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Abstract

Towards Credible Causal Inference under Real-World Complications

by

Melody Huang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Erin Hartman, Co-chair

Professor Avi Feller, Co-chair

Causal inference provides tools for researchers to answer scientific and policy questions. The
validity of estimated causal effects depends on many factors, from research design to the
credibility of the underlying assumptions. The following dissertation addresses three aspects
of causal inference: credibility, generalizability, and utility. Each chapter of the dissertation
addresses the intersection of these three aspects of causality.

The first chapter examines credibility and generalizability, and introduces a sensitivity analy-
sis framework for estimating externally valid causal effects. When estimating externally valid
causal effects, researchers must leverage a conditional ignorability assumption to account for
confounding effects from selection into the experimental sample. This assumption allows
researchers to theoretically identify generalized (or transported) causal effects; however, like
many assumptions in causal inference, this assumption is not testable, and in practice, can
be untenable. The proposed framework allows researchers to quantify how much bias there
can be in generalizing or transporting causal effects before the estimated effect substantively
changes. The contributions in this chapter are three-fold. First, I show that the sensitiv-
ity parameters are scale-invariant and standardized, and introduce an estimation approach
for researchers to simultaneously account for the bias in their estimates from omitting a
moderator, as well as potential changes to their inference. Second, I propose several tools
researchers can use to perform sensitivity analysis: (1) graphical and numerical summaries
for researchers to assess how robust an estimated effect is to changes in magnitude as well
as statistical significance; (2) a formal benchmarking approach for researchers to estimate
potential sensitivity parameter values using existing data; and (3) an extreme scenario anal-
ysis. Finally, I demonstrate that the proposed framework can be easily extended to the
class of doubly robust, augmented weighted estimators. The sensitivity analysis framework
is applied to a set of Jobs Training Program experiments.
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The second chapter focuses on utility and generalizability. While recent papers developed
various weighting estimators for the population average treatment effect (PATE), many of
these methods result in large variance because the experimental sample often differs sub-
stantially from the target population, and estimated sampling weights are extreme. In the
following chapter, we propose post-residualized weighting, in which we use the outcome mea-
sured in the observational population data to build a flexible predictive model (e.g., machine
learning methods) and residualize the outcome in the experimental data before using conven-
tional weighting methods. We show that the proposed PATE estimator is consistent under
the same assumptions required for existing weighting methods, importantly without assum-
ing the correct specification of the predictive model. We examine the efficiency gains in the
context of a set of jobs training program experiments, and find that using post-residualized
weighting can result between a 5 - 25% reduction in variance over standard approaches.

The final chapter addresses credibility and utility. I introduce a new set of sensitivity models
called the “variance-based sensitivity model”. The variance-based sensitivity model char-
acterizes the bias from omitting a confounder by bounding distributional differences that
arise in the weights from omitting a confounder, with several notable innovations over ex-
isting approaches. First, the variance-based sensitivity model can be parameterized by an
R2 parameter that is both standardized and bounded. We introduce a formal benchmarking
procedure that allows researchers to use observed covariates to reason about plausible param-
eter values in an interpretable and transparent way. Second, we show that researchers can
estimate valid confidence intervals under the variance-based sensitivity model, and provide
extensions for incorporating substantive knowledge about the confounder to help tighten the
intervals. Last, we demonstrate, both empirically and theoretically, that the variance-based
sensitivity model can provide improvements on both the stability and tightness of the esti-
mated confidence intervals over existing methods. We illustrate our proposed approach on a
study examining blood mercury levels using the National Health and Nutrition Examination
Survey (NHANES).

The results from the dissertation collectively provide a broad range of methods for researchers
to estimate causal effects more transparently and robustly.
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Chapter 1

Introduction

The credibility revolution has pushed for careful causal identification in the biomedical and
social sciences. The move towards valid and transparent causal inference has highlighted
the importance of research design and randomized control trials. Experiments are often con-
sidered the gold standard for estimating causal effects–within an experimental setting, re-
searchers have full knowledge and control over the treatment assignment mechanism, thereby
allowing for causal effects to be identified with relatively few assumptions. However, even in
the context of a fully randomized experiment, challenges persist.

The proposed dissertation thus addresses three aspects of causal inference: credibility,
generalizability, and utility. Estimating causal effects relies on an underlying set of identifying
assumptions. When identifying assumptions are not met, the resulting estimates can be
biased and lead researchers to erroneous conclusions. Thus, the credibility of estimated causal
effects depend on these assumptions being met. Generalizability refers to the external validity
of our causal estimates. Causal effects estimated across experiments have high degrees of
internal validity. However, experiments are often conducted across convenience samples,
which leads to the question of how well these effects generalize to larger (or different) target
populations. Finally, even when causal effects are correctly identified and generalizable,
issues such as instability and variance inflation limit the utility of the estimated causal
quantities.

An overview of the prospectus follows. The first chapter introduces a sensitivity analysis
for generalizability estimators. The second chapter, based on work with Naoki Egami, Erin
Hartman, and Luke Miratrix, proposes a method to improve the efficiency of generalizability
estimators by leveraging observational population-level data. The last chapter introduces a
set of modified, variance-based sensitivity models that allow researchers to obtain more in-
formative bounds under unobserved confounding, and is based on work with Sam Pimentel.
The three chapters provide new methods that address the intersection of the three aforemen-
tioned aspects of causality to help researchers conduct more robust and generalizable causal
inference under real-world complications.
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1.1 Outline of Contributions

Sensitivity Analysis for Generalizing Experimental Results

The first chapter of the prospectus addresses generalizability and credibility when estimating
causal effects. More specifically, external validity focuses on generalizing or transporting
causal effects beyond an experimental sample. To account for the confounding effects of
selection into the experimental sample, a common estimation approach is to re-weight the
experimental data to control for distributional shifts in treatment effect moderators–i.e.,
pre-treatment covariates that drive propensity of selection into the experimental sample, as
well as treatment effect heterogeneity–across the experimental sample and the population.
In this chapter, I show that the bias for a weighted estimator from omitting a variable can
be decomposed into a function of three different components: (1) a correlation term, which
represents how the omitted confounder is related to the individual-level treatment effect;
(2) an R2 measure, which represents how imbalanced the omitted confounder is; (3) an
observable scaling factor that increases or decreases the inherent sensitivity in the estimated
effect to any omitted variable bias. The correlation measure and the R2 value represent
the omitted confounder’s relationship with the outcome and the selection process, and serve
as the sensitivity parameters. Furthermore, I introduce a percentile bootstrap approach
for researchers to estimate valid confidence intervals under unobserved confounding, which
allows researchers to assess the impact of an omitted variable on their statistical inference.
Unlike existing methods, the sensitivity framework simultaneously accounts for both changes
in point estimates and uncertainty estimates when omitting a variable.

To help researchers perform the sensitivity analysis in practice, I propose a set of sensi-
tivity tools. While sensitivity tools have become more prevalent in outcome-based sensitivity
analyses, such approaches do not currently exist for weighted estimators. More specifically,
I introduce a suite of sensitivity summary measures, which includes a numerical summary
measure (the robustness value), relative measures of sensitivity (minimum relative confound-
ing strength), and graphical summaries (bias contour plots). Furthermore, I introduce formal
benchmarking for weighted estimators. This allows researchers to estimate the parameter
values for an omitted confounder with equivalent confounding strength to an observed co-
variate. In settings when researchers have a strong substantive understanding of important
covariates, this is a powerful tool to argue about the plausibility of different sensitivity pa-
rameters, and provides much needed interpretability to conducting the sensitivity analysis.
When used collectively, the proposed sensitivity tools allow researchers to not only quantita-
tively reason about sensitivity, but also transparently incorporate their substantive expertise
into assessing how sensitive their estimates are to potential bias and changes in statistical
significance.
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Improving the Generalization of Experimental Results

The second chapter of the prospectus focuses on generalizability and utility. Under the
aforementioned conditional ignorability assumption, recent literature has proposed the use
of different estimation approaches to consistently estimate the PATE. However, because the
experimental sample often differs substantially from the population, many of the general-
ization methods result in large variance and little statistical power. The resulting variance
inflation often raises the question of whether the bias-variance trade-off is “worth” it (Mira-
trix et al., 2018), and limits the value of the PATE inference.

This chapter, which is based on joint work with Naoki Egami, Erin Hartman, and Luke
Miratrix, introduces a novel method known as post-residualized weighting to improve effi-
ciency in PATE estimation. Post-residualized weighting allows researchers to use outcomes
measured in the observational population data to build a flexible predictive model and resid-
ualize the outcome in the experimental data, before using conventional weighting methods to
recover the PATE. We show that post-residualized weighting results in consistent estimates
of PATE, under the same assumptions required for existing weighting methods. This is true
regardless of how the the predictive model is specified. Furthermore, we formalize the effi-
ciency gains from post-residualized weighting, both theoretically and through simulations,
and propose a diagnostic measure that allows researchers to check when post-residualized
weighting will result in efficiency gain.

Improved Bounds for Sensitivity Models

Finally, the third chapter of the dissertation addresses credibility and utility. Recent devel-
opments in sensitivity analysis has seen the introduction of a variety of different approaches
to assessing sensitivity to omitted confounding. However, many of these existing approaches
rely on bounding a worst-case error. As a result, the constructed bounds on the potential
bias for a sensitivity model are extremely conservative, limiting the utility of conducting the
analysis.

In this chapter, based on joint work with Sam Pimentel, we introduce a one-parameter
sensitivity model for weighted estimators. The contributions of this chapter are two-fold.
First, we simplify the sensitivity framework introduced in Chapter 1 to a one-parameter
setting, allowing researchers to conduct the sensitivity analysis using only the R2 measure.
We derive a closed form solution for the maximum bias that can occur for a fixed R2 value,
which we refer to as optimal bias bounds. Second, we formalize the theoretical relationship
between our proposed method and existing sensitivity analyses in the literature. More for-
mally, the proposed sensitivity analysis can be formulated as a bias maximization problem,
with a constraint on the weighted average error from omitting a confounder. In contrast,
existing approaches are constraining a global error. Using this dual formulation, we show
that by moving away from a worst-case, global error, our proposed method results in more
informative and stable bounds over current state-of-the-art sensitivity analyses.
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Chapter 2

Sensitivity Analysis for Generalizing
Experimental Results

2.1 Introduction

Randomized controlled trials (RCT’s) provide researchers with a rich understanding of the
treatment effect within an experimental sample. Because researchers have the ability to
eliminate confounding by randomly assigning treatment in a controlled environment, ex-
periments have a high degree of internal validity. However, problematically, a causal effect
estimated from an RCT may not directly generalize to populations of interest when the
experimental sample is not representative of the larger population. One prominent source
of bias arises from distributional differences in treatment effect moderators—i.e., covariates
that drive propensity of selection into the experimental sample, as well as treatment effect
heterogeneity—between the experimental sample and the population (i.e., Imai et al. (2008);
Cole and Stuart (2010); Olsen et al. (2013); see Egami and Hartman (2022) for discussion on
alternative sources of bias). To properly generalize or transport the results from an exper-
iment into a target population, researchers must either re-weight the experimental sample
to be representative of the target population, or successfully model the treatment effect
heterogeneity (Stuart et al. (2011); Kern et al. (2016)).

In practice, it is impossible to know whether the set of treatment effect moderators has
been correctly identified. Researchers rely on the measured variables that are available in
the sample and the population, and often assume that the observed covariates sufficiently
capture the confounding effect. However, when moderators are omitted from estimation,
the resulting point estimates will be biased. Existing sensitivity analyses in generalizability
and transportability allow researchers to assess how robust their point estimates are to
omitted confounders. However, many of the existing approaches require researchers to justify
sensitivity parameters that may be arbitrarily large or small, and/or invoke parametric
assumptions used to model the estimated bias from moderators (i.e., Nguyen et al. (2017);
Nie et al. (2021); Dahabreh et al. (2019)).
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In the following paper, we introduce a sensitivity analysis framework for unobserved
moderators when using a weighted estimator for generalizing or transporting a causal effect.
We focus on developing a sensitivity analysis for assessing bias in the point estimate of a
causal effect, with discussions for how researchers may address changes in uncertainty from
omitting a confounder in Section 2.6. The proposed framework builds on the sensitivity
analysis literature from observational studies (Hong et al., 2021; Cinelli and Hazlett, 2020;
Shen et al., 2011), as well as existing sensitivity analysis approaches for generalizing or
transporting an estimated treatment effect (Nguyen et al., 2017; Dahabreh et al., 2019)),
with several important innovations.

The paper provides several key contributions. First, we demonstrate that the bias of a
weighted estimator may be decomposed into three bounded components, which serve as the
sensitivity parameters in the proposed framework. We show that two of the components are
standardized representations of the omitted variable’s relationship with (1) the individual-
level treatment effect and (2) the selection mechanism. The last component is related to
how much inherent treatment effect heterogeneity and imbalance there is in the data. To
help researchers account for estimation uncertainty, we introduce a bootstrapping-based
approach for researchers to simultaneously consider not only potential bias that would occur
from omitting a variable, but also changes in statistical inference.

Second, we introduce several sensitivity tools to help researchers conduct their sensitivity
analysis in transparent and interpretable ways. While sensitivity tools have become more
prevalent in outcome-based sensitivity analyses (i.e., Cinelli and Hazlett (2020); Zheng et al.
(2021)), such approaches do not currently exist for weighted estimators, and are important
in helping researchers interpret and reason about the potential bias from omitting a variable.
The first approach is a graphical summary of sensitivity in the form of bias contour plots.
The second is a numerical summary of sensitivity, and extends the robustness value from
Cinelli and Hazlett (2020) for the weighted estimator setting. The robustness value serves
as a summary measure for how much uncertainty there is in an estimate due to confounding
from selection. Finally, we propose a formal benchmarking procedure that leverages observed
covariates to posit plausible parameter values, and allows researchers to incorporate their
substantive knowledge for the relative strength of moderators. We provide extensions of the
sensitivity analysis and sensitivity tools for the class of augmented weighted estimators.

The paper is organized as follows. Section 2.2 introduces the notational framework, iden-
tifying assumptions, related literature, and the running example. Section 2.3 formalizes the
proposed sensitivity analysis framework. In Section 2.4, we discuss three different tools that
researchers can use to conduct the sensitivity analysis. Section 2.5 extends the framework for
the class of augmented weighted estimators. Section 2.6 concludes. Proofs and extensions
are provided in the Appendix.
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2.2 Background

Notation and Set-Up

To begin, we define an infinite super-population from which the target population and the
experimental sample are drawn. We define the target population as a sample of N units,
drawn i.i.d. randomly from the target population. Following Buchanan et al. (2018), we
define the experimental sample of n units as a potentially biased i.id. sample from the infinite
super-population. Define Si as an indicator for whether the unit is in the experimental sample
(i.e., Si = 1 when unit i is in the experiment, and Si = 0 otherwise), and let S denote the
set of indices for units included in the experimental sample.

Let Ti be a binary treatment assignment variable, where Ti = 1 for units assigned to
treatment, and Ti = 0 for control. We assume full compliance, such that treatment assigned
implies treatment received, and following the potential outcomes framework, define Yi(t) to
be the potential outcome when unit i receives treatment Ti = t where t ∈ {0, 1} (Neyman,
1923; Rubin, 1974). Throughout the paper, we make the standard assumptions of no in-
terference and that treatments are identically administered across all units (i.e., SUTVA,
defined in Rubin (1980)). We assume a set of pre-treatment covariates Xi exists across both
the experimental sample and the target population. Finally, we define the individual-level
treatment effect τi as the difference between the potential outcomes of unit i:

τi = Yi(1)− Yi(0)

Because we can never observe both potential outcomes of a specific unit, the individual-
level treatment effect can never be observed in practice (Holland, 1986). To formalize, we
assume that both {τi, Ti,Xi | Si = 1}ni=1 and {τi, Ti,Xi | Si = 0}Ni=1 are drawn i.i.d. from
an infinite super-population. When the experimental sample is a biased sample from the
super-population, the sampling distributions for the experimental sample and the target
population will not be the same (i.e., P(τi, Ti,Xi | Si = 1) ̸= P(τi, Ti,Xi | Si = 0)).

The sample average treatment effect (SATE) is defined as as the average treatment effect
across the experimental sample (i.e., τS ≡ E{τi | Si = 1}). Assuming equal probability of
treatment assignment, a simple difference-in-means estimator can be used to estimate the
SATE:

τ̂S ≡ 1∑
i∈S Ti

∑
i∈S

TiYi −
1∑

i∈S 1− Ti

∑
i∈S

(1− Ti)Yi, (2.1)

where S represents the set of indices that correspond to units in the experimental sample
(i.e., S = {i : Si = 1}). The population (or target) average treatment effect (PATE) is the
causal quantity of interest, formally defined as:

τ ≡ E{τi | Si = 0} (2.2)
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where the expectation is taken over the realized target population.1

If the experimental sample is randomly drawn from the super-population, then τ̂S is
an unbiased estimator for the PATE. However, in most settings, the experimental sample
is not representative of the target population, and experimental results cannot be directly
extrapolated to the population (Cole and Stuart, 2010; Olsen et al., 2013; Nguyen et al.,
2017). In these settings, an additional identifying assumption is necessary to recover the
PATE from the experimental sample:

Assumption 1 (Conditional Ignorability of Sampling)

τi |= Si | Xi (2.3)

Assumption 4 states that there exists some set of pre-treatment covariates Xi for which,
conditioned on the set X , the distribution of the individual-level treatment effects in the
sample will be equivalent to the distribution of individual-level treatment effects in the
population (Kern et al., 2016).2 Egami and Hartman (2019) formally define the set of
covariates Xi that allow the sampling mechanism to be conditionally independent from the
treatment effect heterogeneity as the separating set.

In addition to Assumption 4, we assume positivity–conditional on X , the probability of
being included in the sample is non-zero (Rosenbaum and Rubin, 1983).

Assumption 2 (Positivity)
0 < P(Si = 1 | Xi) < 1 (2.4)

Violations of the positivity assumption result in attempting to generalize beyond the support
of the data (see Stuart et al. (2011) and Tipton (2014) as two examples).

The most common approach to estimating the PATE is through a weighted estimator,
where the observations in the experimental sample are re-weighted to resemble that of the
target population (Stuart et al., 2011; Olsen et al., 2013):

τ̂W =
1

n1

∑
i∈S

wiTiYi −
1

n0

∑
i∈S

wi(1− Ti)Yi,

where the weights are defined as the sampling weights (i.e., wi ∝ P(Si = 0 | Xi)/P(Si = 1 |
Xi)), n1 and n0 are the number of units in the treatment and control groups, respectively.
Weights are often estimated using logistic regression (Cole and Stuart, 2010; Stuart et al.,
2011; Buchanan et al., 2018). Recently, alternative weighting methods have been proposed,
including more general balancing methods, such as entropy balancing, which adjust for distri-
butional differences between the experimental sample and population observations without

1Researchers may instead, treat the estimand of interest as the average treatment effect, across the infinite
super-population, instead of the realized population. The proposed sensitivity analysis will extend for both
cases. We refer readers to Huang et al. (2021) for more discussion of this setting.

2For PATE identification, Assumption 4 can be relaxed for mean exchangeability. See Hartman et al. (2021)
for more discussion.
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explicitly modeling the underlying probability function (Särndal et al., 2003; Hainmueller,
2012; Josey et al., 2021; Lu et al., 2021).

In practice, researchers estimate the PATE under the assumption that they have correctly
identified the full separating set Xi. When Assumption 4 holds, the weighted estimators will
be consistent estimators for PATE. However, violations of this assumption can result in
biased estimation. The goal of this paper is to formalize a framework for assessing the
sensitivity of the PATE estimates to a variable Ui being omitted from the separating set Xi,
which we refer to as a confounder (i.e., a variable missing from the separating set necessary
for Assumption 4 to hold).3

Running Example: Jobs Training Partnership Act

To enrich our discussion of the sensitivity analysis, we will use a set of experiments conducted
on the Jobs Training Partnership Act (JTPA) as a running example throughout the paper.
The national JTPA study ran from 1987 to 1989, and assessed the effectiveness of the
jobs training programs in helping individuals in the study find employment and increase
their earnings. The original study was conducted across 16 different experimental sites.
Individuals were first interviewed to determine whether or not they were eligible for JTPA
services; those deemed eligible were assigned randomly to treatment and control using a 2:1
ratio. Individuals assigned to treatment were given access to JTPA services, while those
assigned to control were told they were ineligible for the program. Following treatment
assignment, a follow-up survey was conducted 18 months later, in which individuals were
asked about their earnings (Bloom et al., 1993). We focus our analysis on the subset of adult
women, the largest target group within the JTPA study.4

We leverage the nature of the original multi-site experiment to perform a benchmarking
exercise for the sensitivity analysis. More specifically, we pick one of the 16 experimental sites
and generalize the estimated effect of JTPA access on earnings from this site to the remaining
15 sites. The benchmark PATE is defined as the average treatment effect across the units in
the other 15 experimental sites. This allows us to evaluate the actual error that is incurred
from generalizing. To estimate the sample selection weights, we use entropy balancing across
a set of pre-treatment covariates measured in the baseline survey (Hainmueller, 2012; Josey
et al., 2021). Entropy balancing directly optimizes on covariate balance (i.e., the average
covariate value in the experimental sample, versus the average covariate value in the target
population) to estimate the weights, instead of first estimating the probabilities of selection
into sample.5 We weight on previous earnings, age, hourly wage, years of education, whether

3With some abuse of terminology, we use the term confounder instead of moderator to be consistent with
other sensitivity frameworks. This idea is consistent with the notion that the set-up can be thought of as
a missing data problem, in which the individual-level treatment effect τi is the ‘outcome’.

4The estimated impacts of JTPA for the other target groups were not found to be statistically significant in
the original study.

5The sensitivity analysis are agnostic to whether we use inverse-propensity score weights, or probability-like
balancing weights. Zhao and Percival (2016) demonstrated that entropy balancing weights are implicitly
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or not the individual graduated high school (or has a GED), whether or not the individual
is married, and indicators for whether the individual is black or Hispanic.

To illustrate the sensitivity analysis, we examine the site of Coosa Valley, Georgia, which
consists of 788 individuals, 519 of whom were assigned to treatment, with the remainder
in control. The target population (i.e., the other 15 experimental sites) consists of 5,314
individuals. To showcase the performance of the sensitivity analysis across alternative ex-
perimental sites, we also conduct the sensitivity analysis on the other 15 experimental sites
from JTPA. The results are provided in Appendix A.4.

Unweighted Weighted

Impact of JTPA access on earnings∗ 1.63 (0.95) 2.81 (1.21)

*-Estimates reported in thousands of USD

Table 2.1: Estimates of impact of JTPA access on earnings, generalizing the estimated effect
from the site of Coosa Valley, Georgia to the other 15 experimental sites. Standard errors
are reported in the parentheses.

The within-site estimated impact of JTPA access on earnings in Coosa Valley, Georgia
is $1, 630. After weighting, the estimated impact of JTPA access earnings is $2, 810. In the
following sections, we will introduce a sensitivity framework that allow researchers to assess
how robust the estimate is to unobserved confounders.

2.3 Sensitivity Analysis for Weighted Estimators

In the following section, we will introduce a sensitivity analysis for weighted estimators when
omitting a confounder from the weight estimation.

Bias of a Weighted Estimator when Omitting a Confounder

We consider the sensitivity of a weighted estimator to a confounder that has been omitted
in the estimation of the weights. We formally define the minimum separating set as Xi =
{Xi,Ui}. In other words, for the weighted estimator to be unbiased, we would have had
to estimate the weights using both Xi and Ui; however, we omit Ui. We write the weights
estimated using just Xi as wi, and the ideal weights that would have been estimated, had we
included both Xi and Ui, as w

∗
i . We note that in defining the estimated and ideal weights as

such, the proposed sensitivity framework will not account for settings in which researchers

estimating propensity score weights, with a modified loss function. See Wang and Zubizarreta (2020),
Soriano et al. (2021), and Ben-Michael et al. (2021) for more discussion on the connection between balancing
weights and inverse-propensity score weighting.
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naively use uniform weights (i.e., wi = 1 for all units), or settings in which the ideal weights
are uniform (i.e., w∗

i = 1 for all units). Finally, we define εi as the linear error in the weights
from omitting Ui:

εi := wi − w∗
i . (2.5)

In the following sections, we will assume that researchers are estimating inverse propensity
score weights. This allows us to examine a closed-form solution for the error term, which
can help provide intuition. We provide extensions for balancing weights in Appendix A.1.
Furthermore, we will assume that had researchers included Ui, they would have been able
to consistently estimate the weights.6 Throughout, consistent with Shen et al. (2011) and
Hong et al. (2021), we will refer to bias as the expectation of estimator minus the true value
(i.e., true statistical bias).

The bias of a weighted estimator from omitting a confounder Ui is a function of εi and
the degree to which this error term is related to treatment effect heterogeneity. We formalize
this in the following theorem:

Theorem 2.3.1 (Bias of a Weighted Estimator from Omitting a Confounder)
Assume Yi(1) − Yi(0) |= Si | {Xi,Ui}. Let wi be the weights estimated using only Xi, and
let w∗

i be the (correct) weights, obtained using {Xi,Ui}. The bias of a weighted estimator
from using wi instead of w∗

i is given as:7

Bias(τ̂W ) =


ρε,τ

 
R2

ε

1−R2
ε

· varS(wi) · σ2
τ if R2

ε < 1 (2.6)

ρε,τ
»
varS(w∗

i ) · σ2
τ if R2

ε = 1, (2.7)

where ρε,τ is the correlation between εi and τi (i.e., ρε,τ := corS(εi, τi)), R
2
ε is the ratio of

variances between εi and w
∗
i (i.e., R2

ε := varS(εi)/varS(w
∗
i )), and σ

2
τ is the variance of τi.

Derivation is provided in Appendix A.2.

Theorem 2.3.1 identifies the three drivers of bias in a weighted estimator when a con-
founder is omitted in the weight estimation: (1) the remaining imbalance in the omitted
confounder (i.e., R2

ε), (2) the correlation between εi and the individual-level treatment ef-
fect (i.e., ρε,τ ), and (3) a scaling factor, represented by the product between the variance in
the estimated weights and the amount of treatment effect heterogeneity (i.e., varS(wi) · σ2

τ ).
Theorem 2.3.1 provides a natural foundation for a sensitivity analysis. In particular, R2

ε and

6Misspecification concerns can also be addressed with the sensitivity analysis if researchers can write the
error as an omitted variable problem. For example, if a linear probability model is used, Ui can include
non-linear functions of Xi that matter for modeling selection.

7The derived bias expression will be the exact bias when researchers are using a Horvitz-Thompson style
weighted estimator. In cases when researchers are using a stabilized weighted estimator, there will be
finite-sample bias of order oP(1/n). However, the finite-sample bias will be dominated by the bias incurred
from omitting a confounder from the weights (see Miratrix et al. (2013), Rosenbaum (2010a), Lunceford
and Davidian (2004) for more discussion).
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ρε,τ will serve as our sensitivity parameters, while the scaling factor can be conservatively
bounded using observed data. We show in Appendix A.1 that a similar bias decomposition
holds for augmented weighted estimators, and provide an extension of the sensitivity analysis
framework.

Remark. For the setting in which R2
ε = 1, the bias decomposition in Equation 2.6 will be

undefined, and researchers will have to use an alternative decomposition, given in Equation
2.7. However, we note that in order for the R2

ε parameter to be equal to 1, researchers
would have to include covariates Xi that are exactly orthogonal to the confounder Ui, and
completely unrelated to the selection process. Thus, while it is mathematically possible to
be in this setting, it is practically implausible.8

Interpreting the Parameters

In the following subsection, we discuss the interpretation of each of the sensitivity parameters.
Instead of relying on unbounded sensitivity parameters (i.e., Shen et al. (2011); Hong et al.
(2021)), the proposed sensitivity analysis uses a correlation value and an R2 measure to
represent how related the confounder is to the individual-level treatment effect and the
selection mechanism. Both of these parameters are scale invariant, which can make it easier
for researchers to reason about plausible sensitivity parameters, especially when paired with
the sensitivity tools introduced in Section 2.4.

Variation in Ideal Weights Explained by εi (R
2
ε)

The R2
ε term is defined as the ratio of variances between the error term and the ideal

weights. In the following lemma, we show that the variation in the true weights can be
decomposed into two components: variation explained by the estimated weights, and the
variation explained by the error term εi; therefore, R

2
ε is bounded on the interval of 0 and

1. As such, we can interpret R2
ε as the proportion of variation in the true weights explained

by the error term εi.

Lemma 2.3.1 (Variance Decomposition of w∗
i )

For inverse propensity score weights, the variance of the true weights w∗
i can be decomposed

linearly into two components:

varS(w
∗
i ) = varS(wi) + varS(εi) =⇒ varS(wi)

varS(w∗
i )

+
varS(εi)

varS(w∗
i )︸ ︷︷ ︸

:=R2
ε

= 1

Therefore, R2
ε is bound between 0 and 1.

8We also note that an alternative setting in which R2
ε could equal 1 is if researchers posit naive, uniform

weights. However, our definition for the estimated and ideal weights rules out this scenario.
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The results of Lemma 2.3.1 follow from the fact that we may recover the estimated weights
from projecting the ideal weights onto the space of the observed covariates X. This is
a general property of inverse propensity score weights. In Appendix A.1, we provide an
extension of this result for a class of balancing weights.

As the amount of residual imbalance in the omitted confounder increases, R2
ε will increase.

If the residual imbalance of the omitted confounder (i.e., imbalance in Ui, conditional on Xi)
is relatively small, then the estimated weights will be close to the true weights. As a result,
R2

ε will be close to 0. In contrast, if the residual imbalance of the omitted confounder is large,
then much of the variation in w∗

i will be driven by εi, and R
2
ε will be large, approaching 1.

Consider our running example. The original study cited the latent variable of motivation as
a potential confounder (Bloom et al., 1993). While we cannot include motivation directly
in the weights, we have included variables such as education and previous earnings, which
are likely correlated to motivation. If, by controlling for variables such as education and
previous earnings, we have accounted for much of the imbalance in motivation, then including
motivation into the weight estimation should result in weights w∗

i similar to the estimated
weights wi, and R

2
ε will be relatively small (i.e., R2

ε is close to zero).

Correlation between εi and τi (ρε,τ)

The correlation between εi and the individual-level treatment effect is a standardized measure
for how much treatment effect heterogeneity Ui explains. When ρε,τ is very high (i.e.,
ρε,τ ≈ 1), then units with a large τi are overweighted (wi > w∗

i corresponds to large τi).
Thus, in these settings, there will be positive bias. Conversely, if ρε,τ ≈ −1, the opposite
would be true—we underweight units with a large individual-level treatment effect, which
results in a negatively biased estimated PATE. If the correlation between the error term and
the individual-level treatment effect were close to zero, then the imbalance in the omitted
confounder Ui is not related to treatment effect heterogeneity, and as such, omitting Ui

would not result in much bias.
While ρε,τ is inherently bounded on the interval [−1, 1], we can decompose ρε,τ as a

function of R2
ε to restrict the set of feasible correlation values to a tighter range.

Lemma 2.3.2 (Correlation Decomposition)
The correlation between εi and the individual-level treatment effects is bound on the following
range:

−
»

1− cor2S(wi, τi) ≤ ρε,τ ≤
»

1− cor2S(wi, τi)

Lemma 2.3.2 demonstrates that ρε,τ will be bounded between ±
√
1− cor2S(wi, τi). If the

estimated weights wi can explain most of the variation in treatment effect heterogeneity, the
additional variation that can be explained by adding in the omitted confounder must be
small.
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The correlation between the estimated weights and τi will take on large values when
(1) the covariates contained in wi explain much of the treatment effect heterogeneity, and
(2) the covariates that explain the treatment effect heterogeneity are imbalanced across the
population and the experimental sample. To help provide intuition for this, consider our
running example. If access to JTPA services was only effective for women who graduated
high school, then if educational attainment were imbalanced across the experimental sample
and the population, estimating weights on educational attainment would result in a large
|corS(wi, τi)| value. However, if educational attainment were not very imbalanced across the
experimental sample and population, even though educational attainment explains much of
the variation in the treatment effect heterogeneity, corS(wi, τi) will low. In such a scenario,
the true ρε,τ value should also be small; however, this would not be reflected in the bound.

Remark on Estimating corS(wi, τi): In practice, it is not possible to directly calculate
corS(wi, τi), since τi is unidentified. Researchers may conservatively estimate the correlation
of wi and τi by using covS(wi, Yi(1)) and covS(wi, Yi(0)), which is identified by randomization.
More specifically: ”corS(wi, τi) =

”covS(wi, Yi(1))−”covS(wi, Yi(0))√
σ2
τ ·”varS(wi)

Because”corS(wi, τi) is a function of the variation in the individual-level treatment effect (i.e.,
σ2
τ ), if researchers use a more conservative estimate of σ2

τ , this will subsequently lead to a
more conservative estimate on corS(wi, τi), and by extension, a more conservative estimate
for the bounds on ρε,τ . See Section 2.3 for details on specifying σ2

τ .

Scaling Factor (varS(wi) · σ2
τ)

The last term in the bias decomposition is a scaling factor, made up of the product of the
variance of the estimated weights and the variance in the individual-level treatment effect
(i.e., σ2

τ ). This term is not related to the confounder, and is instead, intrinsic to the inherent
data generating process. However, it does increase or decrease our exposure to bias from
omitting a confounder.

We consider both terms in the scaling factor. The first term, varS(wi), corresponds to
how much inherent imbalance there is in the observed covariates between the experimental
sample and the target population. As the variance of our estimated weights increases, this
implies that the weights are accounting for larger distributional differences between the
experimental sample and the target, and the potential for bias also increases.

The second term is the magnitude of treatment effect heterogeneity (σ2
τ ). This is related

to in Meng (2018)’s ‘problem difficulty.’ More specifically, when there exists a large degree
of treatment effect heterogeneity, the task of recovering the PATE becomes harder, and even
small imbalances in the confounders can result in a large degree of bias. When there is less
treatment effect heterogeneity, we have more leeway in mis-specifying the weights without
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incurring large amounts of bias. In the most extreme case of no treatment effect heterogene-
ity, we need not adjust for any confounders to have unbiased estimation. Because treatment
effect heterogeneity is inherent to the underlying data generating process, regardless of what
variables are included in the weights, σ2

τ is fixed. We apply the results from Ding et al. (2019)
to show that σ2

τ , while unidentifiable, can be bounded using Fréchet-Hoeffding bounds (Ho-
effding, 1941; Fréchet, 1951) using the observed data, with opportunities for tighter bounds
in cases when researchers are willing to invoke additional assumptions about the potential
outcomes (see Appendix A.1 for more details).

In general, to estimate a conservative upper bound for the scaling factor, researchers can
directly estimate varS(wi) and an upper bound for σ2

τ (which we denote as σ2
τ,max).

Accounting for Changes in Inference

In practice, researchers are concerned about not only the resulting bias from omitting a
confounder, but also potential changes to their inference. In particular, not only will the
estimated effect change in magnitude due to bias from omitting a variable, but the esti-
mated uncertainty associated with an estimate will also change. In particular, weighting on
additionally imbalanced variables can result in an inflation in variance. However, estimating
the variance inflation factor in the weighted estimator setting is challenging. In particular,
there exists higher-order dependencies between the error term εi and the individual-level
treatment effect τi that are not represented by the existing sensitivity parameters.

Instead, we leverage the results from Huang and Pimentel (2022) to estimate confidence
intervals for a specified set {R2

ε, ρε,τ , σ
2
τ} using a percentile bootstrap. More formally, for

any set of {R2
ε, ρε,Y , σ

2
τ} values, researchers can compute the associated confidence intervals

of the adjusted point estimate. This approach allows researchers to simultaneously account
for the bias that occurs from omitting a confounder, as well as the changes in uncertainty,
without introducing additional sensitivity parameters. We provide details in Appendix A.4.
Researchers can compute the confidence intervals for the adjusted point estimates for a grid
of {R2

ε, ρε,Y , σ
2
τ} values. Then, using the estimated confidence intervals, researchers can find

the minimum bias that can occur before the intervals around the adjusted point estimate
contain the null estimate, which would imply that omitting a confounder resulted in a change
in the statistical significance of an estimated effect.

Summary of the Sensitivity Framework

To summarize the sensitivity analysis framework thus far, we have parameterized the bias of
a weighted estimator when omitting a confounder in the estimation of the weights with the
following components: (1) an R2 measure that is bounded between 0 and 1 (i.e., R2

ε), (2)
the correlation between the error term εi and the individual-level treatment effect (i.e., ρε,τ ),
and (3) variation in the individual-level treatment effect (i.e., σ2

τ ). We summarize this below.
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Summary of Sensitivity Framework for Weighted Estimators

Step 1. Estimate an upper bound for σ2
τ (i.e., σ2

τ,max).

Step 2. Using σ2
τ,max, estimate ‘corS2

(wi, τi) as a bound for cor2S(wi, τi).

Step 3. Vary ρε,τ from −
»
1−‘corS2

(wi, τi) to
»

1−‘corS2
(wi, τi).

Step 4. Vary R2
ε from the range of [0, 1).

Step 5. Evaluate the bias (Theorem 2.3.1) and uncertainty (Table A.1 in Appendix A.1).

2.4 Tools for Sensitivity Analysis

In the following section, we provide different tools that researchers can use to help understand
the degree of sensitivity associated with their estimated effects. We introduce two summary
measures: (1) a graphical representation of sensitivity, in the form of bias contour plots,
and (2) a numerical measure, referred to as a robustness value, which summarizes how much
confounding must be present for an omitted confounder to result in change in the estimated
effect. To assess the plausibility of parameter values, we introduce a formal benchmarking
approach that allows researchers to use observed covariates to calibrate their understanding
of potential sensitivity parameters. In Appendix A.1, we provide an extreme scenario analysis
that evaluates an upper bound for the bias that in the extreme case that εi is maximally
correlated with the individual-level treatment effect.

Summary Measures of Sensitivity

We provide two approaches for researchers to summarize the sensitivity in their point esti-
mates. The first approach is graphical, while the second is a numerical measure.

Graphical Summary: Contour Plots

A simple way to summarize and visualize the sensitivity of the point estimates is through
bias contour plots (see Figure 2.1). To generate the plots, the y-axis represents values that
the correlation term can take on (i.e., the estimated range from Lemma 2.3.2), and the x-axis
represents values of R2

ε across the interval of [0, 1).
Furthermore, we recommend researchers shade in the “killer confounder” region. The

killer confounder region represents the set of {R2
ε, ρε,τ} values for which we expect, given an

omitted confounder in this set, the bias is large enough to substantively alter the estimated
effect. Throughout the paper, we consider two different types of killer confounders: (1) a
confounder that is strong enough to result in a change in the directional sign of a treatment



CHAPTER 2. SENSITIVITY ANALYSIS FOR GENERALIZABILITY 16

effect, or bring the treatment effect to zero; and (2) a confounder that alters the statistical
significance of our estimated effect. If the killer confounder region is large, then there exists
a greater degree of sensitivity to violations to the conditional ignorability assumption. If the
region is small, there is less sensitivity.

Numerical Summary: Robustness Value

In practice, justifying whether the killer confounder region is large or small can be challeng-
ing. As such, we propose the robustness value as a standardized, numerical summary of how
sensitive a point estimate is to confounders that may change the substantive interpretation
of an estimated treatment effect. This extends the robustness value proposed by Cinelli and
Hazlett (2020) for weighted estimators.

The robustness value measures how strong a confounder must be in order for the bias to
equal 100× q% of the estimated effect:

RVq =
1

2

Ä»
a2q + 4aq − aq

ä
, where aq =

q2 · τ̂ 2W
σ2
τ,max · varS(wi)

(2.8)

Evaluating the robustness value at q = 1 provides a measure for minimum confounding
strength in order for the bias to equal the point estimate, which would result in the point
estimate being equal to zero. RVq is interpreted as the minimum amount of variation in
treatment effect heterogeneity and the true sample selection weights w∗

i , that the error term
εi must explain (i.e., ρ2ε,τ = R2

ε ≥ RVq) for the bias to be q×100% that of the point estimate.
Similarly, we may evaluate the robustness value associated with the minimum confounding
strength of a confounder that results in the estimated effect changing its statistical signif-
icance. We denote this as RVα. More details and derivations are provided in Appendix
A.3.

A key property of the robustness value is that it exists on a scale from 0 to 1. When the
robustness value is close to 1, then this implies that εi must explain close to 100% of the
variation in both τi and w

∗
i for the confounder to be a killer confounder. In contrast, if the

robustness value is close to zero, then if εi is able to explain a small amount of variation in
both τi and w

∗
i , the error from omitting a confounder will be strong enough to result in a killer

confounder. While the robustness value cannot rule out the possibility of a killer confounder,
it can help researchers discuss the plausibility of such a confounder. Like standard error,
which summarizes our uncertainty due to sampling error, the robustness value serves as a
summary measure of our uncertainty due to systematic bias.

Geometric Connection to Bias Contour Plots. The robustness value is connected to
the boundary of the killer confounder region. For example, if researchers are considering just
changes to their point estimates, the killer confounder region would be defined by the part
of the plot in which the bias is large enough to reduce the estimate to zero. The point on
the boundary for which ρ2ε,τ = R2

ε is representative of the robustness value RVq=1. The same
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interpretation applies if researchers define the killer confounder region with respect to the
minimum bias associated with a change in the statistical significance of their estimated effect.
The boundary of the killer confounder region represents the set of all potential parameter
values associated with a killer confounder. As such, we recommend researchers report both
the robustness value and the bias contour plots when performing sensitivity analysis.

Example: Sensitivity Summary Measures in JTPA

We illustrate the proposed sensitivity summary measures in our running example. To conduct
the sensitivity analysis, we use an estimated bound of 29.01 for σ2

τ . (Details on how σ̂2
τ,max was

chosen is provided in Appendix A.4.) Table 2.2 provides the different sensitivity statistics:

Unweighted Weighted RVq=1 RVα=0.05

Impact of JTPA access on earnings∗ 1.63 (0.95) 2.81 (1.21) 0.56 0.08

σ̂2
τ,max = 29.01; ”corS(wi, τi) = 0.37, *-Estimates reported in thousands of USD

Table 2.2: Summary of point estimates and sensitivity statistics.

We see that the estimated robustness value is RVq=1 = 0.56, which implies that the error
in the weights for omitting a confounder (i.e., εi) must explain 56% of the variation in the
individual-level treatment effect, as well as 56% of the variation in the ideal weights in order
for the treatment effect to be brought down to 0. Whether or not the robustness value is
large or small depends on whether researchers believe that it is plausible for the error in
omitting a confounder to explain 56% of the variation in both the ideal weights and the
treatment effect heterogeneity. The estimated robustness value for a confounder that alters
the statistical significance of an estimated effect is RVα=0.05 = 0.08, which is much lower.
As such, if the error from omitting a confounder explains 8% of the variation in the ideal
weights and the treatment effect heterogeneity, then the estimated effect will no longer be
statistically significant.

