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Abstract: Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibro-
min 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities,
attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable
model for understanding gene–brain–behavior relationships. While mouse models have elucidated
molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is
known about functional brain architecture in human subjects with NF1. To address this question, we
used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrin-
sic network structure of 30 NF1 participants compared with 30 healthy demographically matched con-
trols during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify
differences in local connectivity (edge strength) and modularity structure, in combination with traditional
global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior–
posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy con-
trols. Further, edge strength and modular clustering indices were correlated with IQ and internalizing
symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain
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connectivity; further investigation into the functional consequences of these alterations in both humans
and in animal models is warranted. Hum Brain Mapp 36:4566–4581, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: functional connectivity; graph theory; Ras/MAPK
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INTRODUCTION

Neurofibromatosis type I (NF1) is a genetic disorder
caused by heterozygous mutations in the neurofibromin 1
gene at locus 17q11.2 [Barker et al., 1987; Cawthon et al.,
1990; Viskochil et al., 1990; Wallace et al., 1990]. The intact
neurofibromin 1 protein is expressed during early embry-
onic neural development and plays a critical role in central
nervous system (CNS) neural differentiation by regulating
the p21Ras GTP-ase signaling pathway [North, 2000;
Trov�o-Marqui and Tajara, 2006]. Over 1000 mutations in
the NF1 gene have been documented, although a clear
genotype–phenotype correlation has yet to be established
[Friedman, 1999; van Minkelen et al., 2014]. NF1 is one of
the most common human genetic disorders (prevalence
1:3,500) that affects neurological, cognitive, social, and
physical development [Hyman et al., 2006; Kayl and
Moore, 2000; Pride et al., 2013]. Individuals with NF1
experience highly variable phenotypic expression of physi-
cal symptoms, including neurofibromas (benign tumors),
skeletal malformations, and Lisch nodules [Kayl and
Moore, 2000]. Despite typically having intelligence quo-
tients (IQ) in the average to low-average range, children
with NF1 have high rates of specific learning disabilities
[Hyman et al., 2006], autism spectrum disorders [Garg
et al., 2013], and attention deficits [Hyman et al., 2005].

As a single-gene disorder, NF1 represents a valuable
model for understanding gene–brain–behavior relations.
Mouse models have provided insight into the molecular
and cellular mechanisms underlying cognitive deficits in
NF1. In a seminal paper, Costa et al. showed that the spa-
tial learning deficits seen in mice with NF1 mutations are
caused by an increase in the p-21 Ras signaling pathway.
By pharmacologically decreasing Ras levels, the learning
deficits were rescued [Costa et al., 2002]. Later studies
showed that the increased Ras levels led to increases in
MAPK activity, enhanced GABA release, and deficits in
long-term potentiation that likely contribute to the learning
deficits in mice [Cui et al., 2008]. Furthermore, recent stud-
ies have substantiated the finding that hyperactive Ras/
mitogen-activated protein kinase (MAPK) cascade is crit-
ically involved in many pathogenic features of NF1
[Sharma et al., 2013]. More work is needed to elucidate the
mechanisms by which these signaling alterations impact
neural connectivity in individuals with NF1.

In a parallel line of investigation, neuroimaging studies
have recently begun to examine structural and functional
properties of the NF1 brain to understand the neural conse-
quences of NF1 mutations in humans. Enlarged brain vol-

ume is one of the most consistent neuroanatomic findings in
individuals with NF1, with about 50% of individuals meet-
ing criteria for macrocephaly [Greenwood et al., 2005;
Moore et al., 2000; Payne et al., 2010]. This is likely attribut-
able to disrupted cell proliferation and differentiation due to
mutation of the neurofibromin protein [Lee et al., 2010]. This
finding is notable given that early brain overgrowth is one
of the earliest signs of autism [Courchesne et al., 2003],
which is present at elevated rates in individuals with NF1
and other disorders involving mutations in the Ras/MAPK
signaling pathway [“Ras-opathies”; Adviento et al., 2014].
Some studies have attributed this enlargement in NF1 indi-
viduals to globally increased white matter volume [Dubov-
sky et al., 2001; Margariti et al., 2007]. A recent diffusion
tensor imaging (DTI) investigation revealed disproportion-
ate disruption of white matter tracts connecting frontal
regions in young adults with NF1, as well as an overall
increase in diffusivity [Karlsgodt et al., 2012]. Together,
these studies suggest that thicker, less organized white mat-
ter pathways may contribute to the increased brain size in
individuals with NF1 [Alkan et al., 2005; Eastwood et al.,
2001; Tognini et al., 2005].

Much less is known about the functional consequences
of these structural abnormalities. Limited task-based func-
tional magnetic resonance imaging (fMRI) studies suggest
that individuals with NF1 recruit vastly different brain
regions than controls to process the same stimuli. Violante
et al. (2012) found that NF1 individuals showed deficient
activation in visual cortex during a low-level visual proc-
essing paradigm, while other studies have observed
reduced activation in frontal regions in NF1 subjects dur-
ing reading, visuo-spatial [Billingsley et al., 2003, 2004],
and spatial working memory tasks [Shilyansky et al.,
2010]. Although task studies provide insight into particular
behavioral deficits, the more fundamental question
remains: how does the resting NF1 brain compare to that
of healthy controls? This can be addressed via resting state
functional connectivity (rs-fcMRI), a method for evaluating
intrinsic network activity in the brain while a subject is
alert but not performing an explicit task [Biswal et al.,
1995; Dijk et al., 2010]. Only one previous study has exam-
ined neural activity in individuals with NF1 during
“pseudo-resting-state” activity (i.e., subjects are presented
with a task, but task-related activation is removed). Find-
ings suggested that use of the drug Lovastatin increased
previously deficient long-range connectivity in seven NF1
subjects [Chabernaud et al., 2012]. However, lack of demo-
graphically matched controls limited interpretability of
these intriguing findings. Without a demographically well-
matched control group, it is impossible to quantify the
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extent and magnitude of functional connectivity alterations
in NF1 patients. To our knowledge, the only existing study
of resting functional connectivity in NF1 [Chabernaud
et al., 2012] did not include a control group, and thus
could only qualitatively compare their findings to those of
prior studies to infer “abnormal” baseline connectivity in
the patient group.

