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ABSTRACT OF THE DISSERTATION

Experimental and Computational Analysis of Left Ventricular Aneurysm
Mechanics

by
Scott Michael Moonly
Doctor of Philosophy in Bioengineering
University of California, San Francisco
University of California, Berkeley
2003
Julius Guccione, Ph.D. Chair

Left Ventricular (LV) aneurysm, a complication of myocardial infarction, is a subset of
the single largest killer of residents in the United States, coronary heart disease. This
thesis combines traditional mechanical testing techniques (biaxial material property
testing), with state of the art computer simulations (Finite Element Method (FEM)) to

analyze LV aneurysm. Specifically this thesis will show the effect of changing material

properties on both the global and regional function of the left ventricle.

To obtain realistic material parameters for LV aneurysm tissue, an ovine model of LV
aneurysm was used. Following harvest of the tissue, biaxial material property testing was
preformed on the tissue. We found the aneurysm tissue to be stiffer than previously

reported by other investigators.

The impact of these new LV aneurysm material properties was examined by creating a
realistic finite element model of the left ventricle as a whole. The geometry for this
model was obtained using a magnetic resonance imaging (MRI) scan of the ovine LV

aneurysm model. The model predicted an increase in cardiac function as measured by



the Starling relation, a global decrease in fiber stress, and a global increase in cross-fiber
stress. The results have important implications to the structural changes that might be
occurring not only in the aneurysm region of the left ventricle, but also in the border zone

and remote regions of the heart.

In an attempt to isolate the impact of each material parameter upon cardiac function, a
series of simulations was conducted. The stiffness of the aneurysm was modeled in a
number of ways. With all of the methods, cardiac function was improved as stiffness was
increased. However, each method yielded different results for stress and strain
predictions. This has important implications to the cellular response to changing stress

and strain patterns following LV aneurysm and highlights the importance of choosing

accurate material parameters.
Approved by:
Juli){Gucc}Bne, Ph.D., Research Advisor " Date
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For many years the use of the finite element method (FEM) has provided much insight
and guidance in the mechanical analysis of biologic systems and in recent years has
become an everyday tool [1]. Prosthetics, implantable materials, and artificial limbs have
all used the FEM in their development [2-4]. Even at the cellular level, stress and strain
are being examined in relation to growth and healing of biological tissues [5-11]. In this
dissertation the power of the FEM will be used to model and study left ventricular (LV)
aneurysm. LV aneurysm has been a difficult problem to study for numerous reasons.
The heart muscle is anisotropic with respect to muscle fiber orientation, which makes it
more difficult to model than the nearly isotropic orthopedic materials. Furthermore, the
heterogenous incompressible nonlinear time-dependent material properties of LV
aneurysm are not well defined. The deformations associated with the heart are
commonly large deformations resulting in more complex finite mechanics than the
infinitesimal deformations associated with orthopedics. The complex muscle fiber angle
variation also adds considerably to the difficulty in creation of finite element computer
models of the heart. Finally, the changing material properties that result from active

contraction of muscle need to be accounted for.

An Introduction to the Finite Element Method

The FEM is a numerical technique that is used to obtain an approximate solution to
partial differential equations, such as the ones that define the stress and strain relationship
in muscle. The first step in solving a FE problem is to divide the continuum you are

analyzing into discrete elements. It is possible to use many shapes to define an element,
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but the most common are pyramidal and cubic based shapes [12]. The corers of these
shapes are referred to as nodes. Next, interpolation functions are used to represent the
variation between nodes of an element need to be selected. Although scalars, vectors,
and higher order tensors may be used to interpolate, polynomials are the most commonly
used functions. In this thesis linear interpolation in curvilinear coordinates is used
between nodes. Next, the matrices that represent the changes in properties of individual
elements will be set up. Then the individual element matrices will be assembled into a
global matrix that represents the problem as a whole. Before solving the problem,
boundary conditions need to be applied. This process consists of applying known loads
upon elements, and specifying or limiting displacements of individual nodes. Finally the
system of nonlinear equations will be solved, however, this solution does not always lead
us to a correct answer. Often it is necessary to compute secondary properties from the
output of the model in order to give useful results [1]. The details of the finite element

method will be presented in Chapter 3.

The Current State of Heart Disease and Treatment Options

Currently almost 62 million Americans are suffering from some form of cardiovascular
disease (CVD). In the year 2000, almost 1.5 million lives were lost to CVD, that is
approximately 40% of deaths in the United States resulted from CVD. When compared
to other major sources of death, CVD is more significant than other causes of death in the
United States (Cancer 553,000; Accidents 98,000; and AIDS 14,000), in fact results in

more deaths than the next five causes of death combined [13]. If all forms of CVD were



eliminated, life expectancy would be raised by 7 years. In the year 2003, the estimated

costs of CVD in the United States is $351.8 billion [13].

The research presented in this thesis is focused on the effect of changing LV aneurysm
material properties on cardiac function. LV aneurysm results from myocardial infarction
(MI), in which the local blood supply to a region of the heart is blocked and the tissue in
that area subsequently dies. LV aneurysm is considered a subset of coronary heart
disease (CHD), the single largest killer of residents in the United States, causing one out
of every five deaths [13]. In the year 2000 the total mention mortality from CHD was
681,000, with MI being responsible for about 239,000 of these deaths [13]. It is
estimated that about every 29 seconds an American will suffer a coronary event, and
about every minute someone will die from one. In the year 2003 it is estimated that

$129.9 billion will be spent fighting CHD in the United States [13].

Structure of the Thesis

Subsequent chapters of this thesis will first give a review of cardiovascular physiology
(Chapter 2) and the FEM (Chapter 3). In Chapter 4, the technique of biaxial material
property testing will be used to obtain accurate material parameters in constituitive
relations (stress, strain) for ovine LV aneurysm. Chapter 5 will then incorporate these
parameters into a highly detailed FEM model of the ovine LV determined from magnetic
resonance imaging (MRI). The global and regional function results of the FEM model

will then be compared to other methods of modeling LV aneurysm in order to elucidate



the potential oversimplifications made in past modeling of LV aneurysm. Chapter 6 will
then evaluate the effects of changing individual material parameters of LV aneurysm

modeling upon global and regional function of the left ventricle. This process will allow
us to link specific changes in stiffness within LV aneurysm with their respective changes

in global and regional function.
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Introduction

An understanding of basic cardiovascular physiology is important to the undertaking of
any computational modeling of the heart. This chapter will serve to highlight the basics
of the cardiovascular system, review myocyte structure and function, and to explain the

indices used to evaluate cardiac function.

The Flow of Blood Throughout the Circulatory System

The heart is divided into two sides, the left and the right. Both sides consist of two
chambers, an atrium and a ventricle. Outflow from the right ventricle (RV) goes to the
lungs where the deoxygenated blood is oxygenated. Outflow of oxygenated blood from
the left ventricle (LV) goes to all of the tissues of the body, and is known as the systemic
circulation. The actual flow of blood through the circulation can be thought of starting
with the return of deoxygenated blood to the right atrium from the venous circulation.
From the right atrium, blood enters the right ventricle after passing through the tricuspid
valve. As the right ventricle begins to contract, the tricuspid valve closes and right
intraventricular pressure increases until the pressure developed is significant enough to
open the pulmonic valve and propel the blood through the pulmonary artery into the
pulmonary vascular bed. After the blood has been oxygenated in the lungs it returns
through the pulmonary veins to the left atrium. When the mitral valve opens, blood in the
left atrium passes through the mitral valve and enters the left ventricle. As in the right

ventricle, the increased pressure that results from ventricular contraction causes the mitral
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valve to close. Once the left ventricular pressure increases to a sufficient level to open
the aortic valve (when left ventricular pressure exceeds aortic pressure) the blood is

ejected through the aorta and propelled throughout the systemic circulation [1, 2].

The Cellular Basis of Muscle Contraction

The individual unit of contraction is termed a sarcomere which is composed of both thin
and thick filaments. The thick filaments are made of myosin. Myosin molecules have
globular heads which can bind to actin molecules, and power the change in length of the
muscle that results in contraction through ATP usage. The thin filaments have three
components: actin, troponin, and tropomyosin. Actin provides binding sites for the
myosin heads of the thick filaments. However, these binding sites are blocked with the
molecule tropomyosin. Troponin has three subunits, of which the troponin C subunit can
bind calcium. Upon binding of calcium, the troponin C molecule causes a
conformational shift in the tropomyosin molecule which allows the binding of the myosin
heads to actin. Muscle contraction occurs according to the sliding filament theory. This
theory states that cross bridges form between myosin heads and actin binding sites.
Removal of a phosphate from a bound ATP molecule results in the pivoting of the
myosin head, and movement of the actin molecule. Subsequent binding of another ATP

molecule restarts the process (Figure (2.1)) [3].

The process of excitation contraction coupling translates an incoming action potential

into tension produced by the muscle. A cardiac action potential results in the
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depolarization of the cell membrane. The T-tubules spread this polarization to the inner
part of the cell. Depolarization results in the entry of calcium from the extracellular fluid
into the interior of the cell. This rise in calcium is not sufficient alone to create an action
potential, but triggers the release of more calcium from internal stores in the sarcoplasmic
reticulum. This calcium release is termed the calcium induced calcium release. As the
intracellular calcium concentration rises, the calcium binds to more molecules of troponin
C, which orients the molecules such that actin and myosin may interact. Cross-bridges
are formed and broken requiring the metabolism of ATP between the thin and thick
filaments as the molecules slide past each other. Cross bridge cycling results in the
production of tension within the muscle. The strength of tension produced is proportional
to the levels of intracellular calcium in the muscle cell. Relaxation, or the end of
contraction, occurs when the calcium levels are returned to the resting state through the
action of the calcium ATPase and the calcium-sodium exchangers, both of which pump
calcium against an electrochemical gradient back from the intracellular space into the

sarcoplasmic reticulum [1-3].

The Three Dimensional Microstructure of the Heart

The cylindrical cardiac myocytes are the main structural component of the muscle fibers
that compose the heart. Myocytes have a length of about 100 um, and a diameter of
approximately 20um. Myocytes connect to adjacent myocytes at points termed
intercalated discs. Due to the large metabolic requirements of myocardium, there is a

dense network of blood vessels present in the myocardium. The myocytes and blood
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vessels combine with an extra cellular matrix composed of collagen, elastin,

glycosaminoglycans, and glycoproteins to form the three dimensional structure of the

heart [4].

The heart also has a connective tissue matrix described by Caufield and Borg as having
three components: (1) the interconnections between myocytes, (2) connections between
myocytes and capillaries, and (3) a collagen weave that surrounds groups of myocytes
[5]. Robinson further defined the components of the extracellular matrix into three
groups [6]. The first being the endomysium, which consists of radial collagen cords and
a pericellular network of fibers that surround the myocyte, combined with a lattice of
collagen fibrils and microthreads. The second component was termed the perimysium.
The term perimysium describes the connective tissue meshwork that surrounds cell
bundles. The third level of organization is the epimysium, which is a sheath of

connective tissue that surrounds entire muscles, such as the papillary muscles [6].