We also examine a bias contour plot, in which we shade in blue the part of the plot for
which the bias is large enough to reduce the estimated impact of JTPA access on earnings
to zero or negative (see Figure 2.1). The boundary of this region visualizes the full set of
{R2

ε, ρε,τ} that corresponds to a confounder strong enough to reduce the estimated treatment
effect to zero. For example, an omitted confounder that results in an error term that explains
less than half the variation in the ideal weights (i.e., R2

ε = 0.46), but explains a large amount
of variation in the individual-level treatment effect (i.e., ρε,τ = 0.86) would reduce our
estimate to zero. Similarly, a confounder that results in an error term that explains a large
amount of the variation in the ideal weights (i.e., R2

ε = 0.91), but a small portion of the
variation in the individual-level treatment effect (i.e., ρε,τ = 0.25) would also reduce our
estimate to zero.
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We additionally shade in light gray the region of the plot in which the point estimate
will still be positive, but the estimated effect will no longer be statistically significant. We
see that this dominates a much larger part of the plot.
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Figure 2.1: Bias Contour Plot for Coosa Valley, Georgia. The blue region represents the re-
gion for which the estimated effect will be equal to zero, or become negative. The gray region
represents the part of the plot in which the estimated effect will no longer be statistically
significant. To aid in our discussion, we use formal benchmarking (introduced in Section
2.4) to estimate the parameter values for an omitted confounder with similar confounding
strength as an observed covariate.

Formal Benchmarking to Infer Reasonable Parameters

A challenge in sensitivity analysis is positing reasonable values for the sensitivity param-
eters to take on. Furthermore, justifying whether the killer confounder region of a bias
contour plot, or the robustness value, is large or small can be challenging in practice. In
the following subsection, we introduce a formal benchmarking approach for researchers to
use observed covariates to calibrate their understanding of plausible parameter values using
relative strength.

To begin, let X(j) be an observed covariate (i.e., X(j) ∈ {X}, and X ∈ R
n×p, j ∈

{1, ..., p}). Define ε
−(j)
i as the error term that compares the weights estimated using all
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covariates Xi with the weights estimated using all the covariates, except for X
(j)
i :

ε
−(j)
i := w

−(j)
i − wi, (2.9)

where w
−(j)
i is the set of weights estimated using all the covariates Xi, except for X

(j)
i , and

wi is the set of weights estimated using all available covariates Xi. We define the amount
of confounding strength an omitted confounder has by how much variation εi explains in
the ideal weights w∗

i and the individual-level treatment effect τi. Thus, to obtain formal
benchmarks, we posit the amount of variation explained in w∗

i and τi by εi, in comparison

to ε
−(j)
i . More formally, define:

kσ =
varS(εi)/varS(w

∗
i )

varS(ε
−(j)
i )/varS(w∗

i )
, kρ =

corS(εi, τi)

corS(ε
−(j)
i , τi)

, (2.10)

where the numerators (i.e., varS(εi)/varS(w
∗
i ) and corS(εi, τi)) correspond to the sensitivity

parameters introduced in Section 2.3. kσ represents how much relative variation in the true
sample selection weights w∗

i the residual imbalance in U (i.e., εi) explains, relative to the

residual imbalance in X
−(j)
i (i.e., ε

−(j)
i ). If the residual imbalance in the omitted confounder

Ui is greater than the observed residual imbalance in the covariate X
(j)
i , then we expect

kσ > 1. kρ represents how correlated the individual-level treatment effect and the error term

εi are, relative to ε
−(j)
i . kσ and kρ intuitively represent the relative confounding strength

of an observed covariate. When kσ = kρ = 1, then we say that an omitted confounder has
equivalent confounding strength to an observed covariate.

With a researcher-specified kσ and kρ, we obtain the formally benchmarked sensitivity
parameters. Theorem 2.4.1 formalizes this.

Theorem 2.4.1 (Formal Benchmarking for Sensitivity Parameters)

Let kσ and kρ be defined as in Equation (2.10). Let R
2−(j)
ε := varS(ε

−(j)
i )/varS(wi), and

ρ
−(j)
ε,τ := corS(ε

−(j)
i , τi). The sensitivity parameters R2

ε and ρε,τ can be written as a function
of kσ and kρ:

R2
ε =

kσ ·R2−(j)
ε

1 + kσ ·R2−(j)
ε

, ρε,τ = kρ · ρ−(j)
ε,τ

Theorem 2.4.1 provides a way for researchers to estimate parameter values for an omit-
ted confounder, after specifying the confounding strength, relative to an observed covariate.
There are several key takeaways to highlight. First, in addition to providing a better un-
derstanding of potential parameter values, formal benchmarking can be used to assess the
plausibility of killer confounders. We elaborate on this point in the following subsection. Sec-
ondly, because both R2

ε and ρε,τ are inherently bounded, kσ and kρ will also be bounded. As
such, researchers can estimate the maximum confounding strength of an omitted confounder,
relative to an observed covariate. Finally, we note that Theorem 2.4.1 can be extended for
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a subset of covariates. This is helpful if researchers believe that a subset of observed covari-
ates (or interactions) is particularly important to explaining the sample selection process or
treatment effect heterogeneity, and wish to assess the effect of omitting a confounder with
similar strength to the entire group of covariates.

Using Benchmarking to Understand Killer Confounders

We will now detail how benchmarking can be employed to help researchers reason about
the plausibility of a killer confounder. We can do this in two different ways. The first is to
compare the benchmarked bias with either the estimate (to assess sensitivity to a confounder
reducing the estimated effect to zero), or the minimum bias estimated that can result in a
statistically insignificant effect. The second approach is to compare the benchmarking results
with the robustness value (either RVq or RVα).

Minimum Relative Confounding Strength: Benchmarking the sensitivity parameters
allows researchers to estimate the resulting bias from omitting a confounder with fixed rela-
tive confounding strength as a covariate. We propose a natural summary measure, referred to
minimum relative confounding strength (MRCS) for how much relative confounding strength
an omitted variable must have to result in a killer confounder. If researchers define a killer
confounder as a confounder strong enough to reduce their estimated effect to zero, the
MRCS can be simply solved by dividing the point estimate with the estimated bias when
kρ = kσ = 1:

MRCS(X
−(j)
i ) =

τ̂W‘Bias(ε−(j)
i , kρ = 1, kσ = 1)

. (2.11)

Similarly, if researchers are interested in killer confounders that would alter the statistical
significance of their estimated effects, they can evaluate Equation 2.11 using the estimated
minimum bias threshold instead of the point estimate.

If the estimated MRCS is small (i.e., MRCS < 1), then this implies that an omitted

confounder, with weak confounding strength, relative to the covariate X
−(j)
i , could lead to

a killer confounder, if MRCS is large (i.e., MRCS > 1), then this indicates that an omitted
confounder must be stronger than the observed covariate to result in a killer confounder.
MRCS is an especially helpful measure when researchers have strong substantive priors for
what may be important covariates.

Comparing benchmarking results with the robustness value: From benchmarking,
researchers can estimate the necessary kρ and kσ values in order for R2

ε = ρ2ε,τ = RVq (or
RVα). We denote these values as {kmin

ρ , kmin
σ }. The interpretation of kmin

ρ and kmin
σ is

similar to that of the MRCS; however, researchers can now look at the drivers of bias with
respect to the confounder’s relationship to the sample selection process and treatment effect
heterogeneity separately.
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Example: Applying Formal Benchmarking in JTPA

To help assess plausible sensitivity parameters in the JTPA application, we perform formal
benchmarking. Table 2.3 presents the results. For each of the covariates included in the
weights, we estimate R2

ε and ρε,τ , the MRCS, and {kmin
σ , kmin

ρ }. To account for estimation
uncertainty in our benchmarking results, we perform benchmarking across repeated boot-
strap iterations, and estimate the percentage of benchmarked results that result in enough
bias to either (1) reduce the estimated effect to zero, or (2) change the statistical significance
of the estimated effect. We provide the results in Appendix A.4.

Estimated Effect = 0 Changes in Signif.

Variable R̂2
ε ρ̂ε,τ ‘Bias MRCS kmin

σ kmin
ρ MRCS kmin

σ kmin
ρ

Prev. Earnings 0.01 -0.41 -0.12 -23.4 72.9 -1.8 -2.4 10.7 -0.7
Age 0.00 0.04 0.00 — — 18.2 — — 7.0
Married 0.05 -0.19 -0.14 -20.7 12.3 -4.0 -2.1 1.8 -1.5
Hourly Wage 0.03 -0.24 -0.14 -20.6 20.2 -3.1 -2.1 3.0 -1.2
Black 0.17 -0.11 -0.16 -17.7 3.4 -7.1 -1.8 0.5 -2.7
Hispanic 0.24 -0.14 -0.26 -10.8 2.3 -5.5 -1.1 0.3 -2.1
HS/GED 0.07 -0.04 -0.04 -76.1 8.1 -18.5 -7.7 1.2 -7.1
Education 0.07 -0.10 -0.09 -30.0 7.5 -7.6 -3.0 1.1 -2.9

Point Estimate (τ̂W ): 2.81; σ̂2
τ,max = 29.01; RV1 = 0.56; RVα=0.05 = 0.08

Table 2.3: Formal benchmarking results for Coosa Valley, Georgia. The estimated bias is
reported in thousands of USD.

From the benchmarking results, we see that omitting a confounder with equivalent con-
founding strength to the covariates previous earnings, whether or not the individual is His-
panic or Black, or hourly wage will result in the largest amount of bias. This is consistent
with the substantive findings from the original study, which reported strong subgroup effects
when looking at race and previous earnings (Bloom et al., 1993). However, the magnitude
of the biases from omitting these covariates is relatively low, with most ranging from 0.12 to
0.26.

There are several takeaways to highlight from formal benchmarking. First, we see that
considering the two dimensions associated with an omitted confounder matter—i.e., its re-
lationship with the individual-level treatment effect, and its relationship with the selection
mechanism. In particular, omitting a confounder like previous earnings results in a relatively
“large” correlation values of ρ̂ε,τ = −0.41; however, the benchmarked R2

ε value associated
with previous earnings is relatively low, at 0.01. As such, the overall bias from omitting a
variable like previous earnings is relatively low, at −0.12. In contrast, omitting a covariate
like whether or not an individual is black results in a relatively large benchmarked R̂2

ε value
of 0.17, but a smaller benchmarked correlation value of -0.11. As a result, the bias from
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omitting a variable like whether or not an individual is Black is also relatively low, at -0.16.
By looking at both the R̂2

ε and ρ̂ε,τ measures, we are able to obtain a more holistic view of
the types of confounders that may lead to potential changes in our analysis.

Second, we see that there is a large degree of robustness to an omitted confounder being
strong enough to reduce to estimated effect to zero. In particular, a confounder would have
to be 10 to 20 times stronger than an observed covariate to reduce the estimated effect to
zero. However, when accounting for uncertainty, we see that an omitted confounder 1.1
times as strong as whether or not an individual is Hispanic, or twice as strong as hourly
wage would be strong enough to result in a statistically insignificant effect. As such, we
conclude that while there is a large degree of robustness to a confounder reducing the point
estimate to 0, there is some sensitivity to potential changes in the statistical significance of
our estimated effect. Finally, we highlight that while the running example throughout this
paper focused on one experimental site in the JTPA study, we provide an illustration the
sensitivity analysis for all 16 experimental sites in Appendix A.4.

2.5 Sensitivity Analysis for Augmented Weighted

Estimators

In the following section, we extend the proposed sensitivity analysis for the class of aug-
mented weighted, doubly robust estimators. Doubly robust estimators are a popular ap-
proach used to help improve the robustness of estimators to potential misspecfications (Da-
habreh et al., 2019; Tan, 2007; Bang and Robins, 2005). There are many different doubly
robust estimators (Kang et al., 2007), but we will focus on the augmented weighted estimator:

Definition 2.5.1 (Augmented Weighted Estimator)

τ̂Aug
W = τ̂W − 1

n

∑
i∈S

wiτ̂(Xi) +
1

N

∑
i∈P

τ̂(Xi)︸ ︷︷ ︸
Augmented Component

where P represents the set of indices of the units in the target population, τ̂(Xi) is the
estimated individual-level treatment effect, and the weights are defined in the same manner as
before. Doubly robust estimators, like the augmented weighted estimator, allow practitioners
to model both the probability of sample selection and the treatment effect heterogeneity
simultaneously. When one of these processes is specified correctly, then the estimator will
be unbiased and asymptotically consistent.

In the following section, we introduce a sensitivity analysis for the augmented weighted
estimator when omitting a confounder from the minimum separating set. We show that there
are strong parallels between the sensitivity analysis for the augmented weighted estimator
and the sensitivity analysis for the weighted estimator.
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Bias Formula

To begin, we show that the bias of an augmented weighted estimator when omitting a variable
from the minimum separating set can be written as a function of three components.

Theorem 2.5.1 (Bias of Augmented Weighted Estimator)
The bias of an augmented weighted estimator when a variable has been omitted from the
minimum separating set:

Bias(τ̂Aug
W ) = ρε,ξ ·

 
R2

ε

1−R2
ε

· var(wi) · σ2
ξ (2.12)

where ξi represents the difference between the true individual-level treatment effect and esti-
mated treatment effect (i.e., ξi = τi − τ̂(Xi)).

There are several key takeaways from Theorem 2.5.1. First, the double robustness of the
augmented weighted estimator is apparent from Theorem 2.5.1 by noting that if there is no
error in the estimated weights (i.e., εi = 0), or there is no error in estimating the treatment
effect heterogeneity (i.e., τ̂(Xi) is a consistent model for τi), then ξi will be made up of
random noise, and the correlation between ξi and εi will be zero (i.e., ρε,ξ = 0). Second,
Theorem 2.5.1 highlights that the bias of an augmented weighted estimator from omitting
a confounder is very similar to the bias of a weighted estimator (i.e., Equation (2.6)). The
primary difference is that instead of the individual-level treatment effect τi, we are interested
in ξi, which is the residual component of τi that cannot be explained by τ̂(Xi).

Remark. Researchers can adapt Theorem 2.5.1 to the case where they are not re-weighting
the data at hand, and are focused solely on modeling the individual-level treatment effect
τ̂(Xi). If we assume that the individual-level treatment effect follows a linear model, then
we recover the results from Nguyen et al. (2017) (see Appendix A.1 for more details). In
other words, previously proposed sensitivity analysis frameworks that rely on parametric
assumptions are special cases of our proposed bias decomposition. In cases when researchers
do not wish to impose parametric assumptions, Theorem 2.5.1 provides a flexible approach
for sensitivity analysis.

Sensitivity Analysis for Augmented Weighted Estimators

In the previous subsection, we showed that the primary differentiation between the bias for-
mula for the augmented weighted estimator and the weighted estimator is ξi (i.e., the resid-
uals in the treatment effect model). This results in two new components in the augmented
weighted estimator setting: ρε,ξ and σ2

ξ . The third component in the bias decomposition is
R2

ε, which is identical in both the weighted and augmented weighted estimator setting. We
show in Appendix A.1 that similar bounds to the ones derived in Section 2.3 apply to this
setting. As such, after estimating an adequate upper bound for σ2

ξ , researchers may vary
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both R2
ε and ρε,ξ across bounded ranges to assess the sensitivity of an augmented weighted

estimator to omitted confounders. Similarly, the sensitivity tools in Section 2.4 can also be
extended for the augmented weighted estimator case. Details are provided in Appendix A.1,
and Appendix A.4 illustrates the sensitivity analysis using JTPA.

2.6 Conclusion

Generalizing or transporting causal effects from an experiment to a different, or larger, pop-
ulation requires researchers to correctly identify a separating set of pre-treatment covariates
that allow the confounding effect of sample selection to be conditionally ignorable. When
this separating set is not correctly identified, PATE estimation will be biased.

In this paper, we formalize a sensitivity analysis framework for weighted estimators in the
generalization or transportability setting, with extensions for augmented weighted estima-
tors. We demonstrate that the proposed framework is a more general version of previously
proposed sensitivity analysis frameworks. The proposed framework has several advantages to
existing approaches. First, it allows researchers to bound both the magnitude of the imbal-
ance in an omitted confounder, as well as the relationship between the omitted confounder
and the individual-level treatment effect. Furthermore, the framework allows researchers to
simultaneously consider bias and changes in inference from omitting a variable. Second, the
sensitivity analysis allows researchers to work with standardized, scale-invariant parameters,
and introduces benchmarking for researchers to use observed covariates to reason about the
plausibility of parameter values. Third, we propose a set of sensitivity analysis tools to
help researchers understand and summarize the degree of sensitivity that is present in their
estimation. We introduce two summary measures, and demonstrate that the proposed sen-
sitivity parameters can be bounded in an extreme scenario analysis, allowing researchers to
quantify worst-case scenarios for their estimates. These tools collectively allow researchers
to encode their substantive knowledge to quantitatively reason about sensitivity in their
estimated effects.

Finally, in concluding this paper, it is important to emphasize the limits of the sensitivity
tools. The proposed sensitivity framework provides researchers with different quantitative
and graphical measures to assess the degree of robustness that is present in their point esti-
mate. However, these tools cannot be used to eliminate the possibility of killer confounders,
and akin to Cinelli and Hazlett (2020), we do not provide cutoff measures for measures
such as the robustness value or the minimum relative confounding strength. We caution
researchers from using these tools without also considering substantive judgment. The sen-
sitivity framework provides a strong foundation for researchers to discuss the plausibility
of killer confounders, but should not be used in lieu of substantive understanding of the
underlying covariates and context.
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Chapter 3

Leveraging Population Outcomes to
Improve the Generalization of
Experimental Results

3.1 Introduction

The Job Training Partnership Act (JTPA) was introduced by the U.S. Congress in 1982
to help provide employment and training programs to economically disadvantaged adults
and youths. To assess its effectiveness, the national JTPA study evaluated the impact
of the program across a diverse set of sixteen experimental sites between 1987 and 1989.
Eligible individuals assigned to treatment were given access to the JTPA services, while
those assigned to control were told that the services were not available. Eighteen months
later, researchers checked on whether these study participants were employed, and measured
their recent earnings (Bloom et al., 1993). The hope is that those offered the program would
be more often employed, and would generally be earning higher wages.

Each site can be considered a stand-alone randomized trial. Each site has a different
collection of individuals from the other sites. If a policymaker had only run their experiment
in one specific population, how representative would their results have been for the other
populations? This question is the essence of a current and serious critique of large-scale
randomized evaluations: does a rigorous and robust finding regarding a program evaluated
in a specific population actually shed light on wider questions of a program’s effectiveness
for a ”real-world” population? Originally, the “credibility revolution” elevated the role of
randomized, controlled trials (RCTs), generally praised for their strong internal validity
(Banerjee and Duflo, 2009; Falk and Heckman, 2009; Baldassarri and Abascal, 2017). RCTs
are attractive in that they allow researchers to draw causal inferences about treatment effects
with only minimal assumptions, but only for the experimental sample. And perhaps this last
clause is too great a cost; perhaps the emphasis on causality has led researchers to overly
narrow the scope of their inquiry (Huber, 2013; Deaton and Cartwright, 2018). Especially
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with a policy finding, if one cannot generalize, what should one make of a found result?
Concerns about generalizability span the social and biomedical sciences, and are related
to discussions about participant recruitment in pragmatic study designs (Ford and Norrie,
2016).

This critique has inspired a robust literature on methods for how to generalize an ex-
perimental results to broader populations of interest. In our case, for example, one could
imagine extending the results found for a specific population in one site to populations living
in the other sites, adjusting the impact estimate to account for differences in populations
served. The generalizability literature has provided clear outlines for the necessary assump-
tions for such generalization, providing tools to identify the population average treatment
effect (PATE), i.e., the effect of the experimental treatment in a clearly defined target pop-
ulation that differs from the experimental sample (Cole and Stuart, 2010; Bareinboim and
Pearl, 2016; Egami and Hartman, 2022). In practice, the most common approaches model
the experimental sample inclusion probability, with the PATE then estimated using weight-
ing estimators (Stuart et al., 2011; Tipton, 2013; Hartman et al., 2015; Buchanan et al.,
2018). Alternative estimators focus on modeling treatment effect heterogeneity (Kern et al.,
2016; Nguyen et al., 2017) or doubly robust estimation (Dahabreh et al., 2019).

Generalizing, however, can be prohibitively costly. In practice, weighted estimators are
often far more imprecise than unweighted estimators, especially when the experimental sam-
ple differs substantially from the target population. This makes it difficult for policymakers
and practitioners to draw conclusions about the impact of treatment in the target population
to guide their policy recommendations. Indeed, researchers empirically find that weighted
estimators often increase the mean squared error for the PATE compared to a biased estima-
tor that ignores sampling weights, due to paying for a smaller bias with much larger standard
errors (Miratrix et al., 2018). More generally, considering the bias-variance tradeoff, the cost
of large precision loss associated with the conventional weighting methods makes it unclear
if it is “worth weighting,” and questions the applicability of these weighting methods that
researchers are advocating for.

This provides a quandary: the more the target population differs from the sample, the
greater the cost of generalizing, due to more extreme weights, but the greater the need to
generalize to keep the findings of the original experiment relevant. In this work, we seek to
mitigate this tradeoff by exploiting a valuable resource commonly left on the table: the out-
come data measured in the population. In particular, we aim to incorporate observational
population data to reduce the noise from generalizing an experimental result. Population
data often have larger sample sizes and therefore provide an opportunity to model complex
covariate-outcome relationships with more flexible modeling approaches. It is this oppor-
tunity — to incorporate large population data sets that contain outcome data to improve
precision — that serves as the foundation of our method.

The multisite design of our JPTA experiment serves as an ideal test bed for our method.
We generalize the results of each site individually to a target population defined by the units
in the other fifteen sites, allowing us to benchmark our estimates against the experimentally
identified causal estimate of the excluded sites. We can then evaluate any precision gains as
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compared to other generalization approaches as well as to no adjustment. We can also, for
each site in turn, assess whether one should generalize, based on a diagnostic test. Ultimately,
using this within study comparison approach (LaLonde, 1986), we find between a 5% and
25% reduction in variance from exploiting population data and outcomes, for those sites
where we determine that our methods are applicable.

Our method is post-residualized weighting, where we leverage outcome data measured in
the population to improve precision in estimation of the PATE. We begin by constructing a
predictive model of the outcome using the population data. We then use this to residualize
the experimental outcome data, and these residuals replace the experimental outcome in
the standard inverse probability weighting estimators used for generalization. Identification
of the PATE proceeds under the same assumptions required for existing inverse probability
weighting methods, namely that the sampling weights are correctly specified. We show
that this estimator is consistent, regardless of the residualizing model constructed in the
population data. Therefore, we can safely use machine learning methods to build a predictive
model. We then establish under what conditions the proposed post-residualized weighting
estimator is more efficient than existing methods.

We also extend our estimator to the weighted least squares framework, which has three
advantages: (1) it incorporates the well-known benefits of stabilized weighting estimators
(i.e. Hàjek estimators), (2) it allows for additional precision gains from prognostic variables
measured only within the experiment, and (3) it addresses concerns about scaling differences
between the outcomes measured in the experiment and the population data. Importantly,
we also provide a diagnostic that allows researchers to assess when the post-residualized
weighting method is likely to result in efficiency gains.

As far as we know, using covariates and outcome data in this manner has not been in-
vestigated. While inverse probability weighting methods do leverage population data about
pre-treatment covariates when modeling the sampling weights, use of outcome data has pri-
marily been limited to use in placebo tests (Cole and Stuart, 2010; Hartman et al., 2015).
Recently, the data fusion literature proposed using experimental data to help aid the esti-
mation of causal effects in observational studies (e.g., see Athey et al. (2020, 2019); Kallus
and Mao (2020)), which bears some similarity to our problem.

We proceed by further introducing our empirical application. We then introduce notation
and existing methods for estimating the population average treatment effect from experi-
mental data in Section 3.2. In Section 3.3 we introduce post-residualized weighting, prove
its statistical properties, and introduce a diagnostic to assess whether researchers should
expect efficiency gains in their applications. We consider both a weighted estimator (a.k.a.,
Hàjek estimator) and a weighted least squares estimator. We extend results to a case in
which we include the predicted outcome as a covariate in Section 3.4. Finally, we provide
simulation evidence supporting the performance of post-residualized weighting estimators
and diagnostic tools in Section 3.5 and apply them to the Job Training Partnership Act in
Section 3.6.
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Background and Data

The Job Training Partnership Act (JTPA) was a large study with a 2:1 treatment to con-
trol ratio. A variety of outcomes were measured with a follow-up survey 18 months after
assignment (Bloom et al., 1993). We use the 16 experimental sites from the national JTPA
study as the basis for our analysis. While the original study focused on four target groups:
adult women and men (categorized formally as ages 22 and older), and female and male
out-of-school youths (ages 16-21), we focus our analysis on adult women, the largest target
group within the JTPA study.1 We consider two different outcomes: employment status (bi-
nary outcome) and total earnings (zero-inflated, continuous outcome). Across the 16 sites,
the average effect on earnings was $1240 and employment was 1.63%, but point estimates
across sites ranged from -$5210 in Butte, MT to $3030 in Providence, RI for earnings and
-7% in Butte, MT and Marion, OH to 7% in Heartland, FL and Providence, RI. Had a
policymaker only run their experiment in Providence, RI, they may have concluded that the
treatment was effective, but not so in Butte, MT. Weighted estimators can adjust for demo-
graphic differences across sites, but many of the sites, such as Butte, MT, contain few units,
emphasizing the need for precise estimators when generalizing results to other populations.

Using a within study comparison approach, we generalize the results of each site indi-
vidually to a target population defined by the units in the other 15 sites, allowing us to
benchmark our estimator against the experimentally identified causal estimate of the ex-
cluded sites and evaluate precision gains from post-residualized weighting. A summary of
the JTPA experimental set up is provided in Appendix B.5.

3.2 Existing Estimators for Generalization

Setup

We begin by defining the target population as an infinite super-population P with probabil-
ity distribution F and probability density dF , for which we wish to infer the effectiveness
of treatment. Following Buchanan et al. (2018), suppose we observe n units as the “experi-
mental sample,” but, as with most experiments in practice, the selection into the experiment
from the target population is biased. Let S represent the random set of n indices for the
units in the experimental sample.

Units in our experimental sample are treated, or not, with treatment indicator Ti = 1 for
units assigned to treatment, and Ti = 0 for control. Using the potential outcomes framework
(Neyman, 1923; Rubin, 1974), we define Yi(t) to be the potential outcome of unit i that would
realize if unit i receives treatment Ti = t, where t ∈ {0, 1}. Our primary causal quantity of
interest is the population average treatment effect (PATE), which is formally defined as:

τ := EF{Yi(1)− Yi(0)}, (3.1)

1The estimated impact of JTPA for the other target groups were not found to be statistically significant in
the original study.
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where the expectation is taken over the target population distribution F . This is in contrast
to the sample average treatment effect (SATE) of

τS := EF̃{Yi(1)− Yi(0)},

where the expectation is taken over the experimental sample distribution F̃ .
For each unit in the experiment, only one of the potential outcome variables can be ob-

served, and the realized outcome variable for unit i is denoted by Yi = TiYi(1)+(1−Ti)Yi(0).
We also observe pre-treatment covariates Xi for units in the experiment. We use F̃ to repre-

sent the sampling distribution for the experimental sample, i.e., {Yi(1), Yi(0), Ti,Xi}ni=1
iid∼ F̃

with density dF̃ . Because we consider settings where the selection into the experiment from
the target population P is biased, F ̸= F̃ .

We assume that the treatment assignment is randomized within the experiment.

Assumption 3 (Randomization within Experiment)

dF̃ (Yi(1), Yi(0), Ti,Xi) = dF̃ (Yi(1), Yi(0),Xi) · dF̃ (Ti) (3.2)

In other words, the treatment assignment Ti is independent of the tuple {Yi(1), Yi(0),Xi}.
Under this assumption, the SATE can be estimated without bias using a difference-in-means
estimator of

τ̂S =
1∑

i∈S Ti

∑
i∈S

TiYi −
1∑

i∈S(1− Ti)

∑
i∈S

(1− Ti)Yi. (3.3)

The SATE is important for evaluating the effectiveness of treatment. However, re-
searchers often want to know to what extent the internally valid findings of an experiment
are externally valid to the target population (Cole and Stuart, 2010; Miratrix et al., 2018;
Egami and Hartman, 2022). When the experimental sample is randomly drawn from the
target population F = F̃ , τ̂S can be used as an unbiased estimator for τ . However, in most
settings, experimental units are not randomly drawn from the target population with equal
probability.

To estimate the PATE, we also assume we observe an i.i.d. sample of N units from the
target super-population P as the “population data,” which is separate from the experimental
sample. This design is most common in the social sciences, and is called the non-nested design
in that the experimental sample is not a subset of the population data (Colnet et al., 2020).2

Typically, the size of the population data is much larger than the experimental data, i.e.,
N ≫ n. In the conventional setup, researchers only observe pre-treatment covariates Xi

for each unit i in the population data. In the next subsection, we review assumptions and
estimators for the PATE under this conventional setup. In Section 3.3, we then consider our
setting in which researchers also observe an outcome measure in addition to pre-treatment
covariates in the population data. Importantly, because the treatment is not randomized in
the population data, we cannot identify the PATE just using the population data.

2While we focus on the non-nested design in this paper, the same proposed approach is useful for the nested
design where the experimental sample is a subset of the population data. The main difference arises in the
analytical expressions of the efficiency gain from our proposed approach.
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Assumptions

We make the standard assumptions of no interference and that treatments are identically
administered across all units (i.e., SUTVA, defined in Rubin (1980)). In order to identify the
PATE using experimental data, we require additional assumptions about the sampling of the
experimental units. First, we assume that, conditional on a set of pre-treatment covariates
Xi, the sample selection mechanism is ignorable. More formally,

Assumption 4 (Ignorability of Sampling and Potential Outcomes)

dF (Yi(1), Yi(0) | Xi = x) = dF̃ (Yi(1), Yi(0) | Xi = x) (3.4)

Assumption 4 states that, conditional on Xi, the distribution of the potential outcomes
{Yi(1), Yi(0)} is the same across the experimental sample and the target population (Stuart
et al., 2011; Pearl and Bareinboim, 2014; Kern et al., 2016).3 We also assume that, for any
pre-treatment covariate profile Xi = x we might see in the population, we have a non-zero
chance of seeing it in the sample as well (Westreich and Cole, 2010):

Assumption 5 (Positivity)
For all x with dF (Xi = x) > 0, we have

dF (Xi = x) > 0 ⇒ dF̃ (Xi = x) > 0. (3.5)

Estimation of PATE

There is a robust, and growing, literature on methods for estimating the PATE. The most
common approach is the inverse probability weighting estimator (IPW) (Cole and Stuart,
2010). The IPW estimator relies on sampling weights usually defined as an inverse of the
probability of being sampled into the experiment. In our case, given the infinite superpopu-
lation defined by F , this translates to, for each unit i,

wi ∝
1

π(Xi)
,

with π(Xi) the relative density of

π(Xi) =
dF̃ (Xi)

dF (Xi)
. (3.6)

Weights are typically estimated using a binary outcome model, such as logistic regression,
by exploiting the fact that weights are proportional to the relative probability of being in the

3For identification of the PATE, a weaker assumption of conditional ignorability of sampling and treatment
effect heterogeneity may be invoked instead. However, our variance derivations rely on the conditional
ignorability of sampling and potential outcomes.
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observed population data to the probability of being in the experimental sample, conditional
on being in either set:

wi ∝
Pr(Si = 0 | Xi)

Pr(Si = 1 | Xi)
,

where Si takes on a value of 1 if the unit belongs to the experimental sample, and 0 if the
unit belongs to the observed population data.

Researchers can estimate Pr(Si = 1 | Xi) and Pr(Si = 0 | Xi) using a binary outcome
model, regressing Si onXi using the stacked dataset of both the experimental and population
data (Stuart et al., 2011; Buchanan et al., 2018; Egami and Hartman, 2019; O’Muircheartaigh
and Hedges, 2014). Alternatively, researchers can use balancing methods, such as entropy
balancing, which estimates weights such that weighted moments (e.g., means of each pre-
treatment covariate Xi) of the experimental data equal the corresponding moments of the
observed population data (Deville and Särndal, 1992; Hainmueller, 2012; Hartman et al.,
2015).

Once researchers have estimated the sampling weights, the PATE can be estimated using
a weighted estimator, also known as the Hàjek estimator:

τ̂W :=

∑
i∈S ŵiTiYi∑
i∈S ŵiTi

−
∑

i∈S ŵi(1− Ti)Yi∑
i∈S ŵi(1− Ti)

. (3.7)

As with estimation of the SATE, researchers can also include covariate adjustment to
increase efficiency. This approach is popular because, while the estimation of the weights
requires covariates to be measured across both the population and the experimental data,
covariate adjustment can leverage covariates that are only measured in the experimental
data (Stuart and Rhodes, 2017).

The weighted least squares estimator τ̂wLS for the PATE can be computed via a weighted
regression of the outcome on an intercept, the treatment indicator and pre-treatment covari-
ates with estimated weights. Formally,

(τ̂wLS, α̂, γ̂) = argmin
τ,α,γ

1

n

∑
i∈S

ŵi

Ä
Yi − (τTi + α + ‹X⊤

i γ)
ä2

(3.8)

where ‹Xi are experimental pre-treatment covariates included in the covariate adjustment.
Covariates ‹Xi can differ from the Xi required for Assumptions 4–5. The weighted estimator
(equation (3.7)) is a special case of this weighted least squares estimator (equation (3.8))
because it is numerically equivalent to the estimated coefficient of the treatment indicator
when no covariate is included, i.e., ‹Xi = ∅. Because the weighted estimator is a special case
of the weighted least squares estimator, we focus on the weighted least squares estimator in
this paper, but use the simpler weighted estimator to illustrate intuitions when appropriate.
Under Assumption 3–5 and the consistent estimation of the sampling weights, the weighted
estimator τ̂W and the weighted least squares estimator τ̂wLS are both consistent for the
PATE, regardless of what covariates ‹X we include as covariate adjustment (Buchanan et al.,
2018; Dahabreh et al., 2019).
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In practice, weighted estimators can suffer from large variance due to extreme weights,
which in this case depends on how much the individual unit-level probabilities of inclusion
in the experimental sample varies relative to their average probability of inclusion. This
problem has been highlighted in the observational causal inference literature with respect to
inverse propensity score weighted estimators, in which large imbalances between treatment
and control groups can result in extreme weights (Kang et al., 2007; Stuart, 2010). This issue
is often exacerbated in the generalization setting, where imbalances between a convenience
experimental sample and target population can be relatively large. As a result, losses in
precision from weighting can be challenging to overcome when generalizing from the SATE
to the PATE (Miratrix et al., 2018).

3.3 Post-Residualized Weighting

Existing methods, such as the weighted estimator and weighted least squares estimator
described above, require pre-treatment covariate data, measured in both the experimental
sample and target population, for estimating the sampling weights. However, researchers
often have access to an outcome variable in the observational population data as well. Our
proposed method, post-residualized weighting, aims to improve precision in estimation of the
PATE by leveraging this outcome variable measured in the observational population data.
See Figure 3.1 for a visualization of the difference in settings from conventional methods.

In addition to our JTPA application, which inspires our method, we next describe two
canonical social science examples below that motivate the data settings that underpin our
method. We return to these examples, in addition to the JTPA application, for conceptual
clarity. We describe our benchmark analysis of the JTPA data in Section 3.6.

Example: Get-Out-the-Vote (GOTV) Experiments Political scientists have con-
ducted a number of field experiments to evaluate the impact of canvassing efforts, including
door-to-door, phone, and mail, on voter turnout. Such GOTV experiments typically rely on
administrative data to measure the outcome, namely voter turnout data from the Secretary
of State. These experiments are often conducted in a small geographic region (e.g., New
Haven, Connecticut in Gerber and Green (2000)), but scholars are often interested in gener-
alizing the effect to broader populations, such as for a statewide election. Importantly, when
considering generalization, the outcome variable of voter turnout is available not only for the
experimental data but also for the broader target population of interest. In our framework,
we use this information about voter turnout measured in the observational population data
to improve precision in the estimation of the PATE.

Example: Education Experiments Education research also relies on experiments to
evaluate the performance of classroom interventions, such as the impact of smaller class size
on curriculum-based and standardized tests (e.g., Word et al., 1990). These experiments are
often done in partnership with school systems. For example, the Tennessee STAR experiment
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Experimental Data Observational Population Data

YiXiYiTiXi

Conventional Methods

Proposed Method

1

Figure 3.1: Data Requirements. Conventional estimation methods only use the covariate
data Xi (in light gray). Our proposed approach leverages the outcome data, in addition to
the covariate data at the population level (as highlighted in dark gray).

was conducted in classrooms across Tennessee. However, researchers are interested in the
broader impact of such interventions. For example, a researcher may ask what the long
term impact of small class sizes in primary school is on standardized test scores, such as the
SAT, for all public schools in the United States. To estimate the PATE, existing methods
use demographic variables from a random sample of public school students to construct
sampling weights. In our framework, we can additionally use SAT scores measured for a
random sample of public school students, which improves estimation accuracy.

Remark We emphasize that the outcome variable available in the population data can be
either the potential outcomes under treatment Y (1), the potential outcomes under control
Y (0), or their mix. Indeed, researchers do not need to know the treatment condition of units
in the target population. This is because consistency of our proposed approach does not
depend on the correct specification of a predictive model we will build with the outcome
variable available in the population data (see Theorem 3.3.1). More generally, the outcome
variable available in the population data can be a proxy of the outcome variable in the ex-
perimental data (i.e., not equal to either the potential outcomes under treatment or control),
and we consider this case in Section 3.4. □

Post-residualized Weighted Estimators

Our proposed post-residualized weighting approach exploits the outcome measured in the
population data to improve precision in estimation of the PATE. The key idea is that we
estimate a predictive model with the outcome measured in the population data and then
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Post-residualized Weighting for the PATE estimation:

Step 1: Estimate sampling weights, wi, for units in the experimental sample.

Step 2: Choose a residualizing model g(Xi): X → R, where X is the support
of Xi. Using the population data, estimate ĝ(Xi) that predict the
population outcomes using pre-treatment covariates Xi.

Step 3: Predict Ŷi = ĝ(Xi) for each unit in the experimental data, and compute
residual êi = Yi − Ŷi for units in the experimental sample.

Step 4: Estimate the PATE using residuals êi and estimated sampling weights
ŵi.
No covariate adjustment within the experimental data↰

See post-residualized weighted estimator τ̂ resW in equation (3.10).

With covariate adjustment within the experimental data↰

See post-residualized weighted least squares estimator τ̂ reswLS (Def-
inition 3.3.1).

Table 3.1: Summary of Post-Residualized Weighting.

use this estimated predictive model to residualize outcomes in the experimental data, before
using conventional weighting estimators for the PATE. For example, in our JTPA application,
we predict earnings or employment across the target sites (i.e., the ‘population’), which we
use to residualize the outcomes in the experimental site.

In total, post-residualized weighting has four steps. The first step is to estimate sampling
weights wi, which is the same as the conventional weighting approach. In the second step,
we fit a flexible model in the population data to predict the outcome variable Yi using pre-
treatment Xi. We refer to this predictive model fit in the population data as a residualizing
model, and formally denote it as g(Xi): X → R where X is the support of Xi. In the third

step, we use the estimated residualizing model to predict outcomes “Yi in the experimental
data, which is separate from the population data used to estimate the residualizing model.
In the fourth and final step, we apply the weighted least squares estimator (equation (3.8))
using the residuals from this prediction, (denoted by êi = Yi − Ŷi) as outcomes (instead of
Yi used in the conventional weighted least squares estimator).

We summarize our proposed approach in Table 3.1. In the following section, we di-
rectly extend the weighted estimator and the weighted least squares estimator discussed in
Section 3.2.

Definition 3.3.1 (Post-Residualized Weighted Least Squares Estimator)
Given a residualizing model estimated as ĝ(·), the post-residualized weighted least squares
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estimator τ̂ reswLS for the PATE is defined as,

(τ̂ reswLS, α̂
res, γ̂res) = argmin

τ,αres,γres

1

n

∑
i∈S

ŵi(êi − τTi − αres − ‹X⊤
i γ

res)2 (3.9)

where êi = Yi − ĝ(Xi) and ‹Xi are experimental pre-treatment covariates included in the

covariate adjustment. We allow ‹Xi to differ from Xi used to calculate ĝ(Xi).

In practice, the post-residualized weighted least squares estimator can be estimated by run-
ning a weighted regression, where the estimated residualized values êi is regressed on an
intercept, the treatment indicator Ti and covariates ‹Xi, and using the sampling weights ŵi

as the weights. The coefficient of the treatment indicator is the post-residualized weighted
least squares estimate for the PATE.

In a special case where no pre-treatment covariates are included, the post-residualized
weighted least squares estimator is equivalent to the following post-residualized weighted
estimator.

τ̂ resW :=

∑
i∈S ŵiTiêi∑
i∈S ŵiTi

−
∑

i∈S ŵi(1− Ti)êi∑
i∈S ŵi(1− Ti)

. (3.10)

We summarize several key aspects of the post-residualized weighted least squares estimator
here and formally discuss each point in the subsequent sections. First, the identification of
the PATE is obtained under the same assumptions required for existing weighted estimators
and the weighted least squares estimator, and we do not make any additional assumptions
(Section 3.3). Most importantly, our proposed estimators are consistent for the PATE,
regardless of the choice of the residualizing model. That is, we do not require the cor-
rect specification of the residualizing model g(Xi) to guarantee consistency of the proposed
estimators. Therefore, akin with Rosenbaum et al. (2002) and Sales et al. (2018), the resid-
ualizing model g(Xi) can be seen as an “algorithmic model” in that the goal is to predict
outcomes, rather than substantively explain an underlying probabilistic process.

Second, the proposed post-residualized weighted least squares estimator, τ̂ reswLS, can achieve
significant improvements in precision over the traditional weighted least squares estimator
(equation (3.8)) when the residualizing model can predict outcomes in the experiment well
(Section 3.3). We will show in Section 3.3 that while we maintain consistency regardless,
how much efficiency gain we achieve depends on the predictive performance of the fitted
residualizing model ĝ(Xi). As such, researchers should, when possible, use not only simple
models, such as ordinary least squares, but also more flexible machine learning models, such
as random forests or other ensemble learning methods (Breiman, 2001; Polley and van der
Laan, 2010) as the residualizing models to improve precision of the PATE estimation.

