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ABSTRACT OF THE DISSERTATION 

 

Statistical strategies and resources for deciphering mechanisms of diabetes risk loci 

 

By 

 

Anthony Aylward 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

 

University of California San Diego, 2021 

 

Professor Kyle J. Gaulton, Chair 

Professor Dorothy D. Sears, Co-Chair 

 

The two most common forms of diabetes are type 1 diabetes (T1D) which is an 

autoimmune disorder and type 2 diabetes (T2D) which is a metabolic disorder. Large-scale 

genome-wide association studies (GWAS) have identified hundreds of loci associated with 

disease risk, but determining the molecular mechanisms of these loci is not trivial. One major 



 xv 

challenge in interpreting GWAS loci is that there is extensive linkage disequilibrium in the human 

genome where many variants will show association through linkage with the causal variant but 

not be causal themselves.  A second challenge is that most GWAS loci map to non-coding regions 

of the genome and have no immediately obvious function or affected gene. Together these 

challenges motivate research to fine-map causal variants at diabetes risk loci and leverage 

epigenomic and functional genomic data to determine the mechanisms of fine-mapped variants.   

 

In my work I developed strategies and created resources for fine-mapping diabetes risk 

signals identified in GWAS and determining their molecular mechanisms. In the first chapter, we 

identify genetic risk shared by T1D and T2D. We then fine-map causal variants at specific shared 

loci and perform molecular characterization of candidate causal variants at the shared risk loci 

GLIS3 and CTRB1/2 in pancreatic islets. In the second chapter, we use ATAC-seq and RNA-seq 

on dexamethasone-treated and untreated pancreatic islets to generate a map of glucocorticoid-

responsive islet chromatin sites and gene expression, as well as genetic variants that interact with 

glucocorticoid signaling to affect islet regulation.  We identify enrichment of T2D-associated 

variants in glucocorticoid-responsive islet chromatin and characterize a fine-mapped T2D risk 

variant with glucocorticoid-dependent effects on islet accessible chromatin and SIX2/3 

expression.  Finally, in the third chapter we develop a novel framework for allelic imbalance 

mapping using ChIP-seq and ATAC-seq data. We quantify the allelic effects of variants on 

epigenomic sequencing data in islets and liver cells and demonstrate that these effects can help 

predict likely causal variants for expression QTLs and T2D risk loci.  At the HMG20A locus, we 

identify a fine-mapped T2D risk variant with allelic imbalance in pancreatic islet accessible 

chromatin and validate allelic effects on pancreatic islets. 
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INTRODUCTION 

 

Over the past decade, genome-wide association studies (GWAS) have powered an 

explosion of scientific discoveries revealing the genetic causes of complex disease. Over 50,000 

genomic loci have been found to be associated with risk of complex human diseases such as 

heart disease, diabetes, and psychiatric disorders, and many other phenotypes1–4.  While GWAS 

have been wildly successful in identifying risk loci, the molecular mechanisms through which 

these loci affect risk of disease remain almost completely unknown.  The majority of risk loci map 

to non-coding DNA and likely affect disease risk by altering gene regulation5–7. Determining the 

regulatory function of these loci requires identifying the specific causal variants underlying disease 

risk, but this is complicated by extensive linkage disequilibrium in the human genome8–11. Fine-

mapping can help narrow disease association signals to precise causal variants and can comprise 

statistical analyses of genetic data alone as well as techniques that leverage functional genomic 

data in these analyses5,12–16. 

 

Diabetes affects over 400 million individuals worldwide and is a major epidemic.  The two 

major forms of diabetes are type 1 diabetes (T1D) and type 2 diabetes (T2D) which are both 

complex diseases, where GWAS of T1D have identified over 90 associated loci while T2D studies 

have identified over 20017,18.  The great majority of these loci map to non-coding regions, and have 

no immediately obvious mechanisms.  Fine-mapping plays an especially important role in GWAS 

studies of type 1 and Type 2 diabetes19,20.  However, despite extensive research that has 

pinpointed causal variants at some loci17,19,20,21(p1),22(p5), the causal variants at most loci remain 

unknown. These efforts have benefited from integrating GWAS results with transcriptomic and 

epigenomic data representing disease-relevant tissues and cell types, such as expression QTL 

(eQTL) mapping, ChIP-seq, and ATAC-seq studies in pancreatic islets20,23–26. Hence, future 
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advances in understanding the genetic causes of diabetes will be facilitated by joint analyses of 

GWAS and other functional genomics datasets. 

 

In this work we develop and apply strategies for fine-mapping and functional inference of 

variants at diabetes risk loci.  In the first chapter, we leverage genetic data from multiple traits to 

fine-map diabetes loci.  We define a broad relationship between genetic risk of T1D and T2D.  We 

determine that regulatory sites active in pancreas and multiple other tissues enriched for variants 

associated with both traits.  We then identify specific loci influencing risk of both T1D and T2D 

including GLIS3 and CTRB1/227,28.  At these shared loci, we perform fine-mapping using GWAS 

data from both T1D and T2D to improve resolution of causal variants. By using trait-enriched 

regulatory annotations29–32 we next identified candidate causal variants for these loci. Finally, we 

validated the molecular effects of these candidate variants using gene reporter assays in 

pancreatic islets. 

 

In the second chapter, we determine the role of regulatory programs that respond to 

environmental stimuli in diabetes risk.  Glucocorticoids are steroid hormones which regulate 

inflammatory, metabolic, and stress responses and are highly relevant to diabetes 

pathogenesis33–37.  We therefore generated transcriptomic and epigenomic datasets in pancreatic 

islets cultured with the glucocorticoid dexamethasone as well as in untreated conditions. We map 

glucocorticoid-dependent changes in islet gene expression and chromatin accessibility, and 

identify transcriptional regulators of these changes and downstream effects on molecular 

pathways. Fasting glucose- and T2D-associated variants were enriched in glucocorticoid-

responsive chromatin sites which were linked to glucocorticoid-responsive genes.  Finally, we 

show that a likely causal T2D and glucose variant at the SIX2/SIX3 locus has a glucocorticoid-

dependent effect on regulatory activity in islets. 
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In the third chapter, we develop a framework for gaining additional insights from 

epigenomic sequencing data using allelic imbalance mapping.  Allelic imbalance identifies 

heterozygous variants where the two alleles have differences in the readout of sequencing 

experiments such as RNA-seq, ChIP-seq, or ATAC-seq38–41. Traditional imbalance analysis 

requires independent genotyping data to determine which SNPs are heterozygous in the 

experimental sample. However, methods such as QuASAR have been developed to infer 

genotypes from epigenomic data42. We demonstrate that QuASAR enables accurate genotyping 

of the liver cancer cell line HepG2 and primary pancreatic islet cells from ChIP-seq and ATAC-

seq data. We then develop a novel estimator of allelic effects from imbalance statistics which can 

be applied to even shallow sequence data.  Application of this estimator to fine-mapping data for 

islet eQTL signals and T2D loci demonstrates that variants with evidence for imbalance in islet 

ATAC-seq are more likely to be causal.  Furthermore, we prioritize candidate causal variants at 

T2D loci, including at the HMG20A locus where we validate allelic effects of a variant with 

evidence for allelic imbalance using gene reporter assays in pancreatic islet cells. 

 

In summary, this work presents techniques and epigenomic mapping resources to improve 

fine-mapping and determine the molecular function of diabetes risk loci.  
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CHAPTER 1: Shared genetic risk contributes to type 1 and 

type 2 diabetes etiology 

 

1.1 Abstract 

The extent to which shared genetic risk contributes to T1D and T2D etiology is unknown. 

In this study, we generated T1D association data of 15k samples imputed into the HRC panel 

which we compared to published T2D association data imputed into 1000 Genomes. The effects 

of genetic variants on T1D and T2D risk at known loci and genome-wide were positively 

correlated. Increased risk of T1D and T2D was correlated with higher fasting insulin and glucose 

level and decreased birth weight, among other correlations.  Variants with T1D and T2D 

association were further enriched in pancreatic, adipose, B cell, and endoderm regulatory 

elements. We fine-mapped causal variants at known loci and found evidence for co-localization 

at five signals, four of which had same direction of effect. Shared risk variants were associated 

with quantitative measures of islet function and early growth, and were expression QTLs in 

relevant tissues.  We further identified a shared variant at GLIS3 in islet accessible chromatin with 

allelic effects on enhancer activity. Our findings identify a shared genetic risk involving effects on 

islet function as well as insulin resistance, growth and development in the etiology of T1D and 

T2D, supporting a role for T2D-relevant processes in addition to autoimmunity in T1D risk.  

 

1.2 Introduction 

Diabetes affects over 400 million individuals worldwide and contributes to substantial 

morbidity and mortality1. Type 1 diabetes (T1D) is an autoimmune disease resulting in destruction 

of pancreatic beta cells, whereas type 2 diabetes (T2D) is a metabolic disease of insulin 

resistance and beta cell dysfunction2. Genetics plays a major role in both forms of diabetes, where 
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over 60 risk signals have been identified for T1D3 and over 400 for T2D4. Roughly half of the 

genetic risk for T1D can be attributed to the HLA locus, and many known T1D risk loci affect 

immune function2. Conversely, the majority of known T2D risk loci appear to affect pancreatic islet 

and insulin resistance tissues such as adipocytes and skeletal muscle5–9. Outside of known loci 

there are many additional genetic factors influencing diabetes risk7.  Pathophysiological links have 

been reported between T1D and T2D suggesting an underlying shared etiology10,11, but the 

contribution of genetic variants to this shared etiology and the underlying molecular and 

physiological mechanisms are unknown.  

 

Multiple genomic loci that affect risk of both T1D and T2D have been identified. One 

example is the CTRB1 locus, where risk variants are correlated with chymotrypsin expression in 

the pancreas and pancreatic islets and GLP-1 mediated insulin secretion12. Another example is 

GLIS3, a gene that causes monogenic neonatal diabetes13(p3). A linkage study in non-obese 

diabetic (NOD) mice identified an effect of the GLIS3 locus on T1D progression, suggesting an 

underlying pancreatic beta cell phenotype11. This study further argued that beta cell ‘fragility’ 

involving the unfolded protein response leading to pronounced cell death underlies shared T1D 

and T2D risk14. However, the specific causal variants at shared risk loci, including whether the 

signals are the same or distinct, and the mechanisms of how they alter genomic and cellular 

functions to influence disease risk are unknown. Furthermore, shared loci appear to have both 

opposite (CTRB1) and same (GLIS3) direction of effect on T1D and T2D risk, and thus the broader 

relationship between their genetic effects on T1D and T2D is unclear.    

      

Genome-wide association data of variant genotypes imputed into comprehensive 

reference panels enables understanding broad relationships to other traits and functional 

annotations15–17. In addition, these data enable fine-mapping of causal variants and mechanisms 

underlying diabetes risk at specific loci7.  Previous fine-mapping studies of T1D and T2D loci 
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resolved sets of causal variants at many risk signals and the annotations enriched in these causal 

variant sets18,19. These studies revealed that the majority of risk signals for diabetes are non-

coding and map in regulatory elements active in specific cell-types, such as lymphoid cells for 

T1D7,18,19. Projects such as ENCODE and the NIH Epigenome Roadmap have annotated 

regulatory elements in hundreds of human cells and tissues20,21, while other studies have provided 

detailed regulatory maps of specific tissues5,22. Epigenomic annotations broadly enriched for 

disease signals can further be used to prioritize potential functions of causal variants overlapping 

these annotations for experimental validation18.  

 

Here, we studied genetic risk of T1D and T2D using comprehensive genome-wide 

association data for both traits. We identified positive correlations both genome-wide and at 

known loci between variant effects on T1D and T2D risk. Increased risk of T1D and T2D was 

further correlated with higher fasting insulin and glucose level and decreased birth weight, among 

other traits, and variants with T1D and T2D association were enriched in pancreatic islet, 

adipocyte, CD19+ B cell, and CD184+ endoderm regulatory elements. We identified evidence of 

co-localized risk signals for T1D and T2D at five loci, four of which had same direction of effect. 

Shared signals were associated with measures of beta cell function and early growth phenotypes, 

and were also quantitative trait loci for gene expression in relevant tissues.  We fine-mapped 

casual variants at shared signals and identified a candidate variant at GLIS3 in islet accessible 

chromatin with allelic effects on islet enhancer activity.  Together our results provide evidence for 

a shared genetic risk underlying T1D and T2D etiology, and demonstrate a role for variants 

affecting both islet function and insulin resistance in addition to immune system activity in the 

genetic basis of T1D. 
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1.3 Results 

1.3.1 Genetic variants have shared effects on T1D and T2D risk 

We generated genome-wide association data for T1D using publicly-available genotype 

data of T1D case and control samples of European ancestry (see Methods, Figure S1.1).  We 

imputed genotypes from each study into 39M variants in the Haplotype Reference Consortium 

(HRC) panel23. Imputed genotypes passing quality filters (r2>.3) were tested for T1D association 

separately for different genotyping platforms using firth-biased regression including sex and the 

top 3 principal components as covariates. We then performed inverse variance weighted meta-

analysis to combine results. We retained imputed variants tested in all samples with minor allele 

frequency (MAF) > .005, resulting in 8.5M variants. As expected, given comparable sample size 

to previous studies, variants with genome-wide significant association mapped to known loci 

(Figure S1.1).  

 

We then determined the relationship between variant effects on T1D and T2D risk by 

comparing T1D association statistics with T2D association from the DIAGRAM consortium24. We 

first determined shared effects among variants at known risk loci for both traits excluding the MHC 

locus. There was an enrichment of nominal T1D association (P<.05) among 94 known T2D index 

variants relative to matched background variants (obs=19.1%, exp=7.8%, binomial P=3.2x10-4) 

(Figure 1.1A, Table S1.1). T2D index variants were also enriched for concordant direction of 

effect on T1D (57/94, binomial P=.037), including among those with nominal T1D association 

(T1D P<.05) (14/18, binomial P=.031) (Figure 1.1B, Table S1.1). We found significant directional 

concordance among the 14 variants with both nominal T1D association and same direction of 

effect on T2D using summary data from UK Biobank (UKBB) (12/14, binomial P=.013).  Despite 

a net sharing in effects, several T2D loci had opposite effects on T1D risk including CTRB1 and 

TCF7L2 (Figure 1.1B). Conversely, there was less evidence for enrichment of nominal T2D 
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association (obs=12.2%, exp=7.3%, binomial P=.19) or concordant direction of effect (28/57, 

binomial P=1) among 57 known T1D variants (Figure 1.1A, Table S1.2).   

 

We then determined the correlation between variant effects genome-wide on T1D and 

T2D risk. In these analyses, we used LD-score regression on the set of HapMap3 variants 

common to T1D and T2D association datasets (see Methods). We observed evidence for a 

positive correlation in the effects of variants genome-wide on T1D and T2D risk (Rg=.18) (Figure 

1.1C).  We also identified positive correlation with T1D risk when using T2D association data 

imputed from different reference panels (GoT2D, HM2) (Rg=.18, Rg=.23) and from trans-ethnic 

cohorts (Rg=.22) (Figure 1.1C).  To limit the potential effects of misdiagnosed diabetes on these 

results, we first generated association data using clinical definitions of T1D and T2D in the 

WTCCC and observed a positive correlation when using either WTCCC dataset (T2D-WTCCC 

Rg=.24; T1D-WTCCC Rg=.15) (see Methods). Second, we removed obese (BMI>30) samples 

from T1D cohorts and the positive correlation with T2D remained (Rg=.18) (Figure 1.1C).  Finally, 

a positive correlation remained after removing variants in a 1MB window around 57 known T1D 

loci or 94 known T2D loci (no T1D Rg=.20, no T2D Rg=.16).  These results demonstrate consistent 

evidence for correlated effects of variants genome-wide on T1D and T2D risk. 
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Figure 1.1.  Shared effects of genetic variants on T1D and T2D risk.  (A) Known T2D risk 
variants are significantly enriched for nominal T1D association (P<.05), whereas known T1D risk 
variants do not show evidence for enrichment of nominal T2D association.  **P<.001 (B) Known 
T2D risk variants with nominal T1D association have concordant direction of effect on T1D risk 
(14/18, red=known T1D locus; **index variant T1D P<5x10-4).  Values are T1D effect size and 
SE.  (C) Variants genome-wide have correlated effects on T1D and T2D risk using multiple 
datasets for each disease (WTCCC – Wellcome Trust Case Control Consortium, T2D TE – 
Mahajan et al, T2D HM2 – Morris et al 2012, T2D GoT2D – Fuchsberger et al 2016, T1D BMI<30 
– T1D association data removing individuals with BMI>30).  Values are genetic correlation 
estimates and SE. **P<.005, **P<.05 

 

1.3.2 Mechanisms of shared variant effects on T1D and T2D risk 

Given evidence for a positive correlation in variant effects on T1D and T2D, we sought to 

understand potential mechanisms underlying the shared effects. We first determined the 

correlation between T1D and T2D risk and relevant traits using LD score regression25–28. For T2D, 

there was a significant correlation between T2D risk and increased HbA1C level (Rg=.66, 

P=2.7x10-18), fasting glucose level (Rg=.60, P=7.3x10-14), fasting insulin level (Rg=.52, P=8.5x10-

12), HOMA-IR (Rg=.55, P=7.2x10-9), and body-mass index (BMI) (Rg=.47, P=1.1x10-38), and 

decreased birth weight (Rg=-.25, P=3.0x10-8) (Figure 1.2A).  There was also evidence for a 

correlation between T2D risk and increased proinsulin level (Rg=.21, P=.037) and male height at 

age 12 (12M; Rg=.10, P=.17) although the latter estimate was not significant.  For T1D, we 
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observed a correlation between T1D risk and increased fasting proinsulin (Rg=.23, P=.017) and 

fasting insulin level (Rg=.15, P=.049) (Figure 1.2A). We also observed evidence for a correlation 

between T1D risk and decreased birth weight (Rg=-.10, P=.053), and increased male height at 

age 12 (12M; Rg=.18, P=.061) and fasting glucose level (Rg=.068, P=.29) although these 

estimates were not significant. We did not observe correlation between T1D and BMI (Rg=0.010, 

P=.74) or childhood obesity (Rg=-0.047, P=.47), the latter previously identified as an instrumental 

variable for T1D risk29.  While there were significant correlations between T1D and other 

autoimmune traits such as inflammatory bowel disease (Rg=-.18, P=1.9x10-3) and rheumatoid 

arthritis (Rg=.47, P=3.2x10-7), we observed no such correlations for T2D (Figure S1.2).     

 

We determined the extent to which traits correlated with both T1D and T2D risk might be 

driven through variants with shared effects on T1D and T2D.  From genome-wide association 

data for T1D and T2D, we extracted variants with the same direction of effect and tested these 

variants for correlation to each trait using LD score regression. For both T1D and T2D, we 

observed stronger correlations with increased fasting glucose level (T1D shared Rg=.43, T2D 

shared Rg=.65), increased fasting insulin level (T1D shared Rg=.55, T2D shared Rg=.68), and 

decreased birth weight (T1D shared Rg=.25, T2D shared Rg=.29) among variants with same 

direction of effect (Figure 1.2B). We observed less evidence for pronounced correlation between 

shared effect T1D and T2D variants and fasting proinsulin level (T1D shared Rg=.33, T2D shared 

Rg=.28), and male height at age 12 (T1D shared Rg=.26, T2D shared Rg=.16) (Figure 1.2B).  

 

We next determined functional annotations enriched for T1D and T2D associated variants. 