Cardiac muscle fiber angle varies from roughly longitudinal at the endocardium, to
circumferential near the midwall, to nearly longitudinal at the epicardium [7]. The
extensive meshwork of extracellular matrix components that surrounds the muscle fibers
makes the tissue significantly stiffer in the muscle fiber direction [4]. Having different
material properties in different coordinate axes causes the material to be labeled as
anisotropic. The transmural variation in the orientation of muscle fibers is significant for
FEM modelling because it contributes to anisotropy. When we model the heart we

account for the change in muscle fiber orientation by creating a local muscle fiber axis
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that rotates through the ventricular wall as the muscle fibers do. The material properties
are then defined with respect to this local muscle fiber axis so that the FEM model
correctly accounts for the greater stiffness in the muscle fiber direction.

Common Indices Used to Describe Cardiac Function

Many indices have been developed to evaluate the function of the heart. Each has its
own limitations. Stroke volume is the volume of blood ejected during one heart beat. If

Ve is the volume of the heart at the end of diastole or filling, and V is the volume in the

heart at the end of systole or after ejection, then the Stroke Volume (SV) is defined as:

SV=v,-V,. 2.1

The Ejection Fraction (EF) is then defined to be the relative portion of the end diastolic

volume that is ejected during one heart beat or:

EF =22, 2.2)

The cardiac output is then defined to be the volume of blood ejected per unit time. This

is related to the heart rate (HR) as follows:

CO=SV xHR, 2.3)
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where the heart rate is defined as the number of beats per minute.
For a normal healthy person we would expect to see a SV of around 45 ml/m? (the
dimension of area is to account for the variation in size of individuals), an EF of about

67%, and a cardiac output of about 70 ml/kg/min [8].

The Le Tension Relationship in Cardiac Muscle

B
T .
¢
[ Vol . .;‘
The maximal tension that a cardiac myocyte can develop is related to its resting length. .
The tension developed is directly proportional to the degree of overlap between actin and
myosin molecules in the sarcomere. The point at which maximal tension occurs in the ;v L
cardiac sarcomere is at a resting length of about 2.4 pm (Figure (2.2)) [1]. o
T ¥ an
§,'-~ ;.
This idea can be extended to form a length tension relationship in the ventricle as a C ,
whole. Since the length of the individual muscle fibers just before contraction in either e A

ventricle depends upon the ventricular volume at end diastole, and the ventricular
pressure produced during systole is related to the tension in individual muscle fibers, we
can form a ventricular length tension relationship in terms of ventricular pressure and end
diastolic volume. Thus up to a point, as end diastolic volume increases so will the end

diastolic ventricular pressure.

The Frank-Starling law of the heart states that the volume of blood ejected by the

ventricle depends on the volume of blood in the ventricle at the end of diastole. This
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occurs because an increase in end diastolic volume results in an increase in ventricular
pressure, which increases the tension in the muscle fibers, and thus increases the strength
of contraction. There is a relationship between cardiac output or stroke volume and

ventricular end diastolic pressure, which is commonly represented as a type of Frank

Starling curve (Figure (2.3)).

Thus as the ventricular end diastolic volume increases, so does the output of the heart.
This relationship occurs up to a point at which the heart can no longer keep up with the
demand placed upon it, and the curve levels off. A positive inotrope, something that
increases contractility of the myocardium, shifts the Starling relation up (See Figure
(2.3), Positive Effect). This shift occurs because the heart is ejecting more blood at a
given end diastolic volume, and thus functioning better. A negative inotrope, something
that decreases myocardial contractility, causes a decrease in stroke volume and cardiac

output, and thus shifts the Starling relation down (See Figure (2.3), Negative Effect).

Means Used to Evaluate Cardiac Function

Evaluation of cardiac performance can be thought of at three levels of integration: (1)
myocardial function, (2) chamber pump performance, and (3) integrated cardiac output
[9]. Each of these levels can be thought to exert influence upon the other, however,
changes in one level do not specifically imply changes in the other levels of integration.
It is important to be able to evaluate all of the levels in order to assess cardiac

performance.
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Myocardial performance is largely influenced by four factors: (1) preload, (2) afterload,
(3) the myocardial contractile state, and (4) heart rate and cardiac rhythm [9]. The terms
preload and afterload were originally used to describe the loading conditions in isolated
muscle fiber experiments [10]. Preload is used to refer to the degree of stretch the
myocardium is experiencing before contraction starts. Up to a certain point, due to the
increased cross-bridge formations in the muscle fibers, increased preload results in an
increased strength of contraction (Starling Relation) (Figure (2.2)) Afterload refers to the
tension the muscle fiber experiences during the shortening phase of contraction [11].
Myocardial contractile state refers to the cellular basis of muscle contraction described
above. Increases in heart rate result in increased in myocardial contractility due to the
inability of the mechanisms for calcium exit to keep up with the increased rate of calcium

entry produced by rapid stimulation [1].

The Left Ventricular Pressure-Volume Relationship

The pressure-volume relationship provides an important transition from muscle function
to pump function in the left ventricle. The relationship between left ventricular pressure
and left ventricular volume throughout the cardiac cycle forms a loop that is commonly
broken into four phases (Figure (2.4)). The first of these phases is isovolumic contraction
(Figure (2.4) points a to b). The beginning of this phase (Figure (2.4) point a) signals the
end of diastole, and the beginning of contraction. The aortic and pulmonary valves in the

heart are closed, thus as contraction begins ventricular pressure rises sharply, causing the

16

BREAY

i

4

PR Y Q‘ %



mitral and tricuspid valves to shut. The volume in the ventricle at this time is the same as
at the end of diastole. The second phase of the cardiac cycle is that of ventricular ejection
(Figure (2.4) points b to c). This phase begins when the pressure developed during
isovolumic systole in the ventricle is greater than the aortic pressure, which causes the
aortic valve to open. The pressure in the ventricle continues to rise as the muscle is still
contracting, but eventually begins to decline as the blood volume in the ventricle is
reduced. The remaining volume at the end of contraction is termed the end systolic
volume. Recall that the difference between the end diastolic volume and the end systolic
volume is the stroke volume. When the ventricular pressure decreases below that in the
aorta, the aortic valve closes and the ventricle enters the third phase of the cardiac cycle,
that of isovolumic relaxation (Figure (2.4), points ¢ to d). The volume in the ventricle
remains constant during this phase, but the pressure decreases rapidly as the heart
diastolic relaxation. Once the ventricular pressure falls below that of the left atrium, the
mitral valve opens and the fourth phase of the cardiac cycle begins, that of ventricular
filling (Figure (2.4) points d to a). During this phase blood enters into and fills the

ventricle from the atrium [1, 2].

Pressure volume loops are useful for visualizing changes that can occur with the preload,
afterload, or contractility of the heart. Changes in the preload reflect changes in the
return of blood to the heart (end diastolic volume). If the preload is increased in healthy
individuals, the stroke volume will also increase up to a point. The afterload is the
pressure against which the ventricles must propel blood (aortic pressure). If aortic

pressure is increased, the ventricle will have to reach a greater ventricular pressure to
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open the aortic valve. Similarly in the ejection phase of the cardiac cycle, the increased
afterload will result in the closing of the aortic valve at a greater ventricular volume
(increased end systolic volume). This increase in afterload will result in a decreased
stroke volume. Contractility is the term used to define the force of muscular contraction.
If the contractility of the ventricle is increased, the ventricle is able to expel a larger

amount of blood during systole. Thus stroke volume increases, and end systolic volume

decreases [1].

Figure (2.4) also shows the systolic elastance (end systolic pressure-volume relation
(ESPVR)) and diastolic compliance curves (end diastolic pressure-volume relation
(EDPVR)). The diastolic compliance curve determines the pressure-volume relationship
during the filling phase of diastole. The systolic elastance curve is determined by

calculating pressure-volume relations at end systole under variable loading conditions

The effects of both systolic and diastolic dysfunction can be observed in pressure volume
loops. Systolic dysfunction shifts the systolic elastance curve to the right and decreases
the slope (Figure (2.5)). The end systolic volume increases from c to ¢’, which results in
a decreased stroke volume. Diastolic dysfunction generally results in a shift of the
diastolic compliance curve up and to the left (Figure (2.6)). The end diastolic volume is

decreased from a to a’, which causes the stroke volume to decrease [1].

The area of the pressure-volume loop for the left ventricle is termed the stroke work

(SW). This is the external work performed by the left ventricle. The remaining area
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under the systolic elastance curve is the potential energy (PE) produced by the ventricle,

but not resulting in external work. The sum of the SW and the PE is termed the pressure-

volume area.

Assessment of Left Ventricular Function

dP/dt

e o S "._’”

. .
(G

A common index used to measure the contractile state of the left ventricle is the o ‘,

maximum rate of rise of ventricular pressure (dP/dt,, ). This measure has been shown

to be highly sensitive to acute changes in contractility [12]. dP/dt_,_ is usually s s "

observed immediately before the opening of the aortic valve, but this can be delayed in

the presence of a severely diseased left ventricle. dP/dt_, is relatively independent of :« T :

afterload, but has been shown to be extremely sensitive to preload [12]. Additionally, SR

dP/dt,, shows wide variation between individuals, and is more useful for assessing

directional changes in contractility associated with intervention [9].

Left Ventricular End Diastolic Pressure-Volume Relation

The LV EDPVR (diastolic compliance curve) relates the end diastolic pressure ( P;,) and

volume (V). This relationship is often fit to a quadratic polynomial:
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Py = B, + ﬂIVED + ﬂZVEzD (2.4)

where B, B, and B, are the stiffness parameters defining the EDPVR. This

relationship does, however, only include the diastolic state of the ventricle and not the

systolic state.
Left Ventricular End Systolic Pressure-Volume Relation S
'.:': A =
(o o
The left ventricular ESPVR defines the systolic elastance curve mentioned earlier. This - ~
curve, relating the end systolic pressure ( P ) and volume (V) can be approximated as a
line, and thus described by a slope and intercept: ‘
TP s
Pes = Egg (VES -Va) (25) ,_," .
e
Ny o

where E, is termed the end systolic elastance and ¥, is the volume intercept. The end

systolic elastance represents the stiffness of the left ventricle and shows how sensitive the
ejection volume will be to changes in afterload. As contractility increases, so does the
end systolic elastance. Similarly a decrease in contractility is represented by a decrease
in the end systolic elastance. There are many clinical difficulties associated with the
measurement of the ESPVR. To obtain an accurate ESPVR, a variety of loading
conditions must be obtained. The methods used to obtain these loading conditions may
themselves alter the ESPVR [13-15]. Another difficulty is the exact determination of end

systole. The upper left corner of the pressure-volume loop may not exactly correlate with
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the closure of the aortic valve [16]. Finally the end systolic elastance is dependent upon

the size of the ventricle, making it difficult to define a precise range E; [17].

dP/dt,,, - End Diastolic Volume Relation

The relationship between dP/dt,, and the ¥, has been shown to be linearly related

[12]. The slope of this relationship represents the maximum rate of change of ventricular
elastance during contraction. This relation is, however, less stable than the ESPVR [18]
and can only be defined by preload reductions, and not drug induced increases in load

[19].