Finally, we derive a diagnostic measure that researchers can use to determine whether
residualizing will likely lead to precision gains when estimating the PATE (Section 3.3). As
emphasized in the second point above, when the residualizing model can predict outcomes
in the experiment well, we can expect efficiency gains. However, when the residualizing
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model fails to predict outcome measures in the experimental data, it is possible for post-
residualizing to increase uncertainty of the PATE estimation. Our diagnostic measure helps
researchers to estimate the expected efficiency gain, thereby deciding whether residualizing
is beneficial in their applications.

Remark Our proposed post-residualized weighted least squares estimator is closely con-
nected to the augmented inverse probability weighted estimators (AIPW) (Robins et al.,
1994) developed for the PATE (Dahabreh et al., 2019) in that both estimators combine
weighting and outcome-modeling. The process of estimating weights for both the post-
residualized weighting estimators and AIPW is the same. However, the key difference be-
tween two approaches is that the AIPW estimates the outcome model using only the experi-
mental data, thereby not exploiting the outcome variable available in the population data. In
contrast, our post-residualized weighting estimator explicitly uses the outcome information
available in the population data to estimate the residualizing model and improve precision.
Furthermore, post-residualized weighting does not attempt to model both the treatment
and control outcomes separately, and therefore, does not have the double robustness that
the AIPW has. □

Remark Compared to the simpler post-residualized weighted estimator (equation (3.10)),
there are two advantages to a more general, post-residualized weighted least squares esti-
mator (equation (3.9)). First, it can leverage precision gains from pre-treatment covariates

that are measured in the experimental data but not in the population data. That is, ‹Xi

can include more covariates than Xi. Second, τ̂ reswLS provides additional robustness over the
post-residualized weighted estimator τ̂ resW . More specifically, without further covariate adjust-
ment, residualizing can be sensitive to differences between the population and experimental
units in the covariate-outcome relationships. For example, considering JTPA, if earnings
and employment depend heavily on the local economic condition, and thus the covariate
relationships differ across sites, then residualizing may not provide efficiency gains. When
this difference is large, residualizing can result in efficiency loss. However, by performing
covariate adjustment on the residualized outcomes in the experimental data, we have an
opportunity to correct for the difference in the covariate-outcome relationships between the
experimental data and the population data. In other words, the post-residualized weighted
least squares estimator, τ̂ reswLS, gives researchers two opportunities to combat the precision
loss of weighting: once from using the population data in the residualizing process, and a
second from adjusting for covariates in the experimental data. □

Consistency

In this section, we show that the post-residualized weighted least squares estimator is a
consistent estimator of the PATE regardless of the choice of the residualizing model g(Xi)

and pre-treatment covariates ‹Xi that researchers adjust for in the weighted least squares
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estimator. This emphasizes the point that g(Xi) need not be a correct specification of the
underlying data generating process, but merely a function that predicts outcomes measured
in the population.

Theorem 3.3.1 (Consistency of Post-residualized Weighted Least Squares Esti-
mators) Assume that sampling weights ŵi are consistently estimated and Assumptions 3–5
hold with pre-treatment covariates Xi. Then, the post-residualized weighted least squares esti-
mator that adjusts for pre-treatment covariates ‹Xi (equation (3.9)) is a consistent estimator

τ̂ reswLS

p→ τ,

with any residualizing model g(Xi) and any pre-treatment covariates ‹Xi. The post-residualized
weighted estimator (equation (3.10)) is also consistent as it is a special case when no covari-
ate is included.

The proof of Theorem 3.3.1 can be found in Appendix B.1. This property allows for a
large degree of flexibility in building the residualizing model, since consistency is guaranteed
regardless of model specification or performance of g(Xi). We can obtain the consistency
even for a misspecified residualizing model g(Xi) because the predicted experimental outcome
Ŷi = ĝ(Xi) is only a function of the pre-treatment covariates Xi, and thus, with randomized
treatments (Assumption 3), its distribution is the same across treatment and control units on
average for any sample size. As such, residualizing preserves the consistency of the original
weighted estimator without requiring any additional assumptions.

A potential concern with covariate adjustment is that performing covariate adjustment
within the experimental data can result in worsened asymptotic precision and invalid mea-
sures of uncertainty (Freedman, 2008). An alternative approach is to include interac-
tion terms between the treatment indicator and covariates (Lin, 2013). Regardless, be-
cause the proposed post-residualized weighted least squares estimator is an extension of a
weighted least squares estimator, we can compute valid standard errors with the standard
Huber–White sandwich estimator.

While consistency is guaranteed, efficiency gains from residualizing do depend on the
ability of the residualizing model to predict outcome measures in the experimental data.
Theorem 3.3.1 allows for researchers to leverage complex, “black box” approaches (such as
ensemble methods) to maximize the predictive accuracy, as interpretability of the residu-
alizing model is secondary to being able to fit the data well. In the next section, we will
formalize the criteria for variance reduction from residualizing.

Efficiency Gains

The post-residualized weighted estimator allows researchers to include information from the
observational population data about the relationship between the pre-treatment covariates
and the population outcomes into the estimation process. Whether or not we obtain pre-
cision gains, and the magnitude of these precision gains, will depend on the nature of the
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residualizing model. In general, the better researchers are able to explain the outcomes mea-
sured in the experiment using the residualizing model, the greater the efficiency gains. For
example, as shown in Section 3.6, we see greater gains from post-residualized weighting for
earnings, where our predictive model performs better, than we do for employment, which is
more difficult to predict with the auxiliary covariates.

To make these gains more explicit, we first define the weighted variance and weighted
covariance as follows.

varw(Ai) =

∫
1

π(Xi)2
· (Ai − Ā)2dF̃ (Xi, Ai), (3.11)

covw(Ai, Bi) =

∫
1

π(Xi)2
· (Ai − Ā)(Bi − B̄)dF̃ (Xi, Ai, Bi), (3.12)

where Ā = EF (Ai) and B̄ = EF (Bi).
To simplify the expression, we first describe the efficiency gain for the post-residualized

weighted estimator (equation (3.10)) as follows.

Theorem 3.3.2 (Efficiency Gain for Post-residualized Weighted Estimators)
The difference between the asymptotic variance of τ̂ resW and that of τ̂W is:

asyvarF̃ (τ̂W )− asyvarF̃ (τ̂
res
W )

= − 1

p(1− p)
varw(Ŷi) +

2

p
covw(Yi(1), Ŷi) +

2

1− p
covw(Yi(0), Ŷi), (3.13)

where asyvarF̃ (Z) denotes the scaled asymptotic variance of random variable Z over the
sampling distribution F̃ , i.e., asyvarF̃ (Z) = limn→∞ varF̃ (

√
nZ). p is the probability of being

treated within the experiment, i.e., p = PrF̃ (Ti = 1).

The proof of Theorem 3.3.2 can be found in Appendix B.1. Theorem 3.3.2 decomposes
the efficiency gain from post-residualized weighting into two components: (1) the variance of
the predicted experimental outcomes varw(Ŷi), and (2) how related the predicted outcomes
are to the actual outcomes in the experimental samples (represented by covw(Yi(1), Ŷi) and
covw(Yi(0), Ŷi)). If the covariance between the predicted outcomes and actual outcomes in
the experimental sample is greater than the variance of the predicted outcomes, we expect
precision gains. In other words, the gains to precision from residualizing depend on how well
outcome measures in the experiment are explained by the residualizing model fitted to the
population data.4 As such, researchers should leverage the large amounts of data available at
the population level to apply flexible modeling strategies in order to maximize the variation
explained by the residualizing model.

More generally, we can formally write the efficiency gain for the post-residualized weighted
least squared estimator (equation (3.9)) as follows.

4We note that the efficiency gain expression does not include uncertainty associated with estimating the
residualizing model. This is because the chosen ĝ(Xi) is a dimension reducing function of the fixed pre-
treatment covariates.
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Theorem 3.3.3 (Efficiency Gain for Post-Residualized Weighted Least Squares
Estimators) The difference between the asymptotic variance of τ̂wLS and that of τ̂ reswLS is:

asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂
res
wLS)

=
1

p

¶
varw(Yi(1)− X̃⊤

i γ∗)− varw(Yi(1)− ĝ(Xi))
©

+
1

1− p

¶
varw(Yi(0)− X̃⊤

i γ∗)− varw(Yi(0)− ĝ(Xi))
©

︸ ︷︷ ︸
(a) Explanatory power of residualizing model over linear regression

+
2

p
covw(êi(1), X̃

⊤
i γ

res
∗ ) +

2

1− p
covw(êi(0), X̃

⊤
i γ

res
∗ )− 1

p(1− p)
varw(X̃

⊤
i γ

res
∗ )︸ ︷︷ ︸

(b) Remaining variation in residualized outcomes explained by linear regression on X̃i

, (3.14)

where γ∗ and γres∗ are the true coefficients5 associated with the pre-treatment covariates, ‹Xi

defined in the weighted least squares regression (equation (3.8)) and the post-residualized
weighted least squares regression (equation (3.9)), respectively.

When we include covariate adjustment to the experimental data, the gains to precision
depend on two factors. The first factor, (a), compares the explanatory power of the residu-
alizing model with the linear regression. More specifically, if ĝ(Xi) is able to explain more
variation than the linear combination of X̃i, then we expect the first term to be positive.
The second term, (b), represents the amount of variation in the residualized outcomes that
can be explained by the pre-treatment covariates X̃i.

A natural question is why not directly adjust for covariates within the experimental sam-
ple instead of using a residualizing model? One advantage to using the post-residualized
weighting over directly adjusting for covariates within the experimental sample arises from
the fact that there is typically a larger amount of data available in the population data (i.e.
N ≫ n). While researchers could choose to use a flexible model within the experimental
data to perform covariate adjustment, there is a greater restriction with respect to degrees-
of-freedom to what type of model can be fit. The availability of large amounts of population
data can be leveraged in the residualizing process to better estimate covariate-outcome rela-
tionships. Additionally, by using population data to build and tune the residualizing model,
we protect the fidelity of inferences using the experimental data since it is only used for
estimation of the PATE.

In the following subsection, we will describe a diagnostic measure that can help re-
searchers determine whether or not they should expect precision gains from residualizing.

5We define the true coefficients as the coefficients that would be estimated as the experimental sample size
n → ∞. See Supplementary Materials for more information.
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Diagnostics

As discussed above, while post-residualized weighting stands to greatly improve precision
in estimation of the PATE, this is not guaranteed. To address this concern, we derive a
diagnostic that evaluates when researchers should expect precision gains from residualizing.

Again to simplify the expression, we first start with the post-residualized weighted esti-
mator (equation (3.10)). We can define a pseudo-R2 measure as:

R2
0 := 1− varw(êi(0))

varw(Yi(0))
, (3.15)

where we define êi(t) = Yi(t)− Ŷi for t ∈ {0, 1}.
R2

0 can be interpreted as the weighted goodness-of-fit of the residualizing model for the
potential outcomes under control for units in the experiment. Researchers can estimate R2

0

using the estimated residuals across the control units in the experiment. When R2
0 > 0, we

expect an improvement in precision across the control units from residualizing.
More generally for the post-residualized weighted least squares estimator (equation (3.9)),

we can define R2
0 as:

R2
0 = 1− varw(êi(0)− ‹X⊤

i γ
res
∗ )

varw(Yi(0)− ‹X⊤
i γ∗)

, (3.16)

where we now include covariate adjustments from weighted least squares regression in our
diagnostic. êi(0)− ‹X⊤

i γ
res
∗ are the residuals that arise from regressing the residualized out-

comes under control on the pre-treatment covariates in the weighted regression. Similarly,
the quantity Yi(0) − ‹X⊤

i γ∗ are the residuals from regressing the outcomes under control on
the pre-treatment covariates. In this way, we are directly comparing the variance of the
outcomes, following covariate adjustment, across the control units. The interpretation of
this value is identical to that of the pseudo-R2 value in the weighted estimator case. It is
easy to see that R2

0 in equation (3.15) is a special case of R2
0 in equation (3.16) when ‹Xi = ∅.

In line with Rubin’s “locked box” approach (Rubin, 2008), we do not suggest estimating
the analogous R2

0 among treated units. However, if the variation in the control outcomes
is greater than the overall treatment effect heterogeneity, then checking if R2

0 is greater
or less than zero is an effective diagnostic for whether or not we expect precision gains
from residualizing. We formalize this in the following corollary, where we write the relative
reduction from residualizing as a function of this proposed R2

0 measure.

Corollary 3.3.1 (Relative Reduction from Residualizing)
With R2

0 defined as in equation (3.15), define R2
1 as the weighted goodness-of-fit of the

residualizing model for the potential outcomes under treatment. Let ξ = R2
0 −R2

1, such that:

R2
1 := 1− varw(êi(1)− ‹X⊤

i γ
res
∗ )

varw(Yi(1)− ‹X⊤
i γ∗)

= R2
0 − ξ.
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Furthermore, define the ratio f = pvarw(Yi(0) − X̃⊤
i γ∗)/(1 − p)varw(Yi(1) − X̃⊤

i γ∗). Then
the relative reduction in variance from residualizing is given by:

Relative Reduction :=
asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂

res
wLS)

asyvarF̃ (τ̂wLS)
= R2

0 −
1

1 + f
· ξ

Corollary 3.3.1, proof available in Appendix B.1. decomposes the overall relative reduc-
tion in variance of the weighted least squares estimator from residualizing into two com-
ponents: (1) our proposed diagnostic measure R2

0 and (2) a factor, represented by ξ, that
measures the difference in prediction error between the experimental control and experi-
mental treated potential outcomes. If the residualizing model explains similar amounts of
variation across both the treated and control potential outcomes, then R2

1 ≈ R2
0 and ξ ≈ 0.

In that scenario, R2
0 will be roughly indicative of the expected relative reduction. When R2

0

takes on a negative value, this is a strong indication that residualizing is unlikely to result in
precision gains, since it is unlikely the prediction error will be significantly lower for treated
units.

To summarize, R2
0 can diagnose when one should expect improvements in precision from

residualizing. When R2
0 takes on negative values, researchers should not proceed with resid-

ualizing, as it is likely to result in precision loss.

3.4 Using the Predicted Outcomes as a Covariate

Thus far, we have discussed residualizing, or directly subtracting the predicted outcome
values from the outcomes measured in the experimental sample. An alternative approach is
to regress the outcomes measured in the experimental sample on the predicted outcomes Ŷi
from our residualizing model. In particular, we include Ŷi as a covariate in a weighted linear
regression: Ä

τ̂ covW , β̂, α̂
ä
= argmin

τ,β,α

1

n

∑
i∈S

ŵi

Ä
Yi − (τTi + βŶi + α)

ä2
.

We can extend this approach to also include pre-treatment covariates:Ä
τ̂ covwLS, β̂, γ̂, α̂

ä
= argmin

τ,β,γ,α

1

n

∑
i∈S

ŵi

Ä
Yi − (τTi + βŶi + ‹X⊤

i γ + α)
ä2
.

The residualizing methods we discussed in Section 3.3 can be seen as special cases of these
methods where we set β = 1.

Residualizing by directly including Ŷi as a covariate in the weighted least squares has
many advantages. The primary advantage is that this approach allows researchers to flexibly
use proxy outcomes measured in the target population. When the outcome of interest is not
measured at the population level, or if the outcomes are measured in different ways across
the experimental sample and the observed population data, researchers can estimate the
residualizing model g(Xi) using alternative proxy outcomes Ỹi related to the outcome of
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interest. However, use of these proxies can lead to scaling issues that limit the ability of
the weighted and weighted least squares methods for post-residualizing to achieve efficiency
gains. We show how including Ŷi as a covariate addresses these concerns.

Additionally, as with our post-residualized estimators τ̂ resW and τ̂ reswLS discussed in Sec-
tion 3.3, both τ̂ covW and τ̂ covwLS are consistent estimators of the PATE. Finally, including the
predicted outcome Ŷi as a covariate protects against efficiency loss, unlike τ̂ resW and τ̂ reswLS in
the previous sections. This is true whether researchers rely on a proxy outcome Ỹi, or if they
build the residualizing model on Yi.

Proxy Outcomes in the Population Data

There are many settings in which researchers may rely on a proxy outcome Ỹi. First, an
outcome measure used to estimate the residualizing model in the population data may differ
from the outcome measure in the experiment. Second, even when the outcome measure used
to estimate the residualizing model in the population data is in principle the same measure
as the outcome of interest in the experimental data, there can be differences between Ỹi and
Yi that may arise due to differences in how the outcomes are measured or operationalized
across the experimental sample and the population, or when the potential outcomes depend
on context. For example, this might occur if the population is a mix of both treatment and
control conditions with non-random treatment selection.

Example: JTPA Assume that we wish to generalize the impact of JTPA on employment
in an experimental site to a new target site. However, in this target site, instead of current
employment, we only have access to total weeks worked in the past year or whether an
individual is collecting unemployment benefits, which differ from the employment indicator
collected at the end-point in the experiment. These could serve as proxy measures for
employment when using post-residualized weighting for generalizing the impact of JTPA to
a target site. In Section 3.6 we use our two primary outcomes, earnings and an employment
indicator, as proxies for one another.

Example: Get-Out-the-Vote (GOTV) Experiments Consider Get-Out-the-Vote ex-
periments, again, where we are interested in the causal effect of a randomized GOTV message
on voter turnout, which is measured by administrative voter files in the United States (e.g.,
Gerber and Green, 2000). Imagine, however, that we do not have administrative data avail-
able on our population, such as for all voters in the United States, but rather, we have a
nationally representative survey. For many nationally representative surveys, it is infeasible
to link administrative individual-level voting history data due to privacy issues and data
constraints; as such, we do not have access to voter turnout. Instead, surveys often ask
voters an “intent-to-vote” question, which can proxy for actual voter turnout. Our proposed
method can use this “intent-to-vote” variable to build a residualizing model.
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Example: Education Experiments Imagine that researchers are primarily interested
in the causal effect of small class sizes not on standardized outcomes such as the SAT, but
rather on a curriculum-based test score specific to a state collected during a given academic
year. In this case, researchers may not have access to this curriculum-based measure in
the state-level population data, but may have access to related standardized testing scores.
These standardized test scores may be used as a proxy to the curriculum-based test score of
interest that is measured in the experimental data when constructing the residualizing model.

When using proxy outcomes to estimate the residualizing model, the efficiency gain will
be impacted by how similar the proxy outcomes are to the actual outcomes of interest. More
formally, consider the following decomposition of the residuals êi:

êi = Yi − Ỹi︸ ︷︷ ︸
(a)

Difference between
Outcomes in Experiment

and Proxy Outcome

+ Ỹi − Ŷi︸ ︷︷ ︸
(b)

Prediction Error
for Proxy Outcome

, (3.17)

where we define Ỹi as the proxy outcome. Conceptually, Ỹi represents the proxy outcome,
had it been measured for the experimental data. For example, in the JTPA experiment,
Ỹi could represent the variable for collecting unemployment, had it been measured for the
experimental sample.

Equation (3.17) decomposes the residual term into two components. The second compo-
nent (b) is the model prediction error. This is driven by how well the chosen residualizing
model g(Xi) fits proxy outcomes measured in the population data. The first component
(a) is how similar the proxy outcomes measured in the population data are to the outcome
measures used in the experimental data. If the proxy outcomes differ substantially from
the outcomes measured in the experimental data, while the post-residualized weighted es-
timators will still be consistent (see Theorem 3.3.1), there may be losses in efficiency from
residualizing, regardless of how much we are able to minimize the prediction error in the
second term (b).

Consistency

Like the previously proposed post-residualized weighted estimators τ̂ resW and τ̂ reswLS, both τ̂
cov
W

and τ̂ covwLS will be consistent estimators of the PATE. This follows from the fact that Ŷi = ĝ(Xi)
is just a function of pre-treatment covariates Xi. In this sense, we can think of τ̂ covW and τ̂ covwLS

as extensions of the weighted least squares estimator, where Ŷi is an additional pre-treatment
covariate included in the weighted linear regression. Thus, as shown in Section 3.3, both
τ̂ covW and τ̂ covwLS are consistent estimators of the PATE.
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Efficiency Gain and Diagnostics

There are two advantages to using Ŷi as an additional covariate. First, because Ŷi is treated
as a covariate in a weighted regression, the estimated coefficient (i.e., β̂) can capture any
potential scaling differences between the proxy outcomes and the actual outcomes of interest.
While the standard post-residualized weighted estimator can account for additive differences
between the proxy outcome and actual outcome, including Ŷi as a covariate in a weighted
regression allows for our method to additionally account for scale differences between the
proxy and actual outcomes. For example, returning to the Get-Out-the-Vote experiments,
intent-to-vote is often measured on a Likert scale, while voter turnout is simply a binary
variable of whether the individual voted or not. In such a scenario, residualizing directly
on Ŷi can lead to efficiency loss, despite the fact that intent-to-vote is correlated to voter
turnout.

Second, treating Ŷi as a covariate protects against precision loss when the proxy outcomes
are significantly different from the outcomes of interest. At worst, Ŷi is unrelated to Yi, and
we expect the coefficient in front of Ŷi to be near zero. When this occurs, we expect the
variance of the post-residualized weighted estimator when using Ŷi as a covariate to be similar
to the variance of a conventional estimator that does not include population-level outcome
information. More formally:

Corollary 3.4.1 The post-residualized weighted estimators using Ŷi as a covariate will be at
least as asymptotically efficient as the standard weighted estimators:

asyvar(τ̂W )− asyvar(τ̂ covW ) ≥ 0

asyvar(τ̂wLS)− asyvar(τ̂ covwLS) ≥ 0,

This result follows from Ding (2021), who shows that the variance of an estimator that
accounts for pre-treatment covariates will be asymptotically less than or equal to the variance
of an estimator that does not account for pre-treatment covariates.

To account for whether or not the re-scaled predicted outcomes sufficiently explain enough
of the variation in the experimental sample, we extend our previously proposed diagnostic
measures to the proxy outcome setting. To do so, we propose using sample splitting across the
control units in the experimental sample. We regress Ŷi on the control outcomes Yi across one
subset of the sample. This allows us to estimate β̂. Then using β̂, we can estimate residuals,
accounting for the scaling factor (i.e., Yi− β̂Ŷi), across the held out sample, and calculate the
R̂2

0 and R̂2
0,wLS diagnostics from before. We finally conduct cross-fitting, i.e., repeating the

same procedure by flipping the role of training and test data and then averaging diagnostics
from both sample splits.

When to worry about external validity

When diagnostic measures indicate that post-residualized weighting is unsuitable for the
data at hand, it is important to understand why. In particular, Equation (3.17) shows
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that efficiency loss could occur from (1) the residualizing model’s prediction error, and (2)
the difference between the outcomes in the population and the outcomes measured in the
experimental sample. Low diagnostic values indicate that post-residualizing methods may
not provide efficiency gains, however it may also be indicative of contextual differences in
the potential outcomes, which affect the validity of the PATE estimate.

The residualizing model’s prediction error, from equation (3.17)-(b), can be estimated
through cross validation using the population-level data. Researchers can hold out random
subsets of the population-level data when estimating the residualizing model and calculate
the prediction error across the held out sample. If the cross validated error is large, there
will likely be little to no efficiency gains from using post-residualized weighting due to poor
prediction, even if the true outcome Yi is used to estimate ĝ. The difference between the
outcomes Yi and the proxy outcome Ỹi, from equation (3.17)-(a), can be estimated when
the proxy outcome is also measured in the experimental sample. For example, in the Get-
Out-the-Vote experiments, researchers may have voters’ intent-to-vote in the experimental
sample. Alternatively, in the education experiments, researchers could measure both the
curriculum-based test score and the standardized test score in the experimental sample. In
JTPA, employment outcomes may be operationalized differently across sites.

In settings where Ỹi is not measured in the experimental data, researchers can still use the
proposed diagnostic measures to determine if there are concerns about generalizability. For
example, if the cross validated prediction error is low, but the diagnostics indicate that post-
residualized weighting will not improve efficiency, then this indicates that the residualizing
model predicts the population outcomes well, but does not predict outcomes measured in
the experiment well. This could be due to two problems. First, if the population outcome
is a proxy measure of the outcome measured in the experimental sample, then it could
be that the measure used in the population data is not a good proxy for the experimental
outcome. Alternatively, if researchers believe that the experimental and population outcomes
are measured in the same way, then a low or negative R2

0 measure, in conjunction with low
cross validated prediction error, would indicate that the outcome-covariate relationships in
the population are considerably different from the outcome-covariate relationships in the
experimental sample. In this case, there may be limited external validity of the experiment
due to a failure of the consistency of parallel studies assumption, since the potential outcomes
may depend on context (see Egami and Hartman (2022) for more discussion).

3.5 Simulation

We now run a series of simulations to empirically examine the proposed post-residualizing
method. In total, we consider four different data-generating scenarios, based on the following
model for the potential outcomes under control:

Yi(0) = β1X1i + β2X2i + γ1X
2
1i + γ2

»
|X2i|+ γ3

(
X1i ·X2i)

+ βS · (1− Si) · (α + β3X1i + γ4X1i ·X2i) + εi,
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Table 3.2: Summary of Different Simulation Scenarios

Proxy and Experimental Sample Outcomes DGP Type

Scenario 1 Identical DGP (βS = 0) Linear (γ◦ = 0)
Scenario 2 Identical DGP (βS = 0) Nonlinear (γ◦ ̸= 0)
Scenario 3 Different DGP (βS ̸= 0) Linear (γ◦ = 0)
Scenario 4 Different DGP (βS ̸= 0) Nonlinear (γ◦ ̸= 0)

where (X1i, X2i) are observed pre-treatment covariates, and Si ∈ {0, 1} is a binary indicator
variable, taking the value of one when unit i is in the experimental data, and taking the
value of zero when unit i is in the population data. βS controls for differences between the
experimental sample and population data outcomes, and the γ terms dictate the nonlinearity
of the data generating processes.

We then define the treatment effect model as follows:

τi = ατ +Xτ,i,

whereXτ,i is an observed pre-treatment covariate that governs treatment effect heterogeneity.
Therefore, the observed outcomes take on the following form: Yi = Yi(0)+τi ·Ti. We provide
additional details, including the sampling model and distributions of observed covariates in
Appendix B.3.

The first two scenarios test the method when the outcome measures for both the experi-
mental sample and the population data are drawn from the same underlying data generating
process, to explore a setting where the outcome is measured identically across the experi-
ment and target population (i.e., βS = 0). The third and fourth scenarios use different data
generating processes to simulate a context where the outcome measure differs between the
experimental sample and the population (i.e., βS ̸= 0). This represents real-world settings
in which the outcomes in the experimental sample and population are measured differently,
or are situated in different contexts, which can result in differences in the outcome-covariate
relationships. This setting also mimics the case in which researchers use a proxy outcome.
For both of these settings, we consider a version of the data generating processes that is
linear in the included covariates, and a second version that contains nonlinearities. Table
3.2 provides a summary of the different scenarios.

We compare conventional and post-residualized versions of two sets of estimators in each
simulation. We perform post-residualizing in two different ways: the first directly residualizes
the outcomes in the experimental sample by subtracting the predicted outcomes, and the
second treats the predicted outcomes as a covariate in a weighted regression. Therefore, we
compare a total of six different estimators: (1) the weighted estimators τ̂W , τ̂ resW , τ̂ covW , and
(2) weighted least squares (wLS) τ̂wLS, τ

res
wLS, and τ̂

cov
wLS. The difference-in-means estimator

(DiM) is also provided as a baseline with no weighting adjustment.
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The underlying sampling process is governed by a logit model. At each iteration of the
simulation we draw both a biased experimental sample and a random sample of a larger target
population as the population data. The population data is used to estimate the residualizing
model and sampling weights. We use entropy balancing to estimate the sampling weights
ŵi for each simulation. Our residualizing model is a regression that contains all the pair-
wise interactions of the included covariates. The weighted least squares regression includes
covariates additively without any interactions.6

Scenario 1: Linear Outcome Scenario 2: Non−Linear Outcome

DiM Weighted Weighted Least Squares DiM Weighted Weighted Least Squares

1.0

1.5

2.0

2.5

3.0

Type

V
al

ue

Estimation Standard Residualized Covariate

Boxplot of Estimates (with Identical DGP)

Figure 3.2: Summary of estimates across 1,000 simulations for Scenarios 1 and 2, in which
the experimental sample and population outcomes are drawn from the same data generating
process. The dashed line represents the super-population PATE.

Overall, we find that when the underlying outcome model is complex and contains nonlin-
ear terms, our post-residualizing method exhibits large precision gains compared to conven-
tional methods. When there is no difference between the population-level outcomes and the
outcomes in the experimental sample, seen in Figure 3.2, direct residualizing and including
Ŷi as a covariate performs identically.

6It is possible in practice to include nonlinear transformation of pre-treatment covariates in the regression
adjustment step. However, we have omitted it to illustrate the efficiency gains that can be obtained from
accounting for nonlinearities through the residualizing step. This mimics how, in practice, we are able to
fit more complex models to more data.
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Scenario 1 When we consider a linear DGP, residualizing results in substantial precision
gains for the weighted estimator. However, for the weighted least squares estimator, resid-
ualizing does not result in precision gains, because the covariate adjustment taking place
in the weighted regression already includes the linear terms in the data generating process,
and thus, the residualizing step does not model anything in the outcomes that is not already
accounted for in the wLS regression.

Scenario 2 When we include nonlinear terms into the data generating process, residual-
izing results in precision gains for all of the estimators, because the residualizing model is
able to account for some of the nonlinearities that the wLS regression does not account for.
It is worth noting that the estimated residualizing model is not a correct specification of the
underlying outcome model for the population data. However, because we have included the
pairwise interactions between the covariates, the residualizing model is able to significantly
reduce the variance for both estimators, even without accounting for all of the nonlinear
terms in the underlying data generating process.

Scenarios 3 and 4 Next we consider a difference in the underlying data generating pro-
cess between the experimental and population outcomes, presented in Figure 3.3. We oper-
ationalize this by including an interaction between treatment, the sampling indicator, and
covariates. The degree to which the two processes differ is varied across different simulations
using a single parameter, βS. When the difference is relatively small (i.e. small |βS|), the two
methods used to residualize the experimental sample outcomes perform identically. This is
evident by a lower RMSE when |βS| < 2 for the post-residualized weighted estimators. When
the difference in the DGP are large (i.e., |βS| > 2), residualizing by directly subtracting the
outcomes from the predicted outcomes results in precision loss, evident by a larger RMSE for
the post-residualized weighted estimator τ̂ resW , and for the post-residualized weighted least
square estimator τ̂ reswLS when the true DGP is nonlinear. However, treating the predicted
outcomes as a covariate in a weighted linear regression τ̂ covW and τ̂ covwLS allows for precision
gain, even in these settings. We see that at worst, the covariate-based residualizing approach
performs equivalently to the conventional estimators.

It is important to highlight that regardless of the degree of divergence between the pop-
ulation and experimental sample DGP’s, post-residualized weighting is able to maintain
nominal coverage. Furthermore, our proposed diagnostic measures adequately capture when
we expect to gain or lose precision from residualizing. We provide coverage results and a
summary of the diagnostic performance in the Appendix B.4.

3.6 Application: Job Training Partnership Act

To evaluate and benchmark how our proposed post-residualizing method may work in prac-
tice, we now turn to an empirical application. Recall that, while the original study evaluated
the overall impact of JTPA, our focus is on generalizing the effect of each site individually
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Figure 3.3: Plot of RMSE of the different estimators for Scenarios 3 and 4, in which the
experimental sample and population outcomes are drawn from different data generating
processes. βS controls for how different the two processes are (i.e., the larger |βS| is, the
larger the difference is between the two processes). The standard estimators are presented
in black and the residualized estimators in gray and light gray. We label all the points for
which the diagnostic measure estimates a loss in efficiency (×) or gain (•) from residualizing
more than 50% of the time in the 1,000 iterations.

to the other 15 sites. More specifically, in our leave-one-out analysis for each site, we define
the PATE as the average treatment effect among units in the remaining 15 sites. We then
generalize the experimental results from one site to the population defined by the pooled
remaining sites. This allows us to validate our method’s performance by comparing our
PATE estimators to the pooled experimental benchmark in the remaining sites. We evaluate
generalizability for two outcomes: employment status (binary outcome) and total earnings
(zero-inflated, continuous outcome).
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Post-Residualized Weighting

Residualizing model

We include baseline covariates measured at the interview stage of the JTPA study. The
covariates include measures of age, previous earnings, marital status, household composition,
public assistance history, education and employment history, access to transportation, and
ethnicity. More details about the pre-treatment covariates can be found in Appendix B.5.

We construct our residualizing model using an ensemble method, the SuperLearner
(van der Laan et al., 2007). The ensemble model contains the Random Forest, with varying
hyperparameters, and the LASSO, with hyperparameters chosen using cross validation. This
allows us to capture nonlinearities in the data through the Random Forest, as well as linear
relationships using the LASSO (van der Laan et al., 2007). We build separate models for the
probability of employment and total earnings. We fit our residualizing model on the control
units from the target population. Details can be found in the Appendix B.5.

Estimators

We estimate the PATE using two different estimators: the weighted estimator and the
weighted least squares estimator (wLS). For each estimator, we consider the conventional
estimators (τ̂W and τ̂wLS), the post-residualized estimators directly subtracting the pre-
dicted outcomes from the outcomes in the experimental sample (τ̂ resW and τ̂ reswLS), and the
post-residualized estimators using the predicted outcomes as a covariate (τ̂ covW and τ̂ covwLS).
Sampling weights are estimated using entropy balancing in which we match main margins
for age, education, previous earnings, race, and marital status (Hainmueller, 2012). Our
weighted least squares (wLS) estimators include age, education level, and marital status
as controls. Standard errors are estimated using heteroskedastic-consistent standard errors
(HC2).

Diagnostics

For each site, we compute the pseudo-R2 diagnostics. This can be done directly for the
post-residualized weighted and weighted least squares estimators. When treating Ŷi as a
covariate, we use sample splitting to estimate the pseudo-R2 values. Because some of the
experimental sites comprise of relative few units (i.e., the experimental site of Montana
contains only 38 units total), we perform repeated sample splitting, taking the average of
the diagnostic across the repeated splits (Jacob, 2020; Chernozhukov et al., 2018).
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Results

Bias

Because the conventional estimators and our proposed approach rely on the same identi-
fication assumptions, we first want to verify that the overall bias in the PATE estimation
is not affected by the post-residualized weighting step. Across all 16 sites, the point esti-
mates from post-residualized weighting do not change substantially from standard estimation
approaches. Even in experimental sites in which it may not be advantageous to perform post-
residualized weighting for efficiency gains, point estimates from post-residualized weighting
methods are close to those from the conventional weighting estimators. We report the mean
absolute error for all 16 sites in Appendix C.3.

Diagnostics

To evaluate whether the post-residualized weighting estimators provide efficiency gains over
conventional approaches, we estimate our diagnostics. Supplementary Materials Table A9
summarizes the performance of the diagnostic measures across all 16 sites for both earnings
and employment.

On average, we see that the proposed diagnostic measures are able to adequately capture
when researchers should expect precision gains from residualizing. The R̂2

0 diagnostic has
a high true positive rate for both directly residualizing and using Ŷi as a covariate. As
such, when the diagnostic measures indicate that researchers should residualize, residualizing
results in precision gains. In the case when we are directly residualizing, the diagnostic
measure also has a relatively high true negative rate, which implies that when R̂2

0 < 0, there
is a loss in precision from directly residualizing. In the case of including Ŷi as a covariate,
there is a greater false negative rate, as the diagnostic tends to be more conservative in this
setting. This is especially noticeable when employment is the outcome. Many of the false
negatives here correspond to estimated R̂2

0 values that are negative, but very close to zero.

Efficiency Gain

Results on the efficiency gains to post-residualized weighting are summarized in Table 3.3,
and graphically displayed in Figure 3.4. Restricting our attention to the sites for which the
R̂2

0 values are greater than zero, there is a large reduction in variance overall from residual-
izing. When directly residualizing, for earnings, residualizing results in a 21% reduction in
estimated variance for the weighted estimator and a 12% reduction for the weighted least
squares estimator. For employment, directly residualizing leads to a 10% reduction in esti-
mated variance for the weighted estimator and a 5% reduction for the weighted least squares
estimator.

When using Ŷi as a covariate, we see that including the predicted outcomes as a covariate
results in a 25% reduction in variance for the weighted estimator and 16% reduction for
weighted least squares when earnings is the outcome. For employment, adjusting for the
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Summary of Standard Errors across Experimental Sites Subset by Diagnostic

Earnings Employment
Number
of Sites

Conventional
Post-Resid.
Weighting

Number
of Sites

Conventional
Post-Resid.
Weighting

Weighted
Direct Residualizing 10 2.42 2.13 11 8.33 7.81

Ŷi as Covariate 7 2.17 1.86 1 5.58 5.01

Weighted Least Squares
Direct Residualizing 12 2.71 2.56 11 7.88 7.64

Ŷi as Covariate 7 1.87 1.71 1 5.56 5.45

Table 3.3: Summary of gains to post-residualized weighting. Columns 1 and 4 give the num-
ber of sites for which the diagnostic measure indicates gains to post-residualized weighting.
The average standard error among selected sites are presented for the conventional estima-
tors (columns 2 and 5) and post-residualized estimators (columns 3 and 6).

predicted outcomes results in a 9% reduction in variance for the weighted estimator, and a
4% reduction for the weighted least squares.

There are several takeaways to highlight. First, we see that directly residualizing the
outcomes can result in significant precision gain. In particular, the reduction in variance in
the post-residualized weighted least squares demonstrates the advantage residualizing has
over just using regression adjustment. Second, the larger reduction in variance from using Ŷi
as a covariate underscores the value of being able to capture the scaled relationships between
the outcomes in the population data and in the experimental sample.

Figure 3.4 shows the relative variance of the PATE estimators to the unweighted SATE. It
is well known that PATE estimators typically have higher variance than the SATE (Miratrix
et al., 2018), however we see that with the post-residualized method, some of the precision
loss incurred from the weighted PATE estimators can be offset. Table 3.3 provides a summary
of the standard errors of the PATE estimators, relative to the difference-in-means estimators.

In the left panel of Figure 3.4, we also report the results when pooling all 16 sites to-
gether, which represents the setting in which researchers do not use the diagnostic and
naively perform post-residualized weighting across all settings. We still generally see some
improvements in precision from using post-residualized weighting. However, the improve-
ments are much smaller than in the setting in which we subset to sites using the diagnostic
measure. As such, we recommend that when possible, researchers should use the proposed
diagnostic measures.
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Figure 3.4: Reduction in Variance from using post-residualized weighting. We calculate
the variance of the estimators, relative to the variance of the difference-in-means (DiM)
estimator. We can interpret the y-axis as the amount of variance inflation that is incurred
from generalization, and see that using the proposed method of incorporating population
data can allow us to offset some of the precision loss incurred from re-weighting. We see
that when using the proposed diagnostic measure, post-residualized weighting results in
substantial precision gains across all four estimators.

3.7 Conclusion

In this paper we introduce post-residualized weighting as a method for mitigating the pre-
cision cost of generalizing experiments to larger populations. Existing estimators for popu-
lation effects typically have high variance, especially if some sampling weights are extreme
(Miratrix et al., 2018), making it difficult for policymakers and practitioners to draw conclu-
sions about the impact of treatment in the target population. For example, in our stylized
example, a single site from the JTPA might not be representative of the full experiment, so
a generalized estimate based on it would potentially be too lacking in precision to inform
any policy decision. Our precision gains come from leveraging a valuable type of data that
has been typically unused in the generalizability literature so far: outcome data measured
in the target population.

To assess the benefits of our approach in practice, we re-evaluate the impact of the
Job Training Partnership Act (JTPA), using the multi-site nature of the experiment to
benchmark the performance of our estimators relative to common methods using a within
study comparison approach. We evaluate two outcomes, employment and earnings. We find
that the post-residualized methods result in a 5-25% average reduction in variance, and that
confidence intervals maintain nominal coverage. In particular, we achieve the most significant
gains from including the predicted outcomes as a covariate, underscoring the value of this
method when scaling issues may be present in the relationship between the outcomes in the
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population data and in the experimental sample. Finally, our diagnostic measures accurately
capture when the post-residualized estimators result in precision gains in estimation of the
PATE.

In short, our proposed method first builds a flexible model using population outcome and
covariate data, which is then used to residualize the experimental outcome data. We show
that post-residualized weighting estimators, which rely on residualized outcomes, are consis-
tent for the PATE under the same identifying assumptions as current methods. However, by
utilizing residualized outcomes, the post-residualized weighting estimators can obtain large
precision gains over conventional approaches. We propose three classes of post-residualized
weighting estimators: a weighting estimator using the residualized experimental outcomes;
a weighted least squares estimator based on the residualized experimental outcomes; and an
extension of weighted least squares in which the predicted values of the residualizing model
are included as a covariate.

Our proposed framework has many advantages. As discussed in Section 3.3, the residu-
alizing model, g(Xi), is an “algorithmic model,” which merely needs to adequately predict
the outcomes measured in the experiment, but does not need to be correctly specified. This
allows researchers a great deal of flexibility in constructing it. In Section 3.4 we discuss
how researchers can leverage proxy outcomes that are correlated with, but different from,
the outcome measured in the experimental setting. Finally, we provide diagnostic measures,
based on the outcomes measured among experimental controls, that allow researchers to de-
termine whether post-residualized weighting will likely improve precision in estimating the
PATE.

We evaluate our three post-residualized estimators through simulation studies and an
empirical application. Our simulations and JTPA application show significant precision
gains from post-residualized weighting, and confirm the performance of the diagnostic mea-
sure to differentiate when researchers should expect precision gains from post-residualized
weighting. We also find that including the predicted outcomes as a covariate ensures that
post-residualized weighting does not hurt precision.



55

Chapter 4

Variance-based Sensitivity Analysis
for Weighting Estimators

4.1 Introduction

In observational studies of causal effects, researchers must address possible confounding
effects from non-random treatment assignment. Typically, one relies on pre-treatment co-
variates either to re-weight units based on propensity of treatment, or to model the outcome
of interest. In practice, researchers have no way of knowing whether the observed covariates
include all potential confounders. When confounders are omitted, the resulting estimators
will be biased. Sensitivity analyses speak to this concern by allowing researchers to assess
the robustness of their results to omitted confounders (Cornfield et al., 1959). In a sensitivity
analysis, a researcher introduces a parameter describing the amount of unobserved confound-
ing present and redoes the analysis under different values of this parameter, determining the
set of values for which the results of the study will be reversed. The robustness of the study
may then be evaluated by reasoning about the plausibility of these values.

