Lawrence Berkeley National Laboratory

 Recent WorkTitle
ON THE NON-EQUILIBRIUM FACTOR FOR NUCLEATION RATES
Permalink
https://escholarship.org/uc/item/4bx2j5s1
Authors
Murty, K. Linga
Dorn, John E.

Publication Date

1971-05-01

```
##" =i
```

ON THE NON-EQUILIBRIUM FACTOR FOR NUCLEATION RATES

K. Linga Murty and John E. Dorn

May 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

ON THE NON-EQUIUIBRIUM FACTOR FOR NUCTEATION RATES

by

K. Linga Murty and John E. Dorn
Inorganic Materials Research Division
Lawrence Radiation Laboratory, University of California, Berkeley, California

The series of approximations and somewhat tedious analyses generally undertaken to evaluate the non-equilibrium factor ${ }^{(1)}$ for nucleation of phase transformations is easily replaced by a direct and more accurate evaluation. Present analysis is based on the Becker-Doering ${ }^{(2)}$ approach and will be considered for nucleation of a solid phase β from a onecomponent liquid α.

The Gibbs free energy for the formation of an embryo β_{i} containing i molecules is

$$
\begin{equation*}
\Delta G_{i}=4 \pi\left(\frac{3 \Omega}{4 \pi}\right)^{2 / 3} i^{2 / 3} \gamma+i \Omega \Delta G_{v}=A i^{2 / 3}+B i \tag{1}
\end{equation*}
$$

where γ is the free energy per unit interfacial area, ΔG is the change in free energy upon formation of a unit volume of the embryo and Ω is the volume per molecule of the embryo. ΔG_{i} exhibits a maximm value of $\Delta G_{i} *$ dicated by $\left(\frac{\partial \Delta G_{i}}{\partial i}\right)_{i} *=0$. Embryos for which $i<i *$ grow by a series of unimolecular reactions, $\alpha_{1}+\beta_{i}+\beta_{i+1}$ and nucleation occurs when $\alpha_{1}+\beta_{i *}+\beta_{i *+1}$. As the $\beta_{i *+1}$ nuclei are withdrawn at the rate \hat{N} per unit volume per second a steady state flux, $J_{i \rightarrow i+1}$ of the pramotion of i to the $i+1$ nuclei takes place. A diagram of the free energies involved in the addition of one molecule of the liquid phase to the solid embryo is given in Fig. 1 where g_{m} is the free energy of activation for diffusive motion of an atom at the surface of an enbryo. At the steady state therefore

$$
\begin{align*}
\mathcal{J}_{i}^{n e t}= & =n_{i+1}\left[4 \pi\left(\frac{3 \Omega}{4 \pi}\right)^{2 / 3} i^{2 / 3} \frac{\lambda}{\Omega}\right]\left[v e^{-G_{i} / k T}\right] e^{-\frac{1}{k T}\left(\frac{\Delta G_{i+1}+\Delta G_{i}}{2}-\Delta G_{i}\right)} \\
& =n_{i+1}\left[4 \pi\left(\frac{3 \Omega}{4 \pi}\right)^{2 / 3}(i+1)^{2 / 3} \frac{\lambda}{\Omega}\right]\left[v e^{-g_{m} / k T}\right] e^{+\frac{1}{k T}}\left(\Delta G_{i+1}-\frac{\Delta G_{i+1}+\Delta G_{i}}{2}\right) \tag{2}
\end{align*}
$$

where λ is the molecular diameter, v is the jump attempt frequency, n_{i} is the steady state number of embryos per unit volume containing i molecules, and the first term in square brackets gives the number of liquid molecules adjacent to the it embryo: under equilibrium conditions the net flux would be zero and irivoking the concept of microbalance, we find •

$$
\begin{equation*}
n_{i}^{e} i^{2 / 3}-\frac{1}{k T}\left\{\frac{\Delta G_{i+1}-\Delta G_{i}}{2}\right\}=n^{e}{ }_{i+1}(i+1)^{2 / 3} e^{\frac{1}{k T}}\left\{\frac{\Delta G_{i+1}-\Delta G_{i}}{2}\right\} \tag{3}
\end{equation*}
$$

