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Abstract 

Social network graphs are often used to help inform 
judgments in a variety of domains, such as public health, law 
enforcement, and political science. Across two studies, we 
examined how graph features influenced probabilistic 
judgments in graph-based social network analysis and 
identified multiple heuristics that participants used to inform 
these judgments. Study 1 demonstrated that participants’ 
judgments were influenced by information about direct 
connections, base rates, and layout proximity, and 
participants’ self-reported strategies also reflected use of this 
information. Study 2 replicated findings from Study 1 and 
provided additional insight into the hierarchical ordering of 
these strategies and the decision process underlying 
judgments from social network graphs.  

Keywords: social network analysis; graph comprehension; 
data visualization; judgment and decision making 

Introduction 

Social Network Analysis 
Social network analysis is an analytical method for 

understanding data that depicts relationships between 
entities, such as communications between people or the flow 
of information through a community. Social network 
analysis (SNA) can be used to inform judgments such as 
who the most connected or influential person is in a 
community. The applications for SNA are widespread. The 
CDC has used social networks to map the spread of 
infectious diseases (Cook, 2007), and intelligence 
professionals have used SNA to map potential terrorist 
suspects. For example, Krebs (2002) was able to map a 
network of suspected 9/11 terrorists after the attacks based 
on publicly available information in the news and provide 
insight into the terrorist organization.  

Social networks are typically depicted using node-link 
diagrams, in which nodes (depicted with circles) represent 
objects, such as people, and edges between the nodes 
(depicted with lines) represent a connection, such as a 
friendship or a recent communication. Although there are 
quantitative measures of graph structures, such as network 
centrality, SNA often involves some degree of visual 
interpretation. In many applications of SNA, such as tactical 
decision making in military organizations, users of network 
graphs have limited time to make their decisions and may 
not have the background to supplement their visual 

interpretation with more objective, quantitative measures. 
Thus, clearly communicating the important information in 
network graphs is essential. In practice, however, these 
network visualizations are often complex with hundreds or 
thousands of nodes, and relatively little is known about the 
cognitive strategies people use to make probabilistic 
judgments from these graphs. In the present study, we 
aimed to identify graph features and heuristics that 
influenced probabilistic judgments in scenarios that 
mirrored real-world SNA tasks.  

Graph Perception 
Much research has applied perceptual and cognitive 

theories to improve graph comprehension and readability. 
Purchase, Cohen, and James (1997) first demonstrated that 
several aesthetic qualities could improve comprehension, 
such as maximizing the symmetry of the graph, minimizing 
the number of intersecting edges, and minimizing the 
number of bends in a series of segments. Purchase (2000) 
found that graph layouts that minimized intersecting edges 
significantly improved participants’ abilities to answer 
questions about the relationships in the graph. Similarly, 
Ware, Purchase, Colpoys, and McGill (2002) found that 
cutting unnecessary edges significantly improved cognitive 
performance.  

Other perceptual features in graphs have been studied as 
well. For example, McGrath, Blythe, & Krackhardt (1997) 
found that nodes that were positioned closer to the center of 
the graph were perceived as more prominent, suggesting a 
bias towards layout centrality. Additionally, nodes were 
more likely to be considered to be in the same group if they 
were positioned closer to each other, and nodes positioned 
directly between two nodes (as opposed to at an angle) 
made them more likely to be considered a “bridge” between 
the two nodes.  

Gestalt principles may help explain why some aesthetic 
features can influence graph interpretation by exploiting 
people’s tendency to identify patterns (Novick & Bassok, 
2005).  The Gestalt principle of good continuation suggests 
that paths are more easily recognized when they contain less 
jaggedness, suggesting that the fewer the bends between two 
nodes, the more readily the path connecting them will be 
observed. The principle of proximity suggests that spatial 
proximity between objects implies logical groupings. Other 
cognitive heuristics may also influence graph interpretation. 
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For example, people sometimes ignore base rates when 
making probabilistic judgments. The extent to which this 
occurs when making judgments from network graphs, which 
may depict base rate information in a visual way, is unclear 
(but see Micallef, Dragicevic, & Fekete, 2012).  