In contrast to typical estimands, parameters in sensitivity analysis are inherently unin-
dentifiable, because they are designed to describe an omitted variable. Thus, there exists a
trade-off between how complex the sensitivity analysis is, and how informative the sensitiv-
ity analysis can be. For example, Dahabreh et al. (2019) proposed a sensitivity analysis in
which researchers can obtain both an adjusted point estimate and the associated uncertainty
from omitting a confounder. However, the sensitivity analysis requires researchers to directly
model the bias that arises from omitting a confounder. In contrast, Zhao et al. (2019) in-
troduced a sensitivity analysis that only requires one parameter and allows researchers to
estimate confidence intervals that account for the unobserved confounder. However, the re-
sulting intervals are often extremely wide, making it difficult to reason about whether or not
there is sensitivity from omitting a confounder.

In the following paper, we introduce a new sensitivity model known as the variance-based
sensitivity model that provide the flexibility and generality of existing sensitivity analyses,
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while simultaneously allowing researchers to estimate narrower, more informative bounds for
weighted estimators. The proposed sensitivity models constrain distributional differences in
the weights that arise from omitting a confounder, and do not rely on additional assumptions
on the outcome, confounder, or treatment assignment mechanism.

The paper provides three primary contributions. First, the proposed variance-based sen-
sitivity model can be parameterized by a single sensitivity parameter, an R2 measure. Unlike
previously proposed sensitivity analyses, our parameter is both bounded and standardized
on an interval of 0 to 1. We develop formal benchmarking approaches that allow researchers
to use observed covariates to reason about plausible values for the R2 value, providing much-
needed interpretability.

Second, we introduce a method for estimation of valid confidence intervals under the
variance-based sensitivity model. We give a closed-form solution for the maximum bias that
can occur for a fixed set of sensitivity models, which we denote the optimal bias bound.
We also provide extensions for incorporating additional substantive knowledge about the
confounder into the optimal bias bound, further restricting the range of plausible bias.

Finally, we show that a variance-based sensitivity analysis can be formulated as a bias
maximization problem, with a constraint on the weighted average error. We formalize the
relationship between the variance-based sensitivity model and alternative approaches, which
rely on constraining a worst-case error. By moving away from characterizing bias from the
perspective of a worst-case error, variance-based sensitivity analysis is able to estimate more
informative and stable bounds.

The paper is organized as follows. Section 4.2 gives set-up and notation. Section 4.3
introduces the variance-based sensitivity model. Section 4.4, compares the proposed sen-
sitivity models to alternative sensitivity approaches. Proofs and extended discussion are
provided in the Appendix.

4.2 Background

Set-Up and Notation

To begin, we consider an observational study with n individuals. Define Zi as a binary
treatment assignment variable, where Zi = 1 when unit i is assigned to treatment, and
0 otherwise, Yi(1) and Yi(0) are potential outcomes, and Xi is a vector of pre-treatment
covariates. Let the tuple (Yi(1), Yi(0), Xi, Zi) for all i ∈ {1, . . . , n} be independently and
identically distributed from an arbitrary joint distribution, where Y (1), Y (0) ∈ Rn, Zi ∈
{0, 1}n and X ∈ Rn×p.

Throughout, we invoke the standard SUTVA assumption—i.e., no interference, with
treatments identically administered across all units Rubin (1980). Thus observed outcomes
Yi can be written as Yi := Yi(1) ·Zi + Yi(0) · (1−Zi). Because treatments are not randomly
assigned in an observational study, we must also invoke an additional assumption, known as
the conditional ignorability of treatment assignment:



CHAPTER 4. VARIANCE-BASED SENSITIVITY MODELS 57

Assumption 6 (Conditional Ignorability of Treatment Assignment)

Yi(1), Yi(0) |= Zi | Xi

Assumption 6 states that conditional on a set of pre-treatment covariates X , treatment
assignment is independent of potential outcomes (i.e. no further confounding remains).

In addition to Assumption 6, we also assume overlap, such that conditional on some set of
pre-treatment covariates, the probability of being assigned treatment is non-zero (Rosenbaum
and Rubin, 1983):

Assumption 7 (Overlap) For all x ∈ X , 0 < P (Zi = 1 | X = x) < 1.

Our primary estimand is the average treatment effect for the treated (ATT):

τ := E(Yi(1)− Yi(0) | Zi = 1).

However, the proposed method can easily be extended for estimating the average treatment
effect (ATE). Furthermore, all proofs and derivations are done with respect to a general
missingness indicator, such that the results can be applied to general, missing data settings,
such as weighting for external validity or survey weighting (see Appendix C.1 for more
discussion and details).

Weighted estimators, which are popular for estimating causal effects in observational
setting, adjust for distributional differences in the pre-treatment covariates X across the
treatment and control groups. For the ATT, a common weighted estimator is as follows:

τ̂W =
1∑n

i=1 Zi

n∑
i=1

ZiYi −
∑n

i=1(1− Zi)Yiwi∑n
i=1(1− Zi)wi︸ ︷︷ ︸

Weighted Control Mean

.

A common choice of weights is inverse propensity weights, where wi = P (Zi = 1 | X )/P (Zi =
0 | X ). These weights are often constructed using a logistic regression to predict the prob-
ability of treatment assignment. Recent balancing approaches provide a semi-parametric
option for researchers to estimate weights by minimizing the distributional difference be-
tween the treatment and control groups, without modeling the underlying probabilities (see
Ben-Michael et al. (2021) for a recent review on balancing weights).

Under the correct specification of the weights, if the correct set of covariates are included,
the weighted estimator will be a consistent and unbiased estimate of the true treatment effect.
However, in practice, there is no way of knowing whether Assumption 6 holds. We propose a
set of sensitivity models that characterize the bias of a weighted estimator when researchers
omit a variable from the set X . More specifically, we will assume that X = {X,U}, such
that both X and U are necessary for Assumption 6 to hold. We assume that researchers
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have otherwise correctly specified the weights.1 We define w as the weights that include
only X, and w∗ as the ideal weights that include both X and U. We refer to the omitted
variables, U, as confounders. We note that the sensitivity framework will not explicitly
account for settings in which (1) researchers estimate uniform weights (i.e., no adjustment
for confounding), or (2) the true ideal weights are uniform. Finally, we will assume, without
loss of generality, that both w and w∗ are centered at mean 1.

Related Literature

A popular approach for assessing the robustness of weighted estimates to omitted confounders
uses the marginal sensitivity model (Tan, 2006), in which researchers posit a bound, Λ, on
the individual-level error in the weights that can arise under unobserved confounding:

Λ−1 ≤ w∗
i

wi

≤ Λ, for i = 1, ..., n,

where Λ ≥ 1. Λ represents the largest possible error that can arise from omitting a con-
founder. Researchers can bound the maximum and minimum bias that arises under a fixed
Λ, and use a percentile bootstrap to estimate valid confidence intervals (Zhao et al., 2019).

In practice, the true Λ is unknown, so to conduct the sensitivity analysis, researchers posit
increasing values of Λ until the estimated confidence intervals contain zero. The minimum
Λ value for which the estimated intervals cross zero is denoted as Λ∗. If Λ∗ is close to 1,
even a small amount of error from omitting a confounder could result in an estimated effect
becoming insignificant. On the other hand, if Λ∗ is much larger than 1, estimated effects are
only sensitive to very strong unmeasured confounders.

While the marginal sensitivity model guarantees valid intervals asymptotically, in prac-
tice, the intervals tend to be extremely conservative. This means that the estimated intervals
often include the null estimate, even under low amounts of confounding. As such, when re-
searchers’ estimated bounds imply an estimated effect is no longer statistically significant, it
is difficult to distinguish if this is a sign that there is sensitivity to an omitted confounder,
or if the sensitivity model is overly pessimistic. Tightening these intervals often requires
researchers to invoke additional constraints in the models, or parametrically model the out-
comes in some way (Dorn and Guo, 2021; Nie et al., 2021). Furthermore, the underlying
sensitivity parameter in the marginal sensitivity model is dependent on the worst-case error
that arises from omitting a confounder. This is inherently difficult to reason about in prac-
tice, as the true value of the parameter will depend on outliers and, in asymptotic settings,
can be infinitely large.

1For example, the framework does not explicitly account for cases in which researchers are using a probit
model, when the true underlying data generating process is logistic. However, mis-specification concerns
can also be addressed with the proposed framework, if researchers can write the mis-specification error as
an omitted variable problem. A simple example of this is if a linear probability model is used, U can include
non-linear functions of X that matter for modeling selection. We provide more discussion in Appendix C.1.
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We now propose a new sensitivity model, the variance-based sensitivity model. The
proposed framework can be viewed as a one parameter generalization of existing sensitivity
frameworks in the literature that rely on bounding the error in the weights from omitting a
confounder (e.g., Huang (2022), Hong et al. (2021), Shen et al. (2011), Ding and VanderWeele
(2016)). We provide several key contributions. First, unlike the frameworks proposed by
Hong et al. (2021) and Shen et al. (2011), the variance-based sensitivity model introduce
a standardized and bounded parameterization of the confounding strength, which can help
improve transparency and interpretability for applied researchers. Second, many of the
aforementioned sensitivity analyses do not engage with how potential confounders may affect
their inference, and are limited to discussions about movements in the point estimate. In
contrast, the variance-based sensitivity model provides a method for researchers to estimate
valid asymptotic confidence intervals for fixed level of confounding.

Furthermore, we formalize the connection between these variance-based approaches to
alternative sensitivity approaches, which formulate sensitivity models as optimization prob-
lems. In particular, we demonstrate that the variance-based sensitivity model can be viewed
as a constrained weighted L2 norm problem, which provides a framework to compare the
proposed sensitivity models with the marginal sensitivity model. Moving away from a worst-
case error parameterization of the error allows researchers to obtain more informative and
stable bounds under the variance-based sensitivity model. The benefits of constraining a
weighted L2 norm instead of a worst-case error is conceptually similar to the advantages
highlighted in Zhang and Zhao (2022), in which authors consider a constraint on L2 norms,
and Kallus and Zhou (2018), which introduces an L1 norm, with the added benefit of having
an interpretable sensitivity parameter in the form of an R2 value.

Running Example: NHANES

Throughout the paper, we perform a re-analysis of a study presented in Zhao et al. (2018) (as
well as Zhao et al. (2019) and Soriano et al. (2021)), analyzing the effects of fish consumption
on blood mercury levels. More specifically, we use data from the 2013-2014 National Health
and Nutrition Examination Survey (NHANES).

Following the original study, we define the outcome of interest as the total blood mercury
(in log2), measured in micrograms per liter. As such, an estimated treated-control outcome
difference of 1 implies that a treated person’s total blood mercury is twice that of an individ-
ual in control’s total blood mercury. The treatment is defined by whether or not individuals
consumed more than 12 servings of fish or shellfish in the preceding month. There are 234
total treated units and 873 control units. To account for the non-random treatment assign-
ment, we use the available demographic data for the individuals in the survey, which include
variables like gender, age, income, race, educational attainment, and smoking history to
estimate entropy balancing weights (Hainmueller, 2012).

The unweighted estimate is 2.37; after accounting for pre-treatment covariates, we obtain
a weighted ATT estimate of 2.15 (see Table 4.1 for a summary). Therefore, from our estimate,
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we expect that on average, a treated individual who consumes more fish will have around 4
times as much total blood mercury than an individual in control.

Unweighted (DiM) IPW

Estimated Effect (ATT) 2.37 (0.10) 2.15 (0.11)

Table 4.1: Estimated effect of fish consumption on blood mercury levels. Standard errors
are reported in parentheses.

4.3 The Variance-Based Sensitivity Model

We now introduce the variance-based sensitivity model. We begin by defining the sensitivity
model and show that the model lends itself naturally to an R2 parameterization. Then,
we derive a closed-form solution for the maximum bias under the variance-based sensitivity
model that can be directly estimated from the data, and introduce a method to estimate
asymptotically valid confidence intervals under the proposed sensitivity model. Finally, we
provide formal benchmarking tools to help researchers conduct their sensitivity analyses,
and illustrate the proposed approach on the running example respectively. Appendix C.1
provides an extension for researchers to impose constraints on the strength of the relationship
between the confounder and the outcome within the variance-based sensitivity model.

Defining a New Sensitivity Model

To begin, we define the following set as the “variance-based sensitivity model”:

Definition 4.3.1 (Variance-Based Sensitivity Model)
Let R2 be the residual variation in the true weights w∗, not explained by w:

R2 := 1− var(wi | Zi = 0)

var(w∗
i | Zi = 0)︸ ︷︷ ︸

Variation in w∗
explained by w

.

Then, for a fixed R2 ∈ [0, 1), we define the variance-based sensitivity model σ(R2):

σ(R2) ≡
ß
w∗

i ∈ Rn : 1 ≤ var(w∗
i | Zi = 0)

var(wi | Zi = 0)
≤ 1

1−R2

™
.

In contrast to existing methods which constrain the worst-case, individual-level multiplicative
error across the weights, the variance-based sensitivity model constrains the distributional
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difference between the true weights w∗ and the estimated weights w. This implicitly con-
strains the residual imbalance in the omitted variable. More formally, we decompose the
true weight w∗ into two components: (1) the weight w, and (2) the residual imbalance in U:

w∗ =
P (Z = 1 | X,U)

1− P (Z = 1 | X,U)
=

P (Z = 1 | X)

1− P (Z = 1 | X)︸ ︷︷ ︸
Weights (w)

· P (U | X, Z = 1)

P (U | X, Z = 0)︸ ︷︷ ︸
Imbalance in U

, (4.1)

where the imbalance term is a ratio of the conditional probability density function of the
omitted variable across the treatment and control groups. The distributional difference
between the weights w and the ideal weights w∗ will be driven by the imbalance term. Intu-
itively, if the omitted variable U is very imbalanced, then accounting for the omitted variable
results in very different values for w∗ and w. Alternatively, if U is not very imbalanced, then
including it will result in weights w∗ that are very similar to w. Limiting the distributional
difference between the true weights and estimated weights effectively restricts the amount
of residual imbalance in the omitted confounder. In Section 4.4, we show that this is equiv-
alent to constraining a weighted L2 norm of the errors w∗

i /wi, in contrast with the marginal
sensitivity model, which constrains an L∞ norm.

The distributional difference between the estimated weights and the true weights can be
written as a function of an R2 parameter. The R2 parameter represents the residual variation
in the true weights, not explained by the estimated weights, and is naturally bounded on an
interval of [0, 1].

Optimal Bias Bounds

Valid confidence intervals for a set of sensitivity models must account for two factors: (1)
the bias that arises from omitting a confounder, and (2) the uncertainty associated with
estimation. In the following subsection, we introduce optimal bias bounds that researchers
can estimate for the variance-based sensitivity model, under a fixed R2 value. Section 4.3
introduces a percentile bootstrap approach for researchers to simultaneously account for
uncertainty in estimation.

In the following theorem, we show that for a fixed R2, we can estimate the possible
range of bias values. We refer to the minimum and maximum values of these potential
bias values as the optimal bias bounds. However, unlike the marginal sensitivity models,
in which researchers must solve a linear programming problem to identify the extrema, the
variance-based sensitivity model admits a closed-form solution for the optimal bias. More
specifically, the optimal bias bounds are a function of three different components: (1) a
correlation bound, which represents the maximum correlation an omitted confounder can
have with the outcome of interest; (2) the imbalance (represented by the R2); and (3) a
scaling factor.

Theorem 4.3.1 (Optimal Bias Bounds)
For a fixed R2 ∈ [0, 1), the maximum bias under σ(R2) (denoted as maxw̃∈σ(R2) Bias(τ̂W | w̃))
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can be written as a function of the following components:

max
w̃∈σ(R2)

Bias(τ̂W | w̃)

=
»

1− cor(wi, Yi | Zi = 0)2︸ ︷︷ ︸
(a) Correlation Bound

 
R2

1−R2︸ ︷︷ ︸
(b) Imbalance

· var(Yi|Zi = 0) · var(wi|Zi = 0)︸ ︷︷ ︸
(c) Scaling Factor

, (4.2)

with the minimum bias given as the negative of Equation (4.2). The optimal bias bounds are
given by the minimum and maximum biases.

Theorem 4.3.1 highlights the different components that affect the magnitude of the bias
bounds. We provide more details about each component below.

Correlation Bound. The correlation bound, given by Equation (4.2)-(a), represents the
maximum correlation between imbalance in an omitted confounder and outcome across the
control group. Intuitively, this is similar to the marginal sensitivity model, in which Dorn and
Guo (2021) demonstrated that the optimal bias bounds are obtained when the imbalance
from the omitted confounder is maximally correlated with the outcome. From Equation
(4.2)-(a), we see that the bound is a function of the correlation between the estimated
weights and the outcome. If the estimated weights are highly correlated with the outcome,
then the degree to which the residual imbalance in the omitted confounder can be correlated
to the outcome is limited, and this bound is lower. However, if the correlation between the
estimated weights and the outcome is relatively low, then the possible correlation between
omitted-confounder imbalance and outcome has a much larger range. In the worst case, the
estimated weights and the outcome are not correlated at all (i.e., cor(wi, Yi | Zi = 0) = 0);
then, the correlation bound will simply equal 1.

Residual Imbalance. The second component of the bias bound is the residual imbalance
in an omitted confounder, and is a function of the R2 parameter (Equation 4.2-(b)). Similar
to a point made in Cinelli and Hazlett (2020), there exists an asymmetry in the drivers
of bias. More specifically, as the correlation between the imbalance term and the outcome
increases towards 1 (i.e., the correlation bound approaches 1), the overall impact on the bias
bound is bounded at 1. In contrast, as the level of imbalance in the omitted confounder
increases, the effect on the bias bounds is unbounded. In other words, as R2 → 1, the
corresponding bias bounds will increase towards infinity.

Scaling Factor. The last factor in the bias bound is a scaling factor (represented by
Equation (4.2)-(c)). The scaling factor comprises of the variance of the outcomes across
the control units (i.e., var(Yi | Zi = 0)) and the variance of the estimated weights (i.e.,
var(wi | Zi = 0)). This represents the overall heterogeneity that is present in the data.
More specifically, as the variance in the estimated weights increases, there is more imbalance



CHAPTER 4. VARIANCE-BASED SENSITIVITY MODELS 63

between the treatment and control groups that the weights are accounting for. Similarly,
as the variance in the outcomes increases, there is more potential for heterogeneity to be
related to the selection into treatment, making it more difficult to recover the true estimated
effect.2 The scaling factor is a function of the observed data, and is not related to the omitted
confounder. However, the scaling factor serves as an amplification of any bias that would
arise from omitting a confounder.

The key takeaway from Theorem 4.3.1 is that given a researcher-chosen R2 value, the
optimal bias bound in Theorem 4.3.1 is directly estimable from the data. As such, for a
fixed R2 value, researchers can directly calculate the range of possible bias values.

Constructing Confidence Intervals

We now introduce a method to construct valid asymptotic confidence intervals for the
variance-based sensitivity models. Our method builds on the work of Zhao et al. (2019)
and uses a percentile bootstrap to simultaneously accounts for the bias due to omitting a
confounder and the uncertainty associated with estimation. Our approach is distinct from
those in the partial identification literature that require known asymptotic distributions of
the boundaries of the partially identified region (Imbens and Manski, 2004; Aronow and
Lee, 2013); similar to the discussion provided in Zhao et al. (2019), it can difficult to char-
acterize these distributions analytically in our sensitivity framework. Instead, the proposed
bootstrap approach allows researchers to account for sampling uncertainty without explicitly
characterizing the asymptotic distributions of the boundary estimates.

To begin, for a fixed R2, we can define τ̂(w̃) as the weighted estimate, using weights
w̃ ∈ σ(R2). We can equivalently view τ̂(w̃) as an adjusted weighted estimate for some
w̃ ∈ σ(R2):

τ̂(w̃) := τ̂W − Bias(τ̂W | w̃), (4.3)

where Bias(τ̂W | w̃) is the bias of τ̂W , assuming w̃ were the true weights (i.e., Bias(τ̂W | w̃) :=
τ̂W − τ̂(w̃)), assuming the true weights are equal to w̃.

Applying the results from Zhao et al. (2019), for every w̃ ∈ σ(R2), we can construct a
confidence interval for τ(w̃) using a percentile bootstrap:

[L(w̃), U(w̃)] =
î
Qα/2

(
τ̂ (b)(w̃)

)
, Q1−α/2

(
τ̂ (b)(w̃)

)ó
, (4.4)

where τ̂ (b)(w̃) is the adjusted weighted estimator in bootstrap sample b ∈ {1, ..., B}, and
Qα(·) denotes the α-th percentile in the bootstrap distribution. By the following theorem,
[L(w̃), U(w̃)] will be an asymptotically valid (1-α) confidence interval for τ(w̃):

Theorem 4.3.2 (Validity of Percentile Bootstrap)
Under mild regularity conditions (see Assumption 9 in the Appendix), for every w̃ ∈ σ(R2):

lim sup
n→∞

P (τ(w̃) < L(w̃)) ≤ α

2
and lim sup

n→∞
P (τ(w̃) > U(w̃)) ≤ α

2
,

2We note that in settings when var(Yi | Zi = 0) = 0, there is no variation in the outcomes across the control
group. As such, no amount of weighting will alter our estimate.
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where L(w̃) and U(w̃) are defined as the α/2 and 1 − α/2-th quantiles of the bootstrapped
estimates (i.e., Equation (4.4)).

Theorem 4.3.2 states that for any set of weights w̃, the percentile bootstrap can be applied
to estimate valid confidence intervals for an adjusted, weighted estimate τ(w̃). However, as
discussed in the previous section, for a given R2 value, there exists many different sets of
weights w̃ that can be defined from σ(R2). As such, we apply the union method to estimate
a conservative (1− α)% confidence interval CI(α) for τ(w̃):

CI(α) =

ñ
Qα/2

Å
inf

w̃∈σ(R2)
τ̂ (b)(w̃)

ã
, Q1−α/2

Ç
sup

w̃∈σ(R2)

τ̂ (b)(w̃)

åô
. (4.5)

We can estimate CI(α) directly from the bootstrap samples by calculating the minimum
and maximum adjusted weighted estimate for each bootstrap iteration, and then estimating
the α/2 and 1 − α/2-th percentiles across the bootstrap distributions. The extrema of the
adjusted weighted estimate follow directly from the results of Theorem 4.3.1:

inf
w̃∈σ(R2)

τ̂(w̃) = τ̂W − max
w̃∈σ(R2)

Bias(τ̂W | w̃) sup
w̃∈σ(R2)

τ̂(w̃) = τ̂W + max
w̃∈σ(R2)

Bias(τ̂W | w̃)

As such, to estimate valid confidence intervals, researchers can use a percentile bootstrap,
estimating the bias bound and calculate an adjusted point estimate in each bootstrap sample.
We summarize the steps in Figure 4.1.

Conducting the Sensitivity Analysis

To conduct the sensitivity analysis, researchers estimate confidence intervals for increasing
R2 values until an estimated confidence interval just contains the null estimate; the corre-
sponding R2 is denoted as R2

∗. Because the R2 is bounded on an interval [0, 1], researchers
are restricted by the range of values that they can posit for the different R2 values. However,
it can nonetheless be difficult to reason about the plausibility of a given R2 value and the
strength or weakness of confounders on the R2 scale.

Previous papers have suggested the use of benchmarking to assess what may be plausible
sensitivity parameters (Huang, 2022; Hartman and Huang, 2022; Cinelli and Hazlett, 2020;
Hong et al., 2021; Carnegie et al., 2016; Hsu and Small, 2013). To perform benchmarking,
researchers sequentially omit different observed covariates and re-estimate the weights. They
can then directly calculate the error that arises from omitting each covariate and directly
estimate the sensitivity parameters (or bounds for the sensitivity parameters). The estimated
sensitivity parameters from omitting each covariate are then interpreted as the sensitivity
parameters for omitted confounders with equivalent confounding strength to an observed
covariate. If researchers have a strong substantive understanding of covariates that explain
a lot of the variation in the treatment assignment mechanism or outcome, then benchmarking
can be a useful tool for understanding the strength of hypothetical omitted variables.
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Valid Confidence Intervals for the Variance-Based Sensitivity Model

Step 1. Fix R2 ∈ [0, 1) and generate B bootstrap samples of the data.

Step 2. For each bootstrap sample b = 1, ..., B:

1. Estimate weights ŵ
(b)
i and the point estimate τ̂

(b)
W .

2. Calculate ”varb(Yi), ”corb(ŵ(b)
i , Yi), and ”varb(ŵ(b)

i ), where the subscript b de-
notes the quantity calculated over the b-th bootstrap sample.

3. Use the optimal bias bounds (i.e., Equation (4.2)) to calculate the range of
potential point estimates:

τ̂ (b)(w̃) ∈

[
τ̂
(b)
W − max

w̃∈σ(R2)
Bias(τ̂

(b)
W | w̃), τ̂

(b)
W + max

w̃∈σ(R2)
Bias(τ̂

(b)
W | w̃)

]

Step 3. From the B bootstrapped optimal bounds, estimate the α/2 and 1−α/2-th per-
centiles of the minima and maxima values respectively to obtain valid confidence
intervals (i.e., Equation (4.5)).

Figure 4.1: Summary of percentile bootstrap procedure for estimating confidence intervals.

We propose a formal benchmarking procedure for the variance-based sensitivity model.
To begin, let there be p total observed covariates (i.e., X ∈ R

n×p). Then for the j-th
covariate, where j ∈ {1, ..., p}, we define the benchmarked weights w−(j) as the estimated
weights, containing all covariates, except for the j-th covariate. Using w−(j), we can estimate
the benchmarked R2 value for an omitted confounder that is equivalently imbalanced as the
j-th covariate:

R̂2
(j) =

R̂2
−(j)

1 + R̂2
−(j)

, where R̂2
−(j) := 1− var(w

−(j)
i )

var(wi)
. (4.6)

R̂2
(j) represents the R2 value of an omitted variable that has the same amount of residual

imbalance as the j-th covariate.3 More specifically, R2
(j) corresponds to an omitted variable

with the same amount of imbalance, after controlling for X, as the j-th covariate, after
controlling for X−(j).

When interpreting the benchmarking results, it is important to consider that the mag-
nitude of the benchmarked R2 values is determined by the residual imbalance. More con-

3The reason we cannot directly use R̂2
−(j) as an estimate for the benchmarked R2 value comes from the fact

that we must adjust for changes in the baseline variation of the weights between w and w∗. We refer readers
to Cinelli and Hazlett (2020) and Huang (2022) for more discussion on this point.
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cretely, we consider the variables income and educational attainment in the running example.
We expect that both income and educational attainment will be predictive of individuals’
propensity for fish consumption. However, omitting just income may not result in a very
large R2 value, because by balancing educational attainment, we have implicitly controlled
for some of the imbalance in income. The benchmarked R2 parameter thus represents the
setting in which researchers have omitted a variable that, when controlling for all the other
observed variables, has the same amount of residual imbalance as income after controlling
for educational attainment. In cases when researchers wish to consider omitting a variable
similar to a set of collinear variables, they can omit subsets of variables and perform the
same benchmarking exercise.

Formal benchmarking can also be used to assess the plausibility of the event R2 ≥ R2
∗.

More specifically, we can directly compare the benchmarked R̂2
(j) values for j ∈ {1, ..., p} with

the estimated R2
∗ to see how much more or less imbalanced an omitted confounder must be,

relative to an observed covariate, in order to result in an R2 value equal to R2
∗. We refer to

this as the minimum relative imbalance (MRI):

MRI(j) =
R2

∗

R̂2
(j)

.

If the MRI is small (i.e., MRI(j) < 1), the omitted confounder need not be very imbalanced,
relative to the j-th covariate, in order to make a null result plausible. In contrast, if the MRI
is large (i.e., MRI(j) > 1), then the omitted confounder must be more imbalanced than the
j-th observed covariate to make a null result plausible.

Formal benchmarking offers an opportunity for researchers to incorporate their substan-
tive understanding into the sensitivity analysis and provides much-needed interpretability
for the sensitivity framework. In particular, when researchers have strong priors about which
underlying observed variables control the treatment assignment mechanism, formal bench-
marking is very useful for reasoning about the plausibility of an omitted confounder strong
enough to explain observed results in the absence of a true effect.

Illustration on NHANES

In our running example, we begin by varying the R2 parameter across the range [0, 1), and
estimate the corresponding the 95% confidence intervals. We estimate R2

∗ = 0.57, such
that if R2 ≥ 0.57, the intervals contain the null estimate. This implies that if the omitted
confounder explains 57% or more of the variation in the true weights, our estimated effect
of fish consumption on blood mercury levels is no longer significantly different from the
expected distribution under the null.

To assess the plausibility of an omitted confounder resulting in an R2 value of 0.57,
we perform formal benchmarking and estimate benchmarked R̂2 values for each covariate.
Omitting a confounder like race, educational attainment, or income results in the largest
R2 values. More specifically, omitting a confounder with equivalent confounding strength
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to race results in an R2 of 0.19, while omitting a confounder with equivalent confounding
strength to educational attainment or income results in an R2 of 0.17 and 0.14, respectively.
From these results, we see that an omitted confounder would have to explain around 3 times
the variation in true weights as the strongest observed covariate, race, in order for the R2

value to equal the cutoff value. We argue that while mathematically possible, the plausibility
of a confounder resulting in the threshold R2

∗ = 0.57 value is low.
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Figure 4.2: Results from the sensitivity analysis under the variance-based sensitivity model.
We vary the R2 measure across the x-axis and plot the range of estimated ATT values on the
y-axis. The solid bar denotes the point estimate bounds for a specified R2 value, estimated
as the point estimate plus and minus the optimal bias bounds (Theorem 4.3.1). The lighter
intervals represent the 95% confidence intervals. We also plot the benchmarking results for
the observed covariates, where the lines represent the corresponding benchmarked R2 values.

Bounding a Confounder’s Relationship with the Outcome

Previous literature has highlighted two characteristics of the imbalance term in Equation
(4.1) that affect the bias from omitting a variable: (1) the overall magnitude of the the
imbalance term, and (2) the relationship between the imbalance term to the outcomes (e.g.,
Huang (2022); Hong et al. (2021); Cinelli and Hazlett (2020); Shen et al. (2011)). Like
the marginal sensitivity model, the variance-based sensitivity model constrain the overall
magnitude of the imbalance term, and implicitly assume that the imbalance is maximally
correlated with the outcome. In settings when researchers wish to account for this additional
characteristic of the imbalance term, the variance-based sensitivity model can be easily
extended to allow researchers to bound the relationship between the imbalance and the
outcome. In particular, unlike the marginal sensitivity model, in which researchers must solve
a linear programming problem to identify the extrema, there exists a closed-form solution
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for the optimal bias bounds under the variance-based sensitivity model. As such, researchers
can choose to evaluate the optimal bias bounds and associated confidence intervals using less
conservative values of the correlation bound.

While amplification approaches allowing researchers to examine the relationship between
the outcomes and the confounder for a fixed level of imbalance exist for alternative sensitivity
models, many of these methods require introducing additional complexities. (For example,
Rosenbaum and Silber (2009) requires invoking parametric assumptions on the outcomes.)
In contrast, the variance-based sensitivity model allow researchers to easily incorporate ad-
ditional information about the confounder to directly bound the relationship between the
outcome and the imbalance in an omitted confounder. We provide recommendations for
alternative bounds that researchers can use in Appendix C.1, as well as benchmarking pro-
cedure that allows researchers to use observed covariate data to estimate plausible correlation
bounds.

4.4 Relationship to the Marginal Sensitivity Model

We now examine the relationship between the variance-based sensitivity model and the
marginal sensitivity model. We first show that both sets of sensitivity models can be written
as norm-constrained optimization problems. The variance-based sensitivity model implicitly
constrains a weighted L2 norm, while the marginal sensitivity model constrains an L∞ norm.
We demonstrate that by moving away from a worst-case characterization of the error from an
omitted variable, the variance-based sensitivity model can obtain narrower, more informative
bounds. We illustrate the potential for narrower bounds using benchmarked results from the
running example.

Sensitivity Models as an Optimization Problem

Re-formulating the variance-based sensitivity model as an optimization problem under a
bounded norm enables comparison with the marginal sensitivity model, which can be written
as bias maximization problems under a constrained L∞ norm. We argue that constraining
the weighted L2 norm can produce less conservative estimated bounds.

To begin, we show that the variance-based sensitivity model is a bias maximization
problem, given a fixed constraint on a weighted L2 norm.

Theorem 4.4.1 (Weighted L2 Norm Constraint)
Define the individual-level error in the weights as λi := w∗

i /wi. Define the L2,w norm as
follows:

||λ||22,w :=


1

n

n∑
i=1

λ2i · ν(wi) if var(wi) > 0,

∞ else

,
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where ν(wi) is a function of the estimated weights. Then, the variance-based sensitivity model
can equivalently be written as a norm-constrained optimization problem:

max
w̃∈σ(R2)

Bias(τ̂W | w̃) ⇐⇒


max
w̃

Bias(τ̂W | w̃)

s.t. ||λ||2,w ≤
 

k

1−R2
,

where k := 1−R2/E(w2
i ). See Appendix C.2 for proof and details.

Theorem 4.4.1 is especially in concert with the following result from Zhao et al. (2019)
showing that the marginal sensitivity model is constrained L∞ problems:

max
w̃∈ε(Λ)

Bias(τ̂W | w̃) ⇐⇒

{
max
w̃

Bias(τ̂W | w̃)

s.t. Λ−1 ≤ ||λ||∞ ≤ Λ.

These constrained-norm representations provide insight into the benefits expected from the
variance-based sensitivity model. Because the marginal sensitivity model optimizes over the
set of weights defined by a worst-case error, the estimated bounds on the bias always corre-
spond to cases in which all units are exposed to this worst-case error. However, in settings
when one or two subjects are subject to much larger levels of confounding than others, this
can result in an overly pessimistic view of the potential bias (Fogarty and Hasegawa, 2019;
Zhao et al., 2019). In contrast, the variance-based sensitivity model is optimizing over a set
of weights defined by average weighted error, and thus allow a small number of weights to
be exposed to large amounts of error, even at moderate levels of overall confounding.

Comparison of Estimated Bounds

While constrained-norm representations provide intuition for why the variance-based sensi-
tivity model may obtain narrower bounds than the marginal sensitivity model, in practice
it is difficult to directly compare the bounds estimated under the two families of models.
This is because the two approaches are using two different parameters and are fundamentally
characterizing the error from omitting a confounder in a different manner. In the following
subsection, we consider a setting in which researchers can estimate bounds using the true
sensitivity parameter and compare the size of the associated confidence intervals. While in
practice, researchers do not have access to the true sensitivity parameters, this approach
provides intuition for the relative performances of the two sensitivity models.

First, we formalize a condition under which the variance-based sensitivity model will
result in narrower bounds than the marginal sensitivity model. In general, we expect the
variance-based sensitivity model to result in narrower bounds if the worst-case error (Λ)
is much larger than the true average weighted error (proxied by R2). If the difference
in the worst-case error and average weighted error is not very large, then there will not
be much improvement in the estimated bounds from using the variance-based sensitivity
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model. Theorem 4.4.2 provides a maximum threshold for the size of R2 relative to the Λ
value sufficient for strictly narrower bounds under the variance-based sensitivity model.

Theorem 4.4.2 (Narrower Bounds under the Variance-Based Sensitivity Model)
Let ψ(Λ) represent the difference in the estimated point estimate bounds under the marginal
sensitivity model ε(Λ) for a given Λ ≥ 1:

ψ(Λ) := max
w̃∈ε(Λ)

∑
i:Zi=0 YiZiw̃i∑
i:Zi=0 Ziw̃i

− min
w̃∈ε(Λ)

∑
i:Zi=0 YiZiw̃i∑
i:Zi=0 Ziw̃i

.

Then if the true R2 parameter is lower than the following threshold,

R2 ≤ ψ(Λ)2

4 (1− cor(wi, Yi | Zi = 0)2)︸ ︷︷ ︸
Correlation Bound

· var(wi | Zi = 0)var(Yi | Zi = 0)︸ ︷︷ ︸
Scaling Factor

+ψ(Λ)2
, (4.7)

the bounds under the variance-based sensitivity model will be narrower than the bounds for
the marginal sensitivity model.

Besides the worst-case error Λ, the R2 threshold is determined by the correlation between
the estimated weights and the outcome, cor(wi, Yi | Zi = 0), and the scaling factor, var(wi |
Zi = 0) · var(Yi | Zi = 0). These components affect the estimated bounds under both sets of
sensitivity models. Both cor(wi, Yi | Zi = 0) and the scaling factor are direct inputs into the
optimal bias bounds under the variance-based sensitivity model. In addition, increases in
these quantities either lead to larger outcome values, or more extreme weights; because the
optimal bounds under the marginal sensitivity model are estimated by scaling the weights
and outcomes by Λ (or Λ−1), ψ(Λ) will also increase.

Theorem 4.4.2 does not guarantee that the variance-based sensitivity model will always
result in narrower bounds than the marginal sensitivity model, but we consider two specific
scenarios that highlight the practical advantages from using variance-based sensitivity model.
First, we consider an asymptotic setting. We show that in many cases, the worst-case error
Λ will diverge to infinity, regardless of the omitted variable’s confounding strength. In
contrast, the R2 parameter is a direct function of the confounding strength and retains a
more stable interpretation across different data scales. Second, we consider a finite-sample
setting, in which the outcomes and probability of treatment are highly correlated (which
we refer to as limited outcome overlap). In this setting, the marginal sensitivity model may
produce narrower intervals, but these intervals can be misleadingly narrow and fail to provide
nominal coverage. In contrast, while the intervals under the variance-based sensitivity model
will be wider in this setting, the intervals adequately account for the limited outcome overlap
and continue to provide nominal coverage.

Remark. Several recent extensions of the marginal sensitivity model allow researchers to
mitigate some the conservative nature of the method by adding in additional constraints be-
yond bounding the worst-case error (Kallus and Zhou, 2018; Dorn and Guo, 2021; Dorn et al.,
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2021). However, these methods usually require adding additional sensitivity parameters or
performing some form of outcome modeling. The variance-based sensitivity model offers
stable and informative bounds via a one-parameter sensitivity analysis without additional
assumptions, constraints, or complexities.

Infinite Worst-Case Error in Asymptotic Settings

We begin by considering the asymptotic setting. We show that when the omitted confounder
results in an error that can be arbitrarily small or large and the outcomes Yi are unbounded,
the asymptotic confidence intervals for the variance-based sensitivity model will necessarily
be narrower than the confidence intervals estimated under the marginal sensitivity model.
Consider the following instructive example.

Example 4.4.1 (Behavior of Λ for a Logit Model)
Assume researchers use a logit model to estimate the weights using Xi, but omit a confounder
Ui. The estimated and ideal weights take on the following forms:

ŵi = exp(γ̂⊤Xi) ŵ∗
i = exp(γ̂∗⊤Xi + β̂Ui)

Then let Λ̂ be the maximum error across our observed sample:

Λ̂ := max
1≤i≤n

{ŵ∗
i /ŵi, ŵi/ŵ

∗
i }.

Assume
[
Xi, Ui

] iid∼ MVN(0, I). Then E(Λ̂) → ∞ as n→ ∞:

lim
n→∞

E(Λ̂)
exp(

√
2ν2 log(n))

≥ 1,

where ν2 = (γ∗− γ)⊤(γ∗− γ)+β2 (where γ∗, γ, and β represent the population counterparts
to the estimated coefficients), and the results follow immediately from Wainwright (2019)’s
tail bound on normally distributed random variables. See Appendix C.2 for more details.

Example 4.4.1 highlights that the worst-case error will increase towards infinity as the
sample size grows, regardless of the confounding strength of the omitted variable (represented
by β̂). The omitted confounder could explain little of the treatment assignment process, but
the worst-case bound on the error would still be infinitely large. This means that researchers
would have to specify an infinitely large Λ value for the marginal sensitivity model to be
valid. In other words, while we can find a Λ̂ in an observed sample that provides an upper
bound on the difference between the realized and the ideal weights, the marginal sensitivity
model will not hold for any value of Λ in the population (Jin et al., 2022). Intuitively, this
occurs because Λ̂ is a function of the largest Ui value in the sample: as the sample size
increases, the probability of observing an extreme Ui value increases.
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A secondary issue arises from the decoupling of the magnitude of the sensitivity parameter
and the underlying confounding strength of the omitted variable. In particular, reasoning
about whether or not Λ values is large or small is can be challenging. Even with the aid of
benchmarking, researchers can at best estimate the worst-case error that arises from omitting
different covariates, but reasoning about whether or not it is plausible for such an error to
arise from an omitted variable amounts to reasoning about whether or not it is plausible for
potential outliers to occur. Furthermore, as the sample size increases, researchers must take
into account the potential for more outliers to occur.

In contrast, we can calculate the R2 value for the variance-based sensitivity model under
the same setting as Example 4.4.1. It is a function of γ̂, γ̂∗, and β̂ that does not depend on
the sample size.

Example 4.4.2 (Behavior of R2 for a Logit Model)
Consider the same setting as Example 4.4.1. Then, the R2 value can be written as follows:

R2 = 1− exp(γ̂⊤γ̂)− 1

exp(γ̂∗⊤γ̂∗ + β̂2)− 1
· exp(γ̂⊤γ̂)

exp(γ̂∗⊤γ̂∗ + β̂2)
.

Example 4.4.1 gives one setting in which Λ will be infinitely large, regardless of the
confounding strength of the omitted variable. More generally, the following corollary to
Theorem 4.4.2 shows that under any setting when the error from omitting a confounder
can take on values that are arbitrarily small or large, the variance-based sensitivity model
necessarily produces narrower bounds in sufficiently large samples.

Corollary 4.4.1 (Narrower Bounds under the Variance-Based Sensitivity Model)
Consider the set of confounders, in which for all δ > 0, P (w∗

i /wi < δ) > 0, or P (w∗
i /wi >

δ) > 0. Then, if the outcomes are unbounded, ψ(Λ) will diverge in probability to infinity,
and the threshold from Theorem 4.4.2 will converge in probability to 1:

ψ(Λ)2

4(1− cor(wi, Yi)2) · var(wi)var(Yi) + ψ(Λ)2
p→ 1

Because R2 < 1 by definition, for sufficiently large n, the variance-based sensitivity model
will produce narrower bounds.