One of the primary goals of rs-fcMRI is to quantify the
functional relationship between multiple brain regions
(nodes) by constructing a network of significant relation-
ships between regions (edges). Once the subject- and
group-level network variance is accounted for [Narayan
and Allen, 2013], a network graph is estimated and local
properties such as edge strength can be compared between
groups [Tomson et al., 2013]. Further application of graph
theoretical techniques are applied to the network to char-
acterize the global organization and structure of the result-
ing network [Bullmore and Sporns, 2009, 2012; Rubinov
and Sporns, 2010; van den Heuvel and Sporns, 2011].
Graph theory has been recently applied to many studies in
healthy individuals and in various clinical populations
[Buckner et al., 2009; Delmonte et al., 2013; Lynall et al.,
2010] to quantify the location of hubs, characterize the
makeup of modules (neighborhoods), and network flexibil-
ity during learning [Bassett et al., 2011]. This technique
provides a unique window into how brain regions com-
municate and how such communication may break down
in the context of a disease that may disrupt neural connec-
tivity like NF1 [Buckner et al., 2009; Lynall et al., 2010].

This study represents, to our knowledge, the first rs-
fcMRI investigation to study the functional architecture of
the resting brain in subjects with NF1 relative to demo-
graphically matched healthy controls. Here we sought to
elucidate how the intrinsic network structure of the NF1
brain differs from typically developing controls by infer-
ring network structure, comparing the strength of individ-
ual edges, and calculating graph theoretical metrics from
true resting state data. In addition to furthering our under-
standing of NF1, our analysis also applies novel methods
for estimating network structure and evaluating differen-
ces in edge strength between groups. We demonstrate that
these methods improve upon existing statistical frame-
works and are robust to the uncertainty inherent in rs-
fcMRI data.

METHODS

Subjects

Thirty participants diagnosed with NF1 (mean age
27 6 12; 12 males) and 30 healthy controls (mean age
29 6 11; 16 males) were recruited for this study (Table I).
All individuals provided written consent for participation,
as approved by the Institutional Review Board of the Uni-
versity of California, Los Angeles (UCLA), after study pro-
cedures were fully explained. NF1 participants were
diagnosed with NF1 by a physician familiar with the dis-
order and recruited via IRB-approved advertisements at
UCLA. All NF1 participants fulfilled the diagnostic criteria
specified by the National Institutes of Health Consensus
Development Conference (1987), as confirmed by clinical
interview and physical examination. Healthy controls were
recruited through advertisements at UCLA for ongoing
research studies. Controls did not have any Axis-I psychi-
atric disorders or medical conditions that might affect cog-
nitive function, as assessed by the Structured Clinical
Interview for DSM-IV [First et al., 1997]. All participants
were screened for significant substance use in the last 6
months, history of head injury, mental retardation
(IQ< 70), and/or insufficient fluency in the English lan-
guage. All participants received a brief cognitive assess-
ment on the day of the MRI scan, the Wechsler
Abbreviated Scale of Intelligence [WASI, 1999]. NF1 partic-
ipants younger than 18 completed the standard psycholog-
ical assessment tool, the Child Behavioral Checklist
[CBCL; Achenbach, 1992]. NF1 participants over 18 com-
pleted the Youth Adult Self Report [YASR; Achenbach,
1997], derived directly from the CBCL and adapted for
participants older than 18.

Magnetic Resonance Imaging Acquisition

All subjects were scanned at either the Ahmanson–Love-
lace Brain Mapping Center (BMC) or the Staglin Center
for Cognitive Neuroscience (CCN) in Los Angeles, CA,
USA. Both sites had identical three Tesla Siemens Trio sys-
tems, utilizing a 12-channel head coil. A T2 matched-
bandwidth structural image was acquired for the purposes
of registration to the functional data (voxel size 1.5 3 1.5

TABLE I. Demographic information for NF1 and control participants

NF1 participants (n 5 30) Control participants (n530) p-value

Age (years, 6SD) [range] 27.1 (12.1) [10-46] 25.5 (11.1) [10-45] 0.596
Gender (N, % female) 18 (60%) 14 (47%) 0.309
Full Scale IQ (mean, 6SD) 97 (12.6) 113 (19.1) <0.001
Years education (6SD) 14 (2.6) 12 (4.1) 0.062
Motion (mm, 6SD) 0.160 (.31) 0.269 (.21) 0.187
Scanner Location 1 (N) 19 5
Scanner Location 2 (N) 11 25
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3 4.0 mm, TR 5 5,000 ms, TE 5 34 ms, echo spacing 5 0.89
ms, 34 axial slices, slice thickness 4.0 mm, flip angle 908,
FOV 5 192, matrix size 5 128 3 128). Functional T2 scans
were collected while participants were instructed to fix-
ate on a crosshair for 5 minutes. 152 volumes were col-
lected (voxel size 3.0 3 3.0 3 4.0 mm, TR 5 2,000 ms,
TE 5 30 ms, echo spacing 5 0.79 ms, 34 axial slices, slice
thickness 4.0 mm, flip angle 908, FOV 5 192, matrix
size 5 64 3 64).

MRI Pre-Processing

All functional data underwent basic preprocessing using
the FMRIB Software Library (http://fsl.fmrib.ox.ac.uk/fsl/).
Preprocessing steps included brain extraction, motion cor-
rection, spatial smoothing with a 5-mm Gaussian kernel,
band-pass temporal filtering (0.01 Hz< f< 0.1 Hz), regis-
tration to matched bandwidth structural scan, and final
registration to MNI standard space. No subject exceeded
2 mm translational mean framewise displacement prior
to motion correction [Power et al., 2012], and after
motion correction, no subject exceeded 1 mm FD. Global
signal, 24 motion parameters, and motion confound files
were regressed from the resting time-series data [Power
et al., 2014] in lieu of “scrubbing” [Carp, 2013]. There
were no significant differences in motion between groups,
before or after motion correction (Table I). Additionally,
there were no significant differences in global signal
between groups (p 5 0.82). All volumes were subse-
quently parcellated into 113 regions using the Harvard–
Oxford atlas [Desikan et al., 2006]. All voxel time-series
within a brain region were averaged together to yield a
single time-series for each brain region. Each subject’s
individual data consisted of 113 time-series with 152
timepoints.

