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Abstract

Scattering Resonances for Convex Obstacles

by

Long Jin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Maciej R. Zworski, Chair

In the setting of obstacle scattering in Euclidean spaces, the poles of meromorphic con-
tinuation of the resolvent of the Laplacian on the exterior region are called the resonances
or scattering poles. Each resonance corresponds to a resonant wave. The real part of a
resonance corresponds to the frequency of the wave, while the imaginary part corresponds to
the decay rate of the wave. Consequently understanding the distribution of the resonances
is important in understanding the long time behavior of the solution to wave equations in
the exterior domain.

We study the distribution of resonances in the case of a strictly convex obstacle with
smooth boundary. In particular, under general boundary conditions, we prove the existence
of the cubic resonance free regions near the real axis. Moreover, if the obstacle is close to
a sphere, in the sense that it satisfies certain pinched curvature conditions, we prove that
the resonances close to the real axis are separated into cubic bands and in each band, the
counting function of resonances satisfies a Weyl law. We also generalize these results to
totally convex obstacles in more general asymptotic Euclidean metrics.
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Chapter 1

Introduction

1.1 Statement of results

In this thesis, we study the distribution of resonances for convex strictly obstacles O in the
Euclidean space Rn or more generally, in a Riemmanian manifold X which is diffeomorphic
to Rn and equipped with an analytic, non-trapping, asymptotically Euclidean metric g.
We also consider general boundary conditions including the Dirichlet boundary condition
u|∂O = 0, the Neumann boundary condition ∂νu|∂O = 0 and the Robin boundary condition
∂νu+ ηu|∂O = 0, where η ∈ C∞(∂O).

1.1.1 Notations

Let Q be the second fundamental form of ∂O and S∂O be the sphere bundle of ∂O. We
suppose that ∂O is strictly convex, in the sense that minS∂OQ > 0. We shall write

κ = 2−1/3 cos(π/6) min
S∂O

Q2/3, K = 2−1/3 cos(π/6) max
S∂O

Q2/3.

Let Ai be the Airy function,

0 < ζ1 < ζ2 < · · · < ζj < ζj+1 < · · ·

be the negative of the zeroes of Ai and

0 < ζ ′1 < ζ ′2 < · · · < ζ ′j < ζ ′j+1 < · · ·

be the negatives of the zeroes of Ai′.
We shall write Res(P ) to be the set of resonances of the resonances of P = −∆ on

the exterior region Rn \ O. For λ ∈ Res(P ), we write mP (λ) to be the multiplicity of the
resonance λ.
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1.1.2 Euclidean case: resonance-free region

There is a cubic resonance-free region near the real axis. More precisely, there exists a
constant C > 0 such that there are no resonances in the region

C 6 Reλ, 0 6 − Imλ 6 κζ ′1(Reλ)1/3 − C (1.1.1)

in the case of Neumann or Robin boundary condition and with ζ ′1 replaced by ζ1 in the case
of the Dirichlet boundary condition.

1.1.3 Euclidean case: band structure

If the obstacle is close to the sphere, then the resonances close to the real axis are separated
into cubic bands by cubic resonance-free strips. More precisely, in the case of Neumann or
Robin boundary condition, suppose we have the following pinched curvature condition

maxS∂OQ

minS∂OQ
<

(
ζ ′j0+1

ζ ′j0

)3/2

for some j0 > 1, then there exists a constant C > 0 such that for all 0 6 j 6 j0, there are
no resonances in the regions

C 6 Reλ, Kζ ′j(Reλ)1/3 + C 6 − Imλ 6 κζ ′j+1(Reλ)1/3 − C. (1.1.2)

Moreover, we have a Weyl law for the counting function for the number of the resonances in
each band,∑

{mP (λ) : λ ∈ Res(P ), |λ| 6 r, κζ ′j(Reλ)1/3 − C < − Imλ < Kζ ′j(Reλ)1/3 + C}

= (1 + o(1))(2π)1−n vol(Bn−1(0, 1)) vol(∂O)rn−1,
(1.1.3)

where Bn−1(0, 1) is the unit ball in Rn−1.
Again, the same statements hold in the case of Dirichlet boundary condition if we replace

ζ ′j by ζj.

1.1.4 Asymptotically Euclidean case

We also extend the results above the case of totally convex obstacles on analytic asymptoti-
cally Euclidean case. We need to make assumptions such that the dynamics of the geodesics
are similar to the Euclidean case. For the detailed assumption, we refer to section 7.1.1.

1.2 History and previous results

The study of the distribution of resonances for convex bodies dates back to the work of
Watson [39] on electromagnetic scattering by the earth almost a hundred years ago. In
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Figure 1.1: Resonance bands and resonance free regions.

that case, for the Dirichlet problems, the resonances are given in terms of the zeroes of
Hankel functions. The study of these zeroes has been conducted by Watson [39], Olver [24],
Nussenzverig [23] and others. See Stefanov [36] for a modern account and references. For
more general convex obstacles, the resonances have been studied by Babich-Grigoreva [2],
Bardos-Lebeau-Rauch [4], Filippov-Zayaev [41], Hargé-Lebeau [9], Lascar-Lascar [15] and
Sjöstrand-Zworski [27, 35, 28, 30].

1.2.1 Resonance free region

A resonance free region is a gap near the real axis in which there are no resonances. The
work of Lax-Phillips [16] and Vainberg [37] connects the presence of such regions to the
propagation of singularities for the wave equations and hence to the geometry of the obstacle.
For example, if the obstacle is smooth and non-trapping, in the sense that all the reflecting
rays escape to infinity, then there are no resonances in the region

Imλ > −M log |λ|+ CM

for any M > 0.
When the boundary is real analytic, and the obstacle is nontrapping, the work of Lebeau

[18] on propagation of Gevrey-3 singularities implies that the resonance free region is cubic,
see Popov [25] and Bardos-Lebeau-Rauch [4]. This result is sharp as was shown already in
[4] where the analysis of Gevrey-3 singularities of the wave trace gave a string of resonances
near a cubic curve, see also [28], [15].
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A remarkable discovery was made by Hargé-Lebeau [9] who showed that for smooth
strictly convex obstacles and the Dirichlet boundary condition, the resonance free region is
also cubic. In [35], Sjöstrand-Zworski gave a more direct proof of the cubic resonance free
region. The case of general Robin boundary condition is given in [13].

1.2.2 Number of resonances

A global optimal upper bound for the counting functions of resonances was proved in Melrose
[21] in odd dimension and Vodev [38] in even dimension∑

{mP (λ) : |λ| 6 r} 6 Crn + C.

Sjöstrand-Zworski [31] proved the same result in the general black-box setting. However,
an optimal lower bound for the counting functions is still unknown. Lax-Phillips [17] gave
a general lower bound for resonances on the imaginary axis. In fact, they proved that for
star-shaped obstacles with smooth boundary in odd dimensions,

cn(rI(O))n−1rn−1 6
∑
{mP (λ) : C 6 | Imλ| 6 r,Reλ = 0} 6 cn(rO(O))n−1rn−1.

Here rI and rO are the inscribed radius and superscribed radius of the obstacle, respectively.
Away from the imaginary axis, Sjöstrand-Zworski [34] proved a weaker lower bound∑

{mP (λ) : C 6 |λ| 6 r,Reλ 6= 0} > rn−1−ε/Cε, ε > 0

for the Dirichlet boundary condition when n = 4k + 1, and for the Neumann boundary
condition when n = 4k − 1, see also [33]. On the other hand, optimal lower bounds for
counting functions have been obtained for obstacles with trapping trajectories for the broken
geodesic flow. In general, the recent work of Christiansen [6] and [5] show that the order
of the counting function is n for generic star-shaped obstacles in odd dimensions and all
obstacles in even dimensions. For more results on the distribution of resonances in other
settings, we refer to the surveys for resonances [20] and [42] and the book [8].

1.3 Open problems

Although the study for the resonances for convex obstacles has a long history, there are still
many open problems. Here we list a few of them that are related to the current research.

1.3.1 Sharp constants

The constant S = κζ ′1 (or κζ1 in the Dirichlet case) in (1.1.1) is optimal if the obstacle O is
a ball. This can be seen from Weyl’s law on counting function in the band (1.1.3). However,
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in general, a better constant S is given in [4] and [28] for analytic obstacles under Dirichlet
boundary condition and in [15] for Gevrey-s (s < 3) obstacles:

S = 2−1/3 cos(π/6)ζ1 lim
T→∞

1

T

∫ T

0

Q(γ̇(t))2/3dt

where γ = γ(t) varies in the set of geodesics on the boundary ∂O with unit speed. This
reflects the heuristic picture of the formation of resonances by waves creeping along the
geodesics on the boundary and losing energy at a rate relating to the curvature. It is also
shown in [4] that this constant is optimal under certain assumptions on the geodesics on the
boundary. The optimal constant S in other cases is still unknown.

1.3.2 Sharp error terms

The error term in Weyl’s law (1.1.3) is only a very weak one and very likely not optimal in
general. For the ball, the error term is O(rn−2). The general sharp error terms are unknown.
However, it seems the best one could get from our treatment for the problem is O(rn−5/3).

1.3.3 Other problems

As discussed previously, the general optimal lower bounds of size rn on the counting number
of resonances are still unknown. Another difficult problem is to study whether there is a
Weyl’s law for the resonances on the imaginary axis in odd dimensions. In Lax-Phillips [17],
the proof of upper bound and lower bound is based on comparison principles. It is unclear
what kind of geometric properties of the obstacles govern the behavior of pure imaginary
resonances and give such a Weyl’s law.

1.4 Outline

In chapter 2, we first review the definition of scattering resonances in the general black box
setting and other equivalent characterizations of resonances in the special case of obstacle
scattering in Euclidean spaces. Then we review some basic facts about Airy functions Ai
and Airy differential operators D2

t + t which are crucial in our analysis. Finally we study
the distribution of resonances when the obstacle is a sphere using the method of separation
of variables, where we mostly follow [36].

In chapter 3, we review necessary background from semiclassical microlocal analysis,
including two important tools: the Fourier-Bros-Iagolnitzer(FBI) transform and the second
microlocalization with respect to a hypersurface.

In chapter 4, we review the method of complex scaling which originates from the work of
[1], [3] on continuous spectrum of Schrödinger operator. We follow the framework developed
by Sjöstrand and Zworski [31], [27], [35]. This method characterizes the resonances as
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eigenvalues of a non-selfadjoint operator and thus allows us to apply microlocal techniques
for partial differential operators.

In chapter 5, we prove the presence of the cubic resonance-free region in the Euclidean
case. The strategy is similar to the proof of Dirichlet case given by [35]. Near the obsta-
cle, we use the tool of FBI transform on a smooth manifold developed in [40] and reduce
the study the lower bound of an Airy differential operator. However, to deal with general
Robin boundary conditions, we have to start with such an Airy differential operator with
no boundary conditions, thus non-selfadjoint. The argument is based on viewing this as a
perturbation of the Neumann boundary conditions and the lower bounds involve Neumann
boundary terms. Away from the obstacle, the scaled operator is elliptic and thus a better
lower bound is available. Combining these lower bounds we get a global lower bounds on
the complex scaled operator which implies the cubic resonance free region. This chapter is
based on [13].

In chapter 6, we prove the band structure under pinched curvature conditions. Our
approach is based on a modification of the work [30] in which a Grushin problem is built to
further reduce the problem to an operator on the boundary of the obstacle, often referred
as the effective Hamiltonian operator, whose symbol is in certain exotic classes arise from
second microlocalization. The key observation is that in the semiclassical setting, the Robin
boundary operator is a perturbation of the Neumann boundary operator. We build the
complex scaled differential operator and the boundary operator together into the Grushin
problem and obtain the effective Hamiltonian. Then the symbol properties of this operator
will connect the geometry of the boundary to the distribution of the resonances. In particular,
we obtain the band structure and Weyl’s law for counting functions. This chapter is based
on [14].

Finally in chapter 7, we extend the results to the case of totally convex obstacles in
analytic asymptotically Euclidean manifolds. We first describe the dynamical assumptions
needed for the manifolds and the obstacles. Then we construct modified complex scaling
contours and associated escape functions which are used to construct microlocally weighted
spaces that the scaled operators act on. Next we prove a lower bound on the scaled operators
and deduce the cubic resonance free region. Finally we construct a global Grushin problem
as before and prove the result on resonance bands.
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Chapter 2

Preliminaries

In this chapter, we review some basic results in the field of obstacle scattering. First, we
give the definition and some equivalent characterization of scattering resonances. Then we
review some basic properties of the Airy function and the Airy differential operators. Finally
we study the special example of scattering by the unit sphere in the Euclidean space.

2.1 Resonances in obstacle scattering

In this section, we start with the general setup that O is a smooth obstacle in Rn, i.e. an
open bounded set with smooth boundary ∂O. The scattering problem is to understand
the Laplace operator P = −∆|Rn\O on the exterior domain realized with certain boundary
conditions on ∂O. We restrict ourselves to the Dirichlet boundary condition

D(P ) = {u ∈ H2(Rn \ O) : u|∂O = 0}

or the Neumann/Robin boundary condition

D(P ) = {u ∈ H2(Rn \ O) : ∂νu+ ηu|∂O = 0} (2.1.1)

where ν is the exterior normal derivatives on ∂O and η is a real-valued smooth function on
∂O. When η = 0, the boundary condition is the Neumann boundary condition. Most of our
analysis will be focused on the case of the Neumann/Robin boundary condition, while the
case of Dirichlet boundary condition could be easily dealed in the same way.

2.1.1 Definition of resonances

By the general spectral theory, P is a self-adjoint operator on L2(Rn \ O) with continuous
spectrum [0,∞), (possibly with a finite number of eigenvalues in the case of Robin boundary
condition). Therefore the resolvent

R(λ) = (P − λ2)−1 : L2(Rn \ O)→ D(P ) ⊂ H2(Rn \ O) (2.1.2)
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is holomorphic (or at least meromorphic with finite number of poles on the positive imaginary
axis) in the upper half plane {λ ∈ C : Im ζ > 0}. We are interested in the meromorphic
continuation of the resolvent (2.1.2) across the continuous spectrum, to an operator

R(λ) = RP (λ) : L2
comp(Rn \ O)→ Dloc ⊂ H2

loc(Rn \ O)

where L2
comp is the space of compact supported L2 functions, H2

loc is the space of locally H2

functions and Dloc is the space of locally H2 functions satisfies the given boundary conditions
at ∂O.

Equivalently, we can consider the Green function, G(λ, x, y) defined as the kernel of the
resolvent (2.1.2):

u(x) =

∫
Rn\O

G(λ, x, y)f(y)dy, f ∈ C∞comp(Rn \ O),

if u is the solution to the boundary value problem

(−∆− λ2)u(x) = f(x), x ∈ Rn \ O;

∂νu(x) + η(x)u(x) = 0, x ∈ ∂O.

The Green function has a meromorphic continuation across the real line {λ : Imλ = 0} to
the whole complex plane C when n is odd; and to the logarithmic plane Λ defined as the
logarithmic covering space of the punctured complex plane C\{0} when n is even. This fact
is a special case in the black box framework of more general scattering problem.

Definition 2.1.1. The poles of this meromorphic continuation of the Green function G(λ, x, y)
, or equivalently, the resolvent R(λ) are called the resonances or scattering poles of the op-
erator P . The multiplicity of a pole λ0 is defined as

m(λ0) = mP (λ0) = rank

∮
|λ−λ0|=ε

RP (λ)2λdλ, 0 < ε� 1. (2.1.3)

2.1.2 Black box scattering in Rn

Now we briefly review the black box frame work. Let H be a complex separable Hilbert
space with an orthogonal decomposition

H = HR0 ⊕ L2(Rn \B(0, R0))

where R0 > 0 is fixed and B(x,R) is the ball of radius R centered at x. The orthogonal
projections are denoted by

u 7→ 1B(0,R0)u = u|B(0,R0) ∈ HR0

u 7→ 1Rn\B(0,R0)u = u|Rn\B(0,R0) ∈ L2(Rn \B(0, R0)).
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For any bounded continuous function χ such that χ = c0 is a constant on B(0, R0), we can
define χu ∈ H for u ∈ H to be

χu := c0(u|B(0,R0)) + (χ|Rn\B(0,R0))(u|Rn\B(0,R0)).

To study the scattering problem, we also have a smaller space of compactly supported
elements in H

Hcomp = {u ∈ H : u|Rn\B(0,R0) ∈ L2
comp(Rn \B(0, R0))},

and a larger space of elements that locally in H:

Hloc = HR0 ⊕ L2
loc(Rn \B(0, R0)).

We consider an unbounded selfadjoint operator P : H → H with domain D ⊂ H and assume
that

1Rn\B(0,R0)D ⊂ H2(Rn \B(0, R0))

and if u ∈ H2(Rn \ B(0, R0)) with u = 0 near ∂B(0, R0), then u ∈ D. We also assume that
for u ∈ D,

1Rn\B(0,R0)(Pu) = −∆(u|Rn\B(0,R0)).

Later on, we shall also consider a long range perturbation in the semiclassical setting so that
the assumption above is replaced by

1Rn\B(0,R0)(Pu) = Q(u|Rn\B(0,R0)).

Here Q is a formally self-adjoint second order semiclassical differential operator

Qu =
∑
|α|62

aα(x;h)(hDx)
αu,

where the coefficients aα are bounded in C∞b when h varies and the principal terms aα(x;h) =
aα(x), |α| = 2 are independent of h. Moreover, we assume that there exists a constant C > 0
such that for all ξ ∈ Rn, ∑

|α|=2

aα(x)ξα >
1

C
|ξ|2,

and as |x| → ∞, ∑
|α|62

aα(x;h)ξα → ξ2

uniformly in h.
We equip D with the h-dependent Hilbert space norm by

‖u‖2
D = ‖u‖2

H + ‖P (h)u‖2
H
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and define the spaces
Dcomp = D ∩Hcomp

and
Dloc = {u ∈ Hloc : χ ∈ C∞, χ = 1 on B(0, R0)⇒ χu ∈ D}.

We make the final assumption that

1B(0,R0)(P (h) + i)−1 is compact.

Then we have (see [31])

Proposition 2.1.2. If Q = −∆, then the spectrum of P in (−∞, 0) is discrete and (P −
λ2)−1 : H → D is meromorphic for Imλ > 0 and has a meromorphic continuation to a
family of operator

R(λ) : Hcomp → Dloc

for λ ∈ C if n is odd; λ ∈ Λ if n is even.

Now just as before, we can define the resonances of P as the poles of the meromorphic
continuation for R(λ) and define the multiplicities of resonances as in (2.1.3).

In the case of long range perturbation, under certain analyticity assumptions that will
be specified in section 7.1.1, we have a meromorphic continuation of the resolvent to a sector
near the real axis, and the poles are called the resonances of P .

2.1.3 Other characterizations for resonances

Although the definition of the resonances is simple, it is hard to study the distribution of
resonances directly using the definition with meromorphic continuation. In practice, we often
use other characterizations for resonances. From both the theoretic and computational view,
the most useful one is given by the method of complex scaling which we shall review in the
next section. In this part, we give several other equivalent characterizations in the Euclidean
case. For details, we refer to [8].

Outgoing solutions and resonance states

Let R0(λ) = (−∆−λ2)−1 be the resolvent of the free Laplacian on the Euclidean space, first
defined for Imλ > 0, then analytically continued to λ ∈ C if n is odd; λ ∈ Λ if n is even.
Then a solution to

(P − λ2)u = f ∈ Hcomp

is called outgoing if there exists g ∈ L2
comp(Rn) such that u = R0(λ)g on Rn \ B(0, R) for

some large R > 0. Then λ is a resonance for P if and only if (P − λ2)u = 0 has a nonzero
outgoing solution. In this case, we call the outgoing solutions the resonance states.
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Resonance expansion for solutions to wave equations

Under certain assumptions, the solution to the wave equation

(∂2
t + P )u = 0, u|t=0 = f0, ∂tu|t=0 = f1

has an asymptotic expansion on compact sets

u(t, x) ∼
∑

λj∈Res(P )

mP (λj)−1∑
k=0

e−itλj tkwλj ,k(x). (2.1.4)

For example, if there are only finitely many resonances in {Imλ > −A} for some A > 0,
then we can truncate the sum in (2.1.4) to a finite sum over all resonances with imaginary
part greater than −A and get an error term which is of size e−tA in any reasonable local
norms.

Scattering matrices

For any λ ∈ R\{0} and any g ∈ C∞(Sn−1), we can find a unique f ∈ C∞(Sn−1) and v ∈ Dloc

such that (P − λ2)v = 0 and v satisfies the asymptotic formula

v(rθ) = r−
n−1

2 (eiλrf(θ) + e−iλrg(θ)) +O(r−
n+1

2 ).

The the scattering matrix S(λ) is defined to be unitary operator S(λ) : L2(Sn−1)→ L2(Sn−1)
which maps g(θ) to in−1f(−θ). Roughly speaking, the scattering matrix maps the income
pieces of the solution to the outgoing pieces of the solution. The resonances are exactly the
poles of the meromorphic continuation of S(λ).

Lax-Phillips semigroups

Lax-Phillips scattering theory [16] gives another characterization of resonances from the view
of wave equations in odd dimensions. Let U(t) and U0(t) be the unitary group of solution
operators to the perturbed and unperturbed wave equations, respectively. Let D+ and D− be
the spaces of initial values for which the solution to the unperturbed wave equations are out-
going and incoming, respectively. Let Π be the projection onto the orthogonal complement
to D+ ⊕D−, then the Lax-Phillips semigroup is defined as

Z(t) = ΠU(t)Π.

Then the infinitesimal generator of the Lax-Phillips semigroup has discrete spectrum and
the eigenvalues coincide with the resonances (up to multiplication by i). For the details of
Lax-Phillips semigroups for black-box operators, see [34].
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Boundary layer potentials and Dirichle-to-Neumann operators

In the case of obstacle scattering, one can also use boundary layer potentials and Dirichlet-to-
Neumann operators to describe the resonances. The formulations depends on the boundary
conditions. We omit the details and refer to [21].

2.2 Airy functions and Airy differential operators

In this section, we review some basic properties of the Airy function Ai and the Airy dif-
ferential operators A = D2

t + t. They play crucial roles in our analysis near the convex
obstacle.

In the real variables, the Airy function Ai is given by the integral formula

Ai(t) =
1

2π

∫
Imσ=δ>0

ei(σ
3/3)+iσtdσ, (2.2.1)

or equivalently,

Ai(t) =
1

π

∫ ∞
0

cos(
s3

3
+ st)ds.

In the complex variable, Ai is an entire function given by the same integral formula (2.2.1).
From the integral formula, it is clear that Ai satisfies the Airy differential equation (also
known as the Stokes equation)

Ay = −y′′ + ty = 0 (2.2.2)

in the real domain as well as the complex domain. Its initial data is given by

Ai(0) =
1

32/3Γ(2
3
)

= 0.355 . . . , Ai′(0) = − 1

31/3Γ(1
3
)

= −0.258 . . . .

2.2.1 Asymptotic properties of the Airy function

The Airy function and its derivative have different asymptotic behaviors in different direc-
tions in the complex plane. For example, in the positive real direction, they decay superex-
ponentially:

Ai(t) = (2
√
π)−1t−1/4e−

2
3
t3/2(1 +O(t−3/2)),

Ai′(t) = − (2
√
π)−1t1/4e−

2
3
t3/2(1 +O(t−3/2)),

(2.2.3)

as t→∞; while in the negative real direction, they oscillate faster and faster,

Ai(−t) = π−1/2t−1/4

(
sin(

2

3
t3/2 +

π

4
) +O(t−3/2)

)
,

Ai′(−t) = − π−1/2t1/4
(

cos(
2

3
t3/2 +

π

4
) +O(t−3/2)

)
,

(2.2.4)
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as t→∞. Moreover, the formulas (2.2.3) actually hold away from the negative real axis,

Ai(z) = (2
√
π)−1e−ζz−1/4(1 +O(|ζ|−1)),

Ai′(z) = − (2
√
π)−1e−ζz1/4(1 +O(|ζ|−1)),

(2.2.5)

uniformly for 0 6 | arg z| 6 π − δ, where δ > 0 is fixed. Here ζ = 2
3
z3/2 and we choose the

branch such that if z is real and positive, then so is ζ. Another asymptotic formula similar
to (2.2.4) holds uniformly in the sectors 0 6 | arg z− π| 6 2

3
π− δ for fixed δ > 0. In fact, we

can extend the formulas above to full asymptotic expansions.
All the zeroes of Ai and Ai′ are real, negative and simple. We write 0 < ζ1 < ζ2 < · · ·

and 0 < ζ ′1 < ζ ′2 < · · · to be the negatives of the zeroes of Ai and Ai′, respectively. They
appear alternatively in the sense that for any j, ζ ′j < ζj < ζ ′j+1. The first several zeroes are
given by

ζ1 = 2.338 . . . , ζ ′1 = 1.018 . . . ;

ζ2 = 4.807 . . . , ζ ′2 = 3.248 . . . ;

ζ3 = 5.520 . . . , ζ ′3 = 4.820 . . . .

By Sturm’s comparison theorem, the distances between the zeroes get closer as j →∞,
i.e.

ζj+1 − ζj ↘ 0 and ζ ′j+1 − ζ ′j ↘ 0, j →∞.

As a consequence, as j →∞, ζj+1/ζj ↘ 1, ζ ′j+1/ζ
′
j ↘ 1. The first several ratios are given by

ζ2/ζ1 = 1.748 . . . , ζ ′2/ζ
′
1 = 3.188 . . . ;

ζ3/ζ2 = 1.350 . . . , ζ ′3/ζ
′
2 = 1.483 . . . .

In fact, we have more precise asymptotic formula for the zeroes:

ζj = (
3

8
(4j − 1)π)2/3(1 +O(j−2))

ζ ′j = (
3

8
(4j − 3)π)2/3(1 +O(j−2)).

(2.2.6)

The other data at the zeroes also have the asymptotic formula

Ai′(−ζj) = (−1)j−1π−1/2(
3

8
(4j − 1)π)1/6(1 +O(j−2))

Ai(−ζ ′j) = (−1)j−1π−1/2(
3

8
(4j − 3)π)−1/6(1 +O(j−2)).

2.2.2 Airy differential operators

Now we turn to the Airy differential operator A = D2
t +t, in particular, we only consider A on

the positive half-line (0,∞). With the natural domain D(A) = C∞0 [0,∞) ⊂ L2 = L2(0,∞),
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it is clearly a symmetric positive operator. It has deficiency indices (1, 1) and thus by von
Neumann’s theory of self-adjoint extensions, it has a one-parameter family of self-adjoint
extensions. Each self-adjoint extension can be realized by fixing a boundary condition at
0. For our purpose, we only consider two special cases: the Dirichlet boundary condition
u(0) = 0 and the Neumann boundary condition u′(0) = 0. We shall write A0 and A1 to be
the Dirichlet and Neumann realization of the Airy operator A, respectively. Their domain
are given by

D(A0) = {u ∈ L2 : D2
t u, tu ∈ L2, u(0) = 0},

D(A1) = {u ∈ L2 : D2
t u, tu ∈ L2, u′(0) = 0}.

Both A0 and A1 has discrete spectrum and all the eigenfunctions are given by translations
of the Airy function

(D2
t + t) Ai(t− ζj) = ζj Ai(t− ζj),

(D2
t + t) Ai(t− ζ ′j) = ζ ′j Ai(t− ζ ′j).

In particular, by the spectral theorem, for any u ∈ C∞0 [0,∞), if u(0) = 0, then

〈(D2
t + t)u, u〉 > ζ1‖u‖2; (2.2.7)

if Dtu(0) = 0, then
〈(D2

t + t)u, u〉 > ζ ′1‖u‖2. (2.2.8)

We also need the normalized eigenfunctions

ej(·) = c−1
j Ai(· − ζj), cj = ‖Ai ‖L2(−ζj ,∞);

e′j(·) = c′−1
j Ai(· − ζ ′j), c′j = ‖Ai′ ‖L2(−ζ′j ,∞).

To compute the norms, we notice that for any z 6= w, integration by parts gives

z〈Ai(t− z),Ai(t− w)〉L2

= 〈(D2
t + t) Ai(t− z),Ai(t− w)〉L2

= Ai′(−z)Ai(−w)− Ai(−z)Ai′(−w) + 〈Ai(t− z), (D2
t + t) Ai(t− w)〉L2

= Ai′(−z)Ai(−w)− Ai(−z)Ai′(−w) + w̄〈Ai(t− z),Ai(t− w)〉L2 .

Therefore

〈Ai(t− z),Ai(t− w)〉L2 =
Ai′(−z)Ai(−w)− Ai(−z)Ai′(−w)

z − w̄
.

Take z = ζj, we have

〈Ai(t− ζj),Ai(t− w)〉L2 =
Ai′(−ζj)Ai(−w)

ζj − w̄
.
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Let w → ζj, using Ai(−ζj) = 0, we have

c2
j = ‖Ai ‖2

L2(−ζj ,∞) = ‖Ai(· − ζj)‖2
L2 = |Ai′(−ζj)|2.

Similarly, if we first take z = ζ ′j, then let w → ζ ′j, and use Ai′(−ζ ′j) = 0 as well as the Airy
equation (2.2.2), we obtain

c′2j = ‖Ai ‖2
L2(−ζ′j ,∞) = ‖Ai(· − ζ ′j)‖2

L2 = −Ai(−ζ ′j) Ai′′(−ζ ′j) = ζ ′j|Ai(−ζ ′j)|2.

Finally, we can obtain the other initial data for the normalized eigenfunctions

∂tej(0) = |Ai′(−ζj)|−1 Ai′(−ζj) = (−1)j−1;

e′j(0) = ζ
′−1/2
j |Ai(−ζ ′j)|−1 Ai(−ζ ′j) = (−1)j−1ζ

′−1/2
j .

(2.2.9)

2.3 Scattering by a sphere

In this section, we consider the special case of scattering by the unit sphere, i.e. the obstacle
O = B(0, 1) is the unit ball in Rn. For simplicity, we assume that n is odd, so that the
resonances are in the complex plane C.

Our main tool will be the method of separation of variables, and to apply such method,
we restrict ourselves to either Dirichlet boundary condition u|∂O = 0 or Neumann/Robin
boundary condition ∂νu+ ηu|∂O = 0 with η a real constant.