Corollary 4.4.1 highlights that in certain asymptotic settings, if the outcomes are un-
bounded, the marginal sensitivity models will result in infinitely large bias bounds. This
will occur, regardless of whether the omitted confounder is strong or weak. In contrast,
because the variance-based sensitivity model is not using a worst-case characterization of
error, the resulting bias bounds will be less susceptible to extreme values and be narrower
by construction.
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Limited Overlap in Finite-Samples

We now consider a finite-sample setting. We show that paradoxically, in certain finite-
samples, the marginal sensitivity model can result in narrower bounds than the variance-
based sensitivity model even when Λ is very large. However, the narrower bounds come
with a risk of substantial undercoverage, especially when the sample size is small or there is
limited outcome overlap. In these settings, the variance-based sensitivity model will tend to
return wider intervals, but maintain nominal coverage.

The key to this phenomenon is a property of the marginal sensitivity model, referred to
as sample boundedness. Sample boundedness implies that even at infinitely large Λ values,
the worst-case bounds under the marginal sensitivity model approach but cannot exceed the
range of the observed control outcomes (i.e., limΛ→∞ ψ(Λ) ≤ maxi:Zi=0 Yi −mini:Zi=0 Yi).

In contrast, the variance-based sensitivity model is not inherently sample bounded. In
settings with relatively large amounts of confounding, the marginal sensitivity model will
have narrower intervals than the variance-based sensitivity model, since as R2 increases to-
wards 1, the estimated bounds under the variance-based sensitivity model will be adequately
wide. However, sample boundedness may prohibit the construction of valid confidence inter-
vals unless in the absence of a key implicit assumption on the distribution of the unobserved
potential outcomes. Consider the following toy example:

Example 4.4.3 (Misleading Optimism from Sample Boundedness)
Consider the following population of 4 units, with the following potential outcomes, treatment
assignment, and the estimated probability of treatments for each unit:

i Yi(0) Yi(1) P̂ (Zi = 1) Zi

1 -10 -10 0.1 0
2 5 5 0.2 0
3 10 10 0.9 1
4 20 20 0.95 1

The true ATT is zero, but the estimated ATT is equal to 14.6, so substantial confounding is
present. However, since the sample bounds for the ATT are the interval [10, 25], no value of
Λ can produce an estimated interval (under the marginal sensitivity model) containing zero,
erroneously suggesting the presence of a true effect highly robust to substantial confounding.

While this example is somewhat contrived, it highlights the problems with sample bounded-
ness if the potential outcome ranges in the two groups have limited overlap, which may occur
when potential outcomes are strongly correlated with the probability of treatment. For a
formal characterization of this outcome overlap condition, see Appendix C.1. When there
exists limited outcome overlap, estimated intervals from the marginal sensitivity model may
be misleadingly optimistic, especially for dramatic levels of potential confounding, but inter-
vals constructed under the variance-based sensitivity model, which are not sample bounded,
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are not affected. Figure 4.3 illustrates the behavior and coverage rates of both sets of sen-
sitivity models under varying amounts of outcome overlap and sample sizes in an empirical
example, described in greater detail in Appendix C.1.
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Figure 4.3: Coverage rates for the marginal sensitivity model and the variance-based sen-
sitivity model, assuming an oracle bias setting when researchers have full knowledge of the
true underlying sensitivity parameter. The x-axis represents a parameter σ2

v , which repre-
sents how much outcome overlap there is between the treatment and control groups (i.e., as
σ2
v increases, the amount of outcome overlap increases). See Appendix C.1 for more details

on the data generating process.

Remark. We note that sample boundedness is not necessarily a negative feature in the
context of estimation. The bias-variance tradeoff of using a stabilized weighted estimator has
been extensively studied (e.g., Robins et al. (2007)). However, in the context of a sensitivity
analysis, in which we are explicitly interested in examining the potential bias that can arise
under varying levels of confounding, requiring sample boundedness can lead to misleading
conclusions, and potential issues with outcome overlap should be considered carefully when
interpreting results.

Illustration on NHANES

We now conduct formal benchmarking for the variance-based models and the marginal sen-
sitivity model in our running example. We then estimate the corresponding bounds and
intervals under both approaches. See Figure 4.4 for a visualization. We see that for each
of the covariates, omitting a confounder like any of the observed covariates would result in
wider bounds under the marginal sensitivity model than the variance-based models.
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Notably, under the marginal sensitivity model, omitting a confounder like educational
attainment would be sufficient to explain the entire observed effect under the null hypothesis
of no effect. In contrast, under the variance-based sensitivity model, omitting a confounder
with equivalent confounding strength to any of the observed covariates would not be sufficient
to explain the observed data under the null. While the average error from omitting a variable
like educational attainment is relatively low, the maximum error that occurs is relatively
large. The marginal sensitivity model, which assumes such a maximal error could occur in
the unobserved confounder for most or all data points, thus produces much wider intervals
than the variance-based model, which is much less responsive to individual outliers.
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Figure 4.4: Estimated intervals for both the marginal sensitivity model (in yellow) and the
variance-based sensitivity model (in light blue), and the variance-based sensitivity model,
using a less conservative correlation bound (in dark blue). The darker intervals represent the
point estimate bounds, while the lighter intervals represent the 95% confidence intervals. The
intervals are estimated using the benchmarked Λ and R2 values for each covariate, and are
interpreted as the resulting intervals for an omitted confounder with equivalent confounding
strength to the observed covariate.

We also estimate intervals (and bounds) under the variance-based sensitivity model using
a relaxed correlation bound. In particular, we choose the correlation bound by benchmark-
ing an optional correlation parameter, giving the correlation between the outcome and the
imbalance in an omitted confounder, to the observed correlation between the outcome and
each observed covariate. (See Appendix C.1 for more details.) By accounting for the re-
lationship between the confounder and the outcome, we are able to obtain much narrower
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intervals. In particular, we see that even in cases where a potential omitted confounder is
highly imbalanced (e.g., omitting a confounder like age results in an R2 value of 0.12, and
Λ value of 2.1), the overall bias that occurs from omitting it may be relatively low if the
imbalance is largely unrelated to the outcome. By considering this additional dimension of
the bias–which can be easily done using the variance-based sensitivity model– researchers
are able to better characterize the types of confounders that may lead to large amounts of
bias and obtain a more holistic understanding of the sensitivity in their estimated effects.

4.5 Conclusion

We have introduced a novel sensitivity model, the variance-based sensitivity model, which
characterizes the error from omitting a confounder by using the distributional differences
between the estimated weights and true weights. We show that the variance-based sensitivity
model can be parameterized using an R2 measure that represents the degree of residual
imbalance in an omitted confounder, and provide methods for benchmarking the R2 value of
an omitted confounder against residual imbalances for observed covariates. We also derive a
closed-form solution for the maximum possible bias and introduce a method for estimation
of asymptotically valid confidence intervals under the sensitivity model.

We also formalize the connection between the proposed sensitivity model and existing
sensitivity analyses. We highlight that the variance-based sensitivity model has several
notable advantages over the existing approaches that rely on worst-case bounds on the con-
founding strength. First, by characterizing bias in terms of distributional differences instead
of a worst-case error bound, the variance-based sensitivity model can estimate narrower, less
conservative bounds. Second, we show empirically that the variance-based sensitivity model
obtains nominal coverage even in finite sample settings where the standard marginal sensi-
tivity model dramatically undercovers due to issues with outcome overlap. Finally, because
the variance based sensitivity model admits a closed-form solution for the optimal bias, we
can introduce a natural two-parameter extension that uses constraints on the relationship
between the omitted confounder and the outcome to produce narrower bounds.

We suggest several directions for future work. First, we demonstrated that variance-based
sensitivity model, like the marginal sensitivity model, can be written as a norm-constrained
optimization problem. Exploring other possible norms under which to constrain unobserved
confounding could lead to a broad unified sensitivity framework, helping contextualize a
wider variety of different sensitivity methods with their own strengths and weaknesses. Sec-
ond, it is natural to ask what factors under a researcher’s control at the design stage may
influence the degree of robustness to unmeasured bias exhibited under the variance-based
sensitivity analysis. While the closed form for the optimal bias bound already provides
insights in this direction, developing a metric akin to design sensitivity for matched stud-
ies (Rosenbaum, 2004, 2010b) would provide valuable further guidance about how to design
weighting estimators for maximum robustness. Finally, while we focused on a choice between
bounding a weighted average error and bounding a worst-case error, future work could in-
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corporate both constraints in the same study. We anticipate that this would result in further
narrowing of sensitivity bounds.
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Appendix A

Sensitivity Analysis for Generalizing
Experimental Results

A.1 Extensions and Additional Discussion

Extension of Sensitivity Framework for Balancing Weights

The proposed sensitivity framework can be extended for balancing weights. Balancing
weights directly optimize for covariate balance (i.e., Hainmueller (2012); Ben-Michael et al.
(2021); Wang and Zubizarreta (2020), to name a few). There is a connection between bal-
ancing weights and propensity scores; for example, Wang and Zubizarreta (2020) show that
balancing weights are a more general formulation of regularized propensity scores.

We argue that for the class of balancing weights that meet the following conditions, the
sensitivity framework can be directly applied:
Condition 1. ES(wi)/ES(w

∗
i ) = 1

Condition 2. ES(w
∗
i | Xi) = wi

When Condition 1 is met, this implies that the bias decomposition introduced in Theorem
2.3.1 will hold. When Condition 2 is met, this implies that the bounds derived for R2

ε and
ρε,τ will apply. Condition 1 states that the estimated weights and the ideal weights must
be centered at the same value. This is not a very stringent condition, as most weights
(by definition) will be centered at mean 1. Condition 2 states that by conditioning on the
observed covariates Xi, the ideal weights must be centered at the estimated weights wi. The
sensitivity analysis can still be applied to balancing weights that meet Condition 1, but not
2; however, the estimated bounds on the parameters may not necessarily hold.

Extended Details on Bounding σ2τ

To begin, decompose σ2
τ as:

σ2
τ = varS(Yi(1)) + varS(Yi(0))− 2covS(Yi(1), Yi(0))
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The decomposition illustrates that the magnitude of treatment effect heterogeneity will be
driven by two factors: (1) the total variation in the outcomes (i.e., varS(Yi(1))+varS(Yi(0))),
and (2) how correlated the potential outcomes are. Because we cannot estimate the covari-
ance between the potential outcomes, σ2

τ can never be identified. However, Ding et al. (2019)
showed that sharp bounds for σ2

τ can be obtained by applying Fréchet-Hoeffding bounds Ho-
effding (1941); Fréchet (1951):∫ 1

0

{
F−1
Y1

(u)− F−1
Y0

(u)
}
du ≤ σ2

τ ≤
∫ 1

0

{
F−1
Y1

(u)− F−1
Y0

(1− u)
}
du, (A.1)

where FY1 and FY0 represent the empirical cumulative distribution functions of the treatment
and control potential outcomes, respectively. Intuitively, the lower bound of σ2

τ is reached
when the potential outcomes are perfectly correlated (i.e., corS(Yi(1), Yi(0)) = 1). The
upper bound of σ2

τ is reached when the potential outcomes are perfectly anti-correlated
(i.e., corS(Yi(1), Yi(0)) = −1). As such, researchers may use the upper bound detailed in
Equation A.1 as a conservative estimate for σ2

τ . The bound in Equation (A.1) will always
hold. However, it can span a large range of values. If researchers are willing to impose
additional assumptions, a tighter bound on σ2

τ can be obtained.
We will discuss two examples of assumptions that researchers may wish to impose. Figure

A.1 provides a summary.

Directional sign of the correlation between τi and Yi(0): Ding et al. (2019) and
Raudenbush and Bloom (2015) show that information about the correlation between the
individual-level treatment effect and the control potential outcomes could be inferred from
m (i.e., the ratio of variance between the treatment and control outcomes). More specifically,
when m < 1 (i.e., the variance of the control outcomes is greater than the variance of the
treatment outcomes), then the correlation between the individual treatment effect and the
control potential outcome is negative, and the lower bound on σ2

τ can be tightened:1

varS(Yi(1)) ≤ σ2
τ (A.2)

Unfortunately, the converse cannot be shown to be true (i.e., m > 1 does not necessarily
imply a positive relationship). However, researchers may have substantive knowledge to
justify a positive relationship. For example, in the original JTPA study, researchers compared
the estimated impact of jobs training programs across women by previous earnings and

1This follows simply from the fact that we may rewrite the decomposed treatment effect heterogeneity as:

σ2
τ = varS(Yi(1)) + varS(Yi(0))− 2cov(Yi(1), Yi(0))

= varS(Yi(1))− varS(Yi(0))− 2covS(τi, Yi(0))

Because σ2
τ ≥ 0, then 2covS(τi, Yi(0)) ≤ varS(Yi(1))− varS(Yi(0))︸ ︷︷ ︸

(∗)

. When m < 1, this implies that the term

in (∗) is going to be negative, which in turn, implies covS(τi, Yi(0)) ≤ 0.
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Summary of Assumptions

covS(Yi(0), τi)

σ2
τ,min =

∫ 1

0

{
F−1
Y1

(u)− F−1
Y0

(u)
}
du

σ2
τ,max = varS(Yi(1))− varS(Yi(0))

covS(Yi(1), Yi(0))

σ2
τ,min = varS(Yi(1)) + varS(Yi(0))

σ2
τ,max =

∫ 1

0

{
F−1
Y1

(u)−F−1
Y0

(1−u)
}
du

σ2
τ,min = varS(Yi(1))

σ2
τ,max = varS(Yi(1)) + varS(Yi(0))

< 0

> 0

< 0

> 0

Figure A.1: Summary of assumptions that researchers may invoke to help tighten the bound
on σ2

τ . The above diagram provides the tightened minimum and maximum values for σ2
τ ,

depending on the assumption researchers wish to invoke. Researchers can estimate m to
check if m < 1. If m < 1, then it is guaranteed that covS(Yi(0), τi) < 0. Substantive
knowledge can be used to help justify the different assumptions.

employment history (Bloom et al. (1993)). They found that women who had a higher hourly
wage in their work history had a higher estimated impact from accessibility to jobs training
programs. Similarly, women who came from families with greater household income also
saw a greater impact from jobs training programs. As such, we assume there exists a non-
negative association between the individual-level treatment effect and the outcomes under
control (i.e., cov(Yi(0), τi) > 0)

In cases where researchers are willing to assume that covS(τi, Yi(0)) ≥ 0, the upper bound
of σ2

τ becomes:
σ2
τ ≤ varS(Yi(1))− varS(Yi(0)) (A.3)

Directional sign of the correlation between potential outcomes: Alternatively,
researchers may assume information about the relationship between Yi(1) and Yi(0). In
particular, if researchers believe that the correlation between Yi(1) and Yi(0) is non-negative,
then a tighter upper bound may be obtained on σ2

τ :

σ2
τ ≤ varS(Yi(1)) + varS(Yi(0)) (A.4)
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Alternatively, if researchers assume the correlation between Yi(1) and Yi(0) is negative, then
a tighter lower bound is obtained:

varS(Yi(1)) + varS(Yi(0)) ≤ σ2
τ (A.5)

We note that in order for the correlation between Yi(1) and Yi(0) to be negative, cov(Yi(0), τi)
must be negative.2 (The converse is not true–i.e., cov(τi, Yi(0)) may be negative, without
cov(Yi(1), Yi(0)) < 0.)

These two assumptions can be combined in conjunction to help tighten the bound on σ2
τ .

We recommend researchers first estimate m to determine whether or not cov(Yi(0), τi) must
be negative, which can help narrow down the plausible assumptions that can be used. A
summary is provided in Figure A.1.

Another approach to tighten the bound on plausible σ2
τ values is to directly model the

individual-level treatment effect (e.g., see Athey et al. (2019)) Many existing approaches
leverage flexible, machine learning methods to estimate τ̂i without relying heavily on para-
metric assumptions, such as linearity. Therefore, researchers can model τ̂i, and then directly
estimate varS(τ̂i) to understand what may be plausible values for σ2

τ . Because we are only
concerned about treatment effect heterogeneity across the experimental sample, this can be
especially advantageous in settings where researchers have a richer set of covariates within
the experimental sample that may not be measured across the population.3

We highlight two ways researchers can leverage parametrically modeling τi to help bound
σ2
τ . First, similar to Ding et al. (2019), researchers may use the estimated varS(τ̂i) and

posit how many times larger the actual variation in individual-level treatment effect is. In
general, we caution researchers from directly using varS(τ̂i) as the estimate for σ2

τ . Even in the
scenario that the true conditional expectation of the individual-level treatment effect is used
to estimate τi, varS(τ̂i) will be an underestimation of the true variation in the individual-level
treatment effect.4 The second way researchers can benefit from parametrically modeling τi is

2This follows from the following:

cov(Yi(0), Yi(1)) < 0 =⇒ cov(Yi(0), Yi(0)) + cov(Yi(0), τi) < 0

=⇒ cov(Yi(0), τi) < −var(Yi(0)) < 0

3We note that in cases when researchers have access to a rich set of covariates across both the population
and the experimental sample and strongly believe that they can accurately parametrically model τi, it may
be advantageous to use a doubly robust estimator, instead of just the weighted estimator. (See Section A.1
for discussion.)

4This can be formalized in the following. Assume g(Xi) = E(τi | Xi). Thus, we may decompose τi into the
component that can be explained by g(Xi), and the component that cannot:

τi = E(τi | Xi) + ui

Because the covariance between ui and the estimated τ̂i values must be 0: σ2
τ = varS(τ̂i) + varS(ui), and

σ2
τ ≥ varS(τ̂i).
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by using τ̂i to help aid the substantive justification of one of the assumptions used to tighten
the bounds on σ2

τ . For example, if researchers wish to assume that covS(Yi(0), τi) > 0, they
can use the estimated τ̂i to check if covS(Yi(0), τ̂i) is positive.

Extreme Scenario Analysis

We propose an extreme scenario analysis for researchers to evaluate the bias when the error
term εi is maximally correlated to the individual-level treatment effect. Under this scenario,
the maximum values that ρε,τ and R2

ε (referred to as ρmax and R2
max, respectively) can take

on will be a function of 1− corS(wi, τi)
2:

ρ2max = R2
max = 1− corS(wi, τi)

2

As such, evaluating the bias at
(
ρmax, R

2
max

)
will result in an upper bound on the bias.

In practice, this can be an extremely conservative estimate of the bias. Researchers
can choose to evaluate less conservative estimates of

(
ρmax, R

2
max

)
by relaxing how much

variation in the treatment effect they believe the true weights w∗
i can explain. More detail is

provided in Appendix A.1. More specifically, Miratrix et al. (2018) demonstrated that the
survey weights from a survey experiment were weakly correlated with the treatment effect
heterogeneity. For example, in the JTPA application, calculating the extreme scenario bound
using our conservative estimate of corS(wi, τi) results in a bound of 0.99 for the maximum
value ρε,τ and R2

ε. The extreme scenario would arise if the error term explained 99% of the
variation in the individual-level treatment effect and the ideal weights.

The extreme scenario bound allows researchers to evaluate the bias when the error term
εi explains all residual variation in the individual-level treatment effect. When ρε,τ = ρmax,
the maximum value of R2

ε is equal to 1− corS(wi, τi)
2. However, we can use Lemma 2.3.2 to

show that when ρε,τ is equal to the upper bound of 1 − corS(wi, τi)
2, then R2

ε can actually
take on a range of values, defined by the following:

R2
max = 1−

(
corS(wi, τi) · corS(w∗

i , τi)±
»

(1− corS(w∗
i , τi)

2) · (1− corS(wi, τi)2)
)2

(A.6)

Equation (A.6) represents the degree of imbalance that must be present in order for ρε,τ to
equal to the upper bound of ρmax. However, Equation (A.6) depends on corS(w

∗
i , τi) (i.e.,

the relationship between the true selection weights w∗
i and the individual-level treatment

effect), which cannot be estimated. Evaluating Equation (A.6) for the extreme case that
|cor(w∗

i , τi) = 1| removes the dependency on cor(w∗
i , τi) and results in the upper bound

proposed earlier:
R2

max ≤ 1− corS(wi, τi)
2

Researchers may not wish to assume that cor(w∗
i , τi) is at −1 or 1. As such, evaluating

Equation (A.6) at lower values of cor(w∗
i , τi) will result in a less conservative bound on R2

ε.
One approach researchers can take to posit plausible values for cor(w∗

i , τi) is by using the
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estimated cor(wi, τi) and specifying how much additional variation in τi they believe w∗
i

is able to explain. For example, if ”cor(wi, τi) is very low (i.e., ≈ 0.1), it may be unlikely
that the true weights w∗

i would be 10× more correlated with the individual-level treatment
effect, such that cor(w∗

i , τi) ≈ 1. This allows researchers to obtain less conservative estimates
of an extreme scenario bound, depending on what they deem is a “reasonable” choice for
corS(w

∗
i , τi).

Accounting for Uncertainty in the Sensitivity Tools

To account for potential changes in inference from omitting a variable, we extend the per-
centile bootstrap framework proposed in Huang and Pimentel (2022) and Zhao et al. (2019).
More specifically, we can define the adjusted weighted estimator as:

τ̂ ∗W (R2
ε, ρε,τ ) := τ̂W + Bias(τ̂W | R2

ε, ρε,τ , σ
2
τ ),

and estimate confidence intervals around the adjusted weighted estimator for a grid of
{R2

ε, ρε,τ , σ
2
τ} values. They can then identify the maximum bias that can occur before the

intervals contain the null estimate, which can be then be used to define the killer confounder
region. We provide the technical details of the procedure for a fixed set of values (R2

ε, ρε,τ , σ
2
τ )

below.

Furthermore, we note that researchers may calculate the sensitivity tools over repeated
bootstrap iterations to account for estimation uncertainty associated with the robustness
value and the formal benchmarking results.

Details on Augmented Weighted Estimators

Interpreting the Parameters

Correlation between εi and ξi (i.e., ρε,ξ) The correlation term between εi and ξi rep-
resents the relationship between the error in the weight estimation, and the error in the
treatment effect modeling. In other words, ρε,ξ is a measure for how related the residual
imbalance in the omitted confounder Ui is to the residuals in the individual-level treatment
effect model. In general, we expect |ρε,ξ| to be less than |ρε,τ | because the residual imbalance
in the omitted confounder is likely to be less correlated to the residuals ξi than the overall
individual-level treatment effect τi.

We can extend Lemma 2.3.2 to bound ρε,ξ on the following range:[
−
»
1− corS(wi, ξi),

»
1− corS(wi, ξi)

]
.

If the estimated weights wi are highly correlated with the residuals ξi, then the range of
values that ρε,ξ may take on will be more restricted.
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Valid Confidence Intervals

Step 1. Fix some (R2
ε, ρε,τ , σ

2
τ ). Generate B bootstrap samples of the data.

Step 2. For each bootstrap sample b = 1, ..., B:

1. Estimate weights ŵ
(b)
i and the point estimate τ̂

(b)
W .

2. Using the fixed σ2
τ value, calculate”corb(ŵ(b)

i , τi), and ”varb(ŵ(b)
i ), where the

subscript b denotes the quantity calculated over the b-th bootstrap sample.

3. Using the bootstrapped quantities, calculate the adjusted weighted esti-
mator for the b-th bootstrap:

τ̂
∗(b)
W (R2

ε, ρε,τ , σ
2
τ ) := τ̂

(b)
W + Bias(τ̂

(b)
W | R2

ε, ρε,τ , σ
2
τ )

Step 3. From the B bootstrapped optimal bounds, estimate the α/2 and 1 − α/2-
th percentiles of the minima and maxima values respectively to obtain valid
confidence intervals:

CI(α) =
î
Qα/2(τ̂

∗(b)
W (R2

ε, ρε,τ , σ
2
τ ), Q1−α/2(τ̂

∗(b)
W (R2

ε, ρε,τ , σ
2
τ )
ó
,

where lim inf
n→∞

P (τ ∗W ⊆ CI(α)) ≥ 1− α.

Table A.1: Procedure for estimating valid confidence intervals.

Variation in ξi (i.e., σ
2
ξ) σ2

ξ is the total variation leftover in the treatment effect hetero-
geneity that is not explained by the estimated treatment effect model. σ2

ξ is often referred to
in the literature as the idiosyncratic treatment effect variation (Ding et al. (2019); Djebbari
and Smith (2008)). σ2

ξ can be written as a function of σ2
τ :

σ2
ξ = σ2

τ − varS(τ̂i)− 2covS(τ̂i, ξi),

where both var(τ̂i) and cov(τ̂i, ξi) can be estimated from observed data. Thus, researchers
can use the same bounds derived in Section 2.3 to estimate an upper bound for σ2

τ (denoted
as σ2

τ,max, and bound σ2
ξ in the following manner:

σ2
ξ ≤ σ2

τ,max − varS(τ̂i)− 2covS(τ̂i, ξi) (A.7)

Alternatively, researchers can choose to bound σ2
ξ directly. For example, the bound from

Equation (A.1) can be extended for the residuals across the potential outcomes (Ding et al.,
2019). The derived bounds can be sharpened by invoking additional assumptions on the
residuals between the potential outcomes.
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Summary of Sensitivity Framework

We summarize the sensitivity analysis framework for augmented weighted estimators below.

Summary of Sensitivity Framework for Augmented Weighted Estimators

Step 1. Estimate a conservative upper bound for σ2
ξ (i.e., σ2

ξ,max).

Step 2. Using σ2
ξ,max, estimate ‘corS2

(wi, ξi) (as a conservative bound for cor2S(wi, ξi)).

Step 3. Vary ρε,ξ from −
»
1−‘corS2

(wi, ξi) to
»

1−‘corS2
(wi, ξi).

Step 4. Vary R2
ε from the range of [0, 1).

Step 5. Evaluate the bias.

Relationship with Sensitivity Analysis from Nguyen et al. (2017)

Consider the case in which only the treatment effect heterogeneity is modeled, using τ̂(Xi).
Denote this estimator as τ̂model. The bias formula for failing to account for Ui in the
individual-level treatment model is:

Bias(τ̂model) = ρw∗,ξ ·
»

varS(w∗
i ) · σ2

ξ , (A.8)

where ρw∗,ξ := corS(w
∗
i , ξi). If we assume the following linear model:

E(τi) = τ + βXXi + βUUi,

where Xi |=Ui | Si, then Equation (A.8) is equivalent to the bias formula from Nguyen et al.
(2017):

βU ·
(
E(Ui|Si = 0)− E(Ui|Si = 1)

)
Proof: Assume we estimate the following τ̂(Xi) model:

τ̂(Xi) := βXXi

This is equivalent to fitting two linear regressions to the control and treatment potential
outcomes, using only Xi. As such,

ξi = τi − τ̂(Xi) = βUUi

Therefore, using the bias formula:

corS(w
∗
i , ξi) ·

»
varS(w∗

i ) · σ2
ξ
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≡covS(ξi, w
∗
i )

=E (βUUi · w∗
i |Si = 1)− E(βUUi|Si = 1) · E(w∗

i |Si = 1)

Using the decomposition of w∗
i = wi · P (Ui|Si = 0)/P (Ui|Si = 1) from Lemma A.2.1:

=E
Å
βUUi · wi ·

P (Ui|Si = 0)

P (Ui|Si = 1)

∣∣∣∣Si = 1

ã
− E(βUUi|Si = 1) · E(w∗

i |Si = 1)

=E(wi|Si = 1) · E
Å
βUUi ·

P (Ui|Si = 0)

P (Ui|Si = 1)

∣∣∣∣Si = 1

ã
−

E(βUUi|Si = 1) · E(w∗
i |Si = 1)

=E(wi|Si = 1) · βU · E
Å
Ui ·

P (Ui|Si = 0)

P (Ui|Si = 1)

∣∣∣∣Si = 1

ã
︸ ︷︷ ︸

:=E(Ui|Si=0)

−

βU · E(Ui|Si = 1) · E(w∗
i |Si = 1)

By definition of balancing weights:

=E(wi|Si = 1) · βU · E (Ui | Si = 0)− βU · E(Ui | Si = 1) · E(w∗
i |Si = 1)

=βU ·
Å
E (Ui | Si = 0)− E(Ui | Si = 1)

ã
,

which is equivalent to the expression from Nguyen et al. (2017). □

Tools for Sensitivity Analysis for the Augmented Weighted Estimator

Robustness Value An analogous robustness value to the one introduced in Section 2.3
can be derived for the augmented weighted estimator. In particular:

RV Aug
q =

1

2

Ä»
b2q + 4bq − bq

ä
, where bq =

q2 ·
Ä
τ̂Aug
W

ä2
σ2
ξ · var(wi)

The primary difference between RV Aug
q and the previously proposed RVq is that the robust-

ness value for the augmented weighted estimator is a function of σ2
ξ , instead of σ2

τ . This
highlights the fact that the relative robustness of the augmented weighted estimator, com-
pared to the weighted estimator, depends directly on how much variation is explained by
the individual-level treatment effect model τ̂i.

Extreme Scenario Analysis In the augmented weighted estimator setting, the extreme
scenario analysis represents the case in which the error term εi is able to explain all resid-
ual variation in the idiosyncratic treatment effect (i.e., ρ2ε,ξ = 1 − cor(wi, ξi)

2). Thus, the
maximum parameter values may be evaluated at ρ2ε,ξ = R2

ε = 1 − cor(wi, ξi)
2. In practice,
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the correlation between the estimated weights and the residual component of the treatment
effect heterogeneity, unexplained by the observed covariates, is likely to be relatively low.
As such, we expect the extreme scenario analysis to be conservative in nature. Researchers
can employ similar methods to the weighted estimator case to evaluate less conservative
scenarios (see Section A.1).

Formal Benchmarking To formally benchmark the sensitivity parameters in the aug-
mented weighted estimator framework, we must also account for the error from misspecifying
the treatment effect heterogeneity model. More specifically, let τ̂(X

−(j)
i ) be the estimated

individual-level treatment effect, omitting covariates X
−(j)
i . Then, define the following error

term:
ξ
−(j)
i := τ̂(Xi)− τ̂(X

−(j)
i )

ξ
−(j)
i represents the error incurred from omitting X

(j)
i from estimating τi.

We define the following:

kξρ :=
corS(εi, ξi)

corS(ε
−(j)
i , ξ

−(j)
i )

,

where kξρ compares the amount of variation that εi can explain in ξi, relative to the amount

of variation that ε
−(j)
i can explain in ξ

−(j)
i . To calibrate ρε,ξ, researchers can estimate

corS(ε
−(j)
i , ξ

−(j)
i ) and scale by the inputted kξρ value. At kξρ = 1, this implies that the

correlation between εi and ξi is equivalent to the correlation between ε
−(j)
i and ξ

−(j)
i . It

is worth noting that researchers can choose to additionally benchmark σ2
ξ . However, if re-

searchers are bounding σ2
ξ using Equation (A.7), there is no need to calibrate σ2

ξ because
we will have bounded it using σ2

τ,max (which is not dependent on any covariates) and two
estimable quantities.

A.2 Proofs for Theorems and Lemmas

We begin with a lemma that shows the error term can be decomposed into two different
components.

Lemma A.2.1 (Error Decomposition)
When using inverse propensity weights, the estimated weights and the ideal weights are
written as:

wi =
P (Si = 1)

P (Si = 0)
· 1− P (Si = 1|Xi)

P (Si = 1|Xi)
w∗

i =
P (Si = 1)

P (Si = 0)
· 1− P (Si = 1|Xi,Ui)

P (Si = 1|Xi,Ui)

Then, the error in weight estimation from omitting Ui can be decomposed in the following
manner:

εi = wi − w∗
i
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=
P (Si = 1)

P (Si = 0)
· P (Si = 0|Xi)

P (Si = 1|Xi)︸ ︷︷ ︸
Estimated Weights (wi)

·
Å
P (Ui|Xi, Si = 1)− P (Ui|Xi, Si = 0)

P (Ui|Xi, Si = 1)

ã
︸ ︷︷ ︸

Residual Imbalance in Ui

,

where P (Ui | Xi, Si = 1) − P (Ui | Xi, Si = 1) represents the difference in the underlying
probability density function of the omitted confounder Ui, conditioned on Xi, across the
target population (Si = 0) and the experimental sample (Si = 1).

Proof: We will substitute in the IPW forms for both wi and w∗
i and then apply Baye’s

rule:

εi = wi − w∗
i =

P (Si = 1)

P (Si = 0)
· P (Si = 0|Xi)

P (Si = 1|Xi)
− P (Si = 1)

P (Si = 0)
· P (Si = 0|Xi, Ui)

P (Si = 1|Xi,Ui)

=
P (Si = 1)

P (Si = 0)
·
Å

1

P (Si = 1|Xi)
− 1− 1

P (Si = 1|Xi,Ui)
+ 1

ã
=
P (Si = 1)

P (Si = 0)
·
Å

1

P (Si = 1|Xi)
− 1

P (Si = 1|Xi,Ui)

ã
︸ ︷︷ ︸

(∗)

Using Baye’s Rule, we can show that εi is proportional to the imbalance in the omitted
confounder Ui, conditional on Xi. This is done by re-writing the term (∗):

1

P (Si = 1|Xi)
− 1

P (Si = 1|Xi,Ui)

=
1

P (Si = 1|Xi)
− P (Ui|Xi)

P (Ui|Si = 1,Xi) · P (Si = 1|Xi)

=
1

P (Si = 1|Xi)
·
Å
1− P (Ui|Xi)

P (Ui|Si = 1,Xi)

ã
=

1

P (Si = 1|Xi)
·
Å
P (Ui|Xi, Si = 1)(1− P (Si = 1|Xi))− P (Ui|Xi, Si = 0)P (Si = 0|Xi)

P (Ui|Si = 1,Xi)

ã
=
P (Si = 0|Xi)

P (Si = 1|Xi)

Å
P (Ui|Si = 1,Xi)− P (Ui|Si = 0,Xi)

P (Ui|Si = 1,Xi)

ã
□

Proof of Lemma 2.3.1 (Variance Decomposition of w∗
i )

For inverse propensity score weights, the variance of the true weights w∗
i can be decom-

posed linearly into two components:

varS(w
∗
i ) = varS(wi) + varS(εi)

Therefore, R2
ε is bounded between 0 and 1.
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Proof: The proof of Lemma 2.3.1 will proceed in two parts. To begin, we will first show
that for inverse propensity score weights, ES(w

∗
i |Xi) = wi. Then, we will show that var(w∗

i )
can be written as the sum of the variance of the estimated weights wi and the error term εi.

Recall from Lemma A.2.1, we showed that w∗
i could be decomposed in the following

terms:

w∗
i =

P (Si = 0)

P (Si = 1)

P (Si = 0 | Xi)

P (Si = 1 | Xi)

P (Ui | Xi, Si = 0)

P (Ui | Xi, Si = 1)
≡ wi ·

P (Ui | Xi, Si = 0)

P (Ui | Xi, Si = 1)

We can then show that the expectation of w∗
i , conditioned on Xi, will be equal to wi:

ES(w
∗
i | Xi) = ES

Å
wi ·

P (Ui | Xi, Si = 0)

P (Ui | Xi, Si = 1)

∣∣∣∣Xi

ã
= wi · ES

Å
PUi | Xi, Si = 0)

P (Ui | Xi, Si = 1)

∣∣∣∣Xi

ã
= wi · E

Å
P (Ui | Xi, Si = 0)

P (Ui | Xi, Si = 1)

∣∣∣∣Xi, Si = 1

ã
= wi ·

(∑
u∈U

P (Ui = u | Xi, Si = 0)

P (Ui = u | Xi, Si = 1)
P (Ui = u | Xi, Si = 1)

)

= wi ·

(∑
u∈U

P (Ui = u | Xi, Si = 0)

)
︸ ︷︷ ︸

=1

= wi

Now we will show that the variance of εi can be written as the difference between the variance
of wi and the variance of w∗

i :

varS(εi) = varS(wi − w∗
i )

= varS(wi) + varS(w
∗
i )− 2covS(wi, w

∗
i )

= varS(wi) + varS(w
∗
i )− 2 (ES(wi · w∗

i )− ES(wi)ES(w
∗
i ))

Making use of the fact that ES(wi) = ES(w
∗
i ) and by Law of Iterated Expectation:

= varS(wi) + varS(w
∗
i )− 2

(
ES(ES(wi · w∗

i |Xi = x))− ES(wi)
2
)

From above, we have shown that ES(w
∗
i |Xi = x) = wi:

= varS(wi) + varS(w
∗
i )− 2

(
ES(w

2
i )− ES(wi)

2
)

= varS(wi) + varS(w
∗
i )− 2varS(wi)

= varS(w
∗
i )− varS(wi)

Thus, we have shown that varS(w
∗
i ) can be decomposed into the sum of varS(wi) and varS(εi).

It naturally follows that R2
ε := varS(εi)/varS(w

∗
i ) is bounded on the interval [0, 1].
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Remark. The extension for balancing weights in Section A.1 states that for Lemma A.2.1
to hold for a set of balancing weights, the condition of ES(w

∗
i | Xi) = wi must hold.

□

Proof of Lemma 2.3.2 (Correlation Decomposition)

The correlation between εi and the individual-level treatment effects can be decomposed
in the following manner:

ρε,τ =

corS(wi, τi)

 
1−R2

ε

R2
ε

− corS(w
∗
i , τi) ·

1√
R2

ε

R2
ε > 0

0 when R2
ε = 0

Furthermore, ρε,τ is bounded by the following range:

−
»

1− cor2(wi, τi) ≤ ρε,τ ≤
»

1− cor2(wi, τi)

Proof: To begin, we can rewrite ρε,τ as follows:

ρε,τ =
covS(wi, τi)− cov(w∗

i , τi)√
varS(εi) · varS(τi)

=
corS(wi, τi) ·

√
varS(wi) · varS(τi)− corS(w

∗
i , τi) ·

√
varS(w∗

i ) · varS(τi)√
varS(εi) · varS(τi)

=
corS(wi, τi) ·

√
varS(wi)− corS(w

∗
i , τi) ·

√
varS(w∗

i )√
varS(w∗

i ) ·R2
ε

= corS(wi, τi)

 
varS(wi)

varS(w∗
i )

· 1√
R2

ε

− corS(w
∗
i , τi) ·

1√
R2

ε

= corS(wi, τi)

 
1−R2

ε

R2
ε

− corS(w
∗
i , τi) ·

1√
R2

ε

(A.9)

Now, note that cor(w∗
i , τi) can be bounded using the recursive formula of partial correlation:5

corS(w
∗
i , τi) ∈ corS(wi, τi) · corS(wi, w

∗
i )±

»
1− cor2S(wi, τi)

»
1− cor2S(wi, w∗

i )

Because corS(wi, w
∗
i ) =

√
varS(wi)
varS(w

∗
i )
, the above simplifies to the following:

corS(w
∗
i , τi) ∈ corS(wi, τi)

√
1−R2

ε ±
»

1− cor2(wi, τi)
√
R2

ε.

5This follows from applying the recursive formula of partial correlation for a single variable, and applying
the fact that the partial correlation must be bounded by 1 and -1.
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Thus, substituting in the bounds for cor(w∗
i , τi) into Equation (A.9), we obtain the bound:

−
»

1− cor2S(wi, τi) ≤ ρε,τ ≤
»
1− cor2S(wi, τi)

□

Proof of Theorem 2.3.1 (Bias of Weighted Estimator)

Assume Yi(1)− Yi(0) |= Si | {Xi,Ui}. Let wi be the weights estimated using only Xi,
and let w∗

i be the (correct) weights, obtained using {Xi,Ui}. The bias of a weighted
estimator from using wi instead of w∗

i is given as:

Bias(τ̂W ) = ρε,τ ·
 

varS(wi) ·
R2

ε

1−R2
ε

· σ2
τ ,

where εi is defined as the difference between the estimated weights and the correct
weights (i.e., εi = wi − w∗

i ), and τi is the individual-level treatment effect.

Proof: I will first show the proof for a Horvitz-Thompson style weighted estimator. The
proof for a Hajek style weighted estimator (with stabilized weights) follows similarly, but
with the addition of a finite-sample bias term. A Horvitz-Thompson style weighted estimator
is defined as:

τ̂W =
1

n1

∑
i∈S

wiTiYi −
1

n0

∑
i∈S

wi(1− Ti)Yi

We begin by showing that if we were to have estimated weights with the full separating
set Xi, the weighted estimator will be an unbiased estimator for PATE. We will denote the
weighted estimator using w∗

i as τ̂ ∗W . We will denote expectations with a subscript S as the
expectation over the experimental sample (i.e., ES(·) = E(· | Si = 1)), and expectations with
a subscript P as the expectation over the target population. Expectations with no subscripts
will represent the expectation over both the experimental sample and the target population.
We define D as the set of all indices corresponding to units in the experimental sample and
the target population.