Constructing Networks

We inferred one network for each subject to represent
the pairwise relationship between all brain regions under
consideration. Partial correlation coefficients were used to
estimate the relationship between BOLD activity traces in
each of the 113 Harvard–Oxford brain regions [Smith
et al., 2011]. We whiten the time-series assuming an AR(1)
model and used the QuIC implementation [Hsieh et al.,
2011] of Graphical Lasso [Friedman et al., 2008] to produce
Markov networks that quantify the relationship between
each pair of regions [Smith et al., 2011] for each subject.
Stability selection [Liu et al., 2010; Meinshausen and
B€uhlmann, 2010] was used to determine the optimal net-
work sparsity or number of edges in the network. The pri-
mary benefit of stability selection is that it retains only the
most stable edges in the network, therefore eliminating the
need for “hard” thresholding of the network (i.e., all val-
ues less than 0.3 would be arbitrarily discarded). This
approach results in a sparse network whose remaining

edges represent direct connections between nodes [Nar-
ayan and Allen, 2013; Ryali et al., 2012; Tomson et al.,
2013]. To estimate a network for each group, all NF1 time-
series were whitened and then concatenated into a single
time-series. The single NF1 concatenated time-series was
subjected to the same procedures described above for sin-
gle subject network estimation. The same procedure was
performed for controls.

Testing for Group Differences in Edges

Once individual subject networks were constructed and
sparsified, we tested whether individual edges were stron-
ger in one group than the other. A strong edge (i.e., with a
high partial correlation coefficient) will be sufficiently
robust to remain in the network after sparsification, and
thus will be present in the final sparsified network. A
weak edge (i.e., with a low partial correlation coefficient)
will not survive sparsification, and will be removed from
the network. In this way, we can test each edge individu-
ally for its presence or absence in the network and com-
pare whether an edge exists more often in one group’s
network than the other. This is challenging using standard
methods [Narayan and Allen, 2013; Narayan et al., 2015],
which often miss true edge differences and find false posi-
tives, as seen in the motivating example in Figure 1. Exist-
ing methods first estimate the connectivity network for
each subject, use a two-sample binomial Wald test for
each edge, and then correct for multiple testing [Pala-
niyappan et al., 2013; Tao et al., 2013; Zalesky et al., 2010].
To improve the accuracy of edge testing, we developed a
novel procedure called the R3 approach that obtains both
a better estimate of edge presence and also accounts for
inter- and intra-subject variability in multi-subject net-
works (described below).

R3 Edge Testing

The R3 method utilizes three primary procedures:
resampling, random penalization, and random effects. The
motivation for resampling arises from the fact that net-
works are estimated from noisy fMRI measurements.
Thus, estimated edges in the network possess some var-
iance. By determining whether an edge remains in a net-
work after small perturbations to the time-series, we are
able to quantify uncertainty in estimated edges. We use
subsampling to perturb the data and provide us with
pseudo-replicates of fMRI measurements. For every per-
turbation of the data, we estimate a corresponding net-
work. Stable edges are present across a majority of these
perturbations, and are less likely to occur by chance.

To determine whether individual edges exist exclusively
in one group, we resample the 152 fMRI observations
(timepoints) with replacement 100 times for every subject
(bootstrapping), estimate the Markov network for each
resample with random penalties [Meinshausen and
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B€uhlmann, 2010; Narayan and Allen, 2013; Narayan et al.,
2015], and then compute how often an edge is present or
absent in each network estimate. This resampling proce-
dure does not address temporal change throughout the
time-series. Because the preliminary whitening step
removes correlation between all timepoints, we can ran-
domly select a subset of the total time-points 100 times
with replacement. These 100 resampled networks allow us
to calculate a variance on any network metric in which we
are interested (in this case, the existence of a single edge
in a single subject). Since the presence or absence of an
edge is binary, we aggregate these estimates per subject to
obtain an edge proportion, where proportions can vary
between 0 and 1. This procedure allows us make the fol-
lowing exemplar statement: “Subject 1 has an edge con-
necting regions 4 and 5 in 81 of the 100 total resamplings
(i.e., 81% of the time).” As the number of subjects is rela-
tively small (<100), we model the probability of observing
an edge using a beta-binomial distribution and construct a
corresponding two-sample random effects test statistic
[Crowder, 1978; Liang and Hanfelt, 1994; Narayan et al.,
2015]. These test statistics do not follow known distribu-
tions, so we perform a basic permutation test, permuting
subject labels to determine whether any significant differ-

ence is due to chance or actual group assignment [Good,
2005; Tomson et al., 2013]. We also test whether the total
number of edges (after R3 sparsification) differed between
groups. Finally, we use Storey’s direct false discovery rate
(FDR) procedure [Storey, 2002] to control for FDR at the
10% level.

As an illustration of the efficacy of our approach, we
provide a simulated example for two groups of 20 subjects
each with 50 nodes, 400 time-points, and 150 truly differ-
ential edges. In comparison to standard techniques, the R3
approach finds over twice as many true edges, with sub-
stantially fewer false-positive differences (Fig. 1).

Modularity

Modularity is a traditional graph theory metric that
describes how nodes in a network organize into neighbor-
hoods, or modules. A module consists of a group of nodes
that have more edges connecting one another than connect-
ing the group to the rest of the network. However, current
clustering algorithms assign nodes to modules based on a
single snapshot of the network, providing no information
about how consistently a node falls into a particular mod-
ule. For this reason, we improve on the existing graph

Figure 1.

The R3 approach detects fewer spurious differences and more

true edge differences, while also controlling the false discovery

rate more effectively than standard inference tests (two-sample

Wald tests with FDR adjustments for multiple testing). Two

artificial networks of 50 nodes and 510 edges were con-

structed, with 360 edges common to both graphs, and only

150 edges existing exclusively in one graph. Using standard

inference tests and the novel R3 approach, we compared each

technique’s ability to uncover the latent graph structure

beneath simulated functional MRI data from two groups of 20

subjects. Upper halves represent inference results, detailing

common edges that were incorrectly identified as differential

between groups (turquoise; false positives), differential edges

that were correctly identified as differential (navy; true posi-

tives), and differential edges that went undetected (lilac; false

negatives). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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theoretical metric by using a modularity stability measure-
ment [Dudoit and Fridlyand, 2002] to score the strength of
the module allegiance of each node. In other words, rather
than assuming that each node belonged to only one module
based on a single estimate, we perturbed the data by resam-
pling it, then re-estimating and reclustering the networks,
finally arriving at a co-occurrence frequency that determines
how consistently two nodes belonged to the same module
[Tomson et al., 2013]. Thus, in each resample, we obtain a
binary statistic for every pair of nodes, indicating a co-
occurrence. We aggregated these co-occurrences across all
resamples to obtain a co-occurrence frequency. Just as in
edge-testing, as described above, we used a two-sample
beta binomial test statistic to compare the co-occurrence fre-
quencies of all pairs of nodes between two groups. To deter-
mine how nodes cluster into modules, we applied
Newman’s modularity algorithm [Newman, 2006] to each
group-level graph. Prior to testing for statistical significance,
we screened out node-pairs that consistently had low co-
occurrences (below 40%) across all subjects in all groups.
We use the terminology “clustering” to describe nodes that
fall into modules with a significantly greater co-occurrence
frequency between groups. To determine whether cluster-
ing patterns differed between groups, we used permutation
tests [Good, 2011] to obtain p-values for group differences,
and controlled for FDR at 10% [Storey, 2002].

