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Abstract
Traumatic spinal cord injuries (SCIs) affect 1.3 million North Americans,
producing devastating physical, social, and vocational impairment.
Pathophysiologically, the initial mechanical trauma is followed by a significant
secondary injury which includes local ischemia, pro-apoptotic signaling, release
of cytotoxic factors, and inflammatory cell infiltration. Expedient delivery of
medical and surgical care during this critical period can improve long-term
functional outcomes, engendering the concept of “Time is Spine”. We
emphasize the importance of expeditious care while outlining the initial clinical
and radiographic assessment of patients. Key evidence-based early
interventions (surgical decompression, blood pressure augmentation, and
methylprednisolone) are also reviewed, including findings of the landmark
Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). We then
describe other neuroprotective approaches on the edge of translation such as
the sodium-channel blocker riluzole, the anti-inflammatory minocycline, and
therapeutic hypothermia. We also review promising neuroregenerative
therapies that are likely to influence management practices over the next
decade including chondroitinase, Rho-ROCK pathway inhibition, and
bioengineered strategies. The importance of emerging neural stem cell
therapies to remyelinate denuded axons and regenerate neural circuits is also
discussed. Finally, we outline future directions for research and patient care.

 
This article is included in the F1000 Faculty

 channel.Reviews

1,2 1,2 1-6

1

2

3

4

5

6

  Referee Status:

 Invited Referees

 version 1
published
27 May 2016

 1 2

 27 May 2016, (F1000 Faculty Rev):1017 (doi: First published: 5
)10.12688/f1000research.7586.1

 27 May 2016, (F1000 Faculty Rev):1017 (doi: Latest published: 5
)10.12688/f1000research.7586.1

v1

Page 1 of 12

F1000Research 2016, 5(F1000 Faculty Rev):1017 Last updated: 27 MAY 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
http://f1000research.com/articles/5-1017/v1
http://f1000research.com/articles/5-1017/v1
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/articles/5-1017/v1
http://dx.doi.org/10.12688/f1000research.7586.1
http://dx.doi.org/10.12688/f1000research.7586.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7586.1&domain=pdf&date_stamp=2016-05-27


F1000Research

 Michael Fehlings ( )Corresponding author: michael.fehlings@uhn.on.ca
 Ahuja CS, Martin AR and Fehlings M. How to cite this article: Recent advances in managing a spinal cord injury secondary to trauma

  2016, (F1000 Faculty Rev):1017 (doi: )[version 1; referees: 2 approved] F1000Research 5 10.12688/f1000research.7586.1
 © 2016 Ahuja CS . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: Michael Fehlings is an investigator in the Stem Cells Inc. trial mentioned in this article. The authors have no other conflicts
or potential conflicts to disclose.

 27 May 2016, (F1000 Faculty Rev):1017 (doi: ) First published: 5 10.12688/f1000research.7586.1

Page 2 of 12

F1000Research 2016, 5(F1000 Faculty Rev):1017 Last updated: 27 MAY 2016

http://dx.doi.org/10.12688/f1000research.7586.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.7586.1


Introduction
Traumatic spinal cord injuries (SCIs) have devastating conse-
quences for patients and families. Direct lifetime costs can be 
as high as $1.1–$4.6 million per patient, with over 1.3 million 
patients affected in North America alone1,2. Expedient delivery of 
specialized medical and surgical care can improve long-
term functional outcomes for patients3,4. The rapidly evolving  
management of patients with SCI is summarized here with  
emphasis on evidence-based current practices and upcoming  
therapies in trial.

Pathophysiology
The initial primary trauma results in mechanical injury to cells, 
damages the sensitive microvasculature of the cord, and causes 
hemorrhage. Pro-apoptotic signaling is initiated and progressive 
edema contributes to ongoing ischemia5,6. Furthermore, the blood-
spinal cord barrier is disrupted, permitting an influx of vasoactive 
peptides, cytokines, and inflammatory cells7,8. Over the ensuing 
hours to days, by-products of cellular necrosis are released (ATP, 
DNA, and K+), creating a cytotoxic post-injury milieu and acti-
vating microglia to further recruit phagocytes. Macrophages and 
polymorphonuclear leukocytes infiltrate and generate oxygen free 
radicals and other cytotoxic by-products. Excess glutamate release 
and failure of reuptake by astrocytes results in excitotoxicity for 
adjacent neurons9,10. Please see Figure 1.