Pilot Study 
We conducted a pilot study with 30 participants recruited 

from Amazon Mechanical Turk (AMT) to identify graph 
features people attend to when making judgments about the 
likelihood that a particular node belonged to a defined 
category. We planned to use the results of the pilot study to 
inform our decision about graph features to manipulate in 
our experiments1. Participants were asked to play the role of 
a data analyst at a law enforcement agency and use node-
link graphs to estimate the likelihood that they would 
further investigate a person of interest (POI) in a community 
that has known drug users (Figure 1). They were also asked 
to describe the strategies they used to make their judgments. 
The POI was indicated as a black node, known drug users as 
blue nodes, and everyone else as yellow nodes. Lines were 
drawn between nodes to indicate recent communications. 
Two graph features were varied, 1) the number of direct 
connections the POI had, and 2) the number of drug users in 
the whole graph (base rate). The graph visual was generated 
using a force-directed layout, a popular way of visualizing 
graph data. Participant responses revealed two common 
strategies. The first was based on the number of drug users 
within the POI’s direct connections (what we call the “ratio” 
strategy, N = 10). The second strategy was based on the 
spatial proximity of drug user nodes to the POI node in the 
visual layout, regardless of whether they were actually 
closely connected to the POI (“proximity” strategy, N = 8). 
We expected to see instances of the ratio strategy, but not 
necessarily the proximity strategy, since the position of 
nodes in a force-directed layout is a function of connections 
rather than nodes. In general, layout position in a graph can 
be misleading, and two nodes visually close to each other 
but not connected may not necessarily have a strong 
relationship. Three participants in the pilot study also 
mentioned relying on the total number of drug users in the 
graph. This strategy was expected to be more frequent 
considering that base rates were explicitly manipulated 
across graphs. However, participants apparently found base 
rates less informative than ratio and proximity features for 
the pilot set of graphs.  

Overview of Experiments 
We conducted two experiments to understand how the 

graph features identified in the pilot study influence 
probabilistic judgments. In each study, we manipulated the 
three features identified during our pilot study: 1) ratio, or 
the number of connections the POI has to salient nodes, 2) 

                                                             
1 All procedures in the pilot study and experiments were 

approved by the Johns Hopkins University Institutional Review 
Board. 

base rate of salient nodes, and 3) proximity of salient nodes 
to the POI.  

 

 
 

Figure 1: Example network graph provided in pilot study.  

Study 1 

Participants and Procedure 
Participants. We recruited 30 participants from AMT. 
Participants were required to have a “Masters” qualification, 
indicating that they had repeatedly demonstrated good 
performance in the AMT marketplace. Most participants 
reported having no experience (72.41%) or only slight 
experience (17.24%) with SNA. One participant was 
excluded from analysis for failing an attention check.  

 
Scenario. Similar to the pilot study, participants were asked 
to take on the role of a data analyst at a law enforcement 
agency and use graphs to identify potential drug users in a 
community. They were provided a set of 36 graphs that 
described communications in a small community over the 
past month. Participants were told that links between nodes 
represented non-family relationships with others, such as 
friends and coworkers. No information was provided on 
how the graphs were constructed. For each graph, 
participants made a judgment of how likely they would be 
to investigate the POI and described how they used the 
graph to make their judgment.  