Graph Theory

After testing networks for edge strength differences and
modularity clustering, we also studied the networks for
differences in traditional graph theory metrics [Buckner
et al., 2009; Fornito et al., 2013; Telesford et al., 2010; van
den Heuvel and Hulshoff Pol, 2010], including the number
of edges belonging to each node (degree), the average
shortest path length between nodes (global efficiency), the
overall number of modules (modularity coefficient; Q),
and the index of balance between connections that are
made within and between modules (participation coeffi-
cient). Graph metrics of degree and participation coeffi-
cient, which are computed separately for each individual
node, were then compared at both the node level (i.e., Is
the degree of node X higher in controls?) and at the aver-
age network level (i.e., Is the average degree of all nodes
greater in controls than in Nf1 participants?). Rather than
using a standard t-test to find differences in these metrics
between groups, we computed the relevant graph metric
for each resampled network in each subject and used a lin-
ear mixed effects two-sample test statistic to determine
whether the group networks differed significantly. We
subsequently used permutation tests [Good, 2011] to
obtain p-values. We corrected for multiplicity for all node
level tests, using Storey’s method [Storey, 2002] to estimate
the false discovery rate (FDR) at 10% [Benjamini and
Hochberg, 1995].

Nuisance Variables

Estimating Markov networks for large networks in fMRI
is statistically challenging, and we lack adequate statistical
power and error control to adjust for a large number of
covariates at the edge level [Narayan et al., 2015]. Thus, we
chose to account for nuisance covariates at the region of
interest (ROI) level. Since the ROI time-series comprise the
input to the network analyses, we employed an ANOVA to
model the whitened time-series using group, scanner loca-
tion and group 3 scanner location interaction as fixed
effects and a subject-level random effect. We found no sig-
nificant relationship with scanner, group, nor a group by
scanner interaction effect for any of the 113 ROIs after cor-
recting for multiple comparisons at 10% FDR using the Ben-
jamini–Yekutieli procedure (all p> 0.05). We also tested for
scanner effects on the global sparsity (total number of
edges) of each network using another linear mixed effects
model and found no significant relationship between net-
work sparsity and scanner location (p 5 0.54), nor a patient
by group interaction (p 5 0.41). These results indicate no evi-
dence of a main effect of scanner on the ROI time-series, the
fundamental unit upon which edge structure, graph theory,
and modularity calculations were made.

Relationships to Clinical Measures

We examined three clinical measures as they related to
our network findings: IQ as estimated by the WASI (for all
subjects), Total Internalizing Score (only NF1 subjects),
and Total Problem Score (only NF1 subjects). Internalizing
and Problem scores were acquired using the widely used
standardized measure in child psychology, the Childhood
Behavioral Checklist (CBCL) [Achenbach, 1992]. NF1 par-
ticipants older than 18 were given the Youth Adult Self
Report (YASR), which was derived from the CBCL
[Achenbach, 1997].

To test the hypothesis that graph metric measurements
could predict clinical measures, we fit a separate mixed
effects model between each clinical variable, and each graph
metric. We used standard linear mixed effects models for
the continuous responses: sparsity, global efficiency, ante-
rior–posterior sparsity, and bilateral sparsity. In the case of
edges and co-modularity, which produce discrete propor-
tions, we used nonlinear beta-binomial models. We focused
these tests on the 10 most significant differential edges and
the 10 most significant differential modular pairs.

RESULTS

Demographics

As shown in Table I, control and NF1 participants were
matched for age and gender. NF1 participants did not differ
significantly from controls in years of education, but had
significantly lower Full Scale IQ, as measured by the WASI.
Although IQ scores for NF1 participants are in the average
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range, this downward shift in IQ is consistent with previous
findings [Kayl and Moore, 2000; Hyman et al., 2005].

R3 Edge Testing

The goal of R3 edge testing is to find edges that are sig-
nificantly stronger in one group than the same edge in
another group. Therefore, we report only differential
edges. We first tested whether the total number of edges
remaining in the sparsified networks was significantly dif-
ferent between groups, and found no difference in overall
sparsity. Differential edge testing revealed 26 edges that
were significantly stronger in controls than in NF1 partici-
pants (Fig. 2 and Table II). These 26 edges connect nodes
across hemispheres and across the anterior–posterior
plane. Ten unique edges were significantly stronger in
NF1 participants than controls. By comparison, these edges
were short-range, unilateral, and demonstrated less ante-

rior–posterior connectivity relative to the edges that were
significantly stronger in the control network.

Modularity

The modularity analysis is also differential: we only test/
report which nodes cluster more often in one group than
another. Results from the differential modularity analysis
revealed 19 node pairs (16 unique nodes; Table III) clustering
more often in controls than in NF1 participants (Fig. 3 and
Table III). We plotted the node locations on a map of seven
functional networks defined by a previous study of resting
state data obtained from 1000 subjects (Fig. 3; Yeo et al., 2011),
and found that the vast majority (13) of these nodes observed
in controls belonged to either the visual or the default mode
network, with many bilateral pairs clustering together. NF1
participants, by contrast, clustered 6 node pairs (9 unique
nodes) significantly more often than controls. The 9 unique
nodes were distributed throughout five of the seven

Figure 2.

Axial and medial view (left hemisphere) of significantly stronger

edges in healthy controls (left) and participants with NF1 (right),

indicating relatively greater anterior–posterior connectivity in

controls vs NF1 participants. Spheres represent the center coor-

dinate of brain regions from the Harvard–Oxford atlas, and

black lines represent exclusive maps of edges that exist in each

cohort. Spheres are colored to demonstrate membership to

one of seven functional networks derived from resting state

studies of 1000 subjects [Yeo et al., 2011]. All edges are signifi-

cant at FDR 10% corrected for multiple comparisons. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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TABLE II. Differential edge testing on whole-brain networks

“The edge connecting nodes 1 and 2 is stronger in group X than in group Y. . .”

