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Abstract

Background: The membrane potential of individual neurons depends on a large number of 

interacting biophysical processes operating on spatial-temporal scales spanning several orders 

of magnitude. The multi-scale nature of these processes dictates that accurate prediction 

of membrane potentials in specific neurons requires the utilization of detailed simulations. 

Unfortunately, constraining parameters within biologically detailed neuron models can be difficult, 
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leading to poor model fits. This obstacle can be overcome partially by numerical optimization or 

detailed exploration of parameter space. However, these processes, which currently rely on central 

processing unit (CPU) computation, often incur orders of magnitude increases in computing time 

for marginal improvements in model behavior. As a result, model quality is often compromised to 

accommodate compute resources.

New Method: Here, we present a simulation environment, NeuroGPU, that takes advantage of 

the inherent parallelized structure of the graphics processing unit (GPU) to accelerate neuronal 

simulation.

Results & comparison with existing methods: NeuroGPU can simulate most biologically 

detailed models 10–200 times faster than NEURON simulation running on a single core and 5 

times faster than GPU simulators (CoreNEURON). NeuroGPU is designed for model parameter 

tuning and best performs when the GPU is fully utilized by running multiple (> 100) instances 

of the same model with different parameters. When using multiple GPUs, NeuroGPU can reach 

to a speed-up of 800 fold compared to single core simulations, especially when simulating the 

same model morphology with different parameters. We demonstrate the power of NeuoGPU 

through large-scale parameter exploration to reveal the response landscape of a neuron. Finally, 

we accelerate numerical optimization of biophysically detailed neuron models to achieve highly 

accurate fitting of models to simulation and experimental data.

Conclusions: Thus, NeuroGPU is the fastest available platform that enables rapid simulation of 

multi-compartment, biophysically detailed neuron models on commonly used computing systems 

accessible by many scientists.

Keywords

Compartmental models; Biophysical simulations; Conductance-based models; Electrophysiology; 
Graphical Processing Unit

1. Introduction

Electrical activity of single neurons is determined by the distribution of various ionic 

conductances arranged across complex morphologies (Mainen and Sejnowski, 1996; 

Hausser et al., 2000; London and Häusser, 2005; Spruston, 2008; Hay et al., 2013; Alonso 

and Marder, 2019). Our understanding of single neurons has long relied on the ability 

to construct biophysically rigorous models of how neuronal membrane potential [Vm], 

and, hence, action potentials (APs, spikes) are generated from currents [I] flowing across 

the membrane and through the cell (Fig. 1) (Hodgkin and Huxley, 1952). Wilfrid Rall 

described the biophysical theory of how membrane potential of a single neuronal segment 

(‘compartment’) depends on the conductance (e.g., gNa) and voltage dependent flow of 

specific ionic species [e.g., sodium (Na) and potassium (K)], as well as passive properties 

of the membrane (i.e., capacitance) (Fig. 1, top row) (Rall, 1962a). Using cable theory, 

Rall further described how to connect different compartments of a neuron, providing the 

foundation for modeling complex, spatially extended neuronal morphologies (Fig. 1A) (Rall, 

1962b). Concomitantly, the membrane channels that mediate a specific ionic current exhibits 

large diversity of genetically defined conductances (e.g., gNav1.2, gNav1.6, etc.,), indicating 

that individual compartments are, in reality, quite complex (Fig. 1B). While just beginning 
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to be appreciated at the time, we now know that ion channels have their own voltage 

dependent kinetics that are determined by the transition probabilities amongst various states 

of the channel subunits (Fig. 1C) (Hille, 1984; Colquhoun and Hawkes, 1995). Finally, 

simulations of realistic neural network models require faithfully capturing the complexity 

of the individual neurons (Einevoll, et al., 2019). While the physical theories required to 

link these vastly disparate spatial-temporal scales exists, our ability to utilize them for 

basic understanding and clinical translation is impeded by the computational burden of the 

required simulations (Fig. 1D and E).

Our predictive understanding of several neuronal cell classes has benefitted from the 

repeated refinement of compartmental models that describe their activity in health and 

disease. For example, neocortical pyramidal cells have been modeled extensively, providing 

insight into the effects of morphology on AP firing characteristics (Mainen and Sejnowski, 

1996; Hay et al., 2011; Almog and Korngreen, 2014), how synaptic input patterns affect 

spike output (Maršálek et al., 1997; Dlesmann et al., 1999; Destexhe et al., 2003) how APs 

initiate and propagate within axons (Kole et al., 2007, 2008; Shu et al., 2007; Hu et al., 

2009; Hallermann et al., 2012; Cohen et al., 2020), and how neuronal activity is affected 

by alterations in ion channel function induced by genetic variation (Zamponi et al., 2010; 

Allen et al., 2014; Ben-Shalom et al., 2017; Spratt et al., 2019). Similar intensive studies 

have focused on other cell classes, including hippocampal pyramidal cells (Mainen et al., 

1996; Magee and Cook, 2000; Poirazi et al., 2003; Narayanan and Johnston, 2008; Milstein 

et al., 2015), cerebellar Purkinje cells (De Schutter and Bower, 1994; Miyasho et al., 2001; 

Roth and Häusser, 2001), and midbrain dopaminergic neurons (Canavier, 1999; Canavier 

and Landry, 2006; Kuznetsova et al., 2010). In parallel with these advances in modeling, 

there has recently been an enormous improvement in experimental approaches to better 

understand the diversity of neuronal classes and their activity patterns. Within the general 

group of neocortical pyramidal cells, for example, exists a wealth of diversity. This includes 

not only differences in morphology and activity across laminae (Smith and Häusser, 2010; 

Deitcher et al., 2017; Kanari et al., 2019), but also within laminae depending on genetic 

makeup or axonal projection targets (Dembrow et al., 2010; Gee et al., 2012; Clarkson et al., 

2017), or even within what was thought to be a homogenous cell class within a single layer 

as one samples across a large region of cortex (Fletcher and Williams, 2019).

