
UCSF
UC San Francisco Previously Published Works

Title
NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on
GPUs.

Permalink
https://escholarship.org/uc/item/4c07g9cr

Authors
Ben-Shalom, Roy
Ladd, Alexander
Artherya, Nikhil S
et al.

Publication Date
2022

DOI
10.1016/j.jneumeth.2021.109400

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4c07g9cr
https://escholarship.org/uc/item/4c07g9cr#author
https://escholarship.org
http://www.cdlib.org/

NeuroGPU: Accelerating multi-compartment, biophysically
detailed neuron simulations on GPUs

Roy Ben-Shaloma,b,c,d,*, Alexander Laddf, Nikhil S. Artheryaf, Christopher Crossa, Kyung
Geun Kimf, Hersh Sanghevif, Alon Korngreenh,i, Kristofer E. Bouchardd,e,g, Kevin J.
Bendera,b

aWeill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of
California, San Francisco, San Francisco, CA, United States

bDepartment of Neurology, University of California, San Francisco, San Francisco, CA, United
States

cMIND Institute University of California, Davis, CA, United States

dComputational Research Division, Lawrence Berkeley National Lab, Berkeley, CA, United States

eHellen Wills Neuroscience Institute & Redwood Center for Theoretical Neuroscience, University
of California, Berkeley, Berkeley, CA, United States

fDepartment of Electrical Engineering and Computer Science, University of California, Berkeley,
Berkeley, CA, United States

gBiological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA,
United States

hThe Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University,
Ramat-Gan, Israel

iThe Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel

Abstract

Background: The membrane potential of individual neurons depends on a large number of

interacting biophysical processes operating on spatial-temporal scales spanning several orders

of magnitude. The multi-scale nature of these processes dictates that accurate prediction

of membrane potentials in specific neurons requires the utilization of detailed simulations.

Unfortunately, constraining parameters within biologically detailed neuron models can be difficult,

*Correspondence to: University of California, Davis MIND Institute Wet Lab 2805 50th Street, Room 2460 Sacramento, CA 95817,
United States., rbenshalom@ucdavis.edu (R. Ben-Shalom), kevin.bender@ucsf.edu (K.J. Bender).

CRediT authorship contribution statement
Roy Ben-Shalom: Conceptualization, Methodology, Software Development, Writing. Alexander Ladd: Software development,
Data curation, GitHub management, Video recordings Editing. Nikhil S. Artherya: Software development, Writing. Christopher
Cross: Software Development, Visualization, Editing. Kyung Geun Kim: Software development, Editing. Hersh Sanghevi: Software
Development, Editing. Alon Korngreen: Conceptualization, Editing. Kristofer E. Bouchard: Conceptualization, Visualization,
Editing. Kevin J. Bender: Conceptualization, Visualization, Editing.

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jneumeth.2021.109400.

HHS Public Access
Author manuscript
J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

Published in final edited form as:
J Neurosci Methods. 2022 January 15; 366: 109400. doi:10.1016/j.jneumeth.2021.109400.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

leading to poor model fits. This obstacle can be overcome partially by numerical optimization or

detailed exploration of parameter space. However, these processes, which currently rely on central

processing unit (CPU) computation, often incur orders of magnitude increases in computing time

for marginal improvements in model behavior. As a result, model quality is often compromised to

accommodate compute resources.

New Method: Here, we present a simulation environment, NeuroGPU, that takes advantage of

the inherent parallelized structure of the graphics processing unit (GPU) to accelerate neuronal

simulation.

Results & comparison with existing methods: NeuroGPU can simulate most biologically

detailed models 10–200 times faster than NEURON simulation running on a single core and 5

times faster than GPU simulators (CoreNEURON). NeuroGPU is designed for model parameter

tuning and best performs when the GPU is fully utilized by running multiple (> 100) instances

of the same model with different parameters. When using multiple GPUs, NeuroGPU can reach

to a speed-up of 800 fold compared to single core simulations, especially when simulating the

same model morphology with different parameters. We demonstrate the power of NeuoGPU

through large-scale parameter exploration to reveal the response landscape of a neuron. Finally,

we accelerate numerical optimization of biophysically detailed neuron models to achieve highly

accurate fitting of models to simulation and experimental data.

Conclusions: Thus, NeuroGPU is the fastest available platform that enables rapid simulation of

multi-compartment, biophysically detailed neuron models on commonly used computing systems

accessible by many scientists.

Keywords

Compartmental models; Biophysical simulations; Conductance-based models; Electrophysiology;
Graphical Processing Unit

1. Introduction

Electrical activity of single neurons is determined by the distribution of various ionic

conductances arranged across complex morphologies (Mainen and Sejnowski, 1996;

Hausser et al., 2000; London and Häusser, 2005; Spruston, 2008; Hay et al., 2013; Alonso

and Marder, 2019). Our understanding of single neurons has long relied on the ability

to construct biophysically rigorous models of how neuronal membrane potential [Vm],

and, hence, action potentials (APs, spikes) are generated from currents [I] flowing across

the membrane and through the cell (Fig. 1) (Hodgkin and Huxley, 1952). Wilfrid Rall

described the biophysical theory of how membrane potential of a single neuronal segment

(‘compartment’) depends on the conductance (e.g., gNa) and voltage dependent flow of

specific ionic species [e.g., sodium (Na) and potassium (K)], as well as passive properties

of the membrane (i.e., capacitance) (Fig. 1, top row) (Rall, 1962a). Using cable theory,

Rall further described how to connect different compartments of a neuron, providing the

foundation for modeling complex, spatially extended neuronal morphologies (Fig. 1A) (Rall,

1962b). Concomitantly, the membrane channels that mediate a specific ionic current exhibits

large diversity of genetically defined conductances (e.g., gNav1.2, gNav1.6, etc.,), indicating

that individual compartments are, in reality, quite complex (Fig. 1B). While just beginning

Ben-Shalom et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to be appreciated at the time, we now know that ion channels have their own voltage

dependent kinetics that are determined by the transition probabilities amongst various states

of the channel subunits (Fig. 1C) (Hille, 1984; Colquhoun and Hawkes, 1995). Finally,

simulations of realistic neural network models require faithfully capturing the complexity

of the individual neurons (Einevoll, et al., 2019). While the physical theories required to

link these vastly disparate spatial-temporal scales exists, our ability to utilize them for

basic understanding and clinical translation is impeded by the computational burden of the

required simulations (Fig. 1D and E).

Our predictive understanding of several neuronal cell classes has benefitted from the

repeated refinement of compartmental models that describe their activity in health and

disease. For example, neocortical pyramidal cells have been modeled extensively, providing

insight into the effects of morphology on AP firing characteristics (Mainen and Sejnowski,

1996; Hay et al., 2011; Almog and Korngreen, 2014), how synaptic input patterns affect

spike output (Maršálek et al., 1997; Dlesmann et al., 1999; Destexhe et al., 2003) how APs

initiate and propagate within axons (Kole et al., 2007, 2008; Shu et al., 2007; Hu et al.,

2009; Hallermann et al., 2012; Cohen et al., 2020), and how neuronal activity is affected

by alterations in ion channel function induced by genetic variation (Zamponi et al., 2010;

Allen et al., 2014; Ben-Shalom et al., 2017; Spratt et al., 2019). Similar intensive studies

have focused on other cell classes, including hippocampal pyramidal cells (Mainen et al.,

1996; Magee and Cook, 2000; Poirazi et al., 2003; Narayanan and Johnston, 2008; Milstein

et al., 2015), cerebellar Purkinje cells (De Schutter and Bower, 1994; Miyasho et al., 2001;

Roth and Häusser, 2001), and midbrain dopaminergic neurons (Canavier, 1999; Canavier

and Landry, 2006; Kuznetsova et al., 2010). In parallel with these advances in modeling,

there has recently been an enormous improvement in experimental approaches to better

understand the diversity of neuronal classes and their activity patterns. Within the general

group of neocortical pyramidal cells, for example, exists a wealth of diversity. This includes

not only differences in morphology and activity across laminae (Smith and Häusser, 2010;

Deitcher et al., 2017; Kanari et al., 2019), but also within laminae depending on genetic

makeup or axonal projection targets (Dembrow et al., 2010; Gee et al., 2012; Clarkson et al.,

2017), or even within what was thought to be a homogenous cell class within a single layer

as one samples across a large region of cortex (Fletcher and Williams, 2019).

Given the enormous complexity and vast spatio-temporal scales described above, generating

models that accurately recapitulate neuronal activity across the true range of diversity

present in nature can be a daunting task. Model fitting often requires one to tune

individual parameters to best match empirical observations. This process can be aided

by iterative rounds of parameter exploration and optimization that aim to minimize the

differences between empirical data targets and their associated models. These procedures

can be computationally demanding (Fig. 1D and E). Indeed, each linear improvement

in model accuracy requires an exponential increase in computational resources (Nocedal

and Wright, 2006; Gurkiewicz and Korngreen, 2007). Thus, model optimization is often

done on supercomputers that parallelize these computations across massive number of

central processing unit (CPU) cores. Unfortunately, the cost of constructing and operating

supercomputing centers is similarly massive. As such utilization of these resources are

typically restricted to large consortia, such as the Blue Brain Project (BBP) (Markram

Ben-Shalom et al. Page 3

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

et al., 2015) and the Allen Institute (Gouwens et al., 2018). For more restricted budgets,

simulations must typically be compromised in scale, complexity, or accuracy, thus

negatively impacting results (Almog and Korngreen, 2016).