We used annotations of active enhancer and promoter elements in 98 cell types from the 

Epigenome roadmap project21 and annotations of protein-coding gene exons and UTRs from 

GENCODE30. We tested for enrichment of each annotation for T1D and T2D risk using stratified 

LD score regression16. There was evidence for positive enrichment genome-wide of both T1D and 
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T2D association for variants in pancreatic islet (T1D Z=1.02, T2D Z=2.67), adipose nuclei (T1D 

Z=.09, T2D Z=1.52), CD19+ B cell (T1D Z=3.12, T2D Z=.31), CD184+ endoderm (T1D Z=.62, 

T2D Z=1.25), and pancreas (T1D Z=.41, T2D Z=.62) regulatory elements (Figure 1.2C). We also 

observed enrichments specific to each trait, most notably T1D association for immune regulatory 

elements such as T cell (Z=4.67) and fetal thymus (Z=1.83) (Table S4).  

 

Given enrichment of multiple cell-types for both T1D and T2D association, we next tested 

to what extent these effects were driven through variants with same direction of effect on T1D 

and T2D.  We obtained LD-pruned variants nominally associated (P<.05) with both T1D and T2D 

and with same direction of effect and tested for enrichment of overlap with each annotation 

compared to random sets of matched variants (see Methods).  We observed significant 

enrichment of overlap with CD184+ endoderm (Fisher’s P=.017), adipose nuclei (P=.018) and 

pancreatic islet (P=.040) regulatory sites (Figure 1.2D).  We next repeated these analyses instead 

using variants with opposite direction of effect on T1D and T2D.  We observed significant overlap 

of opposite effect variants with CD184+ endoderm (P=.031) and pancreatic islet regulatory 

elements (P=.020), suggesting that these cell-types are enriched in variants with both shared and 

opposite effects on T1D and T2D. 
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Figure 1.2.  Mechanisms of variant effects on T1D and T2D risk.  (A) Increased T1D risk (left)  
is correlated with increased fasting insulin level and proinsulin level (*P<.05), in addition to 
increased male height at age 12 (12M) and fasting glucose level, and decreased birth weight; 
Increased T2D risk (right) is correlated with increased HbA1C, fasting glucose, fasting insulin, 
HOMA-IR, BMI and childhood obesity, and decreased birth weight (**P<1x10-4).  Values are 
genetic correlation estimates and SE.  (C) Variants with same direction of effect on T1D and T2D 
risk have stronger correlation with increased fasting insulin, glucose and proinsulin level, and 
decreased birth weight. (**P<1x10-4, *P<.05).  Values are genetic correlation estimates and SE. 
(D)  Variants with T1D and T2D association are enriched for pancreatic islet, adipose, CD19+ B 
cell, and CD184+ endoderm regulatory sites. (blue = pancreatic, green = immune).  (E) Variants 
with both nominal association (P<.05) and shared direction of effect on T1D and T2D risk are 
significantly enriched in endoderm, islet and adipose regulatory sites. (*P<.05).  Values are 
percent overlap and CI.   
 

1.3.3 Fine-mapping and functional annotation of known T1D risk loci 

We next used association data to fine-map specific causal variants influencing T1D and 

T2D.  For T2D we compiled fine-mapping data of 94 signals from previous studies (see Methods).  

As fine-mapping data for all known T1D loci have not been previously reported, we used T1D 

association statistics to fine-map 57 T1D risk signals excluding the MHC region. At each locus, 
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we considered the index variant for the locus and all variants in at least low LD (r2>.1). We then 

used a Bayesian approach to calculate the posterior causal probability (PPA) for each variant, 

and ‘credible sets’ of variants explaining 99% of the total PPA (see Methods, Figure 1.3A, Table 

S5). T1D credible sets contained a median of 66 variants, and 15 loci had 25 or fewer credible 

set variants.  We compared fine-mapping for 34 loci common to our data and Immunochip fine-

mapping19, and found a strong correlation between T1D association for credible set variants 

(Pearson r=.93).  Credible set sizes at these 34 loci were larger in our data than for Immunochip 

(median=37, Immunochip median=31), likely reflecting increased variant density. We also 

identified high probability variants not covered in Immunochip credible sets for example at CTSH 

(rs12592898, PPA=.19). 

 

Given fine-mapping of known T1D and T2D signals, we next determined genomic 

annotations of candidate causal variants at these signals.  For each signal, we calculated the 

cumulative PPA of variants overlapping T1D/T2D enriched annotations including pancreas, 

adipose, endoderm and immune cell regulatory elements as well as protein-coding exons.  We 

then grouped signals based on the resulting cumulative PPA values for each annotation (see 

Methods).  For T1D, signals mapped into distinct groups of immune cell regulatory elements (31 

signals), pancreas regulatory elements (6 signals), and coding exons (4 signals) as well as 15 un-

annotated signals (Figure 1.3B).  For T2D, signals also mapped into distinct groups including 

pancreas regulatory elements (21 signals), adipose regulatory elements (15 signals), and coding 

exons (4 signals) (Figure S1.3). T1D pancreas signals were associated with T2D risk (median -

log10(P)=1.37), whereas other T1D groups did not show evidence for T2D association (Figure 

1.3C).  Among T1D signals in the pancreas group were those with known T2D association such 

as GLIS3 and CTRB1, as well as others with nominal T2D association such as ERBB3. 
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Figure 1.3.  Fine-mapping and functional annotation of known T1D loci.  (A) Fine-mapping 
of causal variant sets at 57 known T1D risk signals.  (left) number of 99% credible set variants at 
each locus and (right) causal probabilities (PPA) of credible set variants at each locus.  (B) 
Cumulative PPA values of 57 T1D signals in cell-type regulatory site and coding annotations.  
T1D signals mapped into four primary groups including immune cell regulatory sites (31 signals), 
pancreas regulatory sites (6 signals), and coding exons (4 signals).  (C)  T1D signals within 
different groups had distinct patterns of association with T2D, where T1D pancreas signals 
collectively had the strongest evidence for T2D association.   

 

1.3.4 Shared T1D and T2D risk variants at GLIS3 affect regulatory activity in islets 

Several loci have been reported to influence risk of both T1D and T2D, but whether risk 

signals have shared or distinct causal variants is unknown.  We cataloged 146 loci with known 

association to either form of diabetes and tested for shared causal variants using Bayesian co-

localization (see Methods, Table S6). There was co-localization of risk signals (Pshared>.50) at 

three known T1D and T2D loci CENPW (Pshared=.88), CTRB1 (Pshared=.88), and GLIS3 (Pshared=.62) 

as well as evidence for putative co-localization of signals at two known T2D loci BCL11A 

Figure 3.  Fine-mapping and functional annotation of known T1D risk loci
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(Pshared=.73) and THADA (Pshared=.68) (Figure 1.4A).  All shared risk signals except for CTRB1 

had the same direction of effect on T1D and T2D risk.  At RASGRP1, which has reported 

association to both T1D and T2D, we found no evidence for either state (Pdistinct=.03, Pshared=.02) 

(Table S5).  At several loci including MTMR3 and ZMIZ1, there was evidence for two distinct T1D 

and T2D signals (Pdistinct>.5) (Figure 1.4A). We fine-mapped causal variants at co-localized 

signals by combining T1D and T2D evidence (see Methods).  There was a reduction in credible 

set size at shared signals, including fewer than 10 variants at GLIS3 (9 vars) and CTRB1 (8 vars) 

(Figure 1.4B, Figure S4, Table S7).  We further confirmed evidence (CLPP>.01) for shared 

causal variants at the GLIS3 and CTRB1 signals using eCAVIAR (see Methods, Figure S4, 

Table S7).  Conversely, we did not find evidence for a shared variant at CENPW with eCAVIAR; 

furthermore, the variant with strongest T2D association (rs11759026) had nominal T1D 

association (P=6.3x10-3), suggesting a potentially more complex causal variant structure at this 

locus.  

 

We sought to understand mechanisms of how signals influence both T1D and T2D risk.  

We first examined quantitative trait associations at co-localized signals25,31–33.  At GLIS3, risk 

alleles were associated with increased fasting glucose level (rs10758593 Z=4.51), and decreased 

HOMA-B (Z=-4.54) and birth weight (Z=-2.27) (Figure 1.4C).  At CTRB1, risk alleles for T2D were 

nominally associated with higher fasting glucose (rs8056814 Z=2.27) and decreased birth weight 

(Z=-3.78).  At CENPW, risk alleles were also nominally associated with higher fasting glucose 

(rs4565329 Z=2.32) and decreased birth weight (Z=2.97), as well as increased male pubertal 

height (12M, Z=3.14), height (Z=13), and earlier age of menarche (Z=-8.9).  Among putative 

shared signals, variants at THADA were associated with increased fasting glucose level (Z=3.65) 

and decreased HOMA-B (Z=-4.23).  We next examined expression QTL association and co-

localization at shared signals in adipose, liver, blood, pancreas and pancreatic islets34–36 (see 

Methods).  Variants at CENPW were associated and co-localized with expression level of 
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CENPW in subcutaneous adipose tissue (rs4565329 P=8.6x10-7) and islets (P=1.9x10-3).  

Variants at CTRB1 were associated and co-localized with BCAR1 expression in whole blood 

(P=2.5x10-4) and islets (P=1.9x10-3); variants at this locus were also associated with CFDP1 

expression in subcutaneous and visceral adipose (P=7.7x10-8, P=7.8x10-8) and whole blood 

(P=9.5x10-5) but these signals were all statistically distinct from the T1D/T2D signal (Pdistinct>.5).    

  

Multiple shared T1D and T2D signals likely affect beta cell function, and thus we finally 

annotated variants in islet regulatory sites at these signals.  We used accessible chromatin sites 

merged from ATAC-seq assays in six islet samples34,37 (Table S8), chromatin states created from 

islet histone modification ChIP-seq data5,38, islet transcription factor (TF) ChIP-seq sites5, and TF 

footprints identified from islet ATAC-seq using CENTIPEDE34 (see Methods).  At GLIS3, 

rs4237150 (PPA=.20), rs10116772 (PPA=.15) and rs10814915 (PPA=.007) mapped in islet 

accessible chromatin and active enhancer elements; rs4237150 further mapped in islet ChIP-seq 

sites for multiple TFs (Figure 1.4D, Table S7).  At CTRB1, rs8056814 (PPA=.91) also mapped in 

islet accessible chromatin and an active enhancer (Figure S5, Table S7).  We tested these 

variants, and another GLIS3 variant rs6476839, for effects on islet regulatory activity.  We cloned 

sequence for variant alleles into reporter vectors in forward and reverse orientations, and 

transfected constructs into the islet cell line MIN6.  As rs10116772 and rs10814915 were within 

3bp, we cloned these variants in the same construct.  At GLIS3, there were significant allelic 

effects on enhancer activity for rs4237150 (Two-sided t-test Fwd P=1.2x10-4; Rev P=.024); we 

observed weaker evidence for allelic effects in one orientation only for rs10116772+rs10814915 

and rs6476839 (Figure 1.4E).  We further identified evidence for allelic imbalance in islet ChIP-

seq reads from samples estimated to be heterozygous for rs4237150, and this variant was in a 

TF binding footprint for IRX and NR3C1 (Table S7).  At CTRB1, we observed significant allelic 

effects on repressor activity for rs8056814 (Fwd P=.017; Rev P=6.7x10-4; Figure S5). 
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Figure 1.4.  Shared T1D and T2D risk variants affect islet regulatory activity.  (A) Five loci 
have evidence for a shared signal (Pshared>.50) influencing both T1D and T2D risk, and two have 
evidence for distinct signals (Pdistinct>.50) (dark grey = Pshared, grey = Pdistinct) (C) Number of 99% 
credible set variants at shared T1D and T2D risk loci.  After combining T1D and T2D evidence 
the GLIS3 and CTRB1 signals have <10 variants. (C) Quantitative trait association at shared T1D 
and T2D signals.  Values represent signed z-scores for the risk allele of the most likely causal 
variant (blue = positive, red = negative).  For CTRB1 z-scores are signed to the T2D risk allele. 
(D) Shared risk variants rs4237150, rs10116772, and rs10814915 at GLIS3 are in islet active 
enhancer and accessible chromatin, and rs4237150 is also in islet TF ChIP-seq (states: dark blue 
= active enhancer, light blue = weak enhancer, red = active promoter)  (E) Variants at GLIS3 have 
allelic effects on enhancer activity in islet cells.  Values are mean and SD. (N=3; *P<.05, ** P<.01). 

 

1.4 Discussion 

Comparison of variant effects on T1D and T2D genome-wide, across known loci, and at 

individual loci provide evidence for a shared genetic risk underlying the two major forms of 

diabetes.  This shared risk involves variants with effects on islet function and insulin secretion in 

addition to insulin resistance and development, which are well established contributors to T2D 

but have not been broadly implicated in genetic risk of T1D.  We also found strong enrichment of 
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T1D association among known T2D risk loci.  While previous studies of T1D genetic risk have 

largely focused on the immune system given that many large effect T1D variants impact immune 

activity, our findings support an additional role for T2D-relevant processes in the genetic basis of 

T1D.      

 

A recent study determined that a subset of patients with later-onset T1D are misdiagnosed 

with T2D39. This is unlikely to explain a positive correlation between T1D and T2D given that we 

observed no enrichment of T2D association or concordance in effect direction among known T1D 

variants, even among large effect T1D variants, and the correlation remained when using clinically 

defined T2D in the WTCCC with no T1D relatives, negative anti-GAD, and >1 year from diagnosis 

to insulin treatment. We also observed no evidence for correlations between T2D and other 

autoimmune traits, or enrichment of T2D association among T1D-relevant immune cell regulatory 

elements.  Misdiagnosis of T2D as T1D is also an unlikely explanation of the positive correlation 

as it remains when using clinically defined T1D in the WTCCC with onset <17, insulin treatment 

from diagnosis for >6 months, and no monogenic diabetes, or when removing obese individuals 

from T1D cohorts. Furthermore, we found little evidence for directional consistency among largest 

effect T2D variants. 

 

Reports have argued that islet dysfunction underlies shared etiology of T1D and T2D11. 

Our findings support a role for shared variants at GLIS3 in islet function, where risk alleles were 

associated with increased fasting glucose level and decreased beta cell function.  In addition, 

shared risk variants at GLIS3 had allelic effects on islet enhancer activity and rs4237150 disrupted 

binding of the glucocorticoid receptor, which is involved in diabetes-relevant inflammatory 

response40.  The mechanism of how these regulatory variants influence diabetes risk through 

GLIS3 and/or other genes in islets remains to be uncovered.  Putative shared risk signals at 

THADA were associated with increased glucose level and decreased beta cell function, in line 
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with a previous report41, and variants at BCL11A have been reported to affect beta cell function41.  

Candidate genes at these loci are involved in apoptotic and stress-related processes42(p3),43 and 

therefore altered activity could contribute to a fragile beta cell phenotype.  Genome-wide, T1D 

and T2D associated variants were enriched in islet regulatory elements and correlated with 

increased fasting glucose level.  Given the role of islet stress response in shared risk, studies 

mapping the islet epigenome and gene expression in diabetogenic stress conditions will help 

uncover additional relevant islet regulatory programs. 

 

Shared variants at the CTRB1 locus have opposite effects on T2D and T1D risk and have 

allelic effects on islet regulatory activity.  A previous report identified correlation between risk 

variants and CTRB1/2 expression in pancreas and pancreatic islets, albeit in a limited sample 

size12(p1).  In our study we identified evidence for association between these risk variants and 

expression of BCAR1 in islets as well as whole blood, suggesting that the risk effects at this locus 

might involve multiple genes and cell types. Other loci have evidence for opposite effects on T1D 

and T2D such as TCF7L2, where T2D risk variants affect islet regulatory activity6, ZZEF1, and a 

recently identified association at HLA-DRB544.  Heterogeneity in effect direction at specific loci 

has been observed in other contexts, for example, between T2D and cardiovascular disease and 

T2D and birth weight27,45.  We further observed enrichment of nominally associated variants with 

opposite effects on T1D and T2D in islet regulatory elements, suggesting the potential of a 

broader role for aspects of pancreatic and islet function in opposed risk of T1D and T2D.   

    

Another shared mechanism of T1D and T2D pathogenesis is through obesity and insulin 

resistance. The ‘accelerator’ hypothesis posits that weight gain and insulin resistance exacerbate 

beta cell stress and T1D progression in a manner similar to T2D pathogenesis10. Insulin resistance 

is also linked to chronic inflammation which is also involved in T1D pathophysiology.  We identified 

support for this hypothesis through a correlation between increased fasting insulin level and T1D 
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and T2D risk. We also identified enrichment of T1D and T2D variants for adipose and B cell 

regulatory elements, cell types both involved in insulin resistance. We did not find significant 

correlation between T1D risk and BMI, or association with large effect obesity loci such as FTO. 

A recent study identified a causal relationship between childhood obesity and T1D risk, supporting 

a role for adolescent growth in T1D pathogenesis29, though we did not observe a genome-wide 

correlation.  There was, however, a positive correlation with male pubertal phenotypes, in line 

with increased prevalence of T1D in males in early adulthood46, and risk variants at the CENPW 

locus were associated with pubertal phenotypes, height, and age of menarche32,33.  Risk variants 

at this locus were also associated and co-localized with expression level of CENPW in 

subcutaneous adipose tissue, which has been implicated in the genetic basis of insulin 

resistance47.  This supports a role for insulin resistance and growth in the shared etiology of T1D 

and T2D. 

 

We also observed evidence for correlations with other traits, such as between increased 

T1D and T2D risk and decreased birth weight and increased proinsulin level.  Previous studies 

have reported a correlation between low birth weight and increased T2D risk27,48, although the 

potential link between birth weight and T1D risk is unclear49.  Furthermore, variants in endoderm 

regulatory sites were enriched for T1D and T2D association, suggesting potential shared effects 

on developmental regulatory processes.  Proinsulin is an autoantibody in T1D and higher 

proinsulin level could contribute to increased risk of developing T1D50. Conversely, impaired 

insulin processing is observed in beta cell dysfunction and thus could also represent a 

consequence of disease progression51. Additional studies will be needed to determine causal 

relationships between proinsulin level or birth weight and diabetes risk and the direction of these 

relationships.  
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In summary, a shared genetic risk contributes to the etiology of T1D and T2D which 

highlights the involvement of T2D-relevant processes and genetic factors in risk of T1D.  These 

processes likely contribute to increased beta cell stress during T1D progression through both 

intrinsic islet functions as well as insulin resistance.  Future studies will help determine the cellular 

mechanisms of these effects and provide novel avenues for disease management in particular 

for T1D.   

 

 

1.5 Methods 

T1D sample collection  

For the type 1 diabetes GWAS, we compiled publicly available genotype-level data for 

case and control samples from the T1DGC (dbGAP: phs000180.v3.p2), GoKIND/GAIN (dbGAP: 

phs000018.v2.p1), DCCT-EDIC (dbGAP: phs000086.v3.p1), WTCCC152, and WTCCC2, which 

were either genotyped on Affymetrix or Illumina platforms (Table S1). Because the GoKIND/GAIN 

dataset contained family trios, we extracted only the proband samples. From the WTCCC1 

samples, we used the T1D cohort as cases and the 1958 Birth Cohort (58BC), UK National Blood 

Service (NBS), and bipolar disorder (BP) cohorts as controls. Unlike a previous study for T1D53, 

we did not include type 2 diabetes or hypertension from WTCCC1 as controls. From the WTCCC2 

samples, we used control cohorts from the UK National Blood Service.  

 

T1D quality control and imputation 

We used the recommended individual and variant exclusion lists where available for 

58BC, NBS, WTCCC1 T1D and BP. We used phenotype files for GoKIND/GAIN and DCCT-EDIC 

to exclude samples that were not reported of Caucasian ancestry. We used PLINK54 

(https://www.cog-genomics.org/plink2) to perform PCA with 1000 Genomes Project (1KGP) 
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samples to identify and remove outliers that did not overlap European 1KGP samples on PC1 

and PC2. We used PLINK to calculate identity-by-descent (IBD) values between individuals. Pairs 

of individuals with at least second-degree relationships (IBD>.2) were pruned in a manner such 

that only one related individual was retained. For the NBS samples that overlapped between 

Affymetrix and Illumina platforms, we prioritized the samples genotyped on the Illumina platform. 