Given the enormous complexity and vast spatio-temporal scales described above, generating 

models that accurately recapitulate neuronal activity across the true range of diversity 

present in nature can be a daunting task. Model fitting often requires one to tune 

individual parameters to best match empirical observations. This process can be aided 

by iterative rounds of parameter exploration and optimization that aim to minimize the 

differences between empirical data targets and their associated models. These procedures 

can be computationally demanding (Fig. 1D and E). Indeed, each linear improvement 

in model accuracy requires an exponential increase in computational resources (Nocedal 

and Wright, 2006; Gurkiewicz and Korngreen, 2007). Thus, model optimization is often 

done on supercomputers that parallelize these computations across massive number of 

central processing unit (CPU) cores. Unfortunately, the cost of constructing and operating 

supercomputing centers is similarly massive. As such utilization of these resources are 

typically restricted to large consortia, such as the Blue Brain Project (BBP) (Markram 
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et al., 2015) and the Allen Institute (Gouwens et al., 2018). For more restricted budgets, 

simulations must typically be compromised in scale, complexity, or accuracy, thus 

negatively impacting results (Almog and Korngreen, 2016).

In the past 10 years, graphics processing units (GPUs) have emerged as an alternative 

to CPU-based hardware that may offer comparable levels of performance at substantially 

reduced cost for some problems. GPUs utilize streaming multiprocessors with multiple 

simple cores that allow for distributed, parallelized computing for relatively small chunks of 

data. With software optimized for GPUs, GPU-based computing can often outperform CPU-

based applications in processing speed and cost for some problems (Payne et al., 2010). 

Today, GPUs are being used in scientific simulations, including molecular dynamics (Go et 

al., 2012; Salomon-Ferrer et al., 2013) and climate modeling (Prein et al., 2015), and are 

the computational engine for most modern artificial intelligence applications (Schmidhuber, 

2015). In neuroscience, GPUs are currently being used to accelerate complex imaging 

dataset processing (Eklund et al., 2013), spiking neural network analysis (Yavuz et al., 2016; 

Chou et al., 2018), clustering of activity from in vivo extracellular electrophysiological 

experiments (Pachitariu et al., 2016), and simulations of single ion channels (Ben-Shalom et 

al., 2012).

Recently, two platforms for neuronal biophysical simulations with GPU support were 

developed: Arbor (Akar et al., 2019) and CoreNeuron (Kumbhar et al., 2019). Both 

platforms focused on simulating large scale neuronal networks comprised of detailed 

multi-compartmental models. CoreNeuron supports previous NEURON models but is not 

implemented in CUDA, the fundamental operating language of NVIDIA’s GPUs. As such, 

its ability to accelerate model runtimes with GPUs may not exploit the full potential of 

GPU computing. Arbor, instead, is implemented in CUDA via an entirely new simulation 

environment. Thus, while it does harness the speedup potential of GPUs, it is not clear how 

existing models, such as those found in ModelDB and the BBP portal (McDougal et al., 

2015; Ramaswamy et al., 2015), could be ported to Arbor, thus impeding utilization. Here, 

we describe NeuroGPU, a computational platform optimized to exploit GPU architecture to 

dramatically accelerate the simulation of multi-compartmental neuronal models. Our goal 

with NeuroGPU was different than that of CoreNeuron or Arbor. Rather than focusing on 

neuronal network simulations, NeuroGPU is designed to optimize fitting of models that best 

recapitulate empirical data derived from single neurons, and to study the parameter space 

of such models by iterating parameter values. To do so, we developed new approaches 

to parallelize compartmental models, utilizing the GPU-based programming language 

CUDA to optimize memory handling on GPUs manufactured by NVIDIA. This resulted 

in simulation speedups of up to 200-fold on a single GPU and up to 800-fold using a 

set of 4 GPUs. Similar optimizations may be made for other GPU manufactures, but this 

was not considered here, given the broad usage of NVIDIA hardware. We found that 

NeuroGPU performed faster than NEURON using (Message Passing Interface) MPI by up 

to 10-fold and CoreNeuron up to 4-fold. Building on our previous efforts (Ben-Shalom et 

al., 2013), we developed an intuitive user interface that can import most compartmental 

models implemented in NEURON (Carnevale and Hines, 2006) deposited at the ModelDB 

(McDougal et al., 2017) or BBP portal (Ramaswamy et al., 2015). Further, we provide 

methods to explore model parameter space to study how each parameter of the model 
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contributes to its voltage output. The runtimes of NeuroGPU enables us to sample the 

parameter space in a very detailed manner, which were utilized here to reveal the response 

landscape of single neurons. Finally, we provide an interface to use NeuroGPU for fitting 

models to experimental data with evolutionary algorithms (DEAP and BluePyOpt) (Gagn, 

2012; Van Geit et al., 2016). NeuroGPU implemented such model optimization algorithms 

in 2.5 h using a single GPU (see Fig. 5), compared to 26 h using 256 CPUs, which is the 

current standard (Nandi et al., 2020; Schneider-Mizell et al., 2020). This enables the use 

of more complex models that will better represent experimental data, as we demonstrate 

here in both simulated and experimental data. NeuroGPU therefore provides an open-source 

platform for neuronal simulation with increased speed and reduced cost, thus enabling the 

neuroscience community to perform high quality biophysically detailed simulations.

2. Methods

2.1. Hardware

NEURON and TitanXP-based simulations were run on a PC with Intel Core I7–7700 K 

4.2 GHz with 16 GB of RAM. Tesla V100-based simulations were run using the NVIDIA 

PSG cluster. Here, each simulation was run on a single node with Haswell or Skylake CPU 

cores. For multi-GPU simulations, we used cluster nodes with NVLINK (Li et al., 2019) 

between the GPUs to enable memory peer-access. Fitting models to experimental data was 

done on the Cori GPU cluster from the National Energy Research Scientific Computing 

Cent (NERSC) at Lawrence Berkeley National Labs. Cori GPU nodes includes 8 NVIDIA 

Tesla V100 and 20 Skylake CPU cores with total of 384 GB memory.

2.2. Software

Simulations were performed in NEURON 7.6–8.0 and CUDA 10.1. All scripts were written 

in Python 3.7. All software is available at https://github.com/roybens/NeuroGPU.

2.3. Importing NEURON models

To ease installation, we separated processes for porting models (Translation Fig. S2C) and 

NeuroGPU execution (Execution Fig. S2D). After initial import, NeuroGPU models can 

run on a GPU machine independently from NEURON. The python script extractmodel.py 

exports NEURON models to NeuroGPU. This script reads all simulation details from 

runModel.hoc, which is populated using the GUI (Fig. S1). NEURON models are described 

using either hoc or python scripts. The scripts include a morphology that can either be called 

as a separate file or constructed within the script (Fig S1B). The user must input a file 

containing model stimulation, which includes temporal aspects of the model and command 

currents delivered at a prescribed location. Furthermore, all free parameters, such as channel 

properties, must be described. These import components are translated into CUDA code, 

termed kernels, that can run on the GPU via the python script “extractmodel.py” (Fig S1C). 