Stroke Work — End Diastolic Volume Relation

The relationship between the SW and ¥, has been shown to be linearly related and
insensitive to arterial load under physiologic conditions [20-22]. The slope of this line
has been termed the preload recruitable stroke work (PRSW). Since this measure is
influence by both the ESPVR and EDPVR, it is a measure of the pump function of the

left ventricle [18].

Maximum Power

The power generated by the left ventricle can be calculated as the product of the aortic

flow and pressure. This value has been shown to be reflective of changes in contractile
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state, insensitive to changes in the arterial circulation and linearly related to the square of

the end diastolic volume [23, 24]

Frank Starling Relations

Starling relations relate the input of the heart to its output. The output is typically

measured using stroke volume, cardiac output or stroke work (as described above). The

input is typically represented by end diastolic pressure. An upward shift in these curves :"T' i »

represents positive effect on pump performance, while a downward shift represents a E

negative effect on pump performance.

Choice of index used to interpret finite element model results ——
2.

In order to interpret the results predicted by finite element simulations used in this thesis, Ff

we must be able to isolate the most relevant cardiac function indices. Those that depend 5 -

upon time (cardiac output, dP/dr_, , and maximum power) are not applicable as the

models we use are quasi-static, and thus the relation to the time domain is not available.
The EF is used by many as an evaluation of cardiac function, but may not be as
applicable as one of the variables being directly modified by the computer models is the
end diastolic volume, the denominator of the EF calculation. The use of the stroke
volume or stroke work alone ignores the influence of preload upon cardiac performance
and diastolic function. Both the ESPVR (systolic elastance) and EDPVR (diastolic

compliance) provide good information on systole and diastole respectively. These
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relations are, however, separate from one another and represent the emptying and filling
of the left ventricle. In order to relate these two, the use of the stroke volume or stroke
work in the form of a Starling relation provides the most useful information about the
function of the left ventricle as a whole. These thoughts are summarized in Table 2.1.
Although other indices will be presented throughout the thesis to focus on specifically
diastolic or systolic function, the Starling relation will be used to evaluate the function of

the ventricle as a whole.
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Index Comment

Systolic Function

ESPVR Only reflects the systolic performance of the ventricle

Ejection Fraction The denominator of this value is the independent variable that is modified in the
simulations

Stroke Volume Stroke volume alone does not reflect preload dependence

Stroke Work Stroke work alone does not reflect preload dependence

Cardiac Output Depends upon time, not applicable to our models

dP/dty,, Depends upon time, not applicable to our models

Maximum Power Depends upon time, not applicable to our models

PRSW Based upon the assumption that the relationship is linear, which does not hold true
in all of our modeling

Diastolic Function

EDPVR Only reflects the diastolic performance of the ventricle

Global Function

Starling Relations Provides the best information on pump function for our use

Table 2.I Cardiac Evaluation Indices - Summary of indices used in the evaluation of
cardiac function from finite element models.
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ATP

Active Site Closure

Hydrolysis

Phosphate Release

|

Power Stroke

Figure 2.1 — Sliding Filament Theory — ATP hydrolysis causes a conformational shift
in the myosin heads and closure of the active site. Following phosphate release myosin
binds actin releasing ADP. This release triggers the power stroke which moves the

myosin head along the actin molecule.
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Figure 2.2 — Length Tension Relationship in Muscle — The degree of actin myosin
overlap influences the developed tension in muscle. When the muscle length is short,
ineffective crossbridge formation causes low developed tension. As the muscle length
increases, developed tension increases until the point at which fewer cross bridges are
formed because of the lack of overlap between actin and myosin.
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Positive Effect

’ -7 Negative Effect

Cardiac Output
or
Stroke Volume

Ventricular End Diastolic Pressure

Figure 2.3. The Starling Relation. (Control) As the end diastolic pressure is increased,
so is the Cardiac Output and Stroke Volume. This increase occurs up to a point at which
the heart can no longer keep up with the demand placed upon it and the relation flattens.
(Positive Effect) A treatment that has a positive effect shifts the Starling Relation up
resulting in a greater Cardiac Output for a given end diastolic pressure compared to the
control. (Negative Effect) A treatment that has a negative effect will result in a
downwards shift of the Starling Relation. We see decreased Cardiac Output or Stroke
Volume for a given end diastolic pressure when compared to a control.
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Figure 2.4. The Pressure Volume Relation for the Left Ventricle. Isovolumic
contraction occurs between points a and b where we see an increase in left ventricular
pressure with no change in volume. The ejection phase of systole is seen from points b to
¢. The pressure-volume relation at the end of this phase (point c) for varying load
conditions forms the basis for the systolic elastance curve. The upper left hand corner of
the loop represents one point on the end systolic elastance curve. The period of
isovolumic relaxation is shown from points c to d. Diastolic filling is represented by
points d to a.
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Figure 2.5. Systolic Dysfunction. The effects of systolic dysfunction are shown by the
dashed lines. Systolic dysfunction shifts the systolic elastance curve to the right and
decreases the slope. This results in a decrease of the stroke volume from the volume
defined by points ¢ and b to the volume defined by points ¢’ and b’.
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Figure 2.6. Diastolic Dysfunction. The effects of diastolic dysfunction are represented
by the dashed lines. Diastolic dysfunction results in a shift of the diastolic compliance
curve up and to left. This decreases the stroke volume by decreasing the end diastolic
volume (points a and b are decreased to a’ and b’).
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Introduction

The finite element method (FEM) has been used for analysis of biologic materials for a
number of years. FEM has been shown to be valuable in the field of orthopedics. Its use
in cardiovascular analysis has been more limited. In this chapter the formulation of the
FEM will be presented in the context of cardiac mechanics. This is complicated by the
fact that the FEM needs to account for finite elastic deformations of a nonlinear
anisotropic soft tissue. Specific features of this derivation are aimed at easing the
complexity of the model of the left ventricle. First the mathematics of the governing
equations need to be developed in general curvilinear coordinates. This will ease the
later transition into a prolate spheroidal coordinate system that represents the ventricular
geometry and boundry conditions well. To accurately represent the left ventricle, the
model needs to account for not only the anisotropy of the material properties, but also the

changing material axis of this anisotropy along the muscle fiber direction.

Prolate Spheroidal Coordinate System

The prolate spheroidal coordinate system is chosen as the global curvilinear coordinate
system for all of the simulations presented in this thesis (Figure (3.1)). This coordinate
system is especially convenient for modeling of the heart as the truncated ellipsoids that
are produced as volume elements in this system closely resemble the shape of the left
ventricle. The following relations show the conversion between the Cartesian reference

system and the prolate spheroidal system:
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Y, =dcoshAcosM 3.1
Y, =dsinh AsinMcos® 3.2)

Y, =dsinh AsinMsin® (3.3)

where d is the focal length of the ellipsoid.

Coordinate Systems Used

Of key importance in the development of this method is the ability to describe the

deformation of an elastic body in which a point in the undeformed body B with position

vector R, moves to the deformed body B with position vector r. Generally, capital
letters are used to represent the undeformed state while lower case letters are used to
represent the deformed situation. In addition the base vectors G and g are used to

represent the base vectors in the undeformed and deformed body respectively.

In order to formulate the finite element method for the problems presented in the
remainder of this thesis, it is necessary to define four coordinate systems (Figure (3.2)).
Most familiar is the Cartesian coordinate system {Y}, Y, Y3}. In the undeformed body
B, the coordinates will be represented by Yg, with the indices of R and S. The deformed
body B will have the coordinates of y;, and the indices of r and s will be used. This
serves as the global reference system. Second is an orthogonal curvilinear coordinate

system {®;, @2, O3} that is used to describe the geometry and deformation. In the
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undeformed body B, the coordinates will be represented by ®4, with the indices of A and
B. The deformed body B will have the coordinates of 8, and the indices of o and p will
be used. The curvilinear system is chosen as curvilinear systems more easily represent
the shape of the left ventricle than Cartesian systems. For the purposes of the finite
element method a normalized general curvilinear coordinate system is developed within a
theoretical finite element {&,, &>, £3}. In the undeformed body B, the coordinates will be
represented by £k, with the indices of K and L. Finally a local orthonormal body
coordinate system is developed {X, X,, X3} where the X, and X; axis are rotated about
an angle n; that serves to represent the muscle fiber angle. In the undeformed body B,

the coordinates will be represented by X, with the indices of I and J. The deformed body

B will have the coordinates of x;, and the indices of i and j will be used.

Given two position vectors in the global Cartesian reference system

R=T"e, (3.4
and
r=y'e, (3.5)

for the undeformed and deformed state respectively it is possible to define the base

vectors in the more convenient curvilinear coordinate system as

R
o =Y . (3.6)
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_

and

@ _ 0y
=——¢ 3.7
a wa r ( )
where the metric tensors are described by
oYroy*
G = o700° 6
and e
ayrayr :’:‘: = '{‘
8) t .. 528
= . 3.9 & :
B = 56706° (39) .o
When working in a prolate spheroidal coordinate system it is important to have G'?) . -
defined explicitly: =
1 LI
sinh? A +sin’ M 0 0 -' ¢ A
G =d? 0 sinh? A +sin’ M 0 | (3.10) et
0 0 sinh2A+sin2MJ -~
and similarly
sinh? A +sin’ u 0 0 1
G =d’ 0 sinh® A +sin” u 0 (3.11)
0 0 sinh? A +sin®
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Upon conversion to a finite element model and usage of the normalized coordinate

system the base vectors become

and the metric tensors become

and
00°
ge' = ?8(:)
(&) — aaAaGB G(G)
Koo pgkprt A8
and
&) _ 09700 )

gKI. _6§K6§L gaﬂ N

(3.12)

(3.13)

(3.14)

(3.15)

In the fourth coordinate system, those with respect to the local fiber direction, the

covariant base vectors and metric tensors are defined as:

o -2 ap
and
o _ 0K
g ’=—ai,- gi
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or

o 0&F
g =2 g (3.18)
and
o OLKogt
Gy ='—_a,\{'a,\§” GY) =5, (3.19)
and
o 0£KoLX
0= g =3, (3:20)
or
(x)=a§Ka§L &) (321)

8u WgKL )

where § is the Kronecker Delta. The Kronecker Delta is defined as:

6y =0y =0y =1
0, =6y =513 =531 =6,,=65, =0

The above identities provide useful relations between the coordinate systems that will be

used to our advantage in the derivations of the governing equations for Finite Elasticity.