In the past 10 years, graphics processing units (GPUs) have emerged as an alternative

to CPU-based hardware that may offer comparable levels of performance at substantially

reduced cost for some problems. GPUs utilize streaming multiprocessors with multiple

simple cores that allow for distributed, parallelized computing for relatively small chunks of

data. With software optimized for GPUs, GPU-based computing can often outperform CPU-

based applications in processing speed and cost for some problems (Payne et al., 2010).

Today, GPUs are being used in scientific simulations, including molecular dynamics (Go et

al., 2012; Salomon-Ferrer et al., 2013) and climate modeling (Prein et al., 2015), and are

the computational engine for most modern artificial intelligence applications (Schmidhuber,

2015). In neuroscience, GPUs are currently being used to accelerate complex imaging

dataset processing (Eklund et al., 2013), spiking neural network analysis (Yavuz et al., 2016;

Chou et al., 2018), clustering of activity from in vivo extracellular electrophysiological

experiments (Pachitariu et al., 2016), and simulations of single ion channels (Ben-Shalom et

al., 2012).

Recently, two platforms for neuronal biophysical simulations with GPU support were

developed: Arbor (Akar et al., 2019) and CoreNeuron (Kumbhar et al., 2019). Both

platforms focused on simulating large scale neuronal networks comprised of detailed

multi-compartmental models. CoreNeuron supports previous NEURON models but is not

implemented in CUDA, the fundamental operating language of NVIDIA’s GPUs. As such,

its ability to accelerate model runtimes with GPUs may not exploit the full potential of

GPU computing. Arbor, instead, is implemented in CUDA via an entirely new simulation

environment. Thus, while it does harness the speedup potential of GPUs, it is not clear how

existing models, such as those found in ModelDB and the BBP portal (McDougal et al.,

2015; Ramaswamy et al., 2015), could be ported to Arbor, thus impeding utilization. Here,

we describe NeuroGPU, a computational platform optimized to exploit GPU architecture to

dramatically accelerate the simulation of multi-compartmental neuronal models. Our goal

with NeuroGPU was different than that of CoreNeuron or Arbor. Rather than focusing on

neuronal network simulations, NeuroGPU is designed to optimize fitting of models that best

recapitulate empirical data derived from single neurons, and to study the parameter space

of such models by iterating parameter values. To do so, we developed new approaches

to parallelize compartmental models, utilizing the GPU-based programming language

CUDA to optimize memory handling on GPUs manufactured by NVIDIA. This resulted

in simulation speedups of up to 200-fold on a single GPU and up to 800-fold using a

set of 4 GPUs. Similar optimizations may be made for other GPU manufactures, but this

was not considered here, given the broad usage of NVIDIA hardware. We found that

NeuroGPU performed faster than NEURON using (Message Passing Interface) MPI by up

to 10-fold and CoreNeuron up to 4-fold. Building on our previous efforts (Ben-Shalom et

al., 2013), we developed an intuitive user interface that can import most compartmental

models implemented in NEURON (Carnevale and Hines, 2006) deposited at the ModelDB

(McDougal et al., 2017) or BBP portal (Ramaswamy et al., 2015). Further, we provide

methods to explore model parameter space to study how each parameter of the model

Ben-Shalom et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

contributes to its voltage output. The runtimes of NeuroGPU enables us to sample the

parameter space in a very detailed manner, which were utilized here to reveal the response

landscape of single neurons. Finally, we provide an interface to use NeuroGPU for fitting

models to experimental data with evolutionary algorithms (DEAP and BluePyOpt) (Gagn,

2012; Van Geit et al., 2016). NeuroGPU implemented such model optimization algorithms

in 2.5 h using a single GPU (see Fig. 5), compared to 26 h using 256 CPUs, which is the

current standard (Nandi et al., 2020; Schneider-Mizell et al., 2020). This enables the use

of more complex models that will better represent experimental data, as we demonstrate

here in both simulated and experimental data. NeuroGPU therefore provides an open-source

platform for neuronal simulation with increased speed and reduced cost, thus enabling the

neuroscience community to perform high quality biophysically detailed simulations.

2. Methods

2.1. Hardware

NEURON and TitanXP-based simulations were run on a PC with Intel Core I7–7700 K

4.2 GHz with 16 GB of RAM. Tesla V100-based simulations were run using the NVIDIA

PSG cluster. Here, each simulation was run on a single node with Haswell or Skylake CPU

cores. For multi-GPU simulations, we used cluster nodes with NVLINK (Li et al., 2019)

between the GPUs to enable memory peer-access. Fitting models to experimental data was

done on the Cori GPU cluster from the National Energy Research Scientific Computing

Cent (NERSC) at Lawrence Berkeley National Labs. Cori GPU nodes includes 8 NVIDIA

Tesla V100 and 20 Skylake CPU cores with total of 384 GB memory.

2.2. Software

Simulations were performed in NEURON 7.6–8.0 and CUDA 10.1. All scripts were written

in Python 3.7. All software is available at https://github.com/roybens/NeuroGPU.

2.3. Importing NEURON models

To ease installation, we separated processes for porting models (Translation Fig. S2C) and

NeuroGPU execution (Execution Fig. S2D). After initial import, NeuroGPU models can

run on a GPU machine independently from NEURON. The python script extractmodel.py

exports NEURON models to NeuroGPU. This script reads all simulation details from

runModel.hoc, which is populated using the GUI (Fig. S1). NEURON models are described

using either hoc or python scripts. The scripts include a morphology that can either be called

as a separate file or constructed within the script (Fig S1B). The user must input a file

containing model stimulation, which includes temporal aspects of the model and command

currents delivered at a prescribed location. Furthermore, all free parameters, such as channel

properties, must be described. These import components are translated into CUDA code,

termed kernels, that can run on the GPU via the python script “extractmodel.py” (Fig S1C).

This script first takes runModel.hoc and loads it into NEURON, not to run simulations, but

rather to query NEURON for model properties needed for subsequent porting to NeuroGPU,

including compartment names and the tri-diagonal matrix (F-Matrix or Hines Matrix)

which holds the differential system for the voltages of the dendritic tree. Then, the script

iterates over the.mod files in the directory, parses them and creates relevant kernels for

Ben-Shalom et al. Page 5

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/roybens/NeuroGPU

each mechanism described. CUDA kernels containing model mechanisms are generated

by adding relevant CUDA keywords to C code generated when NEURON compiles

mechanisms. Mechanism kernels are written to the AllModels. cu in similar structure as

described previously (Hines and Carnevale, 2000; Carnevale and Hines, 2006), iterating over

all compartments defined in the model. A new hoc file is created to register mechanism

values, which are stored in AllParams.csv and inserted in each compartment. After model

parameter maps are determined, they are cataloged as part of ParamMappings.txt for

reference for future reiterations of the same model, eliminating the need to reload NEURON.

Finally, the script writes code translated to CUDA in NeuroGPU.cu and packages the

application to run on either Windows or Unix. After compiling the code, an executable is

created that reads the AllParams. csv and the stimulation and runs the model on the GPU.

2.4. Translating mechanisms to CUDA and memory assignment

Mechanisms in NEURON are described by NMODL (.mod) files (Hines and Carnevale,

2000), which update the mechanism states every simulation time step. This is done using

three different procedures within NEURON that initialize mechanisms (nrn_init), update

currents that mechanisms affect (nrn_cur), and then update mechanism states (nrn_state)

(Carnevale and Hines, 2006). In NeuroGPU, CUDA kernels are written for each of these

procedures using.mod and.c files that are generated by NEURON when running nrnivmodl.

When a NEURON model is exported to NeuroGPU, all.mod files and their corresponding.c

files are parsed using custom code to extract variables and procedures defined in each

specific.mod file. These are then translated to CUDA kernels written in AllModels.cu.

Future iterations of NeuroGPU may make use of the nmodl Python library for parsing as this

software evolves.

Several mechanisms are regulated by intracellular calcium. To support this, we created an

array that holds internal calcium concentration within each compartment and calculates the

reveral potential for calcium at each time step. We determined that calcium was the only

ion whose intracellular concentration varied substantially during ongoing activity in ways

that affect simulations, due to their effects on calcium-activated potassium channels. We

note that most models lack detailed models of sodium and potassium pumps/transporters and

generally do not model changes in their concentrations. We found that this was a reasonable

approximation for NeuroGPU, as the presence or absence of Na/K ion concentration

calculations did not affect simulation Vm.

CUDA is an extension of the C programming language that enables computation on the

GPU (Nvidia, 2018). CUDA kernels are procedures running on the GPU that can be invoked

from either the GPU or CPU. To invoke a kernel from the CPU, one must specify the

number of parallel threads used. Threads, which allow for parallelization on the GPU, are

organized into blocks, with each thread occupying a specific address within that block

(idx.x) (Fig S2C). GPUs are structured to operate well when computing 32 parallel threads,

a computing structure termed a warp (Nvidia, 2018). Therefore, we structured NeuroGPU to

utilize 32 threads in the x dimension, corresponding to individual morphological segments

within the model. For a given model with more than 32 segments, individual threads are

Ben-Shalom et al. Page 6

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

responsible for calculating every 32nd segment. For example, thread #1 would calculate

segments 1, 33, 65, … 32N + 1.

2.5. Extracting simulation properties from NEURON

NeuroGPU utilizes NEURON for simulation pre-processing, including mechanism

translation which includes mathematical descriptions of various ion channels, calcium

diffusion characteristics, and other elements of neuronal function, (Hines and Carnevale,

2000), a map for mechanism distribution across compartments (ParamMappings.txt), and

exporting the tri-diagonal matrix using fmatrix(). These are stored in BasicConstSegP.csv.