This script first takes runModel.hoc and loads it into NEURON, not to run simulations, but 

rather to query NEURON for model properties needed for subsequent porting to NeuroGPU, 

including compartment names and the tri-diagonal matrix (F-Matrix or Hines Matrix) 

which holds the differential system for the voltages of the dendritic tree. Then, the script 

iterates over the.mod files in the directory, parses them and creates relevant kernels for 
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each mechanism described. CUDA kernels containing model mechanisms are generated 

by adding relevant CUDA keywords to C code generated when NEURON compiles 

mechanisms. Mechanism kernels are written to the AllModels. cu in similar structure as 

described previously (Hines and Carnevale, 2000; Carnevale and Hines, 2006), iterating over 

all compartments defined in the model. A new hoc file is created to register mechanism 

values, which are stored in AllParams.csv and inserted in each compartment. After model 

parameter maps are determined, they are cataloged as part of ParamMappings.txt for 

reference for future reiterations of the same model, eliminating the need to reload NEURON. 

Finally, the script writes code translated to CUDA in NeuroGPU.cu and packages the 

application to run on either Windows or Unix. After compiling the code, an executable is 

created that reads the AllParams. csv and the stimulation and runs the model on the GPU.

2.4. Translating mechanisms to CUDA and memory assignment

Mechanisms in NEURON are described by NMODL (.mod) files (Hines and Carnevale, 

2000), which update the mechanism states every simulation time step. This is done using 

three different procedures within NEURON that initialize mechanisms (nrn_init), update 

currents that mechanisms affect (nrn_cur), and then update mechanism states (nrn_state) 

(Carnevale and Hines, 2006). In NeuroGPU, CUDA kernels are written for each of these 

procedures using.mod and.c files that are generated by NEURON when running nrnivmodl. 

When a NEURON model is exported to NeuroGPU, all.mod files and their corresponding.c 

files are parsed using custom code to extract variables and procedures defined in each 

specific.mod file. These are then translated to CUDA kernels written in AllModels.cu. 

Future iterations of NeuroGPU may make use of the nmodl Python library for parsing as this 

software evolves.

Several mechanisms are regulated by intracellular calcium. To support this, we created an 

array that holds internal calcium concentration within each compartment and calculates the 

reveral potential for calcium at each time step. We determined that calcium was the only 

ion whose intracellular concentration varied substantially during ongoing activity in ways 

that affect simulations, due to their effects on calcium-activated potassium channels. We 

note that most models lack detailed models of sodium and potassium pumps/transporters and 

generally do not model changes in their concentrations. We found that this was a reasonable 

approximation for NeuroGPU, as the presence or absence of Na/K ion concentration 

calculations did not affect simulation Vm.

CUDA is an extension of the C programming language that enables computation on the 

GPU (Nvidia, 2018). CUDA kernels are procedures running on the GPU that can be invoked 

from either the GPU or CPU. To invoke a kernel from the CPU, one must specify the 

number of parallel threads used. Threads, which allow for parallelization on the GPU, are 

organized into blocks, with each thread occupying a specific address within that block 

(idx.x) (Fig S2C). GPUs are structured to operate well when computing 32 parallel threads, 

a computing structure termed a warp (Nvidia, 2018). Therefore, we structured NeuroGPU to 

utilize 32 threads in the x dimension, corresponding to individual morphological segments 

within the model. For a given model with more than 32 segments, individual threads are 
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responsible for calculating every 32nd segment. For example, thread #1 would calculate 

segments 1, 33, 65, … 32N + 1.

2.5. Extracting simulation properties from NEURON

NeuroGPU utilizes NEURON for simulation pre-processing, including mechanism 

translation which includes mathematical descriptions of various ion channels, calcium 

diffusion characteristics, and other elements of neuronal function, (Hines and Carnevale, 

2000), a map for mechanism distribution across compartments (ParamMappings.txt), and 

exporting the tri-diagonal matrix using fmatrix(). These are stored in BasicConstSegP.csv. 

NEURON extracts all parameters for cable equations and mechanism values within each 

compartment to AllParams.csv (Fig. S1). External stimulation delivery location, intensity, 

and time-course are written in stim.csv. Resting membrane potential and number of time 

steps in the simulation are written in sim.csv.

2.6. Solving the tridiagonal matrix

Matrix solutions were performed using the branch-based parallelism approach as described 

previously (Ben-Shalom et al., 2013), with morphology analysis guiding iterative matrix 

computations. This analysis is done in extractmodel.py and the data structures to solve the 

tri-diagonal in parallel is stored in BasicConstSegP.csv.

2.7. Benchmarking

All benchmarking against a single CPU core running NEURON was done with NEURON 

7.6, running in a single thread. The morphology was adjusted to have one segment per 

compartment in all platforms. Simulation runtimes were compared without hard drive read/

write file steps, as these aspects depend more on hard drive properties than CPU/GPU 

comparisons. Benchmarking against the parallel version of NEURON was done using 

NEURON 8.0. In both cases, runtime compares time required to complete psolve() 

procedures. For NEURON-MPI, we used CoreNeuron settings with 32 MPI processors 

without GPUs (Kumbhar et al., 2019). For CoreNeuron, we used one MPI thread and one 

GPU (Kumbhar et al., 2019). Note, benchmarking of cases with 2^14 model instances is 

estimated based on linear extrapolation from the 2^13 case, as the time required to load 

model instances in the 2^14 case far exceeded the time allowed by policy queues at NSERC.

2.8. Multi-compartmental models

NeuroGPU performance was tested with 4 different models:

1. A passive model, utilizing passive channels described in NEURON distribution 

pas.mod file. These channels were distributed on both simple and complex 

morphologies (see Fig. S3A, D) (Mainen and Sejnowski, 1996). The simple 

morphology was based on the simple morphology described in Mainen and 

Sejnowski, with compartments reduced to 32, as this is the minimum number of 

compartments required for NeuroGPU-based simulations.

2. The Mainen and Sejnowski (1996) model, with channels distributed on the same 

complex and simple morphologies. Channels are distributed as in (Mainen and 

Sejnowski, 1996) (Fig. S4)
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3. A pyramidal cell model from the Blue Brain Project portal (Ramaswamy et al., 

2015) (Fig. 2). BBP PC refers to the model named L5_TTPC1_cADpyr232_1.