As the parenchymal volume is lost, cystic cavities coalesce, creating 
a physical barrier to cell migration11. Furthermore, the lack of 
structural framework impedes regenerative attempts. Over time, 
astrocytes proliferate and surround the perilesional zone, creating  
an irregular mesh-like barrier of interwoven cell processes12. This 
is accompanied by fibroblast deposition of chondroitin sulfate 
proteoglycans (CSPGs) including neural/glial antigen 2 (NG2) and 
tenascin13–16. CSPGs and myelin glycoproteins act via the Rho-
ROCK (rho-associated protein kinase) pathway to inhibit neurite 
outgrowth by signaling growth cone collapse through effector 
kinases17. Together, these mechanisms severely restrict endogenous 
neural circuit regeneration and oligodendrocyte remyelination at a 
cellular level.

Systemically, cervical and thoracic cord injuries can interrupt 
the sympathetic output of the intermediolateral column, causing  
neurogenic shock with loss of peripheral vascular tone and 
bradycardia18. The result can be profound hypotension, 
which further exacerbates cord ischemia19. Paralysis of the 
intercostal and abdominal muscles restricts the inspiratory 
phase of ventilation, leading to hypercarbia and/or hypoxia.  
Furthermore, a weakened cough, poor mobilization, and  
secondary immunodeficiency (immune paralysis) after SCI make 
patients highly susceptible to life-threatening infections20,21.

There is currently a lack of consensus on the optimal approach to 
several areas of SCI diagnosis and treatment, in part owing to het-
erogeneity in injuries (cervical versus thoracic, complete versus 
incomplete) but also owing to conflicting interpretations of the 
literature. As discussed below, early recognition and appropriate 
triage of patients are critical first-line components of care; however, 
the choice of imaging modalities for diagnosis and prognostication 

remains unclear22. Care is largely supportive, but the long-term 
importance of early surgical decompression (<24 hours)3,23,24, blood 
pressure augmentation (mean arterial pressure [MAP] ≥85 mmHg)4, 
and selective use of methylprednisolone (MPSS)25–28 is increas-
ingly being recognized. Even under ideal circumstances, recovery 
of lost function is patient dependent and largely determined by 
their clinical status at 1–2 years post-injury. Below we summarize 
the current standards of care and discuss recent advances in the  
diagnosis, neuroprotection, prognostication, and regeneration for 
patients with SCI.

Current care
The first-line care of a patient with SCI involves securing the  
airway, breathing, and circulation followed by appropriate spi-
nal immobilization in the field to limit further insult of the highly  
susceptible cord during transport22. Recognition and appropriate 
triage of SCI patients is critical in the early period to ensure timely 
delivery of interventions at specialized centers22. While maintain-
ing spinal immobilization, airway and breathing management can  
range from supplemental oxygen to intubation and ventilation. At any 
point during the acute injury, systemic hypotension (systolic blood 
pressure [SBP] <90 mmHg) is associated with worse neurologic  
outcomes22. With a profound loss of vascular tone and potential 
bradycardia, patients can rapidly fall into neurogenic shock. Large-
volume intravenous (IV) fluid therapy (most often crystalloids) is 
the mainstay of treatment; however, adjunctive alpha-adrenergic 
vasopressors (e.g. norepinephrine and phenylephrine) may also 
be used to temporize patients. As soon as the patient is resusci-
tated, an American Spinal Injury Association (ASIA) International  
Standards for Neurological Classification of SCI (ISNCSCI) exami-
nation should be completed to establish the level of injury and  
baseline function22.

Early imaging to localize and classify the injury is critical to 
expeditiously manage patients and provide the outcome-alter-
ing early interventions discussed below3,4,23,24. CT is recom-
mended in all patients, as plain radiographs can miss 6% of 
injuries29. In those with cervical injuries and high-energy mecha-
nisms, imaging of the thoracolumbar spine is also recommended 
to detect oncomitant injuries30. Magnetic resonance imaging 
(MRI) can be useful to assess ligamentous injury, critical disc  
herniations, and epidural hematomas and enhance prognostication 
of outcomes31; however, its role in the initial workup of patients 
with SCI remains unclear given resource constraints at many  
centers. Urgent MRI is recommended by the authors in cases with  
unexplained neurological deficits to ensure that ongoing cord  
compression or ligamentous injuries are not missed.