In the polar coordinates x 7→ (r, ω) = (|x|, x/|x|) ∈ R+ × Sn−1, where Sn−1 is the unit
sphere in Rn, the Laplace operator has the following form

∆ =
d2

dr2
+
n− 1

r

d

dr
+

1

r2
∆Sn−1

where ∆Sn−1 is the Laplacian on the unit sphere.
The eigenfunctions of ∆Sn−1 are called the spherical harmonic functions. We shall choose

an orthonormal basis {Y m
l : l = 0, 1, . . . ;m = 1, . . . ,m(l)} of L2(Sn−1) consisting of spherical

harmonics
−∆Sn−1Y m

l (ω) = l(l + n− 2)Y m
l (ω).

Here the multiplicity of the eigenvalue µl = l(l + n− 2) is given by

m(l) =
2l + n− 2

n− 2

(
l + n− 3

n− 3

)
.

If we write the solution to the Helmholtz equation (−∆− λ2)u = 0 in the form

u =
∑
l,m

gml (r)Y m
l (ω),
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then g = gml solves the equation

r2d
2g

dr2
+ (n− 1)r

dg

dr
+ [λ2r2 − l(l + n− 2)]g = 0.

Write g(r) = (λr)1−n
2H(λr), then H solves the Bessel equation

z2H ′′(z) + zH ′(z) + (z2 − ν2)H(z) = 0, ν = l +
n

2
− 1 (2.3.1)

For u to be outgoing, i.e. the Sommerfeld radiation condition

lim
r→∞

r(n−1)/2(∂r − iλ)u = 0

holds, H is a multiple of the Hankel function H
(1)
ν (z), also known as the Bessel function of

the third kind, which is the unique solution to (2.3.1) satisfies the asymptotic properties

H(1)
ν (z) ∼

√
2

πz
ei(z−νπ/2−π/4),

as z → ∞ in the sector −2π + δ 6 arg z 6 π − δ where δ > 0 is a fixed small constant.
Therefore the corresponding outgoing solution is

u(x) =
∑
l,m

clm(λr)1−n/2H(1)
ν (λr)Y m

l (ω).

An explicit definition of the Hankel function H
(1)
ν (z) is given by

H(1)
ν (z) = Jν(z) + iYν(z),

where Jν(z) is the Bessel function of the first kind given by

Jν(z) = (
z

2
)ν
∞∑
k=0

(−1)k
(z2/4)k

k!Γ(ν + k + 1)
,

and Yν(z) is the Weber function, also known as the Bessel function of the second kind,

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

An integral formula is valid when −π/2 < arg z < π,

H(1)
ν (z) =

√
2

πz

ei(z−νπ/2−π/4)

Γ(ν + 1
2
)

∫ ∞
0

e−ssν−1/2
(

1− s

2iz

)ν−1/2

ds.
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We introduce the following variables: ξ = 2
3
w3/2,

ρ(z) =
2

3
ζ3/2 = log

1 +
√

1− z2

z
−
√

1− z2

for | arg z| < π and if z is real then ζ is real. Then the Hankel function H
(1)
ν has the following

asymptotic expansions

H(1)
ν (νz) ∼ 2e−πi/3

(
4ζ

1− z2

) 1
4
[

Ai(e2πi/3ν
2
3 ζ)

∞∑
k=0

Ak(ζ)

ν2k+ 1
3

+ e2πi/3 Ai′(e2πi/3ν
2
3 ζ)

∞∑
k=0

Bk(ζ)

ν2k+ 5
3

] (2.3.2)

and

H(1)′
ν (νz) ∼ 4e−2πi/3

z

(
1− z2

4ζ

) 1
4
[
e−2πi/3 Ai(e2πi/3ν

2
3 ζ)

∞∑
k=0

Ck(ζ)

ν2k+ 4
3

+ Ai′(e2πi/3ν
2
3 ζ)

∞∑
k=0

Dk(ζ)

ν2k+ 2
3

]
uniformly in | arg z| 6 π − δ, for any fixed δ > 0. All the coefficients Ak, Bk, Ck and Dk are
real smooth functions of ζ ∈ R.

First, we consider the Dirichlet boundary condition u|Sn−1 = 0, which implies that for

some l,m, H
(1)
ν (λ) = 0. Therefore the resonances are given by the zeroes of the Hankel

function H
(1)
ν . Recall that −ζk is the k-th zero of Ai, using the first term in the asymptotic

expansion (2.3.2), approximate resonances can be given by

λ̃
(0)
νk = νζ−1(eπi/3ν−2/3ζk) = νρ−1

(
i

ν

(
2

3
ζ

3/2
k

))
.

For Neumann/Robin boundary condition ∂u
∂ν

+ ηu|Sn−1 = 0, the resonances are given by
the zeroes of

gη(z) = zH(1)′
ν (z) + (1− n

2
+ η)H(1)

ν (z)

Similarly, we can use the zeroes of Ai′ to give approximate resonances

λ̃
(1)
νk = νζ−1(eπi/3ν−2/3ζ

′3/2
k ) = νρ−1

(
i

ν

(
2

3
ζ
′3/2
k

))
.
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Figure 2.1: The Resonances for S2 with Dirichlet boundary condition, from Stefanov [36].
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Chapter 3

Semiclassical microlocal analysis

In this chapter, we review some basic results from semiclassical microlocal analysis. The
standard references are [7],[43] and [19].

3.1 Symbol classes and quantization

3.1.1 Semiclassical pseudodifferential operators on R2n

Let m = m(x, ξ) ∈ C∞(R2n) be an order function in the sense that

|∂αm| 6 Cαm, ∀α ∈ N2n.

The symbol class S(m) is the collections of all smooth functions a = a(x, ξ;h) such that

|∂αa| 6 Cαm, ∀α ∈ N2n.

We also consider the symbol class Sm,kδ (m, k ∈ Z, 0 6 δ < 1/2) of all smooth functions
a = a(x, ξ, h) such that

|∂αx∂
β
ξ a(x, ξ;h)| 6 Cαβh

−m−δ(|α|+|β|)〈ξ〉k−(1−δ)|β|+δ|α|, ∀α, β ∈ Nn.

The semiclassical principal symbol of a ∈ Sm,kδ is the equivalence class of a in Sm,kδ /Sm−1+δ,k−1
δ .

We also write
S−∞,−∞ =

⋂
m,k

Sm,kδ .

The Weyl quantization of a symbol a ∈ S(m) or Sm,kδ to be the operator Opwh (a) =

aw(x, hD) ∈ Ψ(m) or Ψm,k
δ defined as

(Opwh (a)u)(x) =
1

(2πh)n

∫∫
ei(x−y)·ξ/ha(

x+ y

2
, ξ)u(y)dydξ. (3.1.1)
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Let Hs
h(Rn) ⊂ S ′(Rn) be the semiclassical Sobolev space of order s with the norm

‖u‖Hs
h(Rn) = ‖〈hD〉su‖L2(Rn), 〈hD〉 = (1 + (hD)2)

1
2 .

If a ∈ Sm,kδ , then hk Opwh (a) is uniformly bounded Hs
h(Rn)→ Hs−m

h (Rn) for any s.

Moreover, for any A ∈ Ψm,k
δ , B ∈ Ψm′,k′

δ , the composition AB ∈ Ψm+m′,k+k′

δ and the

commutator [A,B] ∈ Ψm+m′−1,k+k′−1
δ . If a = σ(A) and b = σ(B) are the principal symbol of

A,B, respectively, then σ(AB) = ab and σ([A,B]) = ih−1{a, b} where {·, ·} is the Poisson
bracket.

For A = Oph(a) ∈ Sm,kδ we say that (x0, ξ0) ∈ R2n is not in the semiclassical wave front
set WFh(A) if |∂αa| = O(h∞) near (x0, ξ0) for any α. We have if WFh(A) = ∅, then for any
N , ‖A‖H−Nh →HN

h
= O(h∞).

We say that a ∈ Sm,kδ (Rn) is elliptic on U ⊂ R2n if for (x, ξ) ∈ U ,

|a(x, ξ)| > C−1h−k〈ξ〉m

and A ∈ Ψm,k
δ is elliptic if its principal symbol a = σ(A) is elliptic. If A is elliptic on U and

WFh(B) ⊂ U , then
‖Bu‖Hs

h
6 Chk‖ABu‖Hs+m

h
.

Finally we recall the sharp G̊arding’s inequality which states that if A =∈ Ψ0,0
0 (Rn) has

principal symbol a > 0 on U ⊂ R2n, then for any B ∈ Ψ0,0
0 with WFh(B) ⊂ U , then

〈ABu,Bu〉L2(Rn) > −Ch‖Bu‖2
L2(R2n).

3.1.2 Semiclassical pseudodifferential operators on a compact
manifold

Let X be a compact smooth manifold, we can choose a finite cover X1, . . . , Xp of X where
X1, . . . , Xp are coordinate charts with local coordinates x1, . . . , xn. Then there exists a
partition of unity χj ∈ C∞0 (Xj),

∑p
j=1 χj = 1. We define the semiclassical Sobolev space

Hs
h(X) to be the space of all u ∈ D′(X) such that

‖u‖2
Hs
h(X) =

p∑
j=1

‖χj〈hD〉sχju‖2
L2(Xj)

<∞.

For different choice of the coordinate charts and partition of unity, the norms are equiv-
alent uniformly for h > 0. Also, another equivalent norm can be given by

‖u‖Hs
h(X) = ‖(I − h2∆)

s
2u‖L2(X),

where ∆ is the Laplacian operator with respect to some Riemannian metric. From this norm,
we see that Hs

h(X) is a Hilbert space with inner product

〈u, v〉Hs
h(X) = 〈(I − h2∆)

s
2u, (I − h2∆)

s
2v〉L2(X).
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We can also generalize the symbol class Sm,kδ to a compact manifold X:

Sm,kδ (T ∗X) = {a ∈ C∞(T ∗X × (0, 1]) : |∂αx∂
β
ξ a(x, ξ;h)| 6 Cαβh

−m−δ(|α|+|β|)〈ξ〉k−(1−δ)|β|+δ|α|}.

For any a ∈ Sm,kδ (T ∗X), we can quantize a to an operator Oph(a) : C∞(X) → C∞(X) by
using a partition of unity and (3.1.1) in local coordinate patches.

A linear operator A : C∞(X)→ C∞(X) is said to be in Ψm,k
δ (X) if

(i) for each coordinate patch (U, γ) where γ : U → V ⊂ R2n is a diffeomorphism, there
exists a symbol a ∈ Sm,kδ such that

ϕA(ψu) = ϕγ∗Oph(a)[(γ−1)∗(ψu)],

for any ϕ, ψ ∈ C∞c (Uγ) and u ∈ C∞(X);
(ii) for any χ1, χ2 ∈ C∞(X) with disjoint support and any N ,

‖χ1Aχ2‖H−N (X)→HN (X) = O(h∞).

We have a quantization map

Oph : Sm,kδ (T ∗X)→ Ψm,k
δ (X)

and the principal symbol map

σ : Ψm,k
δ (X)→ Sm,kδ (T ∗X)/Sm−1+δ,k−1

δ (T ∗X).

The semiclassical wavefront set WFh(A) of A ∈ Ψm,k
δ (X) is defined in local coordinates

as in the case of Rn, since it is invariant under change of variables. All the results for
semiclassical wavefront set extend to the case of a compact manifold.

Finally, we remark that the notion of ellipticity and the sharp G̊arding inequality can be
extended to the case of a compact manifold without difficulty.

3.1.3 Trace operator on the boundary

Now we go back to the setting that O is a convex obstacle in Rn with smooth boundary
∂O. We consider the trace operator Tr : C∞(Rn \ O) → C∞(∂O), u 7→ u|∂O. In the
normal geodesic coordinates given in the previous section, it is equivalent to the operator
Tr : C∞(X × [0,∞))→ C∞(X),Tru(y) = u(y, 0).

Proposition 3.1.1. For u ∈ C∞0 (X × [0,∞)), we have ‖Tru‖2
H1
h(X)

6 Ch−1‖u‖2
H2
h(X×[0,∞))

.

Proof. Since u ∈ C∞0 (X × [0,∞)), we know there exists L > 0 such that u is supported in
X × [0, L]. Therefore

‖Tru‖2
H1
h(X) = −h−1

∫ ∞
0

hDt‖u(·, t)‖2
H1
h(X)dt 6 2h−1

∫ ∞
0

|〈hDtu(·, t), u(·, t)〉H1
h(X)|dt

6 h−1

∫ ∞
0

[‖hDtu(·, t)‖2
H1
h(X) + ‖u(·, t)‖2

H1
h(X)]dt 6 Ch−1‖u‖2

H2
h(X×[0,∞)).
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Remark 3.1.2. A more careful analysis will give Tr = Os(h
− 1

2 ) : Hs
h(Ω)→ H

s− 1
2

h (∂Ω) when
s > 1

2
, Ω ⊂⊂ Rn an open set with smooth boundary. We do not need this strong version in

our argument.

3.2 Second microlocalization with respect to a

hypersurface

In this part, we review some facts about second microlocalization with respect to a hyper-
surface. For details, see [30].

We always assume that X is a n-dimensional compact smooth manifold and Σ ⊂ T ∗X
is a smooth compact hypersurface. In our application, X = ∂O will be the boundary of the
obstacle and Σ = Σw = {(x′, ξ′) ∈ T ∗∂O : R(x′, ξ′) = w} will be the glancing hypersurface.
Here R(x′, ξ′) = |ξ′|x′ is the first fundamental form and w is in a compact subset of R.

We shall also fix a distance function d(Σ, ·) on T ∗X as the absolute value of a defining
function of Σ. In particular, d(Σ, ·) vanishes only on Σ and behaves like 〈ξ〉 near the infinity
in T ∗X.

For any 0 6 δ < 1 we define a class of symbols associated to Σ: a ∈ Sm,k1,k2

Σ,δ (T ∗X) if

near Σ : V1 · · ·Vl1W1 · · ·Wl2a = O(h−m−δl1〈h−δd(Σ, ·)〉k1),

where V1, . . . , Vl1 are vector fields tangent to Σ,

and W1, . . . ,Wl2 are any vector fields;

away from Σ : ∂αx∂
β
ξ a(x, ξ;h) = O(h−m−δk1〈ξ〉k2−|β|).

(3.2.1)

To define the corresponding class of operators Ψm,k1,k2

Σ,δ , we start locally by assuming Σ
is of the normal form Σ0 = {ξ1 = 0}. Then near ξ1 = 0, we can write a = a(x, ξ, λ;h) with
λ = h−δξ1. Then (3.2.1) becomes

∂αx∂
β
ξ ∂

l
λa(x, ξ, λ, h) = O(h−m)〈λ〉k−l,

which we shall write a = Õ(h−m〈λ〉k). Then we can define

Õph(a)u(x) =
1

(2πh)n

∫
ei(x−y)·ξ/ha(x, ξ, h−δξ1, h)u(y)dydξ.

Then as in the standard semiclassical calculus, we have the composition formula: for a =
Õ(h−m1〈λ〉k1) and b = Õ(h−m2〈λ〉k2),

Õph(a) ◦ Õph(b) = Õph(a#hb) mod Ψ−∞,−∞(X),

where

a#hb(x, ξ, λ;h) =
∑
α∈Nn

1

α!
(h∂ξ′)

α′(h∂ξ1 + h1−δ∂λ)
α1aDα

x b ∈ Õ(h−m1−m2〈λ〉k1+k2).
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We also have a version of Beals’s characterization of pseudodifferential operators: Let A =
Ah : S(Rn)→ S ′(Rn) and put x′ = (x2, . . . , xn). Then A = Õph(a) for some a = Õ(h−m〈λ〉k)
if and only if for all N, p, q > 0 and every sequence lj(x

′, ξ′), j = 1, . . . , N of linear forms on
R2(n−1) there exists C > 0 such that

‖ adl1(x′,hDx′ )
◦ · · · ◦ adlN (x′,hDx′ )

◦(adh1−δDx1
)p ◦ (adx1)qAu‖(q−min(k,0))

6 ChN+(1−δ)(p+q)‖u‖(max(k,0)),

where ‖u‖(p) = ‖u‖L2 + ‖(h1−δDx1)pu‖L2 .

The global definition of the class Ψm,k1,k2

Σ,δ (X) relies on the invariance of Õph(Õ(〈λ〉m))
under conjugation by h-Fourier integral operators whose associated canonical relation fixes
{ξ1 = 0}. See [30, Section 4.2]. Now we define A ∈ Ψm,k1,k2

Σ,δ (X) if and only if
(1) for any m0 ∈ Σ and any h-Fourier integral operator U : C∞(X) → C∞(Rn) elliptic
near ((0, 0),m0) whose corresponding canonical transformation κ satisfies κ(m0) = (0, 0),

κ(Σ∩V ) ⊂ {ξ1 = 0} for some neighborhood V of m0, we have UAU−1 = Õph(Õ(h−m〈λ〉k1),
microlocally near (0, 0);
(2) for any m0 outside any fixed neighborhood of Σ, A ∈ Ψm+δk1,k2(X) microlocally near m0

in both classical and semiclassical sense.
In particular, we have a quantization map

OpΣ,h : Sm,k1,k2

Σ,δ (T ∗X)→ Ψm,k1,k2

Σ,δ (X),

and the principal symbol map

σΣ,h : Ψm,k1,k2

Σ,δ (X)→ Sm,k1,k2

Σ,δ (T ∗X)/Sm−1+δ,k1−1,k2−1
Σ,δ (T ∗X).

For a ∈ Sm,k1,−∞
Σ,δ we introduce a notion of essential support. We say for an h-dependent

family of sets Vh ⊂ T ∗X,
esssupp a ∩ Vh = ∅

if and only if there exists χ > 0, χ ∈ S0,0,−∞(T ∗X), such that

χ|Vh > 1, χa ∈ S−∞,−∞(T ∗X).

As in the standard case, if a, b ∈ Sm,k,−∞Σ,δ (T ∗X) satisfies OpΣ,h(a) = OpΣ,h(b), then

esssupp a = esssupp b. Therefore we can define for A ∈ Ψm,k,−∞
Σ,δ (X) the semiclassical wave

front set as WFh(A) = esssupp a if A = OpΣ,h(a).
Now we generalize the symbol class to an arbitrary order function m and vector valued op-

erators from a Banach space B to another Banach spaceH. We assume that m = m(x, ξ, λ;h)
is an order function with respect to the metric g = dx2 + dξ2/〈ξ〉+ dλ2/〈λ〉 in the sense that

|g(x,ξ,λ)(y, η, µ)| 6 c⇒ C−1m(x, ξ, λ) 6 m(x+ y, ξ + η, λ+ µ) 6 Cm(x, ξ, λ).

(See [12] for instance.) We also assume that B andH are equipped with (x, ξ, λ;h)-dependent
norms ‖ · ‖mB , ‖ · ‖mH which are equivalent to some fixed norm (may not uniformly in h),
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respectively. In addition, we assume that the norms are continuous with respect to the
metric g, uniformly with respect to h. Then we say that a ∈ SΣ,δ(T

∗X,m,L(B,H)) if

‖a(x, ξ;h)u‖mH(x,ξ,λ;h) 6 Cm(x, ξ, λ;h)‖u‖mB(x,ξ,λ;h), λ = h−δd(Σ, ·), for all u ∈ B,

and if this statement is stable under applications of vector fields in the sense of (3.2.1),
namely,

near Σ : V1 · · ·Vl1W1 · · ·Wl2a = OL(B,H)(mh
−δl1),

where V1, . . . , Vl1 are vector fields tangent to Σ,

and W1, . . . ,Wl2 are any vector fields;

away from Σ : ∂αx∂
β
ξ a(x, ξ;h) = OL(B,H)(m〈ξ〉−|β|).

Then we can obtain a class of operators ΨΣ,δ(X;m,L(B,H)) and the corresponding principal
symbol map

σΣ,h : ΨΣ,δ(X;m,L(B,H))

→ SΣ,δ(T
∗X;m,L(B,H))/SΣ,δ(T

∗X;m〈h−δd(Σ, ·)〉−1,L(B,H)).

3.3 The Fourier-Bros-Iagolnitzer(FBI) transform

3.3.1 FBI transform on Rn

Let φ = φ(x, y) be a holomorphic quadratic form on Cn × Cn. Then we can find n × n
matrices A,B,D with complex entries such that AT = A, DT = D and

φ(x, y) =
1

2
〈Ax, x〉+ 〈Bx, y〉+

1

2
〈Dy, y〉.

Here 〈·, ·〉 is the complex bilinear product on Cn given by

〈x, y〉 =
n∑
j=1

xjyj.

We assume that

det
∂2φ

∂x∂y
= detB 6= 0

and

Im
∂2φ

∂y2
= ImD > 0.

We also let
Φ(x) = sup

y∈Rn
− Imφ(x, y).
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The supreme is attained at a unique point y = y(x) ∈ Rn. Now we define the Fourier-Bros-
Iagolnitzer transform associated to φ to be the operator T defined on S ′(Rn) by

Tu = Tφu(x;h) = cφh
−3n/4

∫
Rn
eiφ(x,y)/hu(y)dy,

where
cφ = 2−n/2π−3n/4(det Im ∂2

xxφ)−1/4| det ∂2
xzφ|.

The image Tu is an entire function and satisfies

|Tu(x;h)| 6 Ch−N〈x〉NeΦ(x)/h

for some N depends on u. Moreover, if u ∈ L∞,

|Tu| 6 Ch−n/4‖u‖L∞eΦ(x)/h;

if u ∈ S (Rn), then for every N , there exists a constant CN depends on u,

|Tu| 6 CNh
−n/4〈x〉−NeΦ(x)/h.

We can view T as a semiclassical Fourier integral operator, then the associated linear
canonical transformation is given by

κT : C2n 3 (y,−φ′y(x, y)) 7→ (x, φ′x(x, y)) ∈ C2n.

Then we have

κT (R2n) = ΛΦ := {(x, 2

i

∂Φ

∂x
(x));x ∈ Cn}.

We consider the complex symplectic form

σ =
n∑
j=1

dηj ∧ dyj

on C2n. A submanifold of C2n is called an IR-manifold if it is Lagrangian for Im σ and
symplectic for Reσ. An example of IR-manifold is R2n. Since κT is canonical for σ, we see
ΛΦ is also an IR-manifold. This means that Φ is strictly plurisubharmonic:

∂2Φ

∂x̄∂x
> 0.

To consider the mapping properties of T , we consider the following weighted space
L2

Φ(Cn) = L2(Cn, e−2Φ(x)/hL(dx)) with Hilbert norm

‖u‖2
L2

Φ
=

∫
Cn
|u|2e−2Φ(x)/hL(dx).
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We also consider the space of holomorphic functions in L2
Φ,

HΦ(Cn) = A(Cn) ∩ L2
Φ(Cn).

Then T is a unitary operator from L2(Rn)→ HΦ(Cn) with formal adjoint

T ∗v(y) = c̄ϕh
−3n/4

∫
Cn
e−iφ

∗(x,y)/hv(x)e−2Φ(x)/hL(dx)

where φ∗(x, y) = φ(x̄, ȳ) is holomorphic. So T ∗T = I and Π = TT ∗ is the orthogonal
projection from L2

Φ onto HΦ.
Now for the purpose of applying the method of complex scaling, we consider a slight

different contour and consider an FBI transform T : L2(Γ0) → HΦ0(Cn) where the contour
Γ0 is given by Imx = ε0 Rex where ε0 > 0 is a small fixed number:

Tu(x;h) = cφh
−3n/4

∫
Γ0

eiφ(x,y)/hu(x)dx.

Then the associated canonical transformation κT maps T ∗Γ0 ⊂ C2n given by

T ∗Γ0 = {(1 + iε0)x, (1− iε0)ξ) : (x, ξ) ∈ R2n}

to an IR-manifold

ΛΦ0 = {(x, 2

i

∂Φ0

∂x
(x)) : x ∈ Cn}.

Here
Φ0(x) = sup

y∈Γ0

− Imφ(x, y) = Φ(x) +O(ε0|x|2)

is again a strictly plurisubharmonic quadratic function. All the previous properties also hold
for this FBI transform.

Example 3.3.1. A standard example is given by

φ(x, y) =
i

2
(x− y)2,

then

Φ(x) =
1

2
(Imx)2

and we get the Bargmann transform

Tu(z;h) = 2−n/2(πh)3n/4

∫ n

R
e−(z−y)2/2hu(y)dy

We can compute the associated canonical transformation

κT (x, ξ) = (x− iξ, ξ)
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and thus it is easy to check that

κT (R2n) = ΛΦ = {(x,− Imx) : x ∈ Cn}.

We also have the FBI transform T : L2(Γ0)→ HΦ0(Cn) associated to the contour Γ0 and we
have

Φ0(x) = sup
y∈Γ0

− Imφ(x, y) =
1

2(1− ε20)
(ε0 Rex− Imx)2.

We can also check that

κT (T ∗Γ0) = ΛΦ0 = {(x, 1− iε0
1− ε20

(ε0 Rex− Imx)) : x ∈ Cn}.

If we identify z = x− iξ ∈ Cn with (x, ξ) ∈ T ∗Rn, then this FBI transform on L2(Rn) is
related to the classical form of FBI transform (see [19])

T̃hu = T̃ u(x, ξ;h) = 2−n/2(πh)−3n/4

∫
Rn
e−(x−y)2/2h+i(x−y)·ξ/hu(y)dy

by
T̃ u(x, ξ;h) = e−ξ

2/2hTu(z;h).

The classical FBI transform T̃h is an isometry from L2(Rn) into L2(R2n) with image

T̃h(L
2(Rn)) = L2(R2n) ∩ e−ξ2/2hA(Cn

x−iξ)

where A(Cn) is the space of entire functions in Cn. The adjoint T̃ ∗h : L2(R2n) → L2(Rn) is
given by

T̃ ∗hv(y) = 2−n/2(πh)−3n/4

∫
R2n

e−(x−y)2/2h−i(x−y)·ξ/hv(x, ξ)dxdξ.

3.3.2 Pseudodifferential operators with holomorphic symbols

Now we consider the actions of pseudodifferential operators. We shall only discuss the case
for FBI transform on Rn, the situation for Γ0 is exactly the same.

Let m be an order function, S(ΛΦ,m) be the space of all smooth functions a on ΛΦ such
that

∂αa = Oα(m), ∀α ∈ N2n.

Here we identify ΛΦ linearly with R2n. Then for u = O(〈x〉−∞)eΦ(x)/h, we put

Oph(a)u(x) =
1

(2πh)n

∫∫
Γ(x)

ei(x−y)·θ/ha(
x+ y

2
, θ)u(y)dydθ,

where the contour Γ(x) is given by

θ =
2

i

∂Φ

∂x
(
x+ y

2
).
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Let m̃ be a second order function on ΛΦ, and we view both m and m̃ to be functions on
Cn
x by the natural identification πx : ΛΦ 3 (x, ξ) 7→ x ∈ Cn. We consider the spaces

L2
Φ,m̃ = L2(Cn, m̃2e−2Φ/hL(dx), HΦ,m̃ = A(Cn) ∩ L2

Φ,m̃.

Then for a ∈ S(ΛΦ,m), Oph(a) extends to a bounded operator from HΦ,m̃ to HΦ,m̃/m with
norm uniformly bounded in h. Moreover, if b ∈ S(R2n,m ◦ κT ) be such that

a ◦ κT = b,

then
Oph(a) ◦ T = T ◦Oph(b).

Now we assume that a(x, ξ) is holomorphic in a neighborhood ΛΦ +W of Λ where W is
an open neighborhood of 0 ∈ Cn. Let a ∈ S(m) in ΛΦ + W , where m is an order function
first defined on ΛΦ, then extended to ΛΦ +W by m(x, ξ) = m(x, 2

i
∂Φ
∂x

(x)).
We can perturb the contour in the definition of pseudodifferential operators by

Oph(a)u(x) =
1

(2πh)n

∫∫
Γc(x)

ei(x−y)·θ/ha(
x+ y

2
, θ)u(y)dydθ,

where the contour Γc(x) is given by

Γc(x) : θ =
2

i

∂Φ

∂x
(
x+ y

2
, θ) + i

c

2
(x̄− ȳ),

so that for c small, Γc(x) ⊂ ΛΦ +W .
Consider Φ̃(x) = Φ(x) + f(x) where f ∈ C1,1(Cn) is supported in some fixed compact

set. Moreover, we assume
‖f‖C1,1 = ‖∇f‖Lip + sup

Cn
|f |

is small. We can define the Hilbert spaces HΦ̃,m̃ which coincides with HΦ,m̃ as spaces, with
equivalent norms for fixed h, but not uniformly as h→ 0. The associated Lipschitz manifold

ΛΦ̃ : ξ =
2

i

∂Φ̃

∂x
(x)

coincides with ΛΦ outside a compact set and is close to ΛΦ in the sense of Lipschitz graphs.
We can replace the contour in the definition again by

Γ̃c(x) : θ =
2

i

∂Φ̃

∂x
(
x+ y

2
) + ic

x̄− ȳ
〈x− y〉

.

Then Oph(a) is a bounded operator from HΦ̃,m̃ to HΦ̃,m̃/m with norm uniformly bounded in
h. Moreover, we can approximate such operators by multiplication operators
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Theorem 1. Let a ∈ S(m) be a holomorphic symbol as above and Φ̃ a small perturbation of
Φ, then for u ∈ HΦ̃,m̃,

Oph(a)u(x) = a(x, ξ(x))u(x) +
n∑
j=1

∂a

∂ξj
(x, ξ(x))(hDxj − ξj(x))u(x) +Ru(x),

where ξ(x) = 2
i
∂Φ̃
∂x

and R = O(h) : HΦ̃,m̃ → L2
Φ̃,m̃/m

.

As a corollary, we get results on scalar products

Proposition 3.3.2. Let a ∈ S(ma) and b ∈ S(mb) be holomorphic symbols as above, ψ(x)
locally Lipschitz on Cn such that for some order function mψ,

∂αψ(x) = O(mψ(x)), |α| 6 1.

(1) If m1 and m2 are order functions such that mψma 6 m1m2, then for u ∈ HΦ̃,m1
, v ∈

HΦ̃,m2
,

(ψOph(a)u, v)L2
Φ̃

=

∫
Cn
ψ(x)a(x, ξ(x))u(x)v(x)e−2Φ̃(x)/hL(dx) +O(h)‖u‖HΦ̃,m1

‖v‖HΦ̃,m2
.

(2) If m1 and m2 are order functions such that mψmamb 6 m1m2, then for u ∈ HΦ̃,m1
,

v ∈ HΦ̃,m2
,

(ψOph(a)u,Oph(b)v)L2
Φ̃

=

∫
Cn
ψ(x)a(x, ξ(x))u(x)b(x, ξ(x))v(x)e−2Φ̃(x)/hL(dx)

+O(h)‖u‖HΦ̃,m1
‖v‖HΦ̃,m2

.