Governing Equations of Finite Elasticity

Consider an arbitrary elastic body in B with surface A and volume V loaded with a
surface traction s, at the boundary of B that is in equilibrium with t the internal traction

vector. The traction vector can be expressed as a function of the second Piola-Kirchhoff
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stress tensor, P, the unit normal to the surface A, N and the deformation gradient tensor F

as

t=r'g¥ =NP'F g¥ (3.22)
where N; is referred to the X| coordinates in B, and F is defined as
W(«t -’#
. il -
o fme
F' = = (3.23) g - w
Thus we have defined the basis for a constitutive relation based upon a coordinate system : 7
that accurately simplifies the structure of the left ventricle, the local fiber coordinates. e an
However, this coordinate system is not very convenient to represent the displacement L
vector between the two position vectors r and R: S
e A
u=r-R (3.24) ‘

This vector is easily represented in the global curvilinear coordinate system, and so we

will transform the traction vector in such a manner as it is defined in this coordinate

system. This transformation is accomplished using the base vector relation defined in

equation (3.22) above:

i aea a
t=t'——g¥ =NPF*g?

i a
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where the deformation gradient tensor is now defined as

ma
X'

(3.26)

| O

When the body is subjected to an arbitrarily small displacement du which satisfies
compatibility and displacement boundary conditions on A the principle of virtual work

requires that

[s6udd= jt-audA (3.27)
A, A

If we plug in the definition for t defined in Equation (3.25) above and note that

Su=256u, g’ we get

[s-6uda= [NPF?6u,dd (3.28)
4 A

which after the use of Gauss’ theorem becomes

Su, + PUF Su,), } av . (3.29)

A;[s.é'udA =Vj{(P”F;')
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The | ,”’ means covariant differentiation with respect to Xi:

oou, -T%,8u,. (3.30)

§ua|l - axl

The Christoffel symbol, 'Y, =—g/"*-g'” | depends upon the choice of coordinate

system. In the case of our prolate spheroidal coordinate system the Christoffel symbols

are evaluated as:

e

- .
{.:"4 ,

.. - ~‘~‘

¢ .

[ _sith24-4, +sin24-4,

v 2(sinh2,1+sin2 ,u) 331
= sm;é;;";:jt)&' (3.32)
I, = coth -6, (3.33)

r, =-r;, (3.34)
r2,=r! (3.35)

I3, =cotu-6, (3.36)

e Lain?
| =SSR L g, .37
2(smh A+sin ,u) '

— 1 2 . 1
2 sinh” A-sin2u 0

- 338
" 2(sinh® A +sin’ p) -38)

I3, =cothd-A, +cotu-u, (3.39)
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Usage of Cauchy’s first law of motion further simplifies the integral expression in

Equation (3.29). Cauchy’s first law can be expressed as

(PYF7) (3.40)

[ Hpb=pf”

where p is the material density, f is the acceleration and b is the body force per unit mass.

n

L
[

Equation (3.29) now simplifies to

!{(P”F}“)l&a}dV: Vj{p(b“— f“)}éuadV+Ajs-6udA. (3.41) | |
We seek a weak form of this equation for use in finite element analysis. This is y e R
A
accomplished by using a strain energy function to define the second Piola-Kirchhoff P '
stress: T
pr =Ll W W (3.42)
2\ 0E, OE,

in which E is Green’s Strain tensor defined with respect to the fiber coordinates:

E,= %(g}j’ -8,). (3.43)



In this case g{ is the right Cauchy-Green deformation tensor whose determinant g, is

equal to one owing to incompressibility. This condition is enforced through the use of a

Lagrange multiplier:

W(E) =W (E) -g( g”-1), (3.44)

then Equation (3.42) can be written as

po L oW W | (345)

2| 6E, " oE,

where p is the hydrostatic pressure. The exact form of the strain energy function will be

chosen to represent the nonlinear behavior of myocardium.

The Cauchy stress tensor T in the deformed state can then be computed from

1 i J
v P& o (3.46)
Jg¥ ox' ax
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Finite Element Equations

The following approximation is used to represent the geometry of an element of the body

B:

O(8ntt) =3 St (60 6ns) 0. (3.47)

n=1 y=1

¥, are the interpolation functions that can be tensor products of Lagrange and Hermite
polynomials in each direction. ©’[% are the nodal coordinate generalized derivatives at
local node nof element (e). y,,. is the number of nodal parameters used to interpolate
®,, including derivatives of Hermite polynomials. In all of the cases presented in this

thesis, only linear interpolation is presented, thus y, . =1.

If we look adjust the expression for virtual work (Equation (3.41)) for the absence of

accelerations and body forces we get

fi(75)

Costa and Colleagues [1] present the following Galerkin finite element approximation to

Iaua}dV=A{s.5udA. (3.48)

Equation (3.48) as
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zgn(e) Sn(e) jRn(e) ’G(‘f)d«fldfzdfs
- (3.49)

_Znn(e) S"“” J‘ qG“’“ 06" K %(e) /G(-f df df

(nosumon Aor n) with @ =1,2,3; A=1,..A,, ;¥ =1,...7,,, (for linear interpolation

y=1). Q3 is a connectivity matrix to assemble the local element equations into a

lobal system. G is the determinant of the metric tensor G%’. R’ is defined as
g y KL n(e)

Ry = P* [ Frwln, —(F/To Wi | (3.50)

n(e)

The R, terms evaluated in prolate spheroidal coordinates are:

r PU<’1.J [V’:(e)./"(Dl;'-l+D2'u-’)w'{(e’]+ @3.51)
(e) i .
(A (DA, = Dopt, Jwiey +6,D;sin® p-0,p77
(
A\ Whien —(DyA, + Doy Wi, |+
_— Wi - W] (3.52)

n(e)
L#J [Wn(e) D'{ D2#I)Wn(e)]+0 D Slnh '1 ely/n(e)

U ’-’1,./ coth - 0,1'/’:(4.») —p,cotu-6,y :(e)
R, =PY , , (3.54)
\+0J [!//,,(e) —(cothﬂ. ‘A, +cotu-u, )l//"(e):l

where

47



D - (cosh Asinh 4)

3.55
: (sinh2 A +sin? ,u) (3.33)
and
p, = cosssing) (3.56)
(sinh2 A +sin’ p)

S;'“) is a scaling factor that is constructed for each element to account for non-uniform

spacing. i
.
The integrals in Equation (3.49) are then evaluated using Gaussian quadrature creating a
system of nonlinear elliptic finite element equations. This system of equations are then o -
solved for the unknown nodal positions using the Newton-Raphson method [2]. mac - S 2
T »
el
Diastolic Material Properties e

During the diastolic phase of ventricular contraction the following exponential strain

energy function is used:

W= %(exp(Q)—l) (3.57)

with
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Q=2b(E, +E,, + Ey)) +b,E} + b, (E}y + EL + 2B, Ey, )+ 2b, (E,Ey + ESEy)  (3.58)

where C =0.88kPa, b =0.0,b, =18.5,b, =3.58, and b, =1.63. The components of the

Green’s strain tensor E are with respect to the local fiber coordinate system. The
constants used were determined experimentally by Guccione and colleagues[3] to cause a
cylindrical model of the left ventricle to match experimentally determined strains from

video tracking of epicardial markers.

Systolic Material Properties

A systolic constitutive relation is constructed by the addition an active force in the muscle ; .
fiber direction to the passive diastolic material properties that is a function of time (¢),

peak intracellular calcium concentration ( Ca, ) and sarcomere length (/). The Second ,, S

Piola-Kirchhoff stress systolic material properties is:

po =L O OW N gt T (1,Ca, 1) 5067 (3.59)
2| o€, " o,

Work by Guccione and colleagues [4] has proposed the following form for T :

2
T-T,—"% _c, (3.60)
Ca, + ECa;,
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where T,,, is the isometric tension achieved at maximum sarcomere length and peak

intracellular calcium concentration (Ca, ), . The variable ECa,, gives the relation

between intracellular calcium concentration and sarcomere length:

ECay =—— S __ ¢ (3.61)
\/exp[B(l -1, )] -1
where
1
C = 3 (1-cosw) (3.62)
and
=7 O‘zf *h (3.63)
and
t =ml+b. (3.64)

In these equations !/ is the sarcomere length, [ is the sarcomere length at which no active

tension develops. B,b, and m are all constants. Guccione and colleagues [5] found the
following values would allow a finite element model of the systolic heart based upon

these measurements to accurately reproduce the strain in the left ventricular free wall:

50
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T,.. = 135.7kPa, Ca,=435umol/L, (Ca,),, =435umol/L, B=4.75um™,
m = 1.0489 sec- pm™, and b=-1.429 seconds. The sarcomere length, /, is a function of

the strain in the left ventricular wall:

I=1,\2E, +1 (3.65)

where [/, is the sarcomere length in the unloaded state and E,; is the fiber strain.
Rodriguez and colleagues [6] determined that there was a linear transmural variation in

I, from 1.78 pum at the endocardium to 1.96 um at the epicardium.
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Figure 3.1 - Prolate Spheroidal Coordinate System
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Chapter 4

Mechanical Properties of Left Ventricular Aneurysm
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Abstract:

Biaxial mechanical property testing was performed on six adult Dorsett Sheep which had
left ventricular (LV) aneurysm induced by ligation of the left anterior descending (LAD)
coronary artery. Testing results suggested that the aneurysm tissue was significantly
stiffer than previously reported. At a 15% equibiaxial stretch we found that the aneurysm

tissue experienced a stress of 1,200 g/cm2 in the circumferential direction and 1,400

\Ar.., i grae— Y
g/cm? in the longitudinal direction. The results presented here correspond more closely o~ - . -

{7
than previous attempts with both stress and strain results obtained by computational i -
modeling presented by other investigators studying this problem [1, 2]. 1
Introduction: s e
The determination of material properties for soft biological tissues is of critical £
importance in the understanding of their function [3, 4]. This statement certainly is true - N

for the investigation of LV aneurysm, a significant complication of myocardial infarction
that may lead to LV remodeling with global and regional LV dysfunction, ventricular
arrthythmias, or thrombolytic complications [5]. A key tool in the investigation of this
disease is finite element rhodeling of LV mechanics [6-10]. These models are, however,
limited by the accuracy of measurement of the material properties used to define the
computer models. This study will attempt to determine accurate material properties of

LV aneurysm in an attempt to develop more accurate finite element models of the

disease.
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Previous Methods of Determining Myocardial Material Properties

Early mechanical tests on myocardium were carried out using one-dimensional setups,
which examined the mechanical properties of papillary muscle. Pinto and Fung used the
methods of stress relaxation, creep, vibration, and stress-strain testing to arrive at a one-
dimensional exponential constitutive relationship for papillary muscle in both the relaxed
and stimulated state [11, 12]. Loeffler and Sagawa continued studies in this area showing
that as the force was much greater at higher stretches [13], further suggesting an
appropriate constitutive relationship was an exponential function. Przyklenk investigated
the varying stiffness levels present through the ventricular wall [14], and found that the
epicardium and endocardium were significantly stiffer than the midepicardium. One
dimensional studies have been used more recently to investigate the difference in passive
stiffness of papillary muscles from normal and hypertensive rats [15, 16], where it has
been found that hypertensive rats have an increased passive stiffness. Allaart has
examined the effects of perfusion pressure on the material properties of papillary muscles
and found the increased perfusion pressure caused an increase of stress at large strains,
and a decrease of stress at low strains [17]. Stuyvers has investigated the role of calcium
in myocardial stiffness, and proposed that the calcium dependence of diastolic stiffness

can be explained by the inverse relationship between calcium and the affinity of titin for

actin [18].
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Other investigators have chosen to examine the mechanical properties of myocardium by
examining the properties of single cardiac myocytes [19]. Brady examined the difference
in myocyte stiffness across mammalian species. In his studies it was found that the
elastic modulus of the rat was greater than the rabbit, which is greater than the guinea pig
[20]. Shroff used Atomic Force Microscopy (AFM), to examine the mechanical
properties of rat atrial myocyte cells where he found that there was a two-fold increase in
stiffiness was observed with an increase in extracellular calcium from 0 to 5SmM, and a
16-fold increase after formalin fixation [21]. Palmer found similar calcium dependent
results using a pipette attachment system [22]. Kato used single cell studies to show that
chronic overload hypertrophy did not alter relative passive cardiomyocyte stiffness [23].
Zile and colleagues used an agarose gel based stretching system to examine the role of
cardiomyocyte material properties in the development of cardiac dysfunction. They
found that changes in the viscous damping and myofilament activation may cause
Pressure hypertrophied cardiomyocytes to resist changes in shape during diastole and
Contribute to diastolic dysfunction. There was no significant change in the passive elastic
SPring seen between normal and pressure hypertrophied cardiomyocytes [24]. Heller
assessed cardiac stiffness by measuring cardiomyocyte cell dimensions in varying
Osmotic conditions in copper deficient rats. A decrease in cardiomyocyte stiffness was
found in copper deficient rats [25]. Harris and colleagues have investigated the
Telationship between changes in cardiomyocyte properties, with changes in the material
Properties of the muscle as a whole in hypertrophied myocardium. They found that