While establishing the diagnosis and classifying the injury  
pattern, secondary injuries should be avoided by transferring the 
patient to an intensive care unit (ICU) setting with respiratory,  
hemodynamic, and cardiac monitoring22. Polytrauma patients should 
continue to have acute life- or limb-threatening injuries managed 
while maintaining appropriate spinal immobilization and recogniz-
ing early therapeutic windows for SCI interventions. This requires 
a concerted interdisciplinary effort including modified surgical 
positioning for orthopedic/general surgery procedures, fiberoptic 
tracheal intubation, and clear communication between teams.
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Figure 1. “(A) Primary and secondary mechanisms of injury determining the final extent of spinal cord damage. The primary injury event 
starts a pathobiological cascade of secondary injury mechanisms that unfold in different phases within seconds of the primary trauma and 
continuing for several weeks thereafter. (B) Longitudinal section of the spinal cord after injury. The epicenter of the injury progressively 
expands after the primary trauma as a consequence of secondary injury events. This expansion causes an increased region of tissue 
cavitation and, ultimately, worsened long-term outcomes. Within and adjacent to the injury epicenter are severed and demyelinated axons. 
The neuroprotective agents listed act to subvert specific secondary injuries and prevent neural damage, while the neuroregenerative agents 
act to promote axonal regrowth once damage has occurred. ATP = adenosine triphosphate.” Reprinted with permission from Wilson J, 
Forgione N, Fehlings MG. Emerging therapies for acute traumatic spinal cord injury. CMAJ. 2012; 185(6): 4854.
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Early surgical decompression
Progressive edema and hemorrhage contribute to ongoing mechanical  
pressure on the sensitive microvascular circulation. Surgical 
decompression aims to relieve this pressure to reduce secondary 
ischemic-hypoxic injury. The Surgical Timing in Acute Spinal 
Cord Injury Study (STASCIS) was a prospective, observational 
study of 313 patients with cervical SCI. Patients undergoing early 
decompression (<24 hours from injury; mean = 14 hours) were 
more than twice as likely to have a two-grade ASIA Impair-
ment Scale (AIS) improvement at 6-month follow-up than those 
undergoing late surgery (≥24 hours from injury; mean =  
48.3 hours)23. No difference in complication rates between early 
(24%) and late (30%) surgery was found (p = 0.21). These findings 
were further confirmed in a prospective Canadian cohort study24. 
Another observational study reported shorter hospital lengths of 
stay (LOS) for ASIA grade A (complete) or grade B (incomplete 
sensory injury; complete motor injury) patients undergoing early 
decompression3. An additional multi-center, European (SCI-POEM) 
study is currently underway31. The main critique of these studies is 
their cohort design, which was chosen for both practical reasons and 
ethical concerns surrounding randomizing patients where true clini-
cal equipoise does not exist. However, these studies represent the 
most robust, large-scale data on surgery for SCI and provide sup-
port for a well-studied intervention in a field where few treatment 
options exist for patients. Given this data, the concept of “Time is 
Spine” has emerged, emphasizing the critical importance of early 
therapies to improve long-term functional outcomes4. Furthermore,  
early surgical decompression (<24 hours) is recommended in  
current American Association of Neurological Surgeons (AANS) 
and Congress of Neurological Surgeons (CNS) guidelines22.

Mean arterial pressure
To further mitigate ischemia of the injured cord, blood pres-
sure augmentation has emerged as a viable strategy. Maintaining 
MAP ≥85–90 mmHg post-injury has been shown to improve AIS 
grade outcomes for patients4. Current AANS/CNS guidelines 
provide level III recommendations to maintain MAP for 7 days 
post-injury. This requires maintenance of a euvolemic or slightly 
hypervolemic state using IV crystalloid in addition to an infusion of 
vasopressors and invasive blood pressure monitoring (e.g. arterial 
line). These significant requirements have led to a non-inferiority 
trial of MAP ≥65 mmHg versus MAP ≥85 mmHg called MAPS, 
which is expected to be completed in 201731.