P Node 1 Node 2

Controls 1e26 Right precentral gyrus Right inferior temporal gyrus

0.00003 Right inferior frontal gyrus,
pars opercularis

Right middle temporal gyrus

0.00009 Right inferior frontal gyrus,
pars opercularis

Left middle temporal gyrus

0.00014 Right middle temporal gyrus,
posterior division

Left paracingulate gyrus

0.00015 Right middle temporal gyrus,
posterior division

Left cingulate gyrus, anterior division

0.00031 Right middle frontal gyrus Left temporal occipital fusiform cortex
0.00047 Right amygdala Left frontal orbital cortex
0.00059 Right middle frontal gyrus Right middle temporal gyrus
0.00059 Left frontal orbital cortex Left temporal fusiform cortex,

posterior division
0.00105 Left cingulate gyrus, posterior

division
Left cuneal cortex

0.00108 Right superior frontal gyrus Right lateral occipital cortex,
superior division

0.00118 Left frontal orbital cortex Right parahippocampal gyrus,
anterior division

0.00119 Right frontal orbital cortex Right parahippocampal gyrus,
anterior division

0.00122 Left precentral gyrus Right temporal occipital fusiform cortex
0.00123 Left inferior frontal gyrus,

pars opercularis
Left inferior temporal gyrus

0.00172 Right middle temporal gyrus Right supramarginal gyrus,
anterior division

0.00193 Left lateral occipital cortex,
superior division

Right temporal occipital fusiform cortex

0.00227 Right precentral gyrus Right temporal occipital fusiform cortex
0.00227 Right caudate Left cerebellum
0.00227 Left amygdala Left frontal orbital cortex
0.00227 Left precentral gyrus Left lingual gyrus
0.00230 Left superior frontal gyrus Left middle temporal gyrus
0.00236 Left superior parietal lobule Left temporal occipital fusiform cortex
0.00241 Left inferior frontal gyrus,

pars opercularis
Left temporal occipital fusiform cortex

0.00245 Right inferior temporal gyrus,
posterior division

Left frontal orbital cortex

0.00253 Left precentral gyrus Right inferior temporal gyrus
NF1 0.00001 Right middle temporal gyrus,

posterior division
Right lateral occipital cortex,

inferior division
0.00022 Right middle temporal gyrus,

posterior division
Left parahippocampal gyrus,

anterior division
0.00072 Left supracalcarine cortex Right occipital pole
0.00152 Left supracalcarine cortex Left occipital pole
0.00162 Left accumbens Right subcallosal cortex
0.00162 Left middle temporal gyrus Right cuneal cortex
0.00162 Left superior temporal gyrus,

posterior division
Left precuneous cortex

0.00163 Right middle temporal gyrus Right lingual gyrus
0.00164 Right middle frontal gyrus Left inferior frontal gyrus, pars triangularis
0.00287 Right middle temporal gyrus Right cuneal cortex

Results indicate that 26 edges are stronger in controls than NF1 participants, and 10 edges are stronger in NF1 participants than con-
trols. Only significant results are shown (corrected for multiple comparisons with false discovery rate at 10% using Benjamini–Hoch-
berg). Bold text indicates one edge, significantly stronger in controls than NF1, that correlates positively with IQ in both groups.
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functional networks shown (Fig. 3) and were not preferen-
tially aligned to any particular network. The clustering pattern
of NF1 nodes reveals a right-lateralized pattern and no bilat-
eral pairs, when compared with control clustering patterns.

Graph Theory

We found no significant differences between the controls
and NF1 participants for any traditional graph theory met-
ric (degree, global efficiency, modularity coefficient, or
participation coefficient) at the average group level. At the
node level, we tested whether any individual nodes had

higher degree or participation coefficient in either group,
finding no significant differences for either metric.

Relationships to Clinical Measures

Modular clustering tests revealed a significant correlation
with internalizing symptoms in patients with NF1 in five
node-pairs, each of which contains the inferior left lateral occi-
pital cortex. The five significant node pairs (corrected at FDR
10%) are inferior left lateral occipital cortex paired with (1) left
intracalcarine cortex (P 5 0.01), (2) right intracalcarine cortex
(P 5 0.009), (3) left supracalcarine cortex (P 5 0.007), (4) right

TABLE III. Differential Modularity Clustering Results Reveal That Healthy Controls Cluster Visual and Default

Mode Networks More Often Than NF1 Participants

“Nodes 1 and 2 cluster into the same functional module more often in group X than in group Y”

P Node 1 Network Node 2 Network

Control 1.24E-05 Left lateral occipital

cortex, inferior division

Visual Left intracalcarine cortex Visual

3.15E-05 Left lateral occipital

cortex, inferior division

Visual Right intracalcarine cortex Visual

3.47E-05 Left lateral occipital

cortex, inferior division

Visual Left supracalcarine cortex Visual

3.99E-05 Left intracalcarine cortex Visual Left occipital pole Visual
4.19E-05 Left temporal pole Default Right middle temporal gyrus,

posterior division
Default

4.79E-05 Left intracalcarine cortex Visual Left occipital fusiform cortex Visual
6.88E-05 Right intracalcarine cortex Visual Left occipital fusiform cortex Visual
7.43E-05 Left lateral occipital

cortex, inferior division

Visual Right cuneal cortex Visual

7.48E-05 Left lateral occipital

cortex, inferior division

Visual Right supracalcarine cortex Visual

8.13E-05 Left supracalcarine cortex Visual Left occipital pole Visual
8.14E-05 Brainstem Limbic Right amygdala Limbic
8.41E-05 Left lateral occipital

cortex, inferior division
Visual Left cuneal cortex Visual

0.00011 Brainstem Limbic Left amygdala Limbic
0.00011 Right intracalcarine cortex Visual Left occipital pole Visual
0.00016 Left occipital fusiform cortex Visual Left supracalcarine cortex Visual
0.00018 Right temporal pole Default Right superior temporal gyrus,

anterior division
Default

0.00019 Right supracalcarine cortex Visual Left occipital pole Visual
0.00021 Right cuneal cortex Visual Left occipital pole Visual
0.00024 Left cuneal cortex Visual Left occipital pole Visual