(3) In particular, we have for u ∈ HΦ̃,ma
,

‖Oph(a)u‖2
HΦ̃

= ‖a(x, ξ(x))u(x)‖2
L2

Φ̃

+O(h)‖u‖2
HΦ̃,ma

.

3.3.3 FBI transform on a compact smooth manifold

In this section, we consider a form of FBI transform on a compact smooth manifold, which
is motivated by the classical form of FBI transform. We follow the presentation in [40].

Now let (X, g) be a compact Riemannian manifold. We write y to be a point on X, dy
to be the volume form on X; (x, ξ) a point on T ∗X (where x ∈ X, ξ ∈ T ∗xX) and dxdξ to be
the canonical volume form on T ∗X.

Let ∆ ⊂ T ∗X ×X be the diagonal set

∆ = {(x, ξ, y) ∈ T ∗X ×X : x = y}.
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An admissible phase function ϕ(x, ξ, y) is a smooth function on T ∗X × X satisfying the
following conditions:

(1) ϕ is an elliptic polyhomogeneous symbol of order one in ξ;

(2) Imϕ > 0;

(3) dyϕ|∆ = −ξdy;

(4) d2
y Imϕ|∆ ∼ 〈ξ〉;

(5) ϕ|∆ = 0.

Therefore near the diagonal ∆, ϕ = ξ · (x− y) + 〈Q(x, ξ, y)(x− y), (x− y)〉 where Q is a
symmetric matrix-valued symbol of degree 1 in ξ with ImQ|∆ ∼ 〈ξ〉I.

The symbol class hmSkphg(T
∗X×X) is defined to be the collection of all smooth functions

a = a(x, ξ, y;h) ∼ hm(ak(x, ξ, y) + hak−1(x, ξ, y) + · · · )

where aj(x, ξ, y) are polyhomogeneous symbols of degree j in ξ and the asymptotic expansion
means that

|a− hm(ak + · · ·+ hjak−j)| 6 Cjh
m+j+1|ξ|k−j−1, |ξ| > 1.

The symbol class hmSkphg(T
∗X) is defined similarly, without the y-components.

A symbol a ∈ hmSkphg is called elliptic if the principal part |ak| ∼ 〈ξ〉 uniformly with
respect to other variables. The quantization of a is defined as the operator

Op(a)u(y) =
1

(2πh)n

∫
eiξ exp−1

x (y)/ha(x, ξ, y;h)u(x)χ(y, x)dxdξ,

where exp is the exponential map with respect to g on X. We shall write hmΨk(X) to be
the algebra of all operators Op(a) +R, a ∈ hmSk, R = O(h∞) : C−∞(X)→ C∞(X).

Then following [40], an FBI transform on X is an operator Th : C∞(X) → C∞(T ∗X)
given by

Thu(x, ξ) =

∫
X

eiϕ(x,ξ,y)/ha(x, ξ, y;h)χ(x, ξ, y)u(y)dy. (3.3.1)

Here ϕ(x, ξ, y) is an admissible phase function; a(x, ξ, y;h) ∈ h−3n/4Sn/4 is an elliptic poly-
homogeneous symbol; χ(x, ξ, y) is a cut-off function to a small neighborhood of the diagonal
∆ = {(x, ξ, y) ∈ T ∗X ×X : x = y} such that Imϕ 6 −C−1d(x, y)2 on the support of χ.

The following properties of the FBI transform were proved in [40]:
(1) Th : L2(X)→ L2(T ∗X) is bounded for h < h0;
(2) We can choose a suitable phase ϕ and elliptic symbol a such that

‖Thu‖L2(T ∗X) = (1 +O(h∞))‖u‖L2(X), (3.3.2)

i.e. Th is an isometry modulo h∞.
From now on, we shall always use such kind of FBI transforms. Furthermore, we know

from [40]:



CHAPTER 3. SEMICLASSICAL MICROLOCAL ANALYSIS 31

Lemma 3.3.3. Let P = Op(p) ∈ hkΨm(X), then T ∗hpTh − P ∈ hk+1Ψm−1.

We can apply this to prove the following

Proposition 3.3.4. (1) For any u ∈ C∞(X),

‖〈ξ〉Thu‖L2(T ∗X) 6 C‖u‖H1
h(X). (3.3.3)

(2) If A(x, hDx) is a second-order differential operator on X, then for any u ∈ C∞(X),

‖A(x, ξ)Tu‖2
L2(T ∗X) = ‖A(x, hDx)u‖2

L2(X) +O(h)‖u‖2
H2
h
. (3.3.4)

Proof. (1)

‖〈ξ〉Thu‖2 = 〈〈ξ〉Thu, 〈ξ〉Thu〉 = 〈T ∗h 〈ξ〉2Thu, u〉
= 〈(I −∆)u, u〉+ 〈Ru, u〉 = ‖u‖H1

h(X) + 〈Ru, u〉,

where R ∈ hΨ1. So 〈Ru, u〉 = O(h)‖u‖2

H
1/2
h (X)

.

(2) Notice that by symbol calculus

(ĀA)(x, hD) = A(x, hD)∗A(x, hD) mod hΨ3

we have the following

‖A(x, ξ)Tu‖2
L2(T ∗X) = 〈A(x, ξ)Tu,A(x, ξ)Tu〉 = 〈T ∗|A(x, ξ)|2Tu, u〉

= 〈A(x, hD)∗A(x, hD)u, u〉+ 〈Ru, u〉 = ‖A(x, hD)u‖2 + 〈Ru, u〉,

where R ∈ hΨ3. So 〈Ru, u〉 = O(h)‖u‖2

H
3/2
h (X)

.

Remark 3.3.5. We also notice that all the discussion above work for functions with value
in a Hilbert space H . In our case, we shall choose X = ∂O and H = L2([0,∞)).
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Chapter 4

The method of complex scaling

In this section, we review the method of complex scaling to characterize the resonances in
scattering by convex obstacles following a series of works of Sjöstrand-Zworski [31, 27, 35].
The advantage of this method is that it gives a characterization of resonances as eigenvalues
of a non-selfadjoint differential operator to which we can apply the microlocal techniques for
partial differential equations.

4.1 Complex scaling in the black box setting

A smooth manifold Γ ⊂ Cn is called totally real if

TxΓ ∩ i(TxΓ) = 0, ∀x ∈ Γ

where i denotes the natural action on tangent vectors induced by the multiplication by the
imaginary unit. It is clear that if Γ is totally real, then dim Γ 6 n. A natural example
is given by Γ = Rn. Since totally real manifolds are mapped to totally real manifolds
under holomorphic diffeomorphisms, we can extend the notion of totally real manifolds to
submanifolds of complex manifolds.

Let Ω ⊂ Cn be open and Γ ⊂ Ω be a totally real smooth manifold of dimension n. For a
differential operator

P (x,Dx) =
∑
|α|6m

aα(x)Dα
x

with coefficients holomorphic in Ω, then we can define a differential operator PΓ : C∞(Γ)→
C∞(Γ) with smooth coefficients. We identify T ∗Γ with a submanifold of Cn × Cn via

T ∗Γ 3 (x, dφ(x)) 7→ (x, ∂xφ̃(x)) ∈ Γ× Cn,

where φ ∈ C∞(Γ;R) and φ̃ is an almost analytic extension of φ which can be defined since
Γ is totally real. Then the principal symbol pΓ of the differential operator PΓ is given by

pΓ = p|T ∗Γ.



CHAPTER 4. THE METHOD OF COMPLEX SCALING 33

The key result is the following deformation result which is standard and proved in [31].

Proposition 4.1.1. Let ω ⊂ Rn be an open set, f : [0, 1] × ω 3 (t, y) 7→ f(t, y) ∈ Cn be a
smooth proper map such that

(1) det(∂yf(t, y)) 6= 0 for all (t, y);
(2) f(t, ·) is injective;
(3) f(t, y) = f(0, y) for y ∈ ω \K where K is a compact subset of ω.
We write Γt = f({t}×ω). Let P (x,Dx) be a partial differential operator with holomorphic

coefficients defined in a neighborhood of f([0, 1]×ω) such that P |Γt is elliptic for 0 6 t 6 1. If
u0 ∈ D ′(Γ0) and PΓ0u0 extends to a holomorphic function in a neighborhood of f([0, 1]×ω),
then u0 extends to a holomorphic function in a neighborhood of f([0, 1]× ω).

Now we construct the complex scaled operator for the black box operator. To do this we
need an additional assumption on the analyticity of the coefficients:

There exists a constant C > 0 such that the coefficients aα(x;h)

extend holomorphically in x to {x ∈ Cn; | Imx| < C−1〈Rex〉}, and

the relevant estimates remain valid.

Now we construct the contour Γθ for the complex scaled operator. For given ε0 > 0,
R1 > R0, we can construct a smooth function f : [0, π] × [0,∞) 3 (θ, t) 7→ fθ(t) ∈ C,
injective for every θ such that

(1) fθ(t) = t for 0 6 t 6 R1;
(2) 0 6 arg fθ(t) 6 θ, ∂tfθ 6= 0;
(3) arg fθ(t) 6 arg ∂tfθ(t) 6 arg fθ(t) + ε0,
(4) fθ(t) = eiθt, for t > T0 where T0 only depends on ε0 and R1.
Consider the map

κθ : Rn 3 x = rω 7→ fθ(r)ω ∈ Cn

where (r = |x|, ω = x/|x|) ∈ (0,∞) × Sn−1 is the standard polar coordinates on Rn. The
image Γθ = κθ(Rn) is a totally real manifold of dimension n which coincides with Rn along
B(0, R1).

For 0 < θ < θ0, where θ0 is small, so that the coefficients of Q has analytic extension to
all Γθ, we define the complex scaled Hilbert space to be

Hθ = HR0 ⊕ L2(Γθ \B(0, R0)).

Via the map κθ, we can identify Hθ with H and define Dθ = D. Let χ ∈ C∞0 (B(0, R1)) be
equal to 1 on a neighborhood of B(0, R0), then we can define the complex scaled operator
Pθ : H → H with domain D by

Pθu = P (χu) +QΓθ(1− χ)u.
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Figure 4.1: The contour for complex scaling on Rn.

We start with the Laplacian −∆Γθ . Again, via the map κθ, we see that in polar coordi-
nates

−∆Γθ =

(
1

f ′θ(r)
Dr

)2

− n− 1

fθ(r)f ′θ(r)
iDr + (fθ(r))

−2∆Sn−1

with principal symbol

p0,θ =
r∗2

f ′θ(t)
2

+
ω∗2

fθ(t)2
,

where (r∗, ω∗) are the dual variable of (r, ω). If ε > 0 is small, then −∆Γθ is elliptic. Its
principal symbol p0,θ takes values in a sector of angle 2ε0 for any fixed r, and globally in

−2(θ + ε0) 6 arg p0,θ 6 0;

near infinity it satisfies arg p0,θ = −2θ.
Now if we choose R1 large enough, then in Rn \B(0, R0), h−2Pθ is an elliptic differential

operator with classical principal symbol takes values in a sector of angle 6 3ε0 over any fixed
point in Γθ, and globally in the sector

−2θ − 3ε0 6 arg z 6 ε0.

When x ∈ Γθ →∞, all the coefficients of Pθ − e−2iθ(−h2∆Rn) tend to zero uniformly in h.
From [26], we have

Proposition 4.1.2. If z ∈ C \ e−2iθ[0,∞), then Pθ − z : D → H is a Fredholm operator of
index 0. In particular, such a z belongs to σ(Pθ) if and only if

ker(Pθ − z) 6= 0,
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i.e z is an eigenvalue of Pθ. Moreover, if 0 6 θ1 < θ2 6 θ0, and z ∈ C \ e−2i[θ1,θ2][0,∞), then

dim ker(Pθ2 − z) = dim ker(Pθ1 − z).

Therefore, we have a discrete subset Res(P, θ0) of the sector e−2i[0,θ0)[0,∞) which agrees
with σ(Pθ) in e−2i[0,θ)[0,∞) for any θ ∈ [0, θ0] counting multiplicity. Moreover, this is exactly
the set of resonances of Pθ.

Proposition 4.1.3. The resolvent R(z) of the black box Hamiltonian P , first defined for
Im z > 0, can be extended meromorphically across (0,+∞) to the sector e−i[0,2θ0)(0,+∞)
with poles in Res(P, θ0) counting multiplicity.

4.2 Complex scaling all the way to the obstacle

From now on, we let O be a strictly convex, bounded open set in Rn with smooth boundary
∂O, then d(x) = dist(x,O) is a smooth convex function in Rn \O. Moreover, d′′(x) > 0 and
dim ker d′′(x) = 1, generated by x− y(x) where y(x) is the closest point to x on ∂O, so that
d(x) = |x− y(x)|. At y(x), the exterior unit normal vector of ∂O is

ν(y(x)) = ∇d(y(x)) =
x− y(x)

|x− y(x)|
.

We introduce the following normal geodesic coordinates on the exterior domain Rn \ O:

x = (x′, xn) 7→ x′ + xnν(x′), x′ = y(x) ∈ ∂O, xn = d(x, ∂O),

where ν(x′) = ν(y(x)) is the exterior unit normal vector to O at x′. Then in this coordinates,
we have the following expression for the Laplacian operator in the exterior domain

−∆Rn\O = D2
xn +R(x′, Dx′)− 2xnQ(xn, x

′, Dx′) +G(xn, x
′)Dxn ,

where R(x′, Dx′), Q(xn, x
′, Dx′) are second order operators on ∂O:

R(x′, Dx′) = −∆∂O = (det(gij))1/2

n−1∑
i,j=1

Dyi(det(gij))
1/2gijDyj

is the Laplacian with respect to the induced metric g = (gij) on ∂O and Q(x′, Dx′) =
Q(0, x′, Dx′) is of the form

det(gij)1/2

n−1∑
i,j=1

Dy′j
(det(gij))

1/2aijDy′i
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in any local coordinates such that the principal symbol of Q is the second fundamental form
of ∂O lifted by the duality to T ∗∂O:

Q(x′, ξ′) =
n−1∑
i,j=1

aij(x
′)ξiξj.

Thus the principal curvatures of ∂O are the eigenvalues of the quadratic form Q(x′, ξ′) with
respect to the quadratic form R(x′, ξ′).

Now following we introduce the family of complex scaling contours (0 < θ < θ0)

Γθ = {z = x+ iθf ′(x) : x ∈ Rn \ O} ⊂ Rn \ O + iRn

where f : Rn \ O → R is a smooth function such that for x near O, f(x) = 1
2
d(x)2, so

f ′(x) = d(x)d′(x).
If we parametrize Γθ by x ∈ Rn \O, then we can compute the principal symbol of −∆|Γθ :

pθ(x, ξ) = 〈(1 + iθf ′′(x))−1)ξ, (1 + iθf ′′(x))−1ξ〉 = aθ − ibθ

where

aθ = 〈(1− (θf ′′(x))2ξ̃, ξ̃〉,
bθ = 2θ〈f ′′(x)ξ̃, ξ̃〉.
ξ̃ = (1 + (θf ′′(x))2)−1ξ.

In normal geodesic coordinates, we can write the contours Γθ as the image of

U × [0,∞) 3 (x′, xn) 7→ x′ + (1 + iθ)xnν(x′) ∈ Cn,

locally for xn small. In the global version, by rescaling t = |(1 + iθ)|xn, the contours Γθ are
the image of

∂O × [0,∞) 3 (x′, t) 7→ x′ + gθ(t)ν(x′) ∈ Cn,

where gθ : [0,∞)→ C is a smooth injective map such that

|g′θ| = 1, g(0) = 0, g(t) = t
1 + iθ

|1 + iθ|

for t near 0;

g(t) = t
1 + iϕ(θ)

|1 + iϕ(θ)|
outside a small neighborhood of 0 and

arg(1 + iϕ(θ)) 6 arg g(t) 6 arg(1 + iθ),

1

2
arg(1 + iϕ(θ)) 6 arg g′(t) 6 arg(1 + iθ).
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Figure 4.2: The contour for complex scaling all the way to the obstacle.

We shall choose ϕ(θ) small enough such that Γθ satisfy the conditions given above. In
particular, we shall work on the contour Γ = Γθ for θ = θ1 such that g = gθ1(t) equals to
teπi/3 for t near 0 (later on we shall use t ∈ [0, L−1] for L large enough).

Now we introduce the semiclassical parameter h, then on this contour Γ,

−h2∆|Γ =
1

g′(t)2
(hDt)

2 +R(x′, hDy)− 2g(t)Q(y, hDy)

+O(t2(hDy)
2) +O(h)hDy,t +O(h2),

which is elliptic in both semiclassical sense and the usual sense.
For t small such that g(t) = teπi/3,

−h2∆|Γ = e−2πi/3((hDxn)2 + 2xnQ(xn, x
′, hDx′ ;h)) +R(x′, hDx′ , h) + hF (xn, x

′)hDxn .

Let p be the principal symbol of −h2∆|Γ. We notice that as in [27], if g = gθ1 , ϕ = ϕ(θ1)
are chosen suitably, then p lies in the lower half plane and for every δ > 0, there exists ε > 0
such that

t > δ ⇒ ε 6 − arg p 6 π − ε.
Moreover, we can extend Γ to a totally real submanifold Γ̃ in Cn such that the classical

symbol of −∆|Γ̃ takes values in

arg(1 + iθ) 6 − arg z 6
2

3
π + ε.

Now we consider the boundary condition. In the normal geodesic coordinate (x′, xn) ∈
∂O × [0,∞), the Robin boundary condition becomes

∂xnu+ ηu|xn=0 = 0
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Therefore in the scaled operator, we shall choose the boundary condition

e−πi/3∂xnu+ ηu|xn=0 = 0

or
∂νu+ ku|∂Γ = 0 (4.2.1)

where k : ∂Γ→ C is a smooth function.
We shall define the scaled operator P = PΓ = −∆|Γ : Dη(Γ)→ L2(Γ) where

D(Γ) = {u ∈ H2(Γ)|∂νu+ ku|∂Γ = 0}.

Again, we regard P as an operator on Rn \ O by the parametrization of Γ given above.

Proposition 4.2.1. The spectrum of −∆Γ is discrete in −2θ0 < arg z < 0 and the reso-
nances of −∆Rn\O in the sector −θ0 < arg ζ < 0 are the same as the square root of the
eigenvalues of −∆Γ with corresponding boundary condition in −2θ0 < arg z < 0. Moreover,
they have the same multiplicities:

mO(ζ) = m(z) := tr
1

2πi

∮
|z̃−z|=ε

(−∆Γ − z̃)−1dz̃

where z = ζ2, 0 < ε� 1 so that there are no other eigenvalues of −∆Γ in |z̃ − z| 6 ε.

To prove the proposition, we only need the following lemma from [27] and combine it
with proposition 4.1.3.

Lemma 4.2.2. Let u ∈ C∞(Rn \ O) satisfy (−∆ − λ2)k0u = 0, ∂αu|∂Ω = ūα ∈ C∞(∂Ω) in
a neighborhood of x0. Then there exists a complex neighborhood W of x0 such that (1) u
extends holomorphically to a function U in a complex open neighborhood of W ∩

⋃
|θ|6θ0 Γ0

θ;

(2) uθ = U |Γθ is smooth up to ∂Γθ = ∂O;
(3) (−∆|Γθ − λ2)k0uθ = 0, ∂αuθ|∂Γθ = ūα in Γθ ∩W .
Moreover, we may replace Rn \ O by any fixed Γη with |η| < θ0.

Part (1) and the first equation in (3) follows from Lemma 4.1.1 by choosing intermediate
contours between Γθ and Rn \ O away from the boundary. The difficulty lies in justification
of the boundary condition for which we need to estimate the norm of uθ. To do this, we first
review the strong uniqueness property of the scaled operator and its corollary.

Proposition 4.2.3. Assume P is an m-th order differential operator with holomorphic co-
efficients, Γ a totally real submanifold of Cn of maximal dimension such that P |Γ is elliptic.
Then if u ∈ D ′(Γ) satisfies PΓu = 0 on Γ and u = 0 in a neighborhood of some x0 ∈ Γ, then
u ≡ 0.
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Corollary 4.2.4. Let P,Γ be as in the proposition above, Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂ Γ are open
sets, then there exists some constant C > 0 such that for all u ∈ Hm(Ω3),

‖u‖Hm(Ω2) 6 C(‖Pu‖H0(Ω3) + ‖u‖H0(Ω3\Ω1)). (4.2.2)

Also if P,Γ,Ω1,Ω2,Ω3 depends continuously on some parameters varying in some compact
set, then we have the estimate for some constant C independent of the parameters.

This corollary shows that if Pu = 0, then the part of u in Ω3 \ Ω1 controls the whole
part of u in Ω2. We shall apply this property to a family of intermediate contours between
Γθ and Rn \ O and use the part in Rn \ O to control the part in Γθ.

Now we describe our family of intermediate contours. To do this, we first blow up a
neighborhood of x0 by introducing the following change of variables:

x 7→ x̃, x = y + εx̃

where y ∈ ∂O is some boundary point near x0, ε > 0 is a parameter which we will let tend
to 0. We shall choose x̃0 such that |x̃0| = 1 is close to the normal direction to boundary
through y and focus on the region B(x̃0, 1) in the new coordinates.

The intermediate contours are constructed as follows: Let Γθ,y,ε be the image of Γθ in the
complexified x̃-space. Since Γθ is parameterized by z = x + iθf ′(x), we have the following
parametrization of Γθ,y,ε:

z̃ = x̃+ iθε−1f ′(y + εx̃) = x̃+ iθ∂x̃fε,y(x̃)

where fε,y(x̃) = ε−2f(y + εx̃). The derivatives of fε,y can be estimated as follows:

∂x̃fε,y(x̃) =

{
O(|x̃|2−|α|) if |α| 6 2
O(ε|α|−2) if |α| > 2

.

We choose a cut-off function χ ∈ C∞0 (B(x̃0,
1
2
)), 0 6 χ 6 1 and χ ≡ 1 on B(x̃0,

1
4
). Out

intermediate contours will be the image of

x̃ 7→ z̃ = x̃+ iθ∂x̃(χfε,y(x̃))

and we will write Ω0,Ω1,Ω2,Ω3 to be the images of the balls B(x̃0,
1
4
), B(x̃0,

1
2
), B(x̃0,

5
8
),

B(x̃0,
3
4
), respectively. See Figure 2(where we omit Ω2).

By the strong uniqueness property of (−∆z̃ − ε2λ2)k0 and (4.2.2), we have the following
estimates uniformly with respect to y in a neighborhood of x0 and ε small,

‖v‖H2k0 (Ω2) 6 C(‖(−∆z̃ − ε2λ2)k0‖H0(Ω3) + ‖v‖H0(Ω3\Ω1)).

We shall only use the following weak version:

‖v‖L2(Ω1) 6 C(‖(−∆z̃ − ε2λ2)k0‖L2(Ω3) + ‖v‖L2(Ω3\Ω1)). (4.2.3)
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Since in the x̃ coordinates, ũ(x̃) = u(x) satisfies the equation (−∆x̃ − ε2λ2)k0ũ = 0.
By Lemma 4.1.1, ũ extends to a holomorphic solution Ũ of (−∆z̃ − ε2λ2)k0Ũ = 0 over
a neighborhood of a family of intermediate contours between B(x̃0,

3
4
) and Γ◦θ,y,ε including

Ω2 ⊂ Γ̃θ,y,ε. Back to the x-coordinates, we get the holomorphic extension U of u in W ∩ Γ◦θ
if we let y varies near x0 and ε goes to 0.

Substitute v = ŨΩ3 in (4.2.3), noticing that Ω3 \Ω1 ⊂ Rn
x̃, so Ũ = ũ on Ω3 \Ω1, we have

‖Ũ‖L2(Ω1) 6 C‖ũ‖L2(Ω3\Ω1).

Back to x-coordinates, we will have similar estimate for U and u with the same constant
C uniformly for all y near x0 and ε > 0. In particular, this shows that uθ = U |Γθ is well-
defined in L2 near x0. Since uθ satisfies the non-characteristic equation (−∆z − λ2)uθ = 0,
if we identify Γθ with Rn \ O and use the normal geodesic coordinate (x′, xn) (again, only
locally near x0), then uθ ∈ C([0, ε0); D ′(Rn−1)). In particular, it has a boundary value
uθ(x

′, 0) ∈ D ′(Rn−1). (For the proof of this, see e.g. [11].)
Now it only remains to show that uθ(x

′, 0) coincides with the original boundary value
ū(x′). To do this, we substitute v = Ũ − ũ(0) in (4.2.3), noticing that ũ(0) = ū(y),

(−∆z̃ − ε2λ2)k0(Ũ − ũ(0)) = −(−ε2λ2)k0ũ(0),

we have

‖Ũ − ũ(0)‖L2(Ω1) 6 C((ε2λ)k0|ũ(0)| vol(Ω3)
1
2 + ‖ũ− ũ(0)‖L2(Ω3\Ω1)).

Since ũ is smooth, the last term tends to 0 when ε→ 0. Therefore

vol(Ω0)−1‖Ũ − ũ(0)‖2
L2(Ω1) = o(1), ε→ 0.

Back to x-space and use the normal geodesic coordinates (x′, xn), we have

ε−n‖uθ(x)− ū(x′)‖2
B((x′,ε), ε

4
) = o(1), ε→ 0 (4.2.4)

uniformly in x′. Now let χn ∈ C∞0 (R), χ′(x′) ∈ C∞0 (Rn−1) be cut-off functions with support
close to 1 and 0, respectively. Also let

∫
χn(xn)dxn =

∫
χ′(x′)dx′ = 1. Then for any test

function ϕ ∈ C∞0 (Rn−1),

〈uθ(x′, 0)− ū(x′), ϕ(x′)〉 = lim
ε→0

(uθ(x)− ū(x′))ε−1χn(ε−1xn)ϕ(x′)dx

= lim
ε→0

∫
ε−n

∫
(uθ(x)− ū(x′))χn(ε−1xn)χ′(ε−1(x′ − y′))ϕ(x′)dxdy′ = 0,

since ε−n
∫

(uθ(x)− ū(x′))χn(ε−1xn)χ′(ε−1(x′− y′))ϕ(x′)dx has a uniformly compact support
with respect to y′ and tends to zero uniformly in y′ by Cauchy-Schwarz inequality and (4.2.4).

To get the desired global deformation with suitable boundary condition, we only need to
glue all the local deformation together using the strong uniqueness property.

For higher order derivatives, we can repeat the argument for every ∂αu which satisfies
the differential equation (−∆ − λ2)k0(∂αu) = 0 to get the holomorphic extension of ∂αu.
The strong uniqueness property shows that this is exactly the derivative of the holomorphic
extension of u.
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Chapter 5

Euclidean case: Resonance-free region

In this chapter, we prove the following theorem on resonance-free region in the Euclidean
case under general Robin boundary conditions.

Theorem 2. Let O be a bounded, strictly convex open set with a smooth boundary ∂O. Let
P = P (η) be the Laplacian −∆Rn\O on the exterior region with Robin boundary condition
∂νu+ ηu|∂O = 0. Then there are no resonances of P in the cubic region

Im ζ > −S|ζ|1/3 + C, (5.0.1)

for some C > 0, depending on η and O. The constant S is given by

S = κζ ′1 = 2−1/3 cos (π/6) ζ ′1

(
min

y∈∂O,i=1,...,n−1
Ki(y)

)2/3

(5.0.2)

with Ki(y) the principal curvatures of ∂O at y, −ζ ′1 the first zero of the derivative of the
Airy function.

5.1 Estimates for model Airy operators

In this section, we give the lower bounds for the ordinary differential operator

P = e−2πi/3((hDt)
2 + t) +O(h)hDt +O(h+ t2) (5.1.1)

defined on [0,∞) with general conditions at t = 0.

5.1.1 The Dirichlet and Neumann realization

We start by considering the semiclassical version of the Airy differential operator (hDt)
2 + t.

By changing the variables t = h2/3s, we have

(hDt)
2 + t = h2/3(D2

s + s).
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For u = u(t), we define v(s) = h1/3u(h2/3s), then

u(t) = h−1/3v(h−2/3t), ‖u‖L2
t

= ‖v‖L2
s

and
((hDt)

2 + t)u(t) = h1/3(D2
s + s)v(s).

Therefore
〈((hDt)

2 + t)u, u〉L2
t

= h2/3〈(D2
s + s)v, v〉L2

s
.

Applying the estimates (2.2.7) and (2.2.8), we have for u ∈ C∞0 [0,∞), if u(0) = 0, then

〈((hDt)
2 + t)u, u〉 > ζ1h

2/3‖u‖2 (5.1.2)

if Dtu(0) = 0, then
〈((hDt)

2 + t)u, u〉 > ζ ′1h
2/3‖u‖2 (5.1.3)

We also have the following useful identity: for u ∈ C∞0 ([0,∞)), u(0) = 0 or Dtu(0) = 0,

〈((hDt)
2 + t)u, u〉 = 〈(hDt)

2u, u〉+ 〈tu, u〉 = ‖hDtu‖2 + ‖t1/2u‖2,

and consequently
〈((hDt)

2 + t)u, u〉 > ‖hDtu‖2; (5.1.4)

〈((hDt)
2 + t)u, u〉 > ‖t1/2u‖2. (5.1.5)

Now we could estimate ‖((hDt)
2 + t)u‖ by the Cauchy-Schwartz inequality

‖((hDt)
2 + t)u‖‖u‖ > 〈((hDt)

2 + t)u, u〉.

If u(0) = 0, then by (5.1.2),

‖((hDt)
2 + t)u‖ > ζ1h

2/3‖u‖, (5.1.6)

and by (5.1.4)

‖((hDt)
2 + t)u‖2 > ζ1h

2/3〈((hDt)
2 + t)u, u〉 > ζ1h

2/3‖hDtu‖2,

thus
‖((hDt)

2 + t)u‖ >
√
ζ1h

1/3‖hDtu‖ (5.1.7)

Similarly, if Dtu(0) = 0, by (5.1.3) and (5.1.4), we have

‖((hDt)
2 + t)u‖ > ζ ′1h

2/3‖u‖; (5.1.8)

‖((hDt)
2 + t)u‖ >

√
ζ ′1h

1/3‖hDtu‖. (5.1.9)
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Another way to estimate ‖((hDt)
2 + t)u‖ is to use the following identity: If u(0) = 0 or

Dtu(0) = 0, since 〈u, hDtu〉 is real

‖((hDt)
2 + t)u‖2 = ‖(hDt)

2u‖2 + ‖tu‖2 + 2 Re〈tu, (hDt)
2u〉

= ‖(hDt)
2u‖2 + ‖tu‖2 + 2 Re〈hDt(tu), hDtu〉

= ‖(hDt)
2u‖2 + ‖tu‖2 + 2 Re〈thDtu, hDtu〉+ hRe

2

i
〈u, hDtu〉

= ‖(hDt)
2u‖2 + ‖tu‖2 + 2‖t1/2hDtu‖2.