E(τ̂ ∗W ) =E

(
1

n1

∑
i∈S

w∗
i TiYi −

1

n0

∑
i∈S

w∗
i TiYi

)

=E

(
1

n1

∑
i∈D

w∗
i TiYiSi −

1

n0

∑
i∈D

w∗
i (1− Ti)YiSi

)

=
1

n1

E

(∑
i∈D

w∗
i SiTiYi(1)

)
− 1

n0

E

(∑
i∈D

w∗
i (1− Ti)Yi(0)

)
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By Linearity of Expectation:

=
1

n1

∑
i∈D

E (w∗
i SiTiYi(1))−

1

n0

∑
i∈D

E (w∗
i (1− Ti)Yi(0))

By Law of Total Expectation:

=
1

n1

∑
i∈D

E (w∗
i SiTiYi(1)|Si = 1, Ti = 1)P (Si = 1 and Ti = 1)+

1

n0

∑
i∈D

E (w∗
i Si(1− Ti)Yi(0)|Si = 1, Ti = 0)

=
1

n1

∑
i∈D

n

n+N
· n1

n
E (w∗

i SiTiYi(1)|Si = 1, Ti = 1)+

1

n0

∑
i∈D

n

n+N
· n0

n
E (w∗

i Si(1− Ti)Yi(0)|Si = 1, Ti = 0)

=E(w∗
i SiYi(1)|Si = 1, Ti = 1)− E(w∗

i SiYi(0)|Si = 1, Ti = 0)

From random treatment assignment:

=E(w∗
i SiYi(1)|Si = 1)− E(w∗

i SiYi(0)|Si = 1)

=E(w∗
i Si(Yi(1)− Yi(0))|Si = 1)

≡ES(w
∗
i τi) (A.10)

To show that ES(w
∗
i τi) = τ , we first apply Baye’s Rule:

ES(w
∗
i τi) =

∑
τi,Xi

w∗
i τi · P (Xi, τi|Si = 1)

=
∑
τ,Xi

w∗
i τi ·

P (Si = 1|Xi, τi) · P (Xi, τi)

P (Si = 1)

By the conditional ignorability assumption that τi |= Si | Xi:

=
∑
τ,Xi

w∗
i τi ·

P (Si = 1|Xi) · P (Xi, τi)

P (Si = 1)

=
∑
τ,Xi

P (Si = 1)

P (Si = 0)

P (Si = 0|Xi)

P (Si = 1|Xi)
τi ·

P (Si = 1|Xi) · P (Xi, τi)

P (Si = 1)

=
∑
τ,Xi

τi ·
P (Si = 0|Xi) · P (Xi, τi)

P (Si = 0)

=
∑
τ,Xi

τi · P (Xi, τi|Si = 0)
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= EP(τi)

= EP(τi) ≡ τ

As such, the bias of a weighted estimator when omitting a confounder is:

Bias(τ̂W ) = ES(τ̂W )− τ

Using the result from Equation (A.10) with wi and the fact that ES(w
∗
i τi) = τ :

= ES(wiτi)− ES(w
∗
i τi)

= ES((wi − w∗
i )︸ ︷︷ ︸

:=εi

τi)

= ES(εiτi)

By construction, ES(wi) = ES(w
∗
i ) = 1, which implies that ES(εi) = 0:

= ES(εiτi)− ES(εi) · ES(τi)

= covS(εi, τi)

= corS(εi, τi) ·
»
varS(εi) · varS(τi)

Define R2
ε := varS(εi)/varS(w

∗
i ) and making use of Lemma 2.3.1:

= corS(εi, τi) ·
 
varS(wi) ·

R2
ε

1−R2
ε

· varS(τi)

≡ ρε,τ ·
 
varS(wi) ·

R2
ε

1−R2
ε

· σ2
τ

□

Proof of Theorem 2.4.1

Let kσ and kρ be defined as in Equation (2.10). Let R
2−(j)
ε := varS(ε

−(j)
i )/varS(wi),

and ρ
−(j)
ε,τ := corS(ε

−(j)
i , τi). The sensitivity parameters R2

ε and ρε,τ can be written as a
function of kσ and kρ:

R2
ε =

kσ ·R2−(j)
ε

1 + kσ ·R2−(j)
ε

, ρε,τ = kρ · ρ−(j)
ε,τ



APPENDIX A. SENSITIVITY ANALYSIS FOR GENERALIZABILITY 102

Proof: It follows immediately from Equation (2.10) that ρε,τ = kρ · ρ−(j)
ε,τ . Therefore, we

just need to show that R2
ε can be written as a function of R

2−(j)
ε .

R2
ε =

varS(εi)

varS(w∗
i )

By Equation (2.10):

= kσ ·
varS(ε

−(j)
i )

varS(w∗
i )

= kσ ·
varS(ε

−(j)
i )

varS(wi) + varS(εi)

=
kσ · varS(ε−(j)

i )/varS(wi)

1 + kσvarS(ε
−(j)
i )/varS(wi)

=
kσ ·R2−(j)

ε

1 + kσ ·R2−(j)
ε

□

Proof of Theorem 2.5.1

The bias of an augmented weighted estimator when both the weight and outcome model
are mis-specified is given as:

Bias(τ̂Aug
W ) = ρε,ξ ·

 
varS(wi) ·

R2
ε

1−R2
ε

· varS(ξi)

where εi is defined consistent with before, and ξi represents the difference between the
true individual-level treatment effect and estimated treatment effect (i.e., ξi = τi − τ̂i).

Proof:

τ̂Aug
W = τ̂W − 1

n

∑
i∈S

wiτ̂(Xi) +
1

N

∑
i∈P

τ̂(Xi)︸ ︷︷ ︸
Augmented Component

From Theorem 2.3.1, we showed that E(τ̂W ) = ES(wiτi). We will now derive the expectation
of the augmented component. To begin, we take the expectation of the 1/n

∑
i∈S wiτ̂(Xi)

component:

E

(
1

n

∑
i∈S

wiτ̂(Xi)

)
=

1

n
ES

(∑
i∈S

wiτ̂(Xi)

)
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=
1

n
ES

(∑
i∈D

Siwiτ̂(Xi)

)

=
1

n

∑
i∈D

E(Siwiτ̂(Xi))

=
1

n

∑
i∈D

E(Siwiτ̂(Xi) | Si = 1)P (Si = 1)

= E(wiτ̂(Xi) | Si = 1)

= ES(wiτ̂(Xi)

For the 1/N
∑

i∈P τ̂(Xi) component:

E

(
1

N

∑
i∈P

τ̂(Xi)

)
= E

(
1

N

∑
i∈D

(1− Si) · τ̂(Xi)

)

=
1

N

∑
i∈D

E((1− Si)τ̂(Xi))

=
1

N

∑
i∈D

E((1− Si)τ̂(Xi) | Si = 0)P (Si = 0)

= E(τ̂(Xi) | Si = 0)

= EP(τ̂(Xi))

As such, the bias of the augmented weighted estimator can be written as follows:

Bias(τ̂Aug
W ) = E(τ̂Aug

W )− τ

= ES(wi(τi − τ̂(Xi)) + EP(τ̂(Xi))− EP(τi)

= ES(wi(τi − τ̂(Xi))− EP(τi − τ̂i)

By definition, εi = wi − w∗
i :

= ES(εi(τi − τ̂i)) + ES(w
∗
i (τi − τ̂i))− EP(τi − τ̂i)

= ES(εi(τi − τ̂i)) + EP(τi − τ̂i)− EP(τi − τ̂i)

= ES(εi(τi − τ̂i))

Defining ξi := τi − τ̂i:

= ES(εi · ξi)
= covS(εi, ξi)

= corS(εi, ξi) ·
»
varS(εi) · varS(ξi)

= ρε,ξ ·
 
varS(wi) ·

R2
ε

1−R2
ε

· varS(ξi)

□
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A.3 Additional Derivations

Robustness Value

To derive the robustness value, recall that we are interested in the bias that arises from a
confounder with equal impact on the overall imbalance and the individual-level treatment
effect. In particular, we define the robustness value such that RV = ρ2ε,τ = R2

ε. Thus, for
the bias to equal q × 100% of a given point estimate:

Bias(τ̂W ) = q · τ̂W

From Theorem 2.3.1:

=⇒ ρε,τ

 
varS(wi) ·

R2
ε

1−R2
ε

· σ2
τ = q · τ̂W

ρ2ε,τ · varS(wi) ·
R2

ε

1−R2
ε

· σ2
τ = q2 · τ̂ 2W

ρ2ε,τ ·
R2

ε

1−R2
ε

=
q2 · τ̂ 2W

varS(wi) · σ2
τ︸ ︷︷ ︸

:=aq

Defining RV = ρ2ε,τ = R2
ε:

RV · RV

1−RV
= aq (A.11)

Let RVq be the value of RV for a given q. Thus, solving Equation (A.11) for RVq:

RVq =
1

2

Ä»
a2q + 4aq − aq

ä
A similar derivation can be applied for the augmented weighted estimator, with the primary
difference being that instead of aq, the robustness value is a function of bq, where:

bq =
q2 ·
Ä
τ̂Aug
W

ä2
σ2
ξ · var(wi)

Extreme Bounds

To derive R2
max, we set ρε,τ to be at the extreme bounds of ±

√
1− cor2S(wi, τi), and solve

for R2
ε using the correlation decomposition from Lemma 2.3.2.

corS(wi, τi) ·
 

1−R2
ε

R2
ε

− corS(w
∗
i , τi) ·

1√
R2

ε

≤
»

1− cor2S(wi, τi)
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corS(wi, τi)
√

1−R2
ε − corS(w

∗
i , τi) ≤

»
1− cor2S(wi, τi) ·

»
1− cor2S(w

∗
i , τi)

Using the quadratic formula, we solve for
√
R2

ε:√
R2

ε = 1− corS(wi, τi) · corS(w∗
i , τi)±

»
(1− cor2S(w

∗
i , τi) ·

»
(1− cor2S(wi, τi)

Setting corS(w
∗
i , τi) = ±1, we find that

R2
ε︸︷︷︸

:=R2
max

= 1− corS(wi, τi)
2

A.4 Extended Results for Empirical Application

Bounding σ2τ

To estimate a bound for σ2
τ , we follow Figure A.1 and use the upper bound estimated in

Equation (A.3) (i.e., for cases when we assume covS(τi, Yi(0)) ≥ 0). This is in line with the
substantive findings from the original JTPA study. To reiterate the example from Section
A.1, researchers found that women with the greatest estimated impact from JTPA services
also had higher hourly wages in their work history, and or came from families with greater
household income. (See Bloom et al. (1993) for more discussion.)

Therefore, we bound σ2
τ by taking the difference between the estimated variance in the

treated outcomes and the estimated variance in the control outcomes and obtain a bound of
29.01.

Estimation Uncertainty with Benchmarking

To account for potential estimation uncertainty associated with benchmarking results, we use
a similar approach from Hong et al. (2021) and perform benchmarking across 1,000 bootstrap
iterations. We then check the number of bootstrap iterations in which the benchmarked
covariates are strong enough to be a killer confounder (i.e., either strong enough to reduce
the estimate to zero, or strong enough to alter the statistical significance of the estimate).
We report this under “% Con.” in Table A.2.

We see that the benchmarking results are relatively stable across bootstrap iterations.
More specifically, in assessing if omitting a confounder with equivalent confounding strength
to one of the observed covariates will result in enough bias for the estimated effect to be
reduced to zero, we see that only 1-2% of the bootstrap iterations resulted in killer con-
founders. This implies that even accounting for estimation uncertainty, we can generally
expect that omitting a confounder with equivalent confounding strength as one of the ob-
served covariates will not result in a killer confounder that reduces the estimate to zero. In
contrast, in assessing changes to statistical significance, we see that omitting a confounder
with equivalent confounding strength as whether or not an individual is Black would have
resulted in a statistically insignificant effect in 7% of the bootstrap iterations.
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Estimated Effect = 0 Changes in Signif.

Variable R̂2
ε ρ̂ε,τ ‘Bias MRCS kmin

σ kmin
ρ % Con. MRCS kmin

σ kmin
ρ % Con.

Prev. Earnings 0.01 -0.41 -0.12 -23.4 72.9 -1.8 2% -2.4 10.7 -0.7 4%
Age 0.00 0.04 0.00 — — 18.2 1% — — 7.0 1%
Married 0.05 -0.19 -0.14 -20.7 12.3 -4.0 1% -2.1 1.8 -1.5 1%
Hourly Wage 0.03 -0.24 -0.14 -20.6 20.2 -3.1 1% -2.1 3.0 -1.2 1%
Black 0.17 -0.11 -0.16 -17.7 3.4 -7.1 2% -1.8 0.5 -2.7 7%
Hispanic 0.24 -0.14 -0.26 -10.8 2.3 -5.5 0% -1.1 0.3 -2.1 4%
HS/GED 0.07 -0.04 -0.04 -76.1 8.1 -18.5 1% -7.7 1.2 -7.1 3%
Education 0.07 -0.10 -0.09 -30.0 7.5 -7.6 1% -3.0 1.1 -2.9 4%

Point Estimate (τ̂W ): 2.81; σ̂2
τ,max = 29.01; RV1 = 0.56; RVα=0.05 = 0.08

Table A.2: Formal benchmarking results for Coosa Valley, Georgia. The estimated bias is
reported in thousands of USD.

Applying the Augmented Weighted Sensitivity Analysis

To illustrate the sensitivity analysis for augmented weighted estimators, we return to our
JTPA application. To estimate the individual-level treatment effect model, we use a causal
random forest, estimated on the same set of covariates included in the weights (Athey et al.
(2019)). We then estimate the individual-level treatment effect for all units across both the
experimental sample and the target population. Using the bound from Equation (A.7), we
estimate an upper bound for σ2

ξ to be 28.5. After obtaining the upper bound for σ2
ξ , we

proceed with the sensitivity analysis.

Summarizing Sensitivity. To begin, we visualize the bias contour plot, as well as es-
timate the robustness value and the extreme scenario bound. See Figure A.2 for the bias
contour plot.

Unweighted Aug-Weighted RV Aug
q=1

Impact of JTPA access on earnings 1.63 2.84 0.56

σ̂2
ξ,max = 28.50; ”corS(wi, ξi) = 0.24

Table A.3: Summary of point estimates and sensitivity statistics.

The robustness value for the augmented weighted estimator is 0.56, which implies that if
the error from omitting the confounder can explain 56% of the variation in the idiosyncratic
treatment effect (i.e., ξi), as well as 56% of the variation in the ideal weights, then the bias
will be large enough to reduce the point estimate to 0. We see that the robustness value
for the augmented weighted estimator is slightly higher than the robustness value for the
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weighted estimator. This is likely due to the fact that we have modeled some of the variation
in τi with our estimated treatment effect heterogeneity model.

Formal Benchmarking Results. We now perform formal benchmarking across the ob-
served covariates for the augmented weighted estimator. The formally benchmarked param-
eter values for the R2

ε parameter will be identical to the formally benchmarked R2
ε values in

the weighted estimator setting. In general, we that the estimated bias values from formal
benchmarking in the augmented weighted estimator case is lower than the estimated bias
values for the weighted estimator case; this is likely due to the fact that the bound on the
idiosyncratic treatment effect variation is lower than the bound on the overall treatment
effect heterogeneity (i.e., σ̂2

ξ,max ≤ σ̂2
τ,max).

Covariate R2
ε ρε,ξ Est. Bias MRCS kmin

σ kmin
ρ

Prev. Earnings 0.01 0.02 0.00 576.67 73.72 44.59
Age 0.00 0.00 0.00 — — 439.56
Married 0.05 0.05 0.04 78.05 12.40 15.01
Hourly Wage 0.03 0.20 0.11 25.76 20.46 3.82
Black 0.17 0.03 0.05 57.90 3.39 22.78
Hisp. 0.24 0.11 0.22 13.14 2.31 6.57
HS/GED 0.07 -0.09 -0.08 -34.39 8.14 -8.26
Years of Educ. 0.07 -0.13 -0.13 -22.32 7.56 -5.58

Table A.4: Formal benchmarking for Coosa Valley, Georgia, for an augmented weighted
estimator. We see a greater degree of robustness in omitting a confounder with equivalent
confounding strength to the observed covariates for the augmented weighted estimator, rel-
ative to the weighted estimator. This is reflected in the larger MRCS, kmin

σ and kmin
ρ values.

Extreme Scenario Analysis

For the extreme scenario analysis, we examine the potential bias that may occur if the corre-
lation term is equal to the maximum possible value of

√
1− corS(wi, τi). Then, we evaluate

the R2
ε value that corresponds to this maximum correlation term, when |corS(w∗

i , τi)| = 1. In
general, we expect this to be an extremely conservative estimate for the maximum amount
of bias incurred by an omitted confounder. We provide the results in Table A.5.

The general plausibility of an omitted confounder with the degree of explanatory power
and imbalance seems relatively low. In particular, comparing ρmax and R

2
max with the bench-

marked parameters shows that the omitted confounder would have to be significantly stronger
than any of the observed covariates for the extreme scenario to occur.

In cases when researchers do not feel that the benchmarked parameters are representative
of the potential confounders, it can be difficult to justify the plausibility or implausibility
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Figure A.2: Bias Contour Plot for Coosa Valley, Georgia, using an Augmented Weighted
Estimator. Akin to Figure 2.1, the shaded blue region represents the killer confounder region,
for which a confounder will result in a directional change of the point estimate. We also plot
the formal benchmarking results. We see that the points are even further away from the
killer confounder region than in the weighted estimator setting.

Estimate ρmax R2
max Est. Bias

Weighted 2.81 0.93 0.86 7.84
Augmented 2.84 0.93 0.87 8.21

Table A.5: Extreme Scenario Analysis. We note that ρmax and R2
max are far larger than any

of the benchmarked parameters.

of such an extreme ρε,τ (or ρε,ξ) term. An alternative approach is for researchers to vary
different corS(w

∗
i , τi) (or corS(w

∗
i , ξi)) values, which can be easier to assess the plausibility

of, because they can directly compare the posited corS(w
∗
i , τi) (or corS(w

∗
i , ξi)) with the

observed correlation values calculated using the estimated weights. corS(w
∗
i , τi) represents

the maximum amount of variation that the selection weights can explain in the treatment
effect heterogeneity. For example, if researchers assume that the (true) selection weights are
highly correlated with the treatment effect heterogeneity, then corS(w

∗
i , τi) should be close

to 1.
To visually represent this, we generate plots where the x-axis represents the R2 value,

and the y-axis represents the adjusted point estimate. We fix corS(w
∗
i , τi) and corS(w

∗
i , ξi)
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to a set of values: {-0.5, 0.25, 0.25, 0.5, 0.9}. The estimated correlation value between
the estimated weights and the individual-level treatment effect is 0.07, while the estimated
correlation value between the estimated weights and the idiosyncratic treatment effect is
0.11. Thus, even for the case that |corS(w∗

i , τi)| or |ρ(w∗
i , ξi)| to equal 0.25 would imply

that additionally balancing on an omitted confounder would result in a significantly higher
amount of variation explained. We see that for both the weighted and augmented weighted
estimators, it is only when the correlation term switches signs that the point estimate is
at risk of being zero, or negative. In other words, additionally balancing on the omitted
confounder would have to alter the direction of the correlation between the weights and τi
(or ξi) for the point estimate to become negative.

Extreme Scenario Analysis Plots
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Figure A.3: We vary different values of corS(w
∗
i , τi) (and cor(w∗

i , ξi)). We set the x-axis to be
different R2

ε values, and the y-axis to be the adjusted point estimate (i.e., the point estimate
minus the estimated bias). The lines marked by red represent results that would alter the
interpretation of the point estimate.
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Conducting the Sensitivity Analysis Across the Other
Experimental Sites

In the main text, we conducted the sensitivity analysis across the experimental site of Coosa
Valley, Georgia to illustrate the different sensitivity tools proposed in the paper. We now
illustrate the sensitivity analysis across all 16 experimental sites. We provide a summary of
the sensitivity statistics, as well as the benchmark PATE in Table B.5.

Target Within-Site Weighted
Site n N PATE Estimate Estimate SE σ̂2

τ,max RVq=1 ”corS(wi, τi)

NE 636 5466 1.25 1.11 1.37 1.37 8.40 0.45 0.10
LC 485 5617 1.21 1.61 0.36 1.62 53.76 0.06 -0.23
HF 234 5868 1.28 0.95 1.81 1.99 27.87 0.43 0.25
IN 1392 4710 1.10 1.73 1.63 0.89 10.45 0.54 -0.06
CV 788 5314 1.18 1.63 2.81 1.21 29.01 0.56 0.37
CC 524 5578 1.37 -0.21 0.54 2.36 5.02 0.15 0.24
JK 353 5749 1.19 2.16 2.95 1.77 9.41 0.53 0.21
MT 38 6064 1.27 -5.21 -11.88 4.83 248.52 0.52 -0.49
PR 463 5639 1.12 3.03 3.28 2.23 54.81 0.38 0.04
MN 179 5923 1.32 -1.43 -1.69 3.06 391.43 0.09 -0.01
MD 177 5925 1.23 1.24 0.66 2.55 21.07 0.21 -0.19
SM 401 5701 1.29 0.60 0.92 1.63 299.61 0.06 0.02
OH 74 6028 1.30 -2.99 -4.35 2.69 216.54 0.37 -0.14
CI 190 5912 1.24 1.35 0.34 3.25 57.99 0.05 -0.18
OK 87 6015 1.24 1.83 5.09 5.04 83.45 0.34 0.28
JC 81 6021 1.27 -0.53 -7.45 5.94 333.44 0.26 -0.26

Table A.6: Sensitivity Statistics Across JTPA Experimental Sites

We see that several factors drive the sensitivity. First, the estimated effect size affects how
much robustness is reflected. Experimental sites like Jackson, Missouri (JK), or Marion, Ohio
(OH) have relatively large estimated effects, which mean that the amount of bias necessary
to reduce the estimated effect to zero or change sign must be larger. This is reflected in the
larger robustness values. Second, we see that the bound on the variation in the individual-
level treatment effect also affects the overall robustness. In sites like Northwest, Minnesota
(MN), the maximum σ2

τ value estimated (i.e., σ̂2
τ,max = 391.43) is much larger than that of

the maximum σ2
τ value in Fortwayne, Indiana (IN) (i.e., σ̂2

τ,max = 10.45). Thus, despite the
estimated effects being roughly the same in magnitude, there is much more robustness in
the site of IN than in MN, as there is less potential for the confounding in selection to be
correlated to the treatment effect heterogeneity.
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We also examine the benchmarking results across the different experimental sites. We
compare the actual error in estimation with the benchmarked parameter values for con-
founders like whether or not an individual is black or Hispanic, as well as previous earnings.6

In general, more imbalance from omitting a confounder like these covariates corresponds to
more greater error in recovering the target PATE. We note that there is a large degree of
variation across the different experimental sites from the resulting parameter values that
would occur from omitting a variable like the observed covariates. In particular, the bench-
marked parameter values correspond to how much inherent imbalance there is between the
experimental sample and the target population there is. As such, in certain sites, the ex-
perimental sample is much more representative of the target population than others, and as
such, the benchmarked parameter values will be lower.

While we see that there is an association between the benchmarking results and robust-
ness values with the error in recovering the target PATE, this by no means implies that
a small robustness value (or large MRCS value) is indicative of an omitted variable. The
plausibility of omitting a confounder that would explain the minimum variation determined
by the robustness value, or a confounder with specified MRCS value, still depends on sub-
stantive justification. We once again re-iterate that we should not, and cannot, use naive
cutoff values for the sensitivity statistics and the benchmarking results to determine whether
or not an estimated effect is robust or not.

Finally, we note that many of the estimated effects across the experimental site were
statistically insignificant. This is consistent with the generalizability literature, in which
re-weighting data often results in a loss in precision (Miratrix et al., 2018). Researchers can,
when possible, utilize model-assisted approaches like post-residualized weighting, to obtain
more precise estimates (Huang et al., 2021). An advantage to the proposed sensitivity
framework is that it can be easily extended for these alternative estimation approaches.

6These variables are chosen because substantively, we expect race and previous earnings to explain much of
the variation in both the individual-level treatment effect, as well as the selection process.
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Figure A.4: We compare the absolute error in recovering the target PATE with three key
quantities from benchmarking–(1) the estimated bias, (2) ρ̂ε,τ , and (3) R̂2

ε. We see that in
general, greater sensitivity that was reflected from the benchmarking results was consistent
with larger amounts of error in recovering the target PATE.
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Appendix B

Leveraging Population Outcomes to
Improve the Generalization of
Experimental Results

B.1 Proofs and Derivations

Derivation of Variance Terms

Consider a countably infinite population of (Xi, Yi(t)) ∼ F , where t ∈ {0, 1}, with density
dF (Xi, Yi(t)). This is our target population. We define the sampling distribution for the
experimental data to be (Xi, Yi(t)) ∼ F̃ with density dF̃ (Xi, Yi(t)). Because we consider
settings where the selection into the experiment from the target population is biased, F ̸= F̃ .
Let S be the set of all indices for all units sampled in the experimental sample. As we
can consider the treatment and control groups to be independent samples from an infinite
population, we will focus below on one potential outcome Yi(t).

We defined a relative density in equation (6) as follows.

π(Xi) =
dF̃ (Xi)

dF (Xi)
.

over the support of F , where dF (Xi) > 0. The π(Xi) is our infinite analog to the sampling
propensity score. It scales our distribution. We further assume that π(Xi) > 0 (this is an
overlap assumption, saying our realized sampling distribution is not missing parts of the
underlying distribution). π(Xi) captures the relative density of our realized distribution to
the real population. Smaller π(Xi) correspond to areas where there is a lot more in the
target population than in our sample. Larger π(Xi) are where we are over-sampling.

We assume known weights for any unit, dependent on Xi, with wi = κ/π(Xi) (the κ is a
fixed constant allowing our weights to be normalized on some arbitrary scale).
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For the remainder of the Supplementary Materials, the distribution over which a quantity
is computed will be denoted by subscript. For example, the expectation over the realized
sampling distribution will be written as EF̃ (·), while the expectation over the target popu-
lation will be written as EF (·).

Lemma B.1.1 (Variance of a Hájek estimator) Define µ̂ as a Hájek estimator:

µ̂t =

∑
i∈S wiYi(t)∑

i∈S wi

,

where consistent with before, wi = κ/π(Xi), and (Xi, Yi(t)) ∼ F̃ . The approximate asymp-
totic variance of a Hájek estimator is:

asyvarF̃ (µ̂t) ≈
∫

1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t)),

where the asymptotic variance is being taken with respect to the realized sampling distribution,
and µt = EF (Yi(t)) (i.e., the expected value of Yi(t) over the target population).

Proof: To begin, we write the Hájek estimator as a ratio estimator of the following form:

µ̂t =

∑
i∈S wiYi(t)∑

i∈S wi

=
1
n

∑
i∈S wiYi(t)

1
n

∑
i∈S wi

where we define n to be the sample size, i.e., n = |S|.
We then define Â = 1

n

∑
i∈S wiYi(t) and B̂ = 1

n

∑
i∈S wi for notational simplicity. If we

define A = EF̃ (Â), A = κµt. Similarly, if we define B = EF̃ (B̂), B = κ.
To derive the variance expression, we will use the delta method below for a ratio, i.e., a
function h(a, b) = a/b. For this ratio, we have

d

da
h(a, b) =

1

b

d

db
h(a, b) = − a

b2
.
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Therefore, using the Delta Method for a ratio,

µ̂t =
1
n

∑
i∈S wiYi(t)

1
n

∑
i∈S wi

=
Â

B̂

≈ A

B
+

1

B
(Â− A)− A

B2
(B̂ −B)

=
A

B
− A

B
+
A

B
+

1

B
Â− A

B2
B̂

= µt +
1

κ

1

n

∑
i∈S

wiYi(t)−
µt

κ

1

n

∑
i∈S

wi

= µt +
1

nκ

∑
i∈S

wi(Yi(t)− µt)

where the first and second equalities follow from the definition of µ̂t and (Â, B̂), the third
from the delta method, the fourth from simple algebra, the fifth from the definition of (A,B),
and the sixth from re-arrangement of the terms.
Finally,

varF̃ (µ̂t) = varF̃ (µ̂t − µt) (B.1)

≈ 1

n2κ2
· varF̃

(∑
i∈S

wi(Yi(t)− µt)

)

=
1

n2κ2
n

∫
κ2

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t))

=
1

n

∫
1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t)) (B.2)

As such, asyvarF̃ (µ̂t) = limn→∞ var(
√
nµ̂t) =

∫
1

π(Xi)2
(Yi(t)− µt)

2dF̃ (Xi, Yi(t)). □

Lemma B.1.2 (Weighted Variance) Define the weighted variance and the weighted co-
variance as:

varw(Ai) =

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi, Ai)

covw(Ai, Bi) =

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi, Ai, Bi)

Under this definition, common variance and covariance properties apply:

varw(Ai +Bi) = varw(Ai) + varw(Bi) + 2covw(Ai, Bi)

covw(Ai +Bi, Ci) = covw(Ai, Ci) + covw(Bi, Ci)
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Proof:

varw(Ai +Bi) =

∫
1

π(Xi)2
(
Ai +Bi − (Ā+ B̄)

)2
dF̃ (Xi, Ai, Bi)

=

∫
1

π(Xi)2
(
(Ai − Ā)2 + (Bi − B̄)2 + 2(Ai − Ā)(Bi − B̄)

)
dF̃ (Xi, Ai, Bi)

=

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi, Ai, Bi) +

∫
1

π(Xi)2
(Bi − B̄)2dF̃ (Xi, Ai, Bi)+

2

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi, Ai, Bi)

=

∫
1

π(Xi)2
(Ai − Ā)2dF̃ (Xi, Ai) +

∫
1

π(Xi)2
(Bi − B̄)2dF̃ (Xi, Bi)+

2

∫
1

π(Xi)2
(Ai − Ā)(Bi − B̄)dF̃ (Xi, Ai, Bi)

=varw(Ai) + varw(Bi) + 2covw(Ai, Bi)

covw(Ai +Bi, Ci)

=

∫
1

π(Xi)2
(
Ai +Bi − (Ā+ B̄)

) (
Ci − C̄

)
dF̃ (Xi, Ai, Bi, Ci)

=

∫
1

π(Xi)2
(
(Ai − Ā)(Bi − B̄)

) (
Ci − C̄

)
dF̃ (Xi, Ai, Bi, Ci)

=

∫
1

π(Xi)2
(
(Ai − Ā)(Ci − C̄) + (Bi − B̄)(Ci − C̄)

)
dF̃ (Xi, Ai, Bi, Ci)

=

∫
1

π(Xi)2
(Ai − Ā)(Ci − C̄)dF̃ (Xi, Ai, Bi, Ci)+∫

1

π(Xi)2
(Bi − B̄)(Ci − C̄)dF̃ (Xi, Ai, Bi, Ci)

=

∫
1

π(Xi)2
(Ai − Ā)(Ci − C̄)dF̃ (Xi, Ai, Ci) +

∫
1

π(Xi)2
(Bi − B̄)(Ci − C̄)dF̃ (Xi, Bi, Ci)

=covw(Ai, Ci) + covw(Bi, Ci)

□
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Lemma B.1.3 (Asymptotic Variance of a Weighted Estimator)
The asymptotic variance of a Hájek-style weighted estimator is:

asyvarF̃ (τ̂W )

= asyvarF̃ (µ̂1) + asyvarF̃ (µ̂0)

≈ 1

p

∫
1

π(Xi)2
(Yi(1)− µ1)

2dF̃ (Xi, Yi(1)) +
1

1− p

∫
1

π(Xi)2
(Yi(0)− µ0)

2dF̃ (Xi, Yi(0))

=
1

p
varw(Yi(1)) +

1

1− p
varw(Yi(0)),

where varw(·) is defined in equation (9). p is the probability of treatment assignment, i.e.,
p = PrF̃ (Ti = 1). µ1 = EF (Yi(1)) and µ0 = EF (Yi(0)).

Proof: Because we are sampling from an infinite super-population, the treatment and
control groups can be treated as two separate samples from the infinite super-population.
We directly apply Lemma B.1.1 to arrive at the final result.

□

Lemma B.1.4 (Asymptotic Variance of Weighted Least Squares Estimator)
The asymptotic variance of a weighted least squares estimator is:

asyvar(τ̂wLS) =
1

p
varw(Yi(1)− X̃⊤

i γ∗) +
1

1− p
varw(Yi(0)− X̃⊤

i γ∗),

where γ∗ is the vector of true coefficients associated with the pretreatment covariates X̃i

defined as:

(τwLS, α∗, γ∗) = argmin
τ,α,γ

EF̃

{
ŵi

Ä
Yi − (τTi + α + ‹X⊤

i γ)
ä2}

(B.3)

Proof: To begin, analogous with Lin (2013) (Lemma 6), the weighted least squares esti-
mator can be written as:

τ̂wLS =
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi − X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi − X̃⊤
i γ̂) (B.4)

Akin with Ding (2021), we define δX as:

δX =
1∑

i∈S wiTi

∑
i∈S

wiTiX̃
⊤
i − 1∑

i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)X̃
⊤
i
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δX represents any residual imbalance between the treatment and control groups in the
weighted pre-treatment covariates. We can re-write Equation (B.4) as:

τ̂wLS =
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi − X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi − X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ∗ + X̃⊤

i γ∗ − X̃⊤
i γ̂)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ∗ + X̃⊤

i γ∗ − X̃⊤
i γ̂)

=
1∑

i∈S wiTi

∑
i∈S

Ä
wiTi(Yi(1)− X̃⊤

i γ∗) + wiTiX̃
⊤
i (γ∗ − γ̂)

ä
−

1∑
i∈S wi(1− Ti)

∑
i∈S

Ä
wi(1− Ti)(Yi(0)− X̃⊤

i γ∗) + wi(1− Ti)X̃
⊤
i (γ∗ − γ̂)

ä
=

1∑
i∈S wiTi

∑
i∈S

wiTi(Yi(1)− X̃⊤
i γ∗)−

1∑
i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)(Yi(0)− X̃⊤
i γ∗)︸ ︷︷ ︸

:=τ̂∗wLS

+

1∑
i∈S wiTi

∑
i∈S

wiTiX̃
⊤
i (γ∗ − γ̂)− 1∑

i∈S wi(1− Ti)

∑
i∈S

wi(1− Ti)X̃
⊤
i (γ∗ − γ̂)︸ ︷︷ ︸

=δX(γ∗−γ̂)

=τ̂ ∗wLS + δX(γ∗ − γ̂),

where τ̂ ∗wLS represents the potential outcomes, adjusted for the pre-treatment covariates
using the true coefficients γ∗.

Under standard regularity conditions for least squares, γ∗ − γ̂ = op(1) (White, 1982).
Furthermore,

√
nδX = Op(1):

lim
n→∞

varF̃ (δX) = lim
n→∞

Å
1

n1

varw(X̃i) +
1

n0

varw(X̃i)

ã
= lim

n→∞

1

n
·
Å
1

p
+

1

1− p

ã
varw(X̃i)

= lim
n→∞

1

n
· 1

p(1− p)
varw(X̃i)

Assuming varw(X̃i) is finite, δX = Op(
√
n
−1
) =⇒

√
nδX = Op(1).
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Therefore, as n→ ∞:

√
n(τ̂wLS − τ) =

√
n(τ̂ ∗wLS − τ) +

√
nδX(γ∗ − γ̂)︸ ︷︷ ︸

p→0

d→ N(0, var(τ̂ ∗wLS)),

where varF̃ (τ̂
∗
wLS) ≈ 1

p
varw(Yi(1)− X̃⊤

i γ∗) +
1

1−p
varw(Yi(0)− X̃⊤

i γ∗) (this result follows from

applying Lemma 1 on the adjusted potential outcomes).
□

Proof of Theorem 1

Suppose Assumption 2 holds with Xi, the Post-Residualized Weighted Least Squares
Estimator is a consistent estimator for the PATE:

τ̂ reswLS

p→ τ

Proof: To begin, we can write τ̂ reswLS as the above estimator on the residuals of the initial
population regression:

τ̂ reswLS =
1

(
∑

i∈S wiTi)

(∑
i∈S

wiTi(êi −Xiγ̂
res)

)
−(

1

(
∑

i∈S wi(1− Ti))

∑
i∈S

wi(1− Ti)(êi −Xiγ̂
res)

)

=

∑
i∈S wiTiêi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)êi∑
i∈S wi(1− Ti)︸ ︷︷ ︸

=τ̂resW

−
Å∑

i∈S wiTiXiγ̂
res∑

i∈S wiTi
−
∑

i∈S wi(1− Ti)Xiγ̂
res∑

i∈S wi(1− Ti)

ã
︸ ︷︷ ︸

(∗)

,

where γ̂res represents the estimated coefficients for the covariates Xi in the weighted re-
gression run on the residualized outcomes êi. Note that the above represents two distinct
regression steps: êi is the result of the first population regression. γ̂res is estimated for the
covariates Xi from the second regression using the residualized sample outcomes, êi.

We begin by showing that τ̂ resW

p→ τ . We will begin by the proof by showing that τ̂ resW can
be written as the difference between τ̂W , and a weighted estimator computed over the fitted
values Ŷi, which we will define as τ̂Ŷ . Following the generalization literature, we treat the
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weights as known, as well as the observed sampled population:

τ̂ resW =

∑
i∈S wiTi · êi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · êi∑
i∈S wi(1− Ti)

=

∑
i∈S wiTi · (Yi − Ŷi)∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · (Yi − Ŷi)∑
i∈S wi(1− Ti)

=

∑
i∈S wiTi · Yi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Yi∑
i∈S wi(1− Ti)︸ ︷︷ ︸

=τ̂W

−Ç∑
i∈S wiTi · Ŷi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Ŷi∑
i∈S wi(1− Ti)

å
︸ ︷︷ ︸

=τ̂Ŷ

=τ̂W − τ̂Ŷ

We will begin by showing that τ̂W
p→ τ . To begin:

τ̂W =

∑
i∈S wiTi · Yi∑

i∈S wiTi
−
∑

i∈S wi(1− Ti) · Yi∑
i∈S wi(1− Ti)

By Law of Large Numbers and the Continuous Mapping Theorem:

τ̂W
p→ EF̃ (wiTiYi)

EF̃ (wiTi)︸ ︷︷ ︸
(1)

− EF̃ (wi(1− Ti)Yi)

EF̃ (wi(1− Ti))︸ ︷︷ ︸
(2)

We will now show that the first term (i.e., (1)) is equal to EF (Yi(1)). We first evaluate the
expectation in the denominator.

EF̃ (wiTi) =
n1

n
EF̃ (wi)

=
n1

n
EF̃

Å
κ

π(Xi)

ã
=
n1

n
· κ
∫

1

π(Xi)
dF̃ (Xi)

=
n1

n
· κ
∫

1

π(Xi)
π(Xi)dF (Xi)︸ ︷︷ ︸
=1

=
n1

n
· κ
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For the numerator:

EF̃ (wiTiYi) = EF̃ (wiTiYi(1))

=
n1

n
EF̃ (wiYi(1))

=
n1

n
EF̃

Å
κ

π(Xi)
Yi(1)

ã
=
n1

n
· κEF̃

Å
1

π(Xi)
Yi(1)

ã
=
n1

n
· κ
∫

Yi(1)

π(Xi)
dF̃ (Xi, Yi(1))

=
n1

n
· κ
∫

Yi(1)

π(Xi)
· π(Xi)dF (Xi, Yi(1))

=
n1

n
· κ
∫
Yi(1)dF (Xi, Yi(1))

=
n1

n
κ · EF (Yi(1))

Therefore, re-writing (1):

EF̃ (wiTiYi)

EF̃ (wiTi)
=
pκ · EF (Yi(1))

p · κ
= EF (Yi(1))

Similarly, we can show that the second term, EF̃ (wi(1 − Ti)Yi)/EF̃ (wi(1 − Ti)), is equal to
EF (Yi(0)). Therefore:

EF̃ (τ̂W )
p→ EF (Yi(1))− EF (Yi(0))

= τ

Now we will show that τ̂Ŷ
p→ 0. Once again, applying Law of Large Numbers and the

Continuous Mapping Theorem:

τ̂Ŷ =

∑
i∈S wiTiŶi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Ŷi∑
i∈S wi(1− Ti)

p→ EF̃ (wiTiŶi)

EF̃ (wiTi)
− EF̃ (wi(1− Ti)Ŷi)

EF̃ (wi(1− Ti))

=
p · EF̃ (wiŶi)

pEF̃ (wi)
− (1− p) · EF̃ (wiŶi)

(1− p)EF̃ (wi)

=
EF̃ (wiŶi)

EF̃ (wi)
− EF̃ (wiŶi)

EF̃ (wi)

= 0
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where the third line follows from the fact that treatment assignment is randomized and in-
dependent of weights. Therefore, by the Continuous Mapping Theorem, τ̂ resW

p→ τ .

Now looking just at the (∗) term:∑
i∈S wiTiXiγ̂

res∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xiγ̂
res∑

i∈S wi(1− Ti)
=

Å∑
i∈S wiTiXi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xi∑
i∈S wi(1− Ti)

ã
γ̂res

Under standard regularity conditions for least squares, γ̂res converges to γres∗ . Furthermore,
using Law of Large Numbers and the Continuous Mapping Theorem:∑

i∈S wiTiXi∑
i∈S wiTi

−
∑

i∈S wi(1− Ti)Xi∑
i∈S wi(1− Ti)

p→ EF̃ (wiTiXi)

EF̃ (wiTi)
− EF̃ (wi(1− Ti)Xi)

EF̃ (wi(1− Ti))

=
EF̃ (wiXi)

EF̃ (wi)
− EF̃ (wiXi)

EF̃ (wi)

= 0

As such, we see that the term in (∗) will converge in probability to zero. Therefore, τ̂ reswLS

p→ τ .
□

Proof of Theorem 2

The difference between the asymptotic variance of τ̂ resW and the asymptotic variance of
τ̂W is:

asyvarF̃ (τ̂W )− asyvarF̃ (τ̂
res
W )

= − 1

p(1− p)
varw(Ŷi) +

2

p
covw(Yi(1), Ŷi) +

2

1− p
covw(Yi(0), Ŷi),

Proof: From Lemma B.1, the asymptotic variance of a weighted estimator is:

asyvarF̃ (τ̂W ) =
1

p
varw(Yi(1)) +

1

1− p
varw(Yi(0))

Using the residualized potential outcomes êi(1) and êi(0), the asymptotic variance of a
weighted residualized estimator is:

asyvarF̃ (τ̂
res
W ) =

1

p
varw(êi(1)) +

1

1− p
varw(êi(0)).
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From the definition of potential residuals, we can write the potential residuals as a function
of the original outcome values and the fitted values:

varw(êi(0)) = varw(Yi(0)− Ŷi)

= varw(Yi(0)) + varw(Ŷi)− 2covw(Yi(0), Ŷi) (B.5)

varw(êi(1)) = varw(Yi(1)− Ŷi)

= varw(Yi(1)) + varw(Ŷi)− 2covw(Yi(1), Ŷi) (B.6)

Therefore, the difference in variances of our two estimators is

asyvarF̃ (τ̂W )− asyvarF̃ (τ̂
res
W )

=

ß
1

p
varw(Yi(1)) +

1

1− p
varw(Yi(0)))

™
−
ß
1

p
varw(êi(1)) +

1

1− p

1

n0

varw(êi(0))

™
=
1

p
·
(
varw(Yi(1))− varw(êi(1))

)
+

1

1− p
·
(
varw(Yi(0))− varw(êi(0))

)
Plugging in (B.5) and (B.6):

=− 1

p
·
ß
varw(Yi(1)) + varw(Ŷi)− 2covw(Yi(1), Ŷi)− varw(Yi(1)

™
− 1

1− p
·
ß
varw(Yi(0)) + varw(Ŷi)− 2covw(Yi(0), Ŷi)− varw(Yi(0)

™
=− 1

p(1− p)
· varw(Ŷi) +

2

p
· covw(Yi(1), Ŷi) +

2

1− p
· covw(Yi(0), Ŷi)

□
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Proof of Theorem 3

The difference between the asymptotic variance of τ̂wLS and the asymptotic variance of
τ̂ reswLS is:

asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂
res
wLS)

=
1

p

¶
varw(Yi(1)− X̃⊤

i γ∗)− varw(Yi(1)− ĝ(Xi))
©

+
1

1− p

¶
varw(Yi(0)− X̃⊤

i γ∗)− varw(Yi(0)− ĝ(Xi))
©

+
2

p
covw(êi(1), X̃

⊤
i γ

res
∗ ) +

2

1− p
covw(êi(0), X̃

⊤
i γ

res
∗ )− 1

p(1− p)
varw(X̃

⊤
i γ

res
∗ ),

where γ∗ and γres∗ are the true coefficients associated with the pre-treatment covari-

ates, ‹Xi defined in the weighted least squares regression (equation (13)) and the post-
residualized weighted least squares regression (equation (14)), respectively. Formally,
γ∗ and γ

res
∗ are formally defined as the solution to the following optimization problems.