For each cohort, we filtered out variants with less than 95% call rate, less than 1% minor allele 

frequency (MAF), and extreme Hardy-Weinberg equilibrium values (P<1x10-5). We also removed 

individuals with more than 5% missing genotypes. We then combined cohorts that were 

genotyped on similar platforms. After filtering steps, the total number of individuals available was 

15,043, including 8,967 cases and 6,076 controls (Table S3). We imputed 347,083 (Affymetrix) 

and 500,096 (Illumina) autosomal variants separately into the HRC panel r1.1 using the Michigan 

Imputation Server55, resulting in data for 39,117,105 variants. We excluded variants after 

imputation that had an imputation quality (R2) less than 0.3, leaving 23,385,104 (Affymetrix) and 

25,294,976 (Illumina) well-imputed variants.  

 

T1D genome-wide association and meta-analysis  

For Affymetrix and Illumina combined cohorts, we used PLINK to LD prune genotyped 

variants to create a set of independent variants. We then used PLINK to perform principal 

component analysis (PCA) and extracted the top 3 principal components (PCs). We used the firth 

bias-corrected logistic likelihood ratio test in EPACTS 

(https://genome.sph.umich.edu/wiki/EPACTS) to test variants for association to T1D separately 

for each genotyping platform. We used sex and the top 3 PCs as covariates, set a lower MAF 

threshold of 0.005, and used genotype dosages for association testing. For tri-allelic SNPs and 

cases where multiple variants mapped to the same genomic coordinates, we kept the variant with 

the highest MAF. We then used inverse-variance meta-analysis as implemented in METAL56 on 

association results for 8,720,060 (Affymetrix) and 8,778,018 (Illumina) variants, keeping variants 
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that were tested on both platforms. We further removed genotyped variants that had an empirical 

R2 (ER2<.8) for either cohort and all variants in at least moderate LD (r2>.5) with these variants. 

The ER2 is the Pearson correlation coefficient between the genotype of a variant and an imputed 

genotype derived by masking the genotype in a leave-one-out procedure during imputation. A 

total of 8,491,085 variants remained for downstream analyses. 

 

To address the potential for misdiagnosed T2D cases in the T1D GWAS, we used 

phenotype data to remove 278 T1D cases with body-mass index (BMI)>30 from the DCCT and 

GoKIND/GAIN cohorts. We then re-ran the GWAS meta-analyses using the above methods. 

 

WTCCC T2D genome-wide association 

For the WTCCC T2D GWAS, we collected genotype data for a case cohort of T2D, and 

control cohorts from NBS and 58BC from WTCCC152. We used sample exclusion lists to remove 

duplicated, related, or samples of non-Caucasian ancestry and variant exclusion lists to remove 

poorly genotyped variants. Prior to imputation, we also filtered out variants with less than 95% 

call rate, less than 1% MAF, and extreme Hardy-Weinberg equilibrium values (P<1x10-5). We 

then imputed 412,388 genotyped variants from 1,924 T2D case samples and 2,939 control 

samples together into the HRC panel r1.1 using the Michigan imputation server. We excluded 

variants with low imputation quality (R2<.3) and retained 22,520,888 well-imputed variants. We 

further filtered out potential artifacts by excluding genotyped variants with ER2<.8 and all variants 

in at least moderate LD (r2>.5) with these variants. We used sex and the top 3 PCs from LD-

pruned genotypes as covariates, set a lower MAF threshold of 0.005, and used genotype dosages 

for association testing with the firth bias-corrected logistic regression.  
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Genetic enrichment analyses 

We tested for enrichment of nominal association and concordance in effects among known 

T1D and T2D risk loci. 

 

For T2D loci, we collected published credible sets of 49 signals on the Metabochip18, 41 

additional signals in GoT2D,7 and 17 additional signals in DIAGRAM 1000G24. We removed all 

secondary association signals to retain only the primary signal at each locus. For the 94 resulting 

primary association signals, we then obtained the variant with the highest posterior probability. 

Where the most likely causal variant was not present in T1D association data, we used the next 

most likely causal variant. For each variant, we obtained the p-value for T1D association and 

direction of T1D effect for the T2D risk allele. We tested for enrichment of variants with nominal 

association (P<.05) by comparing to the expected percentage obtained from sets of matched 

variants from SNPsnap57 using a binomial test.  

 

We then determined concordance in T1D effect direction on T2D variants by calculating 

the number of variants with same effect direction and applying a binomial test.  We further 

determined the concordance in effect direction in T1D association data in the UK Biobank (ICD10 

code E10 from https://sites.google.com/broadinstitute.org/ukbbgwasresults/home) using a 

binomial test.   

 

For T1D loci, we obtained the variant with the highest posterior probability in fine-mapping 

of 57 loci described the sections below.  Where the top variant was not present in T2D association 

data we used the next most probable variant. For each variant, we obtained the p-value for T2D 

association and direction of T2D effect for the T1D risk allele.  We tested for enrichment of nominal 

association (P<.05) by comparing to the expected percentage obtained from sets of matched 

variants from SNPsnap57 using a binomial test. 
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We then determined concordance in T2D effect direction on T1D variants by calculating 

the number of variants with same effect direction and applying a binomial test.   

 

Genetic correlation analyses 

We tested for genetic correlation between T1D and T2D, related glycemic and 

anthropometric traits, and autoimmune diseases using LD score regression15,58. 

 

We collected quantitative trait data for fasting insulin level, fasting glucose level, HOMA-

B, HOMA-IR, HbA1C, and proinsulin level from the MAGIC consortium28,31,59, body-mass index 

(BMI) from the GIANT consortium60, and pubertal height (12M, 10F), birth weight and childhood 

obesity from the EGG consortium27,61. For the UK Biobank, we obtained summary statistic data 

of 337k samples using T1D and T2D phenotypes defined from ICD10 codes E10 (T1D) and E11 

(T2D) available at sites.google.com/broadinstitute.org/ukbbgwasresults/home. For T2D we 

obtained data from the GoT2D, HapMap2, and trans-ethnic GWAS studies from the DIAGRAM 

consortium website. We obtained summary statistic data for autoimmune traits including systemic 

lupus erythematosus62, primary biliary cirrhosis63, Crohn’s disease64, ulcerative colitis64, 

inflammatory bowel disease64, celiac disease65, primary sclerosing cholangitis66, autoimmune 

vitiligo67, and rheumatoid arthritis68 from Immunobase and the NHGRI-EBI GWAS catalog. 

 

For each trait, we formatted summary statistics for variants in HapMap3 in order to retain 

well-imputed variants and to correctly orient variant alleles. We then ran LD score regression on 

the resulting formatted files using default LD scores.         
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We repeated the LD score regression analysis for T1D and T2D after removing variants 

in 1MB windows around 57 known T1D loci and removing variants in 1MB windows around 94 

known T2D loci. 

 

Genomic enrichment analyses 

We considered active enhancer and promoter site annotations for 98 cell types from the 

Epigenome Roadmap project21, along with annotations for coding exons from GENCODE30. We 

used stratified LD-score regression16 to identify annotations that were enriched for signal in T1D 

and T2D association data. Stratified LD-score regression is a multiple regression, where the chi-

squared statistics for a trait are regressed on LD-scores computed using variants from each of a 

set of functional annotations, and the estimated parameters quantify the relative contribution of 

each annotation to the total heritability.  

 

For the five cell-types with positive enrichment for both T1D and T2D association 

(pancreatic islets, pancreas, adipose, CD19+ B cells, and CD184+ endoderm), we tested whether 

these annotations were enriched in variants with shared or opposite effects on T1D and T2D.  We 

identified variants with P<.05 for both T1D and T2D association and in 1000 Genomes phase 3 

data. For each of these variants i, we computed zi,T1D = b i,T1D / SE i,T1D and z i,T2D = b i,T2D / SE i,T2D. 

We sorted them by the value of | zi,T1D + zi,T2D | for LD-pruning purposes. After sorting, we pruned 

these variants using the SNPclip tool of LDlink54 using EUR populations, a R2>0.1 and MAF>0.01, 

resulting in 3856 and 2254 independent shared and opposite variants, respectively. We then 

generated sets of randomized, matched SNPs using SNPsnap55. We tested shared and opposite 

variants for enriched overlap compared to the average overlap across matched variant sets using 

a one-sided Fisher exact test. 

 

 



 32 

Fine-mapping of causal variant sets 

We used effect and standard error estimates to calculate a Bayes Factor69 for each variant. 

We obtained 58 known loci for T1D from Immunobase and excluded the MHC locus (Table S2). 

We extracted the previously reported index variants and used PLINK to calculate r2 values 

between 57 index variants and all common variants (MAF>.5) within a 5 MB window as done in a 

previous study7. We defined credible sets of variants for each locus as variants with r2>.1 with the 

index variant. For each locus, we calculated the posterior probability of association (PPA) for each 

variant by dividing the Bayes Factor for each variant by the sum of Bayes Factors for the entire 

locus. We then calculated the 99% credible set by taking the set of variants for each locus that 

added up to 99% PPA. We compared our T1D credible sets to previously published Immunochip 

credible sets19 by extracting 34 common loci between both studies. From the Immunochip study, 

we extracted only the primary signals. To directly compare p-values, we filtered for variants 

covered by both studies with non-missing p-values and calculated the Pearson correlation. To 

identify high probability variants not in Immunochip credible sets, we extracted variants from the 

34 loci that were not in the Immunochip primary signal credible set and sorted by PPA. 

 

Genomic annotations at fine-mapped signals 

We considered active regulatory site annotations for cell-types enriched for T1D/T2D 

association  along with annotations for coding exons and UTR regions from GENCODE30.  For 

T1D we used fine-mapping data from 57 signals as described above. For T2D, we compiled 

publicly available fine-mapping credible sets based on publications up to 2017 for 94 primary 

signals from Metabochip, GoT2D and DIAGRAM 1000G studies. At each signal, we calculated a 

cumulative posterior causal probability (PPA) for each annotation as the sum of PPA values for 

variants overlapping that annotation.  We then assigned T1D/T2D signals to groups based on the 

highest cumulative PPA value across annotations, considering signals with a cumulative PPA 

value less than .1 for all annotations as ‘un-annotated’.  For each T1D group we then calculated 
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the median association of signals in the group with T2D, and for each T2D group we calculated 

the median association with T1D. 

 

Risk signal co-localization 

We used a Bayesian co-localization method to determine loci at which T1D and T2D 

association data showed evidence of a causal variant shared by both traits70. At a given locus, 

the method takes as inputs Bayes Factors of association from two datasets and a specification of 

the prior probability that each is causal for one or both traits. From these a posterior probability 

(PP) is computed for each of five hypotheses: 

 

H0: The locus contains no variant causal for either trait 

H1: The locus contains a variant causal for trait 1 but none causal for trait 2 

H2: The locus contains a variant causal for trait 2 but none for trait 1 

H3 (Pdistinct): The locus contains two distinct causal variants for trait 1 and trait 2 

H4 (Pshared): The locus contains a variant causal for both trait 1 and trait 2 

 

We used the default prior assumption that all variants at a locus are equally likely to be 

causal. This model has two important limitations: It assumes each locus has at most one causal 

variant, and the distinction between H3 and H4 may be confounded by cases of high LD. We 

considered the prior probability that a variant is associated with T1D or T2D as 1x10-4 and the 

prior probability that a variant is associated with both traits as 1x10-5.  

 

We collected 94 T2D loci and 57 T1D loci, of which five have overlapping coordinates 

(CENPW, GLIS3, RASGRP1, CTRB1, MTMR3), for a total of 146 loci (Table S3). At each locus, 

we obtained a reported index variant and then extracted all variants in a 500kb window. For each 

variant, we calculated a Bayes Factor for T1D and T2D separately using the approach of 
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Wakefield69. We then applied the co-localization test to compare T1D and T2D Bayes Factors, 

and considered loci with H4 > .50 as shared. For loci with evidence for a shared risk variant, we 

then fine-mapped variants causal for the shared signal.  For each locus, we multiplied T1D and 

T2D Bayes Factors at each variant, and then calculated the posterior causal probability (PPA) as 

the Bayes Factor divided by the sum of all variant Bayes Factors across the locus.  We further 

calculated a cumulative PPA (cPPA) as the sum of PPA values for variants overlapping an 

annotation at a given locus.    

 

To validate loci with evidence for a shared causal variant we further applied eCAVIAR, a 

co-localization method capable of modeling multiple causal variants71.  For each locus, we chose 

a window of 100 variants on either side of the variant with the strongest combined T1D and T2D 

evidence.  We provided Z-scores of T1D and T2D association together with pairwise LD statistics 

of European samples in 1000 Genomes Project v3 data for all variants within the window to 

eCAVIAR using default settings. For each variant in the window, eCAVIAR computed a co-

localization posterior probability (CLPP), the probability that the variant is causal for the local 

signal in both traits. We considered loci to be co-localized using this approach with at least one 

variant with CLPP > 0.01 as recommended in the original study.  

 

For quantitative trait association at shared risk variants, we obtained the most likely causal 

variant from combined T1D and T2D evidence. We extracted summary statistics for each trait and 

calculated a signed Z-score for the risk allele using effect size and standard error estimates.   

 

Expression QTL association 

We obtained gene expression QTL data for subcutaneous adipose, visceral adipose, liver, 

whole blood and liver from GTEx version 736.  For pancreatic islets, we meta-analyzed summary 

statistic results from two published studies34,35 using METAL56 and retained only variants test in 
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both studies and with minor allele frequency > .01.  Using the most probable variant at each 

shared T1D/T2D signal we obtained the eQTL p-value for each protein-coding gene in a 1MB 

window around the variant.  We considered genes with eQTL P<.005 to be associated with shared 

T1D/T2D variants.  We then used Bayesian co-localization to determine whether the associated 

gene eQTL signals had evidence for being co-localized with the T1D/T2D signals, and considered 

eQTL signals shared where the shared probability (Pshared) was greater than the distinct probability 

(Pdistinct).    

 

Islet ATAC-seq and chromatin states 

We utilized ATAC-seq data generated from four primary pancreatic islet samples as 

described in a separate study72. For each sample, we trimmed adaptor sequences from the reads 

with trim_galore (https://github.com/FelixKrueger/TrimGalore). The resulting sequences were 

aligned to sex-specific hg19 reference genomes using bwa mem73. We filtered reads to retain 

those in proper pairs and with mapping quality score greater than 30. We then removed duplicate 

and non-autosomal reads. We called sites individually for each sample with MACS274 at a q-value 

threshold of .05 with the following options “—no-model”, “—shift -100”, “—extsize 200”. We 

removed sites that overlapped genomic regions blacklisted by the ENCODE consortium20. We 

merged sites from these 4 samples and two previously generated in islets34 with bedtools75 to 

obtain a comprehensive set of ATAC-seq peaks in human islets.  

 

We used islet chromatin states described separately34.  In brief, we used previously 

published data5,38 from ChIP-seq assays generated in islets and for which there was matching 

input sequence from the same sample. For each assay and input, we aligned reads to the human 

genome hg19 using bwa samse and bwa aln73 with a flag to trim reads at a quality threshold of 

less than 15. We converted the alignments to bam format and sorted the bam files. We then 

removed duplicate reads, and further filtered reads that had a mapping quality score below 30. 
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Sequence data from the same assay in the same sample were then pooled.  We defined 

chromatin states from ChIP-seq data using ChromHMM76 with a 9 state model. We assigned the 

resulting states names based on the resulting patterns. 

 

ATAC-seq footprint analysis 

To identify haplotype-aware motifs within ATAC-seq footprints overlapping accessible 

chromatin sites, we searched accessible chromatin sites from four ATAC-seq samples for 

instances of motifs from JASPAR, SELEX, ENCODE and de novo motifs identified in our data77. 

We used vcf2diploid78 (https://github.com/abyzovlab/vcf2diploid) to create individual-specific 

diploid genomes by mapping our phased, imputed genotypes onto hg19 using only SNPs and 

ignoring indels. Then, we used fimo79 to scan the personalized genomes for our compiled 

database of motifs, limiting the sequences scanned to those derived from islet accessible 

chromatin. For fimo, we used the default parameters for p-value threshold (1x10-4) and a 

background GC content of 40.9% based on hg19. 

 

CENTIPEDE80 was used to discover footprint sites for each motif, using the discovered 

motif instances within ATAC-seq peaks. For each motif, we used the make_cut_matrix utility from 

atactk (https://github.com/ParkerLab/atactk) to calculate a cut-site matrix that contained counts of 

the number of Tn5 integrations within a window defined by ±100 bp from each motif occurrence 

for both forward and reverse strands. This cut-site matrix was provided as input to CENTIPEDE 

along with regions for each motif occurrence to model the posterior probability that a given motif 

occurrence was bound by a TF. We defined footprints for a given motif as regions that had a 

posterior probability ≥ 0.99. We combined footprints from our samples with a previously published 

set of footprints in pancreatic islets34. 
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We further identified variants predicted to disrupt each footprint24. We calculated the 

entropy score for a variant position in a footprint using the position frequency matrix for each motif. 

For each base at a given position bp and the frequency of the base at that position f, we calculated 

the entropy as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	∑ 𝑓(𝑏𝑝) ×	 log! 𝑓(𝑏𝑝)"# . 

 

A footprint was considered disrupted if a variant fell in a conserved position in the motif 

(Entropy<1.0).  

 

Luciferase reporter assays 

To test for allelic differences in enhancer activity at rs4237150, rs10116772 and 

rs8056814, we cloned sequences containing the alt or ref allele in forward and reverse orientation 

upstream of the minimal promoter of firefly luciferase vector pGL4.23 (Promega) using KpnI and 

SacI restriction sites.  

 

Primer sequences were: 

rs4237150  

Fwd:  TTACGCGGTACCACACACTTCTGTAAATCAGGTCAG, 

TCATAGGAGCTCGAAGCAGTTTGTTTGCTGGC 

Rev:  TTACGCGAGCTCACACACTTCTGTAAATCAGGTCAG, 

TCATAGGGTACCGAAGCAGTTTGTTTGCTGGC 

rs6476839  

Fwd:  GTCGGTACCTCGCAATTCAATCAAGGACA, 

GCTGAGCTCCAGGCACATGTTTGCACTTT 

Rev:  GTCGAGTCGTCGCAATTCAATCAAGGACA, 

GCTGGTACCCAGGCACATGTTTGCACTTT 
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rs10116772+rs10814915  

Fwd:  GTCGGTACCTTCATTAATGCCGCCTTTTC, 

GCTGAGCTCTGAATTGCGAAATGTGCTTC 

Rev:  GTCGAGTCGTTCATTAATGCCGCCTTTTC, 

GCTGGTACCTGAATTGCGAAATGTGCTTC 

rs8056814  

Fwd:  TAAGCAGGTACCTGGGTGACAGAGTGAGACTCC, 

TGCTTAGAGCTCGGTGTTTCCGCCTAACACTG 

Rev:  TAAGCAGAGCTCTGGGTGACAGAGTGAGACTCC, 

TGCTTAGGTACCGGTGTTTCCGCCTAACACTG 

 

MIN6 beta cells were seeded into 6 (or 12)-well trays at 1 million cells per well. At 80% confluency, 

cells were co-transfected with 400ng of the experimental firefly luciferase vector pGL4.23 

containing the alt or ref allele in either orientation or an empty vector and 50ng of the vector pRL-

SV40 (Promega) using the Lipofectamine 3000 reagent. All transfections were done in triplicate. 

Cells were lysed 48 hours after transfection and assayed for Firefly and Renilla luciferase 

activities using the Dual-Luciferase Reporter system (Promega). Firefly activity was normalized 

to Renilla activity and compared to the empty vector and normalized results were expressed as 

fold change compared to empty vector control per allele. A two-sided t-test was used to compare 

the luciferase activity between the two alleles in each orientation.  

