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Problem Description: Detect faulty readings of the sensor data Problem Description: Detect faulty readings of the sensor data streamstream

Proposed Solution: Use consistency among sensors to identify faProposed Solution: Use consistency among sensors to identify faultsults

Optimal and Heuristic Techniques for Fault DetectionOptimal and Heuristic Techniques for Fault Detection
Kannika Sikangwan, Farinaz Koushanfar, Miodrag Potkonjak

Computer Science Department, CENS

Introduction: Introduction: Useful information may not be extracted from the sensor networksUseful information may not be extracted from the sensor networks due to some faulty readingsdue to some faulty readings

Learning and Testing 
• use p% of data to create a model 

(probabilistic, statistical)
• use the rest of data to test the model fit

The error model enable fault detection

Model: Markov Chain-based, Statistical, Univariate
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Flow of the Error Modeling Method

• Markov property: conditional independence of future on 
the past. 

• Set of time dependent random vars (states).
• Markov chain model:

– State qt at time t is one of a finite number of states in 
the range {s1,...,sM}

– State sequence vect. Q=(q0,...,qN),t=1,..,N
– Nth order Markov chain: Probability of state qt at t

conditioned on all N previous states up to t-1
P( qt=si |q0=sj0, q1=sj1, ... , qt-1=sj(t-1)) 
= P( qt=si | qt-n=sj(t-n), ... , qt-1=sj(t-1))

Basic Markov Chain Model

• Semi-Markov models ensure lagged autocorrelation are 
properly captured w/o a significant overhead on 
size/complexity of models

• Semi-Markov models are a hybrid combination of 
state-space model and probability density function 
(PDF) for each state

• The continuous PDF at each discrete state quantifies 
the conditional probability of staying in the same state   
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1st order Markov Model

Semi Markov Chain Model

States of data: Correct, Faulty, Missing

Sensor data streams tend to stay in the same state for more 
than one epoch

Nonparametric Probability Density 
Functions (PDFs)

• For simplicity, assume a two state system: (s1) 
Correct, (s2) Faulty

• Build a histograms for consecutive faulty and 
consecutive correct data

• Apply nonparametric statistical kernel 
smoothing techniques to smooth the histogram
– Kernel Smoothing: Silverman and Green, 

1986
• Example: 1st order Semi Markov model: 
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1st order Semi Markov Model

Histogram of consecutive faults
Probability density function 
(PDF)

Smooth It….

Nonparametric PDF avoid strong prior assumptions about 
distribution of data

Test in RNG, if no prediction of any correlated sensor using 
the measurement of sensor -> Faulty

Statistical Model

CIR Prediction of Sensors on Nodes n1 and n2

Temperature Humidity Light

CIR Prediction Error on Temperature Sensors
• Prediction error over all nodes:

• Limiting number of parameters - AIC criteria

NLP of consistent model

• Use the discrepancy between the predicted value from 
model and measurement

n    n
∑ ∑ (prediction errorij – distance ij)2

j=i    i=1

n   n
∑ ∑ ( max ((predij-reali), (predji-realj))- sqrt((xi-xj)2+(yi-yj)2)2

j=i   i=1

(xi, yi) reading i in new space

Distance: distance between nodes in new space

Non-parametric Histogram (L1 error) 
Prediction value is the median of all look-up-table value 

of predicting node

• Map the distance between nodes in a new space with 
weight on faulty readings

• Use NLP to minimize prediction errors among all 
nodes

• Faulty nodes are the nodes outside of cluster

Detect faulty reading 
at one time snapshot

Integrity of collected data through fault detection
• Identify the source of faulty and related missing data

– Lossy wireless network links
– Unpredictable impact of environment
– Hardware and software faults

Faulty Data Detection and Correction Problem
• NP-complete problems

Detection and correction of faulty sensor data
• Primary principle: Separation of concerns
• Identify and address two modular phases

– Inter-sensor model building and validation
– Fault detection using local and global consistency checking

Two phase process
• Inter-sensor prediction models for each sensor

– Built using non-parametric statistical modeling methods
• No assumptions about the underlying distribution of the 

variables
– Creation of consistency graph

• Consistency graph utilized for fault-detection
– Combinatorial optimization problem

• Solved using both optimal and heuristic approaches

Mapping from An Additive 
Model to A Set of Classifiers

X2
Y

X3

X1

X5

X4

Y*1=f1(X1)

Y*3=f3(X3)
Y*2=f2(X2)

Y*4=f4(X4)
Y*5=f5(X5)

G1(rn)
G2(rn)

G4(rn)
G3(rn)

G5(rn)

• At t=t1, sensors X1,…,XM
measure values x1(t1), 
x2(t1),…, xM(t1)

• Define a range, 
– Rℵ=ℵ{fi (x(t1)}

• For each rni∈ Rℵ,
– If (fi(xi(t1))< rn)

• Gi(xi(t1))=0

– Else
• Gi(xi(t1))=1

Univariate Modeling
• Given the time series of sensor readings, can a sensor Y be 

predicted from readings at sensor X (i.e.,Y*=f(X)) s.t. an 
error norm is minimized?

• Commonly used forms of error norm

Note: the regression approach is transparent
to the ensemble learning method
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• Hidden covariates isotonicity constraint
• Combinatorial isotonic regression (CIR)
• Flexibility of the combinatorial domain

– Optimally constrain the number of level sets
– Controlling the slopes, imposing additional constrains such 

as convexity, symmetry, etc.

Univariate CIR Approach
• Histogram error matrix E, eij = εp(xi, ŷj)
• Build the cumulative error matrix CE
• Map the problem to combinatorial domain

1.

Using Probabilities to Identify Faulty Measurements

• Measurement xi is faulty with a probability Qi (0≤Qi≤1)
• Qtotal indicates total number of faulty measurements 
• Qi’s are added to the eq’s as optimization variables
• OF: 
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Method 2: Cross-Validation by Weighting the 
Discrepancies
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Faults ~8% are faulty in Intel data

s.t. (1≤i≤n)
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Finding the intersection points
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Finding intersection of the line 
y=400 with 2K% lines

The points that are far from the 
calibration curve have a high 
error

Q: The calculated probability 
that sensor has measurement 
with specific error

CDF of the error (left) was 
formed from intersection 
points above. PDF of the 
error is by differentiation 
and smoothing CDF (right)

5.0 5.2 5.4 5.6 5.8

0.
2

0.
4

0.
6

0.
8

1.
0

sensor value

cu
m

ul
at

ive
 p

ro
ba

bi
lity

 o
f e

rro
r

CDF of error, measured value = 400
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PDF of error, measured value = 400

Extracting the Error Densities

Comparison of Different Models

Boxplots of the prediction errors: (1) Linear model, (2) linear model 
and logarithmic transform, (3) non parametric –L1, (4) non parametric 
– L2, (5) loess – span=0.2, (6) loess – span=0.3, (7) loess – span=0.4.




