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Introduction: Useful information may not be extracted from the sensor networks due to some faulty readings
Integrity of collected data through fault detection

¢ ldentify the source of faulty and related missing data
— Lossy wireless network links
— Unpredictable impact of environment
— Hardware and software faults

Problem Description: Detect faulty readings of the sensor data stream
Detection and correction of faulty sensor data

Faulty Data Detection and Correction Problem
e NP-complete problems

e Primary principle: Separation of concerns
e Identify and address two modular phases
— Inter-sensor model building and validation
— Fault detection using local and global consistency checking

Two phase process
e Inter-sensor prediction models for each sensor

— Built using non-parametric statistical modeling methods

* No assumptions about the underlying distribution of the
variables

— Creation of consistency graph
» Consistency graph utilized for fault-detection
— Combinatorial optimization problem
+ Solved using both optimal and heuristic approaches

Proposed Selution: Use consistency among sensors to identify faults

Learning and Testing
« use p% of data to create a model
(probabilistic, statistical)
« use the rest of data to test the model fit
The error model enable fault detection

Model: Markov Chain-based, Statistical, Univariate

Basic Markov Chain Model
« Markov property: conditional independence of future on
the past.
«  Set of time dependent random vars (states).
*  Markov chain model:
— State g, at time t is one of a finite number of states in
the range {s; ...y}
State sequence vect. Q=(qp,-..,qy).t=1,..,N
N order Markov chain: Probability of state g, at t
conditioned on all N previous states up to t-1
P(0=8i185=Sj0: Dr=8)1, -+ Ga=Sjr))
=P(4S,| =Sy - Ger=Sy0)
Semi Markov Chain Model
Semi-Markov models ensure lagged autocorrelation are

properly captured w/o a significant overhead on
size/complexity of models

Semi-Markov models are a hybrid combination of
state-space model and probability density function
(PDF) for each state

The continuous PDF at each discrete state quantifies
the conditional probability of staying in the same state

States of data: Correct, Faulty, Missing

Sensor data streams tend to stay in the same state for more
than one epoch

15t order Markov Model

Nonparametric Probability Density
Functions (PDFs)

For simplicity, assume a two state system: (s,)
Correct, (s,) Faulty

Build a histograms for consecutive faulty and
consecutive correct data
Apply nonparametric statistical kernel
smoothing techniques to smooth the histogram
— Kernel Smoothing: Silverman and Green,
1986

Example: 1t order Semi Markov model:

Probability density function
Histogram of consecutive faults (PDF)

| Smooth It

ﬁ PDF,

t PDF,

Nonparametric PDF avoid strong prior assumptions about
distribution of data

Test in RNG, if no prediction of any correlated sensor using
the measurement of sensor -> Faulty
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Boxplots of the prediction errors: (1) Linear model, (2) linear model
and logarithmic transform, (3) non parametric —L,, (4) non parametric
L, (5) loess - span=0.2, (6) loess — span=0.3, (7) loess — span=0.4.

ﬂven the time series of sensor readings, can a sensor Y be

L

Univariate Modeling Mapping from An Additive\
Model to A Set of Classifiers
o Att=ty, sensors X,...,. Xy
measure values X,(t,),
Xolt), o Xt
Define a range,
- REMAW}
« Foreachr,;e Ry,
- IF(O(t)< 1)
* G()=0
— Else
* Gikxit)=1

predicted from readings at sensor X (i.e., Y*=f(X)) s.t. an
error norm is minimized?

+  Commonly used forms of error norm

!
L =Qwitly®-y* )" 1<p<eo

o

T .
L, =max_w(t)| y(t)-y* (®)] p=o
1 Note: the regression approach is transparent
to the ensemble leaming method

+ Hidden covariates < isotonicity constraint
+  Combinatorial isotonic regression (CIR)
«  Flexibility of the combinatorial domain
~ Optimally constrain the number of level sets

— Controlling the slopes, imposing additional constrains such Y*=h (X)) Gy(ry)
as convexity, symmetry, etc. Y*,=f,(X,) Gy(ry)
Y*5=fy(X3) Gy(ry)

Univariate CIR Approach Y*,=4(X,) G,(r,)
Histogram = error matrix E, & = &y(x; ¥;) o =fo(X) I— G (1)

Build the cumulative error matrix CE
Map the problem to combinatorial domain
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CIR Prediction of Sensors on Nodes n, and n,

Extracting the Error Densities

Finding the ntersecton points
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Q: The calculated probability
that sensor has measurement
with specific error
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CIR Prediction Error on Temperature Sensors

Prediction error over all nodes
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Limiting number of parameters - AIC criteria

ﬁng Probabilities to Identify Faulty Measuremh

« Measurement x; is faulty with a probability Q; (0<Q;<1)
Qyotar indicates total number of faulty measurements
* Qs are added to the eq’s as optimization variables
+ OF: max H P PP aaP s
L = QIf(X + g7 (Pu) Y Yo Vi) 1S 85" (Pyy)
s.t. (1<i<n)
2 1Qi-Q) < 9;M(Psy)

5 1Qu - 210115 051 (Pus)

Method 2: Cross-Validation by Weighting the
Discrepancies

max /PPy [1 PuPas
[
Faults ~8% are faulty in Intel data

/

Non-parametric Histogram (L1 error)

Prediction value is the median of all look-up-table value
of predicting node NLP of consistent model
« Map the distance between nodes in a new space with

weight on faulty readings «  Use the discrepancy between the predicted value from
L - model and measurement

» Use NLP to minimize prediction errors among all non

nodes > 2 (prediction error; — distance ;)

« Faulty nodes are the nodes outside of cluster ==t

Distance: distance between nodes in new space

\ nn
2 3 (max ((pred;-real;), (predj-real)))- squ((x‘-x‘)2+(y‘-y‘)2)2

Detect faulty reading j=i =

at one time snapshot (xi, yi) reading i in new space
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