Maintaining these MAP parameters can also be a barrier to 
mobilization, which is critical in the early post-injury period 
to prevent complications. Safely elevating patients and engag-
ing muscle activity requires a collaborative, multidisciplinary 
effort along with adjuncts such as prophylactic vasopressors and 
peripheral/abdominal binding. The ideal time to begin mobili-
zation should be evaluated on an individual basis according to 
the patient’s hemodynamics, underlying comorbidities, and the  
expertise of the healthcare team.

Early intravenous methylprednisolone
MPSS is a synthetic corticosteroid which upregulates anti- 
inflammatory factors and decreases oxidative stress to enhance 
endogenous cell survival in animal models of SCI. A series of key 
clinical trials entitled National Spinal Cord Injury Study (NASCIS) I 

(1984)25, II (1990)26, and III (1997)27 demonstrated serious adverse 
events with a high-dose MPSS protocol (e.g. sepsis), which 
outweighed the potential benefit for neurologic recovery. However, 
when a low-dose protocol was given to patients within 8 hours of 
injury, no adverse events and a potential improvement were seen. 
The study methodology and subgroup analyses from this series 
have been extensively debated over the last several decades. To 
settle this debate, a comprehensive Cochrane review was published 
in 2012 encompassing six randomized controlled trials (RCTs) 
and several key observational studies. The analysis demonstrated a 
four-point ASIA motor score improvement for patients receiving 
MPSS within 8 hours of injury33. While this appears to be a small 
improvement in relative terms, a four-point improvement in key 
myotomes such as grip, triceps, and deltoid function can repre-
sent a significant functional gain for patients. The 2016 AOSpine 
guidelines, developed by an international and interdisciplinary 
committee of experts, will suggest IV MPSS (administered over 
24 hours) as a treatment option when feasible to patients within 
8 hours of injury.

Frontiers of imaging
Conventional MRI, producing T1- and T2-weighted images, has 
been shown to be of modest value in helping to predict neuro-
logical and functional outcomes, particularly the prognostic fac-
tors of length of hemorrhage and degree of cord compression31. 
However, conventional MRI fails to yield information about the 
health of the spinal cord tissue as signal changes are non-specific 
and can reflect a range of physiological processes such as 
hemorrhage (macroscopic or microscopic), edema, gliosis, cell 
loss, and cavitation31. A number of emerging MRI techniques have 
the potential to substantially improve our ability for prognostication 
by quantifying the degree of tissue injury and measuring functional 
changes within the spinal cord34. Techniques that can quantify 
aspects of tissue microstructure include diffusion tensor imaging 
(DTI), reflecting axonal integrity, magnetization transfer (MT) and 
myelin water fraction (MWF), correlating with myelin quantity, 
and MR spectroscopy (MRS), measuring the concentration of 
key molecules that reflect cell loss (N-acetylaspartate), gliosis 
(myo-inositol), and ischemia (lactate). Functional MRI (fMRI) can 
visualize neuronal activity and connectivity. All of these techniques 
are under intense investigation, with DTI in particular showing 
strong correlation with tissue injury, which may lead to clinical 
translation in the near future35.

Frontiers of neuroprotection
Neuroprotective interventions to preserve injured tissue and reduce 
secondary insult are key approaches in SCI. Multiple therapies 
targeting components of the pathophysiologic cascade are currently 
under investigation and in trial.

Hypothermia decreases the basal metabolic rate of central nervous 
system tissue and reduces inflammation36. Therapeutic hypothermia 
(32–34°C) has been applied in the neuroprotection of patients after 
cardiac arrest37 and neonatal hypoxic-ischemic encephalopathy38,39. 
Animal models of SCI have demonstrated significant improvements 
with systemic intravascular cooling40, leading to a pilot study 
of 14 AIS grade A patients in which a trend towards neurologic 
improvement (43% versus 21%) was reported with no difference in 
complication rates41. The pending Acute Rapid Cooling Therapy 
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for Injuries of the Spinal Cord (ARCTIC) phase II/III trial looks to 
further assess the efficacy of this therapy42.