Introducing Eq. 3 on the right hand term of Eq. 2, rearranging the terms and multiplying both sides of the equality by $\left(n_{i}{ }_{i}\right)^{-1}$ gives

$$
\begin{equation*}
\frac{\dot{N} e^{\frac{1}{k T}}\left(\frac{\Delta G_{i+1}-\Delta G_{i}}{2}\right)}{4 \pi\left(\frac{3 \Omega}{4 \pi}\right)^{2 / 3} i^{2 / 3} \frac{\lambda}{\Omega} \bar{e}^{-q+} / K T_{n}^{e}{ }_{i}}=\frac{n_{i}}{n_{i}^{e}}-\frac{n_{i}+1}{n_{i}^{e}+1} \tag{4}
\end{equation*}
$$

where $n_{i}^{e}=n_{1} \bar{e}^{\Delta G_{i} / k T}$. Because critical nuclei are being removed,
$\frac{n_{i^{*}+1}}{n^{e} i^{\star+1}} \simeq 0$ and also since $\frac{n_{1}}{n_{1}^{e}}=1$ we find that

$$
-3-
$$

$$
\sum_{i=1}^{i^{*}}\left[\frac{n_{i}}{n^{e}}-\frac{n_{i+1}}{n^{e}}{ }_{i+1}\right] \simeq 1
$$

Furthermore Since $\sum_{i=2}^{i *} n_{i} \ll n_{1}$, it follows that

$$
\dot{\mathrm{N}}=4 \pi\left(\frac{3 \Omega}{4 \pi}\right)^{2 / 3} i *^{2 / 3} n_{1} \frac{\lambda}{\Omega} v e^{-g+} m / k T e^{-\Delta G_{i *}} \frac{k T T}{k T} \dot{N}^{e}{ }_{\phi}
$$

where the non-equilibrium factor is

$$
\begin{equation*}
\phi=\left[\sum_{i=1}^{i *} \frac{e^{-\frac{1}{k T}}\left(G_{i^{*}}-\frac{\Delta G_{i+1}+\Delta G_{i}}{2}\right)}{\left(i / i^{*}\right)^{2 / 3}}\right]^{-1} \tag{5}
\end{equation*}
$$

By direct evaluation of the sum we obtain

$$
\begin{equation*}
\phi=\left(\frac{2.22 \Delta G_{i \star}}{3 \pi k T \quad i \star^{1.92}}\right)^{1 / 2}=\left(-\frac{1.11 \Omega \Delta G_{v}}{3 \pi k T \quad i^{*} .92}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

whereas the usual value reported by approximate integration is (1):

$$
\begin{equation*}
\phi=\left(\frac{\Delta G_{i *}}{3 \pi k T \quad i^{2}}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

The nominal agreement of the present results as depicted in Fig. 2 attests to the accuracy of the previously made approximations.

Although the differences in the present and earlier results as shown by equations (6) and (7) are trivial in tems of the other more important issues regarding nucleation, the direct sumation has substantial pedagogic advantages.

This work was supported by the United States Atamic Energy Cammission througin the Inorganic Materials Research Division of the Iawrence Radiation Laboratory of the University of California, Berkeley, California.

References

1. G. M. Pound, in Enengetics in Metallurgical Phenomena, Vol. II, ed. by W. M. Mueller, Gordon and Breach Science Publishers, New York (1965)
2. R. Becker and W. Doering, Ann. Phys. (5) 24, 79 (1935l.
3. D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, 71 (1949).

Figure Captions:

1. Free energy representation for the reaction $\alpha_{1}+\beta_{i}=\beta_{i+1}$
2. Plot of $\phi \operatorname{vs}\left(\frac{2.22 \Delta G_{i *}}{3 \pi k T \quad i^{*^{l .92}}}\right)^{1 / 2}$ for various values of $i *$. Solid line represents Eq. 6.

Number of Molecules in Embryo XBL 721-5903

Fig. 1
-7-

XBL714-6712

Fig. 2

LEGAL NOTICE

This report* was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