NF1 0.00011 Right frontal orbital cortex Frontoparietal Right parahippocampal gyrus,
anterior division

Default

0.00037 Right amygdala Limbic Right frontal orbital cortex Frontoparietal
0.00077 Left intracalcarine cortex Visual Right cingulate gyrus, posterior

division
Default

0.00084 Right lateral occipital
cortex, superior division

Default Right supplementary motor cortex Somatomotor

0.00090 Right cingulate gyrus,
posterior division

Default Left supracalcarine cortex Visual

0.00095 Right hippocampus Limbic Right frontal orbital cortex Frontoparietal

By contrast, NF1 participants show more sporadic clustering of nodes from diverse networks and a bias toward clusters in the right
hemisphere. Only significant results are shown (adjusted for false discovery rate at 10% using Benjamini–Hochberg procedure). Bold
text indicates modular clustering that varies inversely with Total Internalizing Symptoms in NF1 participants; i.e., as internalizing
symptoms become more severe, these nodes cluster less often.
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cuneal cortex (P 5 0.003), and (5) right supracalcarine cortex
(P 5 0.004). Edge testing also revealed a significant relation-
ship between the most significantly differential edge (connect-
ing right precentral gyrus with the right inferior temporal
gyrus) and IQ (P 5 0.01, FDR 10%). However, we found no
significant relationships between clinical metrics (IQ, TIS, or
TPS) and graph-based measures of overall sparsity, global effi-
ciency, anterior–posterior sparsity, or bilateral sparsity.

DISCUSSION

We present this study elucidating resting state func-
tional network architecture in individuals with the mono-

genic disorder NF1. Novel analysis techniques introduced
here allowed us to evaluate all network edges for greater
strength (i.e., increased connectivity) in each group. As
such, one of the primary findings of this study is reduced
anterior–posterior connectivity in NF1 participants com-
pared with healthy controls. After stringent corrections
for multiple comparisons, 26 edges were found to be sig-
nificantly stronger in controls than NF1 participants,
while 10 edges were stronger in NF1 participants than
those same edges in controls. Importantly, the pattern of
differential edge distribution provides insight into the
nature of connectivity deficits in NF1. In Figure 2, we
show exclusive maps of all edges that were significantly
stronger in one group than another. If an edge appears in

Figure 3.

Axial and medial view (right hemisphere) of significantly greater

modular clustering in controls (left; 15 unique nodes) and NF1

participants (right; 9 unique nodes). Brain networks consist of sev-

eral modules, or smaller “neighborhoods” of brain regions more

connected to one another than to the rest of the network.

“Modular clustering” evaluates the frequency with which any two

nodes are members of the same module, and identifies nodes that

are functionally related to one another. Highlighted nodes (white

circles) are brain regions that consistently fall in the same module

together, and do so significantly more often than identical nodes

in the opposing group. Uncircled nodes have modular clustering

patterns, but the pattern is not significantly different between

groups. Results suggest that the largest difference between groups

is in the clustering patterns of the visual (purple) and default mode

(red) networks. Controls demonstrate a tightly clustered visual

network and bilateral clustering of visual, default-mode, and limbic

nodes. NF1 participants show broader and more diffuse clustering

patterns, combining nodes from visual, default mode, limbic, fron-

toparietal, and somatomotor networks. NF1 clustering is primar-

ily in the right hemisphere. Anatomical locations of all 113 nodes

are represented by spheres. Sphere colors match those specified

in Figure 2. Module clusters shown at FDR 10%. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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the control network, for example, it is significantly stron-
ger than the identical edge in NF1 subjects, hence there is
no edge overlap shown. Comparing the NF1 and control
networks in Figure 2, the edge distribution suggests a
pattern of long-range anterior–posterior connectivity in
controls that is noticeably absent from the NF1 cohort. In
other words, although anterior–posterior edges are pres-
ent in both groups, our results suggest that these types of
edges are significantly weaker in NF1 subjects.

These findings are in accord with previous suggestions
of connectivity impairments in NF1 assessed using differ-
ent methodologies, including task-based fMRI studies of
visual, spatial, and working memory, in which NF1
patients generally show a pattern of increased short-range
and diminished long-range connectivity [Billingsley et al.,
2004; Chabernaud et al., 2012; Shilyansky et al., 2010; Vio-
lante et al., 2012]. Using a seed-based approach, Chaber-
naud et al. (2012) found that, prior to treatment with the
Ras-inhibiting drug lovastatin, patients with NF1 showed
an absence of typical long-range resting state functional
connectivity between the posterior cingulate and medial
prefrontal cortex, two hubs within the default mode net-
work of the brain. Although the absence of a healthy con-
trol group limits the extent to which these findings deviate
from typical resting state connectivity patterns, our find-
ings of reduced anterior–posterior connectivity relative to
control subjects appear to align well with this report.
Notably, many studies have observed diminished long-
range connectivity in adolescents and adults with idio-
pathic autism spectrum disorders [Dichter, 2012; M€uller
et al., 2011; Verly et al., 2013; von dem Hagen et al., 2013],
as well as local over-connectivity in posterior brain regions
[Maximo et al., 2013]. Given that our findings are derived
from resting state data, we speculate that these connectiv-
ity differences represent an intrinsic difference between
control and NF1 network structures, which might predis-
pose NF1 participants to further difficulties when task
requirements are involved. Additionally, this convergence
of findings between our study and those observed in idio-
pathic ASD is important and suggests specific points of
convergence in patterns of resting state alterations, e.g.,
altered anterior–posterior connectivity, which may be
informative regarding shared downstream circuit malfor-
mations (albeit possibly caused by distinct molecular
mechanisms). Translational studies in mouse models of
NF1 will be critical to elucidate the underlying molecular
basis of the observed functional connectivity disturbances.