4. A chandelier cell model, termed BBP CC, referring to L5_ChC_dNAC222_1. 

For this model, the Kdshu2007.mod files were altered to run on NeuroGPU. 

Specifically, global variables were removed from the neuron block and instead 

placed in the assigned block (Carnevale and Hines, 2006) (Fig. 2).

2.9. Optimization algorithms

Two different genetic algorithm versions were used in this study. For data related to Fig. 

4, the eaMuPlusLambda algorithm from the DEAP package. eaMuPlusLambda stands for 

evolutionary algorithm where the next generation population is comprised from the existing 

population (Mu) and the offspring (Lambda). We modified the varOR procedure to call 

NeuroGPU (Rainville et al., 2012).”Optimization was performed on the BBP PC model. 

For each iteration, the algorithm began with a new population of parameters with values 

randomly chosen with the range specified in Supplemental Table 3. The model was modified 

to accept new values from the optimization algorithm (similar changes were necessary 

for parameter space exploration for Fig. 3). Target data were generated using the original 

parameters values described in Supplemental Table 3. Optimization was targeted to reduce 

error between target data and test data using both the interspike interval (ISI) and the root 

mean square (RMS) of the voltage as the error function. Error was reduced to a single 

variable by weighting these two variables as: 10*ISI + RMS.

For data related to Fig. 5, the BluePyOpt (Van Geit et al., 2016) implementation of 

Multiple Objective Optimization (MOO) was used. Experimental target data for these 

experiments were from whole-cell current-clamp recordings from layer 5b thick tufted 

pyramidal cells in acute slices from wild-type mouse prefrontal cortex (postnatal day 62) 

(Spratt et al., 2019). Optimization was targeted to minimize the root mean square voltage 

error at each time point between empirical data and model output as well as the following 

objectives, as defined in the electrophysiology feature extraction library (eFEL) from 

the BBP: voltage_base, AP_amplitude, voltage_after_stim, ISI_values, spike_half_width, 

and afterhyperpolarization_depth. Electrophysiological data were fitted in models with 

morphology from L5_TTPC1_cADpyr232 Fig. 5(A) or a reconstructed prefrontal cortex 

L5 thick tufted pyramidal neuron deposited at NeuroMorpho.Org (Ascoli et al., 2007; Yin 

et al., 2018). The model parameters that were varied for the S1 model and PFC model are 

described in Supplemental Tables 4 and 5, respectively.

2.10. Support

A series of tutorial notebooks that walk users through various approaches are available 

on Github, with corresponding video walkthroughs available at: https://www.youtube.com/

playlist?list=PL-Amxh_lBdw99alE5L1yfnfwPuK2wLeel These tutorials describe: 1) the 

structure of the documentation, 2) standards for input data and file structure to run 

NeuroGPU, 3) porting of models from NEURON to NeuroGPU, 4) Parameter space 

exploration, and 5) Using DEAP optimization. Future developments will be documented 

in the NeuroGPU Github portal.
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3. Results

Our goal for NeuroGPU was to develop user-friendly software for fitting compartmental 

models to experimental data, with improved speed, using relatively low-cost hardware. 

Furthermore, we sought to make NeuroGPU cross-compatible with NEURON, to allow one 

to import models available on public databases, including ModelDB and the BBP portal. 

Toward that end, we utilized the same basic structure as NEURON, including the use of 

hoc and mod files that define all aspects of the compartmental model (Fig. S1). To increase 

simulation speed, we focused primarily on parallelizing the most computationally intensive 

aspects of NEURON simulations in GPU architecture. NEURON calculates the voltages 

of each segment of the model by solving a system of differential equations that describes 

current flow in each compartment. Within NEURON, this system of differential equations 

is represented within a tri-diagonal matrix (Hines, 1984). Typically, matrix elements for 

neighboring compartments are solved in serial, as current flow in one compartment is 

interdependent on flow in neighboring compartments. We and others have previously 

developed methods to solve this tri-diagonal matrix in parallel across GPUs, despite the 

interdependence of current flow across compartments (Fig. S2) (Hines, 1984; Hines et al., 

2008; Ben-Shalom et al., 2013). At that time, the method was implemented only for classic 

Hodgkin-Huxley models with 3 parameters (gNa, gK, gLeak) (Ben-Shalom et al., 2013). 

Here, we extended this method to support a wider range of models, including most models 

available in ModelDB and the Blue Brain Project (BBP) repository. We implemented this in 

Python and created an iPython Graphical User Interface (GUI) for easy use.

3.1. NeuroGPU Implementation

Traditionally, neuronal simulations diffusion matrixes are computed serially, since 

calculating the voltage at each section depends on voltage in neighboring sections. To 

leverage the Single Instruction Multiple Data (SIMD) architecture of GPUs, one needs 

to instead solve the diffusion matrix in parallel. This challenge has slowed adoption of 

GPUs for neuronal simulation (Kumbhar et al., 2019); however, in 2013, we described an 

algorithm that uses a parallel lower upper (LU) decomposition to solve the diffusion matrix, 

based on the work of Stone (Stone, 1973; Ben-Shalom et al., 2013). Our implementation 

relied on the fact that separate neuronal branches can be calculated in parallel before 

calculating regions where they merge at branch points, thus parallelizing computations. 

Each neuron can therefore be calculated using 32 parallel threads, with each thread 

calculating the voltage for n/32 compartments where n is the total number of segments 

in the model. A thread first calculates the contribution of all the mechanisms and then 

updates the mechanisms states, similar to implementation in NEURON (Carnevale and 

Hines, 2006). Given this structure, NeuroGPU outperforms NEURON only when the GPU 

is fully utilized when multiple model instances are simulated in parallel (Fig. 2). In such 

cases, several blocks of 32 threads each simulate a different model instance. To comply 

with SIMD requirements, these multiple models must have the same morphology to allow 

threads in different blocks to execute the same instructions. This approach is advantageous 

for techniques like parameter exploration, where multiple model instances with different 

conductance parameters built on the same morphology are compared. In this design, 

memory is optimized, since all the models share constant memory that holds mechanism 
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details, morphological details, and the indices to solve the diffusion matrix in parallel. 

Individual models hold copies of the matrix diagonal, which changes every time step, and 

the parameters and states of the mechanisms that vary between model instances. Importantly, 

many of the optimizations made here can be leveraged to address other questions that are 

appropriate for GPU-based computing, or could be optimized better in future iterations. 

Current optimizations and future applications are discussed in Supplemental Table 1.