Pressure overload hypertrophy was associated with an increase in myocardial elastic

Sti ffness [26].
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It is well known in the biomechanics community that uniaxial tests are not sufficient to
determine complete three-dimensional properties of biological soft tissues, however
biaxial tests can characterize certain three dimensional relationships [27-41]. Uniaxial
tests are also inaccurate when deformation is not measured at the center of the specimen,
but rather by the displacement of the stretching device. Two-dimensional studies of
pericardium and myocardium have been presented by many authors. Demer and Yin
studied the behavior of canine myocardial sheets under biaxial loading [42]. They found
that the material exhibited both non-linear elasticity and viscoelasticity with some strain
rate dependence in the position of the stress strain relationships. They also found that the
tissue exhibited anisotropic behavior along the fiber and cross-fiber directions. Sacks and
Chuong examined the mechanical behavior of right ventricular free wall myocardium
under biaxial loading [43]. They again found a highly nonlinear relationship between
Stress and strain, with strong anisotropy between the stiffer fiber and less stiff cross-fiber
axes. Yin and colleagues reported biaxial testing results on canine pericardium in which
they found again the tissue to be highly nonlinear and anisotropic [44]. In this study, a
five parameter strain energy function was found to be optimal in reproducing
€Xperimental data. In a later biaxial study, this group found that a three parameter strain
€nergy function more accurately reproduced their experimental results on left ventricular
myocardium [45]. Again the data in this study was found to be highly nonlinear and
Anisotropic. All of these studies have presented data for myocardium that have a similar
Stiffness and anisotropy ratio. Shacklock then reported data showing a similar anisotropy

Fatio, but with lower stiffness than that measured by the Yin laboratory [46]. Humphrey,
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Strumpf and Yin, then proposed a new myocardial constituitive relation and showed its
relation to biaxial stress strain data [47, 48]. The authors found a polynomial function of
two coordinate invariant measures of finite deformation with five material parameters to
fit their data well. They postulated that this relation was more applicable to broader
classes of biaxial data than previously proposed relations. These investigators next
examined differences in biaxial data from epicardial sections of the right and left
ventricle and right and left atrium [49]. The investigators found no differences between
the ventricular and atrial material properties, nor any difference between the left and right
sides of the heart. They did, however, notice quantitative differences between the
epicardial sections and noncontracting myocardium. They found the epicardium to be
initially isotropic and compliant, but becomes increasingly stiff and anisotropic near the
limits of its extensibility. Novak next examined the regional variation in myocardial
Mmaterial properties [5S0]. They found that anisotropy was similar in all regions of the
heart, but that specimens from the left ventricular free wall tended to be stiffer than the
other regions of the heart studied. A study of right ventricular free wall material
Properties was then undertaken by Sacks and colleagues [43]. They found an overall
qualitative similarity in the mechanical behavior of the tissue when compared to left
Ventricular myocardium, with quantitative differences. Kang then examined the
difFferences between epicardium and endocardium, and found that under biaxial testing

the endocardium exhibited greater stiffness in the low strain range [51].

Hoffmeister and colleagues have proposed the use of quasilongitudinal-mode ultrasonic

Waves to determine the material stiffness of soft biologic tissue [52]. This method, when
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applied to sections of muscle with only one fiber direction, yielded a Young’s modulus of
2.46 GPa in the direction of the fiber axis for formalin fixed myocardium. Baracca and
colleagues proposed the use of the third heart sound to determine a stiffness coefficient
and damping constant for both normal patients and those with ischemic heart disease
[53]. In their studies it was found that those patients with ischemic heart disease showed
an increase in both the stiffness coefficient and damping coefficient when compared to
normal patients. Table 4.1 shows the variability in the estimation of Young’s Modulus by

various investigators.

Ultrasonic dimension transducers have been used by multiple investigators as a means to
determine myocardial material properties. Olsen and colleagues used this method to
Suggest that myocardial anisotropy contributes significantly to changes in ventricular
shape during filling [54]. Omens and colleagues used this method to show a difference in
anisotropy in the rat and dog at low loads, but at high loads this difference was

minimized [55].

Passive Material Properties of Left Ventricular Aneurysm

Previous attempts at the characterization of the material parameters of LV aneurysm have

Been limited. Parmley used uniaxial testing methods to arrive at simplistic
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characterization of material parameters of LV aneurysm [56]. Gupta improved upon this

by applying biaxial testing methods to the characterization of LV aneurysm [1, 2].

For the present study we will define passive material properties of the LV aneurysm

using a strain energy function similar to that presented for diastolic myocardium in

Chapter 3. The strain energy function that we will use is
_Ce
W= —2—(e -1),

where the Green strain components, E,,, are referred to the orthogonal axes of the
biaxial stretcher and are chosen such that they lie in the circumferential and axial

coordinates (v*):

ot ot
Eaﬂ =(ava Ev-i—éaﬁ)

and

Q= bcE12| +b, (E222 + E323 + E223 + E322)+blr(E122 + E22| + E123 + E32|) >
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where x* are the deformed rectangular Cartesian coordinates and 0,4 is the Kronecker

delta. E, isthe circumferential strain, E,, is the longitudinal strain, E,; is the radial
strain, £,; is the shear strain in the transverse plane, and E,, and E,; are shear strain in

the circumferential longitudinal coordinate plane, circumferential radial plane.

The second Piola-Kirchhoff stress tensor referred to the global coordinates v is

calculated according to:

1(ow ow
1% =— + - pg®? 4.4
2(615,,,, aE,,aJ g @4

where the contravariant metric tensor referred to global coordinates is

g OV
ey “

After deformation, the Cauchy stress tensor with reference to a new coordinate system in

the deformed body, V', is related to the second Piola-Kirchhoff stress tensor by:

k Al AAi Arj
ot o A oY, 1 @45)

T = t
o o ax* ax' I,
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Methods:

A total of six adult Dorsett sheep were studied in this experiment. All animals were
studied in compliance with the animal welfare regulations and the “Guide for the Care
and Use of Laboratory Animals”[57]. Material property testing was performed on
excised sections of the diseased left ventricular free wall following creation of LV

aneurysim.
Creatiors of the Left Ventricular Aneurysm

LV aneurysm was induced according to the method described by Markovitz and
colleagues [58]. Briefly adult Dorsett Sheep were sedated using an intramuscular
injection of ketamine (15 mg/kg), masked, then intubated and ventilated using an
isoflurane and oxygen mixture. Arterial pressure and a surface electrocardiogram were
monitored using a continuous oscilloscope display. Access to the heart was gained using
aleft thoracotomy in the fifth intercostal space. During this incision a lidocaine infusion
Was started (1.5 mg kg e min”). Following opening of the pericardium, the distal left
anterior descending (LAD) coronary was ligated using 2-0 silk sutures at a point 40% of
the distance from the apex to the base of the heart. Additionally a suture was placed
around the second diagonal of the LAD coronary artery at it’s inception from the LAD.
Before the sutures were secured the animal received a bolus of lidocaine (2 mg/kg), and

the lidocaine infusion rate was increased (3 mg e kg"' e min™). Following ligation the
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animal was watched for 45 minutes for the occurrence of ventricular tachycardia. When
ventricular tachycardia was observed an additional bolus of lidocaine (1.5 mg/kg each)
and bretylium (50 mg each) were given. Following the period of monitoring, the
thoracotomy was closed in layers and a 28F chest tube was inserted. The lidocaine
infusion was stopped 10 minutes postoperatively. The chest tube was removed before
extubation. The animal received Naxcel (ceftiofur sodium, 1mg/pound per day
intramuscularly) for three days following the operation and was allowed to recover for 10

weeks.
Harvest of Left Ventricular Aneurysm

After allowing the LV aneurysm to mature for a period of ten weeks, the animals were
sacrificed, and the LV 'aneurysm was excised for testing. Anesthesia was induced as
described above. Through the use of a median sternotomy the heart was exposed.
Potassium Chloride (saturated) was then injected into the left ventricle to induce asystolic
amrest. The hearts were then immediately excised and placed in a cold (0 to 5 °C)
cardioplegic solution (14 mmol/L H,PO4, 11 mmol/L KOH, 15 mmol/L KCl, 220
mmol/L, glycose, 0.1 mmol/L EGTA, 75 pmol/L, adenosine pH 7.4 ) and transported to
the biaxial stretcher. 2,3-butanedine monoxime (BDM) was added to the solution (10

mM) to prevent systolic contracture.
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Biaxial Stretching Apparatus

The biaxial stretching device used here has been described elsewhere [44, 45, 47, 59],
and is displayed schematically in Figure (4.1). Briefly, two independent linear motors
and worm gears drive two pairs of orthogonally oriented carriages. One of the carriages
in each pair contains a force transducer. The LV aneurysm tissue was connected to the
carriage using a continuous stand of 0-0 silk suture looped 6-10 times through the
specimen near the edges. Between tests the specimen was kept in a thermally regulated

(20 °C), oxygen-perfused, cardioplegic solution.

Deformations in the central portion of the sample were continuously monitored using a
video camera based system [59]. Briefly small vanilla chips were glued to the specimen
to form a rectangle (approximately 4 mm by 4 mm). A light source illuminated the
marked area, and a computer based system allowed on-line monitoring to material
deformation. Distances between the vanilla chips were continuously measured in order

to provide a real time estimate of the local strain in the center of the specimen. These

measurements were used to drive the system in real time to predefined stretching lengths.

Testing Protocol

Prior to the mounting of the tissue, the force transducers were calibrated. Weights with
known values were attached to the carriages with force transducers using sutures. Three

points were calibrated, zero, a low (500 g) and a high value (1 Kg) weight.
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After initial mounting of the tissue, stress free dimensions were determined by stretching
the sample 10-20 times under 100 gram equivalent loads, followed by a period of five
minutes during which the tissue was allowed to rest in a stress free configuration. The
reference state was checked three to five times against previous tests following
equibiaxial stretches of 5%. The reference state was considered acceptable once
subsequent states differed by only a few percent. Specimen dimensions were measured
using a ruler, and thickness was measured by using a digital caliper and two microscope

slides.

