.05 0.10 0.15
Difference in AUCs

Study type: [ Reader study [ Retrospective simulation study

Figure 2. Al Diagnostic Accuracy in Studies with External Validation as Stand-Alone Tools and

as Second Readers

Difference in the area under the receiver operating characteristic curve (AUC) between
radiologist vs. either Al alone or Al and radiologist combined performance. All AUC values

rounded to nearest hundredth. Noninf = non-inferiority.

JAm Coll Radiol. Author manuscript; available in PMC 2023 February 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Anderson et al.

e
=

Page 15

0.6

Sensitivity
0.5

0.4

0.3
1

0.1

- Studies:

S B Conant, 2019
M Sasaki, 2020
I McKinney, 2020 (US)
B McKinney, 2020 (UK)
Salim, 2020
Il Schaffter, 2020 (Sweden)
Bl Schaffter, 2020 (US)

Sn and 1-Sp pairs:

<& Radiologist
O Al (standalone)

0.0

0.0

T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-Specificity

Figure 3a. Summary Receiver Operating Characteristics (SROC) Curves
Study-specific estimates of sensitivity (Sn) and specificity (Sp) for radiologists versus Al

standalone.
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B Rodriguez-Ruiz, Radiology 2019
M Pacile, 2020

I Conant, 2019
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Salim, 2020
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Bl Schaffter, 2020 (US)
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Figure 3b. Summary Receiver Operating Characteristics (SROC) Curves
Study-specific estimates of sensitivity (Sn) and specificity (Sp) for radiologists versus Al

and radiologists combined.
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