3.2. NeuroGPU Performance

To evaluate how NeuroGPU performs relative to NEURON, we benchmarked it for speed 

and accuracy across a range of models and hardware configurations. We first compared 

NeuroGPU performance with a single GPU to NEURON implemented on a single CPU 

core. To benchmark speed, we evaluated computing time for multiple instances of the same 

model. NeuroGPU was primarily evaluated on recently developed models from the Blue 

Brain Project (BBP) portal (Hay et al., 2011; Markram et al., 2015; Ramaswamy et al., 

2015), but was also benchmarked on models with reduced morphology or reduced numbers 

of voltage-gated channels or ligand-gated receptors to determine how each of these aspects 

affects performance (Figs. S3–4). We used BBP models to benchmark different versions 

of NEURON (NEURON, MPI-Neuron, CoreNeuron). We focused on two specific models: 

a layer 5 pyramidal neuron (Fig. 2, top row: BBP PC, see Methods for specific model) 

and a layer 5 chandelier interneuron (Fig. 2, bottom row: BBP CC). Initially, models were 

interrogated with a range of stimulus intensities to determine relative differences between 

NeuroGPU and NEURON (Fig. 2).

We first confirmed the quality of the simulations. Overall, NeuroGPU was able to replicate 

NEURON simulations with high fidelity; however, small voltage differences were observed 

between the two platforms in all models tested. These were most commonly observed when 

voltage was changing rapidly between time steps (Fig. 2B–C, G–H), and were due to small 

differences in timing that likely arise from different approaches to number rounding in GPUs 

vs CPU architecture (Whitehead, 2011).

NEURON computation time scales linearly with the number of simulations, and, for 

relatively small numbers of model instances (< 8), outperforms NeuroGPU (Fig. 2, D,E,I,J). 

By contrast, models implemented on GPUs (NeuroGPU and CoreNEURON) scale linearly 

only after saturating all of the GPUs streaming multiprocessors (Nvidia, 2018) (Fig. 2D, 

E, I, J). Similarly, runtime scales linearly with number of mechanisms (e.g., distinct 

conductances), provided such mechanisms can be stored in the GPU’s constant memory 

(see NeuroGPU Implementation in the Results section). For example, in the Mainen model, 

37 mechanisms could be simulated on a V100 GPU. This limitation is not an issue for most 

models, which typically use fewer mechanisms, and may be less of a bottleneck in future 

hardware with a larger constant memory allocation. Similarly, MPI-NEURON simulations 

start to scale linearly after all MPI processors (32) are occupied. NeuroGPU is 4.3x slower 

than MPI-NEURON when simulating only one neuron, but 5x faster when simulating 2^14 

neurons Fig. 2D. For NeuroGPU and CoreNeuron, processing times are practicaly constant 

for any simulation incorporating fewer than 128 model instances, and begin to outpace 

NEURON simulations when > 8 simulations are run simultaneously. When computing 
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large numbers of model instances, NeuroGPU outpaces both parallel versions of NEURON: 

NeuroGPU is 1.5–3.3x faster than CoreNEURON for the PC model and 1.9–4.1x faster for 

the CC model. This difference is likely due to differences in how memory transfers are 

implemented in the two programs. In NeuronGPU, memory transfers require little overhead, 

due to its use of CUDA, whereas CoreNeuron has significant overhead for similar transfers 

(Supplemental Table 2) (Anon, 2019).

Relative gains in processing time were noted when 8–16,384 model instances were run 

simultaneously. These gains were dependent on hardware. For example, implementing 

NeuroGPU on an NVIDIA TitanXP and Tesla V100 GPU resulted in 1.8–3.8x faster runtime 

when using the Tesla V100 GPUs (Fig. S3F). It is worth noting that TitanXP hardware is 

relatively low cost (< $1099) and a very similar card (NVIDIA GTX-1080) can currently 

be purchased for less than $500. As such, significant improvements in processing speed can 

be obtained even with modestly priced hardware. Additional returns can be gained from 

GPU tethering, as CUDA has been recently updated to allow for memory sharing across 

GPUs. To evaluate this, we connected up to 4 Tesla V100 GPUs together and measured 

speedup on both BBP models displayed in Fig. 2. As expected, adding more GPUs increased 

the overall processing capacity, and we noted shifts in the number of model instances that 

could be handled simultaneously before reaching maximum GPU utilization (Fig. 2E and J). 

Furthermore, speedup was almost 3 orders of magnitude faster relative to NEURON.

3.3. Exploring neuronal model parameter space

Parameter values (e.g. ion channels distributions) are correlated in a non-linear manner. 

This may lead to situations where vastly different parameter combinations nevertheless 

produce similar voltage outputs, at least for a limited set of stimuli (Prinz et al., 2004). 

The diversity of these parameter sets can be limited by constraining the range over which a 

parameter can vary before initiating model optimization, thus leading to more biologically 

realistic sets of parameters. NeuroGPU may be ideal for parameter exploration within such 

ranges, as these types of simulations require one to repeatedly model the same morphology 

with small differences in constituent parameter values, a process that lends itself well to 

parallelization within GPUs. Indeed, we predict that relative speedups would be identical 

to situations considered above (Fig. 2) and depend simply on the number of parameter 

sets used. To provide an example of parameter space exploration, we examined neuronal 

output (i.e., number of action potentials) in the BBP PC model when co-varying the density 

of the axonal fast inactivating sodium channel and axonal slow-inactivating potassium 

channel over a range of 0–10 and 0–20 S/cm2, respectively. Single traces from with 

different sodium and potassium conductances are shown in Fig. 3A and total spike output 

as function of these two channel densities is shown in Fig. 3B. As expected, increasing 

sodium conductance allowed models to generate more APs until sodium conductance was 

so high that models entered depolarization block. Similarly, reducing potassium conductance 

produced comparable results. Interestingly, certain combinations of sodium and potassium 

conductance concentrations produced bursting phenotypes characterized by high-frequency 

APs riding atop long-duration depolarizations. These presumably reflect parameter ranges 

that then interact with other ion channels in the model (e.g., CaV3 of HCN channels) that 

promote such burst dynamics.
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3.4. Fitting models to surrogate and empirical data

With the ability to rapidly sample parameter space, NeuroGPU may be ideally suited to 

accelerate model fitting to data, where a key constraint is the time needed to exhaustively 

sample possible solutions. To test this, we implemented two different genetic optimization 

algorithms within NeuroGPU. Initially we integrated the DEAP (Distributed Evolutionary 

Algorithms in Python) package (Gagn, 2012) (Fig. 4). Genetic algorithm success lies in the 

balance between exploration of the whole parameter space and the exploitation of specific 

areas that seem promising. For this, large sample populations are ideal, as this allows 

for effective and broad parameter space exploration. NeuroGPU is more efficient when 

many instances are running in parallel, allowing for more effective application of genetic 

algorithms.