Following pre-stretching of the material, a stress-free state was obtained by monitoring
the point at which the sutures exhibited a downward “slack.” We assumed that at the
point where this was first evident, the material was not experiencing any load. After
obtaining this stress-free state, each sample was subjected to equibiaxial stretches
beginning at 5%, and increasing by 5% if the tissue did not show signs of tearing at the
Suture locations. Between each stretch the no load state was ensured by verifying that the
Sutures were just beginning to exhibit a downward “slack.” Real time feedback
controlled the displacement of the carriages to ensure the tissue was deforming to the
Proper length. Force and displacement data were saved to disk for subsequent analysis

after the experiment.
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Data Analysis

The markers used for strain analysis were placed on the sample in the manner shown in
Figure (4.2). Strain analysis was completed using the method originally described by
Humphrey [27], with the assumption of homogenous strain in the central area.
Interpolation functions were used to map the actual marker locations onto a square

region. For our tests it was assumed that:

“=Zfi(s”)": > ) ; “
v=2f,.(s,r)v,
s 4.7
X=Zf,(s,r)X, @7
P A S

Where .r‘ ,--.-:
( : ’ R
fi(s,;r)=(1+ss)(1+rr)/4 i=1,2,3,4 4.8)
and u, ang v, were particle displacements, X, and Y, were initial particle locations, s and
'were mapping coordinates, and u and v were approximate displacements in the X and
Y directions respectively (7, and s, correspond to the r and s coordinates of the i™ corner
of the box depicted in Figure 4.3).
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This biaxial stretching problem, can be assumed to be a plane stress problem in which the
only non-zero Green strains are E,, , E,,, E,, and E,,. The strains are calculated in
the following manner. Since we are interested in the strain at the center of the marked

region in Figure (4.3), we assume that:

[
Il
(=]

4.9
o “9)
The deriwvatives of the mapping function are calculated with respect to sand r:
o _s(1+m)
O 4 (4.10)
o (1+ss)r,
o 4
Using (4.7), the derivatives of the displacements can be calculated:
ou_ o
Os Os
u_, o
o o 4.11)
r_ ¥ |
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»_ o
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The derivatives of xand y with respect to s and r are calculated using the chain rule:
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The derivatives of the displacements with respect to the marker coordinates can then be

calculated by solving the following equations:

ou) [ox or)(ou
<8s$= Os Os JaX}
auf"|ax or||a
[ Or or or (oY)
() [ox or](a)
<6s}= Os Os <6_XL
| |oX or||ov
[ Or | or orjloY)

The strains can then be calculated according to:
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The shear strain, E,, , was monitored to ensure that the values were close to zero, so that

the number could be excluded in the nonlinear fitting calculations.

Stretch ratios and shear factors can be calculated from:

(4.15)

If we assume the tissue to be incompressible, the stretch ratios relate according to:
A A4 =1 (4.16)
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Forces were converted into Cauchy stresses by dividing the measured force with the

measured cross sectional area of the specimen.

Simplification of the Strain Energy Function

The exponential portion of the strain energy function described in (4.3) was modified

owing to the absence of shear strain.

e
e,
1

W= E(eQ -1)
2 4.17)
0= bcE|2| +b (E222 + E323)
?
after remowal of all of the shear terms. This simplification results in the calculation of .
Cauchy stress as follows. The strains are related to the stretch ratios according to: £
1,2
E, = E(Ax -1)
1
E, =5(,L{2_1) (4.18)
1
E, = E('qzz - 1)
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The Cauchy stress is then given by

ow
T, =A% — -
Y BE,,

4.1
, OW (419)
Ty =‘y£“1’
YY

_“g.”
Using the assumption of no stress in the Z direction, the hydrostatic pressure is given by . -
{‘ . o 2XB
.
ow
=4 (4.20) :
3E,, r
- ;
! r g~
4 i ]
Parameter Estimation e

The ©Xperimental data yielded both the stress and strain values necessary to represent
Equation (4.19) with only the material constants unknown. The Levenberg-Marquardt
method was then used to solve this system of non-linear equations [60]. The method was
implemented using the MATLAB optimization toolbox nonlinear least squares fitting
ﬁll'lcf-ion. Equation (4.19) was set to zero, then each part was squared. A minimum was
foung by imputing the measured stress and strain values and simultaneously optimizing

both parts of the modified Equation (4.19).
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For each biaxial stretch, a series of three loading cycles were recorded. Forces in the
circumferential and longitudinal anatomical directions were recorded (Figure (4.4(a)),
Figure (4.4(b))). The motor displacements were also recorded (Figure (4.4(b)), Figure

(4.4(<))), while strain estimates were also calculated to drive the motors.

Results:

In all of the experiments the second cycle was chosen for analysis. Stress strain results
were calculated for both the circumferential (Figure (4.5(a))) and longitudinal (Figure
(4.5(b))) directions. A nonlinear least squares fit was then preformed to obtain the
parameters described in Equation (4.17). The results for a typical experiment are
presented in Figure (4.6). Table 4.1I summarizes the fitted parameters for this study. The
stiffness constant, C, varied from 0.1 kPa to .77 kPa with a mean of .29 kPa. The
exponential constant in the circumferential direction, b, varied from 1.64 to 208.58 with
amean of 33.17. The exponential constant in the longitudinal direction, b;, varied from

25.45 to 55.05 with a mean of 41.56.

One measure of the degree of anisotropy of the aneurysm is the ratio of by to b, which
gives a measure of the relative stiffness of the longitudinal and circumferential directions
respectively. This ratio varied from .17 to 28.03 with a mean of 7.92, indicating that

longitudinal direction is stiffer than the circumferential direction.
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Predicted stress values from the fitted parameters at the corresponding stretch ratios are
presented in Table 4.1II. Figure (4.7) displays a graphical representation of this data.
When the LV aneurysm were stretched 10%, the mean circumferential Cauchy stress was
1,448 g/cm2 while the longitudinal Cauchy stress was 1,304 g/cmz. For a 15% stretch,
the mean circumferential Cauchy Stress was 1,196 g/cm? and the mean longitudinal
Cauchy stress was 1,399 g/cm?. At 20% stretch, the mean circumferential Cauchy stress

was 13,847 g/cm?, and the mean longitudinal Cauchy stress was 23,741 g/cm>.

A second measure of anisotropy would be to compare the longitudinal Cauchy stress,

T, , with the circumferential Cauchy stress, 7, . The ratio of these stresses was 1.03,

1.38, and 1.57 for a 10%, 15% and 20% stretch respectively (Figure (4.7)). This again

indicates that the longitudinal direction is stiffer than the circumferential direction.

Discussion:

Comparison with Other LV Aneurysm Material Property Data

Gupta and colleagues previously reported material property information for LV aneurysm
induced in sheep at various time points following infarction [1, 2]. Briefly the Gupta
System consisted of two orthogonal stepper motors that move according to a predefined
protocol, without feedback from the actual deformation of the tissue. The LV aneurysm

was affixed to the device through a series of stainless steel orthodontic wires (0.7 mm
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diameter) that ride on rollers to allow lateral motion while being displaced in the
direction of the orthogonal axes. Strain was measured using two pairs of brightly colored
stainless steel pins (0.024 inches, diameter), placed through the tissue along to two

orthogonal axes of the stretcher. The motions of the pins were tracked using a video

camera, and analyzed at a later time.

Gupta and colleagues chose to use a strain energy function defined in terms of principle

extensions for convenience based upon the suggestion by Needleman [10]. Although o ‘".;
both isotropic and anisotropic strain energy functions were presented [1], the anisotropic ST
function was shown to have best fit. The strain energy function chosen was:
K k k, . e -
W=;z[j"—+'12 +A“——3} (4.21)
ko kK .
k, =kth (4.22) S
2 . . L

Where J, are the extension ratios, and u and &, are the material constants. For a

rectangular shape, the principal stresses are then given by:

T=u[ 4" -4 ] (4.23)

The fitted parameters from their study are reproduced in Table 4.IV. The ratio of , to

k. was shown to decrease as the infarct age increased. This ratio also changed from
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being greater than 1 (indicating stiffer tissue in the longitudinal direction of the
aneurysm), to less than one (indicating stiffer tissue in the circumferential direction of the
aneurysm) as the infarct age increased. The authors chose to represent the stress in the
aneurysm while undergoing a 15% equibiaxial stretch by averaging the predicted stress
levels in each experiment based upon the predicted stiffness parameters in each
experiment (Table 4.V). These results indicate that the stress levels in circumferential

direction ranged from 19.4 gm/cm? to 338.5 gm/cm’ showing a decrease at the 6 week

time point. The stresses in the longitudinal direction ranged from 53.2 gm/cm? to 310.7 r’:'i ’::
gm/cm?, showing a decrease at the 2 and 6 week time points. The mean stresses were 2 2
140.3 and 177.5 gm/cm? for the circumferential and longitudinal directions respectively.
The ratio of the longitudinal to circumferential stress ranged from 0.5 to 3.7 with a mean
of 1.9. porn. - Fie - :

7T
If the authors would have chosen to calculate predictive stresses based upon the averages "J _ ‘
of the model parameters for the 15% stretch, they would have obtained the results ,( Tl ?

presented in Table 4.VI. The most notable change in these results is seen at the 6 week
time points, when compared to the results presented in Table 4.V. We see the
circumferential stress is increased in comparison to the 2 week time point, and the

longitudinal stress is only decreased by 7% as compared to 80%.
Itis difficult to directly compare the parameter results of the Gupta study with the ones

Presented here. However, a direct comparison of the stress values can be conducted. If

We look at the data presented for the six week time point under a 15% equibiaxial stretch,
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we see that the results obtained here are significantly stiffer. Gupta reported values of

115.6 gm/cm® and 53.2 gm/cm? for the circumferential and longitudinal stresses
respectively at the 6 week time point, which most closely agrees with the time scale
reported here. The values of the circumferential and longitudinal stresses found in this
study were 1,197 gm/cm2 and 1,400 gm/cmz. Although the tissue was found to be
significantly stiffer in this study when compared to Gupta’s, the qualitative similarity of

the longitudinal direction being stiffer still exists.

Figure (4.8) shows the stress strain predictions from the Gupta 15% equibiaxial fit

constants, with data predicted from the 15% biaxial presented here. It is clearly evident

that the material properties reported here, produce significantly higher stresses than those

described by Gupta. e
L | ”
N X . ed
Biaxig] Stretcher Design o ;
o

Many of the differences between our results and those of Gupta can be attributed to
difFerences in stretcher design. The first difference is in the method of attachment to the
Stretcher. In our studies we have used long sutures wrapped around a metal pole. This
allowed lateral movement (which is dependent upon suture to metal friction, as Gupta
Observed), while applying the forces in the direction of the orthogonal axes. In Gupta’s
SYystem, the tissue is attached to the stretcher using thin aluminum pins (0.024 inches,
diameter) that are placed perpendicular to the direction of stretching. The corner pins in

this set up are actually driven by both sets of orthogonal axes. Thus deformation in one
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direction is restricted by the motion of the second direction. This could result in the
creation of shear strain, which was not accounted for in the Gupta study. The study
presented in this paper was monitored to ensure that the shears were minimal. Not only
can significant shearing affect the assumptions of equibiaxial stretching, but also it can

have an affect upon the accuracy of the force measured by the load cells.