 

Allelic imbalance analysis 

We collected ChIP-seq data from assays in primary islet cells from multiple sources5,38,81–

84. We aligned sequence data using bwa samse73, filtered out mitochondrial reads, and removed 

duplicates using Picard software. For each sample we applied QuASAR85 to obtain estimated 

genotypes. A total of 6 samples were determined to be heterozygous at rs4237150 with probability 
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of being homozygous < 10-4. For these samples we also inferred heterozygosity at rs10116772, 

due to high linkage and by imputation into 1000 Genomes v3 variants via the Michigan Imputation 

Server55.  Across these 6 samples, a total of 8 datasets had more than 5 reads overlapping 

rs4237150 – FOXA2 (1), H3K27ac (3), PDX1 (2), NKX6-1 (2).   We applied WASP86 to each 

dataset to correct for reference mapping bias. We then pooled read counts for risk and protective 

alleles at rs4237150 and rs10116772 and applied a two-sided binomial test for allelic imbalance. 

 

1.6 Supplementary Figures 

 

 

Supplementary Figure S1.1.  Genome-wide association study of T1D case and control 
samples. (A) Principal component plots showing the ancestry of samples genotyped on 
Affymetrix and Illumina arrays as compared to the super populations of the 1000 Genomes Project 
after QC measures. EUR = European, AFR = African, AMR = Americas, EAS = East Asian, and 
SAS = South Asian. (B) Manhattan plot plotting chromosomal positions (hg19) and the negative 
log10- P-values, with known T1D loci highlighted in red. 

Supplemental Figure 1. Genome-wide association study of T1D case and control samples
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Supplementary Figure S1.2.  T1D and T2D genetic correlation with autoimmune traits.  
Genetic correlations between T2D (left) and T1D (right) and autoimmune traits using LD score 
regression.  T1D has significant correlations with multiple autoimmune traits including rheumatoid 
arthritis, inflammatory bowel disease, and celiac disease whereas T2D has no significant 
correlation with any trait.  **P<.005, *P<.05.   

 

Supplemental Figure 2.  T1D and T2D genetic correlation with autoimmune traits
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Supplementary Figure S1.3.  Genomic annotations and T1D association and fine-mapped 
T2D loci.  (A) Cumulative PPA values of 94 primary T2D signals in cell-type regulatory site and 
coding annotations.  T2D signals mapped into six groups including pancreatic regulatory sites (21 
signals), adipose regulatory sites (15 signals), and coding exons (4 signals) in addition to un-
annotated signals.  (B)  T2D signals within different groups had distinct patterns of association 
with T1D, where T2D pancreas signals had the strongest T1D association.   

 

Supplemental Figure 3.  Genomic annotations and T1D association at fine-mapped T2D loci
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Supplementary Figure S1.4.  Shared T1D and T2D signals at the GLIS3 and CTRB1 loci.  
(top) P-values of variant associations with T1D (red) and T2D (blue) at the GLIS3 and CTRB1 
loci. Causal probability of variants at the shared GLIS3 and CTRB1 signals by (middle) combining 
T1D and T2D evidence in Bayesian fine-mapping, and (bottom) modeling shared causal variants 
using eCAVIAR.  Variants at each signal have high causal probabilities in both analyses.       

 

Supplemental Figure 4.  Loci with shared T1D and T2D risk variants
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Supplementary Figure S1.5.  Expression QTL association at shared T1D and T2D signals.  
Expression QTL (eQTL) association data for the most likely causal variant at shared T1D/T2D 
signals CENPW, CTRB1, and GLIS3 for subcutaneous adipose (adipose sc), visceral adipose 
(adipose vo), liver, whole blood, pancreas and pancreatic islets.  Values are the -log10(P) for 
eQTL association.   
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Supplementary Figure S1.6.  Allelic imbalance in islet regulatory activity at GLIS3.  Read 
counts in samples heterozygote for rs4237150 and rs10116772 in pancreatic islet FOXA1, 
NKX6.1, PDX1 and H3K27ac ChIP-seq assays (risk allele counts = light grey, protective allele = 
dark grey).  The risk allele had increased read counts in all assays.  P-values for binomial tests 
are listed below each assay.         
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Supplemental Figure 6. Allelic imbalance in islet regulatory activity at GLIS3

P=.031 P=.36

P=.18P=.21

rs4237150 rs10116772

0
2

4
6

8

1.;�ï�

rs4237150 rs10116772

0
2

4
6

8

FOXA2

rs4237150 rs10116772

0
5

10
15

20

H3K27ac

rs4237150 rs10116772

0
5

10
15

20

PDX1

Risk allele
Protective allele



 45 

 

Supplementary Figure S1.7.  Shared variant at CTRB1 affects islet regulatory activity.  (A) 
Plot of candidate causal variants at the shared CTRB1 signal.  Variant rs8056814 has a high 
probability (PPA=.90) of being causal for T1D and T2D risk, and maps in an islet accessible 
chromatin site and an islet active enhancer upstream of CTRB1.  (B) Luciferase reporter assay of 
sequence surrounding rs8056814 alleles in the islet cell line MIN6.  All constructs had reduced 
activity compared to the empty vector.  The T2D risk allele of rs8056814 has increased activity 
compared to the T2D protective allele.  Values are fold change and SD. (N=3; *P<.05, **P<.001).          
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CHAPTER 2: Glucocorticoid signaling in pancreatic islets 

modulates gene regulatory programs and genetic risk of type 

2 diabetes 

 

2.1 Abstract 

Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, 

but the gene regulatory programs driving responses to glucocorticoid signaling in islets and the 

contribution of these programs to diabetes risk are unknown. In this study we used ATAC- seq 

and RNA-seq to map chromatin accessibility and gene expression from eleven primary human 

islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple doses and 

durations. We identified thousands of accessible chromatin sites and genes with significant 

changes in activity in response to glucocorticoids. Chromatin sites up-regulated in glucocorticoid 

signaling were prominently enriched for glucocorticoid receptor binding sites and up-regulated 

genes were enriched for ion transport and lipid metabolism, whereas down-regulated chromatin 

sites and genes were enriched for inflammatory, stress response and proliferative processes. 

Genetic variants associated with glucose levels and T2D risk were enriched in glucocorticoid-

responsive chromatin sites, including fine-mapped variants at 51 known signals. Among fine-

mapped variants in glucocorticoid-responsive chromatin, a likely casual variant at the 2p21 locus 

had glucocorticoid-dependent allelic effects on beta cell enhancer activity and affected SIX2 and 

SIX3 expression. Our results provide a comprehensive map of islet regulatory programs in 

response to glucocorticoids through which we uncover a role for islet glucocorticoid signaling in 

mediating genetic risk of T2D.  
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2.2 Introduction 

Glucocorticoids are steroid hormones produced by the adrenal cortex which broadly 

regulate inflammatory, metabolic and stress responses and are widely used in the treatment of 

immune disorders 1–3.  The metabolic consequences of glucocorticoid action are directly relevant 

to diabetes pathogenesis, as chronic glucocorticoid exposure causes hyperglycemia and steroid-

induced diabetes and endogenous excess of glucocorticoids causes Cushing’s syndrome in which 

diabetes is a common co-morbidity 4,5. Glucocorticoids contribute to the development of diabetes 

both through insulin resistance and obesity via effects on adipose, liver and muscle, as well as 

through pancreatic islet dysfunction 4. In islets, glucocorticoid signaling has been shown to 

modulate numerous processes such as insulin secretion, ion channel activity, cAMP signaling, 

proliferation and development 6–11. 

 

The effects of glucocorticoids on cellular function are largely mediated through regulation 

of transcriptional activity. Glucocorticoids diffuse through the cell membrane into cytoplasm and 

bind the glucocorticoid receptor (GR), which is then translocated into the nucleus where it binds 

DNA and modulates the transcriptional program 12–15.  Gene activity can be affected by GR via 

direct genomic binding and regulation as well as indirectly through physical interaction with other 

transcriptional regulators 13–17.  Previous studies have profiled glucocorticoid signaling by mapping 

genomic locations of GR binding and other epigenomic features such as histone modifications 

and chromatin accessibility in response to endogenous glucocorticoids such as cortisol or analogs 

such as dexamethasone 13,14,18,19.  Studies have also shown that the genomic function of GR is 

largely mediated via binding to regions of accessible chromatin 20,21. 

 

Genetic studies have identified hundreds of genomic loci that contribute to diabetes risk 

and which primarily map to non-coding sequence and affect gene regulation 22–25. Risk variants 
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for type 2 diabetes (T2D) are enriched for pancreatic islet regulatory sites 22–24,26,27, while type 1 

diabetes (T1D) risk variants are enriched for immune cell as well as islet regulatory sites. The 

specific mechanisms of most risk variants in islets are unknown, however, which is critical for 

understanding the genes and pathways involved in disease pathogenesis and for the 

development of novel therapeutic strategies. Previous studies of islet chromatin have focused 

predominantly on normal, non-disease states 27–33, although recent evidence has shown that 

diabetes risk variants can interact with environmental stimuli to affect islet chromatin and gene 

regulatory programs 34. 

 

The effects of glucocorticoid and other steroid hormone signaling on islet regulatory 

programs and how these signals interact with diabetes risk variants, however, are largely 

unknown. In this study we profiled islet accessible chromatin and gene expression in primary 

human pancreatic islets exposed in vitro to the glucocorticoid dexamethasone. Glucocorticoid 

signaling had widespread effects on islet accessible chromatin and gene expression levels. Up-

regulated chromatin sites were strongly enriched for glucocorticoid receptor binding and up-

regulated genes were enriched for processes related to ion channel activity and steroid and lipid 

metabolism.  Conversely, down-regulated sites and genes were involved in inflammation, stress 

response and proliferation. Genetic variants affecting T2D risk and glucose levels were 

significantly enriched in glucocorticoid-responsive chromatin sites, including a likely causal variant 

at the SIX2/3 locus which had glucocorticoid-dependent effects on beta cell enhancer activity and 

affected SIX2 and SIX3 expression.  Together our results provide a comprehensive map of islet 

gene regulatory programs in response to glucocorticoids which will facilitate a greater mechanistic 

understanding of glucocorticoid signaling and its role in islet function and diabetes risk. 
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2.3 Results 

2.3.1 Map of gene regulation in pancreatic islets in response to glucocorticoid signaling 

In order to determine the effects of glucocorticoid signaling on pancreatic islet regulation, 

we cultured primary islet cells in vitro with dexamethasone at several different doses (100 ng/mL 

for 24hr, 4 ng/mL for 6hr and 24hr) as well as in untreated conditions and measured accessible 

chromatin and gene expression levels in both treated and untreated cells. An overview of the 

study design is provided in Figure 2.1A. 

 

We assayed gene expression in dexamethasone-treated and untreated islets from 6 total 

samples using RNA-seq (S1 Table; see Methods). Across replicate samples we observed 

changes in expression levels of genes both known to be induced by dexamethasone such as 

ZBTB16 [35–37] and VIPR1 [38] as well as those suppressed by dexamethasone such as IL11 

[39] in both the high-dose (100 ng/mL) and low-dose (4 ng/mL) treatments (Figures 2.1B, 2.1C, 

S2.1A, S2.1B and S2.1C). We next assayed accessible chromatin in dexamethasone-treated 

and untreated islets from 9 total samples using ATAC-seq (S1 Table; see Methods). Across 

replicate samples we observed reproducible changes in islet accessible chromatin signal 

concordant with changes in gene expression. For example, accessible chromatin signal was 

notably induced at several sites proximal to the ZBTB16 and VIPR1 genes in dexamethasone-

treated compared to untreated islets in both high- and low-dose treatments (Figures 2.1D, 2.1E, 

S2.2, S2.3 and S2.4). Similarly, accessible chromatin signal was reduced at a site proximal to the 

IL11 promoter in glucocorticoid-treated compared to untreated islets (Figure  S2.5). 
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Figure 2.1.  A map of gene regulation in pancreatic islets in response to glucocorticoid 
signaling.  (A) Overview of study design.  Primary pancreatic islet samples were split and 
separately cultured in normal conditions and including the glucocorticoid dexamethasone at either 
a high-dose (100ng/mL for 24hr) or low-dose (4 ng/mL for 6hr or 24hr) treatment, and then profiled 
for gene expression and accessible chromatin using RNA-seq and ATAC-seq assays. Genes with 
known induction in glucocorticoid signaling (B) ZBTB16 and (C) VIPR1 had increased expression 
in glucocorticoid-treated islets compared to untreated islets. Values represent mean and standard 
error. (D) At the ZBTB16 locus several accessible chromatin sites intronic to ZBTB16 had 
increased accessibility in glucocorticoid treated (Dex.) compared to untreated (Untr.) islets.  (E) 
At the VIPR1 locus an accessible chromatin site downstream of VIPR1 had increased accessibility 
in glucocorticoid treated (Dex.) compared to untreated (Untr.) islets.  Values in D and E represent 
RPKM normalized ATAC-seq read counts. Fold-change (FC) in accessible chromatin signal in 
glucocorticoid treatment compared to untreated indicated at highlighted sites.  All results shown 
are for the high-dose treatment.  
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2.3.2 Islet accessible chromatin sites with differential activity in response to 

glucocorticoid signaling 

To understand the effects of glucocorticoid signaling on accessible chromatin in islets at 

a genome-wide level, we first performed principal components analysis (PCA) using normalized 

read counts in chromatin sites for each treated and untreated islet ATAC-seq sample (see 

Methods). We observed reproducible differences in accessible chromatin profiles in 

dexamethasone-treated compared to untreated islets across replicate samples, where the effects 

of low-dose treatment (4 ng/mL, n=3) were intermediate to high-dose treatment (100 ng/mL, n=6) 

relative to untreated samples (n=9) (Figure 2.2A). 

 

We then identified specific islet accessible chromatin sites with significant differential 

activity in glucocorticoid treatment compared to untreated control cells.  We first defined a 

canonical set of 127,228 islet accessible chromatin sites genome-wide by comparing replicate 

samples using IDR (see Methods, S2 Table). Among these canonical sites, there were 2,688 

sites with significant evidence (FDR<.10) for differential activity in glucocorticoid signaling at high-

dose treatment (Figure 2.2B and S3 Table). Among these 2,688 glucocorticoid-responsive sites, 

1,992 had up-regulated activity and 695 had down-regulated activity in glucocorticoid treated 

compared to untreated cells (Figure 2.2B and S3 Table). The majority of sites (95%) with 

differential activity were already accessible in untreated islets, suggesting that sites induced by 

glucocorticoid signaling are typically not activated de novo.  Furthermore, a majority of 

differentially accessible sites (2,453, 91%) were not proximal to promoter regions, suggesting they 

act via distal regulation of gene activity. At low-dose treatment, 373 sites had differential activity 

(FDR<.10) in glucocorticoid signaling, where the majority (350) were up-regulated (S3 Table).  

Among sites with differential activity in either treatment, the effects in high- and low-dose were 

highly concordant (Spearman r=.72, P<2.2x10-16) (Figure S2.6A and S2.6B).    
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We next characterized transcriptional regulators underlying changes in glucocorticoid-

responsive islet chromatin. First, we identified TF motifs enriched in genomic sequence 

underneath sites up-regulated and down-regulated in glucocorticoid-treated islets (see Methods).  

The most enriched sequence motifs in up-regulated sites for both high- and low-dose treatment 

were for glucocorticoid and other steroid hormone response elements (high-dose: GRE P=1x10-

340, ARE P=1x10-302, PGR P=1x10-280; low-dose: GRE P=1x10-73, ARE P=1x10-66, PGR P=1x10-

62), in addition to lesser enrichment for TFs relevant to islet function (FOXA1: high-dose P=1x10-

5, low-dose P=1x10-3) (Figure 2.2C and S4 Table). Conversely, down-regulated sites in high-

dose treatment were most enriched for sequence motifs for STAT TFs (STAT3 P=1x10-9, STAT1 

P=1x10-8) followed by TFs involved in islet function (NKX6.1 P=1x10-7, FOXA1 P=1x10-6) (Figure 

2.2C and S4 Table). Next, we determined enrichment of glucocorticoid-responsive chromatin 

sites for ChIP-seq TF-binding sites previously identified by the ENCODE project. We observed 

strongest enrichment of up-regulated accessible chromatin sites in both high- and low-dose 

treatment for glucocorticoid receptor (NR3C1) binding sites (high-dose ratio=3.7, P=1.7x10-294, 

low-dose ratio=5.4, P=2.1x10-129), and less pronounced enrichment for binding sites of FOXA1 

(high-dose ratio=1.7, P=1.6x10-55; low-dose ratio=2.3, P=2.3x10-30) and other TFs (Figure 2.2D 

and S4 Table). Down-regulated sites were most enriched for STAT binding (STAT3 ratio=2.1, 

P=7.6x10-41) as well as enhancer binding TFs such as FOS/JUN (FOS ratio=1.5, P=2.3x10-17; 

JUN ratio=1.7, P=1.3x10-14) and P300 (ratio=1.4, P=2.9x10-11) (Figure 2.2D and S4 Table).  

 

Accessible chromatin sites with significant up-regulation in glucocorticoid signaling 

compared to untreated islets included a site that mapped to the SIX2/SIX3 locus (Figure 2.2E 

and S3 Table), which also harbors genetic variants associated with fasting glucose level and risk 

of T2D.  The glucocorticoid-responsive site at this locus also directly overlapped a NR3C1 ChIP-

seq site identified by the ENCODE project (Figure 2.2E). We tested the glucocorticoid-induced 
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site at this locus (high-dose fold-change=1.49; P=1.0x10-5; low-dose fold-change=1.51; P=4.4x10-

4) for enhancer activity in luciferase gene reporter assays in dexamethasone-treated and 

untreated MIN6 mouse insulinoma cells. We observed a significant increase in enhancer activity 

in dexamethasone-treated cells relative to untreated cells (T-test P=1.65x10-6) (Figure 2.2F), 

confirming that this site is highly induced in response to glucocorticoid signaling.   

 

Environmental stimuli can interact with genetic variation to affect chromatin accessibility 

and gene regulation.  We therefore determined the effects of genetic variants on islet accessible 

chromatin in both glucocorticoid-treated and untreated conditions using allelic imbalance 

mapping. We performed microarray genotyping of seven islet samples and imputed genotypes 

into 39M variants (see Methods). For variants overlapping islet chromatin sites we obtained read 

counts in samples heterozygote for that variant, corrected for mapping bias using WASP and 

modeled the resulting counts for imbalance using a beta-binomial test. We then identified variants 

with evidence (FDR<.10) for allelic imbalance in accessible chromatin from either glucocorticoid-

treated or untreated islets (S5 Table). Among imbalanced variants, we further identified those 

with significant differences in allelic effects (FDR<.10) between glucocorticoid-treated and 

untreated islets (S5 Table, see Methods). For example, variant rs4729667 at 7q22 mapped in a 

glucocorticoid-responsive site bound by GR and had significantly stronger imbalance in 

glucocorticoid-treated islets (GC ref frac.=.20, untr. ref frac.=.46; P=3.9x10-3) (Figure 2.2G, S5 

Table). Conversely, variant rs2291583 at 10p12 in a glucocorticoid-responsive site had 

significantly stronger imbalance in untreated islets (GC ref frac=.39, untr. ref frac.=.28; P=9.6x10-

4) (S5 Table). 