NEURON extracts all parameters for cable equations and mechanism values within each

compartment to AllParams.csv (Fig. S1). External stimulation delivery location, intensity,

and time-course are written in stim.csv. Resting membrane potential and number of time

steps in the simulation are written in sim.csv.

2.6. Solving the tridiagonal matrix

Matrix solutions were performed using the branch-based parallelism approach as described

previously (Ben-Shalom et al., 2013), with morphology analysis guiding iterative matrix

computations. This analysis is done in extractmodel.py and the data structures to solve the

tri-diagonal in parallel is stored in BasicConstSegP.csv.

2.7. Benchmarking

All benchmarking against a single CPU core running NEURON was done with NEURON

7.6, running in a single thread. The morphology was adjusted to have one segment per

compartment in all platforms. Simulation runtimes were compared without hard drive read/

write file steps, as these aspects depend more on hard drive properties than CPU/GPU

comparisons. Benchmarking against the parallel version of NEURON was done using

NEURON 8.0. In both cases, runtime compares time required to complete psolve()

procedures. For NEURON-MPI, we used CoreNeuron settings with 32 MPI processors

without GPUs (Kumbhar et al., 2019). For CoreNeuron, we used one MPI thread and one

GPU (Kumbhar et al., 2019). Note, benchmarking of cases with 2^14 model instances is

estimated based on linear extrapolation from the 2^13 case, as the time required to load

model instances in the 2^14 case far exceeded the time allowed by policy queues at NSERC.

2.8. Multi-compartmental models

NeuroGPU performance was tested with 4 different models:

1. A passive model, utilizing passive channels described in NEURON distribution

pas.mod file. These channels were distributed on both simple and complex

morphologies (see Fig. S3A, D) (Mainen and Sejnowski, 1996). The simple

morphology was based on the simple morphology described in Mainen and

Sejnowski, with compartments reduced to 32, as this is the minimum number of

compartments required for NeuroGPU-based simulations.

2. The Mainen and Sejnowski (1996) model, with channels distributed on the same

complex and simple morphologies. Channels are distributed as in (Mainen and

Sejnowski, 1996) (Fig. S4)

Ben-Shalom et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. A pyramidal cell model from the Blue Brain Project portal (Ramaswamy et al.,

2015) (Fig. 2). BBP PC refers to the model named L5_TTPC1_cADpyr232_1.

4. A chandelier cell model, termed BBP CC, referring to L5_ChC_dNAC222_1.

For this model, the Kdshu2007.mod files were altered to run on NeuroGPU.

Specifically, global variables were removed from the neuron block and instead

placed in the assigned block (Carnevale and Hines, 2006) (Fig. 2).

2.9. Optimization algorithms

Two different genetic algorithm versions were used in this study. For data related to Fig.

4, the eaMuPlusLambda algorithm from the DEAP package. eaMuPlusLambda stands for

evolutionary algorithm where the next generation population is comprised from the existing

population (Mu) and the offspring (Lambda). We modified the varOR procedure to call

NeuroGPU (Rainville et al., 2012).”Optimization was performed on the BBP PC model.

For each iteration, the algorithm began with a new population of parameters with values

randomly chosen with the range specified in Supplemental Table 3. The model was modified

to accept new values from the optimization algorithm (similar changes were necessary

for parameter space exploration for Fig. 3). Target data were generated using the original

parameters values described in Supplemental Table 3. Optimization was targeted to reduce

error between target data and test data using both the interspike interval (ISI) and the root

mean square (RMS) of the voltage as the error function. Error was reduced to a single

variable by weighting these two variables as: 10*ISI + RMS.

For data related to Fig. 5, the BluePyOpt (Van Geit et al., 2016) implementation of

Multiple Objective Optimization (MOO) was used. Experimental target data for these

experiments were from whole-cell current-clamp recordings from layer 5b thick tufted

pyramidal cells in acute slices from wild-type mouse prefrontal cortex (postnatal day 62)

(Spratt et al., 2019). Optimization was targeted to minimize the root mean square voltage

error at each time point between empirical data and model output as well as the following

objectives, as defined in the electrophysiology feature extraction library (eFEL) from

the BBP: voltage_base, AP_amplitude, voltage_after_stim, ISI_values, spike_half_width,

and afterhyperpolarization_depth. Electrophysiological data were fitted in models with

morphology from L5_TTPC1_cADpyr232 Fig. 5(A) or a reconstructed prefrontal cortex

L5 thick tufted pyramidal neuron deposited at NeuroMorpho.Org (Ascoli et al., 2007; Yin

et al., 2018). The model parameters that were varied for the S1 model and PFC model are

described in Supplemental Tables 4 and 5, respectively.

2.10. Support

A series of tutorial notebooks that walk users through various approaches are available

on Github, with corresponding video walkthroughs available at: https://www.youtube.com/

playlist?list=PL-Amxh_lBdw99alE5L1yfnfwPuK2wLeel These tutorials describe: 1) the

structure of the documentation, 2) standards for input data and file structure to run

NeuroGPU, 3) porting of models from NEURON to NeuroGPU, 4) Parameter space

exploration, and 5) Using DEAP optimization. Future developments will be documented

in the NeuroGPU Github portal.

Ben-Shalom et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://neuromorpho.org/
https://www.youtube.com/playlist?list=PL-Amxh_lBdw99alE5L1yfnfwPuK2wLeel
https://www.youtube.com/playlist?list=PL-Amxh_lBdw99alE5L1yfnfwPuK2wLeel

3. Results

Our goal for NeuroGPU was to develop user-friendly software for fitting compartmental

models to experimental data, with improved speed, using relatively low-cost hardware.

Furthermore, we sought to make NeuroGPU cross-compatible with NEURON, to allow one

to import models available on public databases, including ModelDB and the BBP portal.

Toward that end, we utilized the same basic structure as NEURON, including the use of

hoc and mod files that define all aspects of the compartmental model (Fig. S1). To increase

simulation speed, we focused primarily on parallelizing the most computationally intensive

aspects of NEURON simulations in GPU architecture. NEURON calculates the voltages

of each segment of the model by solving a system of differential equations that describes

current flow in each compartment. Within NEURON, this system of differential equations

is represented within a tri-diagonal matrix (Hines, 1984). Typically, matrix elements for

neighboring compartments are solved in serial, as current flow in one compartment is

interdependent on flow in neighboring compartments. We and others have previously

developed methods to solve this tri-diagonal matrix in parallel across GPUs, despite the

interdependence of current flow across compartments (Fig. S2) (Hines, 1984; Hines et al.,

2008; Ben-Shalom et al., 2013). At that time, the method was implemented only for classic

Hodgkin-Huxley models with 3 parameters (gNa, gK, gLeak) (Ben-Shalom et al., 2013).

Here, we extended this method to support a wider range of models, including most models

available in ModelDB and the Blue Brain Project (BBP) repository. We implemented this in

Python and created an iPython Graphical User Interface (GUI) for easy use.

3.1. NeuroGPU Implementation

Traditionally, neuronal simulations diffusion matrixes are computed serially, since

calculating the voltage at each section depends on voltage in neighboring sections. To

leverage the Single Instruction Multiple Data (SIMD) architecture of GPUs, one needs

to instead solve the diffusion matrix in parallel. This challenge has slowed adoption of

GPUs for neuronal simulation (Kumbhar et al., 2019); however, in 2013, we described an

algorithm that uses a parallel lower upper (LU) decomposition to solve the diffusion matrix,

based on the work of Stone (Stone, 1973; Ben-Shalom et al., 2013). Our implementation

relied on the fact that separate neuronal branches can be calculated in parallel before

calculating regions where they merge at branch points, thus parallelizing computations.

Each neuron can therefore be calculated using 32 parallel threads, with each thread

calculating the voltage for n/32 compartments where n is the total number of segments

in the model. A thread first calculates the contribution of all the mechanisms and then

updates the mechanisms states, similar to implementation in NEURON (Carnevale and

Hines, 2006). Given this structure, NeuroGPU outperforms NEURON only when the GPU

is fully utilized when multiple model instances are simulated in parallel (Fig. 2). In such

cases, several blocks of 32 threads each simulate a different model instance. To comply

with SIMD requirements, these multiple models must have the same morphology to allow

threads in different blocks to execute the same instructions. This approach is advantageous

for techniques like parameter exploration, where multiple model instances with different

conductance parameters built on the same morphology are compared. In this design,

memory is optimized, since all the models share constant memory that holds mechanism

Ben-Shalom et al. Page 9

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

details, morphological details, and the indices to solve the diffusion matrix in parallel.

Individual models hold copies of the matrix diagonal, which changes every time step, and

the parameters and states of the mechanisms that vary between model instances. Importantly,

many of the optimizations made here can be leveraged to address other questions that are

appropriate for GPU-based computing, or could be optimized better in future iterations.

Current optimizations and future applications are discussed in Supplemental Table 1.