Another novel finding is altered modularity clustering
patterns in NF1 participants. In large brain networks, it is
valuable to understand how brain regions organize into
neighborhoods or modules. Although existing modularity
algorithms accurately assign nodes into neighborhoods
(modules; Newman 2006), these algorithms are not
equipped to quantify the allegiance of a node to a module
(i.e., Does node 5 fall into module 1 90% of the time, or
just 5% of the time?). For this reason, we discarded the

notion of absolute module allegiance in favor of a metric
that examines how often each pair of nodes falls into the
same module together. We call this metric “clustering”.
For example, if we resample the modularity calculation
and find that nodes 5 and 6 consistently fall into module 1
together, we conclude that the nodes have similar behavior
and are functionally connected. This modularity clustering
test estimates how well any two nodes share modularity
affiliation, and can be thought of as a metric of functional
connectivity. When we compare two groups, we ask which
nodal pairs cluster together more frequently in one group
than another. For example, if nodes 5 and 6 cluster into
module 1 90% of the time for group A, but only 10% of
the time for group B, we can conclude that nodes 5 and 6
cluster together more often (and are thus more function-
ally related) in group A than group B. Overall, the edge
and modularity clustering metrics describe two very dif-
ferent properties of the network. All edge strength differ-
ences in these data represent direct edges, while
modularity clustering can be affected by direct or indirect
relationships between shared neighbors.

Our modularity results reveal differential clustering pat-
terns in 16 unique nodes (19 total pairs) in controls (Fig. 3).
These 16 nodes belong primarily to the visual and default
mode networks, with only three nodes (brainstem and
bilateral amygdala) belonging to the limbic network. Nota-
bly, every node pair belongs to the same network affilia-
tion, labels which were imposed from a separate dataset
after modularity results were calculated [Yeo et al., 2011].
This pattern suggests that the visual and default mode net-
works are more tightly clustered in controls than in indi-
viduals with NF1. It is important also to consider that of
the 16 unique nodes that differentially cluster in controls
relative to NF1 participants, the two most frequently
appearing are the inferior division of the left lateral occipi-
tal cortex and the left occipital pole. Each node shows up
six times in clustered pairs, and both nodes are within the
visual network. We cannot speculate about the relationship
between these two visual nodes and perceptual experience,
but it does raise an important question for future studies
about why we see such a compelling difference in the vis-
ual network between groups.

By contrast, NF1 participants cluster six node pairs more
frequently than controls and have nine unique nodes (com-
pared to 16 unique nodes in controls). The important dis-
tinction between groups is that the nine unique NF1 cluster
nodes span five of the seven functional networks (visual,
default mode, limbic, fronto-parietal, and somatomotor).
This contrasts with controls, whose 16 unique nodes were
found largely within two primary networks (visual and
default mode). In further contrast to controls, for which
each node pair belongs to the same module, no node pair in
NF1 participants belongs to the same assigned module. The
observed intra-module clustering pattern suggests that NF1
networks have stronger between-module connectivity and
weaker within-module connectivity than controls. These
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findings are in line with the two prior resting state func-
tional MRI studies of NF1, in which (using seed-based
approaches) the investigators find altered short-range con-
nectivity patterns in NF1 participants compared to controls
[Chabernaud et al., 2012; Loitfelder et al., 2015]. Together,
these data indicate less tightly organized clustering of visual
and default mode networks and potentially impaired intra-
modular affiliation.

In addition to evaluating individual edge strength and
modularity clustering abnormalities in NF1 participants,
we characterized the networks using graph theory metrics
including degree, global efficiency, modularity coefficient,
and participation coefficient. These metrics have become
popular in network analyses as descriptors of network
structure [Buckner et al., 2009; Fornito et al., 2013; Tele-
sford et al., 2010; van den Heuvel and Hulshoff Pol, 2010].
After accounting for inter-subject variance and performing
permutation testing, we saw no significant group differen-
ces in degree (average number of edges connected to each
node), global efficiency (average number of edges required
to connect all node pairs), modularity coefficient (number
of neighborhoods that divide the network), or participa-
tion coefficient (average number of edges connecting a
node to modules outside its affiliation). Given the tremen-
dous dependence of graph theory metrics on network
sparsity and variability, we were not surprised to find an
insignificant difference between groups when sparsity and
variability were accounted for in the model. A lack of
group differences in these graph theory metrics suggest
that NF1 participants overall have similar global network
properties, but differ from controls in more localized struc-
ture, such as edge strength and module composition. For
example, although NF1 functional networks have the same
raw number of modules as controls, the clustering pattern
of nodes within those modules is not identical. Thus,
while traditional graph properties appear to be indistinct
in individuals with NF1, local differences in edge strength
and modular affiliation may be relevant to characteristic
behavioral findings in the disorder.

To further investigate the influence of edge strength and
modularity on clinical measures, we evaluated three
behavioral metrics: IQ (all subjects), Total Internalizing
Score (NF1 participants only), and Total Problem Score
(NF1 participants only), from the Childhood Behavioral
Checklist (CBCL; for participants under 18) and the Youth
Adult Self Report (YASR; for participants over 18). We
found a significant negative relationship between internal-
izing symptoms from the Problem Score and clustering
patterns in NF1 subjects. Specifically, five clustered pairs
varied inversely with internalizing symptoms (blue high-
light, Fig. 3). Notably, each of the five significant pairs
contained one node in common, the left inferior lateral
occipital cortex (LOC). The LOC is the same node that
showed up in six of the 19 node pairs that clustered less
often in NF1 participants than controls, indicating that the
left LOC in patients becomes more disconnected to the

remaining 5 nodes as internalizing symptoms increase. In
other words, a higher internalizing score in NF1 patients
(which is associated with anxiety and mood symptoms) is
correlated with a weaker affiliation between these six
nodes. Additionally, we found one edge (connecting right
precentral and right temporal gyri) that correlated signifi-
cantly with IQ in both groups (Table II, bold highlight).
Regardless of group identity, this finding suggests that the
relationship between the right precentral and right tempo-
ral gyri is weaker in individuals with low IQ. Larger,
external datasets are necessary to validate this finding,
and further explore the relationship between functional
connectivity of these regions. Finally, we investigated the
relationship between clinical metrics and graph metrics
such as global sparsity and global efficiency; no significant
relationship was observed. Additionally, the total number
of anterior–posterior and total bilateral connections was
not associated with these clinical variables. Nonetheless,
the observed edge-IQ and modularity-internalizing rela-
tionships are promising and warrant further exploration in
independent datasets.