(5.1.10)

This gives us the following estimates

‖((hDt)
2 + t)u‖2 > ‖(hDt)

2u‖2 + ‖tu‖2 > ‖(hDt)
2u‖2. (5.1.11)

5.1.2 General condition

Now we remove the Dirichlet or Neumann condition at t = 0 and try to get a lower bound
of 〈((hDt)

2 + t)u, u〉. In this case, (hDt)
2 + t is no longer a self-adjoint operator, but the

semiclassical setting allows us to view it as a perturbation of the Neumann realization. We
shall start with the following basic estimate:

‖hDtu‖2 = 〈hDtu, hDtu〉 = 〈(hDt)
2u, u〉 − ih2Dtu(0)ū(0)

6 〈((hDt)
2 + t)u, u〉 − ih2Dtu(0)ū(0).

Since the right hand side is real, we have

‖hDtu‖2 6 Re〈((hDt)
2 + t)u, u〉 − Re(ih2Dtu(0)ū(0))

6 Re〈((hDt)
2 + t)u, u〉+ h2|Dtu(0)||u(0)|

6 Re〈((hDt)
2 + t)u, u〉+O(h2)|Dtu(0)|2 +O(h2)|u(0)|2,

or
Re〈((hDt)

2 + t)u, u〉 > ‖hDtu‖2 −O(h2)|Dtu(0)|2 −O(h2)|u(0)|2. (5.1.12)

which is the analogue of (5.1.4) for general u. Next we try to get an analogue of (5.1.2) and
(5.1.3) with bounary terms.

Lemma 5.1.1. Suppose u ∈ C∞0 ([0,∞)), then we have the following estimate:

Re〈((hDt)
2 + t)u, u〉 > ζ ′1h

2/3(1−O(h2/3))‖u‖2 −O(h2)|Dtu(0)|2, (5.1.13)

| Im〈((hDt)
2 + t)u, u〉| 6 O(h2/3) Re〈((hDt)

2 + t)u, u〉+O(h2)|Dtu(0)|2. (5.1.14)

Proof. Write Dtu(0) = a for simplicity. First, we use the scaling t = h2/3s, v(s) =
h1/3u(h2/3s) as before. We have

〈((hDt)
2 + t)u, u〉L2

t
= h2/3〈(D2

s + s)v, v〉L2
s
,
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and more importantly, Dsv(0) = hDtu(0) = ha. Now let v(s) = w(s) + hasχ(s) where
χ ∈ C∞0 ([0,∞)) is a fixed function such that χ ≡ 1 near 0. Then we get the decomposition

〈(D2
s + s)v, v〉 =

〈(D2
s + s)w,w〉+ ha〈(D2

s + s)sχ, w〉+ hā〈(D2
s + s)w, sχ〉+ h2|a|2〈(D2

s + s)sχ, sχ〉.

Since w satisfies the Neumann condition Dsw(0) = 0, we know the first term is real.
We can integrate by parts to rewrite the third term as −hā〈Dsw,Ds(sχ)〉 + hā〈w, s2χ〉.
Therefore for the real part, by the Cauchy-Schwarz inequality,

Re〈(D2
s + s)v, v〉 > 〈(D2

s + s)w,w〉 − O(h)|a|‖Dsw‖ − O(h)|a|‖w‖ − O(h2)|a|2

> 〈(D2
s + s)w,w〉 − O(h4/3)|a|2 −O(h2/3)(‖w‖2 + ‖Dsw‖2).

From

‖Dsw‖2 = 〈Dsw,Dsw〉 = 〈D2
sw,w〉 6 〈(D2

s + s)w,w〉
‖w‖2 6 ζ ′−1

1 〈(D2
s + s)w,w〉 (by (2.2.7)),

we have

Re〈(D2
s + s)v, v〉 > (1−O(h2/3))〈(D2

s + s)w,w〉 − O(h4/3)|a|2. (5.1.15)

By (2.2.7) and

‖w‖2 > (‖v‖ − ‖hasχ‖)2 = ‖v‖2 −O(h)|a|‖v‖+O(h2)|a|2

> (1−O(h2/3))‖v‖2 −O(h4/3)|a|2,

we get

Re〈(D2
s + s)v, v〉 > ζ ′1(1−O(h2/3))‖w‖2 −O(h4/3)|a|2

> ζ ′1(1−O(h2/3))‖v‖2 −O(h4/3)|a|2.

For the imaginary part, we have

| Im〈(D2
s + s)v, v〉| 6 O(h4/3)|a|2 +O(h2/3)(‖w‖2 + ‖Dsw‖2)

6 O(h4/3)|a|2 +O(h2/3)〈(D2
s + s)w,w〉.

Using (5.1.15) again, we have

| Im〈(D2
s + s)v, v〉| 6 O(h4/3)|a|2 +O(h2/3) Re〈(D2

s + s)v, v〉.

Scaling back from v to u, we get the desired estimates (5.1.13) and (5.1.14).
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Finally, we need an analogue of (5.1.11). In the equation (5.1.10), we show that

‖((hDt)
2 + t)u‖2 = ‖(hDt)

2u‖2 + ‖tu‖2 + 2‖t1/2hDtu‖2 + hRe
2

i
〈u, hDtu〉.

Although the last term is no longer zero, we can calculate it through integration by parts.
Since

〈u, hDtu〉 = 〈hDtu, u〉 − hi|u(0)|2,

we have

Im〈u, hDtu〉 = −h
2
|u(0)|2.

Therefore

Re
2

i
〈u, hDtu〉 = −h|u(0)|2,

and we get
‖((hDt)

2 + t)u‖2 > ‖(hDt)
2u‖2 − h2|u(0)|2 (5.1.16)

5.1.3 Restriction to a small interval

Now we restrict the support of u to a small fixed interval and get a better estimate.

Lemma 5.1.2. If L > 0 is sufficiently large, 0 < h < h0(L), then the following estimates
holds uniformly for u ∈ C∞0 ([0, L−1]):

Re〈((hDt)
2 + t)u, u〉 > (ζ ′1h

2/3 −O(hL))‖u‖2 −O(h2)|Dtu(0)|2 +
L

2
‖tu‖2. (5.1.17)

Proof. We choose χ0, χ1 ∈ C∞(R) such that

χ2
0 + χ2

1 = 1, 0 6 χj 6 1

χ0 ≡ 1 on (−∞, h1/2]

χ1 ≡ 1 on [2h1/2,∞)

∂αχj = Oα(h−
α
2 ), α = 0, 1, 2.

Then we can deduce that

χ0[χ0, (hDt)
2] + χ1[χ1, (hDt)

2] = −[χ0(hDt)
2(χ0) + χ1(hDt)

2(χ1)] = O(h).

We notice that

〈((hDt)
2 + t)u, u〉 = 〈χ0((hDt)

2 + t)u, χ0u〉+ 〈χ1((hDt)
2 + t)u, χ1u〉

= 〈((hDt)
2 + t)χ0u, χ0u〉+ 〈((hDt)

2 + t)χ1u, χ1u〉
− 〈(χ0[χ0, (hDt)

2] + χ1[χ1, (hDt)
2])u, u〉.
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Since χ1u(0) = 0, also χ0u and u have the same condition at t = 0, we can apply the
estimates (5.1.5) and (5.1.13) to get

Re〈((hDt)
2 + t)u, u〉 > ζ ′1h

2/3(1−O(h2/3))‖χ0u‖2 +‖t1/2χ1u‖2−O(h2)|Dtu(0)|2−O(h)‖u‖2.

From the construction of χ0, χ1, it is easy to see

‖u‖2 = ‖χ0u‖2 + ‖χ1u‖2, ‖tu‖2 = ‖tχ0u‖2 + ‖tχ1u‖2.

Therefore we only need to prove for some c0 = O(L), we have

c0h‖χ0u‖2 >
L

2
‖tχ0u‖2 (5.1.18)

and

‖t1/2χ1u‖2 > (ζ ′1h
2/3 − c0h)‖χ1u‖2 +

L

2
‖tχ1u‖2. (5.1.19)

Since χ0 is supported on [−∞, 2h1/2], we only need to choose c0 = 2L to get (5.1.18). To
prove (5.1.19), we need to show that for t ∈ [h1/2, L−1],

t > ζ ′1h
2/3 − c0h+

L

2
t2

or equivalently,
L

2
(t− L−1)2 6

1

2L
+ 2hL− ζ ′1h2/3.

The left hand side achieves its maximum at t = h1/2, so we only need

h1/2 > ζ ′1h
2/3 − c0h+

L

2
h

which can be achieved by choosing h < h0(L) small enough. This finishes the proof.

5.1.4 Airy operator with lower order terms

Now we shall include the lower order terms in (5.1.1) and prove the main result of this
section.

Proposition 5.1.3. Let P be in the form (5.1.1) and ω0 ∈ C with argω0 ∈ (−π/6, 5π/6).
If L > 0 is sufficiently large, h > 0 sufficiently small depending on L and ω0, then for
u ∈ C∞0 ([0, L−1)),

‖(P − ω0)u‖2 > (|e2πi/3ω0 − ζ ′1h2/3|2 −O(hL))‖u‖2

+ C−1‖(hDt)
2u‖2 −O(h2)|Dtu(0)|2 −O(h2)|u(0)|2.

(5.1.20)
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Proof. We begin with the following identity

‖(P − ω0)u‖2 = ‖(e−2πi/3((hDt)
2 + t)− ω0)u‖2 + ‖[O(h)hDt +O(h+ t2)]u‖2

+ 2 Re〈(e−2πi/3((hDt)
2 + t)− ω0)u, [O(h)hDt +O(h+ t2)]u〉

> ‖(e−2πi/3((hDt)
2 + t)− ω0)u‖2 − [O(h)〈((hDt)

2 + t)u, hDtu〉
+O(h)〈u, hDtu〉+ 〈((hDt)

2 + t)u,O(h+ t2)u〉+ 〈u,O(h+ t2)u〉].

The lower order terms are estimated as follows,

O(h)〈((hDt)
2 + t)u, hDtu〉 6 O(h)‖((hDt)

2 + t)u‖2 +O(h)‖hDtu‖2

6 O(h)‖((hDt)
2 + t)u‖2 +O(h) Re〈((hDt)

2 + t)u, u〉
+O(h3)|Dtu(0)|2 +O(h3)|u(0)|2 (by (5.1.12));

O(h)〈u, hDtu〉 6 O(h)‖u‖2 +O(h)‖hDtu‖2

6 O(h)‖u‖2 +O(h) Re〈((hDt)
2 + t)u, u〉

+O(h3)|Dtu(0)|2 +O(h3)|u(0)|2 (by (5.1.12));

〈((hDt)
2 + t)u,O(h+ t2)u〉 6 O(h)〈((hDt)

2 + t)u, u〉+O(1)〈((hDt)
2 + t)u, t2u〉

6 O(h)‖((hDt)
2 + t)u‖2 +O(h)‖u‖2

+ 1
2
‖((hDt)

2 + t)u‖2 +O(1)‖t2u‖2,

〈u,O(h+ t2)u〉 6 O(h)‖u‖2 +O(1)‖tu‖2.

For the leading terms, we use the following identities

‖(e−2πi/3((hDt)
2 + t)− ω0)u‖2 = ‖((hDt)

2 + t)u‖2 + |ω0|2‖u‖2

− 2 Re〈e−2πi/3((hDt)
2 + t)u, ω0u〉,

and

−2 Re〈e−2πi/3((hDt)
2 + t)u, ω0u〉 = 2 Re[eπi/3ω̄0〈((hDt)

2 + t)u, u〉]
= Re(2eπi/3ω̄0) · Re〈((hDt)

2 + t)u, u〉
− Im(2eπi/3ω̄0) · Im〈((hDt)

2 + t)u, u〉.

By (5.1.14), the second term is bounded below by

−2|ω0|| Im〈((hDt)
2 + t)u, u〉| > −O(h2/3) Re〈((hDt)

2 + t)u, u〉 − O(h2)|Dtu(0)|2.

Therefore

− 2 Re〈e−2πi/3((hDt)
2 + t)u, ω0u〉

> (2 cos((π/3)− argω0)−O(h2/3))|ω0|Re〈((hDt)
2 + t)u, u〉 − O(h2)|Dtu(0)|2.
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Now combining all the terms together, we get the following estimate

‖(P − ω0)u‖2 >(2 cos((π/3)− argω0)−O(h2/3))|ω0|Re〈((hDt)
2 + t)u, u〉

+ (|ω0|2 −O(h))‖u‖2 + (1
2
−O(h))‖((hDt)

2 + t)u‖2

−O(1)‖tu‖2 −O(1)‖t2u‖2 −O(h2)|Dtu(0)|2 −O(h3)|u(0)|2.

Since |(π/3) − argω0| < π/2, cos((π/3) − argω0) > 0, when h is small enough, we can
apply (5.1.17) to the first term and use

|ω0|2 − 2 Re(e−2πi/3ω̄0)ζ ′1h
2/3 = |e2πi/3ω0 − ζ ′1h2/3|2 −O(h)

to get

‖(P − ω0)u‖2 >
(
(|e2πi/3ω0 − ζ ′1h2/3|2 −O(hL)

)
‖u‖2 + ((1/2)−O(h)) ‖((hDt)

2 + t)u‖2

+ (|ω0| cos((π/3)− argω0)−O(h))L−O(1)) ‖tu‖2

−O(1)‖t2u‖2 −O(h2)|Dtu(0)|2 −O(h3)|u(0)|2.

Since u is supported in [0, L−1], we have ‖t2u‖2 6 L−2‖tu‖2. So if L > L0(ω0) large
enough, h < h0(L, ω0) small enough, we get

‖(P − ω0)u‖2 > (|e2πi/3ω0 − ζ ′1h2/3|2 −O(hL))‖u‖2 + ((1/2)−O(h)) ‖((hDt)
2 + t)u‖2

+ C−1L‖tu‖2 −O(h2)|Dtu(0)|2 −O(h3)|u(0)|2.

Applying (5.1.16), we conclude the proof of (5.1.20).

Remark 5.1.4. If we replaced (hDt)
2 + t by (hDt)

2 + Qt, then the estimates (with ζ ′1h
2/3

replaced by ζ ′1Q
2/3h2/3) remain uniform for

Q ∈ [C−1, C], |ω0| ∈ [C−1, C] and arg(ω0) ∈ [−(π/6) + δ, (5π/6)− δ]

if δ, C > 0 are fixed.

Remark 5.1.5. For the Dirichlet and Neumann realization, we can get the same estimate
without the last two lower order terms −O(h2)|Dtu(0)|2 −O(h2)|u(0)|2. For Dirichlet real-
ization, we can also improve ζ ′1 to ζ1.

5.2 Lower bounds on the scaled operator

In section 4.2, we defined the scaled operator P = −∆|Γ and find the explicit formula in
normal coordinates with respect to the boundary: Ω 3 x 7→ (y, t) ∈ ∂O × (0,∞). If we
freeze (y, η) ∈ T ∗∂O, then the (semiclassical) symbol of h2P is given by

P (y, t; η, hDt) = e−2πi/3((hDt)
2 + 2tQ(y, η)) +R(y, η) +O(t2 + h)〈η〉2 +O(h)hDt. (5.2.1)

In this section, we first estimate P (y, t; η, hDt)−ω0 and then through the FBI transform Th
defined in (3.3.1) to get a lower bound on h2P − ω0.
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5.2.1 Estimate in the glancing region

When Reω0−R(y, η) is small, the principal part of P (y, t; η, hDt)−ω0 is given by the Airy-
type operator e−2πi/3((hDt)

2 + 2tQ(y, η)). We shall apply our previous results to get the
following estimate. We notice that such (y, η) lies in a compact subset of T ∗∂O.

Lemma 5.2.1. Let ω0 ∈ C with Reω0 > 0, Imω0 = r0 > 0. Suppose |Reω0 − R(x′, ξ′)| < c
where c is sufficiently small, L is large enough and 0 < h < h0(L). Then For any v ∈
C∞0 ([0, L−1)), we have

‖(P (y, t, η, hDt)− ω0)v‖2 > |r0 + 2S(Reω0)2/3h2/3 −O(h)|2‖v‖2

+ C−1‖(hDt)
2v‖2 −O(h2)|Dtv(0)|2 −O(h2)|v(0)|2

(5.2.2)

where S = κζ ′1 is given by (5.0.2).

Proof. Let c = r0 tan(π/6), then since |Reω0 −R(y, η)| < c, we have

arg(ω0 −R(y, η)) ∈ [π/3, 2π/3].

It follows immediately from (5.1.20) by replacing ω0 with ω0 −R(y, η) that

‖(P (y, t, η, hDt)− ω0)v‖2 > (|ω0 −R(y, η)− e−2πi/3ζ ′1(2Q(y, η))2/3h2/3|2 −O(hL))‖v‖2

+ C−1‖(hDt)
2v‖2 −O(h2)|Dtv(0)|2 −O(h2)|v(0)|2.

The uniformity of the constants follows from the ellipticity of Q and R.
Now we need to find a uniform lower bound for

|ω0 −R(y, η)− e−2πi/3ζ ′1(2Q(y, η))2/3h2/3|2

= |Reω0 −R(y, η) + sin
(π

6

)
ζ ′1(2Q(y, η))2/3h2/3|2

+ |r0 + cos
(π

6

)
ζ ′1(2Q(y, η))2/3h2/3|2

(5.2.3)

over (y, η) such that |Reω0 − R(y, η)| < c. The minimum is obtained at R(y, η) = Reω0 +
O(h2/3) and the minimum of ζ ′1(2Q(y, η))2/3 under such constraint. Since the principal
curvatures are the eigenvalues of the quadratic form Q(y, η) with respect to the quadratic
form R(y, η), we have

Q(y, η) >

(
min

y∈∂O,j=1,...,n−1
Kj(y)

)
R(y, η).

Thus
(5.2.3) > |r0 + 2S(Reω0)2/3h2/3|2 +O(h4/3)

which completes the proof of (5.2.2).
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5.2.2 Estimate away from the glancing region

When |Reω0 − R(y, η)| is bounded from below, 2tQ(y, η) is dominated by R(y, η) − ω0 for
small t. In this case, we can give a better estimate for P from e−2πi/3(hDt)

2 +R(y, η)− ω0.

Lemma 5.2.2. Suppose that ω0 ∈ C with Reω0 > 0, Imω0 = r0 > 0, |Reω0 − R(y, η)| > c,
then for L large enough, h sufficiently small, and v ∈ C∞0 ([0, L−1)),

‖(P (y, t, η, hDt)− ω0)v‖2 > (r0 + C−1)2‖v‖2 + C−1(‖(hDt)
2v‖2 + 〈η〉4‖v‖2)

−O(h2)〈η〉2|v(0)||Dtv(0)|.
(5.2.4)

Proof. Since

[P (y, t, η, hDt)− ω0]v = [e−2πi/3(hDt)
2 +R(y, η)− ω0]v + [O(t2 + t+ h)〈η〉2 +O(h)hDt]v,

we have

‖(P (y, t, η, hDt)− ω0)v‖2 > (‖[e−2πi/3(hDt)
2 +R(y, η)− ω0]v‖

− ‖[O(t2 + t+ h)〈η〉2 +O(h)hDt]v‖)2.
(5.2.5)

Now

‖[e−2πi/3(hDt)
2 +R(y, η)− ω0]v‖2 = ‖(hDt)

2v‖2 + |R(y, η)− ω0|2‖v‖2

+ 2 Re[e−2πi/3(R(y, η)− ω̄0)〈(hDt)
2v, v〉],

(5.2.6)

where

Re[e−2πi/3(R(y, η)− ω̄0)〈(hDt)
2v, v〉] = Re[e−2πi/3(R(y, η)− ω̄0)] Re〈(hDt)

2v, v〉
− Im[e−2πi/3(R(y, η)− ω̄0)] Im〈(hDt)

2v, v〉.
(5.2.7)

Notice that
〈(hDt)

2v, v〉 = ‖hDtv‖2 + ih2Dtv(0)v(0).

Therefore

Re〈(hDt)
2v, v〉 = ‖hDtv‖2 + Re(ih2Dtv(0)v(0)) > −h2|Dtv(0)||v(0)|; (5.2.8)

| Im〈(hDt)
2v, v〉| = | Im(ih2Dtv(0)v(0))| 6 h2|Dtv(0)||v(0)|. (5.2.9)

We can compute that

Re[e−2πi/3(R(y, η)− ω̄0)] = −1

2
(R(y, η)− Reω0) +

√
3

2
r0.

In the identity

Re[e−2πi/3(R(y, η)− ω̄0)] Re〈(hDt)
2v, v〉 =− 1

2
(R(y, η)− Reω0) Re〈(hDt)

2v, v〉

+

√
3

2
r0 Re〈(hDt)

2v, v〉,
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we apply (5.2.8) to the second term and

|(R(y, η)− Reω0) Re〈(hDt)
2v, v〉| 6 1

2
(‖(hDt)

2v‖2 + |(R(y, η)− Reω0)|2‖v‖2)

to the first term, and get

Re[e−2πi/3(R(y, η)− ω̄0)] Re〈(hDt)
2v, v〉 >− 1

4
(‖hDtv‖2 + |R(y, η)− Reω0|2‖v‖2)

− h2

√
3

2
r0|Dtv(0)||v(0)|.

(5.2.10)

By (5.2.9), we also have

− Im[e−2πi/3(R(y, η)− ω̄0)] Im〈(hDt)
2v, v〉 > −h2|R(y, η)− ω0||Dtv(0)||v(0)|. (5.2.11)

Combining (5.2.6),(5.2.7),(5.2.10),(5.2.11) together, we have

‖[e−2πi/3(hDt)
2 +R(y, η)− ω0]v‖2 >

1

2
‖(hDt)

2v‖2 + (r2
0 +

1

2
|R(y, η)− Reω0|2)‖v‖2

− h2(|R(y, η)− ω0|+
√

3r0)|Dtv(0)||v(0)|.
(5.2.12)

Now we estimate the remainder terms, since |R(y, η) − Reω0| > c and R(y, η) is a
quadratic form in η, we have

C−1〈η〉2 6 |R(y, η)− Reω0| 6 C〈η〉2 (5.2.13)

for some constant C > 0 independent of y and η. Therefore if L is large enough and h is
small enough, we have for v ∈ C∞0 ([0, L−1]),

‖[O(t2 + t+ h)〈η〉2 +O(h)hDt]v‖2 6 C−2|R(y, η)− Reω0|2‖v‖2 +O(h2)‖hDtv‖2.

We can apply
〈(hDt)

2v, v〉 = ‖hDtv‖2 + ih2Dtv(0)v(0)

again to get

‖hDtv‖2 6 |〈(hDt)
2v, v〉|+ h2|Dtv(0)||v(0)| 6 1

2
(‖(hDt)

2v‖2 + ‖v‖2) + h2|Dtv(0)||v(0)|.

Therefore

‖[O(t2 + t+ h)〈η〉2 +O(h)hDt]v‖2 6 C−2(|R(y, η)− Reω0|2‖v‖2

+ ‖(hDt)
2v‖2) +O(h4)|Dtv(0)||v(0)|.

(5.2.14)

It is easy to prove the following elementary inequality:

(
√
a− h2b−

√
C−2a+ h4b)2 > (1− 2C−1)a− 2h2b (5.2.15)



CHAPTER 5. EUCLIDEAN CASE: RESONANCE-FREE REGION 52

for C large and h small, independent of a, b > 0.
Applying (5.2.15) with

a =
1

2
‖(hDt)

2v‖2 +(r2
0 +

1

2
|R(y, η)−Reω0|2)‖v‖2, b = (|R(y, η)−ω0|+

√
3

2
r0)|Dtv(0)||v(0)|,

by (5.2.5),(5.2.12) and (5.2.14), we have

‖(P (y, t, η, hDt)− ω0)v‖2 > (1− 2C−1)[
1

2
‖(hDt)

2v‖2 + (r2
0 +

1

2
|R(y, η)− Reω0|2)‖v‖2]

−O(h2)(|R(y, η)− ω0|+
√

3r0)|Dtv(0)||v(0)|.

Now by our assumption, |R(y, η)− Reω0| > c = r0 tan(π/6), and (5.2.13), we finish the
proof of the lemma.

5.2.3 Lower bounds for the scaled operator near the boundary

We first consider an estimate valid for functions supported in a sufficiently small neighbor-
hood of the boundary.

Proposition 5.2.3. Suppose that u ∈ C∞(Rn \ O) satisfies supp(u) ⊂ ∂O × [0, L−1), and
the Robin boundary condition ∂νu+ ku|∂O = 0 for k ∈ C∞(∂O,C). Then

‖(h2P − ω0)u‖2 > |r0 + S(Reω0)2/3h2/3 −O(h)|2‖u‖2. (5.2.16)

Proof. Recall that T is the FBI transform defined in (3.3.1), by (3.3.2), we have

‖u‖2
L2(∂O×[0,L−1)) = ‖Tu‖2

L2(T ∗∂O×[0,L−1)) +O(h)‖u‖2
L2 .

By (3.3.4), we have

‖u‖2
H2
h(∂O×[0,L−1)) ∼ ‖〈η〉

2Tu‖2
L2(T ∗∂O×[0,L−1)) + ‖(hDt)

2Tu‖2
L2(T ∗∂O×[0,L−1)),

also

‖(h2P − ω0)u‖2
L2(∂O×[0,L−1)) = ‖(P (y, t, η, hDt)− ω0)Tu‖2

L2(T ∗∂O×[0,L−1)) +O(h)‖u‖2
H2
h
.

Now (5.2.2) shows that if |R(y, η)− Reω0| < c,∫ ∞
0

|(P (y, t, η, hDt)− ω0)Tu|2dt > (r0 + 2S(Reω0)2/3h2/3 −O(h))2

∫ ∞
0

|Tu|2dt

+C−1

∫ ∞
0

|(hDt)
2Tu|2dt−O(h2)|DtTu(0)|2 −O(h2)|Tu(0)|2;
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and (5.2.4) shows that if |R(y, η)− Reω0| > c,∫ ∞
0

|(P (y, t, η, hDt)− ω0)Tu|2dt > (r0 + C−1)2

∫ ∞
0

|Tu|2dt+ C−1

∫ ∞
0

|(hDt)
2Tu|2dt

+C−1〈η〉4
∫ ∞

0

|Tu|2dt−O(h2)〈η〉2|DtTu(0)||Tu(0)|.

If we integrate
∫∞

0
|(P (y, t, η, hDt)− ω0)Tu|2dt in (y, η) ∈ T ∗∂O, we get

‖(P (y, t, η, hDt)− ω0)Tu‖2
L2(T ∗∂O×[0,L−1))

> (r0 + 2S(Reω0)2/3h2/3 −O(h))2‖Tu‖2
L2(T ∗∂O×[0,L−1))

+ C−1

(∫
T ∗∂O

∫ ∞
0

|(hDt)
2Tu|2dt+

∫
|R(y,η)−Reω0|>c

∫ ∞
0

〈η〉4|Tu|2dt
)

−O(h2)‖〈η〉DtTu(y, η, 0)‖2
L2(T ∗∂O) −O(h2)‖〈η〉Tu(y, η, 0)‖2

L2(T ∗∂O).

(5.2.17)

Here DtTu(y, η, 0) = T (Dtu(·, 0))(y, η) = T (−ku(·, 0)), so by (3.3.3),

‖〈η〉DtTu(y, η, 0)‖2
L2(T ∗∂O) =‖〈η〉T (k(·)u(·, 0))‖2

L2(T ∗∂O)

6C‖k(y)u(y, 0)‖2
H1
h(∂O) 6 C‖k‖2

H1(∂O)‖u(y, 0)‖2
H1
h(∂O);

‖〈η〉Tu(·, 0)‖2
L2(T ∗∂O) 6C‖u(y, 0)‖2

H1
h(∂O).

Now we can apply Proposition 3.1.1 to the last two terms in (5.2.17) to show that they
are bounded by O(h)‖u‖H2

h
.

Notice that if |R(y, η)−Reω0| < c, then (y, η) lies in a compact region of T ∗∂O, we have∫
|R(y,η)−Reω0|<c

∫ ∞
0

〈η〉4|Tu|2dt 6 C‖Tu‖2
L2(T ∗∂O×[0,L−1)),

thus∫
T ∗∂O

∫ ∞
0

|(hDt)
2Tu|2dt+

∫
|R(y,η)−Reω0|>c

∫ ∞
0

〈η〉4|Tu|2dt > max{0, C−1‖u‖2
H2
h
− C‖u‖2

L2}.

Therefore from (5.2.17), we have

‖(h2P − ω0)u‖2 >(r0 + 2S(Reω0)2/3h2/3 −O(h))2‖u‖2
L2

+ C−1 max{0, C−1‖u‖2
H2
h
− C‖u‖2

L2} − O(h)‖u‖2
H2
h
.

This concludes the proof of (5.2.16).
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5.2.4 Lower bounds for the scaled operator

The estimate away from the boundary is now combined with elliptic estimates away from
the boundary to give the lower bounds for the scaled operator

Proposition 5.2.4. There exists some ε > 0 such that for ω0 satisfying argω0 ∈ (ε, π
2
− ε),

Reω0 ∈ (1− ε, 1 + ε), and u ∈ C∞c (Rn \O) satisfying the Robin boundary condition, we have

‖(h2P − ω0)u‖2 > |r0 + 2S(Reω0)2/3h2/3 −O(h)|2‖u‖2. (5.2.18)

for all sufficiently small h > 0.

Proof. We only need to estimate the part away from the boundary and connect it with
(5.2.16). Let ϕ0, ϕ1 ∈ C∞(Rn; [0, 1]) such that ϕ2

0+ϕ2
1 = 1, suppϕ0 ⊂ {x : d(x) < L−1}, ϕ1 =

0 on {x : d(x) > (2L)−1} where d(x) is the distance from x to O. We claim that

‖(h2P − ω0)ϕ1u‖2 > (r0 + 2S(Reω0)2/3h2/3)2‖ϕ1u‖2. (5.2.19)

In fact, we recall that in Section 4.2, the symbol p of −∆|Γ when d(x) > (2L)−1 takes its
values in ε < −argz < π − ε for some ε > 0. So by the assumption on ω0,

inf |p− ω0| > Im(eiεω0) = |ω0| sin(ε+ argω0)

> |ω0| sin(argω0) + 2S(Reω0)2/3h2/3

= r0 + 2S(Reω0)2/3h2/3.