3.2. NeuroGPU Performance

To evaluate how NeuroGPU performs relative to NEURON, we benchmarked it for speed

and accuracy across a range of models and hardware configurations. We first compared

NeuroGPU performance with a single GPU to NEURON implemented on a single CPU

core. To benchmark speed, we evaluated computing time for multiple instances of the same

model. NeuroGPU was primarily evaluated on recently developed models from the Blue

Brain Project (BBP) portal (Hay et al., 2011; Markram et al., 2015; Ramaswamy et al.,

2015), but was also benchmarked on models with reduced morphology or reduced numbers

of voltage-gated channels or ligand-gated receptors to determine how each of these aspects

affects performance (Figs. S3–4). We used BBP models to benchmark different versions

of NEURON (NEURON, MPI-Neuron, CoreNeuron). We focused on two specific models:

a layer 5 pyramidal neuron (Fig. 2, top row: BBP PC, see Methods for specific model)

and a layer 5 chandelier interneuron (Fig. 2, bottom row: BBP CC). Initially, models were

interrogated with a range of stimulus intensities to determine relative differences between

NeuroGPU and NEURON (Fig. 2).

We first confirmed the quality of the simulations. Overall, NeuroGPU was able to replicate

NEURON simulations with high fidelity; however, small voltage differences were observed

between the two platforms in all models tested. These were most commonly observed when

voltage was changing rapidly between time steps (Fig. 2B–C, G–H), and were due to small

differences in timing that likely arise from different approaches to number rounding in GPUs

vs CPU architecture (Whitehead, 2011).

NEURON computation time scales linearly with the number of simulations, and, for

relatively small numbers of model instances (< 8), outperforms NeuroGPU (Fig. 2, D,E,I,J).

By contrast, models implemented on GPUs (NeuroGPU and CoreNEURON) scale linearly

only after saturating all of the GPUs streaming multiprocessors (Nvidia, 2018) (Fig. 2D,

E, I, J). Similarly, runtime scales linearly with number of mechanisms (e.g., distinct

conductances), provided such mechanisms can be stored in the GPU’s constant memory

(see NeuroGPU Implementation in the Results section). For example, in the Mainen model,

37 mechanisms could be simulated on a V100 GPU. This limitation is not an issue for most

models, which typically use fewer mechanisms, and may be less of a bottleneck in future

hardware with a larger constant memory allocation. Similarly, MPI-NEURON simulations

start to scale linearly after all MPI processors (32) are occupied. NeuroGPU is 4.3x slower

than MPI-NEURON when simulating only one neuron, but 5x faster when simulating 2^14

neurons Fig. 2D. For NeuroGPU and CoreNeuron, processing times are practicaly constant

for any simulation incorporating fewer than 128 model instances, and begin to outpace

NEURON simulations when > 8 simulations are run simultaneously. When computing

Ben-Shalom et al. Page 10

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

large numbers of model instances, NeuroGPU outpaces both parallel versions of NEURON:

NeuroGPU is 1.5–3.3x faster than CoreNEURON for the PC model and 1.9–4.1x faster for

the CC model. This difference is likely due to differences in how memory transfers are

implemented in the two programs. In NeuronGPU, memory transfers require little overhead,

due to its use of CUDA, whereas CoreNeuron has significant overhead for similar transfers

(Supplemental Table 2) (Anon, 2019).

Relative gains in processing time were noted when 8–16,384 model instances were run

simultaneously. These gains were dependent on hardware. For example, implementing

NeuroGPU on an NVIDIA TitanXP and Tesla V100 GPU resulted in 1.8–3.8x faster runtime

when using the Tesla V100 GPUs (Fig. S3F). It is worth noting that TitanXP hardware is

relatively low cost (< $1099) and a very similar card (NVIDIA GTX-1080) can currently

be purchased for less than $500. As such, significant improvements in processing speed can

be obtained even with modestly priced hardware. Additional returns can be gained from

GPU tethering, as CUDA has been recently updated to allow for memory sharing across

GPUs. To evaluate this, we connected up to 4 Tesla V100 GPUs together and measured

speedup on both BBP models displayed in Fig. 2. As expected, adding more GPUs increased

the overall processing capacity, and we noted shifts in the number of model instances that

could be handled simultaneously before reaching maximum GPU utilization (Fig. 2E and J).

Furthermore, speedup was almost 3 orders of magnitude faster relative to NEURON.

3.3. Exploring neuronal model parameter space

Parameter values (e.g. ion channels distributions) are correlated in a non-linear manner.

This may lead to situations where vastly different parameter combinations nevertheless

produce similar voltage outputs, at least for a limited set of stimuli (Prinz et al., 2004).

The diversity of these parameter sets can be limited by constraining the range over which a

parameter can vary before initiating model optimization, thus leading to more biologically

realistic sets of parameters. NeuroGPU may be ideal for parameter exploration within such

ranges, as these types of simulations require one to repeatedly model the same morphology

with small differences in constituent parameter values, a process that lends itself well to

parallelization within GPUs. Indeed, we predict that relative speedups would be identical

to situations considered above (Fig. 2) and depend simply on the number of parameter

sets used. To provide an example of parameter space exploration, we examined neuronal

output (i.e., number of action potentials) in the BBP PC model when co-varying the density

of the axonal fast inactivating sodium channel and axonal slow-inactivating potassium

channel over a range of 0–10 and 0–20 S/cm2, respectively. Single traces from with

different sodium and potassium conductances are shown in Fig. 3A and total spike output

as function of these two channel densities is shown in Fig. 3B. As expected, increasing

sodium conductance allowed models to generate more APs until sodium conductance was

so high that models entered depolarization block. Similarly, reducing potassium conductance

produced comparable results. Interestingly, certain combinations of sodium and potassium

conductance concentrations produced bursting phenotypes characterized by high-frequency

APs riding atop long-duration depolarizations. These presumably reflect parameter ranges

that then interact with other ion channels in the model (e.g., CaV3 of HCN channels) that

promote such burst dynamics.

Ben-Shalom et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.4. Fitting models to surrogate and empirical data

With the ability to rapidly sample parameter space, NeuroGPU may be ideally suited to

accelerate model fitting to data, where a key constraint is the time needed to exhaustively

sample possible solutions. To test this, we implemented two different genetic optimization

algorithms within NeuroGPU. Initially we integrated the DEAP (Distributed Evolutionary

Algorithms in Python) package (Gagn, 2012) (Fig. 4). Genetic algorithm success lies in the

balance between exploration of the whole parameter space and the exploitation of specific

areas that seem promising. For this, large sample populations are ideal, as this allows

for effective and broad parameter space exploration. NeuroGPU is more efficient when

many instances are running in parallel, allowing for more effective application of genetic

algorithms.

Genetic optimization was tested here by fitting model-generated voltages to a single voltage

epoch containing APs that was generated by the default values present in the BBP PC

model. We focused first on such surrogate data, as the ground truth values for all parameters

are already known. As such, we can easily compare how well NeuroGPU performs in

arriving at similar values. Optimization began with different population sizes comprised

of 100–10,000 individual parameter sets with random initial values (Fig. 4B). These

populations were run in four independent trials, each for 50 generations, and the difference

between the naïve model and ground-truth model was compressed to a single score value

(see Methods). For these scores, lower values indicate less difference between the two cases.

Scores improved for each of these populations, but the variance across trials and the overall

score were markedly affected by the population size, with score decreasing in a near-linear

fashion with each doubling of population size (Fig. 4C). These score improvements were

paralleled by a decrease in total processing time. For example, optimization with 10,000

individual parameter sets ran 7.7× faster on NeuroGPU than NEURON (Fig. 4D; 10 vs

77 h, respectively). While these are significant improvements in simulation speed, they are

relatively modest compared to those observed in other conditions (Fig. 2), likely since the

version of NeuroGPU used here required NEURON to load the simulation and generate

parameter values. In the next section we present how eliminating calls to NEURON greatly

increases speedup.

Given these promising results fitting surrogate data, we next asked whether similar

performance could be noted for empirical electrophysiological data. Therefore, we fitted

the BBP PC model to whole-cell current-clamp recordings of action potential activity

from neurons in acute mouse frontal cortex slices (Fig. 5A black traces). Models were

implemented on two different pyramidal cell morphologies from somatosensory (original

BBP PC morphology; Fig. 5A) and prefrontal cortex [from NeuroMorpho.Org; Fig. 5B

(Ascoli et al., 2007; Yin et al., 2018)] to determine whether morphology differentially

affects optimization. Here we used the BluePyOpt package, which is an extension DEAP

that is specified for neuronal optimizations (Van Geit et al., 2016). We fitted the model

to eight voltage responses from varying stimulations to verify that the model is robust

across stimulation conditions (Fig. 5A, B). The optimization algorithm found values for the

model’s parameters that resulted with good fits to both morphologies. Thus, models can be

fitted to empirical data and new morphologies by combining NeuroGPU with BluePyOpt.

Ben-Shalom et al. Page 12

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://neuromorpho.org/

Unlike single trace stimulations (Fig. 4), optimization to 8 separate traces required

more generations to obtain reasonable fits, which unfortunately increased processing time

dramatically. To reduce runtimes, we revised NeuroGPU by adding two final features. First,

we eliminated NEURON calls to the CPU entirely by generating a procedure that identifies

the free parameters of the model and modifies NeuroGPU’s input, ‘AllParams.csv’, to

new values without using NEURON. Second, we used CPU multithreading scoring, which

reduced the overall computation time of each generation. With these improvements,

runtimes were reduced for each iteration of the optimization algorithm. Simulation of all

8 traces with 10,000 putative solutions required 60 s of processing time. This was followed

by a 103 s period required for scoring for each genetic algorithm generation. This latter

aspect has been accelerated dramatically. On 8 CPUs, the same process requires 2891 s per

generation. These speedups (48.2 fold in simulation time) are close to the speedups of single

simulations (Fig. 2D). With these improvements, we were able to obtain models that fit

well to experimental data using an 8 GPU node running NeuroGPU in just 4 h, a task that

traditionally may require several days of computation using a large cluster (Hay et al., 2011;

Hill et al., 2011; Almog and Korngreen, 2014; Nandi et al., 2020; Schneider-Mizell et al.,

2020). As such, NeuroGPU allow one the ability to develop more complex models and fit

them to empirical data in reasonable time frames (Fig. 1).