 

These results demonstrate that glucocorticoid signaling broadly affects accessible 

chromatin in islets including sites both up-regulated through glucocorticoid receptor activity and 

down-regulated through the activity of STAT and other TFs. 
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Figure 2.2.  Glucocorticoid signaling affects chromatin accessibility in pancreatic islets.  
(A) Principal components plot showing ATAC-seq signal for high-dose (red) and low-dose (blue) 
glucocorticoid-treated islets and untreated (grey) islets from 9 total donors.  Dashed lines connect 
assays from the same sample, and box plots on each axis represent the distribution of principal 
components of samples for each condition.  (B) Volcano plot of sites with differential chromatin 
accessibility in glucocorticoid treated compared to untreated islets. Sites with significant 
differential activity (FDR<.10) are highlighted in red. The sites with the most significant changes 
are labelled with the locus and the nearest gene. (C) Transcription factor (TF) sequence motifs 
enriched in differential chromatin sites with increased activity (+ in dex) and decreased activity (- 
in dex) in glucocorticoid-treated islets.  (D) Enrichment of ChIP-seq sites from ENCODE for 160 
TFs in differential chromatin sites with increased activity (+ in dex) and decreased activity (- in 
dex) in glucocorticoid-treated islets. (E) A chromatin site at the SIX2/3 locus had increased activity 
in glucocorticoid-treated islets and overlapped a ChIP-seq site for the glucocorticoid receptor 
(GR/NR3C1) (top).  Fold-change (FC) in accessible chromatin signal in glucocorticoid treatment 
compared to untreated indicated at the highlighted site for high-dose treatment. (F) The differential 
site at SIX2/3 had glucocorticoid-dependent effects on enhancer activity in gene reporter assays 
in MIN6 cells (bottom). Values represent mean and standard deviation. (G) Variant rs4729667 
mapped in a chromatin site with increased activity in glucocorticoid-treated islets and had stronger 
allelic imbalance in chromatin accessibility in glucocorticoid-treated compared to untreated islets. 
Values represent ref allele fraction and 95% confidence intervals.  For panels B, C and D the 
values shown are from results using high-dose treatment.  **P<.01, ***P<1x10-4 
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2.3.3 Genes and pathways with differential regulation in islets in response to 

glucocorticoid signaling 

We next sought to determine the effects of glucocorticoid treatment on gene expression 

levels.  We first performed PCA using gene transcript counts from untreated and dexamethasone-

treated islet samples at each treatment dose and duration obtained from RNA-seq assays (see 

Methods). There were again reproducible differences in expression levels across replicate 

samples, where the effects of low-dose treatment (4 ng/mL at 24hr, n=3; 4 ng/mL at 6hr, n=3) 

were intermediate to high-dose treatment (100 ng/mL at 24hr, n=6) relative to untreated samples 

(n=6) (Figure 2.3A).   

 

We identified specific genes with differential expression in response to glucocorticoids 

compared to untreated islet samples using DESeq2 (see Methods). There were 2,837 genes with 

significant evidence for differential expression (FDR<0.10) in glucocorticoid signaling at high-dose 

treatment (S6 Table).  Among these genes, 1,348 (47%) were up-regulated and 1,489 (53%) 

were down-regulated in response to glucocorticoids compared to untreated islets (Figure 2.3B).  

Genes with the most significant up-regulation included EDN3 (log2(FC)=1.44, FDR=2.42x10-81), 

FAM115C (log2(FC)=1.52, FDR=3.61x10-75), METTL7A (log2(FC)=1.81, FDR=4.36x10-71), 

PRR15L (log2(FC)=2.20, FDR=9.55x10-62), and CCND3 (log2(FC)=0.95, FDR=9.05x10-60). 

Conversely, genes with most significant down-regulation included PCSK1 (log2(FC)=-1.21, 

FDR=2.05x10-61), KLHL41 (log2(FC)=-1.31, FDR=8.84x10-59), DHRS2 (log2(FC)=-1.41, 

FDR=2.19x10-49) and CD36 (log2(FC)=-1.21, FDR=2.41x10-49) (Figure 2.3B). At low-dose 

treatment 775 and 848 genes had differential expression (FDR<.10) at 6hr and 24hr, respectively 

(S6 Table and Figure S2.7A and S2.7B).  Among genes differentially expressed in either 

treatment, the effects in high- and low-dose were highly concordant (24hr low-dose r=.91, 

P<2.2x10-16; 6hr low-dose r=.86, P<2.2x10-16) (Figure  S2.7C and S2.7D and S2.7E).        
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We determined whether changes in gene expression in glucocorticoid signaling were 

driven through accessible chromatin, by testing for enrichment of glucocorticoid-responsive 

chromatin sites for proximity to differentially expressed genes. Glucocorticoid-responsive 

chromatin sites were significantly more likely to map within 100kb of a gene with glucocorticoid-

responsive expression compared to other chromatin sites in islets (high-dose: OR=1.48, 

P=9.9x10-20; low-dose: OR=4.91, P=6.5x10-36).  We next performed these analyses separately for 

sites up- and down-regulated in glucocorticoid signaling. There was significant enrichment of sites 

with increased activity in glucocorticoid signaling within 100kb of genes with up-regulated 

expression specifically (up-reg OR=2.9, P=3.8x10-82, down-reg OR=0.51, P=2.1x10-19) (Figure 

2.3C). Similarly, sites with decreased activity in glucocorticoid signaling were enriched within 

100kb of genes with down-regulated expression (down-reg OR=2.0, P=6.2x10-13, up-reg 

OR=0.48, P=1.6x10-7) (Figure 2.3C). Furthermore, we also observed an enrichment of 

glucocorticoid-responsive chromatin sites for closer proximity to genes with glucocorticoid-

responsive expression compared to background sites (Kolmogorov-Smirnov P=3.4x10-11) (Figure 

2.3D).    

 

In order to understand the molecular pathways affected by glucocorticoid activity in islets, 

we tested genes up- and down-regulated in glucocorticoid signaling for gene set enrichment using 

pathway and gene ontology (GO) terms (see Methods). Up-regulated genes in high-dose 

treatment were enriched for gene sets related to steroid metabolism (steroid metabolic process 

FDR=8.94x10-30), lipid metabolism (lipid biosynthetic process FDR=1.93x10-32), potassium and 

other ion transport (potassium channels FDR=5.71x10-7; regulation of ion transport FDR=1.93x10-

17), and extracellular matrix organization (FDR=3.68x10-7) (Figure 2.3E and S7 Table). Similar 

gene sets were enriched among genes up-regulated in low-dose treatments (S7 Table).  

Numerous genes that function in ion transport were up-regulated in glucocorticoid signaling; for 
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example ATP1A1, SCN1B, SCNN1A, CACNA1H, CACNG4, SLC38A4, TRPV6 as well as 

potassium channel genes including KCNJ2, KCNAB1, KCNF1, KCNJ8, and KCND3 (Fig 2.3E 

and S6 Table).  Up-regulated genes also included numerous that function in lipid metabolism 

including FADS1, FADS2, ACSL1, SCD5, FABP4, ACACB, and ANGPTL4 (Figure 2.3E and S6 

Table).      

 

Conversely, genes down-regulated in glucocorticoid signaling were enriched for 

inflammatory response (cytokine signaling in immune system FDR=2.2x10-27, signaling by 

interleukins FDR=9.50x10-19), extracellular matrix, cell adhesion and morphogenesis 

(extracellular matrix organization FDR=1.53x10-17, regulation of cell adhesion FDR=2.48x10-42, 

cellular component morphogenesis FDR=2.45x10-37), and cell differentiation and proliferation 

terms (neg. regulation of cell differentiation FDR=2.18x10-36) (Figure 2.3F and S7 Table).  Similar 

gene sets were enriched among genes down-regulated in low-dose treatments (S7 Table).  

Down-regulated genes included those involved in the inflammatory response such as IL6, 

STAT5B, STAT3, STAT4, SMAD3, CXCL12, CCL2, CD44, CD36, RELB, IRF1, extracellular 

matrix formation such matrix metalloproteinase genes such as MMP3, MMP7, MMP9 and matrix 

components such as LAMA4 and LAMC2, islet function and pancreatic differentiation such as 

ISL1, PAX6, NKX6-1, HES1 and JAG1, and proliferation and growth factors such as PDGFA, 

PDGFB, FGF2, TGFB3 and VEGFA (Figure 2.3F and S6 Table). 

 

These results demonstrate that glucocorticoid signaling in islets up-regulates genes 

involved in steroid and lipid metabolism and ion channel activity, and down-regulates key genes 

in islet function as well as genes involved in inflammation, proliferation and extracellular matrix 

formation. 

 



 75 

Figure 2.3.  Glucocorticoid signaling affects gene expression levels in pancreatic islets.  
(A) Principal components plot of gene expression from high-dose (red) and low-dose (green 24hr, 
blue 6hr) glucocorticoid-treated and untreated (black) islets from a total of 6 samples.  Dashed 
lines connect assays from the same sample.  (B) Volcano plot showing genes with differential 
expression in glucocorticoid-treated islets compared to untreated islets. Genes with significantly 
differential expression (FDR<.10) are highlighted in red, and genes with pronounced changed in 
expression are listed.  (C) Percentage of accessible chromatin sites with up-regulated activity 
(left) and down-regulated activity (right) in glucocorticoid-treated islets within 100kb of 
differentially expressed genes (DEGs) compared to chromatin sites without differential activity.  
(D) Relative distance metric (from bedtools reldist) between accessible chromatin sites with 
differential activity (dex) and genes with differential expression compared to all chromatin sites 
(background).  (E) Biological pathway terms enriched among genes with up-regulated expression 
in glucocorticoid-treated islets (top), and the expression level of selected genes annotated with 
ion transport and lipid metabolism terms in glucocorticoid-treated and untreated islets (bottom).  
Values represent mean expression and standard error. (F) Biological pathway terms enriched 
among genes with up-regulated expression in glucocorticoid-treated islets (top), and the 
expression level of selected genes annotated with inflammatory response and proliferation 
pathway terms in glucocorticoid-treated and untreated islets (bottom).  Values represent mean 
expression and standard error.  For panels B, C, D and E the values shown are from results using 
high-dose treatment.    
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2.3.4 T2D and glucose associated variants map in glucocorticoid-responsive islet 

chromatin 

Genetic variants associated with diabetes risk are enriched in pancreatic islet regulatory 

elements.  As these studies have been performed primarily using non-diabetic donors in normal 

(untreated) conditions, however, the role of environmental stimuli in modulating diabetes-relevant 

genetic effects on islet chromatin is largely unknown. We therefore tested for enrichment of 

diabetes and fasting glycemia associated variants in glucocorticoid-responsive islet chromatin 

sites using fgwas 35 (see Methods). We observed enrichment of variants influencing T2D risk and 

blood sugar (glucose) levels in chromatin sites with differential activity in both high- and low-dose 

glucocorticoid treatment (T2D high-dose ln(enrich)=3.71, 95% CI=3.03,4.25; T2D low-dose 

ln(enrich)=4.23, 95% CI=2.66,5.20; blood sugar high-dose ln(enrich)=3.92, 95% CI=0.86,5.70; 

blood sugar low-dose ln(enrich)=6.20, 95% CI=3.92,8.42) (Figure 2.4A). Conversely, we 

observed no evidence for enrichment of T1D risk variants (high-dose ln(enrich)=-28.00, 95% CI=-

48.00,3.39; low-dose ln(enrich)=-23.82, 95% CI=-43.8,5.29) (Figure 2.4A). 

 

We next catalogued fine-mapped variants overlapping glucocorticoid-responsive islet 

chromatin using 99% credible sets of T2D and glucose level signals from DIAMANTE and Biobank 

Japan (BBJ) 22,36 (see Methods). We identified 126 fine-mapped variants at 51 signals that 

overlapped a glucocorticoid-responsive site (S8 Table). We further identified 511 variants 

genome-wide in glucocorticoid-responsive sites with at least nominal evidence for T2D 

association (P<.005) in DIAMANTE or BBJ GWAS (S8 Table). We prioritized potential target 

genes of T2D- and glucose-associated variants in glucocorticoid-responsive chromatin by 

identifying genes proximal to these sites with differential expression. For example, T2D-

associated variants at the 11q12 locus mapped in a site induced by glucocorticoids proximal to 

SCD5 and TMEM150C which both had up-regulated expression (Figure 2.4B and S3 and S8 

Table). Similarly, T2D-associated variants at the 4q31 locus mapped in a site down-regulated in 
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glucocorticoids proximal to FBXW7 which had down-regulated expression (Figure S2.7A and S3 

and S8 Tables). Outside of known T2D loci we observed additional examples such as at the 7p15 

locus where rs1107376 (T2D P=2.2x10-4) mapped in a glucocorticoid-induced site proximal to 

NPY which had glucocorticoid-stimulated expression (Figure S2.7B and S3 and S8 Tables).  At 

71 T2D- or glucose-associated variants we further observed evidence for association with target 

gene expression (eQTL) in islets (S8 Table); for example, rs1107376 was an islet eQTL for NPY 

(P=2.2x10-21).   

 

At the 2p21 locus associated with glucose level, lead variant rs12712928 (BBJ beta=.068, 

P=7.4x10-46) mapped in a chromatin site with increased activity in glucocorticoid signaling and 

was proximal to SIX2 and SIX3 which both had glucocorticoid-induced expression (Figure 2.4C 

and 2.4D and S8 Table). This variant had the highest posterior probability in fine-mapping data 

(PPA=.89), suggesting it is likely causal for glucose association at this locus.  This variant also 

had evidence for T2D association in BBJ (beta=.048, P=2.1x10-6) and DIAMANTE (beta=.022, 

P=.012), and was the lead variant at a T2D signal recently reported in East Asians (P=1.8x10-14) 

37. We therefore tested whether rs12712928 affected enhancer activity using sequence around 

variant alleles in untreated and dexamethasone treated MIN6 cells (see Methods).  The glucose 

increasing and T2D risk allele C had significantly reduced enhancer activity in both glucocorticoid-

treated (T-test P=2.5x10-6) and untreated cells (T-test P=3.2x10-4) (Figure 2.4E). However, the 

allelic differences at this variant were more pronounced in glucocorticoid-treated cells (ref/alt ratio 

GC=6.85, 95% CI=3.4,10.2; untreated=1.78, 95% CI=1.23,2.32, permutation test P=5.1x10-3) 

(Figure 2.4F). We also observed evidence that rs12712928 was an islet eQTL for SIX3 and SIX2 

(SIX3 P=5.1x10-23, SIX2 P=8.2x10-10; Figure 2.4G), where the T2D risk allele was correlated with 

reduced expression of both genes.  Glucose level and T2D association at this locus was strongly 

co-localized with the SIX3 and SIX2 eQTLs (BBJ T2D shared SIX3 PP=89%, SIX2 PP=98%; BBJ 

blood sugar shared SIX3 PP=98%, SIX2 PP=99%) (Figure 2.4G). 
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These results reveal that variants associated with T2D and glucose level are enriched in 

glucocorticoid-responsive chromatin sites in islets, including variants such as rs12712928 at the 

SIX2/3 locus which interact with glucocorticoid signaling directly to affect islet regulation. 
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Figure 2.4.  Type 2 diabetes and glucose associated variants affect glucocorticoid-
responsive islet regulatory programs.  (A) Enrichment of variants associated with type 1 
diabetes (T1D), type 2 diabetes (T2D) and blood sugar (glucose) levels for differential chromatin 
sites in high-dose and low-dose glucocorticoid-treated islets.  Values represent log enrichment 
estimates and 95% confidence intervals. (B) Multiple fine-mapped T2D variants at the 
SCD5/TMEM150C locus mapped in a glucocorticoid-responsive islet accessible chromatin site.  
Both the SCD5 and TMEM150C genes had increased expression in glucocorticoid-treated islets. 
Genome browser tracks represent RPKM normalized ATAC-seq signal, and bar plots represent 
mean expression and standard error. (C, D) Variant rs12712928 with evidence for blood sugar 
and T2D association mapped in a glucocorticoid-responsive chromatin site at the SIX2/3 locus.  
Both the SIX2 and SIX3 genes had increased expression in glucocorticoid-treated islets. Genome 
browser tracks represent RPKM normalized ATAC-seq signal, and bar plots represent mean 
expression and standard error.  (E) Variant rs12712928 had significant allelic effects on enhancer 
activity in gene reporter assays in MIN6 cells.  Values represent mean and standard deviation. 
(F) The allelic effects of rs12712928 were more pronounced in glucocorticoid-treated relative to 
untreated islets.  Values represent fold-change and 95% CI. (G) The T2D association signal at 
SIX2/3 was colocalized with an eQTL for SIX3 expression in islets.  For panels B, C and D the 
values shown are from results using high-dose treatment.  For panels B and D, the fold-change 
(FC) in accessible chromatin signal in glucocorticoid treatment compared to untreated is indicated 
at highlighted sites.  ***P<1x10-4, **P<1x10-3, *P<1x10-2   
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2.4 Discussion 

Our study demonstrates the relevance of islet chromatin dynamics in response to 

corticosteroid signaling to T2D pathogenesis, including T2D risk variants that interact with 

corticosteroid activity directly to affect islet chromatin. In a similar manner, variants mediating 

epigenomic responses of pancreatic islets to proinflammatory cytokines were recently shown to 

contribute to genetic risk of T1D 34. Numerous environmental signals and external conditions 

modulate pancreatic islet function and contribute to the pathophysiology and genetic basis of 

diabetes, yet the epigenomic and transcriptional responses of islets to disease-relevant stimuli 

have not been extensively measured.  Future studies of islet chromatin and gene regulation 

exposed to additional stimuli will therefore likely continue providing additional insight into diabetes 

risk.   

 

Glucocorticoid signaling led to broad changes in accessible chromatin, which up-regulated 

the expression of proximal genes enriched for processes related to ion channels and transport, in 

particular potassium channels.  Potassium ion concentrations modulate calcium influx and insulin 

secretion in beta cells 38, and in disruption of ion channel function leads to impaired glucose-

induced insulin secretion and diabetes 39. Glucocorticoids have been shown to suppress calcium 

influx while preserving insulin secretion via cAMP 7, and in line with this finding we observed 

evidence for increased activity of potassium channel and cAMP signaling genes and decreased 

activity of phosphodiesterase genes. Up-regulated genes were also strong enriched in lipid 

metabolism pathways, which has been shown to regulate insulin secretion and contribute to 

diabetes 40,41.  Several up-regulated genes PER1 and CRY2 are also components of the circadian 

clock, and previous studies have shown that endogenous glucocorticoid release is under control 

of circadian rhythms and therefore may contribute to downstream regulation of the clock 42. 
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Conversely, glucocorticoid signaling down-regulated inflammatory programs, in line with previous 

reports and the known function of glucocorticoids 2,17,43, as well as key genes involved in islet 

function such as NKX6-1, PAX6, RFX6, and ISL1. Our findings further suggest that down-

regulation of gene activity in glucocorticoid signaling is mediated through the activity of STAT and 

other TFs at proximal accessible chromatin sites, either through reduced TF expression or 

inhibition by GR. We also observed enrichment of FOXA binding in sites both up- and down-

regulated in glucocorticoid signaling, suggesting these TFs mark sites that are broadly responsive 

to signal-dependent TF activity in islets in line with their known function as pioneer factors.     

 

Genetic variants near the homeobox TFs SIX2 and SIX3 influence glucose levels 44,45, and 

our results provide evidence that both of these TFs operate downstream of glucocorticoid 

signaling and that the variants interact with this signaling program directly to influence glucose 

levels and risk of T2D. A previous study identified association between this locus and glucose 

levels in Chinese samples and demonstrated allelic effects of the same variant on islet enhancer 

activity and binding of the TF GABP 45, further supporting the likely causality of this variant.  SIX2 

and SIX3 have been widely studied for their role in forebrain, kidney and other tissue development 

46–51.  In islets, both SIX2 and SIX3 have been shown to increase expression in adult compared 

to juvenile islets, and induction of SIX3 expression in EndoC-bH1 cells and juvenile islets 

enhanced islet function, insulin content and secretion and may contribute to the suppression of 

proliferative programs 52.  In line with this finding, the glucose-lowering and T2D protective allele 

of the likely causal variant increased islet enhancer activity and SIX2/3 expression. 