(τwLS, α∗, γ∗) = argmin
τ,α,γ

EF̃

{
ŵi

Ä
Yi − (τTi + α + ‹X⊤

i γ)
ä2}

(B.7)

(τ reswLS, α
res
∗ , γres∗ ) = argmin

τ,α,γ
EF̃

{
ŵi

Ä
êi − (τTi + α + ‹X⊤

i γ)
ä2}

(B.8)

Proof:

asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂
res
wLS) (B.9)

=

ß
1

p
varw(Yi(1)− X̃⊤

i γ∗) +
1

1− p
varw(Yi(0)− X̃⊤

i γ∗)

™
−
ß
1

p
varw(êi(1)− X̃⊤

i γ
res
∗ ) +

1

1− p
varw(êi(0)− X̃⊤

i γ
res
∗ )

™
(B.10)

The adjusted residualized outcomes can be re-written as a function of the residualized
outcomes and the fitted values from the regression. First, for the treatment outcomes:

varw(êi(1)− X̃⊤
i γ

res
∗ ) = varw(Yi(1)− ĝ(Xi)− X̃⊤

i γ
res
∗ )

= varw(Yi(1)− ĝ(Xi)) + varw(X̃
⊤
i γ

res
∗ )− 2covw(Yi(1)− ĝ(Xi), X̃

⊤
i γ

res
∗ )
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Similarly,

varw(êi(0)− X̃⊤
i γ

res
∗ ) = varw(Yi(0)− ĝ(Xi)− X̃⊤

i γ
res
∗ )

= varw(Yi(0)− ĝ(Xi)) + varw(X̃
⊤
i γ

res
∗ )− 2covw(Yi(0)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

Plugging into Equation (B.10):

asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂
res
wLS)

=
1

p

¶
varw(Yi(1)− X̃⊤

i γ∗)− varw(Yi(1)− ĝ(Xi))
©

+
1

1− p

¶
varw(Yi(0)− X̃⊤

i γ∗)− varw(Yi(0)− ĝ(Xi))
©

−
ß

1

p(1− p)
varw(X̃

⊤
i γ

res
∗ )− 2

p
covw(Yi(1)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

− 2

1− p
covw(Yi(0)− ĝ(Xi), X̃

⊤
i γ

res
∗ )

™
=

1

p

¶
varw(Yi(1)− X̃⊤

i γ∗)− varw(Yi(1)− ĝ(Xi))
©

+
1

1− p

¶
varw(Yi(0)− X̃⊤

i γ∗)− varw(Yi(0)− ĝ(Xi))
©

+

ß
− 1

p(1− p)
varw(X̃

⊤
i γ

res
∗ ) +

2

p
covw(êi(1), X̃

⊤
i γ

res
∗ ) +

2

1− p
covw(êi(0), X̃

⊤
i γ

res
∗ )

™
□

Proof of Corollary 1

The relative reduction in variance from residualizing is given by:

Relative Reduction :=
asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂

res
wLS)

asyvarF̃ (τ̂wLS)
= R2

0 −
1

1 + f
· ξ

Proof: Let C1 = 1/p and C0 = 1/1 − p. Furthermore, let ϵi(1) := Yi(1) − X̃⊤
i γ∗, ϵi(0) :=

Yi(0) − X̃⊤
i γ∗, ϵ

res
i (1) := êi(1) − X̃⊤

i γ
res
∗ , ϵresi (0) := êi(0) − X̃⊤

i γ
res
∗ . Then, we can write the

variance of the weighted least squares estimator (i.e., Lemma B.1.4) as:

varF̃ (τ̂wLS) =
1

p
varw(ϵi(1)) +

1

1− p
varw(ϵi(0)),

and similarly, the variance of the residualized weighted least squares estimator as:

varF̃ (τ̂
res
wLS) =

1

p
varw(ϵ

res
i (1)) +

1

1− p
varw(ϵ

res
i (0)),
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Then, we may re-write the relative reduction as follows:

asyvarF̃ (τ̂wLS)− asyvarF̃ (τ̂
res
wLS)

asyvarF̃ (τ̂wLS)

=
C1varw(ϵi(1)) + C0varw(ϵi(0))− (C1varw(ϵ

res
i (1)) + C0varw(ϵ

res
i (0)))

C1varw(ϵi(1)) + C0varw(ϵi(0))

=
C1varw(ϵi(1))− C1varw(ϵ

res
i (1)) + C0varw(ϵi(0))− C0varw(ϵ

res
i (0)))

C1varw(ϵi(1)) + C0varw(ϵi(0))

Dividing the numerator and denominator by C1 · var(ϵi(1)), and defining f to be equal to
C0varw(ϵi(0))/C1varw(ϵi(1)):

=
1− varw(ϵ

res
i (1))/varw(ϵi(1)) + f − f · varw(ϵresi (0))/varw(ϵi(0))

1 + f

=
1

1 + f

(
R2

1 + fR2
0

)
Using the definition of ξ = R2

0 −R2
1:

=
1

1 + f

(
R2

0 − ξ + fR2
0

)
= R2

0 −
1

1 + f
· ξ

□

B.2 Diagnostic Measure

We detail how to estimate the diagnostic measures in this section. To estimate the diagnostic
for the post-residualized weighted estimator, we compute the estimated weighted variance
of both the residuals and the outcomes for the units assigned to control:

R̂2
0 = 1− ”varw,0(êi)”varw,0(Yi)

= 1−
∑

i∈S w
2
i (1− Ti)(êi − µ̂res

0 )2∑
i∈S w

2
i (1− Ti)(Yi − µ̂0)2

(B.11)

where µ̂0 and µ̂res
0 are defined as:

µ̂0 =

∑
i∈S wi(1− Ti)Yi∑
i∈S wi(1− Ti)

, µ̂res
0 =

∑
i∈S wi(1− Ti)êi∑
i∈S wi(1− Ti)

(B.12)
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For the post-residualized weighted least squares estimator, estimating the diagnostic
follows similarly, but we now have to account for the covariate adjustment taking place:

R̂2
0,wLS = 1− ”varw,0(êi − X̃⊤

i γ̂
res
0 )”varw,0(Yi − X̃⊤

i γ̂0)

= 1−
∑

i∈S w
2
i (1− Ti)(ϵ̂

res
i − ϵ̂res0 )2∑

i∈S w
2
i (1− Ti)(ϵ̂i − ϵ̂0)2

, (B.13)

where ϵ̂i represents the residuals estimated from regressing the outcomes Yi on the pre-
treatment covariates X̃i, across the subset of units assigned to control (i.e., Yi − X̃⊤

i γ̂0,
where γ̂0 is estimated by running the regression Yi ∼ X̃i across units assigned to control).
ϵ̂resi is analogously defined for the residualized outcomes êi. ϵ̂0 and ϵ̂res0 are the weighted
average of both ϵ̂i and ϵ̂

res
i , respectively.

When treating Ŷi as a covariate, the diagnostic can be estimated in an analogous way,
but by first performing sample splitting. More specifically, the procedure for including Ŷi as
a covariate for the weighted estimator is as follows:

1. Across the subset of units assigned to control, randomly partition the units into two
subsets: S1 and S2. Without loss of generality, we will use S1 as our training sample,
and S2 as our testing sample.

2. Regress Ŷi on the outcomes across S1 to obtain a β̂ value.

3. Using β̂, estimate the out-of-sample residuals êoosi across S2, where ê
oos
i := Yi − β̂Ŷi.

4. Estimate the diagnostic using êoosi and the outcomes Yi across S2 using Equation (B.11).

5. Cross-fit: repeat steps 1-3, but flipping S1 and S2 (i.e., regress Ŷi on the outcomes
across S2 to obtain a β̂ value, and estimate the diagnostic across S1).

6. Average the two diagnostic values together.

When including Ŷi as a covariate for the weighted least squares estimator, researchers can
repeat the procedure above; however, when estimating the diagnostic using êoosi , researchers
must account for X̃i. More specifically:

1. Follow Steps 1-3 above to obtain êoosi across S1.

2. Regress êoosi on X̃i, and regress Yi on X̃i across S2. Use Equation (B.13) to estimate
the diagnostic value.

3. Cross fit, and average the two diagnostic values together.

When researchers have relatively small sample sizes, it can be advantageous to perform
repeated sample splitting, and take the average of the diagnostic across all the repeated
splits (see Jacob (2020) for more details).
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B.3 Simulations

This section provides details associated with the simulations described in Section 6 of the
main manuscript.

Simulation Set-Up

To begin, we randomly generate a set of covariates
[
X1 X2 XS Xτ

]
∼MVN(0,Σ) with

the following covariance structure:

Σ =


1 0 0.45 0.5
0 1 0 0

0.45 0 1 0.9
0.5 0 0.9 1


where, recall, (X1i, X2i) are observed pre-treatment covariates, XSi controls the probability
of inclusion in the experimental sample, and Xτi determines the treatment effect.

Unit i’s propensity for being included in the experimental sample (recorded as Si = 1) is
governed by a logit model on the covariate XSi:

P (Si = 1) ∝ exp(XSi)

1 + exp(XSi)
.

At each iteration of the simulation, an experimental sample is drawn using the propensity
score, as well as a random sample of the population. The sampled population is used to
estimate the residualizing model and sampling weights.

Each specific data generating process for the potential outcome under control is deter-
mined by the values of the βs and γs and α. Below, we provide the parameter values and
simplified DGP for Yi(0).

• Scenario 1: Linear Data Generating Process, identical population/sample DGP

β1 = 2, β2 = 1, β3 = 0, βS = 0, γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, α = 0, yielding:

Yi(0) = 2X1i +X2i + εi

• Scenario 2: Nonlinear Data Generating Process, identical population/sample DGP

β1 = 2, β2 = 1, β3 = 0, βS = 2.5, γ1 = 0.5, γ2 = 3, γ3 = 2.5, γ4 = 0, α = 0, yielding:

Yi(0) = 2X1i +X2i + 0.5X2
1i + 3

»
|X2i|+ 2.5

(
X1i ·X2i

)
+ εi

• Scenario 3: Linear Data Generating Process, different population/sample DGP

β1 = 2, β2 = 1, β3 = −1, βS = βS, γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, α = 0.5, yielding:

Yi(0) =2X1i +X2i + βS · (1− Si) · (0.5−X1i) + εi,
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• Scenario 4: Nonlinear Data Generating Process, different population/sample DGP

β1 = 2, β2 = 1, β3 = −1, βS = βS, γ1 = 0.5, γ2 = 3, γ3 = 2.5, γ4 = 1.5, α = 0.5, yielding:

Yi(0) =2X1i +X2i + 0.5X2
1i + 3

»
|X2i|+ 2.5

(
X1i ·X2i)

βS · (1− Si) · (0.5−X1i + 1.5X1i ·X2i) + εi,

For Scenarios 3 and 4, βS takes on values {−5,−2,−1, 0, 1, 2, 5}.

B.4 Supplementary Tables

Table B.1 presents summary results for estimator performance under Scenarios 1 and 2,
including MSE, Bias, and SE. Column 1 presents the baseline results for the difference-
in-means (DiM). Columns 2-4 present the results for the weighted estimators and columns
5-7 present results for the weighted least squares estimator. For the weighted and weighted
least squares estimators we present the standard estimator without residualizing, the directly
residualized estimator and inclusion of Ŷ as a covariate.

Table B.2 presents summary results for estimator performance under Scenarios 3 and 4,
including MSE and Bias. In these scenarios we vary the value of βS, presented in column
1, which controls the degree of alignment between the experimental sample outcomes and
the population outcomes. We fix the experimental sample size at n = 1, 000. Columns
2-3 presents the baseline results for the difference-in-means (DiM). Columns 4-9 present the
results for the weighted estimators and columns 10-15 present results for the weighted least
squares estimator. For the weighted and weighted least squares estimators we present the
standard estimator without residualizing, the directly residualized estimator and inclusion
of Ŷ as a covariate.

In Table B.3 we summarize the true positive and true negative rates for the diagnostic
measures for the post-residualized estimators.1 Column 1 presents the value of βS. Columns
2-9 present the post-residualized weighted, post-residualized weighted least squares, the post-
residualized weighted estimator with Ŷ as a covariate, and the post-residualized weighted
least squares estimator with Ŷ as a covariate, respectively. We see that in general, the
diagnostic measures are able to adequately capture when residualizing results in precision
gain. We see that using sample splitting to estimate the pseudo-R2 measure for the case in
which we include Ŷi as a covariate can sometimes be conservative, which results in a low true
positive rate in cases when the divergence between the experimental sample and population
are rather large. In cases where residualizing always leads to losses or gains in precision, the
total number of true positive or true negative rates is zero (respectively).

Finally, in Table B.4 we evaluate the 95% coverage rates for the proposed post-residualized
estimators. We see that in all scenarios, we achieve at least nominal coverage. When the

1True positive rates were calculated by taking the total number of true positives (i.e., cases where the
diagnostic correctly indicated there would be efficiency gain from residualizing) and dividing by the total
number of cases in which residualizing led to efficiency gain. True negatives are similarly defined.
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Summary of Estimator Performance (N=10,000)

Weighted Weighted Least Squares
DiM τ̂W τ̂ resW τ̂ covW τ̂wLS τ̂ reswLS τ̂ covwLS

Scenario 1: Linear Outcome Model
n=100 MSE 36.44 30.05 1.48 1.34 1.34 1.34 1.30

Bias 3.60 -0.13 0.05 0.12 0.19 0.19 0.27
SE 4.85 5.48 1.22 1.15 1.14 1.14 1.11

n=1000 MSE 16.41 2.98 0.17 0.15 0.14 0.14 0.13
Bias 3.74 0.00 -0.01 0.00 0.00 0.00 0.01
SE 1.56 1.73 0.41 0.38 0.38 0.38 0.36

n=5000 MSE 14.39 0.64 0.04 0.03 0.03 0.03 0.03
Bias 3.72 0.01 0.00 0.00 0.01 0.01 0.01
SE 0.72 0.80 0.19 0.19 0.18 0.18 0.18

Scenario 2: Nonlinear Outcome Model
n=100 MSE 70.71 58.80 8.25 8.20 36.59 8.16 8.04

Bias 3.44 -0.30 0.09 0.14 0.04 0.23 0.26
SE 7.68 7.67 2.87 2.86 6.05 2.85 2.83

n=1000 MSE 20.37 5.58 0.82 0.80 3.53 0.79 0.78
Bias 3.78 0.05 -0.00 -0.00 0.05 0.00 0.01
SE 2.46 2.36 0.91 0.90 1.88 0.89 0.89

n=5000 MSE 14.80 1.17 0.18 0.18 0.83 0.17 0.17
Bias 3.68 -0.02 -0.01 -0.01 -0.03 -0.01 -0.00
SE 1.12 1.08 0.42 0.42 0.91 0.42 0.42

Table B.1: Summary of estimator performance for Scenarios 1 and 2. The population is
fixed at N = 10, 000, and 1, 000 iterations were run for each sample size. MSE is scaled by
100, and the bias and standard error are scaled by 10.

population and sample data generating processes diverge significantly, we showed in the pre-
vious sections that there could be a loss in efficiency from using post residualized weighting.
However, coverage rates are not affected by residualizing.

B.5 Additional Information for Empirical Application

As discussed in Section 7, we construct our target population using a leave-one-out procedure.
Table B.5 provides a summary of the site specific and target population average treatment
effects. More specifically, the difference-in-means (DiM) columns denote the experimental
estimate in the specific site. The target PATE is defined as the average difference-in-means
estimate across the other 15 sites. Standard errors are presented in parentheses. Certain
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Summary of Estimator Performance - Scenario 3 and 4 (N = 10,000)

Weighted Weighted Least Squares
DiM τ̂W τ̂ resW τ̂ covW τ̂wLS τ̂ reswLS τ̂ covwLS

βS MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias
Scenario 3: Linear Outcome
-5 16.41 3.74 2.98 0.00 10.69 -0.11 0.36 -0.03 0.14 0.00 0.14 0.00 0.13 0.01
-2.5 15.83 3.67 3.07 -0.06 2.55 0.06 0.25 0.01 0.14 0.02 0.14 0.02 0.13 0.04
-2 16.05 3.72 2.99 0.01 1.54 0.02 0.22 0.02 0.14 0.02 0.14 0.02 0.14 0.04
-1 16.11 3.73 2.88 0.05 0.39 -0.02 0.16 0.00 0.14 -0.00 0.14 -0.00 0.13 0.02
-0.5 16.37 3.75 2.89 0.07 0.17 -0.02 0.14 -0.00 0.13 0.00 0.13 0.00 0.13 0.02
0 16.50 3.75 3.04 0.06 0.16 0.00 0.14 0.00 0.13 0.00 0.13 0.00 0.13 0.02
0.5 16.38 3.74 3.19 0.04 0.41 0.01 0.21 0.01 0.13 0.01 0.13 0.01 0.12 0.02
1 16.11 3.72 3.03 0.00 0.92 0.01 0.54 0.02 0.13 -0.01 0.13 -0.01 0.12 0.01
2 16.23 3.74 3.03 0.01 2.68 0.04 2.68 0.05 0.14 -0.00 0.14 -0.00 0.13 0.01
2.5 16.09 3.71 3.15 -0.01 3.92 0.01 3.15 -0.00 0.14 -0.01 0.14 -0.01 0.13 0.01
5 16.33 3.71 3.23 0.00 14.32 -0.01 1.54 0.02 0.14 -0.00 0.14 -0.00 0.13 0.01
Scenario 4: Nonlinear Outcome
-5 20.31 3.74 5.77 0.04 37.03 -0.01 5.66 0.04 3.72 0.05 26.19 0.10 1.02 0.03
-2.5 20.31 3.74 6.17 -0.01 9.55 0.10 5.10 0.04 3.96 0.05 7.57 0.06 1.67 0.04
-2 19.50 3.65 5.92 -0.08 6.22 -0.00 4.27 -0.04 3.86 -0.04 5.05 -0.05 2.89 -0.00
-1 19.77 3.73 5.71 -0.02 2.18 -0.08 2.14 -0.07 3.91 -0.09 1.92 -0.05 1.08 0.02
-0.5 19.75 3.68 5.70 -0.06 1.10 -0.03 1.09 -0.03 3.96 -0.12 1.06 -0.01 0.83 0.05
0 19.74 3.69 5.81 -0.04 0.81 0.01 0.80 0.01 3.71 -0.05 0.77 0.02 0.77 0.02
0.5 20.49 3.83 5.40 0.09 1.42 0.03 1.30 0.03 3.65 0.04 1.09 0.01 0.75 0.02
1 20.24 3.80 5.52 0.08 2.84 -0.05 2.04 -0.01 3.95 0.06 1.91 -0.07 0.80 -0.01
2 20.03 3.72 5.83 0.05 7.99 -0.02 3.04 0.02 4.24 0.03 5.27 -0.06 0.84 -0.00
2.5 20.45 3.74 6.04 0.06 12.15 -0.11 3.51 -0.01 4.28 0.05 8.32 -0.09 0.85 -0.00
5 20.80 3.75 6.29 0.08 45.95 -0.25 5.05 0.02 4.09 0.06 29.97 -0.27 0.92 -0.02

Table B.2: Summary of estimator performance for Scenarios 3 and 4, where n = 1, 000 and
N = 10, 000. 1,000 iterations were run for each βS value. The bias is scaled by 10, and the
MSE is scaled by 100.
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Diagnostic Performance across Simulations

τ̂ resW τ̂ covW τ̂ reswLS τ̂ covwLS

βS TPR TNR TPR TNR TPR TNR TPR TNR
Scenario 3: Linear Outcomes
-5 0/0 1000/1000 1000/1000 0/0 207/472 329/528 338/705 166/295
-2.5 1/942 58/58 1000/1000 0/0 203/499 304/501 308/694 177/306
-2 999/1000 0/0 1000/1000 0/0 216/514 288/486 310/689 175/311
-1 1000/1000 0/0 1000/1000 0/0 219/525 287/475 293/689 188/311
-0.5 1000/1000 0/0 1000/1000 0/0 214/519 282/481 293/689 183/311
0 1000/1000 0/0 1000/1000 0/0 223/523 275/477 283/683 177/317
0.5 1000/1000 0/0 1000/1000 0/0 222/536 268/464 260/666 194/334
1 1000/1000 0/0 1000/1000 0/0 233/519 283/481 254/669 199/331
2 999/1000 0/0 998/1000 0/0 228/490 321/510 297/695 175/305
2.5 0/0 999/1000 188/490 346/510 209/466 336/534 341/705 149/295
5 0/0 1000/1000 1000/1000 0/0 214/486 303/514 322/699 155/301
Scenario 4: Nonlinear Outcomes
-5 0/0 1000/1000 360/718 224/282 0/0 1000/1000 58/1000 0/0
-2.5 0/0 998/1000 881/985 10/15 0/0 1000/1000 0/1000 0/0
-2 87/217 738/783 950/996 2/4 0/0 998/1000 0/994 5/6
-1 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
-0.5 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
0.5 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0 1000/1000 0/0
1 1000/1000 0/0 1000/1000 0/0 999/1000 0/0 1000/1000 0/0
2 13/28 907/972 1000/1000 0/0 22/28 906/972 1000/1000 0/0
2.5 0/0 1000/1000 1000/1000 0/0 0/0 1000/1000 1000/1000 0/0
5 0/0 1000/1000 999/1000 0/0 0/0 1000/1000 1000/1000 0/0

Table B.3: True positive rates (TPR) and true negative rates (TNR) for the diagnostic
measures.

sites, such as MT (Butte, MT) contain only 38 experimental units, and the point estimate
of the experimental site DiM is vastly different from the target PATE. Thus, we expect the
task of generalizing to be more difficult for these sites.

Estimating the Residualizing Model

Pre-treatment covariates were taken from the baseline survey conducted at the beginning of
the original JTPA experiment, to assess whether or not individuals were eligible for JTPA
services. A full list of the covariates included in the residualizing model is provided in Table
B.6. In addition to the pre-treatment covariates, we also include normalized measures of
previous earnings. Specifically, we include the z-score of an individual’s previous earnings,
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Coverage Rates

Weighted Weighted Least Squares
βS τ̂W τ̂ resW τ̂ covW τ̂wLS τ̂ reswLS τ̂ covwLS

Scenario 3: Linear Outcome
-5 0.95 0.95 0.97 0.99 0.99 0.99
-2.5 0.95 0.96 0.97 0.98 0.98 0.98
-2 0.95 0.97 0.98 0.97 0.97 0.98
-1 0.95 0.97 0.98 0.98 0.97 0.98
-0.5 0.95 0.98 0.99 0.98 0.98 0.98
0 0.95 0.99 0.98 0.99 0.99 0.99
0.5 0.95 0.97 0.98 0.99 0.99 0.99
1 0.96 0.95 0.95 0.98 0.98 0.98
2 0.95 0.94 0.94 0.98 0.98 0.98
2.5 0.94 0.94 0.94 0.98 0.98 0.98
5 0.94 0.94 0.95 0.98 0.98 0.99
Scenario 4: Nonlinear Outcome
-5 0.95 0.96 0.95 0.96 0.96 0.96
-2.5 0.94 0.96 0.95 0.96 0.96 0.95
-2 0.96 0.96 0.96 0.96 0.96 0.96
-1 0.96 0.97 0.97 0.95 0.96 0.95
-0.5 0.95 0.95 0.96 0.95 0.95 0.96
0 0.94 0.96 0.96 0.95 0.96 0.96
0.5 0.95 0.96 0.96 0.96 0.96 0.97
1 0.95 0.94 0.96 0.95 0.96 0.96
2 0.95 0.95 0.96 0.94 0.95 0.96
2.5 0.96 0.95 0.96 0.94 0.95 0.96
5 0.96 0.94 0.94 0.94 0.95 0.96

Table B.4: 95% coverage rates of Normal approximation confidence intervals across 1000
simulations.
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Summary of Experimental Sites and Target Population

Earnings Employment
Expt. Target Pop Prob. of (in $1000) (Percentage)

Site Location Size (n) Size (N) Treatment DiM Target PATE DiM Target PATE
CC Corpus Christi, TX 524 5578 0.65 -0.21 (1.16) 1.37 (1.16) -0.28 (3.2) 1.8 (3.2)
CI Cedar Rapids, IA 190 5912 0.63 1.35 (1.89) 1.24 (1.89) -0.77 (5.07) 1.71 (5.07)
CV Coosa Valley, GA 788 5314 0.66 1.63 (0.95) 1.18 (0.95) 5.95 (2.63) 0.98 (2.63)
HF Heartland, FL 234 5868 0.73 0.95 (1.38) 1.28 (1.38) 6.8 (5.07) 1.42 (5.07)
IN Fort Wayne, IN 1392 4710 0.67 1.73 (0.83) 1.1 (0.83) -0.4 (1.58) 2.23 (1.58)
JC Jersey City, NJ 81 6021 0.64 -0.53 (3.01) 1.27 (3.01) -2.39 (9.66) 1.67 (9.66)
JK Jackson, MO 353 5749 0.67 2.16 (1.22) 1.19 (1.22) 5.66 (4.16) 1.38 (4.16)
LC Larimer County, CO 485 5617 0.69 1.61 (1.32) 1.21 (1.32) -1.97 (3.24) 1.93 (3.24)
MD Decatur, IL 177 5925 0.70 1.24 (2.5) 1.23 (2.5) 0.03 (5.24) 1.67 (5.24)
MN Northwest MN 179 5923 0.67 -1.43 (2.3) 1.32 (2.3) -0.52 (6.26) 1.69 (6.26)
MT Butte, MT 38 6064 0.71 -5.21 (4.1) 1.27 (4.1) -7.41 (5.14) 1.67 (5.14)
NE Omaha, NE 636 5466 0.66 1.11 (0.98) 1.25 (0.98) -1.15 (2.56) 1.98 (2.56)
OH Marion, OH 74 6028 0.70 -2.99 (2.71) 1.3 (2.71) -6.82 (10.37) 1.74 (10.37)
OK Oakland, CA 87 6015 0.64 1.83 (3.48) 1.24 (3.48) 3.34 (10.77) 1.57 (10.77)
PR Providence, RI 463 5639 0.69 3.03 (1.34) 1.12 (1.34) 6.78 (4.58) 1.34 (4.58)
SM Springfield, MO 401 5701 0.67 0.6 (1.31) 1.29 (1.31) 5.44 (3.34) 1.36 (3.34)

Table B.5: Summary of the JTPA study.

relative to the experimental site, as well as the z-score of an individual’s previous earnings,
relative to the entire population.
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Baseline Covariates included in Residualizing Models

Ethnicity Weeks Worked† Public Assistance History Family Income†

White Zero Food Stamps Less than $3,000
Black 1-26 weeks Cash Welfare, other than AFDC $3,000-$6,000
Hispanic 27-52 weeks Unemployment Benefits More than $6,000
AAPI

Earnings AFDC Histories Accessibility
Education Previous Earnings‡ * Ever AFDC case head Driver’s License
ABE/ESL Weekly Pay * Case head anytime† Car available for regular use
High school diploma Quantile within Site * Received AFDC† Telephone at home
GED certificate < 25% * Years as AFDC case head:
Some college > 50% * Less than 2 years Household Composition
Occupational Training > 90% * 2-5 years Marital Status
Technical certificate Quantile across Experiment * More than 5 years Spouse present
Job search assistance < 25% * Household Size
Years of Education‡ * > 50% * Age Number of children present

> 90% * Age‡ * Child under 6 present
Work History Non-Zero Previous Earnings * Age Buckets
Ever employed UI Reported Earnings 20-21 Geographic Region
Employed upon application 22-29 West *
Total earnings† Living in Public Housing 30-44 Midwest *
Hourly earnings Yes 45-54 South *
Hours worked * 55 or older North *

Table B.6: We provide a list of all of the covariates included in the Super Learner. Many of these variables were
included in the original JTPA study’s regression model. Any variable denoted with an asterisk (∗) was not included
in the original JTPA study’s regression model. † indicates that the measure is from the past 12 months prior to the
baseline survey, ‡ indicates higher order terms included of that variable.
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Weighted Estimator Weighted Least Squares
τ̂W τ̂ resW τ̂ covW τ̂wLS τ̂ reswLS τ̂ covwLS

Earnings 2.37 2.07 2.19 2.46 2.28 2.24
Employment (× 100) 8.53 8.06 8.21 7.95 7.65 8.01

Table B.7: Mean absolute error across sites.

Numerical Results for Empirical Application

Table B.7 provides numerical results for the mean absolute error across all 16 experimental
sites for the six different estimators. We note that the mean absolute error of the point
estimates do not vary substantially from using post-residualized weighting. This supports
the results in Section 7.2.1.

Table B.8 reports the estimated standard errors (columns 3-5 for weighted estimators
and columns 8-10 for weighted least squares estimators) for each site, along with the esti-
mated diagnostics (columns 6-7 for weighted estimators and columns 11-12 for weighted least
squares estimators). In general, the diagnostics are able to adequately determine whether or
not we expect there to be improvements in standard error for accounting for the population
outcome information, as discussed in Section 7.2.2.

Finally, Table B.9 presents the true positive rate and false positive rate for our diagnostics
across the sites where the diagnostic indicated residualizing would increase precision (or not).
We present these counts for both outcomes, separately.

Using Proxy Outcomes

To illustrate use of a proxy outcome, we run the same analysis as in Section 7, except we use
employment as a proxy for earnings, and vice versa when building the residualizing model.
This mimics a situation in which we have access to a related, but different outcome measure
in our target population. Because employment is binary while earnings are continuous,
we expect that direct residualizing may not result in substantial efficiency gains, and thus
that our diagnostic measures would indicate not to residualize. However, treating Ŷi as a
covariate should still result in efficiency gain, as earnings and employment are correlated and
the model can adjust for the scaling differences.

Bias

Table B.10 presents the mean absolute error of the different estimation methods. When
earnings is the outcome, both directly residualizing and using Ŷi as a covariate result in rela-
tively stable performance. However, when employment is the outcome, the scaling differences
between earnings (in $1000) and the binary employment measure lead to large residuals. We
see a loss to precision from direct residualizing, and exacerbated finite sample bias. However,
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when including Ŷi as a covariate, we are able to account for the scaling differences, and the
mean absolute error is lower.

Diagnostics

We estimate the same diagnostics as in Section 7.2.1 to determine when to expect precision
gains from performing post-residualized weighting. We summarize the true positive and true
negative rates of the diagnostic in Table B.11. We see that the performance of the diagnostic
is good for direct residualization. However, we see that the diagnostic for including Ŷi as a
covariate is relatively conservative, and fails to identify all the cases in which it is beneficial to
residualize. However, the true negative rate of the diagnostic for including Ŷi as a covariate
is very high (almost 100%), which indicates that the diagnostic is very effective at identifying
when residualizing fails to lead to precision gain.

Table B.12 provides the standard errors and diagnostic measures for each site and estima-
tor. Within the “Weighted” and “Weighted Least Squares” sections, the left three columns
present the standard error for the corresponding estimator for each site, and the right two
columns present the diagnostic measure. One key takeaway is that, when employment is the
outcome, using earnings as a proxy outcome results in large scaling differences between our
residualizing model, captured by Ŷi, and the true outcome measure. This is unsurprising
since earnings is continuous and employment is binary. As a result, the R̂2

0 measures for the
estimators that use direct residualizing (i.e., τ̂ resW and τ̂ reswLS) are all negative, indicating that
we should not use direct residualizing in that setting. However, even in this scenario, the
diagnostic for using Ŷi as a covariate does not indicate significant gains. When using em-
ployment as a proxy for earnings, the diagnostics indicate small gains to direct residualizing
across most sites, and gains from including Ŷi as a covariate across about half of sites.

Efficiency Gain

Table B.12 presents the standard errors of each weighting method, with and without post-
residualizing, for each site. Table B.13 presents the average standard error across sites for
post-residualized weighting using proxy outcomes, where we restrict our attention to the
sites identified by the diagnostic measures for when we expect precision gains. When using
employment as a proxy for earnings, direct residualizing indicates small gains in 13/16 sites,
and including Ŷi as a covariate indicates gains in just under half of sites. The relative im-
provement in variance is small due to the differences in magnitude between Ŷi and Yi. In
particular, we see around a 0.3-0.4% reduction in variance from performing direct residual-
izing. However, when including Ŷi as a covariate, which accounts for the scaling difference,
the improvements are more substantial. In particular, when using Ŷi as a covariate in the
weighted estimator, there is a 14% reduction in variance. Using weighted least squares, there
is a 9% reduction in variance from including Ŷi as a covariate. The primary takeaway to
highlight is that using Ŷi as a covariate to perform post-residualized weighting can allow us
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to leverage proxy outcomes that exist on different scales than the outcome of interest, where
we expect greater gains the more closely related the outcome and proxy outcome are.

For employment, we do not consider direct residualizing because the diagnostic measure
did not identify any experimental sites in which directly residualizing would lead to precision
gains. When including Ŷi as a covariate the diagnostic indicated 5 sites that indicate gains
from post-residualized weighting; among these we see a 5% reduction in variance when using
Ŷi as a covariate in the weighted estimator, and a 1% reduction in variance in the weighted
least squares estimator. Finally, we emphasize that estimating the PATE results in variance
inflation relative to the within-sample difference-in-means, as expected. However, we see
that post-residualized weighting can offset some of this loss in precision.

This exercise shows how a proxy outcome can be used for building the residualizing model.
When the two variables are on very different scales, we expect that direct residualizing would
not be beneficial, as evidenced here and captured by our diagnostic measures. Including Ŷi
as a covariate addresses scaling concerns, although as we see when using earnings as a proxy
for employment, does not always allow for gains. We see that even using proxy outcomes,
our diagnostic measures can accurately capture when there is potential for precision gains,
and our post-residualized weighting method can lead to precision gains in estimation of the
target PATE.
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Standard Errors and Diagnostics for Residualizing Models

Weighted Weighted Least Squares

Site n τ̂W τ̂ resW τ̂ covW R̂2
0 R̂2

0,cov τ̂wLS τ̂ reswLS τ̂ covwLS R̂2
0,wLS R̂2

0,wLS,cov

Outcome: Earnings
NE 636 1.70 1.53 1.53 0.23 0.22 1.58 1.53 1.53 0.08 0.06
LC 485 2.46 2.02 2.11 0.42 0.32 2.40 2.08 2.14 0.38 0.26
HF 234 1.88 1.63 1.66 0.36 0.19 1.87 1.66 1.69 0.42 0.18
IN 1392 1.03 0.93 0.92 0.25 0.26 1.00 0.91 0.91 0.22 0.21
CV 788 1.40 1.25 1.22 0.04 0.01 1.36 1.23 1.20 0.08 0.07
CC 524 2.51 2.52 2.48 -0.06 -0.18 2.42 2.42 2.39 -0.13 -0.23
JK 353 2.29 2.28 2.25 0.19 -0.25 2.19 2.18 2.16 0.30 0.10
MT 38 6.44 7.04 8.40 -0.36 -9.31 4.64 4.83 6.09 0.40 -3.90
PR 463 2.69 2.61 2.60 0.08 -0.16 2.82 2.75 2.71 0.03 -0.17
MN 179 4.79 4.70 4.80 -0.03 -0.35 3.72 4.26 4.20 -0.31 -0.56
MD 177 2.87 2.46 2.48 0.33 0.24 2.67 2.30 2.32 0.30 0.13
SM 401 2.07 2.28 2.12 -0.30 -0.13 2.13 2.23 2.11 -0.14 -0.09
OH 74 3.97 3.27 3.42 0.33 -0.22 3.94 3.75 3.77 0.29 -0.37
CI 190 3.84 3.33 3.07 0.41 0.31 3.47 3.15 2.94 0.28 -0.18
OK 87 4.69 5.07 4.64 -0.05 -0.43 4.61 4.39 4.22 0.14 -0.19
JC 81 7.24 8.81 8.50 -0.75 -1.15 6.14 7.51 6.56 -0.19 -0.49
Outcome: Employment
NE 636 0.04 0.04 0.04 0.03 -0.01 0.04 0.04 0.04 0.02 -0.00
LC 485 0.06 0.06 0.05 0.19 0.20 0.06 0.06 0.05 0.11 0.09
HF 234 0.06 0.06 0.06 0.04 -0.03 0.06 0.06 0.06 0.02 -0.03
IN 1392 0.02 0.02 0.02 -0.15 -0.04 0.02 0.02 0.02 -0.21 -0.08
CV 788 0.03 0.03 0.03 -0.01 -0.01 0.03 0.03 0.03 -0.03 -0.01
CC 524 0.06 0.06 0.06 -0.09 -0.10 0.06 0.06 0.06 -0.10 -0.08
JK 353 0.10 0.09 0.09 0.13 -1.53 0.09 0.09 0.09 0.08 -0.85
MT 38 0.13 0.13 0.13 — — 0.13 0.15 0.14 — —
PR 463 0.06 0.06 0.06 0.03 -0.05 0.07 0.06 0.07 0.03 -0.03
MN 179 0.13 0.12 0.11 0.23 -3.09 0.12 0.11 0.11 0.21 -0.89
MD 177 0.09 0.08 0.08 0.19 -0.06 0.08 0.08 0.08 0.20 -4.0e28
SM 401 0.06 0.06 0.06 0.07 -0.15 0.06 0.06 0.06 0.05 -0.03
OH 74 0.07 0.06 0.07 0.09 -1.78 0.08 0.07 0.08 0.08 -1.8e28
CI 190 0.04 0.04 0.05 0.19 -0.07 0.05 0.05 0.05 0.27 -4.4e28
OK 87 0.21 0.19 0.19 0.12 -2.03 0.17 0.17 0.18 0.21 -1.35
JC 81 0.16 0.14 0.14 -0.88 -3.88 0.12 0.13 0.13 -0.92 -0.58

Table B.8: Standard error and diagnostic values for post-residualized weighting across the
16 experimental sites for two primary outcomes–earnings and employment. The diagnostic
values for the site of Butte, Montana (MT) are null when outcome is employment, because
all units in the control group were unemployed.
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Weighted Estimator Weighted Least Squares
τ̂ resW τ̂ covW τ̂ reswLS τ̂ covwLS

Earnings
True Positive Rate 10/11 7/12 11/11 7/13
True Negative Rate 5/5 4/4 4/5 3/3

Employment
True Positive Rate 11/13 1/12 10/10 1/7
True Negative Rate 3/3 4/4 5/6 8/9

Table B.9: Performance of proposed diagnostic measures, as measured through the true
positive rate and false positive rate.

Estimator Performance Summary with Proxy Outcomes

Weighted Weighted Least Squares
τ̂W τ̂ resW τ̂ covW τ̂wLS τ̂ reswLS τ̂ covwLS

Earnings 2.37 2.35 2.14 2.46 2.44 2.21
Employment (× 100) 8.53 66.15 7.85 7.95 65.33 7.45

Table B.10: Mean absolute errors for each estimator, across all experimental sites when using
proxy outcomes.

Weighted Estimator Weighted Least Squares
τ̂ resW τ̂ covW τ̂ reswLS τ̂ covwLS

Earnings
True Positive Rate 13/14 7/12 12/13 6/13
True Negative Rate 2/2 4/4 2/3 3/3

Employment
True Positive Rate – 2/12 – 3/10
True Negative Rate 16/16 4/4 16/16 5/6

Table B.11: Performance of proposed diagnostic measures using proxy outcomes, as measured
through the true positive rate and false positive rate.
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Standard Errors and Diagnostics Using Proxy Outcomes

Weighted Weighted Least Squares

Site n τ̂W τ̂ resW τ̂ covW R̂2
0 R̂2

0,cov τ̂wLS τ̂ reswLS τ̂ covwLS R̂2
0,wLS R̂2

0,wLS,cov

Outcome: Earnings
NE 636 1.70 1.70 1.62 0.00 0.09 1.58 1.58 1.53 0.00 0.03
LC 485 2.46 2.45 2.39 0.00 0.15 2.40 2.40 2.37 0.00 0.05
HF 234 1.88 1.88 1.76 0.01 0.15 1.87 1.86 1.78 0.01 0.08
IN 1392 1.03 1.03 0.96 0.01 0.27 1.00 0.99 0.95 0.01 0.21
CV 788 1.40 1.40 1.39 0.00 -0.06 1.36 1.36 1.37 0.00 -0.03
CC 524 2.51 2.51 2.46 0.01 -0.03 2.42 2.41 2.40 0.00 -0.10
JK 353 2.29 2.28 2.10 0.01 0.07 2.19 2.18 2.07 0.01 0.04
MT 38 6.44 6.44 9.60 -0.00 -9.23 4.64 4.65 7.32 0.01 -5.86
PR 463 2.69 2.69 2.70 0.00 -0.16 2.82 2.82 2.82 -0.00 -0.15
MN 179 4.79 4.78 4.13 0.00 0.13 3.72 3.71 3.71 0.00 -0.14
MD 177 2.87 2.87 2.61 0.01 0.14 2.67 2.66 2.43 0.01 0.16
SM 401 2.07 2.07 2.04 0.00 -0.07 2.13 2.12 2.06 0.00 -0.02
OH 74 3.97 3.97 4.00 0.00 -0.44 3.94 3.93 3.75 0.00 -0.50
CI 190 3.84 3.84 3.40 0.00 -0.03 3.47 3.47 3.07 0.00 -0.22
OK 87 4.69 4.71 4.51 -0.01 -0.88 4.61 4.61 4.06 -0.01 -0.67
JC 81 7.24 7.26 8.52 -0.01 -0.82 6.14 6.17 6.75 -0.01 -0.83
Outcome: Employment
NE 636 0.04 0.56 0.04 -352.40 -0.00 0.04 0.49 0.04 -248.43 -0.01
LC 485 0.06 0.70 0.05 -220.79 0.13 0.06 0.56 0.05 -193.43 0.02
HF 234 0.06 0.94 0.06 -260.76 -0.02 0.06 0.90 0.06 -282.80 0.06
IN 1392 0.02 0.34 0.02 -391.67 -0.04 0.02 0.32 0.02 -354.59 -0.05
CV 788 0.03 0.42 0.03 -151.95 0.02 0.03 0.38 0.03 -129.68 0.03
CC 524 0.06 1.00 0.06 -284.99 -0.21 0.06 0.89 0.06 -236.05 -0.18
JK 353 0.10 1.10 0.08 -104.99 -3.17 0.09 0.92 0.08 -88.67 -2.13
MT 38 0.13 2.42 0.12 — — 0.13 2.49 0.13 — —
PR 463 0.06 0.93 0.06 -228.05 -0.05 0.07 0.80 0.07 -200.67 -0.06
MN 179 0.13 1.57 0.13 -207.13 -14.37 0.12 1.61 0.12 -189.16 -3.35
MD 177 0.09 0.93 0.08 -66.00 -0.14 0.08 0.81 0.08 -77.66 -4.7e28
SM 401 0.06 0.76 0.06 -95.56 -0.12 0.06 0.68 0.06 -84.67 -0.10
OH 74 0.07 1.77 0.07 -1202.77 -0.56 0.08 1.60 0.08 -985.02 -2.4e28
CI 190 0.04 1.40 0.05 -1312.75 -0.47 0.05 1.41 0.05 -1241.70 -1.1e28
OK 87 0.21 3.24 0.16 -249.20 -1.29 0.17 2.44 0.16 -65.65 -0.28
JC 81 0.16 3.20 0.17 -6487.60 -4.51 0.12 1.70 0.14 -300.75 -0.24

Table B.12: Standard error and diagnostic values for post-residualized weighting using proxy
outcomes across the 16 experimental sites for two primary outcomes–earnings and employ-
ment. Once again, the diagnostics for MT are null when employment is the outcome, because
all the units in the control group are unemployed.
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Summary of Standard Errors Subset by Diagnostic, using Proxy Outcomes

Earnings Employment
Number
of Sites

DiM Standard
Post Resid.
Weighting

Number
of Sites

DiM Standard
Post Resid.
Weighting

Weighted
Direct Residualizing 13 1.53 2.58 2.57 0 – – –

Ŷi as Covariate 7 1.50 2.43 2.23 2 2.93 4.01 4.00
Weighted Least Squares

Direct Residualizing 13 1.74 2.57 2.57 0 – – –

Ŷi as Covariate 6 1.37 1.95 1.85 3 3.65 4.68 4.63

Table B.13: Summary of standard errors across the 16 experimental sites identified by the
diagnostic measures.
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Appendix C

Variance-Based Sensitivity Analysis
for Weighting Estimators

C.1 Additional Discussion

Missingness

In the man manuscript, the estimand of interest is the average treatment effect, across the
treated. However, we note that the sensitivity framework introduced can be applied to more
general settings, in which we consider missingness conditionally at random:

Yi |= Ai | X
This provides a very flexible framework to consider many settings of interest. Table C.1
summarizes several settings of interest, along with the associated conditional ignorability
assumption to be relaxed by sensitivity analysis.