Riluzole is a benzothiazole, voltage-gated sodium-channel blocker 
which indirectly decreases glutamate release and enhances 
reuptake43. It has been used successfully to slow the progres-
sion of motor neuron loss and improve survival in patients with 
amyotrophic lateral sclerosis44. A phase I/II clinical trial of  
36 patients with SCI demonstrated 15.5-point improvements in 
ISNCSCI motor scores for riluzole-treated patients with a cervi-
cal level injury45. A phase II/III RCT entitled “Riluzole in Spinal 
Cord Injury Study” (RISCIS), sponsored by AOSpine, the North 
American Clinical Trials Network (NACTN), the Rick Hansen 
Institute, and the Ontario Neurotrauma Foundation, is now  
underway to further assess efficacy for patients with C4-8 level 
injuries. The trial is expected to complete in 201832. 

Minocycline is a tetracycline-class antibiotic with anti- 
inflammatory properties including inhibition of tumor necrosis  
factor-α (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-
2), nitric oxide synthase (NOS), and microglial activation. Pre-
clinical models of SCI showed dramatically decreased lesion sizes  
and neuron loss with acute minocycline treatment46,47. In a mixed-
level phase II study, cervical SCI patients (N = 25) had a 14-point 
ASIA motor score improvement with minocycline treatment versus 
placebo (p = 0.05)48. This has led to a phase III trial (N = 248) of 
IV minocycline x 7 days versus placebo entitled “Minocycline in 
Acute Spinal Cord Injury” (MASC) to be completed by 201832.

Fibroblast growth factor (FGF) is part of the family of heparin-
binding proteins. It has been shown to protect against excitotoxic 
cell death and mitigate oxygen free radical production in animal 
models of SCI49. SUN13837 (Asubio Pharmaceuticals Inc.) is an 
FGF analogue trialed in a phase I/II study which completed in 
2015. Results are expected to be reported in the near future32. Simi-
larly, cytokine granulocyte-colony stimulating factor (G-CSF) has 
been shown to be neuroprotective in SCI by directly promoting cell 
survival and inhibiting TNF-α and IL-1β50. Two non-randomized 
studies demonstrated improvements in AIS scores for patients 
receiving IV G-CSF51,52. A larger randomized trial is anticipated.

Finally, magnesium is a non-competitive NMDA receptor antag-
onist. It has been applied in the neuroprotection of multiple 
central nervous system disorders to decrease excitotoxicity and 
inhibit inflammation. When delivered with an excipient, such as 
polyethylene glycol (PEG), it generates stable cerebrospinal fluid 
levels in the therapeutic range53–55. AC105 (Acorda Therapeutics) is 
a Mg-PEG compound that was studied in a phase I trial concluding 
in February 201532. Results are pending report.

Frontiers of neuroregeneration
The majority of patients living with impairments from SCI are in 
the chronic phase of injury. Neuroregenerative strategies aiming to 
help these millions of patients are being developed by countless  
researchers worldwide. Significant therapeutic opportunities exist 
using endogenous and exogenous repair mechanisms with adjuncts 
to address barriers to recovery such as the loss of structural 

framework, cystic cavitation, astroglial/CSPG scarring, and inhibi-
tory molecular signaling.

CSPGs, myelin-associated glycoproteins (MAGs), oligodendrocyte- 
myelin glycoprotein (OMgp), and neurite outgrowth inhibitor-A 
(NOGO-A) all act on receptors associated with the Rho-ROCK 
pathway to inhibit neurite outgrowth, thereby stemming attempts 
at recovery. Multiple types of drugs directed at disrupting this 
signaling cascade have been developed. Bioengineered mono-
clonal NOGO-A antibodies, given by intrathecal injection, have 
been shown to improve regeneration of rat and primate spi-
nal cords56,57. A phase I study (N = 51) of ATI355 (anti-Nogo-A 
antibody) has been completed with results pending dissemination32. 
Direct Rho inhibition has also been developed in the form of an 
intraoperatively applied epidural paste (Cethrin/VX-210; Vertex 
Pharmaceuticals)17. A mixed cervicothoracic-level phase I/IIa 
study (N = 48) demonstrated significant motor improvement (18.5 
ASIA motor score points) for cervical patients receiving Cethrin 
without any increase in complications58. A further phase IIb trial 
is planned.

Instead of inhibiting the Rho-ROCK pathway, chondroitinase ABC 
(ChABC) is an enzyme which degrades CSPGs in the glial scar 
to effectively remove initiators of the cascade. In rodent models 
of SCI, intrathecal and intraparenchymal treatments with ChABC 
have been shown to reduce CSPGs, scar volume, and cavity volume. 
Electrophysiologic and behavioral improvements in motor and 
sensory function after ChABC treatment have also been demon-
strated by a number of groups including seminal work by Bradbury 
et al.59–61. This exciting approach is being further developed with 
novel delivery methods and in combination with other regenerative 
techniques such as cell-based therapy49,60,62. Furthermore, a human-
ized form of chondroitinase is being studied with a more central 
nervous system-specific motif.