 
Materials. The graphs were small real-world graphs 
generated from the Polbooks dataset of co-purchased 
political books (V. Krebs, unpublished, 
http://www.orgnet.com/). Graphs were rendered with the 
default graph plotting parameters in the R iGraph package, 
which uses the Fruchterman-Rheingold force-directed 
algorithm. Each graph consisted of 104 nodes. As in the 
pilot study, the POI was indicated as a black node, known 
drug users as blue nodes, and everyone else as yellow 
nodes. Direct connections to the POI were highlighted in the 
graphs to aid interpretation. Emphasizing direct connections 
in this way may have led to more emphasis on the ratio 
strategy, but highlighting connections was deemed 
important to help participants distinguish between graph 
connectedness from layout proximity (i.e. visual closeness). 
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Conditions. Three graph conditions were manipulated 
within-subjects: 1) number of drug users in the POI’s N 
direct neighbors (0/N, 1/N, Half/N); 2) overall base rate of 
known drug users in entire graph (5% or 50% of all nodes); 
and 3) proximity placement of known drug user nodes (near 
or far from POI). Note that proximity was the physical 
location of drug user nodes within the visual graph layout 
and not the graph connectedness. Graph connectedness was 
controlled by removing edges that connected proximal drug 
user nodes to the POI’s direct neighbors (Figure 2).  

 

 
 

Figure 2: Graph feature conditions. Note that in the 
Proximity: Near graph, the proximal blue nodes are not 

connected to the POI or the POI’s direct neighbors. 
 
Likelihood Judgments. For each graph, participants were 
asked to rate how likely they would be to investigate the 
POI on a scale of 1 to 7 (1 = Extremely Unlikely, 7 = 
Extremely Likely). 

 
Strategy Use. After giving their likelihood rating, 
participants were also asked to describe any specific graph 
information they used in making their rating. Responses 
were open-ended text responses and were analyzed using a 
structured coding approach, described in Table 1, with three 
coders who coded 75% of the responses independently and 
25% overlapping. Inter-rater reliability on the 25% co-coded 
responses was high (Cohen’s Kappa > .75). 
 

Table 1: Coding scheme for open-ended responses. 
 
Strategy Description 

Ratio Mentions number of users in POI 
connections 

Base Rate  Mentions number of users in graph 
Proximity Mentions visual closeness of POI to users 

Results and Discussion 
Likelihood Judgments. We modeled likelihood judgments 
with a linear multilevel model with base rate, proximity, and 
ratio conditions treated as random effects. Graph feature 
conditions were nested within participant. Multilevel 
models are able to estimate the variance associated with 
each random effect; thus, the model can account for the 
within-individual variability for different graph feature 
conditions. In addition to modeling random effects, 
multilevel models can also simultaneously estimate fixed 
effects, which in this case represent the average effect for 
the whole sample.  

We sequentially entered each graph feature into the model 
as a fixed effect to examine its effect on likelihood ratings. 
Base rate, ratio, and proximity each significantly improved 
the fit of the model (χ2(1) = 34.51, p < .001, χ2 (2) = 148.62, 
p < .001, and χ2(1) = 45.07, p < .001, respectively). 
Specifically, higher base rates increased the likelihood of 
investigating the POI (b = 0.97, t(1011) = 7.54, p < .001), 
higher ratios increased the likelihood of investigating (b = 
1.24, t(1011) = 7.18, p < .001 for 1/N vs. 0/N and b = 3.86, 
t(1011) = 22.34, p < .001 for Half/N vs. 1/N), and closer 
proximities also increased the likelihood of investigating (b 
= 1.02, t(1011) = 9.58, p < .001). These results suggest that 
participants considered all three graph features when 
making their judgments. The observation that participants’ 
suspicion levels of the POI increased with proximity to 
known drug users was significant, because it suggests that 
participants believed proximity to be a meaningful indicator. 

We also found a significant interaction between base rate 
and proximity (χ2(1) = 146.00, p < .001). When proximity 
was far, there was no difference between the base rate 
conditions, but when proximity was near, higher base rates 
significantly increased the likelihood of investigating (b = 
1.70, t(1006) = 13.96, p < .001; Figure 3). In other words, 
base rate information only affected judgments to the extent 
that it placed more users near the POI. 