Genetic optimization was tested here by fitting model-generated voltages to a single voltage 

epoch containing APs that was generated by the default values present in the BBP PC 

model. We focused first on such surrogate data, as the ground truth values for all parameters 

are already known. As such, we can easily compare how well NeuroGPU performs in 

arriving at similar values. Optimization began with different population sizes comprised 

of 100–10,000 individual parameter sets with random initial values (Fig. 4B). These 

populations were run in four independent trials, each for 50 generations, and the difference 

between the naïve model and ground-truth model was compressed to a single score value 

(see Methods). For these scores, lower values indicate less difference between the two cases. 

Scores improved for each of these populations, but the variance across trials and the overall 

score were markedly affected by the population size, with score decreasing in a near-linear 

fashion with each doubling of population size (Fig. 4C). These score improvements were 

paralleled by a decrease in total processing time. For example, optimization with 10,000 

individual parameter sets ran 7.7× faster on NeuroGPU than NEURON (Fig. 4D; 10 vs 

77 h, respectively). While these are significant improvements in simulation speed, they are 

relatively modest compared to those observed in other conditions (Fig. 2), likely since the 

version of NeuroGPU used here required NEURON to load the simulation and generate 

parameter values. In the next section we present how eliminating calls to NEURON greatly 

increases speedup.

Given these promising results fitting surrogate data, we next asked whether similar 

performance could be noted for empirical electrophysiological data. Therefore, we fitted 

the BBP PC model to whole-cell current-clamp recordings of action potential activity 

from neurons in acute mouse frontal cortex slices (Fig. 5A black traces). Models were 

implemented on two different pyramidal cell morphologies from somatosensory (original 

BBP PC morphology; Fig. 5A) and prefrontal cortex [from NeuroMorpho.Org; Fig. 5B 

(Ascoli et al., 2007; Yin et al., 2018)] to determine whether morphology differentially 

affects optimization. Here we used the BluePyOpt package, which is an extension DEAP 

that is specified for neuronal optimizations (Van Geit et al., 2016). We fitted the model 

to eight voltage responses from varying stimulations to verify that the model is robust 

across stimulation conditions (Fig. 5A, B). The optimization algorithm found values for the 

model’s parameters that resulted with good fits to both morphologies. Thus, models can be 

fitted to empirical data and new morphologies by combining NeuroGPU with BluePyOpt.
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Unlike single trace stimulations (Fig. 4), optimization to 8 separate traces required 

more generations to obtain reasonable fits, which unfortunately increased processing time 

dramatically. To reduce runtimes, we revised NeuroGPU by adding two final features. First, 

we eliminated NEURON calls to the CPU entirely by generating a procedure that identifies 

the free parameters of the model and modifies NeuroGPU’s input, ‘AllParams.csv’, to 

new values without using NEURON. Second, we used CPU multithreading scoring, which 

reduced the overall computation time of each generation. With these improvements, 

runtimes were reduced for each iteration of the optimization algorithm. Simulation of all 

8 traces with 10,000 putative solutions required 60 s of processing time. This was followed 

by a 103 s period required for scoring for each genetic algorithm generation. This latter 

aspect has been accelerated dramatically. On 8 CPUs, the same process requires 2891 s per 

generation. These speedups (48.2 fold in simulation time) are close to the speedups of single 

simulations (Fig. 2D). With these improvements, we were able to obtain models that fit 

well to experimental data using an 8 GPU node running NeuroGPU in just 4 h, a task that 

traditionally may require several days of computation using a large cluster (Hay et al., 2011; 

Hill et al., 2011; Almog and Korngreen, 2014; Nandi et al., 2020; Schneider-Mizell et al., 

2020). As such, NeuroGPU allow one the ability to develop more complex models and fit 

them to empirical data in reasonable time frames (Fig. 1).

4. Discussion

Detailed models of neurons are critical to our understanding of neuronal functioning. 

However, the computational resources required of current software implementations of 

complex neuronal models are prohibitive, typically requiring supercomputers. At best, 

this limits the accuracy of results; at worst, it limits access to all but a select set of 

scientists. To address this gap, based on our previous efforts (Ben-Shalom et al., 2013), we 

designed a user-friendly environment that enables one to port multi-compartmental models 

for implementation with CUDA to run simulations on GPUs. By taking advantage of parallel 

processing inherent to GPUs, we were able to accelerate simulations dramatically—up to 

2–3 orders of magnitude with multiple GPUs. NeuroGPU was developed to be interoperable 

with NEURON, thereby allowing anyone with expertise in the NEURON environment 

access to GPU-based acceleration. Towards this goal, we developed a platform to easily 

port NEURON models from either ModelDB or the BBP portal (Ramaswamy et al., 2015; 

McDougal et al., 2017) using a iPython notebook-based graphical user interface (GUI). 

We further developed GUIs for creating stimulation protocols, parameter exploration, and 

genetic optimization.

Leveraging on our parallel algorithm for solving the tri-diagonal matrix representing the 

dendritic tree (Ben-Shalom et al., 2013), we developed an NMODL importer to CUDA. 

This allowed us to translate any single neuron multi-compartmental model developed in 

NEURON to NeuroGPU. We implemented NEURON’s framework in CUDA and translated 

NMODL mechanisms to kernels for GPU execution. NeuroGPU has two independent 

processes:: First, models are translated into GPU-executable code (Fig S1C). Second, 

simulations of many instances of this model are executed on GPUs. Importantly, these two 

processes can be done on different machines, helping facilitate NeuroGPU installation on 
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GPU cluters, as only CUDA and pythons are required for execution on such clusters (and not 

NEURON or other software).