4. Discussion

Detailed models of neurons are critical to our understanding of neuronal functioning.

However, the computational resources required of current software implementations of

complex neuronal models are prohibitive, typically requiring supercomputers. At best,

this limits the accuracy of results; at worst, it limits access to all but a select set of

scientists. To address this gap, based on our previous efforts (Ben-Shalom et al., 2013), we

designed a user-friendly environment that enables one to port multi-compartmental models

for implementation with CUDA to run simulations on GPUs. By taking advantage of parallel

processing inherent to GPUs, we were able to accelerate simulations dramatically—up to

2–3 orders of magnitude with multiple GPUs. NeuroGPU was developed to be interoperable

with NEURON, thereby allowing anyone with expertise in the NEURON environment

access to GPU-based acceleration. Towards this goal, we developed a platform to easily

port NEURON models from either ModelDB or the BBP portal (Ramaswamy et al., 2015;

McDougal et al., 2017) using a iPython notebook-based graphical user interface (GUI).

We further developed GUIs for creating stimulation protocols, parameter exploration, and

genetic optimization.

Leveraging on our parallel algorithm for solving the tri-diagonal matrix representing the

dendritic tree (Ben-Shalom et al., 2013), we developed an NMODL importer to CUDA.

This allowed us to translate any single neuron multi-compartmental model developed in

NEURON to NeuroGPU. We implemented NEURON’s framework in CUDA and translated

NMODL mechanisms to kernels for GPU execution. NeuroGPU has two independent

processes:: First, models are translated into GPU-executable code (Fig S1C). Second,

simulations of many instances of this model are executed on GPUs. Importantly, these two

processes can be done on different machines, helping facilitate NeuroGPU installation on

Ben-Shalom et al. Page 13

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GPU cluters, as only CUDA and pythons are required for execution on such clusters (and not

NEURON or other software).

The power of GPUs to speedup application comes from the single instruction multiple data

(SIMD) architecture where one instruction can modify many different memory instances

in parallel. In 2013 we showed for the first time that single neurons can be simulated

efficiently in parallel utilizing SIMD architecture (Ben-Shalom et al., 2013). We suggested

a novel algorithm to solve the tri-diagonal (Hines) matrix (Hines, 1984), which is the core

of neuronal simulations and usually is the main calculation bottleneck. Since that time,

other solutions for solving Hines matrices have been suggested, such as using Exact Domain

Decomposition method (EDD) (Vooturi et al., 2018) and splitting the dendritic tree and

solving each subtree asynchronously (Magalhães et al., 2019). Also, a tailored solver for the

Hines tridiagonal matrices has been developed that produced major speedups (Valero-Lara et

al., 2018). However, it is not clear how these algorithms are to be used by the neuroscience

community. Conversely, NeuroGPU is a full CUDA implementation that builds on our

tri-diagonal solver to accelerate existing NEURON models. As discussed in Ben-Shalom et

al., 2013, we use the Stone algorithm (Stone, 1973) for parallelizing the tri-diagonal solver.

While this might not be the optimal solver, NeuroGPU still outperforms other GPU based

neuronal simulations. Implementing other solvers using our CUDA implementation might

lead to better performance, and will be tested in future versions of NeruoGPU.

NeuroGPU addresses a major gap in currently implemented GPU-based simulation

environments. Two other neuronal simulation environments for multi-compartmental models

have been implemented using GPUs, CoreNeuron (Kumbhar et al., 2019) and Arbor (Akar

et al., 2019). These environments are designed primarily to accelerate large scale network

simulations. NeuroGPU, by contrast, is focused on greatly accelerating the simulation of

single neurons with complex, multi-compartment morphologies, critical for exploring the

parameter space of single models and optimizing such models to best fit empirical data.

Leveraging the acceleration of single-neuron simulations, NeuroGPU has expanded GUIs

for parameter exploration, which allows for rapid assessment of how changes in ion

channel density across compartments affects neuronal excitability (Fig. 3). This approach

may be particularly useful to generate testable hypotheses regarding channel distribution

with pharmacological manipulations (Keren et al., 2009; Almog and Korngreen, 2014;

Mäki-Marttunen et al., 2018), modulation of ion channels (Byczkowicz et al., 2019), or in

disease states where ion channel density is thought to be affected (Migliore and Migliore,

2012; Miceli et al., 2013; Ben-Shalom et al., 2017; Spratt et al., 2019). Furthermore, one

could generate a range of cells with variable channel densities and confirm that their activity

is physiologically realistic (e.g., Fig. 3, all cases before generating depolarization block).

These conditions could then be used as building blocks for variable activity within neuronal

networks (Prinz et al., 2003, 2004; Alonso and Marder, 2019). In addition to parameter

exploration, NeuroGPU is designed for extensive model optimization (Gagn, 2012; Van Geit

et al., 2016). Fitting complex models to empirical data is computationally expensive, often

requiring days of compute time, even on large supercomputing systems (Hay et al., 2011;

Almog and Korngreen, 2014). Here, we show that NeuroGPU accelerated model fitting

runtime 7.7 fold (Fig. 4). While appreciable, these accelerations can be improved further

Ben-Shalom et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

by bypassing model export via NEURON and instead using the “mapping parameters”

function. In this configuration, runtime was accelerated 48.2 fold. Of note, this runtime

does not match that found for simulating single neuron instances (Fig. 2), since score

calculation using the CPU imposes a bottleneck. Using more sophisticated evolutionary

algorithms that can minimize CPU latency or implementing the score function calculation

on the GPU may result in further improvements, scaling towards GPU acceleration of 800

fold observed with multiple GPUs (e.g., Fig. 2). Nevertheless, the current instantiation of

NeuroGPU offers individual labs the opportunity to implement optimization algorithms with

their own hardware. Furthermore, it opens the door to extremely high-speed model fitting,

as NeuroGPU can be run easily on GPU supercomputing systems, which inherently have

exponentially more computational resources compared than similarly kitted CPU systems.

Finally, NeuroGPU is ideal for generating neuronal datasets with different configurations for

exploration of, e.g., firing rate ‘phenotypes (e.g., Prinz et al., 2004), or for deep learning

training (Ben-Shalom et al., 2019; Gonçalves et al., 2020).

Recent advances in genetic characterization and novel analysis methods have resulted in

characterization of diverse neuronal types with respect to their morphologies, projections,

and protein expression (Gouwens et al., 2019). However, these advancements lack detailed

biophysical models that can describe and simulate these neurons. In the BBP portal there

are ~200 models that each is comprised of an m-type, which describes the morphology, and

one of 11 e-types, which is a set of conductances that describes the electrical properties

of the cell. Currently, these e-types describe somewhat generalized activity patterns [e.g.,

neurons that fire at high frequency without accommodation, or neurons that have stuttering

firing patterns (Markram et al., 2015)]. With NeuroGPU we can easily expand this repertoire

of e-types, and even replace generalizable e-types with models that recapitulate the activity

of data obtained from single neurons. This would improve network simulations, as single

neurons would display biologically accurate diversity within and across neuronal subtypes

(e.g., Fig. 5B).

NeuroGPU accelerates compartmental modeling through parallelization of matrix

calculations. Solving the tridiagonal matrix is the most computationally demanding aspect

of multi-compartmental model simulations (Hines, 1984; Hines et al., 2008; Ben-Shalom

et al., 2013). Therefore, we took advantage of fast, on-GPU memory and controlled

the timing of calculations and memory transfers to optimize the use of computational

resources (Volkov and Demmel, 2008; Ben-Shalom et al., 2013; Nvidia, 2018). Resulting

speedups depended primarily on neuronal morphology and the implemented conductance

complexity (Fig. 2D&I, Fig. S3 S4). Overall, GPU utilization was limited by execution

dependencies (profiling data not shown), where one aspect of GPU processing could not

proceed until another aspect either transferred or processed its own memory. In the future,

these dependencies may be further reduced through either dynamic parallelization (Zhang et

al., 2015) or by increasing instruction level parallelism (ILP) (Volkov and Demmel, 2008).

Nevertheless, the current version of NeuroGPU accelerates single neuron compartmental

simulations by several orders of magnitude.

Ben-Shalom et al. Page 15

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1. Future goals for NeuroGPU

Future iterations of NeuroGPU may expand on the strengths and address limitations

in using GPUs for compartmental modeling. Ion channels are modeled typically with

Markov-based kinetics, or a simpler Markov approximation based on Hodgkin-Huxley type

equations. NeuroGPU currently supports Hodgkin-Huxley-based mechanisms only, as we

previously found that implementation of full Markov-based mechanisms on GPUs requires

too much shared memory and reduces performance drastically (Ben-Shalom et al., 2012).

Furthermore, NeuroGPU is currently limited in the mechanisms that can be translated

easily, including passive conductances and voltage-gated ion channels, and does not at

present support point-processes, including synapses. Nevertheless, the current iteration of

NeuroGPU can support most neuron models on ModelDB (70% of such models utilized

Hodgkin-Huxley mechanisms), and the majority of models from the BBP (Ramaswamy et

al., 2015) and the Allen Brain institute (Gouwens et al., 2018).

As with total GPU utilization, improvements in memory handling may improve these cases.