We have the estimate (5.2.19).
Since

(h2P − ω0)ϕju = ϕj(h
2P − ω0)u− [ϕj, h

2P ]u,

we have

‖(h2P − ω0)ϕju‖2 = ‖ϕj(h2P − ω0)u− [ϕj, h
2P ]u‖2

6 ‖ϕj(h2P − ω0)u‖2 + 2‖ϕj(h2P − ω0)u‖‖[ϕj, h2P ]u‖
+ ‖[ϕj, h2P ]u‖2,

thus

‖(h2P − ω0)u‖2 =
∑
j=0,1

‖ϕj(h2P − ω0)u‖2

>
∑
j=0,1

‖(h2P − ω0)ϕju‖2 −
∑
j=0,1

‖[ϕj, h2P ]u‖2

−
∑
j=0,1

‖ϕj(h2P − ω0)u‖‖[ϕj, h2P ]u‖.



CHAPTER 5. EUCLIDEAN CASE: RESONANCE-FREE REGION 55

The commutators can be estimated by

‖[ϕj, h2P ]u‖ = O(h)(‖hDxu‖L2(∂O×[(2L)−1,L−1]) + ‖u‖) 6 O(h)(‖(h2P − ω0)u‖+ ‖u‖)

since h2P − ω0 is elliptic when d(x) > (2L)−1. Therefore

‖(h2P − ω0)u‖2 >
∑
j=0,1

‖(h2P − ω0)ϕju‖2 −O(h)(‖(h2P − ω0)u‖2 + ‖u‖2).

Now we can conclude that

‖(h2P − ω0)u‖2 > (1−O(h))
∑
j=0,1

‖(h2P − ω0)ϕju‖2 −O(h)‖u‖2

> (1−O(h))
∑
j=0,1

|r0 + 2S(Reω0)2/3h2/3 −O(h)|2‖ϕju‖2 −O(h)‖u‖2

> |r0 + 2S(Reω0)2/3h2/3 −O(h)|2‖u‖2.

5.3 The pole-free region

Now we prove Theorem 2. An equivalent formulation is to say that there are no resonances
for P (η) in the region

Re ζ > c0, 0 < − Im ζ < S(Re ζ)1/3 − c1 (5.3.1)

for some constant c0, c1 > 0. We suppose that ζ is a resonance of P (η) such that

0 < − Im ζ < S(Re ζ)1/3 − c1.

Then by proposition 4.2.1, λ = ζ2 is an eigenvalue of P . Let h = (Re ζ)−1, then h2ζ2 is an
eigenvalue of h2P : h2Pu = h2ζ2u for some u ∈ D(Rn \ O). Now we apply proposition 5.2.4
to u and ω0 = Re(h2ζ2) + ir0, r0 > 0. Since hRe ζ = 1, we have

Re(h2ζ2) = h2(Re ζ)2 − h2(Im ζ)2 = 1 +O(h4/3);

and
Im(h2ζ2) = 2h2(Re ζ)(Im ζ) = 2h Im ζ = O(h4/3).

It is easy to choose some r0 such that ω0 satisfies the condition in Proposition 5.2.4, say
r0 = 1. Therefore we get

|h2ζ2 − ω2
0|‖u‖2

L2 = ‖(h2P − ω0)u‖2
L2 > |r0 + 2S(Reω0)2/3h2/3 −O(h)|2‖u‖2

L2 ,

where
h2ζ2 − ω0 = i(Im(h2ζ2)− r0) = i(2h Im ζ − r0);
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and
Reω0 = Re(h2ζ2) = 1− h2(Im ζ)2.

Thus we have

|r0 − 2h Im ζ|2 > |r0 + 2S[1− h2(Im ζ)2]2/3h2/3 −O(h)|2.

It follows that
− Im ζ > S[1− h2(Im ζ)2]2/3h−1/3 −M.

Now by the assumption that − Im ζ < Sh−1/3 − c1, we can choose c1 large, say c1 > S +M ,
so that we have

1− h1/3 > (1− h2(Im ζ)2)2/3 = (1−O(h4/3))2/3.

Let h→ 0, we have a contradiction. Therefore we can choose c0, c1 > 0 large such that there
are no poles in (5.3.1).
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Chapter 6

Euclidean case: Band structure

In this chapter, we prove the band structure of the resonances near the real axis under
pinched curvature conditions.

Theorem 3. Suppose we have the following pinched curvature condition

maxS∂OQ

minS∂OQ
<

(
ζ ′j0+1

ζ ′j0

)3/2

(6.0.1)

for some j0 > 1. Then there exists a constant C > 0 such that for all 0 6 j 6 j0, there are
no resonances in the regions

C 6 Reλ, Kζ ′j(Reλ)1/3 + C 6 − Imλ 6 κζ ′j+1(Reλ)1/3 − C. (6.0.2)

Theorem 4. Under the assumption in theorem 3, for some C > 0 and all 1 6 j 6 j0,∑
{MO(λ) : |λ| 6 r, κζ ′j(Reλ)1/3 − C < − Imλ < Kζ ′j(Reλ)1/3 + C}

= (1 + o(1))(2π)1−n vol(Bn−1(0, 1)) vol(∂O)rn−1,
(6.0.3)

where Bn−1(0, 1) is the unit ball in Rn.

6.1 More preparations

6.1.1 A simple model

We conclude this section by presenting a simple model motivating our approach to boundary
value problems using a Grushin reduction for an operator combining a differential operator
and a boundary operator.

We consider the differential operator P = − d2

dx2 with Neumann boundary condition on the
interval [0, π]. The spectrum of the operator is discrete: σ(P ) = {λk = k2 : k = 0, 1, 2, . . .}
and each eigenspace is one-dimensional:

Ek = {f ∈ H2[0, 1]|f ′(0) = f ′(1) = 0,−f ′′ = λkf} = C cos kx.
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We set up a Grushin problem to capture the first m eigenvalues using a finite matrix.
For simplicity, let us consider the case m = 1 so that the first eigenvalue is λ0 = 0 with unit
eigenvector e0 = 1

π
. Put (

P − z R−
R+ 0

)
: D × C→ L2[0, π]× C,

where
D = {u ∈ H2[0, π] : u′(0) = u′(π) = 0}

and

Pu = −u′′, R+u = 〈u, e0〉 =
1

π

∫ π

0

udx, R−u− = u−e0 =
u−
π
.

Then (
P − z R−
R+ 0

)(
u
u−

)
=

(
v
v+

)
is equivalent to

−u′′ − zu+
u−
π

= v,
1

π

∫ π

0

udx = v+.

We can integrate the first equation on [0, π] to get

−(u′(π)− u′(0))− z
∫ π

0

udx+ u− =

∫ π

0

vdx

and thus

u− = (u′(π)− u′(0)) + z

∫ π

0

udx+

∫ π

0

vdx = πzv+ +

∫ π

0

vdx.

It is then not difficult to see that for z < 1, we can use this u− to solve u uniquely. Therefore
the Grushin problem is well-posed with inverse(

E E+

E− E−+

)
: L2[0, π]× C→ D × C,

which has an explicit expression and we have seen that E−+ = πz which is invertible if and
only if z 6= λ0 = 0.

The situation is somewhat similar to our case of obstacle scattering if we regard the
left end point x = 0 as the boundary, and the right end point x = π as infinity. Recall
that in the case of obstacle scattering, since the outgoing condition becomes L2-condition
after complex scaling, we get a “boundary condition” at infinity. Now, we consider another
Grushin problem for − d2

dx2 , or rather the following operator(
− d2

dx2 − z
γ1

)
: D′ = {u ∈ H2[0, 1]|u′(π) = 0} → L2[0, 1]× C
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where γ1u = u′(0). We use the same R+ and R− as above to construct the Grushin problem − d2

dx2 − z R−
γ1 0
R+ 0

 : D′ × C→ L2[0, π]× C× C.

Now  − d2

dx2 − z R−
γ1 0
R+ 0

( u
u−

)
=

 v
v0

v+


is equivalent to

−u′′ − zu+
u−
π

= v, u′(0) = v0,
1

π

∫ π

0

udx = v+.

Again, integrating the first equation gives

−(u′(π)− u′(0))− z
∫ π

0

udx+ u− =

∫ π

0

vdx

and thus

u− = (u′(π)− u′(0)) + z

∫ π

0

udx+

∫ π

0

vdx = −v0 + πzv+ +

∫ π

0

vdx.

Again, using this u−, it is not difficult to solve u uniquely for z < 1. Hence this Grushin
problem is also well-posed with inverse(

E K E+

E− K− E−+

)
: L2[0, π]× C× C→ D′ × C,

which again has an explicit expression. We find that E−+ = πz coincides with E−+ we found
in the previous Grushin problem.

Of course in this trivial example we can compute everything explicitly without Grushin
reduction. The importance of the Grushin problem is that we can perturb the operator
and the invertibility of the perturbed operator is captured by the finite matrix E−+ (in our
case it is a 1 × 1 matrix, i.e. a scalar.) This reduces the infinite-dimensional problem to a
finite-dimensional one. The second Grushin problem also allows us to perturb the boundary
condition at 0 which turns out to be crucial in our setting.

6.1.2 Further reductions to a combined operator

We work in the semiclassical setting and introduce P (h) := −h2∆Γ. Near the boundary, we
have the expression

P (h) = e−2πi/3((hDxn)2 + 2xnQ(xn, x
′, hDx′ ;h)) +R(x′, hDx′ ;h) + hF (xn, x

′)hDxn . (6.1.1)
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Also for w ∈ W b (0,∞) and | Im z| 6 C, |Re z| � δ−1, we let P −z = h−2/3(P (h)−w)−z,
so near the boundary,

P − z = e−2πi/3(D2
t + 2tQ(h2/3t, x′, hDx′ ;h))

+ h−2/3(R(x′, hDx′ ;h)− w) + F (h2/3t, x′)h2/3Dt − z,
(6.1.2)

where t = h−2/3xn.
There are certain difficulties in working with Robin boundary conditions with the domain

(2.1.1). In normal geodesic coordinates introduced above, the domain will change as the
function η changes and this causes the difficulty in the formulation of the model problem
later.

To avoid this issue, notice that in the t-coordinates, the condition (4.2.1) can be rewritten
as

∂tu+ h2/3ku|t=0 = 0,

where k = eπi/3η. The top order term in h corresponds to the Neumann boundary condition.
This motivates us to consider the Robin boundary problem with general η ∈ C∞(∂O) as
a perturbation of the Neumann boundary problem. To achieve this, we shall combine our
differential operator P − z with the boundary operator and consider(

P − z
γ

)
: H2(Rn \ O)→ L2(Rn \ O)×H l(∂O) (6.1.3)

where for Dirichlet problem, l = 3
2
,

γ = γ0 : H2(Rn \ O)→ H3/2(∂O), u 7→ u|∂O;

and for Neumann or Robin problem (k = eπi/3γ) that we shall focus on, l = 1
2
,

γ = h2/3(γ1 + kγ0) : H2(Rn \ O)→ H1/2(∂O), u 7→ h2/3(∂νu+ ku)|∂O. (6.1.4)

(γ1 is defined by equation (6.1.4)). In the coordinates (t, x′), we have γ(u) = u(0, ·) (Dirichlet)
or

γ(u) = (∂tu+ h2/3ku)(0, ·) (Neumann or Robin).

Therefore from now on we shall think of P − z as the first component of the combined
operator (6.1.3), i.e. the differential operator from H2(Rn \ O) to L2(Rn \ O) instead of an
operator with a smaller domain (2.1.1). Moreover, to avoid confusion, we shall write RP (z)
to be the resolvent of P with domain (2.1.1), or in other words, RP (z) is the right inverse of
P − z : H2 → L2 satisfying γRP (z) = 0. We wish to use our new operator (6.1.3) to give an
equivalent description of resonances instead of

m(h−2(w + h2/3z)) = tr
1

2πi

∮
|z̃−z|=ε

RP (z̃)dz̃, 0 < ε� 1. (6.1.5)
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Proposition 6.1.1. The eigenvalues of P are exactly the poles of(
P − z
γ

)−1

: L2(Rn \ O)×H l(∂O)→ H2(Rn \ O) (6.1.6)

as a meromorphic operator-valued function in z. Moreover, they have the same multiplicity:

m(h−2(w + h2/3z)) = tr− 1

2πi

∮
|z̃−z|=ε

(
P − z̃
γ

)−1
d

dz̃

(
P − z̃
γ

)
dz̃, (6.1.7)

where 0 < ε� 1 is chosen in a way that there are no other poles for the operator (6.1.6) in
|z̃ − z| < ε.

Proof. Let K be a right inverse of γ:

K : L2(∂O)→ H2(Rn \ ∂O), γKg = g, ∀g ∈ H l(∂O). (6.1.8)

One possible choice is the so-called Poisson operator, but any choice will be good for us.
Then we have (

P − z
γ

)−1

= (RP (z), K −RP (z)(P − z)K), (6.1.9)

In fact, for any (v, g) ∈ L2(Rn \ O)×H l(∂O), let

u = RP (z)v + (K −RP (z)(P − z)K)g,

by the construction of K, (6.1.8), and the fact that γRP (z) = 0,

(P − z)u = v + (P − z)Kg − (P − z)Kg = v, γu = γKg = g.

Therefore (6.1.9) gives(
P − z
γ

)−1
d

dz

(
P − z
γ

)
= (RP (z), K −RP (z)(P − z)K)

(
−1
0

)
= −RP (z).

Now (6.1.7) and the proposition follows directly from (6.1.5).

6.2 Model Grushin problem

In this section, we shall study the model problem for ordinary differential operators by setting
up a suitable Grushin problem. Recall that we have the combined operator (6.1.3)(

P − z
γ

)
: H2(Rn \ O)→ L2(Rn \ O)×H1/2(∂O),
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where P − z is given by

P − z = h−2/3(−h2∆Γ − w)− z : H2(Rn \ O)→ L2(Rn \ O)

and γ is given by

γ = h2/3(γ1 + kγ0) : H2(Rn \ O)→ L2(∂O), u 7→ h2/3(∂νu+ ku)|∂O.

In local coordinates (t = h−2/3xn, x
′) near the boundary, we have

P − z = e−2πi/3(D2
t + 2tQ(h2/3t, x′, hDx′ ;h))

+ h−2/3(R(x′, hDx′ ;h)− w) + F (h2/3t, x′)h2/3Dt − z,

and
γ(u) = γ1(u) + h2/3kγ0(u) = (∂tu+ h2/3ku)(0, ·).

Therefore we start by ignoring the lower order terms and considering a model operator

Pλ − z = e−2πi/3(D2
t + µt) + λ− z (6.2.1)

with γ1 : u 7→ u′(0), where λ ∈ R, C−1 6 µ 6 C and | Im z| < C1 with C1 large but fixed.
Here we regard λ as h−2/3(R(x′, hDx′) − w), and µ as Q(0, x′, hDx′). The other terms will
be small perturbation.

The model above is only necessary for handling the region near the glancing hypersurface
Σw = {R(x′, ξ′) = w}. In the situation that |λ| � 1 + |Re z|, i.e. away from the glancing
region, since Q is bounded by R, we can also treat the term e−2πi/3µt as a perturbation and
instead consider the model operator

P#
λ − z = e−2πi/3D2

t + λ− z (6.2.2)

with the same γ1 and λ ∈ R, | Im z| < C1. Here we note that (6.2.2) is elliptic as |λ−Re z| � 1
and thus this model is easier to work with.

In this section, we shall first review some properties of the Airy function and estimates of
Airy operators and boundary operators. Next we solve the Grushin problem for the model
Airy operators in the case µ = 1. Then we treat the easier model operator (6.2.2) in the
same way. Finally we shall show how the additional parameter µ affects our construction
and that all the estimates are uniform for µ in a compact subset of (0,∞).

6.2.1 Some basic estimates

In this part, we give more estimates on the Airy differential operators and the boundary
operators.

Consider the Airy operator D2
t + t : B ⊂ L2 → L2 and the boundary operators

γ0 : B → C, u 7→ u(0), γ1 : B → C, u 7→ u′(0).
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Here L2 = L2(0,∞) and B = {u ∈ L2 : D2
t u, tu ∈ L2} is a Banach space equipped with the

norm
‖u‖B = ‖D2

t u‖+ ‖tu‖+ ‖u‖, (6.2.3)

where we use ‖ · ‖ to represent the standard L2-norm on (0,∞).
It is clear that ‖(D2

t + t)u‖ 6 C‖u‖B. More precisely, we have the following identity,

‖(D2
t + t)u‖2 = ‖D2

t u‖2 + ‖tu‖2 + 2‖
√
tDtu‖2 − |γ0u|2, (6.2.4)

for any u ∈ C∞0 ([0,∞)). The proof is based on a simple integration by parts. To see this,
let 〈, 〉 be the standard L2 inner product on (0,∞). Then

‖(D2
t + t)u‖2 = ‖D2

t u‖2 + ‖tu‖2 + 2 Re〈D2
t u, tu〉

= ‖D2
t u‖2 + ‖tu‖2 + 2 Re〈Dtu,Dt(tu)〉

= ‖D2
t u‖2 + ‖tu‖2 + 2 Re〈Dtu, tDtu〉+ 2 Re

1

i
〈Dtu, u〉

= ‖D2
t u‖2 + ‖tu‖2 + 2‖

√
tDtu‖2 − |γ0u|2.

Here in the last step, we use again the integration by parts

〈Dtu, u〉 = 〈u,Dtu〉 − i|u(0)|2 (6.2.5)

to get

Re
1

i
〈Dtu, u〉 = Im〈Dtu, u〉 = − i

2
|u(0)|2.

Next we give some estimates of γ0 and γ1. For any u ∈ C∞0 ([0,∞)), by the Cauchy-
Schwartz inequality and (6.2.5), we get

|γ0u|2 6 2‖Dtu‖‖u‖,

and similarly
|γ1u|2 6 2‖D2

t u‖‖Dtu‖.
Another application of integration by parts and the Cauchy-Schwartz inequality also gives

‖Dtu‖2 = 〈D2
t u, u〉 − u(0)u′(0)

6 |γ1u||γ0u|+ ‖D2
t u‖‖u‖

6 2‖D2
t u‖1/2‖u‖1/2‖Dtu‖+ ‖D2

t u‖‖u‖

which leads to the standard interpolation estimates

‖Dtu‖ 6 (
√

2 + 1)‖D2
t u‖1/2‖u‖1/2. (6.2.6)

As a consequence, for any ε > 0,

|γ0u| 6 C‖D2
t u‖1/4‖u‖3/4 6 ε‖D2

t u‖+ Cε‖u‖
|γ1u| 6 C‖D2

t u‖3/4‖u‖1/4 6 ε‖D2
t u‖+ Cε‖u‖.

(6.2.7)
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Now from (6.2.3) and (6.2.4) we get

‖u‖B 6 C(‖u‖L2 + ‖(D2
t + t)u‖L2) (6.2.8)

and
|γ0u| 6 C‖u‖B, |γ1u| 6 C‖u‖B. (6.2.9)

We finish this part by using these two estimates to show that elements in B can be
written in a unique way as a linear combination of the Neumann Airy eigenfunctions (e′j)

∞
j=1

introduced in the previous section and one other element f ∈ B with γ1f 6= 0. We remark
that (e′j) is not an orthonormal basis in B, so this expression might be different from the
orthogonal expansion in L2.

On one hand, if the sum
∑

j uje
′
j converges in B to some u, then by (6.2.9) we have

γ1u =
∑

j ujγ1e
′
j = 0. On the other hand, if u ∈ B satisfies γ1u = u′(0) = 0, then we can

consider the L2-orthogonal expansion

u =
∑
j

〈u, e′j〉e′j. (6.2.10)

By (6.2.8), we have for any finite subset J of Z+,

‖
∑
j∈J

〈u, e′j〉e′j‖B 6 C(‖
∑
j∈J

〈u, e′j〉e′j‖+ ‖(D2
t + t)

∑
j∈J

〈u, e′j〉e′j‖)

6 C(‖
∑
j∈J

〈u, e′j〉e′j‖+ ‖
∑
j∈J

ζ ′j〈u, e′j〉e′j‖)

6 C(‖
∑
j∈J

〈u, e′j〉e′j‖+ ‖
∑
j∈J

〈u, (D2
t + t)e′j〉e′j‖)

6 C(‖
∑
j∈J

〈u, e′j〉e′j‖+ ‖
∑
j∈J

〈(D2
t + t)u, e′j〉e′j‖).

which shows that the sum (6.2.10) converges to u in B since (D2
t + t)u ∈ L2.

Therefore if we fix some f ∈ B such that γ1f = f ′(0) 6= 0, then every u ∈ B can be
uniquely expressed in the form

u = u0f +
∞∑
j=1

uje
′
j (6.2.11)

where the sum converges in B. We simply choose u0 first such that γ1(u − u0f) = 0, then
write the orthogonal expansion of u− u0f by (e′j) in L2, i.e. uj = 〈u− u0f, e

′
j〉.

6.2.2 Model Airy problem

The operator in (6.2.1) (taking µ = 1) combined with the Neumann boundary operator(
Pλ − z
γ1

)
: B → L2 × C (6.2.12)
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may not be invertible for all z with | Im z| < C1. In fact, let us take N = N(C1) as the
largest number such that

| Im e−2πi/3ζ ′N | 6 C1,

so that e−2πi/3ζ ′j + λ − z 6= 0 for j > N + 1. Then (6.2.12) is not invertible precisely when

e−2πi/3ζ ′j + λ − z = 0 for some j = 1, . . . , N since e′j is in its kernel. Therefore we need
to correct this operator in a suitable way to make it invertible. We shall also modify our
spaces by putting an exponential weight. Moreover, we also need to add correct powers of
〈λ− Re z〉 in the norm.

More precisely, let us consider the following Grushin problem for (6.2.12):

Pλ(z) =

 Pλ − z R0
−

γ1 r−
R0

+ 0

 : Bz,λ,r → Hz,λ,r (6.2.13)

(Later on we shall always choose r− = 0.) Here the spaces and the norms on the spaces are
given by

Bz,λ,r = Bz,λ,r × CN ,∥∥∥∥( u
u−

)∥∥∥∥
Bz,λ,r

= ‖u‖Bz,λ,r + |u−|,

Hz,λ,r = L2
r × C〈λ−Re z〉1/4 × CN

〈λ−Re z〉,∥∥∥∥∥∥
 v

v0

v+

∥∥∥∥∥∥
Hz,λ,r

= ‖v‖L2
r

+ 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|.

(6.2.14)

with | · | fixed norms on C or CN and

L2
r = L2([0,∞), ertdt), Bz,λ,r = {u ∈ L2

r;D
2
t u, tu ∈ L2

r}.

The norms are given by the standard weighted L2-norm ‖ · ‖L2
r

and

‖u‖Bz,λ,r = 〈λ− Re z〉‖u‖L2
r

+ ‖D2
t u‖L2

r
+ ‖tu‖L2

r
, (6.2.15)

respectively. Moreover, the operators are given by

Pλ − z : Br → L2
r, u 7→ (e−2πi/3(D2

t + t) + λ− z)u;

γ1 : Br → C, u 7→ u′(0);

R0
+ : Br → CN , u 7→ (〈u, e′j〉)16j6N ;

R0
− : CN → L2

r, u− 7→
N∑
j=1

u−(j)e′j;

r− : CN → C, u− 7→
N∑
j=1

rju−(j).
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We remark that the heuristic reason for the weight 〈λ−Re z〉1/4 in the second component
C on Hz,λ,r is that 〈λ− Re z〉 roughly represents the Laplacian on the boundary 〈∆∂O〉 (up
to some parameters). Therefore if u ∈ H2(Rn \ O), then by the well-known property of
boundary operators ∂νu|∂O ∈ H1/2(∂O) the norm of which corresponds to 〈λ−Re z〉1/4. We
can also see that this is the correct weight by rescaling the estimate (6.2.7). For the same
reason, if we wish to work with Dirichlet boundary operator, then we need to replace this
weight 〈λ− Re z〉1/4 by 〈λ− Re z〉3/4.

Moreover, to handle powers of t which will appear in lower order terms, it is necessary to
introduce the exponential weight ert, r > 0 in the definition of spaces Bz,λ,r and Hz,λ,r. This
will be explained in full details in the next section.

For r = 0, it is clear that the space Bz,λ,0 is just B in the previous section with an
equivalent norm (of course not uniformly in z, λ) and Pλ(z) : Bz,λ,0 → Hz,λ,0 is a uniformly
bounded operator. Now we look for the inverse of Pλ(z). Let

Pλ(z)

(
u
u−

)
=

 v
v0

v+

 . (6.2.16)

Then explicitly we have

(Pλ − z)u+R0
−u− = v

u′(0) + r−u− = v0

R0
+u = v+.

We express v in terms of the orthonormal basis (e′j)
∞
j=1 in L2:

v =
∞∑
j=1

vje
′
j,

and we write v+ = (v+(j))16j6N . Then we look for solutions with u ∈ B as in (6.2.11)

u = u0f +
∞∑
j=1

uje
′
j

and
u− = (u−(j))16j6N .

Let us write
f0 := f ′(0), fj := 〈f, e′j〉, ηj := e−2πi/3ζ ′j + λ− z.

then we have
(Pλ − z)e′j = ηje

′
j, (Pλ − z)∗e′j = η̄je

′
j.
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where (Pλ − z)∗ = e2πi/3(D2
t + t) + λ− z̄ is the formal adjoint of Pλ − z. Moreover,

〈(Pλ − z)f, e′j〉 = e−2πi/3e′j(0)f0 + 〈f, (Pλ − z)∗e′j〉 = e−2πi/3e′j(0)f0 + ηjfj.

Then we can rewrite the system (6.2.16) as an infinite system of linear equations:

[e−2πi/3e′j(0)f0 + ηjfj]u0 + ηjuj + u−(j) = vj, (1 6 j 6 N)

[e−2πi/3e′j(0)f0 + ηjfj]u0 + ηjuj = vj, (j > N + 1)

f0u0 +
N∑
j=1

rju−(j) = v0

fju0 + uj = v+(j), (1 6 j 6 N).

(6.2.17)

It is not difficult to see that as long as

1− e−2πi/3

N∑
j=1

rje
′
j(0) 6= 0,

we have a unique solution for (6.2.17),

u0 =

[
1− e−2πi/3

N∑
j=1

rje
′
j(0)

]−1

f−1
0

[
v0 +

N∑
j=1

rj(ηjv+(j)− vj)

]
uj = v+(j)− fju0, (1 6 j 6 N)

uj = η−1
j (vj − (e−2πi/3e′j(0)f0 + ηjfj)u0), (j > N + 1)

u−(j) = vj − ηjv+(j)− e−2πi/3e′j(0)f0u0, (1 6 j 6 N).

For simplicity, henceforth we shall choose f0 = 1, r− = 0 (though other choices are also
possible). Then the solution becomes

u0 = v0

uj = v+(j)− fjv0, (1 6 j 6 N)

uj = η−1
j (vj − e−2πi/3e′j(0)v0)− fjv0, (j > N + 1)

u−(j) = vj − e−2πi/3e′j(0)v0 − ηjv+(j), (1 6 j 6 N).

(6.2.18)

Now we need to estimate the norm.

Lemma 6.2.1. The Grushin problem (6.2.13) is well-posed for r = 0. In other words,
suppose (6.2.16), then we have

‖u‖Bz,λ,0 + |u−| 6 C(‖v‖L2 + 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|). (6.2.19)

where C is independent of λ, z.
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Proof. We first observe that for 1 6 j 6 N ,

|ηj| 6 C〈λ− Re z〉

while for j > N + 1
|ηj| > C−1(〈λ− Re z〉+ ζ ′j).

The first inequality just follows the definition ηj = e−2πi/3ζ ′j + λ − z and the assumption
| Im z| < C1. When 〈λ−Re z〉 > Cζ ′j, we can get the second inequality simply by estimating
the real part using |Re ηj| > |λ − z| − Cζ ′j. Otherwise we use the imaginary part Im ηj =
−(sin 2π/3)ζ ′j − Im z which does not vanish from the assumption on N . Therefore | Im ηj| >
C−1ζ ′j and we also get the second inequality.

From the last equation in (6.2.18), we easily get

|u−| 6 C(‖v‖L2 + |v0|+ 〈λ− Re z〉|v+|). (6.2.20)

To estimate u, we first write its orthogonal expansion in L2 following the first three equations
in (6.2.18)

u = u0f +
∞∑
j=1

uje
′
j

= v0

(
f −

∞∑
j=1

fje
′
j

)
+

N∑
j=1

v+(j)e′j +
∞∑

j=N+1

η−1
j (vj − e−2πi/3e′j(0)v0)e′j

=
N∑
j=1

v+(j)e′j +
∞∑

j=N+1

η−1
j (vj − e−2πi/3e′j(0)v0)e′j

which shows that

‖u‖2
L2 =

N∑
j=1

|v+(j)|2 +
∞∑

j=N+1

|ηj|−2|vj − e−2πi/3e′j(0)v0|2

6 C|v+|2 + C〈λ− Re z〉−2‖v‖2
L2 + C|v0|2

∞∑
j=N+1

|ηj|−2|e′j(0)|2.

To treat the last term, we need a careful study of Airy functions. Recall from (2.2.9)

e′j(0) = Ai(−ζ ′j)/‖Ai ‖L2(−ζ′j ,∞) = (−1)j−1ζ
′−1/2
j ,

and the asymptotic formula (2.2.6)

ζ ′j = (
3

2
jπ)2/3(1 + o(1)), j →∞
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As a consequence, we have

|e′j(0)|2 = (
3

2
j)−2/3(1 + o(1)), j →∞

Now we can compute

∞∑
j=N+1

|ηj|−2|e′j(0)|2 6 C

∞∑
j=N+1

j−2/3(〈λ− Re z〉+ ζ ′j)
−2

6 C

∞∑
j=N+1

j−2/3(〈λ− Re z〉+ j2/3)−2

6 C

∫ ∞
1

s−2/3(〈λ− Re z〉+ s2/3)−2ds

6 C〈λ− Re z〉−3/2

∫ ∞
0

t−2/3(1 + t2/3)−2dt 6 C〈λ− Re z〉−3/2,

where in the last step we use the change of variable s = 〈λ − Re z〉3/2t. This gives the
following estimate on the L2-norm of u:

〈λ− Re z〉‖u‖L2 6 C(‖v‖L2 + 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|). (6.2.21)

Now since
(D2

t + t)u = e2πi/3(v −R0
−u− − (λ− z)u),

we have
‖(D2

t + t)u‖L2 6 C(‖v‖L2 + |u−|+ 〈λ− Re z〉‖u‖L2)

Now we can use a variation of (6.2.8)

‖u‖Bz,λ,0 6 C(‖(D2
t + t)u‖L2 + 〈λ− Re z〉‖u‖L2)

and (6.2.21) to get (6.2.19).