The power of GPUs to speedup application comes from the single instruction multiple data 

(SIMD) architecture where one instruction can modify many different memory instances 

in parallel. In 2013 we showed for the first time that single neurons can be simulated 

efficiently in parallel utilizing SIMD architecture (Ben-Shalom et al., 2013). We suggested 

a novel algorithm to solve the tri-diagonal (Hines) matrix (Hines, 1984), which is the core 

of neuronal simulations and usually is the main calculation bottleneck. Since that time, 

other solutions for solving Hines matrices have been suggested, such as using Exact Domain 

Decomposition method (EDD) (Vooturi et al., 2018) and splitting the dendritic tree and 

solving each subtree asynchronously (Magalhães et al., 2019). Also, a tailored solver for the 

Hines tridiagonal matrices has been developed that produced major speedups (Valero-Lara et 

al., 2018). However, it is not clear how these algorithms are to be used by the neuroscience 

community. Conversely, NeuroGPU is a full CUDA implementation that builds on our 

tri-diagonal solver to accelerate existing NEURON models. As discussed in Ben-Shalom et 

al., 2013, we use the Stone algorithm (Stone, 1973) for parallelizing the tri-diagonal solver. 

While this might not be the optimal solver, NeuroGPU still outperforms other GPU based 

neuronal simulations. Implementing other solvers using our CUDA implementation might 

lead to better performance, and will be tested in future versions of NeruoGPU.

NeuroGPU addresses a major gap in currently implemented GPU-based simulation 

environments. Two other neuronal simulation environments for multi-compartmental models 

have been implemented using GPUs, CoreNeuron (Kumbhar et al., 2019) and Arbor (Akar 

et al., 2019). These environments are designed primarily to accelerate large scale network 

simulations. NeuroGPU, by contrast, is focused on greatly accelerating the simulation of 

single neurons with complex, multi-compartment morphologies, critical for exploring the 

parameter space of single models and optimizing such models to best fit empirical data.

Leveraging the acceleration of single-neuron simulations, NeuroGPU has expanded GUIs 

for parameter exploration, which allows for rapid assessment of how changes in ion 

channel density across compartments affects neuronal excitability (Fig. 3). This approach 

may be particularly useful to generate testable hypotheses regarding channel distribution 

with pharmacological manipulations (Keren et al., 2009; Almog and Korngreen, 2014; 

Mäki-Marttunen et al., 2018), modulation of ion channels (Byczkowicz et al., 2019), or in 

disease states where ion channel density is thought to be affected (Migliore and Migliore, 

2012; Miceli et al., 2013; Ben-Shalom et al., 2017; Spratt et al., 2019). Furthermore, one 

could generate a range of cells with variable channel densities and confirm that their activity 

is physiologically realistic (e.g., Fig. 3, all cases before generating depolarization block). 

These conditions could then be used as building blocks for variable activity within neuronal 

networks (Prinz et al., 2003, 2004; Alonso and Marder, 2019). In addition to parameter 

exploration, NeuroGPU is designed for extensive model optimization (Gagn, 2012; Van Geit 

et al., 2016). Fitting complex models to empirical data is computationally expensive, often 

requiring days of compute time, even on large supercomputing systems (Hay et al., 2011; 

Almog and Korngreen, 2014). Here, we show that NeuroGPU accelerated model fitting 

runtime 7.7 fold (Fig. 4). While appreciable, these accelerations can be improved further 
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by bypassing model export via NEURON and instead using the “mapping parameters” 

function. In this configuration, runtime was accelerated 48.2 fold. Of note, this runtime 

does not match that found for simulating single neuron instances (Fig. 2), since score 

calculation using the CPU imposes a bottleneck. Using more sophisticated evolutionary 

algorithms that can minimize CPU latency or implementing the score function calculation 

on the GPU may result in further improvements, scaling towards GPU acceleration of 800 

fold observed with multiple GPUs (e.g., Fig. 2). Nevertheless, the current instantiation of 

NeuroGPU offers individual labs the opportunity to implement optimization algorithms with 

their own hardware. Furthermore, it opens the door to extremely high-speed model fitting, 

as NeuroGPU can be run easily on GPU supercomputing systems, which inherently have 

exponentially more computational resources compared than similarly kitted CPU systems. 

Finally, NeuroGPU is ideal for generating neuronal datasets with different configurations for 

exploration of, e.g., firing rate ‘phenotypes (e.g., Prinz et al., 2004), or for deep learning 

training (Ben-Shalom et al., 2019; Gonçalves et al., 2020).

Recent advances in genetic characterization and novel analysis methods have resulted in 

characterization of diverse neuronal types with respect to their morphologies, projections, 

and protein expression (Gouwens et al., 2019). However, these advancements lack detailed 

biophysical models that can describe and simulate these neurons. In the BBP portal there 

are ~200 models that each is comprised of an m-type, which describes the morphology, and 

one of 11 e-types, which is a set of conductances that describes the electrical properties 

of the cell. Currently, these e-types describe somewhat generalized activity patterns [e.g., 

neurons that fire at high frequency without accommodation, or neurons that have stuttering 

firing patterns (Markram et al., 2015)]. With NeuroGPU we can easily expand this repertoire 

of e-types, and even replace generalizable e-types with models that recapitulate the activity 

of data obtained from single neurons. This would improve network simulations, as single 

neurons would display biologically accurate diversity within and across neuronal subtypes 

(e.g., Fig. 5B).

NeuroGPU accelerates compartmental modeling through parallelization of matrix 

calculations. Solving the tridiagonal matrix is the most computationally demanding aspect 

of multi-compartmental model simulations (Hines, 1984; Hines et al., 2008; Ben-Shalom 

et al., 2013). Therefore, we took advantage of fast, on-GPU memory and controlled 

the timing of calculations and memory transfers to optimize the use of computational 

resources (Volkov and Demmel, 2008; Ben-Shalom et al., 2013; Nvidia, 2018). Resulting 

speedups depended primarily on neuronal morphology and the implemented conductance 

complexity (Fig. 2D&I, Fig. S3 S4). Overall, GPU utilization was limited by execution 

dependencies (profiling data not shown), where one aspect of GPU processing could not 

proceed until another aspect either transferred or processed its own memory. In the future, 

these dependencies may be further reduced through either dynamic parallelization (Zhang et 

al., 2015) or by increasing instruction level parallelism (ILP) (Volkov and Demmel, 2008). 

Nevertheless, the current version of NeuroGPU accelerates single neuron compartmental 

simulations by several orders of magnitude.
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4.1. Future goals for NeuroGPU

Future iterations of NeuroGPU may expand on the strengths and address limitations 

in using GPUs for compartmental modeling. Ion channels are modeled typically with 

Markov-based kinetics, or a simpler Markov approximation based on Hodgkin-Huxley type 

equations. NeuroGPU currently supports Hodgkin-Huxley-based mechanisms only, as we 

previously found that implementation of full Markov-based mechanisms on GPUs requires 

too much shared memory and reduces performance drastically (Ben-Shalom et al., 2012). 