 

Our in vitro experimental model mimics the environment of pancreatic islets under 

hormone signaling, albeit for a small number of treatments and conditions. Given the similarity in 

binding motifs of many nuclear hormone receptors and the enrichment of glucocorticoid 

responsive sites for androgen and progesterone receptor motifs, the effects of GR on islet gene 
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regulation may overlap with other nuclear receptors by acting on shared chromatin sites 53(p1).  

Studies of other tissues have profiled glucocorticoid signaling across a broader range of 

experimental conditions and identified dose- and temporally-dependent effects on gene 

regulatory programs 1415, and in islets dose- and temporally-dependent effects of glucocorticoids 

may impact insulin secretion and other islet functions.  Future studies profiling the genomic activity 

of nuclear receptors in islets across a greater breadth of experimental conditions will therefore 

help further shed light into the role of hormone signaling dynamics in islet gene regulation and 

diabetes pathogenesis.    

 

2.5 Methods 

Ethics statement 

All studies were approved by the Institutional Review Board of the University of California 

San Diego. 

 

Human islet samples  

Human islet samples were obtained through the Integrated Islet Distribution Program 

(IIDP), University of Alberta and Prodo labs. Islet samples were further enriched using a dithizone 

stain. Islets were cultured for 24hr at approximately 10mL media/1k islets in 10cm dishes at 37C, 

5% CO2 in CMRL 1066 media supplemented with 10% FBS, 1X pen-strep, 8mM glucose, 2mM 

L-glutamine, 1mM sodium pyruvate, 10mM HEPES, and 250ng/mL Amphotericin B.  Treated 

islets had dexamethasone (Sigma) added in the culture media at either 100 ng/mL for 24hr, 

4ng/mL for 24hr or 4 ng/mL for 6hr.  
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ATAC-seq assays 

Islet samples were collected and centrifuged at 500xg for 3 minutes, then washed twice 

in HBSS, and resuspended in nuclei permeabilization buffer consisting of 5% BSA, 0.2% IGEPAL-

CA630, 1mM DTT, and 1X complete EDTA-free protease inhibitor (Sigma) in 1X PBS. Islets were 

homogenized using a chilled glass dounce homogenizer and incubated on a tube rotator for 10 

mins before being filtered through a 30uM filter (sysmex) and centrifuged at 500xg in a 4C 

microcentrifuge to pellet nuclei. Nuclei were resuspended in Tagmentation Buffer (Illumina) and 

counted using a Countess II Automated Cell Counter (Thermo). Approximately 50,000 nuclei were 

transferred to a 0.2mL PCR tube and volume was adjusted to 22.5uL with Tagmentation Buffer. 

2.5uL TDE1 (Illumina) was added to each tagmentation reaction and mixed with gentle pipetting. 

Transposition reactions were incubated at 37C for 30 minutes. Tagmentation reactions were 

cleaned up using 2X reaction volume of Ampure XP beads (Beckman Coulter) and eluted in 20uL 

Buffer EB (Qiagen). 10uL tagmented DNA prepared as described above was used in a 25uL PCR 

reaction using NEBNext High-Fidelity Master Mix (New England Biolabs) and Nextera XT Dual-

Indexed primers (Nextera). Final libraries were double size selected using Ampure XP beads and 

eluted in a final volume of 20uL Buffer EB. Libraries were analyzed using the Qubit HS DNA assay 

(Thermo) and Agilent 2200 Bioanalyzer (Agilent Biotechnologies). Sample libraries were 

sequenced on Illumina HiSeq 4000 using 100bp paired-end reads except for samples Isl10, Isl11 

and Isl12 which were sequenced on Illumina NovaSeq 6000 using 100bp paired-end reads.  

 

RNA-seq assays 

RNA was isolated from treated and untreated islets using RNeasy Mini kit (Qiagen) and 

submitted to the UCSD Institute for Genomic Medicine to prepare and sequence ribodepleted 

RNA libraries. Sample libraries were sequenced on Illumina HiSeq4000 using 100bp paired-end 

reads except for samples Isl10, Isl11 and Isl12 which were sequenced on Illumina NovaSeq 6000 

using 100bp paired-end reads.  



 85 

 

ATAC-seq data processing 

We trimmed reads using Trim Galore with options ‘–paired’ and ‘–quality 10’, then aligned 

them to the hg19 reference genome using BWA 54 mem with the ‘-M’ flag.  We then used samtools 

55 to fix mate pairs, sort and index read alignments, used Picard 

(http://broadinstitute.github.io/picard/) to mark duplicate reads, and used samtools 55 to filer reads 

with flags ‘-q 30’, ‘-f 3’, ‘-F 3332’.   We then calculated the percentage of mitochondrial reads and 

percentage of reads mapping to blacklisted regions and removed all mitochondrial reads.  We 

calculated a TSS enrichment score for each ATAC-seq experiment using the Python package 

‘tssenrich’. To obtain read depth signal tracks, we used bamCoverage 56 to obtain bigWig files for 

each alignment with signal normalization using RPKM.   

 

Identifying differential chromatin sites 

We first used Irreproducible Discovery Rate (IDR) to define a set of canonical ATAC-seq 

sites for differential analysis. In brief, for each condition separately, we pooled reads across all 

assays and randomly split the pooled reads into two ‘pseudo-replicates’. For the pooled and 

‘pseudo-replicate’ data we called candidate peaks using MACS2 57 with the parameters ‘—extsize 

150 –keep-dup all –shift -75 –nomodel -p 0.01’.  We applied IDR to the ‘pseudo-replicate’ 

candidate peak calls and obtained the number of peaks at an IDR threshold of .01. We then sorted 

and filtered the pooled candidate peak calls based on this number. Finally, we merged the 

resulting peaks across conditions, where if two peaks overlapped, we retained the more 

significant peak, and considered these canonical sites for downstream analyses.   

 

The set of alignments for each assay were then supplied as inputs to the R function 

featureCounts from the Rsubread 58 package to generate a matrix of read counts within each 

canonical site. We applied the R function DESeqDataSetFromMatrix from the DESeq2 59(p2) 
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package to the read count matrix with default parameters then applied the DESeq function 

including donor as a variable to model paired samples. We considered sites differentially 

accessible with FDR<0.1, as computed by the Benjamini-Hochberg method. 

 

We determined the percentage of differential sites with increased activity in glucocorticoids 

that overlapped a site active in untreated samples, as well as the percentage of differential sites 

proximal to a gene promoter defined as 5kb upstream of the transcription start site. 

 

Principal components analysis 

We first defined input sites by merging overlapping (1bp or more) peaks identified in at 

least two experiments across all ATAC-seq experiments. We then constructed a read count matrix 

using edgeR 60 and calculated normalization factors using the ‘calcNormFactors’ function. We 

applied the voom transformation 61 and used the ‘removeBatchEffect’ function from limma 62 to 

regress out batch effects and sample quality effects (using TSS enrichment as a proxy for sample 

quality). We then restricted the read count matrix to the 100,000 most variable peaks and 

performed PCA analysis using the core R function ‘prcomp’ with rank 2. 

 

TF enrichment analysis 

Differentially accessible chromatin sites were analyzed for sequence motif enrichment 

compared to a background of all chromatin sites tested for differential activity using HOMER 63 

and a masked hg19 reference genome with the command `findMotifsGenome.pl <bed file> 

<masked hg19> <output dir> -bg <background bed file> -size 200 -p 8 -bits -preparse -

preparsedDir tmp`.  We used the TF sequence motif database provided with the HOMER 

software. For TF ChIP-seq enrichment, we obtained ChIP-seq binding sites for 160 TFs generated 

by the ENCODE project 64 and tested for enrichment of binding in differential accessible chromatin 

sites compared to a background of all remaining chromatin sites genome-wide without differential 
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activity.  For each TF we calculated a 2x2 contingency table of overlap with differential sites and 

non-differential sites, determined significance using a Fisher test and calculated a fold-enrichment 

of overlap in differential compared to non-differential sites. 

 

RNA-seq data processing and analysis 

Paired-end RNA-Seq reads were aligned to the genome using STAR 65 (2.5.3a) with a 

splice junction database built from the Gencode v19 gene annotation 66. Gene expression values 

were quantified using the RSEM package (1.3.1) and filtered for >0.1 TPM on average per 

sample. Raw expression counts from the remaining 20,480 genes were normalized using 

variance stabilizing transformation (vst) from DESeq2 59(p2) and corrected for sample batch effects 

using limma removeBatchEffect. Principal component analysis was performed in R using the 

prcomp function. To identify differentially expressed genes between treated and untreated 

samples we obtained raw expression counts from RSEM 67 for the 20,480 genes and applied 

DESeq2 59(p2) with default settings including donor as a cofactor to model paired samples. To 

identify enriched GO terms in up and down-regulated genes, we applied GSEA 68 using Gene 

Ontology terms and KEGG/REACTOME pathway terms. We excluded gene sets with large 

numbers of genes in enrichment tests. 

 

Proximity of differential chromatin sites to differentially expressed genes 

We calculated the percentage of differential accessible chromatin sites mapping within 

100kb of (i) all differentially expressed genes, (ii) up-regulated genes and (iii) down-regulated 

genes compared to non-differentially accessible sites, and determined the significance and odds 

ratio using a Fisher exact test.  We calculated a relative distance metric with bedtools 69 (reldist 

function) using either differential chromatin sites or a background of all islet accessible chromatin 

sites as the "a" argument and differentially expressed genes as the "b" argument. We compared 
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the distribution of relative distances from differential sites to the distribution from background sites 

using a Kolmogorov-Smirnov test. 

 

Sample genotyping and imputation 

Non-islet tissue was collected for seven samples during islet picking and used for genomic 

DNA extraction using the PureLink genomic DNA kit (Invitrogen). Genotyping was performed 

using Infinium Omni2.5-8 arrays (Illumina) at the UCSD Institute for Genomic Medicine. We called 

genotypes using GenomeStudio (v.2.0.4) with default settings. We then used PLINK 70 to filter out 

variants with 1) minor allele frequency (MAF) less than 0.01 in the Haplotype Reference 

Consortium (HRC) 71 panel r1.1 and 2) ambiguous A/T or G/C   alleles   with   MAF   greater   than   

0.4.   For   variants   that   passed   these   filters, we imputed genotypes into the HRC reference 

panel r1.1 using the Michigan Imputation Server with minimac4. Post imputation, we removed 

imputed genotypes with low imputation quality (R2<.3).  

 

Allelic imbalance mapping 

We identified heterozygous variant calls in each sample with read depth of at least 10 in 

both untreated and treated cells, and then used WASP 72 to correct for reference mapping bias.  

We retained variants in each sample where both alleles were identified at least 3 times across 

untreated and treated cells.  We then merged read counts at heterozygous SNPs from all samples 

in untreated and treated cells separately. We fit a beta-binomial model to the observed allele 

counts using the method of NPBin 73.  The parameters of the beta-binomial model were a=40.78 

and b=39.26 with over-dispersion of .012 for untreated samples and a=41.76 and b=40.10 with 

over-dispersion of .012 for glucocorticoid-treated samples. We called imbalanced variants from 

the merged counts using a beta-binomial test, and then calculated q-values from the resulting 

beta-binomial p-values.  We considered variants significant at FDR<.10.     
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Heterogeneous allelic imbalance 

For all variants with significant allelic imbalance in either glucocorticoid-treated or 

untreated conditions, we tested for heterogeneity in imbalance between conditions. We used 

Pearson's chi-squared test as implemented in the "prop.test" function of R. We calculated q-

values from the resulting p-values and considered variants significant at FDR<.10. 

 

Genetic association analysis 

We tested glucocorticoid-responsive chromatin sites for enrichment of diabetes 

association using genome-wide association data for T1D 74, T2D from the DIAMANTE consortium 

22, and blood sugar (glucose) from the Japan Biobank study 44.  For each study we retained 

variants with minor allele frequency (MAF)>.05 and tested for enrichment of high-dose and low-

dose differential sites using fgwas 35 with a window size of 1Mb.     

 

We then cataloged all variants in glucocorticoid-responsive chromatin sites in T2D and 

glucose fine-mapping data and with nominal association (P<.005) genome-wide. For DIAMANTE, 

we used fine-mapping results provided with the study. For the Japan Biobank, we fine-mapped 

signals ourselves using summary statistics.  We calculated approximate Bayes factors (ABF) for 

each variant as described previously 75.  We compiled index variants for each locus and defined 

variants within a 5 Mb window and at least low linkage (r2>0.1) in the East Asian subset of 1000 

Genomes 76 with each index. For each variant, we calculated posterior probabilities of 

associations (PPA) by dividing the variant ABF by the sum of ABF for the locus. We defined 99% 

credible sets by sorting variants by descending PPA and retaining variants up to a cumulative 

probability of 99%. For each variant in glucocorticoid-responsive chromatin, we identified protein-

coding genes in GENCODE v33 with differential expression and where the gene body mapped 

within 100kb of the variant.      
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Expression QTL analyses 

We obtained islet expression QTL data from a published study 77. We extracted variant 

associations at the SIX2/SIX3 locus and tested for colocalization between T2D and blood sugar 

association in the Biobank Japan study and SIX2 and SIX3 eQTLs using a Bayesian approach 78.  

We considered signals colocalized with shared PP greater than 80%.     

 

Gene reporter assays 

To test for allelic differences in enhancer activity at the SIX2/3 locus, we cloned human 

DNA sequences (Coriell) containing the reference allele upstream of the minimal promoter in the 

luciferase reporter vector pGL4.23 (Promega) using the enzymes Sac I and Kpn I. A construct 

containing the alternate allele was then created using the NEB Q5 SDM kit (New England 

Biolabs). The primer sequences used were as follows: 

Cloning FWD AGCTAGGTACCCCTCATCTGCCTTTCTGGAC 

 

Cloning REV TAACTGAGCTCCAGTGGGTATTGCTGCTTCC 

 

SDM FWD TGCATTGTTTcCTGTCCTGAAGACGAGC 

 

SDM REV GGGGGTGCCTGCATCTGC 

 

MIN6 cells were seeded at approximately 2.5E05 cells/cm^2 into a 48-well plate. The day 

after passaging into the 48-well plate, cells were co-transfected with 250ng of experimental firefly 

luciferase vector pGL4.23 containing the alt or ref allele in the forward direction or an empty 

pGL4.23 vector, and 15ng pRL-SV40 Renilla luciferase vector (Promega) using the Lipofectamine 

3000 reagent. Cells were fed culture media and stimulated where applicable 24 hours post-

transfection. For stimulation 100 ng/mL dexamethasone (Sigma) was added to the culture media. 



 91 

Cells were lysed 48 hours post transfection and assayed using the Dual-Luciferase Reporter 

system (Promega). Firefly activity was normalized to Renilla activity and normalized results were 

expressed as fold change compared to the luciferase activity of the empty vector. The python 

package ‘luciferase’ was then used to remove batch effects.  A two-sided t-test was used to 

compare the luciferase activity between the two alleles or between treatments. A permutation test 

was used to compare the allelic ratio of luciferase activity between the two treatments, based on 

100,000 permutations of the allele labels. 

 

 

2.6 Supplementary Figures 

 

Figure S2.1. Gene expression in islets in response to different doses and durations of 
glucocorticoid treatment. Expression level of (A) ZBTB16, (B) VIPR1 and (C) IL11 in high-dose 
(100ng/mL for 24hr), low-dose (4ng/mL for 24hr or 6hr) glucocorticoid-treated or untreated islets. 
Values represent mean expression and standard error. 
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Figure S2.2. Islet accessible chromatin signal across replicate samples at ZBTB16. RPKM 
normalized ATAC-seq signal for individual islet sample in high-dose glucocorticoid treated and 
untreated islets. Sites with differences in chromatin accessibility across conditions are highlighted. 
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Figure S2.3. Islet accessible chromatin signal across replicate samples at VIPR1. RPKM 
normalized ATAC-seq signal for individual islet sample in high-dose glucocorticoid treated and 
untreated islets. Sites with differences in chromatin accessibility across conditions are highlighted. 
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Figure S2.4.  Accessible chromatin signal in islets in response to low dose glucocorticoid 
treatment.  RPKM normalized ATAC-seq signal in low-dose (4ng/mL for 6hr) glucocorticoid 
treated and untreated islets at the (A) ZBTB16 and (B) VIPR1 loci.  Sites induced by glucocorticoid 
treatment are highlighted. 

 

 

Figure S2.5.   Islet accessible chromatin signal at IL11.  RPKM normalized ATAC-seq signal 
in high-dose glucocorticoid treated and untreated islets at the IL11 locus.  The IL11 promoter 
which has reduced accessibility in glucocorticoid treated islets at high dose is highlighted. 
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Figure S2.6. Differential chromatin accessibility in high- and low-dose glucocorticoid 
treatment. (A) Venn diagram of overlap in sites with differential activity in high-dose (100ng/mL 
for 24hr, n=6) and low-dose (4ng/mL for 6hr, n=3) glucocorticoid treatment. (B) Effects of high-
dose and low-dose glucocorticoid treatment on sites with significant differential activity in either 
treatment.     
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Figure S2.7. Differential gene expression in high- and low-dose glucocorticoid treatment. 
(A,B) Volcano plot of differential gene expression in glucocorticoid-treated islets at low dose for 
24hr or 6hr compared to untreated islets. Genes with significant differential expression (FDR<.10) 
are highlighted in red, and genes with most pronounced changes in expression are listed. (C) 
Venn diagram of overlap between genes differentially expressed in 24hr high (n=6), 24hr low 
(n=3), 6hr low (n=3) glucocorticoid treatment. (D) Effects of 24hr high- and low-dose treatment on 
genes with significant differential expression in either treatment. (E) Effects of 24hr high- and 6hr 
low-dose treatment on genes with significant differential expression in either treatment.  
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Figure S2.8. T2D-associated variants in differential chromatin sites. (A) Multiple variants at 
the FBXW7/TMEM154 locus mapped in a site with decreased activity and FBXW7 had decreased 
expression in glucocorticoid stimulation. (B) A variant at the NPY locus mapped in a site with 
increased activity and NPY had increased expression in glucocorticoid stimulation. Genome 
browser tracks represent RPKM normalized ATAC-seq signal, and expression bar plots represent 
mean expression and standard error.  Values shown are from high-dose treatment.  The fold-
change (FC) in accessible chromatin signal in glucocorticoid treatment compared to untreated is 
indicated at highlighted sites. 
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2.7 Data Availability 

The authors confirm that all data underlying the findings are fully available without 

restriction. All raw data are available from the GEO database (GSE167250). All data underlying 

graphs are provided in the main text or as Supporting Information in the online version of this 

article (https://doi.org/10.1371/journal.pgen.1009531). 
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CHAPTER 3: Allelic imbalance mapping improves fine-

mapping of diabetes risk loci 

 

 

3.1 Abstract 

Disease risk loci identified in genome-wide association studies (GWAS) largely map to 

non-coding regions of the genome. Biological interpretation of non-coding signals requires 

determining the functional effects of risk variants on the epigenome such as chromatin 

accessibility and transcription factor binding. Allelic imbalance mapping (AIM) offers a resource-

efficient approach for determining genetic effects on the epigenome as, unlike QTL mapping, it 

can be applied to data generated from few samples. In this work we develop a novel framework 

for AIM from epigenomic data across multiple experiments with shallow sequencing data with or 

without existing genotype data. We then demonstrate how the resulting AIM statistics can be used 

to interpret eQTLs and diabetes risk signals.  First, we applied this approach to ChIP-seq data for 

10 TFs from the ENCODE project and identified 84 fine-mapped liver eQTLs with evidence for 

AIM in at least one TF. Second, we applied this approach to ATAC-seq data generated from 5 

pancreatic islet samples.  Incorporating AIM statistics identified 298 pancreatic islet eQTLs and 

31 T2D risk signals with evidence for AIM in chromatin accessibility, and we further demonstrated 

that T2D risk variants with AIM have higher causal probabilities in a larger, independent fine-

mapping dataset.  Together this work provides a flexible strategy for generating AIM from 

epigenomic data that can be applied to many existing datasets and that can interpret the 

molecular mechanisms of complex disease risk variants. 
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3.2 Introduction 

To interpret the results of genome-wide association studies (GWAS), genetic variants 

associated with a phenotypic trait must be functionally characterized to establish the biological 

effect of variant on trait. However, due to linkage disequilibrium (LD) in the human genome, 

GWAS identify genomic loci associated with disease risk but often cannot precisely locate causal 

variants underlying the association1. Fine-mapping the specific causal variants underlying 

association signals is therefore a subject of considerable interest2–4. One advance in fine-mapping 

was the discovery that trait-associated variants are enriched with cis-regulatory elements of the 

genome, and integrating GWAS data with functional genomic data can greatly improve the 

resolution of causal variants5. Large initiatives such as the ENCODE and NIH Epigenome 

Roadmap project provide a wealth of epigenomic datasets and cis-regulatory elements in different 

tissues and cells that can be used for these analyses6. However, variants overlapping cis-

regulatory element annotations might not necessarily directly affect the activity of the element, 

and therefore additional information is often needed to prioritize causal variants.      