There were also interactions between the base rate and 
ratio conditions (χ2(2) = 112.90, p < .001) as well as 
between the ratio and proximity conditions (χ2(2)= 81.89, p 
< .001), as depicted in Figure 3. Increasing the base rate had 
a stronger effect in the 0/N and 1/N conditions compared to 
the Half/N condition (b = 1.70, t(1006) = 11.40, p < .001 
and b = 0.94, t(1006) = 6.32, p < .001 for 0/N vs. Half/N 
and 1/N vs. Half/N, respectively). Likewise, proximity had a 
stronger effect in the 0/N and 1/N conditions as well (b = 
1.36, t(1006) = 9.09, p < .001 and b = 0.87, t(1006) = 5.85, 
p < .001, respectively). These interactions reveal that, in the 
highest ratio condition, base rate and proximity information 
had little effect. One interpretation of this result is that when 
ratio was high, participants did not feel a need to look at 
other information in the graph. In contrast, when the ratio 
was 0/N or 1/N, base rate and proximity information both 
influenced judgments, such that higher base rates and closer 
proximity increased likelihoods of investigating.  

Ratio: 0/N Ratio: 1/N 

Base Rate: Low 

Proximity: Far 

Base Rate: High 

Proximity: Near 

Ratio: Half/N 
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Strategy Use. Analysis of participants’ self-reported 
strategies validated our findings from the pilot study. 
Participants mentioned using the ratio strategy for the 
majority of graphs (85.34%). Proximity was the next most 
frequently mentioned strategy (22.41%), followed by base 
rate a small percentage of the time (12.64%).  

 

 

 
 

Figure 3: Interactions between graph feature conditions. 

Study 2 
Study 2 sought to replicate the findings of Study 1 with a 

broader range of stimuli. We introduced two additional 
scenarios, public opinion and disease propagation. Network 
graphs can be used to represent relational data from a 
variety of domains, and assumptions about the data may 
change interpretations of the graph. For example, base rates 
may be utilized more when the activities represented in the 
graphs are perceived to be more mobile or contagious. We 
speculated that a network graph representing the spread of 
an infectious disease could lead people to use base rate 
strategies more often than a network graph representing the 
spread of drug use. Study 2 also sought to better understand 
the hierarchical ordering of cognitive strategies identified in 
the previous studies by constructing a decision tree that 
could predict the conditions under which particular 
strategies will be used. 

Participants and Procedure 
Participants. We recruited 196 participants from AMT. 
Participants were limited to U.S. residents and had at least a 
90% approval rating for previous HITs. We excluded 11 
participants who either failed attention checks or had 
participated in a previous study. Most participants said they 
had no prior experience (64.86%) or only slight prior 
experience (28.65%) with SNA. 
 
Scenario and Materials. Participants were provided the 
same set of 36 graphs from Study 1 and were asked to make 

likelihood judgments about the POI in each graph.  
 

Conditions. The same three graph conditions from Study 1 
were manipulated within-subjects. We also introduced 
different scenarios as a between-subjects manipulation for 
the source of the graph data. Participants were randomly 
assigned to one of three data scenarios: drug use, political 
opinion, and infectious disease (Table 2). 
 

Table 2: Description of data scenarios. 
 

Scenario Brief Description 
Drug In a community in which some percentage of 

people are known users, how likely will the 
POI become a drug user in the next six 
months? 

Opinion In a community in which some percentage of 
people are known proponents of a new 
proposal, how likely will the POI become a 
proponent in the next six months? 

Disease In a community in which some percentage of 
people are infected with a new disease 
transmitted through social contact, how likely 
will the POI become infected in the next six 
months?  

 
Strategy Use. In contrast to Study 1, in which participants 
described their analysis strategy in an open-text form, 
participants in Study 2 rated the strategies from Study 1 
(ratio, base rate, and proximity) as well as distractors (e.g., 
central or peripheral location of POI, presence of a cluster of 
nodes) as to how important they were to their likelihood 
judgment. Ratings were on a scale of 1 (Not at all 
important) to 5 (Extremely important). The list order of 
strategies was randomized at each presentation.  