Furthermore, GPUs work best when the same instructions are occurring simultaneously

on multiple memory addresses. This makes them ideal for iterating through models with

identical morphologies and different channel distributions, but less ideal for network models

containing a diversity of neuron types. As an intermediate, one could address this limitation

by modeling networks containing discrete sets of neurons. For example, a network could

contain several compartmental morphology models that each support multiple instances with

different channel parameters, similar to the Ring model applied by Arbor (Akar et al., 2019;

Kumbhar et al., 2019).

NeuroGPU will help democratize multi-compartmental modeling. While NeuroGPU can

support simulations in large, tightly integrated systems using UNIX-based mutli-GPU

architectures, it also is ideal for individual laboratories running simulations on Windows-

based workstations with GPUs, which are becoming increasingly common. Indeed, a

workstation with total costs < $3000, when kitted with appropriate GPUs, can out-perform

loosely inter connected CPU-based clusters (i.e., with commodity inter-node connection

hardware). This could help broaden the use and utility of multi-compartmental modeling by

bringing supercomputer-level processing power to a large range of research settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to Dr. Gilad Liberman who helped conceptualize this project. To the support and advice of NVIDIA
developers – Dr. Jonathan Lefman, Dr. Jonathan Bentz, Dr. Xuemeng Zhang and Angela Chen in optimizing the
CUDA code. To Maxwell Chen and Mathew Derango who helped with code development. To NVIDIA Corporation
for donating the GPUs used in this study. To all the members of the Bender Lab for critically assessing this work.
This research was supported by NIH Grants F32 NS095580 (RBS), MH112729 (KJB), and DA035913 (KJB).

Ben-Shalom et al. Page 16

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

Akar NA, Cumming B, Karakasis V, Küsters A, Klijn W, Peyser A, Yates S, 2019. Arbor - A
Morphologically-Detailed Neural Network Simulation Library for Contemporary High-Performance
Computing Architectures. In: Proceedings - 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP 2019, pp 274–282.

Allen NM, Mannion M, Conroy J, Lynch SA, Shahwan A, Lynch B, King MD, 2014. The variable
phenotypes of KCNQ-related epilepsy. Epilepsia 55, e99–e105. [PubMed: 25052858]

Almog M, Korngreen A, 2014. A quantitative description of dendritic conductances and its application
to dendritic excitation in layer 5 pyramidal neurons. J. Neurosci. 34, 182–196. [PubMed: 24381280]

Almog M, Korngreen A, 2016. Is realistic neuronal modeling realistic? J. Neurophysiol. 2
jn.00360.2016.

Alonso LM, Marder E, 2019. Visualization of currents in neural models with similar behavior and
different conductance densities. Elife 8.

Anon, 2019. CUDA C BEST PRACTICES GUIDE Design Guide.

Ascoli GA, Donohue DE, Halavi M, 2007. NeuroMorpho.Org: a central resource for neuronal
morphologies. J. Neurosci. 27, 9247–9251. [PubMed: 17728438]

Ben-Shalom R, Aviv A, Razon B, Korngreen A, 2012. Optimizing ion channel models using a
parallel genetic algorithm on graphical processors. J. Neurosci. Methods 206, 183–194. [PubMed:
22407006]

Ben-Shalom R, Liberman G, Korngreen A, 2013. Accelerating compartmental modeling on a graphical
processing unit. Front. Neuroinform. 7, 4. [PubMed: 23508232]

Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ, 2017. Opposing effects
on NaV1.2 function underlie differences between SCN2A variants observed in individuals with
autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232. [PubMed: 28256214]

Ben-Shalom R, Balewski J, Siththaranjan A, Baratham V, Kyoung H, Kim KG, Bender KJ, Bouchard
KE, 2019. Inferring neuronal ionic conductances from membrane potentials using CNNs.
bioRxiv:727974.

Byczkowicz N, Eshra A, Montanaro J, Trevisiol A, Hirrlinger J, Kole MHP, Shigemoto R, Hallermann
S, 2019. HCN channel-mediated neuromodulation can control action potential velocity and fidelity
in central axons. Elife 8.

Canavier CC, Landry RS, 2006. An increase in AMPA and a decrease in SK conductance increase
burst firing by different mechanisms in a model of a dopamine neuron in vivo. J. Neurophysiol. 96,
2549–2563. [PubMed: 16885519]

Canavier CC, 1999. Sodium Dynamics Underlying Burst Firing and Putative Mechanisms for the
Regulation of the Firing Pattern in Midbrain Dopamine Neurons: A Computational Approach.

Carnevale NT, Hines ML, 2006. The NEURON Book. Cambridge University Press,.

Chou TS, Kashyap HJ, Xing J, Listopad S, Rounds EL, Beyeler M, Dutt N, Krichmar JL, 2018.
CARLsim 4: an open source library for large scale, biologically detailed spiking neural network
simulation using heterogeneous clusters. In: Proceedings of the International Joint Conference on
Neural Networks. Institute of Electrical and Electronics Engineers Inc.

Clarkson RL, Liptak AT, Gee SM, Sohal VS, Bender KJ, 2017. D3 receptors regulate excitability in a
unique class of prefrontal pyramidal cells. J. Neurosci. 37, 5846–5860. [PubMed: 28522735]

Cohen CCH, Popovic MA, Klooster J, Weil MT, Möbius W, Nave KA, Kole MHP, 2020. Saltatory
conduction along myelinated axons involves a periaxonal nanocircuit. Cell 180, 311–322.e15.
[PubMed: 31883793]

Colquhoun D, Hawkes AG, 1995. A Q-Matrix Cookbook. Single-Channel Recording. Springer US,
Boston, MA, pp. 589–633.

De Schutter E, Bower JM, 1994. An active membrane model of the cerebellar Purkinje cell I.
Simulation of current clamps in slice. J. Neurophysiol. 71, 375–400. [PubMed: 7512629]

Deitcher Y, Eyal G, Kanari L, Verhoog MB, Atenekeng Kahou GA, Mansvelder HD, De Kock CPJ,
Segev I, 2017. Comprehensive morpho-electrotonic analysis shows 2 distinct classes of L2 and L3
pyramidal neurons in human temporal cortex. Cereb. Cortex 27, 5398–5414. [PubMed: 28968789]

Ben-Shalom et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dembrow NC, Chitwood RA, Johnston D, 2010. Projection-specific neuromodulation of medial
prefrontal cortex neurons. J. Neurosci. 30, 16922–16937. [PubMed: 21159963]

Destexhe A, Rudolph M, Paré D, 2003. The high-conductance state of neocortical neurons in vivo. Nat
Rev Neurosci 4, 739–751. [PubMed: 12951566]

Dlesmann M, Gewaltig MO, Aertsen A, 1999. Stable propagation of synchronous spiking in cortical
neural networks. Nature 402, 529–533. [PubMed: 10591212]

Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV,
Plesser HE, Schürmann F, 2019. The Scientific Case for Brain Simulations. Neuron 102, 735–744.
[PubMed: 31121126]

Eklund A, Dufort P, Forsberg D, LaConte SM, 2013. Medical image processing on the GPU - past,
present and future. Med. Image Anal. 17, 1073–1094. [PubMed: 23906631]

Fletcher LN, Williams SR, 2019. Neocortical topology governs the dendritic integrative capacity of
layer 5 pyramidal neurons. Neuron 101, 76–90.e4. [PubMed: 30472076]

Gagn C, 2012. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175.

Gee S, Ellwood I, Patel T, Luongo F, Deisseroth K, Sohal VS, 2012. Synaptic activity unmasks
dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal
cortex. J. Neurosci. 32, 4959–4971. [PubMed: 22492051]

Go AW, Williamson MJ, Xu D, Poole D, Grand S.Le, Walker RC, Götz AW, Williamson MJ, Xu D,
Poole D, Le Grand S, Walker RC, 2012. Routine microsecond molecular dynamics simulations
with AMBER on GPUs. 1. generalized born. J. Chem. Theory Comput. 8, 1542–1555. [PubMed:
22582031]

Gonçalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Öcal K, Bassetto G, Chintaluri C,
Podlaski WF, Haddad SA, Vogels TP, Greenberg DS, Macke JH, 2020. Training deep neural
density estimators to identify mechanistic models of neural dynamics. Elife 9, 1–46.

Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, Koch C, Arkhipov A, 2018.
Systematic generation of biophysically detailed models for diverse cortical neuron types. Nat.
Commun. 9.

Gouwens NW, et al. , 2019. Classification of electrophysiological and morphological neuron types in
the mouse visual cortex. Nat Neurosci 22, 1182–1195. [PubMed: 31209381]

Gurkiewicz M, Korngreen A, 2007. A numerical approach to ion channel modelling using whole-
cell voltage-clamp recordings and a genetic algorithm. PLoS Comput. Biol. 3, e169. [PubMed:
17784781]

Hallermann S, de Kock CPJ, Stuart GJ, Kole MHP, 2012. State and location dependence of action
potential metabolic cost in cortical pyramidal neurons. Nat. Neurosci. 15, 1007–1014. [PubMed:
22660478]

Hausser M, Spruston N, Stuart GJ, 2000. Diversity and dynamics of dendritic signaling. Science (80-)
290, 739–744.

Hay E, Hill S, Schürmann F, Markram H, Segev I, 2011. Models of neocortical layer 5b pyramidal
cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput. Biol. 7,
e1002107. [PubMed: 21829333]

Hay E, Schurmann F, Markram H, Segev I, Schürmann F, Markram H, Segev I, 2013. Preserving
axosomatic spiking features despite diverse dendritic morphology. J. Neurophysiol. 109, 2972–
2981. [PubMed: 23536715]

Hill S, Markram H, Segev I, Druckmann S, Berger TK, Schu F, 2011. Effective stimuli for constructing
reliable neuron models. PLoS Comput. Biol. 7.