Another source of discrepancy could be the method used to measure strain. Gupta placed

small optical wires through the center of the tissue to accomplish this. As pointed out by -s:‘t ‘"::
Downs [59], this method is questionable due to the restraining effects of the fibers on the g“ ; =
specimen, the stress concentration induced by the newly created hole, and the - B
nonlinearity of the photodiode system used to measure displacements.
Additionally the motor control design is different between the two designs. Our study T
€mployed a system that monitored central tissue displacement in real time. This allowed &, C
Us to stretch the tissue until the central region arrived at the prescribed stretch ratio. In f L

Gupta’s study the prescribed displacement was generated by motor motion only,
ilTegardless of the strain delivered to the center of the tissue specimen. While, the
Parameters were fit to the appropriate extension ratios, the predicted stress values were

Calculated based upon the stretch ratio delivered to the motors.
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Comparison to Other Methodologies of Stress Determination

Calculation of the in-vivo stretch ratio experienced by LV aneurysm has proven difficult.
The relative thinness of the aneurysm has made use of tagged MRI difficult. Jackson and
colleagues have used sonomicrometry crystals to examine this problem in sheep that have
undergone the same surgical procedure as the subjects in this study. In their work they
have found end systolic stretch ratios approaching 10% [61]. Other studies based upon
finite element models of tagged MRI data of left ventricular aneurysm have suggested
that the stretch ratio approached 13% during the end of isovolumic systole [7].
Moustakidis has recently used the combination of finite element modeling and tagged
MRI to predict peak aneurysm stress levels in sheep that have had left ventricular
aneurysm induced. They found a peak stress level of approximately 1,100 g/cm? [6]. In
the study presented here, in order for the aneurysm to experience that stress level it would
be required to experience a 13% or 14% stretch in the circumferential and longitudinal
directions respectively. In the experiments presented by Gupta, the tissue would be
Tequired to experience a 19% stretch in the circumferential direction and a 23% stretch in
the longitudinal direction in order to experience the same level of stress. Clearly, the
Tesults from the present study correspond more closely with those presented by other

il'1V€=stigators. It is likely that Gupta is underestimating the stress 10 fold.
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Comsparison with Normal Myocardial Material Properties

Guccione and colleagues used a cylindrical model of the left ventricle to obtain material
properties in combination with strain data obtained by bi plane x-ray [62]. Based on

previous research, they proposed the following anisotropic strain energy function:

c
w=<(e0-1) (424)

Q=b,E}\ +b,(E, + E} + E} + E} )+ b, (E} + By, + B}, + E)) (4.25)

where E,, is the fiber strain, E,, is the cross fiber strain, E,, is the radial strain, E,, is
the shear strain in the transverse plane, and E,, and E,, are shear strain in the fiber cross

fiber coordinate plane, fiber radial plane. Their study found that the following material

COnstants allowed the cylindrical model to match the measured epicardial strains:

C =0.876 kPa
b, =18.48

b, =3.58

b, =1.627

s

(4.26)

Although these constants are measured with respect the fiber axis, which changes through
the ventricular wall, and our study determined constants with respect to geometric axes
(longijtudinal, circumferential) it is possible to compare the stress developed over a

Teasonable strain range. Figure (4.9) demonstrates that the material properties measured
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in left ventricular aneurysm are significantly stiffer than those measured in normal

myocardium.

Conclusion:

The present study has presented some discrepancies with previously reported material
property testing of LV aneurysm. We found that the LV aneurysm is significantly stiffer
than previously proposed. Previous experimental systems could have introduced error
into measurement of strain, which would have adversely affected the predicted material
property parameters. Furthermore, the results presented here better correlate to stress

values in left ventricular aneurysm as determined by tagged MRI [6, 7].

The results obtained here could be improved upon with the use of new experimental
modalities. Previously the use of a combination of imaging and finite element modeling
as a method to determine material properties has been examined [63, 64]. Unfortunately,
these early studies were limited by the resolution of the imaging modality. Currently,
MRy being investigated for use in this capacity [65], however, since the aneurysm
tissue is so thin (2 mm) tagging will not be possible to this region. A more rigorous use
Of sonomicrometry [61, 66-73] could be applied to measure strain. Also Dokos, has
Tecently begun the use of a triaxial testing system to determine material properties [74,
75]. The Dokos system utilizes a device capable of applying simple shear deformations

in two orthogonal directions while simultaneously measuring the resulting forces in three
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axes. This triaxial system will be especially useful in examining the material properties

of biological tissue under shear strain.

To further investigate the implications of the stiffer material properties, finite element
studies of left ventricular aneurysm will be conducted. These studies will help to
understand the importance of changing aneurysm material parameters upon the global

and regional function of the LV.
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Young's Modulus

Investigator Year Animal (mN/mmz)
Allaart 1995 Rat 30
Brady 1991  Guinea Pig 16.4
Rabbit 224
Rat 25.8
Shroff 1995 Rat 500
Hoffmeister 1994 Human 2.46

Table 4.1 — Variation in measurement of Young’s Modulus of myocardium as reported

by previous investigators.
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Experiment % Stretch bc bl C (bar) C(g.cm2)
36061 10% 19.93 49.60 0.0014 1.4271
15% 11.05 55.05 0.0010 1.0194

36068 10% 208.58 36.83 0.0036 3.6697
36075 20% 34.16 25.45 0.0020 2.0387
36190 15% 1.64 44.06 0.0027 2.7523
20% 6.86 3943 0.0029 2.9562

36210 15% 41.02 4491 0.0024 2.4465
20% 31.15 43.03 0.0029 2.9562

36217 10% 4.39 31.75 0.0030 3.0581
20% 1.87 52.49 0.0022 2.2426

25% 4.19 34.56 0.0077 7.8491

Minimum 1.64 25.45 0.0010 1.0194

Mean 33.17 41.56 0.0029 2.9469

Standard Deviation 59.86 9.04 0.0018 1.79

Maximum 208.58 55.05 0.0077 7.8491

Table 4.11 — Summary of fitted parameters. Results of all biaxial testing studies when fit
to Equation (4.24) using the Levenberg-Marquardt method. The results show that the
longitudinal direction is stiffer than the transverse direction, verifying anisotropy in the

LV aneurysm tissue.
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Experiment % Stretch Txx(gjcmz) TWLg/cmz) Txx/Tyy

36061 10% 84.41 90.37 1.07
15% 645.81 929.53 1.44

36068 10% 4,223.83 3,776.54 0.89
36075 20% 2,812.21 2,476.33 0.88
36190 15% 390.97 653.29 1.67
20% 2,769.08 5,209.73 1.88

36210 15% 2,553.00 2,616.35 1.02
20% 29,214.57 33,588.56 1.15

36217 10% 40.40 45.60 1.13
20% 7,502.70 17,703.91 2.36

25% 20,594.42 53,690.12 2.61

10% Stretch Mean 1,449.54 1,304.17 1.03
15% Stretch Mean 1,196.59 1,399.72 1.38
20% Stretch Mean 13,847.57 23,741.18 1.57

Table 4.I11 — Predicted Stress Values — Predicted stress values of the L'V aneurysm tissue
when an exact stretch of 10%, 15% or 20% is applied. The ratio of longitudinal to
circumferential stresses is presented as an indication of anisotropy.
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Infract Age Stretch B ke ki kyke

Control 10% 1.01 21.99 28.34 1.29
15% 0.76 23.30 28.03 1.20
4 Hours 10% 2.12 26.33 38.99 1.48
15% 1.78 24.00 34.36 1.43
1 Week 10% 4.99 31.61 38.50 1.22
15% 5.13 26.18 27.94 1.07
2 Weeks 10% 3.74 38.27 35.26 0.92
15% 3.64 32.08 30.23 0.94
6 Weeks 10% 224 26.73 19.61 0.73
15% 9.87 27.27 22.60 0.83

Table 4.IV — Summary of Previous LV Aneurysm Material Property Estimates.
Parameters as reported by Gupta [1, 2]. Stress and Stretch Data were fit to Equation
(4.21).
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Stress Based On Average of Individual Studies

Infarct Age Trxx Tyy Txx/Tyy
Control 19.4 54.8 2.82
4 Hours 54.6 203.9 3.73
1 Week 1736 310.7 1.79
2 Weeks 338.5 264.8 0.78
6 Weeks 115.6 53.2 0.46

Table 4.V — Gupta LV aneurysm Stress Results — LV aneurysm stress results for a
simulated exact 15% equibiaxial stretch as reported by Gupta [1, 2]. Results are
determined by calculated material parameters for each study, then producing estimated
stress values for each study. These results were then averaged to produce the values

shown above.
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Stress Based On Model Averages

Infarct Age Txx Tyy Txx/Tyy

Control 19.7 38.2 1.94
4 Hours 51.0 216.8 425
1 Week 199.2 254.7 1.28
2 Weeks 322.3 248.9 0.77
6 Weeks 446.2 2323 0.52

Table 4.VI — Gupta LV aneurysm Stress Results — LV aneurysm stress results for an
exact simulated 15% equibiaxial stretch from data presented in [1, 2]. Results were
obtained by calculating material property constants for each study, then averaging their
value. The average value was then used to predict a stress value when a simulated

equibiaxial stretch of 15% was performed.
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Figure 4.1 —Biaxial Stretching System. The biaxial stretching device consisted of two
orthogonal motor axes that drive the displacement of tissue which is attached using
sutures. Motor displacement is controlled using a video system that monitors tissue
displacement at the center of the specimen to assure that the sample is being stretched to
the appropriate length. Forces are measures using a force transducer on each orthogonal

axis.
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Figure 4.2 — Marker Locations — Four markers are placed in the center of the tissue
sample in an approximate square pattern. The video tracking system monitors the
displacement of these markers to determine both stretch ratios and strain.
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Figure 4.3 — Mapping Transformation — Schematic of mapping transformation used with
Equation (4.7). Coordinates measured in the arbitrary (X,Y) plane are mapped to the
normalized (s,r) plane.
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Figure 4.4 — Biaxial Testing Raw Data — Data from representative biaxial
stretching test that shows the force measurements (a, b) and displacements
(c, d) that were recorded.
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Figure 4.5 — Typical stress versus strain plots for the circumferential (a)
and longitudinal (b) directions for a 20% equibiaxial stretch.
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Figure 4.6 — Stress stain results plotted for a typical 20% equibiaxial stretch. Measured
circumferential stress and strain values (solid circles) and longitudinal stress and strain
valued (open circles) are plotted. The results from the corresponding material property fit
are presented in the circumferential (solid line) and longitudinal (dashed line) are
presented. E ;. and E; are the strains in the circumferential and longitudinal directions
respectively. T and T) are the stresses in the circumferential and longitudinal directions
respectively.
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Chapter 5

Finite Element Model of Left Ventricular Aneurysm
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Abstract:

A highly detailed finite element model was used to examine the presence of left
ventricular (LV) aneurysm in the ovine heart. Through a series of simulations, the choice
of material parameters used to model LV aneurysm was found to have a large effect upon
both the global and regional function of the heart. Simply reducing the contractility and
increasing the stiffness of the aneurysm region were found to produce different results
than using material parameters measured from biaxial testing. This highlights the
importance of using accurate material parameter predictions applied to a realistic model
rather than simply increasing the “stiffness” of the tissue in a generalized model as other
investigators have done in the past. Furthermore, our model predicted an increase in
cross-fiber stress and a decrease in fiber stress at all regions of the left ventricle at end
systole. This result could have significant importance in understanding the mechanism

behind collagen expression in the diseased left ventricle.