The next step is to consider adding a small exponential weight, i.e. r ∈ (0, r0) for r0

small.

Lemma 6.2.2. There exists r0 > 0 such that the Grushin problem (6.2.13) is uniformly
well-posed for r ∈ (0, r0). More precisely, suppose (6.2.16), then we have

‖u‖Bz,λ,r + |u−| 6 C(‖v‖L2
r

+ 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|). (6.2.22)

where C is independent of λ, z and r.
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Proof. We introduce

Prλ(z) =

 ert/2 0 0
0 1 0
0 0 1

Pλ( e−rt/2 0
0 1

)

= Pλ(z) +

 ert/2Pλe
−rt/2 − Pλ (ert/2 − 1)R0

−
γ1(e−rt/2 − 1) 0
R0

+(e−rt/2 − 1) 0


By the interpolation estimate (6.2.6), we have

Dt = O(〈λ− Re z〉−1/2) : Bz,λ,0 → L2,

thus

ert/2Pλe
−rt/2 − Pλ = e−2πi/3(irDt −

1

4
r2) = O(r〈λ− Re z〉−1/2) : Bz,λ,0 → L2.

Next, by (6.2.7),
γ0 = O(〈λ− Re z〉−3/4) : Bz,λ,0 → C,

so
γ1(e−rt/2 − 1) = −r

2
γ0 = O(r〈λ− Re z〉−1/2) : Bz,λ,0 → C〈λ−Re z〉1/4 .

Also by the super exponential decay of e′j, j = 1, . . . , N : ‖(e−rt/2 − 1)e′j(t)‖L2 = o(1) as
r → 0+, so

R0
+(e−rt/2 − 1) = o(1) : Bz,λ,0 → CN

〈λ−Re z〉.

Similarly, we have ‖(ert/2 − 1)e′j(t)‖L2 = o(1), and

(ert/2 − 1)R0
− = o(1) : CN → L2.

We see that Prλ(z) is a small perturbation of Pλ(z) in the sense that

Prλ(z)− Pλ(z) = o(1) : Bz,λ,0 → Hz,λ,0

uniformly in z, λ as r → 0+. Therefore

Prλ(z) : Bz,λ,0 → Hz,λ,0

is uniformly invertible when r ∈ [0, r0] for some small r0 > 0. Now we note that

‖u‖Bz,λ,r ∼ ‖ert/2u‖Bz,λ,0
uniformly in z, λ and r ∈ [0, r0] which again follows from the interpolation estimate (6.2.6)
for Dt. This finishes the proof of the lemma.

In particular, from (6.2.18), we see that the inverse of Pλ(z) is given by

Eλ(z) =

(
E K E+

E− K− E−+

)
: Hz,λ,r → Bz,λ,r,

where
E−+ ∈ hom(CN ,CN), (E−+)16j,k6n = −ηjδij. (6.2.23)
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6.2.3 Dependence on parameters

Now we shall modify our Grushin problem so that we get nice global symbolic properties.
For 0 < δ � 1, we put

e′λ,δj (t) = Λ1/2e′j(Λt),Λ = 〈δλ〉1/2

which also forms an orthonormal basis for L2([0,∞)). We notice that

∂kλΛ = Ok(1)δkΛ1−2k, ‖∂kλe
′λ,δ
j ‖L2 = Ok(1)δkΛ−2k.

In particular,
‖e′λ,δj − e′j‖L2 6 Cδ|λ|.

We define Rλ,δ
+ and Rλ,δ

− by replacing e′j with e′λ,δj in the definition of R0
+ and R0

− and then
construct

Pδλ(z) =

 Pλ − z Rλ,δ
−

γ1 0

Rλ,δ
+ 0

 : Bz,λ,r → Hz,λ,r. (6.2.24)

Then we have

Pδλ(z)− Pλ(z) =

 0 O(|λ|δ)
0 0

O(|λ|δ) 0

 : Bz,λ,r → Hz,λ,r.

(Here we no longer use the notation Prλ and instead abuse the notation to put parameter
δ on top.) Thus for |λ|δ � 1 we get the uniform invertibility of Pδλ(z). To get the same
estimate for all λ, we need to assume

|Re z| � 1

δ
, (6.2.25)

so that |λ| � 1 + |Re z| and we have the invertibility of

(
Pλ − z
γ1

)
without the correcting

terms Rλ,δ
± given by the following lemma.

Lemma 6.2.3. For |λ| � 1 + |Re z| and | Im z| < C1, there exists a constant C > 0
independent of z and λ such that for any u ∈ Bz,λ,0,

|〈(Pλ − z)u, u〉|+ 〈λ− Re z〉−1/2|γ1u|2 > C−1〈λ− Re z〉‖u‖2
L2 . (6.2.26)

Furthermore, for small r,(
Pλ − z
γ1

)
u =

(
v
v0

)
⇒ ‖u‖Bz,λ,r 6 C(‖v‖L2

r
+ 〈λ− Re z〉1/4|v0|). (6.2.27)
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Proof. It is possible to repeat the argument as in Lemma 6.2.1 using orthogonal expansion
with respect to (e′j). We present here another proof by using the Poisson operator Kλ : C→
Bz,λ,0, satisfying

PλKλ = 0, γ1Kλ = Id .

This Poisson operator is given by multiplying f = fλ which is the solution to the equation

e−2πi/3(D2
t + t)f + λf = 0, f ′(0) = 1.

We can give an explicit expression of f in terms of the Airy function:

fλ(t) = Ai′(e2πi/3λ)−1 Ai(t+ e2πi/3λ).

Notice that all the zeroes of Ai and Ai′ lie on the negative real axis, this expression is
well-defined as λ is real.

We shall apply the asymptotic formulas for the Airy function and its derivatives (2.2.5)
to study the L2-norm of fλ. First we consider the case λ > 0. Then

Ai′(e2πi/3λ) = −(2
√
π)−1eπi/6eλ

3/2

λ1/4(1 +O(λ−3/2)).

and
Ai(t+ e2πi/3λ) = (2

√
π)−1e−ζz−1/4(1 +O(|ζ|−1))

where

z = t+ e2πi/3λ, |z| = (t2 − tλ+ λ2)1/2, ζ =
2

3
z3/2.

We change variables by letting arg z = π
2
− θ. Then θ ∈ [−π

6
, π

2
) and

t =
λ

2
+

√
3

2
λ tan θ, |z| =

√
3

2
λ sec θ, ζ =

√
3

4
λ3/2ei(3π/4−3θ/2) sec3/2 θ.

We have the following uniform asymptotic formula in λ and θ for fλ(t):

fλ(t) = g(λ)eλ
3/2ψ(θ)e−i(7π/24−θ/4)(sec−1/4 θ)(1 +O(λ−3/2 sec−3/2 θ)),

where

g(λ) = (
√

3/2)−1/4λ−1/2(1 +O(λ−3/2)), ψ(θ) = −2

3
−
√

3

4
ei(3π/4−3θ/2) sec3/2 θ.

Therefore

‖fλ‖2
L2(0,∞) =

√
3

2
λ|g(λ)|2

∫ π/2

−π/6
eλ

3/2ϕ(θ)(sec3/2 θ)(1 +O(λ−3/2 sec−3/2 θ))dθ,

where

ϕ(θ) = 2 Reψ(θ) = 2

[
−2

3
−
√

3

4
sec3/2 θ cos(

3π

4
− 3θ

2
)

]
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satisfies
ϕ(−π/6) = 0, lim

θ→π/2−0
ϕ(θ) = −∞,

and

ϕ′(θ) = −3
√

3

4
sec5/2 θ sin(

3π

4
− θ

2
) < −3

√
3

8
< 0, θ ∈ [−π

6
,
π

2
).

Therefore integration by parts gives us

‖fλ‖ = O(λ−3/4). (6.2.28)

Now for every u ∈ Bz,λ,0, let v = u −Kλ(γ1u) = u − u′(0)fλ. We have v′(0) = 0. Now we
can write

〈(Pλ − z)u, u〉 = 〈(Pλ − z)v, v〉+ γ1u〈(Pλ − z)v, fλ〉
−z(γ1u)〈fλ, v〉 − z|u′(0)|2‖fλ‖2

L2 .

For the second term on the right-hand side, we integrate by parts:

〈(Pλ − z)v, fλ〉 = − e−2πi/3v(0) + 〈v, (Pλ − z)∗fλ〉
= − e−2πi/3v(0) + (λ(1− e2πi/3)− z̄)〈v, fλ〉.

Therefore

〈(Pλ − z)u, u〉 = e−2πi/3〈(D2
t + t)v, v〉+ (λ− z)‖v‖2 − e−2πi/3(γ1u)v(0)

+ γ1u(λ(1− e2πi/3)− z̄)〈v, fλ〉 − z(γ1u)〈fλ, v〉 − z|γ1u|2‖fλ‖2
L2 ,

where we notice that 〈(D2
t + t)v, v〉 is always nonnegative. This gives

|〈(Pλ − z)u, u〉| > Re(eπi/3〈(Pλ − z)u, u〉

>
1

2
〈(D2

t + t)v, v〉+ C−1〈λ− Re z〉‖v‖2 − ε〈λ− z〉1/2|v(0)|2

− ε〈λ− Re z〉‖v‖2 −Oε(〈λ− z〉−1/2)|γ1u|2

Now by choosing ε small enough but fixed and using

〈λ− z〉1/2|v(0)|2 6 2〈λ− z〉1/2‖Dtv‖‖v‖ 6 ‖Dtv‖2 + 〈λ− Re z〉‖v‖2

and 〈(D2
t + t)v, v〉 > ‖Dtv‖2 to deduce that

|〈(Pλ − z)u, u〉| > C−1〈λ− Re z〉‖v‖2 − C〈λ− Re z〉−1/2|γ1u|2

by ‖u‖2 6 C(‖v‖2 + 〈λ − Re z〉−3/2|γ1u|2), we can conclude the proof of (6.2.26) for λ > 0.
For λ < 0, we can get similarly ‖fλ‖ = O(|λ|−3/4) and then use

|〈(Pλ − z)u, u〉| > Re(−〈(Pλ − z)u, u〉)
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to reproduce the argument above and prove (6.2.26).
Now we prove (6.2.27). For r = 0, we can see from (6.2.26),

‖u‖2
L2 6 C〈λ− Re z〉−1‖(Pλ − z)u‖L2‖u‖L2 + C〈λ− Re z〉−3/2|γ1u|2.

Therefore
‖u‖L2 6 C〈λ− Re z〉−1‖(Pλ − z)u‖+ C〈λ− Re z〉−3/4|γ1u|2

which proves (6.2.27) for r = 0. For small r, we can simply repeat the conjugation and
perturbation argument as in Lemma 6.2.2 to conclude the uniform invertibility.

Now we give the desired invertibility for the full operator in the Grushin problem.

Proposition 6.2.4. For |λ| > 1/(Cδ) and |Re z| � 1/δ, r ∈ [0, r0] with r0 > 0 small
enough,

Pδλ
(

u
u−

)
=

 v
v0

v+

 ⇒
∥∥∥∥( u

u−

)∥∥∥∥
Bz,λ,r

6 C

∥∥∥∥∥∥
 v

v0

v+

∥∥∥∥∥∥
Hz,λ,r

. (6.2.29)

Moreover, we have the following mapping properties of Pδλ(z) and its inverse Eδλ(z): for every
k,

‖∂kλPδλ(z)‖L(Bz,λ,r,Hz,λ,r) 6 Ck〈λ− Re z〉−k,
‖∂kλEδλ(z)‖L(Hz,λ,r,Bz,λ,r) 6 Ck〈λ− Re z〉−k.

(6.2.30)

Proof. Again, we start with r = 0. Let

Π = R−R+ : L2 → (kerR+)⊥ = ImageR− =
N⊕
j=1

Ce′λ,δj

be the orthogonal projection. Then since

‖D2
t e
′λ,δ
j ‖L2 = O(〈δλ〉), ‖te′λ,δj ‖L2 = O(〈δλ〉−1/2),

we have ‖(Pλ− z)|ImageR−‖ = O(〈λ−Re z〉). Also it is easy to see ‖R+‖ = ‖R−‖ = 1. Since
Πu = R−R+u = R−v+, we have

‖Πu‖L2 6 |v+|

and
‖(Pλ − z)Πu‖L2 6 O(〈λ− Re z〉)|v+|. (6.2.31)

On the other hand, by the previous lemma,

‖(I − Π)u‖2
L2 6 C〈λ− Re z〉−1|〈(Pλ − z)(I − Π)u, (I − Π)u〉|

+ C〈λ− Re z〉−3/2|γ1(I − Π)u|2
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For the first term, we have

〈(Pλ − z)(I − Π)u, (I − Π)u〉 = 〈(I − Π)(Pλ − z)(I − Π)u, u〉
= 〈(I − Π)(Pλ − z)u, u〉 − 〈(I − Π)(Pλ − z)Πu, u〉
= 〈(I − Π)(v −R−u−), u〉 − 〈(Pλ − z)Πu, (I − Π)u〉
= 〈(I − Π)v, u〉 − 〈(Pλ − z)Πu, (I − Π)u〉
= 〈v, (I − Π)u〉 − 〈(Pλ − z)Πu, (I − Π)u〉.

For the second term, we use γ1Π = 0 to get

γ1(I − Π)u = γ1u = v0.

Therefore

‖(I − Π)u‖2
L2 6 C〈λ− Re z〉−1(‖v‖L2 + ‖(Pλ − z)Πu‖L2)‖(I − Π)u‖

+ C〈λ− Re z〉−3/2|v0|

and thus

‖(I − Π)u‖L2 6 C〈λ− Re z〉−1(‖v‖L2 + ‖(Pλ − z)Πu‖L2) + C〈λ− Re z〉−3/4|v0|
6 C〈λ− Re z〉−1‖v‖L2 + |v+|+ C〈λ− Re z〉−3/4|v0|.

(6.2.32)

Combining (6.2.31) and (6.2.32), we have

〈λ− Re z〉‖u‖L2 6 C(‖v‖L2
r

+ 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|.).

Since
u− = R+R−u− = R+(v − (Pλ − z)u) = R+v −R+(Pλ − z)u,

we have

|u−| 6 ‖v‖L2 + ‖R+(Pλ − z)u‖L2 6 ‖v‖L2 + C
N∑
j=1

|〈(Pλ − z)u, e′λ,δj 〉|.

To estimate the sum, we integrate by parts and get

〈(Pλ − z)u, e′λ,δj 〉 = 〈u, (Pλ − z)∗e′λ,δj 〉+ e−2πi/3u′(0)e′λ,δj (0).

where (Pλ − z)∗ = e2πi/3(D2
t + t) + λ− z̄ is the formal adjoint of Pλ − z so

‖(Pλ − z)∗e′λ,δj ‖L2 = O(〈λ− Re z〉).

In addition, we have u′(0) = v0 and by definition of e′λ,δj ,

e′λ,δj (0) = O(〈δλ〉1/4),
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which shows that

|〈(Pλ − z)u, e′λ,δj 〉| 6 C〈λ− Re z〉‖u‖+ C〈λ− Re z〉1/4|v0|.

As a consequence,

|u−| 6 C(‖v‖L2
r

+ 〈λ− Re z〉1/4|v0|+ 〈λ− Re z〉|v+|).

Now as in Lemma 6.2.1, we can use the equation (Pλ−z)u = v−R−u− to give the estimates
on the L2 norm of D2

t u and tu. This finishes the proof of (6.2.29) for r = 0.
To extend this to r ∈ [0, r0] for some small r0 > 0, we notice that

‖(e±rt/2 − 1)e′λ,δj ‖ = ‖(e±r〈δλ〉−1/2t/2 − 1)e′j‖ = o(1)

uniformly as r → 0 which allow us to repeat the argument in Lemma 6.2.2.
Finally, since for k > 1,

∂kλPδλ(z) =

 δ1k ∂kλR
λ,δ
+

0 0

∂kλR
λ,δ
− 0


and

‖∂kλe
′λ,δ
j ‖L2

r
= Ok(1)δk〈δλ〉−k = Ok(1)〈λ− Re z〉−k,

we get the mapping properties of Pδλ(z) in (6.2.30). For its inverse Eδλ(z), (6.2.29) gives the
mapping property when k = 0. The case k > 0 follows directly from the case k = 0 and the
Leibnitz rule.

To end this part, we study the (−+)-component of Eδλ:

Proposition 6.2.5. For any ε > 0, |λ| 6 1/(C
√
δ), |Re z| � 1/

√
δ sufficiently small de-

pending on ε,
‖Eδ
−+(z, λ)− diag(z − λ− e−2πi/3ζ ′j)‖ 6 ε. (6.2.33)

Also, detEδ
−+(z, λ) = 0 if and only if

z = λ+ e−2πi/3ζ ′j (6.2.34)

for some j = 1, . . . , N . Each zero is simple. Moreover, for |λ| � 1 + |Re z|,

‖Eδ
−+(z, λ)−1‖L(CN ,CN ) = O(〈λ− Re z〉−1) (6.2.35)

Proof. The (6.2.33) follows from the perturbation

‖Eδ
−+(z, λ)− diag(z − λ− e−2πi/3ζ ′j)‖ 6 O(λ|δ|)〈λ− Re z〉.
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Let us recall the general fact, (which is essentially the Schur complement formula, see e.g.
[10] or [32] in the setting of Grushin problems),

(Eδ
−+)−1 = −Rλ,δ

+

(
Pλ − z
γ1

)−1(
Rλ,δ
−
0

)
.

Since

(
Pλ − z
γ1

)
is not invertible precisely when ηj = e−2πi/3ζ ′j + λ− z = 0, (in which case

e′j is in the kernel), the same is true for Eδ
−+. This gives the zeros of detEδ

−+, (6.2.34). The
simplicity of the zeros is a consequence of the fact that each kernel is of one-dimensional.

Finally, in the case |λ| � 1 + |Re z|, by 6.2.3,

(
Pλ − z
γ1

)
is invertible. Therefore Eδ

−+ :

CN
〈λ−Re z〉 → CN is also invertible, which gives (6.2.35).

6.2.4 The “easy” model

When |λ| � 1+|Re z| and | Im z| < C1, we can consider an even simpler model problem with
the operator (6.2.2) which is already invertible. To obtain the uniform symbolic properties,
we shall construct the Grushin problem using the same correction terms Rλ,δ

± as in (6.2.24).
We define

P#
λ (z) =

 P#
λ − z Rλ,δ

−
γ1 0

Rλ,δ
+ 0

 : B#
λ,r → H

#
λ,r, (6.2.36)

where the spaces B#
λ,r and H#

λ,r are defined by

B#
λ,r = B#

λ,r × CN , B#
λ,r = {u ∈ L2

r : D2
t u ∈ L2

r},∥∥∥∥( u
u−

)∥∥∥∥
B#
λ,r

= 〈λ〉‖u‖L2
r

+ ‖D2
t u‖L2

r
+ |u−|,

H#
λ,r = L2

r × C〈λ〉1/4 × CN
〈λ〉,∥∥∥∥∥∥

 v
v0

v+

∥∥∥∥∥∥
H#
λ,r

= ‖v‖L2
r

+ 〈λ〉1/4|v0|+ 〈λ〉|v+|.

(6.2.37)

Proposition 6.2.6. For |λ| � 1 + |Re z|, and r ∈ [0, r0] with r0 > 0 small enough, P#
λ (z) :

B#
λ,r → H

#
λ,r is uniformly invertible. We have the mapping properties for P#

λ (z) and its

inverse E#
λ (z):

‖∂kλP
#
λ (z)‖L(B#

λ,r,H
#
λ,r)

6 Ck〈λ〉−k

‖∂kλE
#
λ (z)‖L(H#

λ,r,B
#
λ,r)

6 Ck〈λ〉−k.
(6.2.38)
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Moreover, the (−+)-component of E#
λ satisfies:

E#
−+(z, λ)−1 = O(〈λ〉−1). (6.2.39)

Proof. The proof is almost identical to the Airy model problem we discussed above. To make
the argument work, we only need to replace the Poisson operator Kλ by K#

λ satisfying

P#
λ K

#
λ = 0, γ1K

#
λ = 0,

which is given by multiplying the function

f#
λ = −eπi/3λ−1/2 exp(−e−πi/3λ1/2t).

When λ is negative, we choose the branch λ1/2 = i(−λ)1/2 so f#
λ has exponential decay. An

easy calculation shows that
‖fλ‖L2 = O(|λ|−3/4),

and therefore all our arguments in Lemma 6.2.3, thus in Proposition 6.2.4 and 6.2.5 can be
carried out in the same way. We shall omit the details here.

6.2.5 The µ-dependent construction.

Now we shall put the parameter µ back into the operator and describe the necessary modifi-
cations we need to make in the model problem. The idea is to change coordinates t = µ−1/3t̃
in (6.2.1) which will reduce to the case µ = 1. From our discussion, it will be clear that when
µ varies in a compact subset of (0,∞) all the estimates will be uniform in µ provided that
we construct all the operators accordingly and replace the the eigenvalues ζ ′j of Neumann

Airy operator D2
t + t by µ2/3ζ ′j. More precisely, we have the following Grushin problem

Pδλ(z) =

 Pλ − z Rλ,δ,µ
−

γ1 0

Rλ,δ,µ
+ 0

 : Bz,λ,r → Hz,λ,r (6.2.40)

where the spaces Bz,λ,r,Hz,λ,r are as before and we reintroduce the additional parameter µ
in the operators

Pλ − z = e−2πi/3(D2
t + µt) + λ− z

Rλ,δ,µ
+ u = (〈u, eλ,δj,µ〉)16j6N

Rλ,δ,µ
− u− =

N∑
j=1

u−(j)eλ,δj,µ

with
eλ,δj,µ(t) = µ1/6e′λ,δj (µ1/3t) = µ1/6〈δλ〉1/4e′j(µ1/3〈δλ〉1/2t). (6.2.41)

In the mean time, we also replace the Rλ,δ
± in the easy model by Rλ,δ,µ

± . Then all the previous
results hold uniformly in µ ∈ [C−1, C] ⊂ (0,∞) with possibly a smaller r0 > 0 due to the
change of variable t = µ−1/3t̃.
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6.3 Microlocal Grushin problem

6.3.1 Analysis near the glancing hypersurface

We can use |R(x′, ξ′)−w| as our distance function to the glancing hypersurface Σw for which
we shall perform the second microlocalization. First, we work near the glancing hypersurface,
i.e. |R(x′, ξ′)− w| 6 2C−1. Then

λ = h−2/3(R(x′, ξ′)− w) = O(h−2/3).

We shall think of this as a perturbation of the principal symbol(
P0 − z
γ1

)
=

(
e−2πi/3(D2

t + µt) + λ− z
γ1

)
, (6.3.1)

where
µ = 2Q(x′, ξ′) ∈ [C−1, C].

As in the previous section, we set up the Grushin problem by letting R± = Rλ,δ
± there. Then

we have the operator-valued symbol

P0(z) =

 P0 − z R−
γ1 0
R+ 0

 (6.3.2)

which is uniformly invertible in L(Bz,λ,r,Hz,λ,r) with inverse E0(z).
For simplicity, let us pretend for now that Q does not depend additionally in h, then by

Taylor expansion with respect to xn = h2/3t, we have

P(z) ≡ P0(z) + h2/3K0 +
∞∑
j=1

h2j/3T jPj +
∞∑
j=1

h2j/3T j−1Dj.

Here

K0 =

 0 0
k(x′)γ0 0

0 0

 ,

Pj =

 1
j!

2e−2πi/3t∂jtQ(0, x′, ξ′) 0

0 0
0 0

 ,

Dj =

 1
(j−1)!

∂j−1
t F (0, x′)Dt 0

0 0
0 0

 ,
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and

T =

 t 0 0
0 0 0
0 0 0

 .

To find the inverse of such symbols, we shall take an approach similar to Sjöstrand [29,
section 1] which is motivated by the work of Boutet de Monvel-Kree [22] on formal analytic
symbols. Instead of considering a symbol q = q(x, ξ;h), we deal with the formal operator

Q = q(x, ξ + hDx;h) ≡
∑

α∈Nn−1

1

α!
∂αξ q(x, ξ;h)(hDx)

α.

The symbol q itself can be recovered by the formula

q = Q(1).

The advantage of working with this setting is that the composition formula

a#hb =
∑

α∈Nn−1

1

α!
(h∂ξ)

αaDα
x b

becomes the formal composition of the corresponding formal operators A and B:

a#hb = A ◦B(1).

Therefore finding the inverse of such a symbol is equivalent to finding the inverse of the
corresponding formal operator.

For this purpose, we shall consider operators of the form

A =
∑
k,α

(h2/3T )kAk,α(x′, ξ, λ;h)Dα
x′ ,

where
Ak,α : Bz,λ,r → Hz,λ,r.

The inverses of such operators should be of the form

B =
∑
k,α

(h2/3T )kBk,α(x′, ξ, λ;h)Dα
x′ ,

where
Bk,α : Hz,λ,r → Bz,λ,r.

However, we should notice that the T in the second class of operators should be interpreted
as

T =

(
t 0
0 0

)
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acting on Bz,λ,r instead of on Hz,λ,r. When needed, we shall write this one as TB and the
previous one as TH.

There are several technical issues about these two different operators T that we have to
deal with. First, T is not a bounded operator on Bz,λ,r or Hz,λ,r. We can deal with this issue
by relaxing the exponentially weighted space.

T k = O(1)Ckkk(r − r′)−k : Bz,λ,r → Bz,λ,r′

if r > r′ and similarly for Hz,λ,r → Hz,λ,r′ . Therefore we can work on the formal level
and interpret the formal operators in the end as operators from Bz,λ,r to Hz,λ,r′ (or similar
operators with the weight function in the codomain relaxed to r′.)

The second issue comes from the non-commutativity of the operators T with Ak or Bk.
When composing two such operators A and B, we are hoping to get operators of the form

C =
∑
k,α

(h2/3T )kCk,α(x′, ξ′, λ)Dα
x′ ,

where
Ck,α : Hz,λ,r → Hz,λ,r or Bz,λ,r → Bz,λ,r,

depending on the order of composition. This composition will involve the “commutators”
adT = [T, ·] which we interpret as

adT (A) = THA− ATB,

adT (B) = TBB −BTH,

when it acts on different classes. We shall also need adT to act on the two different classes
of C and we shall interpret it accordingly.

This involves the study of stability of mapping properties of Ak and Bk under the “com-
mutator operation” adT . We first consider P0 to see its mapping properties and then adjust
our definition of formal operators in a suitable way.

Lemma 6.3.1. For |Re z| � 1/δ, we have

adkT P0 = Ok(δ
−k/2〈λ− Re z〉−k/2) : Bz,λ,r → Hz,λ,r. (6.3.3)

Proof. We have seen in the last section that this is true for k = 0. A simple calculation gives

adkT P0 =

 adkt (P0 − z) tkR−
(−1)kγ1t

k 0
(−1)kR+t

k 0

 ,

where adt = [t, ·] is the commutator with multiplying t. For k = 1,

adt(P0 − z) = 2ie−2πi/3Dt = O(〈λ− Re z〉−1/2) : Bz,λ,r → L2
r.
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For k = 2,
ad2

t (P0 − z) = −2e−2πi/3 = O(〈λ− Re z〉−1) : Bz,λ,r → L2
r.

For k > 2,
adkt (P0 − z) = 0.

For k = 1,
(−1)kγ1t

k = γ0 = O(〈λ− Re z〉−1/2) : Bz,λ,r → C〈λ−Re z〉1/4 .

For k > 1,
(−1)kγ1t

k = 0.

Also for k > 1, we have

R+tk = Ok(δ
−k/2〈λ− Re z〉−k/2) : Bz,λ,r → CN ;

(−1)ktkR− = Ok(δ
−k/2〈λ− Re z〉−k/2) : CN → L2

r.

Combining all these estimates together, we get the desired mapping properties for adkT P0.

On the other hand, we also need the stability for P0(z) under differentiation in x′, ξ′, λ
which will give the second microlocal symbol class which is simply

P0(z) ∈ SΣw,2/3(∂O; 1,L(Bz,λ,r,Hz,λ,r)).

We shall combine the two types of mapping properties together to get

∂αx′∂
β
ξ′∂

l
λ adkT P0(z) = O(δ−k/2〈λ− Re z〉−l−k/2) : Bz,λ,r → Hz,λ,r,

with the constants depending on k, l, α, β. Now each of ∂x′ , ∂ξ′ , ∂λ and adT is a derivation
provided we interpret adT suitably. We get similar estimates for the inverse:

∂αx′∂
β
ξ′∂

l
λ adkT E0(z) = O(δ−k/2〈λ− Re z〉−l−k/2) : Hz,λ,r → Bz,λ,r,

since we have seen the estimates for k = l = 0, α = β = 0 in last section. We can replace
〈λ− Re z〉 by 〈λ〉 at the expense of δ-dependent constants.

Also we have the symbol properties for Pj, Dj and K0:

∂αx′∂
β
ξ′∂

l
λ adkT Pj(z) = O(〈λ〉−l−k/2) : Bz,λ,r → Hz,λ,r, (6.3.4)

∂αx′∂
β
ξ′∂

l
λ adkT Dj(z) = O(〈λ〉−1/2−l−k/2) : Bz,λ,r → Hz,λ,r, (6.3.5)

and
∂αx′∂

β
ξ′∂

l
λ adkT K0(z) = O(〈λ〉−1/2−l−k/2) : Bz,λ,r → Hz,λ,r. (6.3.6)

We remark that we neglect a number of simplifying features here, for example, for ∂αx′∂
β
ξ′∂

l
λ adkT K0 =

0, unless β, k and l are all zero.
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Now we can introduce the suitable class of formal operators: these take the form

A =
∑

α∈Nn−1,j,k,l,m∈N

(h2/3T )j(h2/3〈λ〉−1/2)k(h1/3〈λ〉−1)lhmAα,j,k,l,m(x′, ξ′, λ, z)Dα
x′ , (6.3.7)

with the mapping properties for Aα,j,k,l,m

∂α̃x′∂
β̃
ξ′∂

l̃
λ adk̃T Aα,j,k,l,m = O(〈λ〉−l̃−k̃/2) : Bz,λ,r → Hz,λ,r. (6.3.8)

Now we restore the dependence on h of Q and rewrite the operator P as

P(z) = h2/3K0(x′) +
∞∑
j=0

h2j/3T j(Pj(x′, ξ′, λ, z;h) + h2/3Dj+1(x′;h)),

where K0 is the same as above, while Pj and Dj satisfy the same symbol properties (6.3.4)
and (6.3.5).