Although direct relationships between structural and
functional connectivity in typically developing populations
have yet to be fully elucidated [Grayson et al., 2014; Lohse
et al., 2014], it is notable that abnormal white matter struc-
ture has been reported in several studies of both children
and adults with NF1, particularly in the context of hyper-
intensities on T2-weighted images in the brain, or uniden-
tified bright objects (UBOs) [Moore et al., 2000; Pride et al.,
2010]. While the exact nature of the UBOs is not known,
histological analysis has revealed that they are often tran-
sient and can be caused by intramyelinic edema [DiPaolo
et al., 1995]. A few studies to date have explored structural
connectivity in NF1 applying a region of interest (ROI)-
based approach to diffusion tensor imaging (DTI) data;
these studies have generally shown decreases in fractional
anisotropy (FA), an indicator of water’s directional coher-
ence in white matter, as well as increases in overall diffu-
sivity [Zamboni et al., 2007; van Engelen et al., 2008;
Wignall et al., 2010]. To our knowledge, ours is the only
previous DTI study to take a whole-brain approach. In an
independent sample of young adult NF1 patients [Karls-
godt et al., 2012], we found that, relative to healthy con-
trols, NF1 patients showed widespread reductions in
white matter integrity across the entire brain, as reflected
by decreased FA and significantly increased absolute dif-
fusion (ADC). We additionally found pronounced differen-
ces in radial diffusion in NF1 patients, indicative of either
decreased myelination or increased space between axons.
FA and radial diffusion effects were of greatest magnitude
in the frontal lobe [Karlsgodt et al., 2012].

Notably, NF1 mutations are known to impact myelin, as
the gene encoding the oligodendrocyte-myelin glycopro-
tein (OMgp) is embedded within an intron of the NF1
gene [Viskochil et al., 1991]. This protein has been the
focus of much interest as a potential mechanism
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underlying overproliferation of oligodendrocytes, which
may explain structural neuroanatomic findings of enlarged
white matter. Increased corpus callosum area and/or cal-
losal thickening has been frequently reported in studies of
patients with NF1[Cutting et al., 2002; Duarte et al., 2014;
Dubovsky et al., 2001; Kayl and Moore, 2000; Pride et al.,
2010; Violante et al., 2013]. Additionally, two cross-
sectional studies have found increased corpus callosum
size to be associated with lower IQ and poorer perform-
ance on measures of academic achievement, abstract con-
cept formation, verbal memory, and visual-spatial and
motor skills in children with NF1, indicating that greater
callosal size is associated with impaired functional compu-
tations the brain in patients with NF1 [Moore et al., 2000;
Pride et al., 2010]. Additionally, prior work in a mouse
model of NF1 found that developmental Nf1 loss through-
out the brain resulted in corpus callosum enlargement that
could be reduced in size by treatment with a MEK/ERK
inhibitor during neonatal stages [Wang et al., 2012]. Map-
ping the network topology of structural alterations in
white matter fiber tracts in NF1 patients using similar
methods—in order to determine whether core topological
properties characterize both structural and functional con-
nectivity alterations—is an important next step. This will
be critical for elucidating the relationships between struc-
tural and functional brain alterations in NF1.

A limitation of the present study is a lack of a priori
knowledge of the functional architecture of the resting
brain in NF1. In order to explore a wide range of possible
findings, we included all nodes, all edges, and many
graph theory metrics in our analyses. Consequently, our
penalties for multiple comparisons were perhaps overly
stringent. In addition, our sample included a wide age
range. Although groups were age-matched, the broad
range provides a substantial challenge when considering
the pace of network reorganization during development
[Supekar et al., 2009; Zielinski et al., 2010]. A larger sample
size would have allowed us to either narrow the age range
or bin the subject pool to examine network changes in
NF1 during development. It should also be noted that we
employed global signal regression as a preprocessing step
[Power et al., 2014]. Global signal regression helps remove
influences that affect signal all over the brain, thereby
highlighting the relationship between smaller, individual
regions. There is some debate about the effect that this
procedure has on the resulting time-series [Power et al.,
2014; Schwarz and McGonigle, 2011; Weissenbacher et al.,
2009], but in our dataset, we found that global signal
regression produced a more Gaussian distribution of cor-
relation coefficients than if we eliminated this step.
Another methodological consideration is our use of an
anatomical atlas to define regions of interest. The benefit
of this method is that the identity of each brain region is
accepted by the field. A limitation is that different brain
regions are often markedly different in size, which means
that the number of voxels averaged together to create a

single regional time-series varies as well. The alternative,
using functionally derived regions, has its own set of dis-
tinct limitations, however, and we chose anatomical label-
ing to avoid problems of region identification.

Although the underlying biological basis for these
altered connectivity findings is not yet known, a recent
magnetic resonance spectroscopy study [Violante et al.,
2012] found reduced gamma-aminobutyric acid (GABA;
an inhibitory neurotransmitter) levels in visual cortex in
participants with NF1, whereas no alterations were
observed in glutamine levels, indicating an imbalance in
the excitatory/inhibitory push–pull mechanism in NF1
participants. This study also found that GABA/total crea-
tine levels were inversely correlated with neural activity
(peak BOLD amplitude) during a low-level visual process-
ing task in both NF1 participants and controls, suggesting
that BOLD response is sensitive to excitatory-inhibitory
balance and, in turn, to GABA concentrations [Chen et al.,
2005]. Previous studies in NF1 rodent models have shown
evidence of increased inhibitory postsynaptic potentials,
which was attributable to higher levels of GABA release
[Cui et al., 2008]. The NF1 protein is highly expressed in
rodent and human oligodendrocytes [Daston et al., 1992].
A recent study in an NF1 loss of function mouse model
examined the role of H-Ras activation in oligodendrocytes
[Mayes et al., 2013], finding gross enlargement of optic
nerves, consistent with findings of white matter enlarge-
ment in human patients with Nf1; further, Ras pathway
activation in oligodendrocytes upregulated nitric oxide
synthases (NOS) in white matter and elevated oligoden-
drocyte reactive oxygen species, including NO, which con-
tributed to behavioral abnormalities in the mouse. These
findings suggest a potential cellular and molecular mecha-
nism of Nf1-associated brain abnormalities.

In summary, here we applied novel network analysis meth-
ods to study the functional architecture of the resting brain in
individuals with NF1 mutations. Our data suggest that NF1 is
indeed characterized by diminished anterior-posterior con-
nectivity and disorganized, unilateral modular clustering
compared with controls. Investigation of the global features of
NF1 and control networks indicates that both groups have
similar hubs, are equally efficient, and divide into the same
number of modules. However, local network differences in
edge strength and modular clustering may contribute to the
cognitive deficits experienced by individuals with NF1.
Future, larger-scale studies are warranted in order to evaluate
how these local features are relevant to learning and memory
deficits common to the NF1 population.
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