Introduction:

In the previous chapter, we used a biaxial testing apparatus to arrive at material parameter
estimation for ovine LV aneurysm. The next logical step is to understand the effects that
these material parameters have on both the global and regional function of the left
ventricle. This goal will be accomplished by developing a finite element model of LV
aneurysm based upon these measured parameters. Furthermore, we will compare the

results predicted by this data to other means of simulating LV aneurysm and normal
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myocardium. The global function predictions, and detailed stress strain results, predicted
by these models will allow us to understand the importance of selecting the most

appropriate material parameters when creating computer models of the left ventricle.

There have been many attempts by other investigators to use mathematical modeling in
the past. One of the first was an analytical thin shelled sphere model of the heart
developed by Vayo [2] that was used to predict relations between aneurysm shape and
cardiac function. Bogen developed a finite element model based upon membrane
formulation that was applied to an initially spherical model of the left ventricle [3-5]. A
power law strain energy function was used by Bogen to describe systole and diastole was
based upon the Law of Laplace. In order to study the mechanics of L'V aneurysm rupture
Radhakrishnan used a thin shelled ellipsoidal model of the left ventricle with linear stress
strain relations [6]. Reif and colleagues continued study in this area using a three layered
ellipsoidal model of the left ventricle with linear stress strain relationships for the
myocardium and aneurysm tissue [7]. Recently, investigators have used realistic
geometries determined from imaging modalities (echocardiography and magnetic
resonance imaging) to construct finite element models of LV aneurysm [8-10]. These
models are all based upon infinitesimal deformation theory, and use linear stress strain
relations, that do not accurately match the realistic deformations and material properties
of the heart. The models presented previously are based upon numerous assumptions of
cardiac mechanics that do not necessarily hold true. Some of the earliest models were
based upon simple geometries that do not accurately model the left ventricle. The

previous models all use either a power law strain energy function or a linear stress strain
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relation. Both the myocardium [11-25] and aneurysm [26-28] have been shown by many
investigators to be highly nonlinear and may best be described by an exponential strain
energy function [29-32]. The use of the Law of Laplace has also been shown to
inaccurately predict LV mechanics [33]. None of the above studies define special
material properties for the border zone region. Recent studies have suggested that the
systolic material properties in the border zone are depressed compared to normal
myocardium [1]. It has also been established by other investigators that large
deformation theory is superior in describing the function of the left ventricle, however,
computational resources previously limited its application [34, 35]. Finally, none of the
above models account for the muscle fiber structure of the left ventricle [36], and the

subsequent impact upon LV mechanics [37-39].

In the present study, we will present a model that addresses many of these concerns.
Specifically, our model will have: (1) a realistic geometry measured from magnetic
resonance imaging, (2) incorporate myocardial material properties defined with respect to
the local muscle fiber direction, (3) have aneurysm material properties measured from
biaxial stretching, (4) define separate material properties in the border zone that
incorporate an appropriate decrease in systolic function, (5) use exponential strain energy
functions derived from experimental data and (6) be solved using large deformation finite
element method techniques. This analysis should allow us to produce the most realistic

computer model of LV aneurysm to date.
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Methods:

Creation of the Left Ventricular Aneurysm

LV aneurysm was induced according to the method described Chapter 4.

Preparation for Magnetic Resonance Imaging

Ten weeks following creation of the L'V aneurysm, the animal was prepared for magnetic
resonance imaging (MRI). Sedation was accomplished using an intramuscular injection
of ketamine (15 mg/kg). After sedation, the animal was intubated and ventilated using a
mixture of isoflurane and oxygen. To monitor hemodynamic data nonferromagnetic
catheters (Mikro-Tip, SF, model SPC-350 MR; Millar Instruments Inc, Houston, TX)
were inserted into the left ventricle, right ventricle and aortic root using the left carotid
artery, jugular vein and femoral artery, respectively. The animal was then positioned in
the supine position within the MRI machine (Magnetom Vision, Siemens Medical
Systems, Iselin, NJ), with a Helmholtz coil centered on the chest. Following imaging, the
animal was sacrificed using pentobarbital (120 mg/kg intravenously), and heparin (5000

U intravenously) followed by rapid infusion of KCl (80 mEq intravenously).
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Magnetic Resonance Image Acquisition and Processing

Multiple scout images were used to identify the position of the heart, and to locate the
true short and long-axis planes. After the preliminary image set up, a series of eight
short-axis image planes (8 mm thick) were obtained parallel to the true short-axis plane at
8 mm intervals starting at the level of the mitral valve and continuing until the image
contained only LV epicardium, with no LV or right ventricular endocardium visible.
Additionally, four long-axis images were obtained at 45 degree intervals, orthogonal to

the true short-axis plane, and intersecting the L'V centroid.

The R wave of the electrocardiogram was used to synchronize the image acquisition. The
ventilator (Hallowell 2000, Hallowell EMC, Pittsfield, MA) was stopped at maximum
inspiration for 20 to 30 seconds during the image acquisition to minimize respiratory
motion and the associated motion artifacts in the images. During the period of paused
ventilation a series of images was acquired at 29 ms intervals until the approximate
completion of the cardiac cycle. Total data acquisition time was approximately 45
minutes. Imaging variables were a repetition time equal to the cardiac cycle (RR
duration), an echo time of 29 ms, an excitation angle of 15 degrees, and an acquisition
matrix of 256 x 256. The field of view was set to 350 x 350 mm’ and 400 x 400 mm? for
the short-axis and long-axis images, respectively. The raw images were then transferred
to a Silicon Graphics Workstation (Silicon Graphics Inc., Mountain View, CA), and
converted to the .rgb format using custom software [1]. The images were then cropped

and scaled by 300% (Figure 5.1).
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The border zone region was identified by isolating the region where the LV wall
thickness changed from normal (12 to 15 mm) to very thin (3 mm). Thus, we used

anatomical, rather than functional means to identify the border zone.

Biaxial Material Property Determination

Biaxial material properties were obtained as described in Chapter 4. Briefly six animals o

FcdE T N

with LV aneurysm were studied. After the aneurysm was allowed to mature for six

weeks, the animal was sacrificed and the aneurysm was excised for testing. Testing was
performed using a biaxial stretcher previously described by others [18, 40-42]. The
resulting stress strain results were fit using the Levenberg-Marquardt method [43] to e s

obtain parameters for the strain energy function described below. >
Creation of Model Geometry

The images obtained previously from MRI were examined to isolate the time point which
most closely was associated with the beginning of diastolic filling. The eight short-axis
and four long-axis slices associated with this time point were then digitized to obtain the
locations of the endocardium and epicardium. Using the method of Nielson [44], a high
order finite element (FE) model of the left ventricle (including the aneurysm) was created
in prolate spheroidal coordinates (focal length, 41.0 mm). This model was then fit to

smooth bicubic Hermite finite elements [45] to the epicardial (304 points) and
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endocardial (247 points) data sets (Figure 5.2). For the original 16 element model, the
root mean square errors of the surface fits were 0.8 mm and 1.2 mm for the endocardium
and epicardium respectively. The wall thickness of the model ranged from 15 mm near
the base to 3 mm near the apex. The wall and cavity volumes of the model were 104.8

mL and 198.1 mL respectively.

In order to accurately model the variation of the material properties seen in the three
different sections of the model (remote, border zone, and aneurysm), the 16 element
bicubic model was refined into a 168 element trilinear model, with 12 elements
circumferentially and 14 elements longitudinally (Figure 5.3) with constant hydrostatic
pressure within each element. Then normal, border zone, and aneurysm regions of the
model occupied approximately 76%, 14%, and 10 % of the total wall volume
respectively. The fiber angles were assumed to vary linearly from 83 degrees at the
endocardium to -37 degrees at the epicardium, in accordance with previous

measurements [46].

In order to incorporate the material properties measured from the previously described
biaxial measurements, it was necessary to create a second, more complex model. The
parameters obtained from the biaxial stretching experiments are defined with respect to
the circumferential longitudinal axes, whereas the material properties used in the border
zone and remote sections are defined with respect to the muscle fiber orientation. In
order to accommodate this, a “window pane” region was created in the existing border

zone region of the model. To prevent discontinuities in the circumferential direction, it
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was necessary to refine the circumferential elements that formed a border between
aneurysm and border zone (Figure 5.4). The refining was done in such a manner that the
closest 10% of the elements next to the aneurysm were placed in the new “window pane
region.” In this new 280 element model there are three different fiber orientation
schemes used. In the remote and border zone regions of the model, the fiber angles were
assumed to vary linearly from 83 degrees at the endocardium to -37 degrees at the

epicardium. In the window pane region, the fibers vary from their value in the border

. . . . :_ _gp—am-
zone (i.e. -37 degrees at the epicardium), to 0 degrees at the border with the aneurysm = -
region. In the aneurysm region, the fibers show no transmural variation and are aligned oA
with the circumferential direction (i.e. zero degrees) (Figure 5.5), which is in approximate *
agreement with histological measures of collagen fiber angle variation [47].

Finite Element Model .

The finite element methods used for the simulation are similar to that described by Costa ol .
and colleagues [37]. The mathematical descriptions (stress strain relationships) for
systolic and diastolic material properties were originally described by Guccione [32].

These methods are described in Chapter 3, but will be briefly summarized here.
The use of two different local coordinate systems necessitates the use of two similar, yet

different strain energy functions. In the remote, border zone and aneurysm regions the

following strain energy function was used:
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C
W= E{CXP[belzl +b:(E222 + E323 + E:fs +E322)+bj.’y(E122 + Ezzl + E|23 + Eszl)]‘l} 5.1

where E, is fiber strain, E»; is cross-fiber in-plane strain, Ej3; is radial strain, E>; is shear
in the transverse plane, and E); and E; are shear strain in the fiber-cross fiber and fiber-
radial coordinate planes. Guccione and colleagues previously found that the material

constants C =0.88kPa, b, =18.48, b, =3.58, b, =1.63 allowed a cylindrical model of

the left ventricle to match strains measured during passive ventricular filling in an intact
canine heart preparation [29]. Equation (5.1), also has been shown to allow an FE model
of the beating dog heart [32] to predict end diastolic finite strain distributions from a
midventricular region of the anterior LV free wall consistent with three-dimensional

strain measurements for passive inflation [46].

For the aneurysm region of the left ventricle, the following strain energy function will be

used:
C
W= E {exp[bcElzl +b (Ezzz + E323 + E223 + Eszz) + bcs(Elzz + E22| + E123 + E321 N-13  (5.2)

where E) is ci<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>