Cell-based therapies are a rapidly evolving field of regenerative 
medicine. Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs), and their differentiated progeny, are capable 
of regenerating lost neural circuits, remyelinating denuded 
axons, modulating the inflammatory response, and modifying the  
microenvironment63–65. ESCs have been studied the longest but 
are in limited supply and their use raises complex ethical issues.  
The discovery of four factors capable of generating a pluripotent 
cell from adult somatic cells provided a limitless source of cells 
with the possibility of developing autologous therapies in the 
future66. While previously unknown issues with iPSCs, such as 
epigenetic memory and early senescence, are being studied, these 
cells remain a key therapeutic strategy67. Multiple studies of oli-
godendrocyte precursor cells, neural precursor cells, and cells to 
modify the microenvironment have produced recovery of function 
in preclinical models over the past three decades68–73. An interna-
tional phase I/II trial of human central nervous system stem cell 
injections for cervical SCI is being conducted by Stem Cells Inc. 
with results expected in 201732. A parallel thoracic injury phase I/II 
study, currently completing follow-ups, has shown improvements 
in sensation with no increase in complication rates74. Another phase I 
trial of NSI-566 neural stem cells for thoracic injury is expected to 
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conclude in 201632. Ongoing studies will continue to address safety 
concerns and establish efficacy of this exciting therapy.

Several important parallel cell-based strategies are under investiga-
tion. Schwann cells (SCs) are able to remyelinate both peripheral 
nervous system (PNS) and central nervous system axons and are a 
key component of effective PNS regeneration. In animal models, 
SCs have been shown to reduce cystic cavitation, enhance tissue 
sparing, and promote behavioral recovery75. The Miami Project to 
Cure Paralysis is currently recruiting patients with chronic ASIA 
grade A, B, and C cervical and thoracic injuries for a phase I 
(N = 10; NCT02354625), open-label trial of autologous SCs 
transplanted into the injury epicenter32. The study is expected to 
conclude in 2018. The same team is also running a phase I study 
(N = 10; NCT01739023) of autologous SCs for subacute thoracic 
ASIA grade A SCI expected to report in 201632.

Olfactory ensheathing cells (OECs) cover olfactory neurons in 
a manner similar to SCs. They are potent phagocytes capable of 
continuously clearing microbes and debris from the nasal mucosa 
while also secreting neurotrophic support factors76–79. OECs har-
vested from the nasal mucosa or olfactory bulb have been shown 
to enhance axonal regeneration and remyelination and significantly 
improve behavioral outcomes in animal models80. Several chronic 
SCI trials of OECs have been completed and compiled in a recent 
meta-analysis (cumulative N = 1193) which demonstrated no 
significant increase in serious adverse events. Higher-quality stud-
ies are required moving forward to definitively establish efficacy81.

Mesenchymal stem cells (MSCs) are multipotent stromal cells 
with the capacity to repair damaged tissues by differentiating along 
connective tissue lineages (e.g. chondrocytes, myocytes, osteob-
lasts, and adipocytes)82. Furthermore, they are uniquely capable of 
modulating the inflammatory response both at a systemic level and 
within their local environment83–85. In animal models, MSCs have 
been shown to decrease peripheral inflammatory cell infiltration, 
enhance pro-survival trophic factor levels, and promote neural tissue  
sparing86,87. Numerous phase I and II trials studying autologous 
MSCs are ongoing worldwide. Pharmicell Co. is conducting a 
phase II/III trial (N = 32; NCT01676441) of autologous MSCs 
transplanted into the parenchyma and intrathecal space of patients 
with ASIA grade B injuries. The study is expected to conclude in 
201632. A similar class of support cells is bone marrow cells (BMCs) 
which, in preclinical testing, have been shown to facilitate directed 
axonal regrowth by producing extracellular matrix88 and promot-
ing remyelination89. A phase I/II RCT (N = 21) of ASIA grade A 
patients administered autologous BMCs intraparenchymally or 
intrathecally was published in 2015. No serious adverse events were 
reported90. A similar recent study in children with chronic SCI also 
showed no significant adverse events91. Bioengineered strategies 
form an important complementary avenue of research for regenera-
tion of the traumatically injured cord. Multiple biomaterials have 
been developed to fill cavitation defects and recreate the structural 
architecture required to promote endogenous and exogenous cell 
migration and survival92–96. These materials are being engineered 
to have a specified porosity and density, be immunologically inert, 
and biodegrade over time. Furthermore, many have been modified 
to release growth factors or immunomodulatory drugs to enhance 