Results and Discussion 
Likelihood Judgments. We used the same model from 
Study 1 but added scenario to the model as a fixed effect. 
There was a significant main effect of scenario on likelihood 
judgments (χ2(2)= 26.40, p < .001); specifically, participants 
in the disease condition gave higher likelihood ratings on 
average than participants in the drugs or opinion conditions 
(b = 0.58, t(182) = 4.65, p < .001 and b = 0.63, t(182) = 
4.71, p < .001 for disease vs. drugs and disease vs. opinion, 
respectively). As in Study 1, there were also main effects of 
base rate (χ2(1)= 288.97, p < .001), proximity (χ2(1)= 
291.26, p < .001), and ratio (χ2(2)= 671.77, p < .001). As 
depicted in Figure 4, higher base rates led to higher 
likelihood ratings (b = 1.21, t(6471) = 24.06, p < .001), 
higher ratios led to higher ratings (b = 0.62, t(6471) = 8.92, 
p < .001 for 1/N vs. 0/N, and b = 2.16, t(6471) = 31.39, p < 
.001 for Half/N vs. 1/N), and closer proximities also led to 
higher ratings (b = 0.99, t(6471) = 25.00, p < .001).  

We again found two-way interactions between base rate 
and proximity (χ2(1)= 645.45, p < .001), base rate and ratio 
(χ2(2) = 424.43, p < .001), and proximity and ratio (χ2(2) = 
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501.50, p < .001). Consistent with Study 1, increasing the 
base rate only mattered when proximity was high (b = 1.36, 
t(6466) = 28.31, p < .001); increasing the base rate had 
stronger effects when ratios were 0/N or 1/N compared to 
Half/N (b = 1.28, t(6466) = 21.70, p < .001 for 0/N vs. 
Half/N, and b = 0.79, t(6466) = 13.43 for 1/N vs. Half/N); 
and closer proximity also had stronger effects when ratios 
were 0/N or 1/N (b = 1.30, t(6466) = 22.16, p < .001 for 0/N 
vs. Half/N, and b = 0.36, t(6466) = 6.19, p < .001 for 1/N 
vs. Half/N). In other words, when the ratio of users in the 
POI’s connections was very high (Half/N), other graph 
features had less influence on judgments.  
 

 

 
 

Figure 4: Main effects of data scenario and graph features.  
 

As depicted in Figure 4, main effects of graph features 
were found for each scenario we tested. The main 
interaction we were interested in was between scenario and 
base rate, since we expected that base rates would be 
utilized more when the scenario described more contagious 
activities, such as the spread of disease. There was not a 
significant interaction between scenario and base rate, 
although significant interactions did emerge between 
scenario and the proximity and ratio graph features (χ2(2) = 
6.31, p = .04 and χ2(4) = 40.21, p < .001, respectively). 
However, Figure 4 suggests that differences were small and, 
overall, graph features affected judgments in a consistent 
way across scenarios. 
 
Strategy Use. Consistent with Study 1, participants’ ratings 
of strategy importance reflected a tendency to rely on the 
ratio strategy more than other strategies. A multilevel model 
with strategy treated as a random effect and nested within 
participant revealed that participants rated proximity and 
ratio information as more important to their judgment than 
base rate information (b = 0.24, t(368) = 3.43, p < .001 and 
b = 0.78, t(368) = 11.32, p < .001, respectively). Participants 

rated ratio information as more important than proximity 
information, b = 0.54, t(368) = 7.89, p < .001.  
 
Decision Tree. Given the multiple interactions between 
graph features, we modeled the influence of graph features 
on likelihood judgments with a decision tree using the rpart 
package in R. Human judgment is often based on ‘fast and 
frugal’ heuristics (Gigerenzer, & Goldstein, 1996), which 
can be modeled by decision trees. Decision trees identify a 
series of binary decisions to maximize prediction accuracy 
of an outcome variable.  

The model in Figure 5 shows the decision tree for the 
Study 2 data. The first decision point splits the data based 
on ratio. If the ratio was high (many salient nodes in the 
POI’s direct connections), the model estimated that the 
likelihood rating was high (5.8), and no other variables were 
considered (far right side of Figure 5).  