Hille B, 1984. Ionic Channels of Excitable Membranes, third. Sinauer Associates, Sunderland, Mass.

Hines M, 1984. Efficient computation of branched nerve equations. Int. J. Biomed. Comput. 15, 69–
76. [PubMed: 6698635]

Hines ML, Carnevale NT, 2000. Expanding NEURON’s repertoire of mechanisms with NMODL.
Neural Comput. 12, 995–1007. [PubMed: 10905805]

Hines ML, Eichner H, Schürmann F, 2008. Neuron splitting in compute-bound parallel network
simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci. 25,
203–210. [PubMed: 18214662]

Ben-Shalom et al. Page 18

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hodgkin AL, Huxley AF, 1952. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Bull. Math. Biol. 117, 25–71 discussion 5–23.

Hu W, Tian C, Li T, Yang M, Hou H, Shu Y, 2009. Distinct contributions of Na(v) 1.6 and Na(v)1.2
in action potential initiation and backpropagation. Nat. Neurosci. 12, 996–1002. [PubMed:
19633666]

Kanari L, Ramaswamy S, Shi Y, Morand S, Meystre J, Perin R, Abdellah M, Wang Y, Hess K,
Markram H, 2019. Objective morphological classification of neocortical pyramidal cells. Cereb.
Cortex 29, 1719–1735. [PubMed: 30715238]

Keren N, Bar-Yehuda D, Korngreen A, 2009. Experimentally guided modelling of dendritic
excitability in rat neocortical pyramidal neurones. J. Physiol. 587, 1413–1437. [PubMed:
19171651]

Kole MHP, Letzkus JJ, Stuart GJ, 2007. Axon initial segment Kv1 channels control axonal action
potential waveform and synaptic efficacy. Neuron 55, 633–647. [PubMed: 17698015]

Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ, 2008. Action potential
generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11,
178–186. [PubMed: 18204443]

Korngreen A, Sakmann B, 2000. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones
from young rats: subtypes and gradients. J. Physiol. 525 (Pt 3), 621–639. [PubMed: 10856117]

Kumbhar P, Hines M, Fouriaux J, Ovcharenko A, King J, Delalondre F, Schürmann F, 2019.
CoreNEURON: An Optimized Compute Engine for the NEURON Simulator.

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC, 2010. Regulation of firing
frequency in a computational model of a midbrain dopaminergic neuron. J. Comput. Neurosci. 28,
389–403. [PubMed: 20217204]

Li A, Song SL, Chen J, Li J, Liu X, Tallent N, Barker K, 2019. Evaluating Modern GPU Interconnect:
PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect.

London M, Häusser M, 2005. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532. [PubMed:
16033324]

Magalhães BRC, Sterling T, Hines M, Schürmann F, 2019. Asynchronous branch-parallel simulation
of detailed neuron models. Front. Neuroinform. 13.

Magee JC, Cook EP, 2000. Somatic EPSP amplitude is independent of synapse location in
hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903. [PubMed: 10966620]

Mainen ZF, Sejnowski TJ, 1996. Influence of dendritic structure on firing pattern in model neocortical
neurons. Nature 382, 363–366. [PubMed: 8684467]

Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH, 1996. Electrotonic architecture
of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J.
Neurophysiol. 76, 1904–1923. [PubMed: 8890303]

Mäki-Marttunen T, Halnes G, Devor A, Metzner C, Dale AM, Andreassen OA, Einevoll GT, 2018.
A stepwise neuron model fitting procedure designed for recordings with high spatial resolution:
application to layer 5 pyramidal cells. J. Neurosci. Methods 293, 264–283. [PubMed: 28993204]

Markram H, et al. , 2015. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–
492. [PubMed: 26451489]

Maršálek P, Koch C, Maunsell J, 1997. On the relationship between synaptic input and spike output
jitter in individual neurons. Proc Natl Acad Sci U S A 94, 735–740. [PubMed: 9012854]

McDougal R. a, Morse TM, Hines ML, Shepherd GM, 2015. Modelview for ModelDB: online
presentation of model structure. Neuroinformatics 13, 459–470. [PubMed: 25896640]

McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM,
Hines ML, 2017. Twenty years of ModelDB and beyond: building essential modeling tools for the
future of neuroscience. J. Comput. Neurosci. 42, 1–10. [PubMed: 27629590]

Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M, 2013.
Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor
of K v 7.2 potassium channel subunits. Proc. Natl. Acad. Sci. USA 110, 4386–4391. [PubMed:
23440208]

Ben-Shalom et al. Page 19

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Migliore M, Migliore R, 2012. Know your current Ih: interaction with a shunting current explains
the puzzling effects of its pharmacological or pathological modulations Attali B, ed. PLoS One 7,
e36867. [PubMed: 22606301]

Milstein AD, Bloss EB, Apostolides PF, Vaidya SP, Dilly GA, Zemelman BV, Magee JC, 2015.
Inhibitory gating of input comparison in the CA1 microcircuit. Neuron 87, 1274–1289. [PubMed:
26402609]

Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H, 2001. Low-threshold
potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the
dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res. 891, 106–115. [PubMed:
11164813]

Nandi A, Chartrand T, Geit W. Van, Buchin A, Yao Z, Lee SY, Wei Y, Kalmbach B, Lee B, Lein
E, Berg J, Sümbül U, Koch C, Tasic B, Anastassiou C.Nandi, A., Chartrand T, Van Geit, W.,
Buchin A, Yao Z, Lee SY, Wei Y, Kalmbach B, Lee B, Lein E, Berg J, Sümbül U, Koch C,
Tasic B, Anastassiou C, 2020. Single-neuron models linking electrophysiology, morphology and
transcriptomics across cortical cell types. bioRxiv:2020.04.09.030239.

Narayanan R, Johnston D, 2008. The h channel mediates location dependence and plasticity of
intrinsic phase response in rat hippocampal neurons. J. Neurosci. 28, 5846–5860. [PubMed:
18509046]

Nocedal J, Wright S, 2006. Numer. Optim.

Nvidia C, 2018. Cuda c Programming Guide, Version 9.1. NVIDIA Corp.

Pachitariu M, Steinmetz N, Kadir S, Carandini M, D HK, 2016. Kilosort: realtime spike-sorting for
extracellular electrophysiology with hundreds of channels. bioRxiv: 061481.

Payne JL, Sinnott-Armstrong NA, Moore JH, 2010. Exploiting graphics processing units for
computational biology and bioinformatics. Interdiscip. Sci. 2, 213–220. [PubMed: 20658333]

Poirazi P, Brannon T, Mel BW, 2003. Pyramidal neuron as two-layer neural network. Neuron 37,
989–999. [PubMed: 12670427]

Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr
O, Feser F, Brisson E, Kollet S, Schmidli J, Van Lipzig NPM, Leung R, 2015. A review on
regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev.
Geophys. 53, 323–361. [PubMed: 27478878]

Prinz AA, Billimoria CP, Marder E, 2003. Alternative to hand-tuning conductance-based models:
construction and analysis of databases of model neurons. J. Neurophysiol. 90, 3998–4015.
[PubMed: 12944532]

Prinz AA, Bucher D, Marder E, 2004. Similar network activity from disparate circuit parameters. Nat.
Neurosci. 7, 1345–1352. [PubMed: 15558066]

Rainville F. De, Fortin F, Gardner M, Parizeau M, Gagné C, 2012. DEAP: a python framework for
evolutionary algorithms. Companion Proc. Genet. Evol. Comput. Conf 85–92.

Rall W, 1962a. Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci. 96, 1071–1092.
[PubMed: 14490041]

Rall W, 1962b. Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167. [PubMed:
14490040]

Ramaswamy S, Courcol JD, Abdellah M, Adaszewski SR, Antille N, Arsever S, Atenekeng G, Bilgili
A, Brukau Y, Chalimourda A, Chindemi G, Delalondre F, Dumusc R, Eilemann S, Gevaert ME,
Gleeson P, Graham JW, Hernando JB, Kanari L, Katkov Y, Keller D, King JG, Ranjan R, Reimann
MW, Rössert C, Shi Y, Shillcock JC, Telefont M, Van Geit W, Diaz JV, Walker R, Wang Y,
Zaninetta SM, DeFelipe J, Hill SL, Muller J, Segev I, Schürmann F, Muller EB, Markram H, 2015.
The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Front.
Neural Circuits 9, 44. [PubMed: 26500503]

Roth A, Häusser M, 2001. Compartmental models of rat cerebellar Purkinje cells based on
simultaneous somatic and dendritic patch-clamp recordings. J. Physiol. 535, 445–472. [PubMed:
11533136]

Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC, Go AW, Poole D, Grand S.Le,
Walker RC, 2013. Routine microsecond molecular dynamics simulations with AMBER on GPUs.

Ben-Shalom et al. Page 20

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9, 3878–3888. [PubMed:
26592383]

Schmidhuber J, 2015. Deep Learning in neural networks: an overview. Neural Netw. 61, 85–117.
[PubMed: 25462637]

Schneider-Mizell CM et al. , 2020. Chandelier cell anatomy and function reveal a variably distributed
but common signal. bioRxiv:2020.03.31.018952.