Then the associated formal operator P is given by

P =
∑

α∈Nn−1

1

α!
∂αξ′(P(x′, ξ′, λ, z;h))(hDx′)

α

=
∑

α∈Nn−1

1

α!
[∂α

′′

ξ′′ (∂ξ1 + h−2/3∂λ)
α1P ](x′, ξ′, λ, z;h)(hDx′)

α

=
∑

α∈Nn−1

1

α!
[(h∂ξ′′)

α′′(h∂ξ1 + h1/3∂λ)
α1P ](x′, ξ′, λ, z;h)Dα

x′

= h2/3K0 +
∞∑
j=1

h2j/3T j−1Dj

+
∑

α∈Nn−1

1

α!

∑
j∈N

h2j/3T j[(h∂ξ′′)
α′′(h∂ξ1 + h1/3∂λ)

α1Pj](x′, ξ′, λ, z;h)Dα′

x′

It is of the form (6.3.7) with terms satisfying (6.3.8), and has principal term P0(x′, ξ, λ, z) =
P0(z). Here we write α′ = (α1, α

′′).
For the inverse, we consider operators B of the same form as A with Aα,j,k,l,m replaced

by Bα,j,k,l,m satisfying

∂α̃x′∂
β̃
ξ′∂

l̃
λ adk̃T Bα,j,k,l,m = O(〈λ〉−l̃−k̃/2) : Hz,λ,r → Bz,λ,r. (6.3.9)

Then the composition of A and B,

C = A ◦B, (or B ◦ A),

is of the same form as A and B with Aα,j,k,l,m or Bα,j,k,l,m replaced by Cα,j,k,l,m satisfying

∂α̃x′∂
β̃
ξ′∂

l̃
λ adk̃T Bα,j,k,l,m = O(〈λ〉−l̃−k̃/2) : Hz,λ,r → Hz,λ,r. (6.3.10)
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(or Bz,λ,r → Bz,λ,r.)
Now the construction of the formal inverses is through the standard techniques of Neu-

mann series.

Lemma 6.3.2. Let A be of the form (6.3.7) with terms satisfying (6.3.8), and with A0

invertible. Suppose that B0 = A−1
0 satisfies

B0 = O(1) : Hz,λ,r → Bz,λ,r.

Then there exists B as above with the principal term B0 such that

A ◦B = Id, B ◦ A = Id .

Proof. Let C = A◦B0 where B0 = B0, then C is as above with C0 = A0 ◦B0 = Id. Therefore
we can form the formal Neumann series

D = Id +(Id−C) + (Id−C) ◦ (Id−C) + · · ·

which again gives a formal operator as above. Then we can simply take B = B0 ◦D to get
the right inverse. The left inverse can be constructed in the same way and the standard
argument shows that the two must have the same formal expansions. And it is clear from
the construction that the principal term of B is B0.

Now applying this lemma to P, we get an inverse E. Letting E = E(1), we get a
parametrix for P(z) in the region |R(x′, ξ′)− w| 6 2C−1:

E(x′, ξ′, λ, z;h) =
∑

j,k,l,m∈N

(h2/3T )j(h2/3〈λ〉−1/2)k(h1/3〈λ〉−1)lhmE0,j,k,l,m(x′, ξ′, λ, z) (6.3.11)

with
∂α̃x′∂

β̃
ξ′∂

l̃
λ adk̃T E0,j,k,l,m = O(〈λ〉−l̃−k̃/2) : Hz,λ,r → Bz,λ,r. (6.3.12)

In particular, the principal term is exactly E0 as we constructed in the previous section.

6.3.2 Analysis away from the glancing hypersurface

Now we deal with the region |R(x′, ξ′) − w| > C−1. In this case, Q � |λ| = h−2/3|R − w|
so that we are working with the second model operator in last section where we regard
tQ(h2/3t, x′, ξ′) also as a perturbation. Let

P#
0 = e−2πi/3D2

t + λ, λ = h−2/3(R(x′, ξ′)− w),

and R± as before. The operator-valued symbol

P#
0 (z) =

 P#
0 − z R−
γ1 0
R+ 0

 : B#
λ,r → H

#
λ,r (6.3.13)
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is uniformly invertible with inverse E#
0 (z) since |λ| > h−2/3/C � |Re z|. Moreover,

P#
0 (z) ∈ SΣw,2/3(∂O; 1,L(B#

λ,r,H
#
λ,r)).

Recall the definition for the symbol class that away from the glancing hypersurface, the
symbol behaves classically and we do not need to specify the derivative in λ. However, we
need to consider the possibility that ξ′ may get large. More precisely, the symbol properties
for P#

0 and E#
0 are given by

∂αx′∂
β
ξ′ adkT P

#
0 (z) = O(〈ξ′〉−|β|〈λ〉k/2) : B#

λ,r → H
#
λ,r;

∂αx′∂
β
ξ′ adkT P

#
0 (z) = O(〈ξ′〉−|β|〈λ〉−k/2) : H#

λ,r → B
#
λ,r;

where we notice that |λ|−k/2 ∼ (h−1/3〈ξ′〉)−k and Q(0, x′, ξ′) = O(h2/3)|λ|. For the lower
order term in the expansion

P(z) ≡ h2/3K0 +
∞∑
j=0

(h2/3T )jP#
j (x, ξ, z;h)

with T , K0 as before and

∂αx′∂
β
ξ′ adkT P

#
j = O(1)〈ξ′〉−|β|(h1/3〈ξ′〉−1)k : B#

λ,r → H
#
λ,r.

We proceed exactly as before to define the associated formal operator

P# =
∑

α∈Nn−1

1

α!
((h∂ξ′)

αP)Dα
x′ .

This motivates us to consider the general class of formal operators of the form

A# =
∑

α∈Nn−1,j,k∈N

(h2/3T )j(h〈ξ′〉)kA#
α,j,k(x

′, ξ′, z;h)Dα
x′ (6.3.14)

with
∂α̃x′∂

β̃
ξ′ adk̃T Aα,j,k = O(1)〈ξ′〉−|β̃|(h1/3〈ξ′〉−1)k̃ : B#

λ,r → H
#
λ,r. (6.3.15)

So we see that P# is in this class. The same argument as in the case near the glancing
hypersurface shows that P# has a formal inverse E# of the same form satisfying the estimates
with H# and B# exchanged. Therefore we have an inverse of P(z) in the region |R(x′, ξ′)−
w| > C−1,

E#(x′, ξ′, z;h) = E#(1) =
∑
j,k∈N

(h2/3T )j(h〈ξ′〉)kE#
j,k(x

′, ξ′, z;h) (6.3.16)

with the following mapping properties

∂αx′∂
β
ξ′ adk̃T E

#
j,k = O(1)〈ξ′〉−|β|(h1/3〈ξ′〉)k : H#

λ,r → B
#
λ,r. (6.3.17)
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6.3.3 Analysis in the intermediate region

In the intermediate region C−1 6 |R(x′, ξ′)−w| 6 2C−1, we observe that both cases reduce
to simpler expansions that coincide with each other. The key point is that in this region
both λ and ξ′ will be irrelevant. In fact, |ξ′| is bounded and λ ∼ h−2/3. Therefore we have
the expansions

E(x′, ξ′, z;h) =
∑
j,k∈N

(h2/3T )jhkEj,k(x′, ξ′, z;h)

where
∂αx′∂

β
ξ′ adk̃T Ej,k = O(hk/3) : Hz,λ,r → Bz,λ,r;

and
E#(x′, ξ′, z;h) =

∑
j,k∈N

(h2/3T )jhkE#
j,k(x

′, ξ′, z;h)

where
∂αx′∂

β
ξ′ adk̃T E

#
j,k = O(hk/3) : H#

λ,r → B
#
λ,r.

Of course the same is true for P with B and H exchanged. Therefore we introduce spaces
B and H which agree with Bz,λ,r and Hz,λ,r microlocally in |R(x′, ξ′)− w| < 2C−1, and also

agree with B#
λ,r and H#

λ,r microlocally in |R(x′, ξ′)−w| > C−1. Then this coincidence on the
intermediate region shows that the symbol P and E satisfy the global construction at least
near the boundary.

6.4 Estimates away from the boundary

In this section, we review the proof of the following proposition which provides a parametrix
away from the boundary in [30]. We write

D(α) = {x ∈ Rn \ O : d(x, ∂O) > α}.

Proposition 6.4.1. Let 0 < ε < 2
3
, |Re z| 6 L, | Im z| 6 C, then there exists h0 = h0(L)

such that for 0 < h < h0(L), there exists maps Eε, Kε defined on C∞c (D(hε)), with the
properties (P − z)Eε = I +Kε and

Eε = O(h2/3−ε) : L2(D(hε))→ H2
h(Rn \ O),

Kε = O(e−C
−1h−1+ 3ε

2 ) : L2(D(hε))→ Hk
h(Rn \ O), ∀k ∈ R.

(6.4.1)

Moreover, for any fixed γ ∈ (0, 1), we can construct Eε and Kε such that for u ∈ C∞c (D(hε)),
Eεu and Kεu are supported in D((1− γ)hε).

We remark that we can not use Neumann series and this proposition to give an inverse
of P − z since the support of Kεu is larger than that of u in general.

In a fixed distance away from the obstacle, we get the following better results which gives
a parametrix of P − z.
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Lemma 6.4.2. If v1 ∈ C∞c (Rn \O) satisfies supp(v1) ⊂ D(δ) where δ > 0, then there exists
u1 ∈ C∞(Rn \ O) and v1

0 ∈ C∞c (Rn \ O) such that u1 = 0 near ∂O and

(P − z)u1 = v1 + v1
0, (6.4.2)

‖u1‖H2(Rn\O) + eC/h‖u1‖Hk(Rn\D((1−γ)δ)

+ eC/h‖v1
0‖Hk(Rn\O) 6 Cγh

2/3‖v1‖L2(Rn\O).
(6.4.3)

for any k, γ > 0.

For the region D(hε) \D(δ) = {hε < d(x, ∂O) < δ} which is hε-near to the obstacle, we
have the following lemma.

Lemma 6.4.3. If v2 ∈ C∞c (Rn \ O), supp(v2) ⊂ {x : hε < d(x, ∂O) < δ}, then there exists
u2 ∈ C∞c (Rn \ O) such that u2 = 0 near ∂O and

(P − z)u2 = v2 + v2
0, (6.4.4)

‖u2‖H2(Rn\O) + eCh
−1+3ε/2‖u2‖Hk(Rn\D((1−γ)hε)

+ eC/h‖u2‖Hk(D(1+γ)δ) + eCh
−1+3ε/2‖v2

0‖Hk(Rn\O)

6 h2/3−ε‖v2‖L2(Rn\O)

(6.4.5)

The proof of the proposition then follows from the two lemmas by decomposing any
v ∈ C∞c (Rn \ O) with supp v ⊂ D(hε) into

v = v1 + v2, v1, v2 ∈ C∞c (Rn \ O), ‖v1‖L2 + ‖v2‖L2 6 2‖v‖L2

and supp v1 ⊂ D(δ/2), supp v2 ⊂ D(hε) \D(δ).
(6.4.6)

6.5 Global Grushin problem

6.5.1 Setting up for global Grushin problems

To study the global Grushin problem, we introduce the spaces for w ∈ W b (0,∞), 0 <
δ � 1, 0 6 r 6 r0:

Bw,r,δ = H2(Rn \ O)× L2(∂O;CN),

Hw,r = L2(Rn \ O)×H1/2(∂O)×H2(∂O;CN).

with the norms microlocally compatible with the ones introduced in section 6.2, (6.2.14),
(6.2.37) in each of the regions we considered. We need to translate the norms to xn-
coordinates by the relation xn = h2/3t.
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Let∥∥∥∥( u
u−

)∥∥∥∥
Bw,r,δ

= h−2/3‖erψ(xn)/2h2/3

(hDxn)2u‖L2(Rn\O)

+ h−2/3‖erψ(xn)/2h2/3

χ(xn/δ)xnu‖L2(Rn\O)

+ ‖erψ(xn)/2h2/3〈xn〉−2〈h−2/3(−h2∆∂O − w)〉u‖L2(Rn\O)

+ h−2/3‖erψ(xn)/2h2/3

(1− χ(xn/δ))u‖H2
h(Rn\O)

+ h1/3‖u−‖L2(∂O;CN ),∥∥∥∥∥∥
 v

v0

v+

∥∥∥∥∥∥
Hw,r

= ‖erψ(xn)/2h2/3

v‖L2(Rn\O)

+ h1/3‖〈h−2/3(−h2∆∂O − w)〉1/4v0‖L2(∂O)

+ h1/3‖〈h−2/3(−h2∆∂O − w)〉v+‖L2(∂O;CN ),

(6.5.1)

where the weight function ψ ∈ C∞([0,∞); [0, 1]) satisfying ψ(t) = t for t < 1
2

and ψ(t) = 1
for t > 1; and the cut-off function χ ∈ C∞([0,∞); [0, 1]) satisfying χ(t) = 1 for t < 1 and
χ(t) = 0 for t > 2. Here we still use the geodesic normal coordinates (x′, xn) ∈ ∂O × (0,∞)
for Rn \ O as introduced before.

First we claim that  P − z 0
γ1 0
0 0

 : Bw,r → Hw,r.

In fact, we can decompose u ∈ H2(Rn \ O) as u = u1 + u2 where suppu1 ⊂ {xn 6 3δ}
and suppu2 ⊂ {xn > 2δ}. Then we see that∥∥∥∥( u

0

)∥∥∥∥
Bw,r,δ

∼
∥∥∥∥( u1

0

)∥∥∥∥
Bw,r,δ

+

∥∥∥∥( u2

0

)∥∥∥∥
Bw,r,δ

.

We notice that∥∥∥∥( u1

0

)∥∥∥∥
Bw,r,δ

∼ h−2/3‖erxn/2h2/3

(hDxn)2u1‖L2(Rn\O)

+ h−2/3‖erxn/2h2/3

χ(xn/δ)xnu‖L2(Rn\O)

+ ‖erxn/2h2/3〈h−2/3(−h2∆∂O − w)〉u‖L2(Rn\O),

so the estimate

‖erψ(xn)/2h2/3

(P − z)u1‖L2 6

∥∥∥∥( u1

0

)∥∥∥∥
Bw,r,δ
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follows from the change of variable xn = h2/3t and Lemma 6.2.2. Also notice that∥∥∥∥( u2

0

)∥∥∥∥
Bw,r,δ

∼ h−2/3‖erψ(xn)/2h2/3

u2‖H2
h(Rn\O),

so we can easily deduce that

‖erψ(xn)/2h2/3

(P − z)u2‖L2 6

∥∥∥∥( u2

0

)∥∥∥∥
Bw,r,δ

.

Finally we need to estimate γu. We shall use the fact that

γ0 = O(h−1/2) : H2
h(Rn \ O)→ H

3/2
h (∂O)

and
hγ1 = O(h−1/2) : H2

h(Rn \ O)→ H
1/2
h (∂O)

which follows from the estimates of non-semiclassical restriction operators. Therefore we
have

h1/3‖〈h−2/3(−h2∆∂O − w)〉1/4(γu)‖L2(∂O)

6 h1/6‖γu‖
H

1/2
h (∂O)

6 h1/6‖h2/3γ1u‖H1/2
h (∂O)

+ h1/6‖h2/3kγ0u‖H1/2
h (∂O)

6 h5/6‖γ1u‖H1/2
h (∂O)

+ Ch5/6‖γ0u‖H3/2
h (∂O)

6 Ch−2/3‖u‖H2
h(Rn\O).

Now we need to correct this operator with

R+,w : H2(Rn \ O)→ L2(∂O;CN),

and
R−,w : L2(∂O;CN)→ L2(Rn \ O).

They are obtained by quantizing the symbols that appeared in section 6.2. Let eλ,δj,µ be as in
(6.2.41), then we shall define

R+,w = OpΣw,h(ẽ
δ
w) : L2(Rn \ ∂O)→ L2(∂O;CN), (6.5.2)

where
ẽδw ∈ SΣw,2/3(∂O; 1,L(L2[0,∞);CN))

is given by

ẽδw(j)u(p) =

∫ ∞
0

h−1/3χ(xn)eλ,δj,µ(h−2/3xn)u(xn)dxn, p ∈ T ∗∂O
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with λ = h−2/3(R(p) − w), µ = Q(0, p). Similarly, the operator R−,w can be defined as the
formal adjoint of R+,w or more precisely,

R−,w = OpΣw,h((ẽ
δ
w)∗) : L2(Rn \ ∂O)→ L2(∂O;CN),

where
(ẽδw)∗ ∈ SΣw,2/3(∂O; 1,L(CN ;L2([0,∞)))

is given by

ẽδwu−(p) =
N∑
j=1

h−1/3χ(xn)eλ,δj,µ(h−2/3xn)u−(j), p ∈ T ∗∂O.

Then we have the Grushin problem for

Pw(z) =

 Pw − z R−,w
γ1 0
R+,w 0

 : Bw,r → Hw,r. (6.5.3)

Our goal is to construct an inverse of Pw(z) for all h small depending on δ,

Ew(z) =

(
Ew(z) Kw(z) Ew,+(z)
Ew,−(z) Kw,−(z) Ew,−+(z)

)
: Hw,r → Bw,r (6.5.4)

where Ew,−+(z) has nice properties that will be specified later.

6.5.2 Construction of the inverse operator

To construct the inverse operator, we first divide phase space into three different parts:
near the boundary and glancing hypersurface, near the boundary away from the glancing
hypersurface and away from the boundary. In this section, we again work with w = 1 for
simplicity and it will be clear that the analysis is uniform for w in a fixed compact subset of
(0,∞).

We consider the case near the boundary and glancing hypersurface first. Let us translate
the space Bz,λ,r and Hz,λ,r in section 6.2 into the xn-coordinates and scale it by h1/3 due to
the change of coordinates. In this stage, we drop the dependence on z and introduce the
same weight function ψ as previously.∥∥∥∥( u

u−

)∥∥∥∥
Bλ,r

= h−2/3‖erψ(xn)/2h2/3

(hDxn)2u‖L2([0,∞)) + h−2/3‖erψ(xn)/2h2/3

xnu‖L2([0,∞))

+ 〈λ〉‖erψ(xn)/2h2/3

u‖L2(Rn\O) + h1/3|u−|CN ,∥∥∥∥∥∥
 v

v0

v+

∥∥∥∥∥∥
Hλ,r

= ‖erψ(xn)/2h2/3

v‖L2([0,∞)) + h1/3〈λ〉1/4|v0|C + h1/3〈λ〉|v+|CN .
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Lemma 6.5.1. Let 0 < ε < 2/3, χ1 ∈ Ψ0,0(∂O) be such that WFh(χ1 − Id) ⊂ {m :
d(m,Σ) > C} and WFh(χ1) ⊂ {m : d(m,Σ) 6 2C}. Then there exists EL1 (z), ER1 (z) ∈
ΨΣ,2/3(∂O; 1,L(Hλ,r,Bλ,r)) such that

EL1 (z)P(z) = χ1

(
χ(xn/h

ε) 0
0 Id

)
+RL

1 (z),

P(z)ER1 (z) = χ1

 χ(xn/h
ε) 0 0

0 Id 0
0 0 Id

+RR
1 (z),

where the remainder terms satisfy

RL
1 (z) ∈ ΨΣ,2/3(∂O;hN〈λ〉−N ,L(Bλ,r,Bλ,r))

RR
1 (z) ∈ ΨΣ,2/3(∂O;hN〈λ〉−N ,L(Hλ,r,Hλ,r))

for any N .

Proof. From section 6.3.1, we can construct an operator Ẽ1 ∈ ΨΣ,2/3(∂O; 1,L(Hλ,r,Bλ,r))
with WFh(Ẽ1) ⊂ {m : d(m,Σ) 6 2C} such that

Ẽ1(z)P(z) = Id +R̃L
1 (z), P(z)Ẽ1(z) = Id +R̃R

1 (z).

Here the remainder term R̃L
1 satisfies that for any A ∈ Ψ0,0(∂O) with WFh(A) ⊂ {m :

d(m,Σ) 6 C} and any k,

AR̃L
1 =

(
xkn 0
0 0

)
BL
k + hkALk ,

with
ALk , B

L
k ∈ ΨΣ,2/3(∂O; 1,L(Bλ,r,Bλ,r)).

We notice that for 0 < ε < 2/3, the operator(
χ(xn/h

ε) 0
0 Id

)
is bounded on Bλ,r. In fact, in t coordinates, this becomes χ(h2/3−εt) whose derivatives are
all bounded. Therefore we can set

ELl (z) = χ1

(
χ(xn/h

ε) 0
0 Id

)
Ẽ1(z).

Since 〈λ〉 = O(h−2/3), it is clear that this operator satisfies the condition. Similarly, we can
construct

ERl (z) = Ẽ1(z)χ1

 χ(xn/h
ε) 0 0

0 Id 0
0 0 Id

 .
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Now for the case near the boundary but away from the glancing hypersurface, the spaces
H#
λ,r and B#

λ,r become∥∥∥∥( u
u−

)∥∥∥∥
B#
λ,r

= h−2/3‖erψ(xn)/2h2/3

(hDxn)2u‖L2([0,∞)) + 〈λ〉‖erψ(xn)/2h2/3

u‖L2(Rn\O) + h1/3|u−|CN ,∥∥∥∥∥∥
 v

v0

v+

∥∥∥∥∥∥
Hλ,r

= ‖erψ(xn)/2h2/3

v‖L2([0,∞)) + h1/3〈λ〉1/4|v0|C + h1/3〈λ〉|v+|CN ,

in the xn-coordinates. In this situation, we have

Lemma 6.5.2. Let 0 < ε < 2/3, χ2 ∈ Ψ0,0(∂O) be such that WFh(χ2 − Id) ⊂ {m :
d(m,Σ) 6 C} and WFh(χ2) ⊂ {m : d(m,Σ) > 1

2
C}. Then there exists EL2 (z), ER2 (z) ∈

ΨΣ,2/3(∂O; 1,L(Hλ,r,Bλ,r)) such that

EL2 (z)P(z) = χ2

(
χ(xn/h

ε) 0
0 Id

)
+RL

2 (z),

P(z)ER2 (z) = χ2

 χ(xn/h
ε) 0 0

0 Id 0
0 0 Id

+RR
2 (z),

where the remainder terms satisfy

RL
2 (z) ∈ ΨΣ,2/3(∂O;hN〈λ〉−N ,L(B#

λ,r,B
#
λ,r))

RR
2 (z) ∈ ΨΣ,2/3(∂O;hN〈λ〉−N ,L(H#

λ,r,H
#
λ,r))

for any N .

Proof. We can repeat the same argument with the standard semiclassical calculus and notice
that 〈λ〉 = O(h−2/3〈ξ′〉2) to get the properties of the remainder.

Now combining the two lemmas above, we get the approximated inverse near the bound-
ary. More precisely,

Proposition 6.5.3. There exists EL(z), ER(z) : Hr → Br,ε such that

EL(z)P(z) =

(
χ(xn/h

ε) 0
0 Id

)
+RL(z),

P(z)ER(z) =

 χ(xn/h
ε) 0 0

0 Id 0
0 0 Id

+RR(z),
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where the remainder terms satisfy

〈h2∆∂O〉NRL
3 (z)〈h2∆∂O〉N = O(hN) : Br,ε → Br,ε

〈h2∆∂O〉NRR
3 (z)〈h2∆∂O〉N = O(hN) : Hr → Hr,

for any N . Here 〈h2∆∂O〉N applies to all the components and the spaces Br,ε are defined as
Br,δ further truncated to the hε-neighborhood of the boundary by χ(xn/h

ε).. Moreover, the
−+-components for the approximate inverses satisfy

EL
−+(z) ≡ ER

−+(z) ∈ Ψ0,1,2
Σ,2/3(∂O;L(CN ,CN)).

Proof. We can simply choose χ1 and χ2 such that χ1 +χ2 = 1 and set E ·(z) = E ·1(z) + E ·2(z),
· = L,R. To prove the last statement, we notice that from the construction,

EL
−+ = χ1Ẽ−+1 + χ2Ẽ−+2, ER

−+ = Ẽ−+1χ1 + Ẽ−+2χ2.

Near the glancing hypersurface, {m : d(m,Σ) 6 1
2
C}, χ1 ≡ Id while χ2 ≡ 0. Away from

the glancing hypersurface {m : d(m,Σ) > 2C}, χ1 ≡ 0 while χ2 ≡ Id. In the intermediate
region, E−+1 ≡ E−+2 from our discussion in section 6.3.3. Therefore EL

−+ and ER
−+ are

essentially the same in the Ψ0,1,2
Σ,2/3(∂O;L(CN ,CN)).

Finally, we can combine this with the estimate away from the boundary to get the inverse.

Proposition 6.5.4. Let 0 < ε < 2/3, 0 < h < h0(δ), there exists Ew(z) : Hw,0 → Bw,0,ε such
that

Pw(z)Ew(z) = Id, Ew(z)Pw(z) = Id

and Ew,−+ ∈ Ψ0,1,2
Σw,2/3

(∂O;L(CN ,CN)).

Proof. Let us begin with an approximate right inverse

ER(z) = ER(z)

 χ̃(xn/h
ε) 0 0

0 Id 0
0 0 Id

+

(
Eε(1− χ̃(xn/h

ε)) 0 0
0 0 0

)
.

Here χ̃ ∈ C∞([0,∞)) supported in {χ = 1}. Then we can compute

P(z)ẼR(z) = Id +KR(z)

where the remainder is given by

KR(z) = RR(z)

 χ̃(xn/h
ε) 0 0

0 Id 0
0 0 Id

+

 Kε(1− χ̃(xn/h
ε)) 0 0

γEε(1− χ̃(xn/h
ε)) 0 0

R+Eε(1− χ̃(xn/h
ε)) 0 0

 .
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Since Eε(1 − χ̃)u is supported away from the boundary, we have γEε(1 − χ̃(xn/h
ε)) = 0.

Moreover, for any smooth u, since (1− χ̃(xn/h
ε))u is supported in D(hε), Eε(1− χ̃(xn/h

ε))u
is supported in (D(1− γ)hε), so by the super-exponential decay of eλ,δj,µ, we have

ẽδw(j)u(p, xn) =

∫ ∞
0

h−1/3χ(xn)eλ,δj,µ(h−2/3xn)u(p, xn)dxn = O(h∞) (6.5.5)

which gives R+Eε(1 − χ̃(xn/h
ε)) = O(h∞). Therefore we get KR = O(h∞) : H0 → H0 and

hence for h small enough, (Id +KR)−1 = Id +A where A = O(h∞) : H0 → H0. We can now
put

E(z) = ER(z)(Id +A(z))

Suppose

A(z) =

 A11(z) A12(z) A13(z)
A21(z) A22(z) A23(z)
A31(z) A32(z) A33(z)


then from the formula of KR, we see it is lower triangular and thus the same is true for A.
Therefore

E−+(z) = ER
−+(z) + ER

−+(z)A33(z)

HereA33(z) ∈ Ψ−∞,−∞(∂O;L(CN ,CN)) since it comes entirely fromRR
3 . ThereforeE−+(z) ∈

Ψ0,1,2
Σw,2/3

(∂O;L(CN ,CN)) is essentially the same as ER
−+ (and also as EL

−+).

6.5.3 Reduction to E−+

Now we state the main result of this section.

Theorem 5. Assume that W is a fixed compact subset of (0,∞) and ε � 1. For every
w ∈ W and z ∈ C such that |Re z| � 1/δ, | Im z| 6 C1, there exists

Ew,−+(z) ∈ Ψ0,1,2
Σw,2/3

(6.5.6)

where Σw = {p ∈ T ∗∂O : R(p) = w}, N = N(C1) such that for 0 < h < h0 and some large
C > 0:

(i) The multiplicity of resonances are given by

mO(h−2(w + h2/3z)) =
1

2πi
tr

∮
|z̃−z|=ε

Ew,−+(z̃)−1 d

dz̃
Ew,−+(z̃)dz̃ (6.5.7)

(ii) If E0
w,−+(z; p, h) = σΣ,h(Ew,−+(z))(p;h), p ∈ T ∗∂O, then

E0
w,−+(z, p, h) = O(〈λ− Re z〉) : CN → CN , (6.5.8)

where λ = h−2/3(R(p)− w).
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(iii) For |λ| 6 1/C
√
δ,

‖E0
w,−+(z; p, h)− diag(z − λ− e−2πi/3ζ ′j(p))‖L(CN ,CN ) 6 ε. (6.5.9)

Moreover, detE0
w,−+(z; p, h) = 0 if and only if

z = λ+ e−2πi/3ζ ′j(p) (6.5.10)

for some 1 6 j 6 N and all zeroes are simple. Here ζ ′j(p) = ζ ′j(2Q(p))2/3.

(iv) For |λ| > 1/C
√
δ, E0

w,−+ is invertible and

E0
w,−+(z, p, h)−1 = O(〈λ− Re z〉−1) : CN → CN , (6.5.11)

Proof. The statement (i) follows from the formula(
h−2/3(P (h)− w)− z

γ

)−1

= (Ew(z), Kw(z))− Ew,+(z)Ew,−+(z)−1(Ew,−(z), Kw,−(z)).

The other statements follow directly from our construction of Ew: (ii) follows from proposition
6.2.4 and the symbolic construction of E and E# in section 6.3; (iii) follows from proposition
6.2.5 and the fact that when |λ| 6 1/C

√
δ, the only contribution in the symbol comes from

E ; (iv) follows from proposition 6.2.5 and 6.2.6.

6.6 Proof of the theorem

6.6.1 Resonance Bands

We first prove Theorem 3. Under the pinched curvature condition, we have

Kζ ′j < κζ ′j+1, 1 6 j 6 j0

which can be translated to

max
p∈Σ

ζ ′j(p) < min
p∈Σ

ζ ′j+1(p), 1 6 j 6 j0.

Suppose λ is a resonance which satisfies that for some 1 6 j 6 j0,

Kζ ′j(Reλ)1/3 + C 6 − Imλ 6 κζ ′j+1(Reλ)1/3 − C.

Let ζ = λ2 = h−2(1 + h2/3z) and h = (Reλ)−1, then we have

Kζ ′jh
1/3 + C 6 − Imλ 6 κζ ′j+1h

1/3 − C

and
Re z = h−2/3(h2 Re ζ − 1) = O(h2/3).
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− Im z = h−2/3(−h2 Im ζ) = −2h1/3 Imλ ∈ [2Kζ ′j + Ch1/3, 2κζ ′j+1 − Ch1/3].