Furthermore, NeuroGPU is currently limited in the mechanisms that can be translated 

easily, including passive conductances and voltage-gated ion channels, and does not at 

present support point-processes, including synapses. Nevertheless, the current iteration of 

NeuroGPU can support most neuron models on ModelDB (70% of such models utilized 

Hodgkin-Huxley mechanisms), and the majority of models from the BBP (Ramaswamy et 

al., 2015) and the Allen Brain institute (Gouwens et al., 2018).

As with total GPU utilization, improvements in memory handling may improve these cases. 

Furthermore, GPUs work best when the same instructions are occurring simultaneously 

on multiple memory addresses. This makes them ideal for iterating through models with 

identical morphologies and different channel distributions, but less ideal for network models 

containing a diversity of neuron types. As an intermediate, one could address this limitation 

by modeling networks containing discrete sets of neurons. For example, a network could 

contain several compartmental morphology models that each support multiple instances with 

different channel parameters, similar to the Ring model applied by Arbor (Akar et al., 2019; 

Kumbhar et al., 2019).

NeuroGPU will help democratize multi-compartmental modeling. While NeuroGPU can 

support simulations in large, tightly integrated systems using UNIX-based mutli-GPU 

architectures, it also is ideal for individual laboratories running simulations on Windows-

based workstations with GPUs, which are becoming increasingly common. Indeed, a 

workstation with total costs < $3000, when kitted with appropriate GPUs, can out-perform 

loosely inter connected CPU-based clusters (i.e., with commodity inter-node connection 

hardware). This could help broaden the use and utility of multi-compartmental modeling by 

bringing supercomputer-level processing power to a large range of research settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Optimizing biophysical neuronal models increase with their complexity. Biophysical 

neuronal model complexity depends on three factors (A–C) which determine computational 

costs required to simulate and fit models to empirical data (optimization) (D and E). A: 

Morphological complexity: The abstraction of the neuronal morphology ranges from a point 

neuron, to a simplified morphology, and ultimately toward different methods to reconstruct 

neuronal morphology with high resolution. B: Compartmental complexity: Compartmental 

models vary in complexity both in number of compartments and the content of each 

compartment. Top: Single compartment with basic, conductances required for spiking and 

a resting membrane potential. Middle: Multi-compartmental model where ion-channels 

are aggregated under several conductances e.g. all different voltage gated potassium 

channels are represented in a slow and fast inactivating channel (Korngreen and Sakmann, 

2000). Bottom: High resolution morphology with detailed representation to all channels 

sub-types in each compartment. C: Single-channel complexity: The overall conductance in 

compartmental models is formalized either with Hodgkin-Huxley equations or with Markov-

based models. When fitting a model to empirical data, several parameters can be varied. Top: 

only the maximal conductance in a Hodgkin-Huxley formulation. Middle: coefficients added 

to Hodgkin-Huxley equations (time constants, voltage dependence). Bottom: In Markov-

based channels the transition coefficients can be varied. D: Optimizing a model (fitting 

model to data) depends on the complexity of the model and number of free parameters. 

When complexity and number of free parameters require compute times that exceed a few 

days, it becomes impractical to use high resolution models. E: Developing tools to accelerate 

simulation and optimization time will enable us to use more complicated and biophysical 

relevant models.
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Fig. 2. 
NeuroGPU reduces simulation run-time of complex neurons by orders of magnitude without 

compromising accuracy.NeuroGPU reduces simulation run-time of complex neurons by 

orders of magnitude without compromising accuracy. A: Morphology of a BBP portal 

layer 5 neocortical pyramidal cell (Ramaswamy et al., 2015). Dendrite in black, axon in 

red. B: Top: injected current at the soma. Middle: NEURON voltage response as recorded 

at the soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in 

voltage between NEURON and NeuroGPU. C: Top: APs generated per current injection 

intensity in the soma. Middle, bottom: Peak and average voltage difference between the 

voltage response in NEURON and NeuroGPU. Red circles denote examples in B. D: Top: 

Comparing PC model runtimes for the different simulators: black – NEURON, grey MPI-

Neuron (32 processors) green – CoreNeuron, blue – NeuroGPU. X-axis in log2 scale, Y-axis 

in log10 scale. Bottom: Speedup compared to NEURON. Note that the run time for 214 

neurons using CoreNeuron is extrapolated (see methods). E: Top: Runtime for the model on 

1–4 GPUs (Tesla V100) on the same node. Bottom: Speedup compared to NEURON. F–J: 

Same as A-D, but for the chandelier cell model.
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Fig. 3. 
NeuroGPU enables rapid exploration of parameter space in complex pyramidal neuron 

model. A: Each point in the grid represents the number of APs in the relevant model. Points 

on the axis represent the varied conductances of Nav and Kv at the axon in the range of 

[0,10] and [0,20] S/cm2, respectively. B: Example voltage responses for chosen models from 

A. Colors match to the corresponding model location.
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Fig. 4. 
NeuroGPU accelerates evolutionary optimization for fitting models to neuronal data. A: 

Voltage traces obtained from optimization (worst case from population of 100: red; best 

case from population of 10,000: cyan) compared to ground truth (black). B: Optimizations 

examples using DEAP with different sizes of populations. Four Optimizations with different 

random starting population over 50 generations. Y axis is the error from the target 

voltage as described in the methods section. Lower values denote less error from target 

data. C: Comparing runtimes for optimizations using NeuroGPU and NEURON (linearly 

extrapolated from 5 generations). Circles are color coded for population size as in A, and 

represent mean ± SEM. D: Best score in each optimization in A. Circles and error bars as in 

C.
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Fig. 5. 
NeuroGPU fits BBP PC model to empirical data. A: Left: morphology of L5 thick-tufted 

pyramidal neuron from somatosensory cortex (Ramaswamy et al., 2015). Right: NeuroGPU 

fits (green traces) the L5 PC model to empirical data recorded from an L5 prefrontal cortex 

pyramidal neuron of a mouse (Black Traces) with different stimulus intensity 200–340pA 

(Spratt et al., 2019). B: Left: Prefrontal-cortex layer 5 pyramidal neuron morphology (Ascoli 

et al., 2007; Yin et al., 2018). The morphology of BBP PC model was modified to that of the 

prefrontal neuron and fitted to the same data as in A. C: Number of APs per 300 ms of step 

stimulation for different models of layer 5 pyramidal neuron. Note that both revised models 

overlap target data.
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