 

One phenotype for which GWAS have been especially fruitful is type 2 diabetes (T2D)7–9, 

which is a highly prevalent complex disease affecting 400 million individuals worldwide. Over 400 

genomic loci have been identified that influence risk of T2D. The majority (>90%) of associated 

variants at T2D risk loci map to non-coding regions, suggesting they affect gene regulation.  T2D 

associated variants are enriched with cis-regulatory elements, and integration of T2D associated 

variants with epigenomic data has identified enrichment in key tissues such as pancreatic islets 

and refined the resolution of causal variants7,8,10,11. Furthermore, T2D associated variants at 

specific loci have been shown to have functional effects of regulatory activity in pancreatic islets 

and other relevant tissues12–19. Fine-mapping causal variants at these loci and understanding their 

function is a critical step in translating GWAS results into biomedical insights and novel 
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therapies7,9. However, the specific causal variants and biological mechanisms of most T2D-

associated loci to date remain unknown.   

 

Sequencing data from epigenomic experiments can be used to identify variants with 

functional effects on cis-regulatory activity by performing quantitative trait locus (QTL) mapping 

or allelic imbalance mapping. Mapping QTLs or allelic imbalance for molecular phenotypes such 

as transcription factor binding, accessible chromatin or gene expression can help determine the 

mechanisms of risk loci20, since variants influencing complex phenotypes are likely to also affect 

these molecular traits21. QTL mapping measures a molecular trait across different samples and 

tests for correlation with variant genotypes22. For example, researchers may use RNA-seq to map 

gene expression QTLs (eQTLs)23,24 or ATAC-seq to map chromatin QTLs (caQTLs)25,26. However, 

QTL mapping often requires large numbers of samples which may be prohibitive in studying 

molecular traits with limited available data such as transcription factor (TF) binding. Conversely, 

allelic imbalance mapping uses heterozygous variants to measure within-sample differences in 

allelic effects on a molecular trait27–33. When there is a significant difference in the observed 

number of reads from the two alleles, the variant is said to be imbalanced which implies a 

functional difference in the molecular activity of the alleles. Allelic imbalance mapping can be 

performed using fewer samples than QTL studies, even  from a single sample. However, only 

variants that are heterozygous in the assayed samples can be tested and they suffer technical 

challenges including overdispersion and reference mapping bias. It is also of interest to quantify 

the magnitude of the effect of specific variant alleles on molecular traits. Efforts have been made 

to define generally applicable effect size statistics for QTL and imbalance studies32,33. Accurate 

estimation of allelic effects can likely help further improve fine-mapping of causal variants, but is 

challenging especially when using shallow sequence data. 
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A wide variety of published epigenomic sequencing data are available, including hundreds 

of datasets from sources such as the ENCODE project or ROADMAP epigenomics project6,34. 

These datasets are amenable to allelic imbalance analysis and could be used to better 

understand the function of trait-associated variants, but there are still obstacles. First, sequencing 

depth is often low, which together with overdispersion limits statistical power for calling 

imbalanced variants in a genome-wide context and accurately estimating their effects. Second, 

genotypes are often not available for these datasets, so heterozygous variants are not known. 

This has led to the development of methods for inferring genotypes directly from epigenomic data, 

including QuASAR29. Previous studies have circumvented this challenge by focusing on datasets 

with known genotypes or performing genotyping experiments on cell lines30,35. An additional 

consideration for cancer-derived cell lines is that some chromosomes may be polyploid36,37. Since 

diploidy is a critical assumption of standard imbalance analysis, care should be taken that only 

variants on diploid chromosomes are studied. 

 

In this study, we demonstrate accurate inference of heterozygous genotypes from ChIP-

seq data from a liver cell line HepG2 and ATAC-seq data from primary pancreatic islet samples 

using QuASAR. We test heterozygous variants for allelic imbalance, accounting for mapping bias 

and overdispersion, and show that imbalanced variants called from a given epigenomic dataset 

are enriched for relevant TF binding motifs. We then calculate imbalance effect sizes using a 

novel bayes estimator and show how the effect size statistics can be leveraged to interpret fine-

mapping data for T2D risk signals. By comparing two independent fine-mapping datasets, we 

show that large imbalance effects are predictive of likely causal variants at T2D loci. Finally, we 

experimentally validate the functional effect of a fine-mapped variant with allelic imbalance in 

pancreatic islet accessible chromatin at the HMG20A locus suggesting it is a likely causal variant 
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for T2D risk.  Together these methods and results should provide valuable insight into the genetic 

basis of complex traits and disease.   

 

3.3 Results 

3.3.1 Confidently inferring genotypes from epigenome sequencing data 

We inferred genotypes from ChIP-seq and ATAC-seq data using QuASAR29. The method 

starts with inputs consisting of a predefined set of variants with reference and alternate allele 

counts for each. It uses an EM-algorithm based procedure to compute three genotype 

probabilities for each variant (probability homozygous ref, homozygous alt, or heterozygous). For 

our subsequent analysis, we considered all variants genotyped with confidence >99% and 

discarded those genotyped with lower confidence (see methods for additional details). 

 

To assess the accuracy of QuASAR, we applied it to two datasets with gold-standard 

genotypes available for comparison. First, we genotyped HepG2 using 15 high-quality ChIP-seq 

datasets from ENCODE (Table S3.1). For HepG2, all analysis was restricted to 11 diploid 

chromosomes (3, 5, 7, 8, 9, 11, 12, 13, 15, 18, 19). While chromosome 22 is also diploid in HepG2, 

we excluded it because of its loss of heterozygosity. We inferred genotypes for 286,944 SNPs 

and compared the results to 2,112,748 independent genotypes from whole-genome sequencing 

data of HepG2 cells37. There were 123,206 SNPs genotyped in common between QuASAR and 

WGS data. In addition, we analyzed ATAC-seq data from our previous study and compared the 

results to array-based genotypes38. We applied QuASAR to 5 pancreatic islet ATAC-seq datasets 

and inferred 139,048-346,685 genotypes per sample. To confirm the accuracy of these 

genotypes, we checked them against 508,598 genotypes obtained by arrays and others obtained 

by imputation into the HRC reference panel r1.1 using the Michigan Imputation Server (see 



 113 

methods)39. There were 13,839-29,567 SNPs per sample genotyped in common between 

QuASAR and array results. 

  

We declared QuASAR genotypes “false” when they did not match the corresponding gold-

standard genotypes. We found that genotyping HepG2 with QuASAR had an overall false call 

rate of 0.4%, with a false heterozygous call rate of 0.06% and a false homozygous call rate of 

0.9% (Figure 3.1B-C). In primary islets, when compared to direct array genotypes, QuASAR had 

a mean overall false call rate of 1.5% (95% CI: 0.4%-3.5%), false heterozygous call rate of 0.5% 

(0.3%-0.7%), and false homozygous call rate of 2.2% (0.5%-5.6%). When compared to imputed 

genotypes with minimum imputation quality 0.9, the mean overall false call rate was 2.1% (0.6%-

4.7%), false heterozygous 1.3% (0.5%-2.3%), false homozygous 2.5% (0.7%-5.9%) (Figure 

3.1D-F). 
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Figure 3.1: QuASAR accurately infers genotypes from ChIP-seq and ATAC-seq data. (A) 
legend for barplots in panels B-E. (B) Barplot of the number of true heterozygous, true 
homozygous, false heterozygous, and false homozygous genotype calls made by QuASAR in 
HepG2. (C) Barplot showing the rate of false heterozygous and false homozygous calls at each 
chromosome in HepG2. (D) barplot of the number of true heterozygous, true homozygous, false 
heterozygous, and false homozygous genotype calls made by QuASAR in 5 primary pancreatic 
islet samples (mean value shown). (E) Rates of false heterozygous calls and false homozygous 
calls across 5 islet samples. (F) Overall rate of false genotype calls from Quasar according to 
several minimum imputation quality levels for the array genotypes. 
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3.3.2 Calling and quantifying allelic imbalance 

To prepare the HepG2 TF ChIP-seq and islet ATAC-seq datasets for allelic imbalance 

mapping, we first applied WASP to correct for reference bias at reads mapping to each 

heterozygous variant40. We then obtained read counts for each variant allele.  Next, to account 

for overdispersion, we used NPBin to estimate a beta-binomial null distribution using read counts 

for each dataset. ChIP-seq data were slightly more over-dispersed than ATAC-seq data. 

Estimated overdispersion in HepG2 ChIP-seq datasets had a mean of 0.016 (95% CI: 0.013-

0.019), while estimates from primary islet ATAC-seq datasets had a mean of 0.011 (0.010-0.013) 

(Figure 3.2A). We called imbalanced variants from the merged counts using a beta-binomial test, 

calculated q-values from the resulting beta-binomial p-values, and considered variants significant 

at FDR < .10. 

 

To call imbalanced variants we assumed a beta-binomial distribution for reference allele 

counts, estimated the beta parameters using NPBin, and performed beta-binomial tests (see 

methods)31. We considered variants significantly imbalanced if they had a false discovery rate 

<.1. In HepG2 ChIP-seq data, detection of imbalanced variants was dependent on the number of 

TF-bound sites identified in the data (Figure 3.2B, Table 3.1). Only variants which were in a ChIP-

seq site and had sufficient sequencing coverage (10x coverage) were used for imbalance 

analysis. The number of TF-bound sites was highly correlated both with the total number of 

variants tested (spearman r=0.68, p=0.029) and the number of imbalanced variants detected 

(spearman r=0.79, p=0.006).  Among individual islet ATAC-seq samples, the number of open 

chromatin sites identified per sample was also highly correlated with the number of SNPs tested 

(spearman r=0.60, p=0.210) and the number of imbalanced SNPs detected (spearman r=0.60, 

p=0.210), although these estimates were not significant (Figure 3.2C, Table 3.2). 
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For three experiments, we identified at least 50 variants with significantly imbalance 

(FDR<.10): CEBPB ChIP-seq in HepG2, CREB1 ChIP-seq in HepG2, and islet ATAC-seq. In 

these experiments, we tested imbalanced SNPs (FDR<.10):  for enrichment with TF motifs relative 

to background SNPs with balanced allele counts (FDR≥.10). In the HepG2 ChIP-seq experiments, 

imbalanced SNPs were enriched with motifs relevant to the ChIP-seq target such as CEBPA/B/G 

for CEBPG ChIP-seq (Figure 3.2D) and ATF2/3 for CREB1 ChIP-seq (Figure 3.2E). For islet 

ATAC-Seq, imbalanced variants were enriched with motifs for TFs with functions in pancreatic 

beta cells, such as SP141,42(p3) and RREB143(p1),44(p1). Other strongly enriched motifs included 

ZNF281, ZNF740, ZSCAN4, and SP2 (Figure 3.2F). 

 

We identified few variants with significant allelic imbalance in most datasets, which is not 

surprising given the shallow sequencing of the assays and the small number of samples tested. 

Therefore, we next sought to quantify the magnitude of imbalance for all tested variants for each 

experiment regardless of whether the variant reached significance.  For each variant tested in a 

given experiment, we calculated two related measures of effect size: log allelic fold-change (laFC) 

and Bayes-estimated log allelic fold change (B-laFC) (Figure 3.3A-C). laFC is a previously 

published statistic designed to provide a universally applicable effect size for allelic imbalance32. 

B-laFC is a novel bayes estimator of laFC (see methods). Where laFC uses only the ratio of 

alternate to reference alleles to estimate the effect, B-laFC assumes a beta prior distribution on 

the alt/ref ratio. The prior is empirically estimated from the data across all variants and 

incorporated into the estimator.  laFC and B-laFC are roughly equivalent at SNPs where read 

depth is high, but when read depth is low B-laFC values are reduced in magnitude. This makes 

B-laFC more robust to overdispersion and ensures that extreme B-laFC values are correlated 

with bona fide imbalance effects.  In our observations, the distribution and properties of B-laFC 
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were similar across diverse datasets, suggesting that like laFC, B-laFC offers a useful measure 

that can be easily interpreted in a variety of contexts. 

 

 

Figure 3.2: Calling and quantifying allelic imbalance. (A) Overdispersion parameters for null 
distributions estimated from HepG2 ChIP-seq and islet ATAC-seq experiments by NPBin. (B) 
Total TF-bound sites, SNPs tested for imbalance, and significantly imbalanced SNPs for HepG2 
ChIP-seq experiments. (C) Total open chromatin sites, SNPs tested for imbalance, and 
significantly imbalanced SNPs for islet ATAC-seq experiments. (D-F) enrichment of imbalanced 
variants with motifs in HepG2 ChIP-seq and islet ATAC-seq data. 
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Figure 3.3: Comparison of laFC vs B-laFC. (A-C) Bivariate histograms of laFC vs. B-laFC for 
HepG2 ChIP-seq of CEBPG (A) and CREB1 (B) and primary islet ATAC-seq (C). 

 

Table 3.1: Basic imbalance statistics for HepG2 ChIP-seq datasets. 
ChIP-seq 
peaks 

Total SNPs 
tested 

Significantly 
imbalanced SNPs 

Transcription 
Factor 

Replicates 

889 373 0 SP1 1 
1768 945 1 HDAC2 1 
3195 1028 0 FOXK2 1 
13722 1371 2 RFXANK 2 
16982 341 1 ZFP1 1 
23030 6621 208 CREB1 1 
28127 3398 14 FOXP1 2 
27151 1268 17 NFIL3 1 
36215 6019 15 MIXL1 2 
36581 2199 64 CEBPG 1 

 

Table 3.2: Basic imbalance statistics for pancreatic islet ATAC-seq datasets. 
ATAC-seq 
peaks 

Total SNPs 
tested 

Significantly 
imbalanced SNPs 

Sample ID Replicates 

80854 3528 0 SAMN09479768 1 
94647 15171 35 AFA3256 1 
103020 8660 13 SAMN10079665 1 
109933 6906 18 SAMN10977276 1 
154059 12181 16 SAMN10861888 1 
182970 74915 174 Pooled 5 

A B C

CEBPG ChIP-seq (HepG2) CREB1 ChIP-seq (HepG2) ATAC-seq (primary islet)
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3.3.3 Imbalance mapping augments fine-mapping and interpretation of eQTLs and 

diabetes risk loci 

To evaluate the utility of allelic fold-change (B-laFC) statistics in fine-mapping causal 

variants, we first intersected them with eQTL fine-mapping data in human liver (GTEx) and 

pancreatic islets (Inspire; Vineula et al). Since we were concerned with the magnitude of effects 

but not with their direction, we compared PPA to the absolute value of B-laFC for all subsequent 

analyses. For each locus, we considered variants to have “high PPA” if they were included in a 

50% credible set. In liver, we identified SNPs with high fine-mapping PPA and moderate (|B-

laFC|=0.5-1.5, 73 SNPs) or strong (|B-laFC| >1.5, 8 SNPs) imbalance effects. In islets, fine-

mapped eQTLs included 284 moderately imbalanced and 14 strongly imbalanced SNPs. 

 

For liver eQTLs, imbalance in TF ChIP-seq data in HepG2 cells is useful because it 

suggests specific mechanisms of transcriptional regulation potentially driving effects on gene 

expression. For example, expression of non-coding RNA LINC00265 may be regulated by binding 

of CREB1 at variant rs386712410 (PPA=.87, |B-laFC|=2.10) and expression of TF ZNF780A may 

be regulated by binding of CEBPG at variant rs337799 (PPA=.25, |B-laFC|=2.85) (Figure 3.4A-

B). 

 

For islet eQTLs, in multiple cases we observed that well-known eQTLs fine-mapped to a 

single SNP had allelic imbalance in islet ATAC-seq data, for example rs11257655 (PPA=.53, |B-

laFC|=.62) at the CDC123 locus and rs11708067 at the ADCY5 locus (PPA=1.0, |B-laFC|=1.13) 

(Figure 3.4C-D).  In the case of rs11257655 this variant has been previously shown to affect 

regulatory activity in pancreatic islets cells, supporting a functional role in gene 
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expression45(p123),46(p5).  At other loci, where fine-mapping credible sets included multiple candidate 

causal variants, B-laFC values added additional information that could be used to prioritize 

specific SNPs for experimental validation, for example variant rs1999068 (PPA=.0.33, |B-

lAFC|=1.53) at the TDRD5 locus and rs709062 (PPA=.34, |B-laFC|=1.13) at the ZNF467 locus 

both had evidence for allelic imbalance (Figure 3.4E-F). 

 

We next compared B-laFC statistics to fine-mapping credible sets of 239 T2D-associated 

loci from DIAMANTE GWAS data. A set of 481 variants were present in credible sets and had B-

laFC values available for islet ATAC-seq data. We first sought to determine whether or not 

evidence for allelic imbalance (high B-IAFC value) was correlated with the causal probability of 

variants. We observed that average T2D PPA values were higher for variants with high absolute 

B-laFC (Figure 3.5A). Furthermore, variants with high B-laFC magnitude were significantly more 

likely to have high causal probabilities (PPA > 0.5) compared to other tested variants (logistic 

regression P=0.001) (Figure 3.5B).  We performed a similar analysis to compare B-laFC values 

to credible sets of islet eQTLs, and found a less pronounced but still significant correlation 

(P=0.007) (Figure S3.1). 

 

Next, we asked if B-laFC values could be used effectively to augment fine-mapping to 

improve identification of causal variants. We used previous fine-mapping of 107 T2D loci from 

Metabochip, GoT2D and DIAGRAM 1000G GWAS data, all precursors to the DIAMANTE GWAS 

dataset generated from smaller sample sizes (Table 3.3)7,19,47,48. We identified 22 T2D-associated 

loci at which we could easily draw a one-to-one correspondence between fine-mapping signals in 

Metabochip/GoT2D/DIAGRAM vs. DIAMANTE. Across those loci there were 82 variants with data 

available for B-laFC and PPA in Metabochip/GoT2D/DIAGRAM fine-mapping. Of those, 20 had 

increased PPA in DIAMANTE fine-mapping relative to Metabochip/GoT2D/DIAGRAM fine-
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mapping, while 62 had decreased PPA in the larger fine-mapping. We determined that variants 

with high absolute B-laFC were significantly more likely to have their PPA increased in the 

DIAMANTE fine-mapping (logistic regression P=0.022) (Figure 3.6A-C). 

 

Finally, we determined if allelic imbalance defined using B-IaFC could inform prioritization 

of variants likely causal for T2D at specific loci.  At the HMG20A locus fine-mapping resolved 24 

variants all with modest PPA at best (PPA=0.007-0.075). Among these variants, we identified a 

single variant rs34591043 with evidence for allelic imbalance in islets (|B-IaFC|=1.01), suggesting 

this variant is potentially causal for the T2D risk signal (Figure 3.6D-F).  We therefore tested this 

variant for effects on islet enhancer activity using gene reporter assays in the MIN6 cell line.  We 

identified a significant effect of rs34591043 alleles on enhancer activity where the alternate allele 

G had increased activity (Figure 3.6G).  The G allele was also associated with increased 

expression of HMG20A in islet eQTL data and was predicted to bind an ETV6 TF motif.  