Therefore for p ∈ Σ1, i.e. R(p) = 1,

Im[z − λ− e−2πi/3ζ ′k(p)] = Im z + ζ ′k(2Q(p))2/3 cos(π/6) ∈ [Im z + 2κζ ′k, Im z + 2Kζ ′k]

thus for at most one of k ∈ {j, j + 1},

| Im[z − λ− e−2πi/3ζ ′k(p)]| > Ch1/3

while for all other k ∈ {1, . . . , j0},

| Im[z − λ− e−2πi/3ζ ′k(p)]| >
1

O(1)
.

Therefore we can decompose

E−+(z) := E1,−+(z) = A(z)G−+(z)B(z)

where
A(z), B(z) ∈ Ψ0,0,0

Σ1,2/3
(∂O;L(CN ,CN))

are invertible and
G−+(z) ∈ Ψ0,1,2

Σ1,2/3
(∂O;L(CN ,CN))

has principal symbol G0
−+(z), such that, near Σ1,

ImG0
−+(z) > C0h

1/3 IdCN

while away from Σ1,

ImG0
−+(z) >

1

O(1)
h−2/3〈ξ〉2.

Now we choose C0 large enough, then we see that the imaginary part of the total symbol
of G−+(z) is bounded below by a positive symbol in S

−1/3,0,2
Σ1,2/3

. The sharp G̊arding’s inequality
gives

‖E−+(z)u‖L2 > C‖G−+(z)u‖L2 > Ch1/3‖u‖L2 , ∀u ∈ C∞(∂O;CN).

Therefore E−+(z) is invertible for 0 < h 6 h0. Therefore when Reλ > C = h−1
0 , it

cannot be a resonance.

6.6.2 Weyl’s Law

In this part, we sketch the proof of Theorem 4. See [30, Section 9-10] for details of the proof.
Heuristically, we want to use the symbol of Ew,−+(z) to compute its trace, then use (6.5.7)

to count the number of resonances. However, this operator is not in the trace class. The first
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step is to construct a finite-rank approximation Ẽw,−+(z) ∈ Ψ0,1,2
Σw,2/3

(∂O;L(CN ,CN)) which
is invertible and such that

Ẽw,−+(z)−1, (Λ−1
w Ẽw,−+(z))−1, Ẽw,−+(z)−1Ew,−+(z) = O(1) : L2(∂O;CN)→ L2(∂O;CN)

where Λw = 〈h−2/3(−h2∆∂O − w)〉 ∈ Ψ0,1,2
Σw,2/3

is elliptic. Moreover, we have Ew,−+(z) −
Ẽw,−+(z) is independent of z and of rank M = O(Lh1−n+2/3). Microlocally Ẽ is only different
from E on the the glancing region where E is not invertible.

From this finite-rank approximation, we can solve another Grushin problem to reduce
Ew,−+ to a finite matrix. More precisely, we consider

Qw(z) =

(
Λ−1Ew,−+(z) Rw,−(z)
Rw,+(z) 0

)
: L2(∂O;CN)× CM → L2(∂O;CN)× CM , (6.6.1)

with bounded inverse

Fw(z) =

(
Fw(z)Λ Fw,+(z)
Fw,−(z) Fw,−+(z)

)
: L2(∂O;CN)× CM → L2(∂O;CN)× CM .

The construction of the Grushin problem is as follows: Let e1, . . . , eM be an orthonormal
basis of the image of Λ−1

w (Ew,−+(z)− Ẽw,−+(z))∗, then we set

Rw,+u(j) = 〈u, e′j〉, 1 6 j 6M ; Rw,−(z)u− = Λ−1Ẽw,−+(z)R∗w,+u−.

The inverse is given by

Fw(z) = (I −R∗w,+Rw,+)Ẽw,−+(z)−1,

Fw,+(z) = R∗w,+ − (I −R∗w,+Rw,+)Ẽw,−+(z)−1Ew,−+(z)R∗w,+,

Fw,−(z) = Rw,+Ẽw,−+(z)−1,

Fw,−+(z) = −Rw,+Ẽw,−+(z)−1Ew,−+(z)R∗w,+.

With these preparations, we can prove a local trace formula on the scale 1 in the z
variable for every w. This is on the scale h2/3 for the semiclassical variable w + h2/3z which
is the square of the resonances h2λ2. We remark that this is the largest scale that we can
work with for each fixed w since the whole microlocal framework is built exactly on such a
scale.

For the j0-th band of the resonances, we consider a domain

W =

{
−1

2
L < Re z <

1

2
L,A− < − Im z < A+

}
where

2Kζ ′j0−1 < A− < 2κζ ′j0 6 2Kζ ′j0 < A+ < 2κζ ′j0+1.
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Let ∂W = γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 be the boundary of W , where γ1 and γ3 are the horizontal
segments while γ2 and γ4 are the vertical segments. If we write Resw(h) = {z : mO(h−2(w+
h2/3z)) > 0}, then we have the local trace formula∑

z∈Resw(h)∩W

f(z) =
∑
j=1,3

tr
1

2πi

∫
γj

f(z)

[
Ew,−+(z)−1 d

dz
Ew,−+(z)

−Ẽw,−+(z)−1 d

dz
Ẽw,−+(z)

]
dz +O(Lh1−n+2/3)

(6.6.2)

for any holomorphic function f defined near W such that |f(z)| 6 1 near γ2 ∪ γ4. (In fact,
to make this argument work, we need to choose a slightly larger rectangular contour around
W and f holomorphic in an even larger domain. Also we need to the contour does not pass
through any of the poles of E−1

w,−+. These technical issues are handled in [30].)
The main idea to prove this local trace formula is to change the trace of E−1

−+E
′
−+ −

Ẽ−1
−+Ẽ

′
−+ to the trace of F−1

−+F
′
−+ = log detF−+ by using the Grushin problem (6.6.1) con-

structed above. We observe that F−+ is an M ×M matrix which is O(1) : CM → CM under
the standard norm. This shows that log detF−+ = O(M) = O(Lh1−n+2/3) and thus all the
contributions from the two vertical segment can be controlled by O(Lh1−n+2/3) using lower
modulus theorem. Notice that this characterization of resonances by the poles of F−1

−+ also
gives a local upper bound on the number of the resonances∑

|Re ζ−1|6Ch2/3,0<− Im ζ<Ch2/3

mO(ζ) = O(h1−n+2/3). (6.6.3)

In the local trace formula (6.6.2), we use the (second microlocalization) symbol to com-
pute the trace on the right-hand side and get∑

z∈Resw(h)∩W

f(z) =
h1−n+2/3

(2π)n−1

∫
Σw×R

f(λ+ e−2πi/3ζ ′j0(q))1I(q)(s)LΣw(dq)ds

+O(Lh1−n+2/3) +Of,L(h2−n)

(6.6.4)

where (q, s) ∈ Σw × R is a local coordinates for a neighborhood of Σw ∈ T ∗∂O such that
s|Σw = 0, LΣw(dq)ds is the Liouville measure on T ∗X, and

I(q) = {s ∈ R : s+ e−2πi/3ζ ′j0(q) ∈ W}.

For fixed L (and say f = 1), this does not give a better description of resonances than
the upper bound (6.6.3). However, if we make L large (which does not change the principal
symbol in our construction, but may potentially affect the lower order terms), and choose f
suitably, we can get a better estimate than (6.6.3). The idea is to let f to be very large in
W away from the γ2 ∪ γ4 but remain bounded (|f | 6 1 as required from the assumption in
(6.6.2)) near γ2 ∪ γ4. A standard choice is the Gaussian functions

fε(z) = ((1 +O(εL))e−εL
2/2)−1e−ε(z−z0)2

, z0 = −1

2
i(A− + A+), εL� 1, εL2 � log

1

ε
.
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Then from (6.6.4) we obtain

∑
z∈Resw(h)∩W

√
ε

2π
e−ε(Re(z−z0))2/2 = (1 +O(εL))

h1−n+2/3

(2π)n−1

∫
Σw

LΣw(dq) +Oε,L(h2−n).

Finally, we let L = ε−2/3 and integrate in w to get the Weyl’s law in the semiclassical
setting

Proposition 6.6.1. (see [30, Proposition 10.1]) For 0 < a < b, let

Nh([a, b]; j) =
∑

a<Re z<b,2κζ′jh
2/3<− Im z<2Kζ′jh

2/3

mO(h−2z).

Then under the assumption of 3, we have

Nh([a, b]; j) = (1 +O(ε))
h1−n

(2π)n−1

∫
a6|ξ′|2

x′6b
dx′dξ′ +Oε(h

1−n+1/3) (6.6.5)

for any 1 6 j 6 j0 and ε > 0.

Now the Weyl law (6.0.3) follows from a dyadic decomposition of the interval |λ| 6 r and
applying (6.6.5) for each dyadic piece of the interval.
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Chapter 7

Asymptotically Euclidean case

7.1 General set up

7.1.1 Dynamical assumptions

Let M be a real analytic manifold which is diffeomorphic to Rn and equipped with a real
analytic metric g that is asymptotic Euclidean. More precisely, let

Q = −h2∆g =
∑
|α|62

aα(x;h)(hDx)
α, (7.1.1)

then we assume that the coefficients aα(x;h) satisfies the following properties:
(1) for |α| = 2, aα = aα(x) is independent of h;
(2) aα(x;h) = aα,0(x) + O(h) has an holomorphic extension to the sector S = {x ∈ Cn :

| Imx| < C−1〈Rex〉}, bounded in C∞ with respect to h in S;
(3) aα satisfies the following conditions:∑

|α|=2

aα(x)ξα >
1

C
|ξ|2

and ∑
|α|62

aα(x;h)ξα → ξ2

as |x| → ∞ uniformly in h.
Moreover, we assume that the geodesic flow on the manifold M is non-trapping. So if we

let
q(x, ξ) =

∑
|α|62

aα,0(x)ξα, (7.1.2)

then there are no trapped Hq-trajectories in q−1(1).
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Now let O be a convex obstacle in M which we assume to be also totally convex, in the
sense that

(1) for any x, y ∈ ∂O, the unique geodesic connecting x and y lies in O;
(2) ∂O is a C∞ hypersurface in M with strictly positive principal curvatures.
In particular, the assumptions imply that the dynamics of the geodesic flow on q−1(1)

is the same as the one in the Euclidean case: all the geodesics escape to infinity in both
directions. Moreover, all the geodesics that leave the obstacle escape to infinity and never
come back to the obstacle.

Without loss of generality, we assume that 0 ∈ O ⊂ {|x| < R}. Then P0 = −∆|(M\O,g)
with the Dirichlet/Neumann/Robin boundary conditions on ∂O satisfies the assumption in
section 2.1.2 for the blackbox perturbation of Q. Therefore we can define the resonances of
−∆|(M\O,g) in a sector

Res(P0) ⊂ {z : 0 < − arg z < θ0}.
As in the case of the Euclidean metric, we can find the normal geodesic coordinates near

∂O on the exterior domain M \ O:

x = (x′, xn) 7→ expx′(xnν(x′)), x′ ∈ ∂O, xn = d(x, ∂O),

where ν(x′) is the exterior unit normal vector to O at x′:

ν(x′) ∈ Nx′∂O, ‖ν(x′)‖ = 1.

Then near ∂O, say in the region d(x, ∂O) < L−1,

P0 = D2
xn +R(x′, Dx′)− 2xnQ(xn, x

′, Dx′) +G(xn, x
′)Dxn ,

where R(x′, Dx′), Q(xn, x
′, Dx′) are second order operators on ∂O:

R(x′, Dx′) = −∆∂O = (det(gij))1/2

n−1∑
i,j=1

Dyi(det(gij))
1/2gijDyj

is the Laplacian with respect to the induced metric g = (gij) on ∂O and Q(x′, Dx′) =
Q(0, x′, Dx′) is of the form

det(gij)1/2

n−1∑
i,j=1

Dy′j
(det(gij))

1/2aijDy′i

in any local coordinates such that the principal symbol of Q is the second fundamental form
of ∂O lifted by the duality to T ∗∂O:

Q(x′, ξ′) =
n−1∑
i,j=1

aij(x
′)ξiξj.

Thus the principal curvatures of ∂O are the eigenvalues of the quadratic form Q(x′, ξ′) with
respect to the quadratic form R(x′, ξ′).
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7.1.2 Complex scaling contours

In this section, we construct a complex contour based on a slight modification of the one in
the Euclidean case. Consider the complex contour given by

Rn \ O 3 x 7→ z = x+ iθ(x)f ′(x) ∈ Γ ⊂ Rn \ O + iRn,

where the function f is a smooth function given by

f(x) =
1

2
d(x, ∂O)2χ(x) +

1

2
|x|2(1− χ(x))

and χ ∈ C∞(Rn; [0, 1]) satisfies χ = 1 when d(x, ∂O) < L−1 and χ = 0 when |x| > R1, where
L,R1 > 0 are chosen later to be large but fixed.

Near the boundary, we scale by the angle π/3 as before

1 + iθ(x)

|1 + iθ(x)|
= eiπ/3, d(x, ∂O) < (L1)−1, L1 � 2L

and then we connect to the scaling with a smaller angle θ(x) = θ0 = arctan ε0 when
d(x, ∂O) > (2L)−1.

Then near infinity, say when |x| > R, Γ coincides with Γ0 ⊂ Cn given by

Imx = ε0 Rex. (7.1.3)

On the other hand, when d(x, ∂O) < L−1, we use normal geodesic coordinates (x′, xn) ∈
∂O × (0, L−1), then Γ is given by

(x′, xn) 7→ expx′(g(xn)ν) (7.1.4)

where g : [0, L−1) → C is smooth and injective such that g(t) = eiπ/3 when xn < L−1
1 ;

g(t) = eiθ0 when (2L)−1 < xn < L−1 and

θ0 6 arg g(t) 6 π/3, θ0/2 6 arg g′(t) 6 π/3. (7.1.5)

We define scaled operator P = −h2∆Γ as the restriction of the holomorphic Laplacian
on Cn

Q = −h2∆g,z =
∑
|α|62

aα(x;h)(hDz)
α

to Γ. Whenever there is no confusion, we shall identify Γ with Rn\O. Then when d(x, ∂O) <
L−1, we have the following formula for the semiclassical complex scaled operator

P =
1

(g′(xn))2
(hDxn)2 +R(x′, hDx′)− 2g(xn)Q(xn, x

′, hDx′) + hF (xn, x
′)hDxn . (7.1.6)
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Figure 7.1: The contours for complex scaling on asymptotically Euclidean manifolds.

In particular, when d(x, ∂O) < L−1
1 ,

P = e−2πi/3((hDxn)2 + 2xnQ(xn, x
′, hDx′)) +R(x′, hDx′) + hF (xn, x

′)hDxn .

We also need to consider complex scaling contours on the whole space. We first extend
the function f restricted to d(x, ∂O) > (2L)−1 to a function f̃ on Rn by

f̃(x) =
1

2
d(x, ∂O)2χ̃(x) +

1

2
|x|2(1− χ̃(x)),

where χ̃ ∈ C∞(Rn; [0, 1]) equals to 1 when d(x, ∂O) ∈ ((2L)−1, L−1) and χ = 0 when |x| > R1

or d(x, ∂O) < L−1
1 . Then we have the contour

Rn 3 x 7→ z = x+ iθ0f
′(x) ∈ Γ̃0 ⊂ Cn

which agrees with Γ0 away from a compact set and agrees with Γ when d(x, ∂O) > (2L)−1.
Moreover Γ̃0 is ε0-close to Γ0.

7.1.3 Escape functions

Now we construct an escape function G(x, ξ) associated to the geodesic flow of (M, g).
From the dynamical assumption, we see that on Σε

q = q−1([1 − ε, 1 + ε]), the function
G0(x, ξ) = f ′(x) · ξ satisfies

HqG0 > C−1
0 (7.1.7)

when |x| > R as well as when L−1
1 < d(x, ∂O) < L−1. In fact, when |x| > R, we have

q(x, ξ) = q0(x, ξ) + o(1) where q0(x, ξ) = ξ2 and

|(∂ξq − ∂ξq0)(x, ξ)| = o(1), |(∂xq − ∂xq0)(x, ξ)| = o(1)〈x〉−1,
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as |x| → ∞ while ∂xG0 and 〈x〉−1∂ξG0 remains bounded, so

|HqG0 −Hq0G0(x, ξ)| → 0,

when Σε
q 3 (x, ξ)→∞. Now when R > R0,

f(x) =
1

2
|x|2, G0 = x · ξ

so Hq0G0 = 2|ξ|2 and thus we have (7.1.7).
When L−1

1 < d(x, ∂O) < L−1, we use the normal geodesic coordinates (x′, xn). Then

q(x, ξ) = ξ2
n − 2xnQ(xn, x

′, ξ′) +R(x′, ξ′),

and f(x) = 1
2
x2
n, G0 = xn · ξn. Therefore

Hq(G0) = 2ξ2
n + 2xnQ(xn, x

′, ξ′) + 2x2
n∂xnQ(xn, x

′, ξ′).

Since Q(0, x′, ξ′) is positive definite, we get (7.1.7) provided L is large enough.
Therefore by the non-trapping assumption, we can modify G0 by a compact supported

function G1 ∈ C∞c to get an escape function G = G0 +G1 on the whole space T ∗M :

HqG > 1/C0 on q−1(1). (7.1.8)

Moreover, G1 = 0 when d(x, ∂O) ∈ [L−1
1 , L−1].

7.1.4 FBI transform and microlocally weighted space

Now we consider the FBI transform

T : L2(Γ̃0)→ HΦ̃0
(T ∗Γ̃0) (7.1.9)

where we replace the contour Γ0 by Γ̃0. Since Γ̃0 is ε0-close to Γ0 and agrees with Γ0 away
from the compact set, T ∗Γ̃0 is an IR-manifold in an ε0-conic neighborhood of T ∗Γ0 and thus
the associated canonical transformation κT : C2n → C2n maps T ∗Γ̃0 to an IR-manifold in an
ε0-conic neighborhood of κT (T ∗Γ0) = ΛΦ0 , thus of the form ΛΦ̃0

. As before, we identify Γ̃0

with Rn and T ∗Γ̃0 with Cn naturally.
We consider the IR-manifold

Λε0G : Im(x, ξ) = ε0HG(Re(x, ξ)).

We see that Λε0G coincides with T ∗Γ̃0 except on a compact set and is ε0-close to T ∗Γ̃0.
Therefore the IR-manifold κT (Λε0G) is a small perturbation of κT (T ∗Γ̃0) and can be written
as ΛΦε0G

where Φε0G = Φ̃0 outside a bounded set. In particular,

Φε0G(x) = Φ̃0(x) + ε0g(x, ε0)
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where g is smooth and has compact x-support.
Then as in section 3.3.2, for any order function m, we can define the microlocally weighted

Hilbert space HΦε0G,m
which coincides with HΦ̃0

and has equivalent norm but not uniformly
in h. The theory of pseudodifferential operators with holomorphic symbols in section 3.3.2
also holds. In particular, we remark that for u ∈ L2(Γ̃0) such that suppu ⊂ {(2L)−1 <
d(x, ∂O) < L−1},

‖Tu‖HΦε0G
,1
∼ ‖u‖L2(Γ̃0)

since Λε0G coincides with T ∗Γ̃0 when (2L)−1 < d(x, ∂O) < L−1. We shall write

‖u‖H(Γ̃0,Φε0G,m) = ‖Tu‖HΦε0G
,m
. (7.1.10)

7.2 Lower bounds on scaled operators and resonance

free region

7.2.1 Lower bounds on the scaled operator on M

We first study the scaled operator Q = −h2∆g|Γ̃0
on the space H(Γ̃0,Φε0G). We consider the

symbol qε0 = q|Λε0G . Using Taylor expansion, we have

qε0(x, ξ) = q((x, ξ) + iε0HG(x, ξ)) = q(x, ξ)− iε0HqG(x, ξ) +O(ε20〈ξ〉2).

Therefore
Re qε0(x, ξ) = q(x, ξ) +O(ε0〈ξ〉2),

Im qε0(x, ξ) 6 −ε0/C1 + Cε0|q(x, ξ)− 1|.

In particular, let ω0 = 1 + ir0, then if ε0 is chosen small, we have

|qε0(x, ξ)− ω0|2 − r2
0 = |qε0 − 1|2 − 2r0 Im qε0
> |qε0 − 1|2 + 2ε0/C1 − 2Cε0|qε0 − 1| > ε0/C1.

Therefore on q−1[1− ε, 1 + ε],

|qε0(x, ξ)− ω0|2 > r2
0 + ε0/C1. (7.2.1)

Away from q−1[1− ε, 1 + ε], we even have

|qε0(x, ξ)− ω0|2 > r2
0 + ε0/C1〈ξ〉2. (7.2.2)

We write Q = Oph(q)(x, hD;h) where

q(x, ξ;h) = q|T ∗Γ̃0
(x, ξ;h) = q0(x, ξ) +O(h〈ξ〉2),
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and Q̃ = T ◦Q ◦ T−1 = Oph(q̃)(x, hDx;h), where

(q̃ ◦ κT (x, ξ;h)) = p(x, ξ;h).

Let m be the order function with m ◦ κT = 〈ξ〉2 and q̃0 be given by q̃0 ◦ κT = q0. Then
the symbol q̃ is holomorphic in a tubular neighborhood of ΛΦ0

ε0
= κT (T ∗Γ̃0) of the form

ΛΦ0
ε0

+W , and in this neighborhood we have

q̃(x, ξ;h) = O(m(x, ξ)), and q̃(x, ξ;h) = q̃0(x, ξ) +O(hm).

Now since
q̃0|ΛΦε0

◦ κT (x, ξ) = qε0(x, ξ),

using (7.2.1) and (7.2.2), we have the following lemma.

Lemma 7.2.1. Let Φε0G be as above. For any u ∈ C∞c (Γ̃0), ω0 = 1 + ir0 where r0 > 0, we
have

‖(Q− ω0)u‖2
H(Γ̃0,Λε0G)

> (r0 + 1/C0 −O(h))2‖Tu‖2
H(Γ̃0,Λε0G)

. (7.2.3)

Proof. Since T (Q− ω0)u = (Q̃− ω0)Tu, we have

‖(Q̃− ω0)Tu‖2
HΦε0G

=

∫
ΛΦε0G

|q̃0 − 1− ir|2|Tu|2e−2Φε0G/hdx+O(h)‖Tu‖2
HΦε0G

> r2
0‖Tu‖2

HΦε0G
+ (1/C0 −O(h))‖Tu‖2

HΦε0G
,m

> (r0 + 1/C0 −O(h))2‖Tu‖2
HΦε0G

.

This finishes the proof.

In particular, this lemma implies that there exists a constant h0 > 0 such that for
0 < h < h0, there are no resonances for Q in D(1, 1/C0).

7.2.2 Lower bounds on the scaled operator in the exterior region

Now we define the space X to be the space L2(Γ) equipped with an equivalent norm ‖ · ‖X
but not uniformly in h. Let χ1, χ2 ∈ C∞(Rn) be such that χ2

1 + χ2
2 = 1 and χ1 = 1 when

d(x,O) < (2L)−1 and χ1 = 0 when d(x, ∂O) > L−1. We write

‖u‖2
X = ‖χ1u‖2

L2(Γ) + ‖χ2u‖2
H(Γ̃0,Λε0G)

. (7.2.4)

Here χ2u can be viewed as a function on Γ̃0, so we can define its H(Γ̃0,Λε0G)-norm with
no ambiguity. We consider P = −h2∆Γ : D → X to be the operator which has domain D
equipped with the norm

‖u‖2
D = ‖χ1u‖2

H2(Γ) + ‖T (χ2u)‖2
H(Γ̃0,Λε0G,m)

. (7.2.5)

Then we have the following lower bounds on P :
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Proposition 7.2.2. For any u ∈ C∞c (Γ) with Neumann or Robin boundary condition, ω0 =
1 + ir0 where r0 > 0, we have

‖(P − ω0)u‖2
X > |r0 + S(Reω0)2/3h2/3 −O(h)|2‖u‖2

X . (7.2.6)

Here S = κζ ′1 is given by (5.0.2).

Proof. From theorem 5.2.4, we have the following estimates near the obstacle

‖(P − ω0)χ1u‖2
L2 > |r0 + S(Reω0)2/3h2/3 −O(h)|2‖u‖2

L2 .

Using lemma 7.2.1 and the fact that (Q− ω0)χ2 = (P − ω0)χ2, we have

‖(P − ω0)χ2u‖2
H(Γ̃0,Λε0G)

> |r0 + C−1
0 −O(h)|2‖χ2u‖2

H(Γ̃0,Λε0G)
.

Therefore we can repeat the argument in theorem 5.2.4 to get

‖(P − ω0)u‖2
X > ‖(P − ω0)χ1u‖2

L2 + ‖(P − ω0)χ2u‖2
H(Γ̃0,Λε0G)

−
∑
j=1,2

‖[χj, P ]u‖2
L2 − 2

∑
j=1,2

‖χj(P − ω0)u‖2
X‖[χj, P ]u‖L2 .

Here the commutator [χj, P ]u can be estimated by

‖[χj, P ]u‖L2 6 O(h)(‖(P − ω0)u‖L2(Ω1) + ‖u‖L2(Ω1)) 6 O(h)(‖(P − ω0)u‖X + ‖u‖X).

We use the fact that supp[χj, P ]u ⊂ Ω1 = {x : d(x, ∂O) ∈ ((2L)−1, L−1)} and thus the
X-norm and L2-norm are equivalent.

7.2.3 Resonance free region

Now the cubic resonance free region follows from proposition 7.2.2 in the same way as in
section 5.3 and we omit the details.

7.3 Global Grushin problem and resonances bands

Now we follow the notation in section 6.5 to write

P − z = h−2/3(−h2∆Γ − w)− z,

where w ∈ W b (0,∞) and |Re z| 6 L, | Im z| 6 C where C fixed. Again we also use the
notation

D(α) = {x ∈M \ O : d(x, ∂O) > α}.
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7.3.1 Further estimates away from the obstacle

In this section, we prove the following lemma which allows us to glue the estimates away
from the obstacle with the Grushin problem considered in section 6.3.

Lemma 7.3.1. Assume that 0 < h < h0. If v1 ∈ C∞c (M \ O) is supported in D(δ) where
δ = (2L1)−1, then there exists u1 ∈ C∞(M \ O) supported away from the obstacle and
v1

0 ∈ C∞c (M \ O) such that
(P − z)u1 = v1 + v1

0, (7.3.1)

and
‖u1‖D + eC/h‖u1‖Hk

h(D((1−γ)δ)) + eC/h‖v1
0‖Hk

h(M\O) 6 Ch2/3‖v1‖X . (7.3.2)

for any k, γ > 0.

Proof. First since w + h2/3z is not a resonance for Q = −h2∆Γ̃0
, we can solve

(h−2/3(−h2∆|Γ̃0
− w)− z)ũ = v1

such that
‖ũ‖H(Γ̃0,Λε0G,m) 6 h2/3‖v1‖H(Γ̃0,Λε0G).

By the standard weighted estimates for the resolvent of −h2∆|Γ̃0
, we have

|∂αx∂βy [(−h2∆|Γ̃0
− ζ)](x, y) 6 Cα,βe

d|Γ̃0
(x,y)/C ,

when dΓ̃0
(x, y) > ε and ζ = w + h2/3z as above. If we truncate ũ by a cutoff function equal

to 1 on D((1−2γ)δ) and 0 near O, we get u1 satisfying the boundary condition and an error
term v1

0 satisfies the estimates.

Now we can follow the same argument as in 6.4 to obtain the following proposition.

Proposition 7.3.2. Let 0 < ε < 2
3
, |Re z| 6 L, | Im z| 6 C, then there exists h0 = h0(L)

such that for 0 < h < h0(L), there exists maps Eε, Kε defined on C∞c (D(hε)), with the
properties (P − z)Eε = I +Kε and

Eε = O(h2/3−ε) : X ∩ L2(D(hε))→ D,

Kε = O(e−C
−1h−1+ 3ε

2 ) : X ∩ L2(D(hε))→ Hk
h(Rn \ O), ∀k ∈ R.

(7.3.3)

Moreover, for any fixed γ ∈ (0, 1), we can construct Eε and Kε such that for u ∈ C∞c (D(hε)),
Eεu and Kεu are supported in D((1− γ)hε).
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7.3.2 Construction of the global Grushin problem

Assume that W is a fixed compact subset of (0,∞) and ε� 1. For every w ∈ W and z ∈ C
such that |Re z| � 1/δ, | Im z| 6 C1, the same argument as in section 6.5 shows that we can
construct the global Grushin problem

Pw(z) =

 Pw − z R−,w
γ1 0
R+,w 0

 : Bw,r → Hw,r.

with inverse

Ew(z) =

(
Ew(z) Kw(z) Ew,+(z)
Ew,−(z) Kw,−(z) Ew,−+(z)

)
: Hw,r → Bw,r.

Here ∥∥∥∥( u
u−

)∥∥∥∥
Bw,r,δ

= h−2/3‖erψ(xn)/2h2/3

(hDxn)2u‖X

+ h−2/3‖erψ(xn)/2h2/3

χ(xn/δ)xnu‖L2(Rn\O)

+ ‖erψ(xn)/2h2/3〈xn〉−2〈h−2/3(−h2∆∂O − w)〉u‖X
+ h−2/3‖erψ(xn)/2h2/3

(1− χ(xn/δ))u‖D
+ h1/3‖u−‖L2(∂O;CN ),∥∥∥∥∥∥

 v
v0

v+

∥∥∥∥∥∥
Hw,r

= ‖erψ(xn)/2h2/3

v‖X

+ h1/3‖〈h−2/3(−h2∆∂O − w)〉1/4v0‖L2(∂O)

+ h1/3‖〈h−2/3(−h2∆∂O − w)〉v+‖L2(∂O;CN ),

where the weight function ψ ∈ C∞([0,∞); [0, 1]) satisfying ψ(t) = t for t < 1
2

and ψ(t) = 1
for t > 1; and the cut-off function χ ∈ C∞([0,∞); [0, 1]) satisfying χ(t) = 1 for t < 1 and
χ(t) = 0 for t > 2. Here we still use the geodesic normal coordinates (x′, xn) ∈ ∂O × (0,∞)
for Rn \ O as introduced before.

Moreover, the effective Hamiltonian Ew,−+(z) ∈ Ψ0,1,2
Σw,2/3

satisfies the same properties as
stated in theorem 5.

7.3.3 Resonance band and Weyl’s law

The proof of the existence of resonance bands and Weyl’s law for counting functions in each
band now follows from the same argument as in 6.6 and we shall not repeat it here.
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Mém. Soc. Math. France (N.S.) 24-25 (1986).
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