 

 
 

Figure 5: Decision tree predicting likelihood of 
investigating the POI. n represents number of judgments 

collected from participants. 
 

The left side of the first decision point indicates that when 
there were zero or one salient node(s) in the POI’s direct 
connections, the model next split the data based on the base 
rate. If the base rate was low (left side of Figure 5), the 
model then made another split based on ratio, and proximity 
was not used. If the base rate was high, the model then used 
proximity. If proximity was far, the model used ratio 
information again to make the final classification.  

General Discussion 
In this research we identified three graph features that 

influenced judgments about a specific person of interest 
(POI) in a social network graph: 1) number of salient nodes 
within the POI’s direct connections, 2) base rate of salient 
nodes in the graph, and 3) proximity of salient nodes to the 
POI. Across two experiments, we demonstrated the 
influence of these features on probabilistic graph-based 
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judgments by manipulating their presence in a series of 
graphs. Additionally, through our analysis of participants’ 
self-reported strategies and strategy importance ratings, we 
demonstrated that participants consciously use these graph 
features in their judgments. Participants reported primarily 
using the ratio strategy to make their judgments, followed 
by the proximity and base rate strategies. No matter which 
data scenario was used (e.g., drug use, disease, public 
opinion), base rate, proximity, and ratio manipulations 
influenced judgments in similar ways, with only slight 
differences across scenarios. 

Strategy Use 
Participants consistently used the ratio strategy to make 

likelihood judgments. The three-level manipulation of this 
variable (0/N, 1/N, Half/N) was the strongest determinant of 
likelihood judgments and the ratio strategy was the most 
frequently self-reported strategy. Furthermore, a decision 
tree analysis suggests that when the number of connections 
was high, participants made ‘fast and frugal’ decisions 
without using the other strategies. 

In other cases, participants made use of base rate and 
layout proximity. The decision tree analysis suggests that 
each of these graph features was considered by participants 
when making likelihood judgments, and manipulating each 
of these variables led to significant main effects on 
judgments. However, the relative importance of these two 
strategies is less clear. Participants were more likely to 
mention using the proximity strategy than the base rate 
strategy in Study 1, and in Study 2 participants rated the 
proximity strategy as more important than the base rate 
strategy. Yet the decision tree analysis revealed that base 
rate was a decision point before proximity was considered, 
suggesting that base rate may be more important than 
proximity to participants’ judgments. These results suggest 
that there may be a disconnect between participants’ self-
reported strategies and the strategies revealed by their actual 
judgments. One interpretation of this finding could be that 
participants were mistaken in how much they considered 
each graph feature. Future research could further explore the 
relative importance of these strategies by testing different 
response formats, scenarios, and graphs. 

Is Use of Proximity an Error? 
An important question about these results is whether the 

use of proximity should be considered a reasoning error. It 
is true that in force-directed layouts, which was the layout 
algorithm used to generate the graphs in these studies, 
layout distance does often have a relationship with graph 
distance. In other words, the physical distance between two 
nodes is somewhat related to the number of edges that 
separate those nodes. However, it could be misleading to 
rely only on layout proximity to make the kinds of 
judgments in these studies for two reasons. First, the extent 
to which proximity provides meaningful information about 
the relationship between two nodes depends critically on the 
layout algorithm used for graph construction. Second, in 

many cases, users viewing a graph will not have knowledge 
of the algorithm used to construct the graph (as was the case 
in this study), leaving the meaningfulness of proximity 
unclear. Thus, although use of spatial proximity as a factor 
in judgment is not necessarily wrong in itself, overuse of 
this heuristic could lead to misinterpretation in some cases. 
Understanding how novice audiences interpret proximity 
could help inform the design of layouts and the use of 
graphs by analysts, particularly for graphs whose layout 
algorithms are independent of spatial distance. 

Future Directions 
The present studies were carried out with participants who 

lacked a background in SNA. Future studies plan to 
examine how novices and experts differ in their use of graph 
information. We also plan to further assess the validity of 
proximity information by testing different graph layouts and 
examining correlations between path and spatial distance.  
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