Shu Y, Yu Y, Yang J, McCormick D a, 2007. Selective control of cortical axonal spikes by a slowly
inactivating K+ current. Proc. Natl. Acad. Sci. USA 104, 11453–11458. [PubMed: 17581873]

Smith SL, Häusser M, 2010. Parallel processing of visual space by neighboring neurons in mouse
visual cortex. Nat. Neurosci. 13, 1144–1149. [PubMed: 20711183]

Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ, Clarkson RL, Sanders SJ, Bender KJ, 2019.
The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the
prefrontal cortex. Neuron.

Spruston N, 2008. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci.
9, 206–221. 〈https://www.nature.com/articles/nrn2286〉. [PubMed: 18270515]

Stone HS, 1973. An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. J. ACM 20, 27–38.

Valero-Lara P, Martínez-Pérez I, Sirvent R, Martorell X, Peña AJ, 2018. cuThomasBatch and
cuThomasVBatch, CUDA Routines to compute batch of tridiagonal systems on NVIDIA GPUs.
In: Concurrency Computation.

Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J-D, Muller E, Schürmann F, Segev
I, Markram H, 2016. BluePyOpt: Leveraging open source software and cloud infrastructure to
optimise model parameters in neuroscience. arXiv 10:1–18.

Volkov V, Demmel JW, 2008. Benchmarking GPUs to tune dense linear algebra. In: 2008 SC -
International Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, pp 1–11.

Vooturi DT, Kothapalli K, Bhalla US, 2018. Parallelizing Hines matrix solver in neuron simulations
on GPU. In: Proceedings of the - 24th IEEE Int Conf High Perform Comput HiPC 2017 2017-
December, pp. 388–397.

Whitehead N, 2011. Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA
GPUs.

Yavuz E, Turner J, Nowotny T, 2016. GeNN: A code generation framework for accelerated brain
simulations. Sci. Rep. 6, 1–14. [PubMed: 28442746]

Yin L, Zheng R, Ke W, He Q, Zhang Y, Li J, Wang B, Mi Z, Long Y. sheng, Rasch MJ, Li T, Luan G,
Shu Y, 2018. Autapses enhance bursting and coincidence detection in neocortical pyramidal cells.
Nat. Commun. 9, 1–12. [PubMed: 29317637]

Zamponi GW, Lory P, Perez-Reyes E, 2010. Role of voltage-gated calcium channels in epilepsy. Pflug.
Arch. Eur. J. Physiol. 460, 395–403. 〈https://idp.springer.com/authorize/casa?
redirect_uri=https://link.springer.com/article/10.1007/s00424-009-0772-
x&casa_token=w42m9NgEtgcAAAAA:mRvrqQi8F18ax7hUuXOhRian5voI0wG33bvVOj2CgJV
86srCg7ISBBYP4SmpR_tqw-NCMpEI2Vc8fmW1cKk〉 [Accessed June 30, 2020].

Zhang P, Holk E, Matty J, Misurda S, Zalewski M, Chu J, McMillan S, Lumsdaine A, 2015. Dynamic
parallelism for simple and efficient GPU graph algorithms. In: Proceedings of the 5th Workshop
on Irregular Applications Architectures and Algorithms - IA3 ‘15. ACM Press, New York, New
York, USA, pp 1–4.

Ben-Shalom et al. Page 21

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nature.com/articles/nrn2286
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00424-009-0772-x&casa_token=w42m9NgEtgcAAAAA:mRvrqQi8F18ax7hUuXOhRian5voI0wG33bvVOj2CgJV86srCg7ISBBYP4SmpR_tqw-NCMpEI2Vc8fmW1cKk
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00424-009-0772-x&casa_token=w42m9NgEtgcAAAAA:mRvrqQi8F18ax7hUuXOhRian5voI0wG33bvVOj2CgJV86srCg7ISBBYP4SmpR_tqw-NCMpEI2Vc8fmW1cKk
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00424-009-0772-x&casa_token=w42m9NgEtgcAAAAA:mRvrqQi8F18ax7hUuXOhRian5voI0wG33bvVOj2CgJV86srCg7ISBBYP4SmpR_tqw-NCMpEI2Vc8fmW1cKk
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00424-009-0772-x&casa_token=w42m9NgEtgcAAAAA:mRvrqQi8F18ax7hUuXOhRian5voI0wG33bvVOj2CgJV86srCg7ISBBYP4SmpR_tqw-NCMpEI2Vc8fmW1cKk

Fig. 1.
Optimizing biophysical neuronal models increase with their complexity. Biophysical

neuronal model complexity depends on three factors (A–C) which determine computational

costs required to simulate and fit models to empirical data (optimization) (D and E). A:

Morphological complexity: The abstraction of the neuronal morphology ranges from a point

neuron, to a simplified morphology, and ultimately toward different methods to reconstruct

neuronal morphology with high resolution. B: Compartmental complexity: Compartmental

models vary in complexity both in number of compartments and the content of each

compartment. Top: Single compartment with basic, conductances required for spiking and

a resting membrane potential. Middle: Multi-compartmental model where ion-channels

are aggregated under several conductances e.g. all different voltage gated potassium

channels are represented in a slow and fast inactivating channel (Korngreen and Sakmann,

2000). Bottom: High resolution morphology with detailed representation to all channels

sub-types in each compartment. C: Single-channel complexity: The overall conductance in

compartmental models is formalized either with Hodgkin-Huxley equations or with Markov-

based models. When fitting a model to empirical data, several parameters can be varied. Top:

only the maximal conductance in a Hodgkin-Huxley formulation. Middle: coefficients added

to Hodgkin-Huxley equations (time constants, voltage dependence). Bottom: In Markov-

based channels the transition coefficients can be varied. D: Optimizing a model (fitting

model to data) depends on the complexity of the model and number of free parameters.

When complexity and number of free parameters require compute times that exceed a few

days, it becomes impractical to use high resolution models. E: Developing tools to accelerate

simulation and optimization time will enable us to use more complicated and biophysical

relevant models.

Ben-Shalom et al. Page 22

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
NeuroGPU reduces simulation run-time of complex neurons by orders of magnitude without

compromising accuracy.NeuroGPU reduces simulation run-time of complex neurons by

orders of magnitude without compromising accuracy. A: Morphology of a BBP portal

layer 5 neocortical pyramidal cell (Ramaswamy et al., 2015). Dendrite in black, axon in

red. B: Top: injected current at the soma. Middle: NEURON voltage response as recorded

at the soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in

voltage between NEURON and NeuroGPU. C: Top: APs generated per current injection

intensity in the soma. Middle, bottom: Peak and average voltage difference between the

voltage response in NEURON and NeuroGPU. Red circles denote examples in B. D: Top:

Comparing PC model runtimes for the different simulators: black – NEURON, grey MPI-

Neuron (32 processors) green – CoreNeuron, blue – NeuroGPU. X-axis in log2 scale, Y-axis

in log10 scale. Bottom: Speedup compared to NEURON. Note that the run time for 214

neurons using CoreNeuron is extrapolated (see methods). E: Top: Runtime for the model on

1–4 GPUs (Tesla V100) on the same node. Bottom: Speedup compared to NEURON. F–J:

Same as A-D, but for the chandelier cell model.

Ben-Shalom et al. Page 23

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
NeuroGPU enables rapid exploration of parameter space in complex pyramidal neuron

model. A: Each point in the grid represents the number of APs in the relevant model. Points

on the axis represent the varied conductances of Nav and Kv at the axon in the range of

[0,10] and [0,20] S/cm2, respectively. B: Example voltage responses for chosen models from

A. Colors match to the corresponding model location.

Ben-Shalom et al. Page 24

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
NeuroGPU accelerates evolutionary optimization for fitting models to neuronal data. A:

Voltage traces obtained from optimization (worst case from population of 100: red; best

case from population of 10,000: cyan) compared to ground truth (black). B: Optimizations

examples using DEAP with different sizes of populations. Four Optimizations with different

random starting population over 50 generations. Y axis is the error from the target

voltage as described in the methods section. Lower values denote less error from target

data. C: Comparing runtimes for optimizations using NeuroGPU and NEURON (linearly

extrapolated from 5 generations). Circles are color coded for population size as in A, and

represent mean ± SEM. D: Best score in each optimization in A. Circles and error bars as in

C.

Ben-Shalom et al. Page 25

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
NeuroGPU fits BBP PC model to empirical data. A: Left: morphology of L5 thick-tufted

pyramidal neuron from somatosensory cortex (Ramaswamy et al., 2015). Right: NeuroGPU

fits (green traces) the L5 PC model to empirical data recorded from an L5 prefrontal cortex

pyramidal neuron of a mouse (Black Traces) with different stimulus intensity 200–340pA

(Spratt et al., 2019). B: Left: Prefrontal-cortex layer 5 pyramidal neuron morphology (Ascoli

et al., 2007; Yin et al., 2018). The morphology of BBP PC model was modified to that of the

prefrontal neuron and fitted to the same data as in A. C: Number of APs per 300 ms of step

stimulation for different models of layer 5 pyramidal neuron. Note that both revised models

overlap target data.

Ben-Shalom et al. Page 26

J Neurosci Methods. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Methods
	Hardware
	Software
	Importing NEURON models
	Translating mechanisms to CUDA and memory assignment
	Extracting simulation properties from NEURON
	Solving the tridiagonal matrix
	Benchmarking
	Multi-compartmental models
	Optimization algorithms
	Support

	Results
	NeuroGPU Implementation
	NeuroGPU Performance
	Exploring neuronal model parameter space
	Fitting models to surrogate and empirical data

	Discussion
	Future goals for NeuroGPU

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.