Setting Missingness Indicator Ignorability Statement

Survey Response Ri (Response) Yi |= Ri | X
Internal Validity Zi (Treatment Assignment) Yi(1), Yi(0) |= Zi | X
External Validity Si (Inclusion in Experimental Sample) Yi(1)− Yi(0) |= Si | X

Table C.1: Summary of different common missingness settings.

Relationship with Extensions for Sharper Bounds

Recently, several papers have demonstrated that the worst-case bounds derived under the
marginal sensitivity model result in w∗ that fail to recover the causal estimand. Thus,
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these worst-case bounds tend to be unnecessarily conservative, and may not necessarily be
sharp. Both Dorn and Guo (2021) and Nie et al. (2021) introduce additional optimization
constraints for slightly tighter (and sometimes sharp) bounds. However, these additional op-
timization constraints come at a cost. In particular, the approach in Dorn and Guo (2021)
require imposing parametric assumptions of the conditional quantiles of the outcomes; fur-
thermore, the method does not accommodate discrete outcome variables. Nie et al. (2021)
include additional balancing constraints when solving for the bounds; however, Dorn and Guo
(2021) show that doing so can result in unstable performance in finite-sample settings. For
this paper, we restrict our discussion to the marginal sensitivity model, but similar compar-
isons could be made to extensions of these models. Because these methods are all extensions
of the marginal sensitivity model, the shortcomings and drawbacks that are discussed about
the marginal sensitivity model similarly apply to these approaches as well.

Parametric Assumption of Conditional Ignorability

In practice, when researchers estimate weights, they are implicitly assuming a parametric
version of Assumption 6. Following Hartman et al. (2021), we formalize the parametric
version of Assumption 6:

Assumption 8 (Linear ignorability in ϕ(X))
Let ϕ(·) be a feature mapping of Xi. Then, write the outcome Yi as follows:

Yi = ϕ(Xi)
⊤β + δi.

Similarly, write P (Zi = 1 | Xi) as follows:

Pr(Zi = 1 | Xi) = g(ϕ(Xi)
⊤θ) + ηi,

where g(·) : R 7→ [0, 1]. Then, linear ignorability holds when δi |= ηi.

Linear ignorability in ϕ(Xi) implies that the part of the outcome that is orthogonal to ϕ(Xi)
is independent to the part of the treatment assignment process that is orthogonal to ϕ(Xi).

The distinction between the non-parametric version of conditional ignorability (i.e., As-
sumption 6) and the parametric version (i.e., Assumption 8) arises from the types of viola-
tions that matter for omitted variable bias. Under the non-parametric version of conditional
ignorability, only variables that are fully unobserved (or omitted) will result in bias. How-
ever, under Assumption 8, in addition to including all of the correct variables, the choice of
feature mapping also matters. For example, if researchers only include first-order moments
in their weights estimation, then ϕ(Xi) = Xi. However, if the true feature map necessary for
linear ignorability to hold also includes higher-order terms or non-linear interactions between
covariates, then using only the first-order moments will result in bias (Huang et al., 2022).
As such, omitted variables in such a setting would also include any transformations of exist-
ing covariates that have not been explicitly accounted for in the estimated weights. We refer
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readers to Hartman and Huang (2022) for more discussion about the two assumptions in
the context of sensitivity analysis. We note that the proposed sensitivity framework is valid,
regardless of which version of conditional ignorability researchers are interested in using.

Moving Away from Worst-Case Correlation Bounds

Theorem 4.3.1 allows researchers to calculate the maximum bias that can occur for a fixed R2.
This is done by assuming the correlation between the imbalance in the omitted confounder
is maximally correlated with the outcome. This can be conservative in practice. We provide
several recommendations for researchers who may wish to relax this bound. Doing so can
result in narrower bounds, at the cost of having to reason about an additional parameter.
Throughout this section, we will refer to the correlation bound as ρ∗, such that the maximum
bias is written as:

ρ∗ ·

 
R2

1−R2
· var(Yi | Ai = 1) · var(wi | Ai = 1)

We suggest several different approaches for researchers to estimate less conservative bounds.

Estimating Bounds using Relative Correlation Applying the results from Huang
(2022), we can decompose the correlation between the imbalance and the outcome into a
function of the R2 value, the correlation between the estimated weights and the outcomes,
and the correlation between the true weights and the outcomes:

cor(wi, Yi)

…
1−R2

R2
− cor(w∗

i , Yi) ·
…

1

R2
(C.1)

As such, an intuitive way to evaluate bounds for the correlation term is to posit a bound for
the correlation between the true weights and the outcomes by a relative scaling constant k:

k :=
cor(w∗

i , Yi)

cor(wi, Yi)
,

where k represents how many more times correlated the true weights are to the outcomes,
relative to the estimated weights. k will be naturally upper-bounded at 1/cor(wi, Yi). Using
Equation (C.1), researchers can then obtain a new upper bound for ρ∗:

ρ∗ ≤ cor(wi, Yi)√
R2

Ä√
1−R2 − k

ä
It is worth noting that the correlation bound will change, depending on the R2 parameter.
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Benchmarking the Correlation Term In practice, researchers may also perform for-
mal benchmarking to estimate what may be plausible correlation values. More specifically,
researchers can calculate the error from omitting the j-th covariate and evaluate the corre-
lation between the residual imbalance in the j-th covariate and the outcome, using this as
the upper bound for ρ∗:

ρ∗(j) ≤”cor(wi − w
−(j)
i , Yi | Ai = 1)

Evaluating the bias at ρ∗(j) and R̂
2
(j) provides researchers with an estimate of the bias if they

omitted a confounder with residual imbalance that is (1) equivalent in magnitude as the
residual imbalance of the j-th covariate, and (2) equivalently as correlated with the outcome
as the residual imbalance of the j-th covariate. Researchers can then estimate the associated
confidence intervals by fixing both the correlation term and R2.

Extended discussion for sample boundedness

Proposition C.1.1 (Necessary Condition for Validity of Sample Bounds)
Define A as the set of all observed Yi values across the sample Ai = 1. For sample bound-
edness to be true (i.e., E(Yi | Ai = 0) ∈ [mini:Ai=1 Yi,maxi:Ai=1 Yi]), the expectation of the
outcomes not contained in the sample range must be constrained by the following:

E(Yi | Ai = 0, Yi ̸∈ A) ∈ï
1

1− pA
min
i:Ai=1

Yi −
pA

1− pA
max
i:Ai=1

Yi,
1

1− pA
max
i:Ai=1

Yi −
pA

1− pA
min
i:Ai=1

Yi

ò
,

where pA := P (Yi ∈ A | Ai = 0) represents the proportion of unobserved outcomes that fall
within the observed sample range.

The bound specified above represents how much overlap there must exist in the observed and
unobserved potential outcomes. The bound is a function of (1) the proportion of unobserved
units with outcomes that are outside the range of outcomes across the observed sample units
(i.e., 1− pA = P (Yi ̸∈ A | Ai = 0)), and (2) the sample bounds. If a small proportion of the
outcomes in the unobserved population fall outside the sample bounds, then the bound will
be relatively wide. However, if a large proportion of outcomes in the unobserved population
fall outside the sample bounds, then the bound will be more narrow.

We also simulate the behavior of both sensitivity models under varying amounts of over-
lap.

Example C.1.1 (Coverage Rates in Limited Outcome Overlap Settings)
Define the treatment assignment mechanism as a logit model, and the outcome model as a
linear model:

P (Zi = 1 | X ) ∝ exp(γ1Xi,1 + γ2Xi,2 + βUi)

1 + exp(γ1Xi,1 + γ2Xi,2 + βUi)
Yi = γ1Xi,1 + γ2Xi,2 + βUi + vi,
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where Xi,1, Xi,2 and Ui are standard normal random variables, and vi ∼ N(0, σ2
v). vi rep-

resents a noise parameter that controls for how much outcome overlap there is. When σ2
v

is large, then there is increased overlap between the treatment and control groups, as the
treatment probability is less correlated with the outcome.

We vary σ2
v ∈ {0, 0.1, 0.25, 1, 2, 2.5}, and set γ1 = 2.5, γ2 = 5, and β = 1. For each

iteration of the simulation, we assume that researchers omit Ui, and estimate confidence
intervals using both the marginal sensitivity model and the variance-based sensitivity model,
using the true sensitivity parameters. We visualize the coverage rates across simulations in
Figure 4.3. We see that even in low overlap scenarios and small sample sizes, the variance-
based sensitivity model have nominal coverage. However, the marginal sensitivity model
struggles to achieve nominal coverage in limited overlap settings.

Example C.1.1 highlights that in small sample settings and limited overlap, the marginal
sensitivity model fails to obtain nominal coverage, even with the true Λ value. In contrast,
the variance-based sensitivity model consistently has nominal coverage.

We see that within finite-sample settings, the marginal sensitivity model may obtain
narrower bounds than the variance-based sensitivity model, due to their inherent sample
boundedness. However, these narrower bounds risk not being valid in settings with smaller
sample size and limited outcome overlap, and can risk large amounts of under-coverage.
Thus, the estimated confidence intervals under the variance-based sensitivity model are tech-
nically wider, but appropriately so, providing at least nominal coverage, even in cases with
severely limited outcome overlap.

C.2 Proofs and Derivations

Theorem 4.3.1

For a fixed R2 ∈ [0, 1), then the maximum bias under σ(R2) can be written as a function
of the following components:

max
w̃∈σ(R2)

Bias(τ̂W | w̃)

=
»
1− cor(wi, Yi | Ai = 1)2︸ ︷︷ ︸

(a) Correlation Bound

 
R2

1−R2︸ ︷︷ ︸
(b) Imbalance

· var(Yi|Ai = 1)var(wi|Ai = 1)︸ ︷︷ ︸
(c) Scaling Factor

,

with the minimum bias given as the negative of Equation (4.2). The optimal bias bounds
are thus given by the minimum and maximum biases.
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Proof: We will start by deriving the optimal bounds. To begin, we can decompose the
bias of a weighted estimator as follows:

Bias(τ̂W ) = E (τ̂W )− τ

By conditional ignorability:

= E

(∑
i∈A

wiYi

)
− E

(∑
i∈A

w∗
i Yi

)
= E(wiYi | Ai = 1)− E(w∗

i Yi | Ai = 1)

= E((wi − w∗
i ) · Yi | Ai = 1)

By construction, E(wi | Ai = 1) = E(w∗
i | Ai = 1):

= E((wi − w∗
i ) · Yi | Ai = 1)− E(wi − w∗

i | Ai = 1) · E(Yi | Ai = 1)

= cov(wi − w∗
i , Yi | Ai = 1)

= cor(wi − w∗
i , Yi | Ai = 1) ·

»
var(wi − w∗

i | Ai = 1) · var(Yi | Ai = 1) (C.2)

This is similar to the derivation provided in Shen et al. (2011) and Hong et al. (2021).
However, we will go a step further to amplify the term, var(wi − w∗

i | Ai = 1), into an R2

value and the variance of the estimated weights. To do so, we extend the results from Huang
(2022), which examined the bias in the context of an external validity setting, and thus,
focused on re-weighting an individual-level treatment effect τi. We instead apply the results
to a general missingness setting, in which we are re-weighting outcomes Yi. We re-write the
variance of the error in the weights in Equation (C.2) as a function of the R2 parameter and
the variance of the estimated weights, providing the following bias decomposition:

Bias(τ̂W ) = cor(wi − w∗
i , Yi | Ai = 1) ·

 
R2

1−R2
· var(Yi | Ai = 1) · var(wi | Ai = 1),

where R2 is defined in Definition 4.3.1. Because we are fixing R2 ∈ [0, 1),1 and var(Yi | Ai =
1) · var(wi | Ai = 1) are directly estimable from the data, to maximize the bias, we must
maximize the correlation term.

Applying results from Huang (2022), we note that the error in the weights (i.e., wi−w∗
i )

is orthogonal to the estimated weights wi (i.e., cov(wi − w∗
i , wi | Ai = 1) = 0). Then,

applying the recursive formula of partial correlation, we obtain the following bounds for the
correlation:2

−
»
1− cor(wi, Yi | Ai = 1)2 ≤ cor(wi − w∗

i , Yi | Ai = 1) ≤
»

1− cor(wi, Yi | Ai = 1)2

Thus, Equation 4.2 in Theorem 4.3.1 directly follows. . □

1In settings when R2 = 1, this implies that researchers have effectively explained none of the variation in
the true weights–i.e., in settings when researchers use uniform weights. However, if researchers have at least
included one covariate that is at least correlated with a variable in the separating set X , then R2 < 1.

2This follows from results in Olkin (1981).
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Theorem 4.3.2

For every w̃ ∈ σ(R2):

lim sup
n→∞

P (τ(w̃) < L(w̃)) ≤ α

2
and lim sup

n→∞
P (τ(w̃) > U(w̃)) ≤ α

2
,

where L(w̃) and U(w̃) are defined as the α/2 and 1−α/2-th quantiles of the bootstrapped
estimates (i.e., Equation (4.4)).

Proof: We may re-write our bootstrapped estimate τ̂ (b)(w̃) as:

τ̂ (b)(w̃) = τ̂
(b)
W − Bias(τ̂W | w̃)

= τ̂
(b)
W − ρ ·

 
var(ŵ

(b)
i )

R2

1−R2
· var(Y (b)

i )

Because ρ and R2 are fixed (across bootstrap samples), the components that drive variation

across bootstrap samples are: τ̂
(b)
W , var(ŵ

(b)
i ), and var(Y

(b)
i ).

An overview of the proof is as follows. Similar to Zhao et al. (2019), we will use a Z-
estimation framework. In particular, we will add in three additional parameters: µ̂2

w, µ̂Y , µ̂
2
Y ,

which represent the second order moment of the weights, the average of the outcomes, and
the second order moment of the outcomes, respectively. Then, we will invoke the asymptotic
normality of bootstrapped Z-estimators. In the following proof, we will show the validity
of the percentile bootstrap in the case that researchers are using inverse propensity score
weights; however, we note that researchers can invoke the results in Soriano et al. (2021) to
show validity of the results for balancing weights.

To begin, define µw as the expectation of the weights:

µw = E(Aw) ≡ E(A · (1 + exp(−βX))).

Then, we define µ as:

µ =
E(AY (1 + exp(−β⊤X)))

µw

.

Define µ2
w = E(Aw2) and σ2

Y = E(AY 2) as the second moment of the weights and the

outcomes, respectively. Then, we define the vector θ = (µ, µw, β, µ
2
w, µY , µ

2
Y )

⊤ ∈ Θ. Define
the function Q : 0, 1×Rd ×R→ R

d+5, where for t = (a, x⊤, y) ∈ {0, 1} ×Rd ×R:

Q(t | θ) =


Q1(t|θ)
Q2(t|θ)
Q3(t|θ)
Q4(t|θ)
Q5(t|θ)
Q6(t|θ)

 :=



Ä
a− exp(β⊤x)

1+exp(β⊤x)

ä
x

µw − a
(
1 + exp(−β⊤x)

)
µwµ− ay

(
1 + exp(−β⊤x)

)
µ2
w − a

(
1 + exp(−β⊤x)

)2
µy − ay
µ2
y − ay2

 (C.3)
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Finally, we define Φ(θ) as:

Φ(θ) =

∫
Q(t|θ)dP(t),

where T = (A,X⊤, AY )⊤ ∼ P, where P represents the true distribution generating the data.
It is simple to see that Φ(θ∗) = 0, when θ∗ is equal to the true parameter values. Then, the
Z-estimates θ̂ :

Φn(θ̂) : =
1

n

n∑
i=1

Q(Ti|θ̂) (C.4)

=



(
1
n

∑n
i=1Ai − exp(β̂⊤Xi)

1+exp(β̂⊤Xi)

)
Xi

µ̂w − 1
n

∑n
i=1Ai

Ä
1 + exp(−β̂⊤Xi)

ä
µ̂wµ− 1

n

∑n
i=1AiYi

Ä
1 + exp(−β̂⊤Xi)

ä
µ̂2
w − 1

n

∑n
i=1Ai

Ä
1 + exp(−β̂⊤Xi)

ä2
µ̂y − 1

n

∑n
i=1AiYi

µ̂2
y − 1

n

∑n
i=1(AiY

2
i )


= 0 (C.5)

We define Σ := E(Q(t | θ)Q(t | θ)⊤). We will invoke the following regularity conditions,
consistent with Zhao et al. (2019).

Assumption 9 (Regularity Conditions)
Assume that the parameter space Θ is compact, and that θ is in the interior of Θ. Further-
more, (Y,X) satisfies the following:

1. E(Y 4) <∞

2. det
Ä
E
Ä

exp(β⊤X)
(1+exp(β⊤X))2

XX⊤
ää

> 0

3. ∀ compact subsets S ⊂ Rd, E(supβ∈S exp(β
⊤X)) <∞

To show asymptotic normality of bootstrapped Z-estimators, we must first verify that
Φ̇0 and Σ are well-defined (Kosorok, 2008).

Φ̇0 = E (∇θ=θ0Q(T |θ))

=



0 0 −E
(

exp(β⊤
0 X)

1+exp(β⊤
0 X)2

XX⊤
)

0 0 0

0 1 E(AX⊤ exp(−β⊤
0 X) 0 0 0

µw µ E(AYX⊤(exp(β⊤
0 X) 0 0 0

0 0 E(AX⊤(exp(β⊤
0 X) + exp(−2β⊤

0 X))) 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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By Leibniz Formula for determinants:

∣∣∣det(Φ̇0)
∣∣∣ =

∣∣∣∣∣∣∣det
Ö

0 0 −E
(

exp(β⊤
0 X)

1+exp(β⊤
0 X)2

XX⊤
)

0 1 E(AX⊤ exp(−β⊤
0 X)

µw µ E(AYX⊤(exp(β⊤
0 X)

è
det

Ñ
1 0 0
0 1 0
0 0 1

é∣∣∣∣∣∣∣
= µw

∣∣∣∣detEÅ exp(β⊤
0 X)

(1 + exp(β⊤
0 X))2

XX⊤
ã∣∣∣∣ > 0,

which follows by regularity condition (2). As such, Φ̇0 is invertible. Furthermore, by regu-
larity condition (1), Σ <∞.

As such, we simply need to verify the three conditions for asymptotic normality of boot-
strapped Z-estimators:

1. The class of functions t→ Q(t|θ) : θ ∈ Θ is P-Glivenko-Cantelli.

2. ||Φ(θ)||1 is strictly positive outside every open neighborhood of θ0.

3. The class of functions is P-Donsker, and E((Q(T |θn)−Q(T |θ0))2) → 0 whenever ||θn−
θ0||1 → 0.

It is worth noting that the first three parameters (µ, µw, β) are special cases from Zhao et al.
(2019), in which we do not perform any shifting in the weights (i.e., h(x, y) = 0). We will
then show that the three conditions still hold after additionally accounting for the last three
parameters. The proof for each condition is provided below.

Condition 1: The class of functions t→ Q(t|θ) : θ ∈ Θ is P-Glivenko-Cantelli.

||Q(t|θ) ≤ ||Q1(t|θ)||1 +
5∑

b=2

|Qb(t|θ)|

Zhao et al. (2019) show that ||Q1(t|θ)||1 + |Q2(t|θ)| + |Q3(t|v)| is bounded as a function of
x, y, and some absolute constant M1:

||Q1(t|θ)||1 + |Q2(t|θ)|+ |Q3(t|v)| ≤ ||x||1 + |y|+ exp(−β⊤x)(1 + |y|) +M1.

As such, all that is left to show is to show that |Q4(t|θ)|+ |Q5(t|θ)|+ |Q6(t|θ)| is finite. To
begin:

|Q4(t|θ)| = |µ2
w − (a(1 + exp(−β⊤x)2|

≤ µ2
w + (1 + exp(−β⊤x))2

|Q5(t|θ)| = |µy − ay|
≤ |µy|+ |y|

|Q6(t|θ)| = |µ2
y − ay2|

≤ µ2
y + |y2|
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As such:

|Q4(t|θ)|+ |Q5(t|θ)|+ |Q6(t|θ)| ≤M2 + (1 + exp(−β⊤x))2 + |y|+ |y2|,

where M2 is some absolute constant. As such, where M is an absolute constant:

||Q(t|θ||1 ≤ ||x||1 + 2|y|+ |y2|+ exp(−β⊤x)(1 + |y|) + (1 + exp(−β⊤x))2 +M,

where M < ∞ by regularity condition (1). Therefore, E(supθ∈Θ ||Q(t|θ)||1) < ∞, and
{t→ Q(t|θ) : θ ∈ Θ} is P-Glivenko-Cantelli.

Condition 2: ||Φ(θ)||1 is strictly positive outside every open neighborhood of θ0.
Following Zhao et al. (2019), we fix some ε > 0. If ||β−β0||1 > ε/M , then it is trivial to show
that ||Φ(θ)||1 > 0. Zhao et al. (2019) show that when ||β−β0||1 ≤ ε/M , if |µw−µw,0| > ε/4K,
where K = supθ∈Θ |µ| ∈ (0,∞), then ||Φ(θ)||1 > 0. Furthermore, when ||β − β0||1 ≤ ε/M
and |µw − µw,0| ≤ ε/4K and |µ− µ0| > ε/2µw, then ||Φ(θ)||1 > 0.

Thus, we must show for the remaining 3 parameters that when ||µ2
w −µ2

w,0||, ||µy −µy,0||,
or ||µ2

y − µ2
y,0||1 are greater than some ε, ||Φ(θ)||1 > 0. Assume |||β − β0||1 ≤ ε/M . Then:∣∣E [A exp(−β⊤X)2 + A exp(−β⊤

0 X)2
]∣∣ = ∣∣E [A exp(−2β⊤X) + A exp(−2β⊤

0 X)
]∣∣

≤
∣∣E (exp(−2β⊤X− 2β⊤

0 X)
)∣∣

≤ 2||β − β0||∞E (||X||1 exp(−t∗)) for t∗ ∈ [β⊤
0 X, β

⊤X]

≤ 2 · ε

64K
=

ε

32K

As such, if ||µ2
w − µ2

w,0|| > ε/32K:

||Φ(θ)||1 ≥
∣∣µ2

w − µ2
w,0 + E

[
A exp(−β⊤X)2 + A exp(−β⊤

0 X)2
]∣∣ > 0 (C.6)

For the final two parameters, it is worth noting that there is no dependency on the other
parameter estimates. As such, regardless of whether the other parameters are smaller than
some ϵ, if ||µy − µy,0||1 > ε:

||Φ(θ)||1 ≥ |µy − E(AY )− (µy,0 − E(AY ))|
= |µy − µy,0| > 0 (C.7)

Similarly, if ||µ2
y − µ2

y,0|| > ε

||Φ(θ)||1 ≥
∣∣µ2

y − E(AY 2)− (µ2
y,0 − E(AY 2))

∣∣
=
∣∣µ2

y,0 − µy

∣∣ > 0 (C.8)

As such, combining Equation (C.6), (C.7), (C.8), as well as the results from Zhao et al.
(2019), we have shown that for all δ > 0, inf{||Φ(θ)||2 : ||θ − θ0||1 > δ} > 0.
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Condition 3: The class of functions is P-Donsker, and E((Q(T |θn) − Q(T |θ0))2) → 0
whenever ||θn − θ0||1 → 0.
From Zhao et al. (2019), we obtain a bound for the first three terms (i.e., Q1(t|θ), Q2(t|θ),
and Q3(t|θ)). Then, for the 4th term:3

|Q4(t|θ2)−Q4(t|θ1)|
= |µ2

w,2 − (a(1 + exp(−β⊤
2 x))

2 − (µ2
w,1 − (a(1 + exp(−β⊤

1 x))
2|

≤ |µ2
w,2 − µ2

w,1|+ |(1 + exp(−β⊤
2 x))

2 − (1 + exp(−β⊤
1 x))

2|
= |µ2

w,2 − µ2
w,1|+

∣∣2( exp(−β⊤
2 x)− exp(−β⊤

1 x)
)
+ exp(−2β⊤

2 x)− exp(−2β⊤
1 x)

∣∣
≤ |µ2

w,2 − µ2
w,1|+

∣∣2( exp(−β⊤
2 x)− exp(−β⊤

1 x)
)∣∣+ ∣∣exp(−2β⊤

2 x)− exp(−2β⊤
1 x)

∣∣
Applying the Mean Value Theorem (equivalently, results from Zhao et al. (2019)):

≲ |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β⊤x) + ||2β2 − 2β1||2||x||2 sup
β∈Θ

exp(−2β⊤x)

= |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β⊤x) + 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−2β⊤x)

= |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β⊤x)

Ç
1 + sup

β∈Θ
exp(−β⊤x)

å
≲M4(x)

(
|µ2

w,2 − µ2
w,1|+ ||β2 − β1||1

)
Finally, for the 5th and 6th terms:

|Q5(t|θ2)−Q5(t|θ1)|
= |µy,2 − ay − (µy,1 − ay)|
= |µy,2 − µy,1|

|Q6(t|θ2)−Q6(t|θ1)|
= |µ2

y,2 − ay2 − (µ2
y,1 − ay2)|

≤ |µ2
y,2 − µ2

y,1|

Combining results with Zhao et al. (2019), we see that:

||Q(t|θ2)−Q(t|θ1)||1 =
6∑

b=1

||Qb(t|θ2)−Qb(t|θ1)|| ≲M(x, y)||θ2 − θ1||1

Since E(M(X, Y )2) < ∞, we have shown that the class of functions is P-Donsker, and
furthermore, that whenever ||θn − θ0||1 → 0, E

[
(Q(t|θn)−Q(t|θ0))2

]
→ 0.

3Consistent with Zhao et al. (2019), for some a, b ∈ R, and some constant C > 0, if a ≤ C · b, then we write
a ≲ b.
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Then, by invoking Kosorok (2008), Theorem 10.16:

√
n(θ̂ − θ)

d→ N
Ä
0, Φ̇−1

0 ΣΦ̇0

ä
, and

√
n(θ̂(b) − θ)

d→ N
Ä
0, Φ̇−1

0 ΣΦ̇0

ä
, (C.9)

As such, applying Delta Method and results from Appendix C3 in Zhao et al. (2019) con-
cludes the proof. □

Theorem 4.4.1 (Weighted L2 Analog)

Define the individual-level error in the weights as λi := w∗
i /wi. Define the L2,w norm as

follows:

||λ||22,w :=


1

n

n∑
i=1

λ2i · ν(wi) if var(wi) > 0,

∞ else

,

where ν(wi) is a function of the estimated weights. Then, the variance-based sensitivity
model can equivalently be written as a norm-constrained optimization problem:

max
w̃∈σ(R2)

Bias(τ̂W | w̃) ⇐⇒


max
w̃

Bias(τ̂W | w̃)

s.t. ||λ||2,w ≤
 

k

1−R2
,

where k := 1−R2/E(w2
i ).

Proof: Define λi := w∗
i /wi. Then, following results from Huang (2022):

var(wi − w∗
i ) = var(w∗

i )− var(wi)

We can then substitute in λi:

= var(λi · wi)− var(wi)

= E(λ2i · w2
i )− E(λi · wi)

2︸ ︷︷ ︸
≡E(w∗

i )
2=1

−var(wi)

= cov(λ2i , w
2
i ) + E(λ2i )E(w2

i )− 1− var(wi)

= cov(λ2i , w
2
i ) + E(λ2i )var(wi) + E(λ2i )− 1− var(wi)

= cov(λ2i , w
2
i ) + (E(λ2i )− 1) · (var(wi) + 1)

= cov(λ2i , w
2
i ) + (E(λ2i )− 1) · E(w2

i )

=⇒ var(wi − w∗
i )

E(w2
i )

=
cov(λ2i , w

2
i )

E(w2
i )

+ (E(λ2i )− 1)
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Re-arranging the terms:

cov(λ2i , w
2
i )

E(w2
i )

+ E(λ2i ) = 1 +
var(wi − w∗

i )

E(w2
i )

= 1 +
E(w2

i )− E(wi)
2

E(w2
i )

· R2

1−R2

= 1 +
R2

1−R2
− E(wi)

2

E(w2
i )

· R2

1−R2

=
1

1−R2
− E(wi)

2

E(w2
i )︸ ︷︷ ︸

1/E(w2
i )

· R2

1−R2

=
1

1−R2

Å
1− R2

E(w2
i )

ã
︸ ︷︷ ︸

:=k

By setting R2, we are also setting the value for
cov(λ2

i ,w
2
i )

E(w2
i )

+ E(λ2i ).

We now re-write
cov(λ2

i ,w
2
i )

E(w2
i )

+ E(λ2i ) as a weighted sum:

E(λ2i ) +
cov(λ2i , w

2
i )

E(w2
i )

=
1

n

n∑
i=1

λ2i +
1

E(w2
i )

· 1
n

n∑
i=1

(λ2i − E(λ2i ))(w2
i − E(w2

i ))

=
1

n

n∑
i=1

λ2i +
1

n

n∑
i=1

λ2i ·
w2

i − E(w2
i )

E(w2
i )

− 1

n

n∑
i=1

E(λ2i ) ·
w2

i − E(w2
i )

E(w2
i )

=
1

n

n∑
i=1

λ2i ·
Å
1 +

w2
i − E(w2

i )

E(w2
i )

ã
︸ ︷︷ ︸

:=ν(wi)

+E(λ2i )
1

n

n∑
i=1

w2
i − E(w2

i )

E(w2
i )︸ ︷︷ ︸

:=0

=
1

n

n∑
i=1

λ2i · ν(wi)

As such, we can define the L2,w norm as follows:

||λ||22,w :=

®
1
n

∑n
i=1 λ

2
i · ν(wi) if var(wi) > 0

∞ else

We will show that L2,w meets the criteria for being a semi-norm.
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1. Triangle Inequality: ||λ1 + λ2||2,w ≤ ||λ1||2,w + ||λ2||2,w

||λ1 + λ2||22,w =
n∑

i=1

(λi,1 + λi,2)
2 · ν(wi)

=
n∑

i=1

λ2i,1ν(wi) +
n∑

i=1

λ2i,2ν(wi) + 2
n∑

i=1

λi,1λi,2ν(wi)

Applying Cauchy-Schwarz, and noting the following:

(
∑n

i=1 λi,1λi,2ν(wi))
2 ≤

(∑n
i=1 λi,1λ

2
i,1ν(wi)

)2 (∑n
i=1 λi,1λ

2
i,2ν(wi)

)2
. Then:

≤
n∑

i=1

λ2i,1ν(wi) +
n∑

i=1

λ2i,2ν(wi)+

2

(
n∑

i=1

λi,1λ
2
i,1ν(wi)

)(
n∑

i=1

λi,1λ
2
i,2ν(wi)

)
=(||λ1||2,w + ||λ2||2,w)2

2. Absolute homogeneity:

||k · λ||2,w =

Ã
n∑

i=1

(k · λi)2 · ν(wi)

= k

Ã
n∑

i=1

λ2i · ν(wi)

= k · ||λ||2,w

□
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Theorem 4.4.2

Let ψ(Λ) represent the difference in the estimated point estimate bounds under the
marginal sensitivity model ε(Λ) for a given Λ ≥ 1:

ψ(Λ) := max
w̃∈ε(Λ)

∑
i:Zi=0 YiZiw̃i∑
i:Zi=0 Ziw̃i

− min
w̃∈ε(Λ)

∑
i:Zi=0 YiZiw̃i∑
i:Zi=0 Ziw̃i

.

Then if the true R2 parameter is lower than the following threshold,

R2 ≤ ψ(Λ)2

4 (1− cor(wi, Yi)
2)︸ ︷︷ ︸

Correlation Bound

· var(wi)var(Yi)︸ ︷︷ ︸
Scaling Factor

+ψ(Λ)2
,

the bounds under the variance-based sensitivity model will be narrower than the bounds
for the marginal sensitivity model.

Proof: The length of the point estimate bounds under the variance-based sensitivity model
σ(R2) is equal to two times the maximum bias bound:

max
w̃∈σ(R2)

τ(w̃)− min
w̃∈σ(R2)

τ(w̃)

= 2 ·
»
1− cor(wi, Yi | Ai = 1)2 ·

 
R2

1−R2
· var(wi) · var(Yi | Ai = 1)

By definition, the length of the estimated point estimate bounds under the marginal sensi-
tivity model is represented by ψ(Λ). Thus, we want to solve for the R2 value such that the
following inequality holds:

2 ·
»

1− cor(wi, Yi | Ai = 1)2 ·

 
R2

1−R2
· var(wi | Ai = 1) · var(Yi | Ai = 1) ≤ ψ(Λ)

Solving for the R2 value:

R2

1−R2
≤ ψ(Λ)2/4

(1− cor(wi, Yi | Ai = 1)2) · var(wi | Ai = 1) · var(Yi | Ai = 1)

R2 ≤ ψ(Λ)2/4(1− cor(wi, Yi | Ai = 1)2)var(wi | Ai = 1)var(Yi | Ai = 1)

1 + ψ(Λ)2/4(1− cor(wi, Yi | Ai = 1)2)var(wi | Ai = 1)var(Yi | Ai = 1)

=
ψ(Λ)2

4(1− cor(wi, Yi | Ai = 1)2)var(wi | Ai = 1)var(Yi | Ai = 1) + ψ(Λ)2
,

The results from the corollary directly follow. □
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Example 4.4.1

Assume researchers use a logit model to estimate the weights using Xi, but omit a
confounder Ui. The estimated and ideal weights take on the following forms:

ŵi = exp(γ̂⊤Xi) ŵ∗
i = exp(γ̂∗⊤Xi + β̂Ui)

Assume
[
Xi, Ui

] iid∼ MVN(0, I). Then E(Λ̂) → ∞ as n→ ∞:

lim
n→∞

E(Λ̂)
exp(

√
2ν2 log(n))

≥ 1,

where ν2 = (γ∗−γ)⊤(γ∗−γ)+β2, and the results follow immediately from Wainwright
(2019).

Proof: The multiplicative error between w∗
i and wi is written as:

ŵ∗
i

ŵi

=
exp(γ̂∗⊤Xi + β̂Ui)

exp(γ̂⊤Xi)
= exp((γ̂∗ − γ̂)⊤Xi + β̂Ui),

and Λ̂ is defined as the maximum:

Λ̂ = max
1≤i≤n

exp(|(γ̂∗ − γ̂)⊤Xi + β̂Ui|)

We will show that E(Λ̂) → ∞, as n→ ∞. To begin, define Vi as:

Vi := (γ̂∗ − γ̂)⊤Xi + β̂Ui

Because Xi and Ui are normally distributed, Vi will be normally distributed, with mean 0,
and variance ν2 := (γ̂∗− γ̂)⊤+ β̂2. Let V (1), ..., V (n) be the ordered set of V such that V (1) ≤
... ≤ V (n). Without loss of generality, assume |V (n)| ≥ |V (1)|. Then, E(Λ̂) = E(exp(|V (n)|).
Using Jensen’s inequality, the expectation of Λ̂ may be lower bounded:

E(Λ̂) = E(exp(|V (n)|) ≥ exp(E(|V (n)|))

Then, we may invoke a well-studied result that for any set of n normally distributed random
variables (Wainwright (2019)):

lim
n→∞

E(V (n))√
2ν2 log(n)

= 1

Because E(|V (n)|) ≥ E(V (n))

lim
n→∞

E(|V (n)|)√
2ν2 log(n)

≥ 1

As such, as n→ ∞, E(Λ̂) → ∞. □
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Example 4.4.2

Consider the same setting as Example 4.4.1. Then, the R2 value can be written as
follows:

R2 = 1− exp(γ̂⊤γ̂)− 1

exp(γ̂∗⊤γ̂∗ + β̂2)− 1
· exp(γ̂⊤γ̂)

exp(γ̂∗⊤γ̂∗ + β̂2)
.

Proof: Because [Xi, Ui]
iid∼ MVN(0, I), ŵi and ŵ

∗
i both are lognormal random variables,

by definition, the variance of ŵ∗
i is: (exp(γ̂∗⊤γ∗+ β̂2)−1) · exp(γ̂∗⊤γ̂+ β̂2), and similarly, the

variance of ŵi is: (exp(γ̂⊤γ̂) − 1) · exp(γ̂⊤γ̂). Then, the result of the example immediately
follows, using R2 := 1− var(wi | Ai = 1)/var(w∗

i | Ai = 1).
□

Corollary 4.4.1

Consider the set of confounders, in which for all δ > 0, P (w∗
i /wi < δ) > 0, or P (w∗

i /wi >
δ) > 0. Then, if the outcomes are unbounded, the threshold from Theorem 4.4.2 will
converge in probability to 1:

ψ(Λ)2

4(1− cor(wi, Yi)2) · var(wi)var(Yi) + ψ(Λ)2
p→ 1

Proof: To begin, for simplicity of notation, we define g(ψ(Λ);Yi, wi) as the threshold from
Theorem 4.4.2:

g(ψ(Λ);Yi, wi) :=
ψ(Λ)2

4(1− cor(wi, Yi)2) · var(wi)var(Yi) + ψ(Λ)2

We will use results from Resnick (2008), who show that for a sequence of random variables
drawn i.i.d., the maximum of the sequence will converge in probability towards the upper
bound of the support. We provide the derivation for completeness. Let {Wi}ni=1 be drawn
i.i.d. from a distribution F . Then by i.i.d.:

P (W (n) ≤ w) = P

(
n⋂

i=1

{Wi ≤ w}

)
= F n

Y (w),

where W (1) ≤ ... ≤ W (n). Then define w0 = sup{w : FW (w) < 1}. Then for some w′ < w0,
P (W (n) ≤ w′) = F n

W (w′) = 0, since FW (w′) < 1. As such, W (n) converges almost surely,
and by extension, in probability, to w0. We note that the same result can be applied for the
minima of {Wi}ni=1 by using −{Wi}ni=1.
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Now, define λi := w∗
i /wi. We have restricted the set of plausible λi such that lim inf{λ :

1 − Fλ(λ) < 1} = 0, or lim sup{λ : Fλ(λ) < 1} → ∞. First consider the setting for
lim inf{λ : 1 − Fλ(λ) < 1} = 0. We can apply the results from above to show that for
a sequence of random λ1, ..., λn, the minimum of the sequence will converge in probability
towards zero Because Λ = max1≤i≤n {λi, 1/λi}, this implies that Λ will diverge in probability
towards infinity. Similarly, for lim sup{λ : Fλ(λ) < 1} → ∞, the maximum of the sequence
will diverge in probability towards infinity, which implies that Λ will diverge in probability
towards infinity.

Applying Continuous Mapping Theorem and sample boundedness, the length of the point
estimate bounds under the marginal sensitivity model (ψ(Λ)) will be equal to the range of the
observed control outcomes. Thus, if the outcomes Yi are unbounded as well (i.e., FY (y) < 1
for all y ∈ R.), ψ(Λ) will diverge in probability to infinity.

Thus, we have shown that ψ(Λ) will diverge in probability to infinity. Applying Contin-

uous Mapping Theorem again, g(ψ(Λ);Yi, wi)
p→ 1, which concludes the proof. □



APPENDIX C. VARIANCE-BASED SENSITIVITY ANALYSIS 161

C.3 Extended Tables

Benchmarking Results

Covariate Λ̂ MSM R̂2 ρ̂ VBM VBM, w/ Corr.

Gender 1.1 [1.71, 2.57] 0.00 0.01 [1.81, 2.48] [1.81, 2.48]
Age 2.1 [0.98, 3.10] 0.12 -0.01 [1.24, 3.02] [1.87, 2.43]
Income 2.9 [0.56, 3.32] 0.14 -0.09 [1.18, 3.07] [1.87, 2.43]
Income (Missing) 1.2 [1.62, 2.64] 0.00 -0.05 [1.81, 2.48] [1.81, 2.48]
Education 4.7 [-0.06, 3.55] 0.17 0.06 [1.10, 3.15] [1.77, 2.52]
Cig. Smoked 2.2 [0.92, 3.13] 0.01 -0.01 [1.66, 2.62] [1.81, 2.48]
Smoking History 1.5 [1.38, 2.83] 0.04 -0.02 [1.50, 2.77] [1.82, 2.47]
Race 3.5 [0.31, 3.43] 0.19 -0.09 [1.05, 3.20] [1.88, 2.42]

Table C.2: Benchmarking results for both the marginal sensitivity model and the variance-
based sensitivity model. We include both the benchmarked parameter values, as well as the
estimated 95% confidence intervals.
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