 

Together these results reveal that allelic imbalance mapping of shallow sequence data 

from epigenomic assays of few samples can help prioritize variants affecting cis-regulatory activity 

and risk of T2D and other complex disease.  
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Figure 3.4: Likely causal SNPs with evidence for allelic imbalance.  (A-B) fine-mapping of 
Liver eQTLs for expression of: (A) LINC00265, SNP with imbalanced CREB1 binding in HepG2 
shown (B) for ZNF780A in HepG2, SNP with imbalanced CEBPG binding in HepG2 shown. (C-
F) fine-mapping of pancreatic islet eQTLs, SNPs with imbalanced chromatin accessibility shown: 
(C) CDC123, (D) ADCY5, (E) TDRD5, (F) ZNF467 

A BLINC00265 eQTL,  HepG2 CREB1 imbalance ZNF780A eQTL,  HepG2 CEBPG imbalance
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Figure 3.5: High absolute B-laFC values are correlated with likely causal T2D variants. (A) 
Scatterplot of absolute B-laFC values against PPA for SNPs across fine-mapped T2D loci. 
Smoothed mean values with 95% confidence intervals shown. (B) logistic regression of absolute  
B-laFC against the probability of PPA>0.5. Bootstrapping-based  95% confidence intervals 
shown. 
 
  

P=0.001

A B
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Figure 3.6: High absolute B-laFC values predict likely causal variants. (A) Histogram of B-
laFC values for SNPs with PPA (DIAMANTE) > PPA (DIAGRAM) (B) logistic regression of B-laFC 
against the probability of PPA (DIAMANTE) > PPA (DIAGRAM) for SNPs across loci. (C) 
Histogram of B-laFC values for SNPs with PPA (DIAMANTE) < PPA (DIAGRAM). (D-F) 
comparison of DIAGRAM fine-mapping to DIAMANTE fine mapping at (D) CDC123 (E) ADCY5 
(F) HMG20A. (G) Luciferase reporter assay of HMG20A SNP rs34591043 in MIN6 cells. 

 

Table 3.3: Sample sizes of T2D GWAS studies 
Study Sample size 
Metabochip 84,780 
GoT2D 111,548 
DIAGRAM 159,208 
DIAMANTE 898,130 
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3.4 Discussion 

In this study we have developed a framework for identifying imbalanced SNPs in ChIP-

seq, ATAC-seq, or other forms of epigenomic data with shallow sequencing and with or without 

genotyping data. Independent genotypes may be used to identify heterozygous SNPs, or they 

may be inferred directly from the epigenomic data using QuASAR29. Reference mapping bias in 

allele counts is corrected using WASP40, and then SNPs are statistically tested for imbalance 

using a beta-binomial test based on NPBin31. Finally, we estimate effect sizes for imbalanced 

SNPs using a novel bayes estimator of allelic fold-change (B-IAFC)32. 

 

In the original publication of QuASAR, the authors showed its application to RNA-seq data 

and suggested that it could also be applied to other types of data including ChIP-seq, ATAC-seq 

and others. Here we have demonstrated QuASAR’s application to ChIP-seq and ATAC-seq data. 

We validated the results by comparing genotypes inferred by QuASAR from epigenomic data to 

independent genotypes from whole-genome sequencing37(p2) or genotyping arrays. We genotyped 

hundreds of thousands of SNPs from a small collection of HepG2 ChIP-seq datasets or primary 

pancreatic islet ATAC-seq datasets. The default settings of QuASAR are strict when making 

heterozygous calls and relatively liberal for homozygous calls. While this means that some truly 

heterozygous SNPs will be missed during genotyping, it satisfies an important prerequisite for 

subsequent imbalance analysis in ensuring that variants passed for subsequent imbalance 

mapping are truly heterozygous with high confidence. 

 

Allelic imbalance analysis cannot replace molecular QTL studies, but it is a useful 

complementary approach. Importantly, imbalance analysis is effective when sample sizes are 

small, while QTL studies are challenging if fewer than 20 samples are available. The low sample 

size requirement makes imbalance analysis especially attractive for sequencing experiments 
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involving multiple cell types or conditions, or for multiple tested transcription factors, where 

collecting enough samples in each condition for a QTL study would be more difficult38,49.  While 

only small samples are required for allelic imbalance mapping, increasing the sample size does 

offer increasing returns.  Multiple samples with identical genotypes (e.g. from cell lines) can 

increase power by providing additional reads at each SNP, while samples with distinct genotypes 

(e.g. from multiple donors of primary cells) provide access to a greater number of heterozygous 

SNPs. 

 

To estimate effect sizes of allelic imbalance, we have proposed B-laFC, a bayes estimator 

of the previously published log allelic fold-change (laFC)32. B-laFC inherits from laFC its 

convenient biological interpretation and mathematical properties. It differs from laFC in that effect 

sizes are subject to a shrinkage factor when read counts are small, and therefore provides more 

robust estimation of allelic effects from assays with shallow sequencing. Given the substantial 

number of molecular assays with shallow sequence data in ENCODE, NIH Roadmap and GEO, 

this metric should be widely applicable. B-laFC values have a comparable distribution across 

multiple data types, and they prioritize the accuracy of large effects.  Given these properties future 

studies can leverage B-laFC values for multiple additional analyses.  First, as the global properties 

of each individual assay are used in calculating B-laFC values, these values can be more naturally 

combined across different assays for the same TF or histone mark in a meta-analysis.  Second, 

accurate estimates of allelic imbalance can be used directly in genome-wide disease enrichment 

analyses to help identify TFs relevant to disease risk, including those with directional effects for 

example where decreased binding of a TF may increased disease risk.      

 

Expression QTL and GWAS studies have identified thousands of loci associated with gene 

expression, disease, or other traits. In particular, the GTEx project has identified eQTLs in a 
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variety of tissues, and large GWAS studies of T2D have been generated9,50. Integrating allelic 

imbalance effects with fine-mapping data can prioritize likely causal SNPs for functional validation 

experiments. By combining HepG2 ChIP-seq data with GTEx liver eQTL data and connecting 

eQTLs to allelic effects on specific transcription factors, we can uncover elements of the biological 

mechanisms of gene regulation. By combining primary islet ATAC-seq data with islet eQTL data, 

we have shown how imbalance effects from several samples can augment fine-mapping across 

many loci. Finally, we have demonstrated that imbalance statistics can predict likely causal 

variants at T2D risk loci and functionally validated one such example at the HMG20A locus. This 

method can therefore effectively leverage existing epigenomic data to facilitate the identification 

of causal variants underlying complex disease risk and understand their molecular mechanisms. 

 

3.5 Methods 

ChIP-seq and ATAC-seq datasets 

We downloaded 15 HepG2 ChIP-seq datasets representing 10 transcription factors from 

ENCODE (Table S3.1), and we reprocessed 5 primary pancreatic islet ATAC-seq datasets from 

our previous work (Table S3.2)6,38. All data were aligned to GRCh37/hg19 using BWA mem with 

default parameters. After sequence alignment, reads were filtered by several steps: (i) Low-quality 

reads were removed using “samtools view -bh -F 1804 -q 10”, (2) Supplementary alignments were 

removed using “samtools view -bh -F 2048”, (3) Reads overlapping ENCODE blacklisted regions 

were filtered out, (4) for HepG2 ChIP-seq datasets, reads were filtered to only those from the 11 

diploid chromosomes: 3, 5, 7, 8, 9, 11, 12, 13, 15, 18, 19. For primary islet ATAC-seq, reads were 

filtered to only those from autosomes. Finally, duplicate reads were removed using the unbiased 

method from WASP40. 
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Independent genotypes 

HepG2 genotypes from whole-genome sequencing were downloaded from ENCODE6. 

For pancreatic islets, we used genotyping array data corresponding to samples from our previous 

study38. We called genotypes using GenomeStudio (v.2.0.4) with default settings. We then used 

PLINK to filter out variants with 1) minor allele frequency (MAF) less than 0.01 in the Haplotype 

Reference Consortium (HRC) panel r1.1 and 2) ambiguous A/T or G/C alleles with MAF greater 

than 0.451. For variants that passed these filters, we imputed genotypes into the HRC reference 

panel r1.1 using the Michigan Imputation Server with minimac439. Post imputation, we removed 

imputed genotypes with low imputation quality (R2 < .9). 

 

ChIP-seq and ATAC-seq -based genotyping 

We used QuASAR to infer genotypes from ChIP-seq or ATAC-seq data as described in 

the QuASAR documentation29. Since QuASAR requires a predefined list of SNPs for genotyping, 

we used the “core set of 1KGP SNPs” recommended by the authors. For each dataset, we 

prepared a QuASAR input file, and we inferred genotypes using the quasar functions “fitAseNull()” 

(for individual primary islet samples) and “fitAseNullMulti()” (for grouped HepG2 samples). We 

filtered the QuASAR results to include only genotypes with at least 99% confidence and converted 

them to VCF format for subsequent analysis. 

 

Allelic imbalance mapping 

To maximize the number of SNPs available for analysis, we generated a merged set of 

heterozygous sites from both QuASAR and independent genotyping results. We then used WASP 

to correct mapping bias across this set40. For each ChIP-seq or ATAC-seq dataset, we identified 

variants with read depth of at least 10 and limited subsequent analysis to these variants. For 

HepG2 ChIP-seq datasets with two replicates available, we mapped imbalance on both replicates 
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individually and pooled. For islet ATAC-seq datasets, we mapped imbalance on individual 

samples as well as on merged read counts from all 5 samples. To identify imbalanced variants, 

we fit a beta-binomial model to the observed allele counts using the method of NPBin31. See table 

S3.3 for estimated parameter values. The formula for calculating overdispersion from the beta-

binomial parameters was: 

1
1 + α + β

 

We called imbalanced variants from the merged counts using a beta-binomial test, and 

then calculated q-values from the resulting beta-binomial p-values using the Benjamini-Hochberg 

procedure. We considered variants significant at FDR < .10. 

 

Motif enrichment analysis 

For the three experiments with more than 50 imbalanced variants (HepG2 CEBPG ChIP-

seq, HepG2 CREB1 ChIP-seq, islet ATAC-seq), we divided variants into two groups: imbalanced 

(imbalance FDR < .10) and background (FDR > .10). For each group, we used FIMO from the 

MEME suite to find TF motifs in a 30bp window around each variant52,53. We discarded motifs that 

did not directly overlap a variant. For each motif found, we counted how many times the motif 

overlapped a variant in the imbalanced set and how many times in the background set. We 

compared the counts to the total number of variants each set and used a Fisher exact test to 

determine enrichment of the motif in the imbalanced set. We calculated false discovery rates 

using the Benjamini-Hochberg procedure, and considered motifs significantly enriched in the 

imbalanced set at FDR < .10. 

 

Estimating imbalance effect sizes 

We adopt log allelic fold change (laFC) as the effect size, as previously proposed32. Its 

formula for SNP i is: 
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laFC = log!
𝑛$ − 𝑥$
𝑥$

 

Where ni is the read coverage at SNP i and xi is the reference allele count.  To derive a 

bayes estimator form for laFC, we assume that the ref allele fraction xi/ni approximates a “ground 

truth” value of pi: 

𝑥$
𝑛$
≈ 𝑝$ 

laFC is then an approximation of its own ground truth value which is: 

𝑙𝑎𝐹𝐶%&'( = log!
1 − 𝑝$
𝑝$

 

We assume a beta-distributed prior for pi with parameters α, β 

. We can then write a bayes estimator �̂�$ for pi: 

�̂�$ =
α + 𝑥$

α + β + 𝑛$
≈ 𝑝$ 

The estimator B-laFC is then: 

B-laFC = log!
1 − �̂�$
�̂�$

 

Or, in terms of xi and ni: 

B-laFC = log!
β + 𝑛$ − 𝑥$
α + 𝑥$

 

In practice, we determine α and β by fitting a beta distribution to the distribution of ref allele 

fractions across all SNPs, using the method of alleledb35. This allows for one final improvement: 

We add a shift term which accounts for any residual reference bias that may be present in the 

data. The final B-laFC is then: 

B-laFC = log!
β + 𝑛$ − 𝑥$
α + 𝑥$

− log!
β
α
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Fine-mapping eQTL and GWAS data 

We downloaded liver eQTL mapping data from GTEx and pancreatic islet eQTL data from 

InsPIRE50,54. For each locus in each eQTL dataset, we converted beta and standard error statistics 

for each variant to approximate Bayes Factors55.  We calculated the posterior probability of 

association (PPA) for each variant by dividing its Bayes Factor by the sum of Bayes Factors 

across the entire locus and determined 99% credible sets by taking the set of variants with PPA 

values summing to 99%. For the primary T2D GWAS data analysis, we downloaded a published 

collection of credible sets from the DIAMANTE consortium9. To compare the DIAMANTE sets 

against older data we used a fine mapping dataset compiled for a previous study, which consisted 

of 107 uniformly-processed loci drawn from the Metabochip, GoT2D, and DIAGRAM 1000 

Genomes studies7,19,47,48. 

 

Gene reporter assay 

To test for allelic differences in enhancer activity at the HMG20A locus, we cloned human 

DNA sequences (Integrated DNA Technologies) containing the reference allele upstream of the 

minimal promoter in the luciferase reporter vector pGL4.23 (Promega) using the enzymes Sac I 

and Kpn I. A construct containing the alternate allele was then created using the NEB Q5 SDM 

kit (New England Biolabs). The primer sequences used were as follows: 

• Cloning FWD GATGCCCTTCACCCCTTGAA 
• Cloning REV GCACCAAGCACCACCTTTTC 
• SDM FWD TCCAGTGCTGGTGAGGGCTTG 
• SDM REV AGTGGGTCGGACACCCCC 

MIN6 cells were seeded at approximately 2.5E05 cells/cm^2 into a 48-well plate. The day 

after passaging into the 48-well plate, cells were co-transfected with 250ng of experimental firefly 

luciferase vector pGL4.23 containing the alt or ref allele in the forward direction or an empty 

pGL4.23 vector, and 15ng pRL-SV40 Renilla luciferase vector (Promega) using the Lipofectamine 
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3000 reagent. Cells were lysed 48 hours post transfection and assayed using the Dual-Luciferase 

Reporter system (Promega). Firefly activity was normalized to Renilla activity and normalized 

results were expressed as fold change compared to the luciferase activity of the empty vector. A 

two-sided t-test was used to compare the luciferase activity between the reference and alternative 

alleles. 

 

3.6 Supplementary Figures 

 

Figure S1: High absolute B-laFC values are correlated with likely causal islet eQTL 
variants. (A) Scatterplot of absolute B-laFC values against PPA for SNPs across fine-mapped 
islet eQTL loci. Smoothed mean values with 95% confidence intervals shown. (B) logistic 
regression of B-laFC against the probability of PPA>0.5. Bootstrapping-based  95% confidence 
intervals shown. 
 

  

P=0.007

A B
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3.7 Supplementary Tables 

 

Table S3.1: HepG2 ChIP-seq datasets. 
Experiment Library Type Transcription 

Factor 
ENCSR112ALD ENCLB955KHX Paired-end CREB1 
ENCSR171FUX ENCLB729WHK Paired-end FOXK2 
ENCSR337NWW ENCLB492HKP Paired-end HDAC2 
ENCSR334KIQ ENCLB382UET Paired-end SP1 
ENCSR639IIZ ENCLB582SNX Single-end CEBPG 
ENCSR369YUK ENCLB433JGB Single-end FOXP1 
ENCSR369YUK ENCLB126INR Single-end FOXP1 
ENCSR966PJY ENCLB275ULF Single-end MIXL1 
NCSR966PJY ENCLB128AOL Single-end MIXL1 
ENCSR201GGK ENCLB523LQM Single-end NFIL3 
ENCSR823ADL ENCLB695ZQY Single-end RFXANK 
ENCSR823ADL ENCLB835RDE Single-end RFXANK 
ENCSR586DEH ENCLB455NSX Single-end ZFP1 

 
Table S3.2: Pancreatic islet ATAC-seq datasets. 
GEO accession Sample ID 
GSM5100317 SAMN10079665 
GSM5100319 AFA3256 
GSM5100321 SAMN09479768 
GSM5100323 SAMN10861888 
GSM5100325 SAMN10977276 
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Table S3.3: Beta-binomial parameters estimated by NPBin. 
Experiment Cell Sample Alpha Beta overdispersion 
CEBPG ChIP-seq HepG2 ENCFF430LJV 22.4238 21.9565 0.0220 
CREB1 ChIP-seq HepG2 ENCFF199RYE 33.3769 32.2108 0.0150 
FOXK2 ChIP-seq HepG2 ENCFF009QNH 28.2289 27.4473 0.0176 
FOXP1 ChIP-seq HepG2 ENCFF452XLY 16.2135 15.3497 0.0307 
FOXP1 ChIP-seq HepG2 ENCFF734HBO 28.6279 27.5632 0.0175 
FOXP1 ChIP-seq HepG2 Pooled 23.6746 22.5184 0.0212 
HDAC2 ChIP-seq HepG2 ENCFF489LNL 59.9625 59.9625 0.0083 
MIXL1 ChIP-seq HepG2 ENCFF616WVB 28.6279 27.5632 0.0175 
MIXL1 ChIP-seq HepG2 ENCFF790RMU 32.758 30.7095 0.0155 
MIXL1 ChIP-seq HepG2 Pooled 32.0755 30.6234 0.0157 
NFIL3 ChIP-seq HepG2 ENCFF170AOL 29.9153 28.7488 0.0168 
RFXANK ChIP-seq HepG2 ENCFF895HBS 59.9625 59.9625 0.0083 
RFXANK ChIP-seq HepG2 ENCFF958ONK 59.9625 59.9625 0.0083 
RFXANK ChIP-seq HepG2 Pooled 59.9625 59.9625 0.0083 
SP1 ChIP-seq HepG2 ENCFF124RBK 29.1143 26.538 0.0177 
ZFP1 ChIP-seq HepG2 ENCFF868BZO 34.1671 32.3468 0.0148 
ATAC-seq Islet AFA3256 39.427 37.801 0.0128 
ATAC-seq Islet SAMN09479768 38.4432 36.9096 0.0131 
ATAC-seq Islet SAMN10079665 50.619 47.1217 0.0101 
ATAC-seq Islet SAMN10861888 40.266 38.9502 0.0125 
ATAC-seq Islet SAMN10977276 59.9625 59.9625 0.0083 
ATAC-seq Islet Pooled 37.0134 35.9381 0.0135 

 

3.8 Data and software availability 

The HepG2 ChIP-seq and whole-genome sequencing datasets used in this study are 

available from the ENCODE project (https://www.encodeproject.org). Table S3.1 contains 

accession numbers for the ChIP-seq datasets. The Whole-genome sequencing data were from 

biosample ENCBS760ISV, experiment ENCSR319QHO, dataset ENCFF713BPG. The 

pancreatic islet ATAC-seq and genotyping datasets are available from the Gene Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo) as series GSE167250. The liver cis-eQTL 

mapping data are available from the GTEx project (https://gtexportal.org/home) from GTEx 

Analysis V7. All T2D GWAS summary statistic data are available from the DIAGRAM consortium 

(https://www.diagram-consortium.org). 
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The code used to perform QuASAR-based genotyping is available in the python package 

pyQuASAR-genotype on github (https://github.com/anthony-aylward/pyQuASAR_genotype) and 

PyPI (https://pypi.org/project/pyQuASAR-genotype). The code used for calling imbalance with 

NPBin is available on github (https://github.com/anthony-aylward/npbin) 
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