regeneration95,97,98. A unique class of biomaterial, self-assembling 
peptide hydrogels, has been designed to be injectable and assem-
ble into nanofibrils resembling extracellular matrix when exposed 
to ionic or temperature changes68,99. As biochemical manufacturing 
and our transplant techniques are refined, biomaterials are likely 
to be important components of a successful regenerative therapy 
for SCI.

Frontiers of rehabilitation
A critical part of any treatment for SCI is an effective rehabilitation 
strategy. This requires the integration of SCI-specific physiother-
apy (e.g. stretching, strength training, and transferring), occupa-
tional therapy (e.g. modified activities for self-care), nursing (e.g. 
wound care and bowel/bladder care), psychology, speech-language 
pathology, and medicine. Conventional physical rehabilitation 
aims to reduce chronic complications (e.g. ulcers, deformity, and 
cardiorespiratory deconditioning) while enhancing residual func-
tion for maximal gain. Several technological adjuncts are actively 
being researched and integrated into long-term rehabilitation to 
achieve these goals including functional electrical stimulation 
(FES) and epidural stimulation (EDS). FES applies microcurrents 
to nerves and muscles to enhance motor function during reha-
bilitation or daily activities. Patterned FES has shown success in 
restoring both upper extremity (e.g. writing, eating, and self-care) 
and lower extremity (e.g. supported ambulation and stationary 
bicycle riding) function. FES has also been used to significantly 
improve volitional control of the bowel and bladder100. In addition 
to immediate gains, FES may also produce long-term improve-
ments similar to activity-based restorative therapy (ABRT) via 
mechanisms of neuroplasticity. Both ABRT and FES repeatedly 
activate preserved circuits to maintain existing connections while 
promoting synaptogenesis, myelination, and neurite sprouting100–103. 
Furthermore, during physical rehabilitation, FES augmentation 
can dramatically increase patients’ oxygen uptake and respiratory 
rate and improve their fat to muscle ratio104,105. A phase III trial 
(N = 84; NCT01292811) of FES for the restoration of upper limb 
function in tetraplegic patients with subacute cervical injuries is 
currently recruiting patients. This study is expected to conclude 
in 2018. EDS is a parallel approach using microcurrents delivered 
by epidural electrodes to stimulate the spinal cord and/or conus 
medullaris106. It has been successfully used in the treatment of 
refractory neuropathic pain for numerous conditions (e.g. ampu-
tation, stroke, and SCI). The concept behind EDS-induced motor 
recovery is the enhancement of neuroplasticity by activating 
central circuits including the central pattern generator for locomo-
tion (T11-L1) and cardiorespiratory circuits. Several phase I and II  
studies (NCT02592668, NCT02339233, and NCT02313194) are 
underway to explore the potential of EDS with results expected 
over the next 5 years32.

Looking forward
The landscape of SCI management is quickly changing as the 
heterogeneity of patients and long-term importance of key early 
interventions are increasingly being recognized. Combinatorial 
neuroprotective and neuroregenerative strategies are most likely to 
be effective moving forward given the multifaceted nature of the 
injury; however, this approach may require tailoring to specific 
patient subgroups. This necessitates a deeper understanding of 
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SCI pathophysiology, clinical presentation, and relevant imaging, 
serum, and cerebrospinal fluid biomarkers107,108. While landmark 
studies of the past have enrolled varied groups of patients for 
logistical reasons, we foresee future studies stratifying patients by 
well-defined diagnostic criteria to elucidate subtle but prognosti-
cally important differences. The results of the above trials may 
become catalysts for critical changes in the current standard of 
care. Even small improvements in sensory or motor outcomes can 
have profound functional effects on patients’ vocational abilities and  
independence.
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