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Abstract  
 

Tuberculosis (TB) kills approximately 1.6 million people yearly. Among the three top infectious killers, 

TB is rising worldwide while HIV-AIDS and malaria are trending down, despite the fact anti-TB drugs 

are generally curative. The problem lies in the inefficient detection of this complex disease. It is 

hypothesized utilizing informatics methods such as deep learning (DL) approaches to machine learning 

(ML) analysis of radiological data, combined with clinical, microbiological, and immunological data, 

delivered as clinical decision support (CDS), can not only afford better diagnostics but also improved 

determination of pathogenesis and severity, and monitoring efficacy of therapy. This study proposes a 

comprehensive approach for efficient disease detection employing informatics methods including but not 

limited to information retrieval, visualization, ML and artificial intelligence (AI), tested in nonhuman 

primate (NHP) model which captures human TB most closely, as a prelude to TB patient studies. A group 

of six rhesus macaques were experimentally inoculated with Mycobacterium tuberculosis (M. tb., Erdman 

strain) in the right lower lung. Animals were followed at regular intervals over 24 weeks by Computed 

Tomography (CT) imaging. A DL algorithm was developed and trained for automated scoring of lung CT 

images and compared head-to-head with radiologists’ scores. Correlations of ML scores with several 

other TB indicators were also performed. DL model afforded early disease detection as compared to 

radiologists. Importantly, ML analysis demonstrated greater consistency over multiple runs compared to 

scoring by two radiologists. ML scores also exhibited strong correlations with granuloma and total TB-

lesion volumes at necropsy, and disease-signs and blood biomarkers throughout pathogenesis.  ML-based 

analysis of radiological imaging enabled early and consistent disease detection and assessment of 

severity, enabling a noninvasive and objective approach. ML and AI approaches can improve early 

detection and understanding of the disease. In addition, the multimodality approach described here is 

valuable in monitoring efficacy of therapy. 
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Background and Introduction 

 

Tuberculosis (TB) is one of the world’s deadliest infectious diseases [1]. Two billion people are latently 

infected with the etiological agent of TB, Mycobacterium tuberculosis (M. tb.), and 10 % of these develop 

active TB in their lifetime, leading to approximately 10 million new TB patients, and 1.6 million deaths 

annually [1]. Most of the TB endemic countries are developing nations where attempts to eradicate TB 

are challenged by inefficient diagnostics, limited understanding of disease pathogenesis, poor healthcare 

facilities, and lack of medical infrastructure. TB is generally curable if diagnosed properly and timely. 

However, frontline diagnostic tests (e.g., Acid-Fast Bacilli (AFB) microscopy) lack sensitivity while 

newer, state-of-the-art molecular diagnostics are not readily available universally [2-5]. Also, there is 

dearth of expert radiologists for sound assessment of radiological images to properly diagnose TB at the 

earliest possible stage. Poor TB detection rates and lack of health infrastructure facilities as a result cause 

improper care of infected infections, additional infection transmission, and perhaps even the emergence of 

medication resistance. In high burden TB countries such as Pakistan, India, Nigeria etc. healthcare 

systems will substantially benefit from rapid, accurate and cost-effective TB detection. Because 

pulmonary TB is highly contagious, it is of utmost urgency to devise new strategies for early and efficient 

diagnosis. 

Automated solutions for TB diagnosis can play a major role in alleviating these problems, reducing the 

workload of hospitals, especially in developing countries. One approach to automate this is to devise and 

utilize informatics algorithms that automatically perform image analysis on digital medical images such 

as X-Rays, CT scans or microscopy images of sputum samples, etc. 

 

We propose a comprehensive approach to TB diagnosis employing Deep Neural Networks (DNNs) 

architectures to combine multimodal data such as clinical, immunological, and radiological data. The 
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most effective way is to combine various data sets, including radiological image analysis by machine 

learning (ML), followed by integration with multiple diagnostic modality data through artificial 

intelligence (AI) (Figure 1). 

 

Figure 1: Proposed Clinical Decisions Support System via Open Medical Record System (Open-

MRS). 

Proposed computational modeling of TB data and Clinical Decision Support System (CDSS) to be 

delivered to TB physician through Open Medical Record System (Open-MRS) to improve detection and 

understanding of the disease for diagnosis and monitoring efficacy of therapy. 

 

In the past, research on image analyses focused mainly on classical image processing - using image 

processing for extracting certain manually defined (‘hand-crafted’) features and then using those features 

for classification using machine learning techniques such as random forests [6], support vector machines 

or (shallow) neural networks, etc. 
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In recent years, due to new research and availability of much more computational power, researchers have 

been able to utilize deep neural network architectures [6-7], which surpass the performance of shallow 

architectures. Deep neural networks learn manifold stages of representation and abstractions of high 

dimensional data enabling us to train machine learning models without using hand-crafted features and 

with minimal preprocessing. Furthermore, the use of convolutional layers in these architectures, 

especially for image data, has given rise to what are called Convolutional Neural Networks (CNNs) [10-

11]. CNNs enable us to make the network take spatial context into account (for images, etc.) while also 

greatly reducing the computational complexity. 

Consequently, a lot of research has been carried out to develop machine learning models using CNNs for 

problems related to detecting and diagnosing diseases from medical images. They have been found to be 

very effective, usually surpassing classical image processing-based methods. 

While earlier CNN architectures consisted of a single linear pathway of stacked layers; more recently, 

researchers have started employing residual connections (direct connection of a layer with a layer deeper 

in the network, skipping one or more layers) and different parallel pathways. This is a departure from 

networks with a single linear pathway and has produced extraordinary results. 

 

As a prelude to the development of computational models for ML generated radiological scoring of lung 

TB lesions in chest CT scans, and to evaluate a strategy for integration of above clinical and 

immunological markers, we demonstrate utility in a well-controlled non-human primate (NHP) model of 

TB which captures human TB most closely. Importantly, NHPs are outbred, reflecting genetic diversity 

similar to human populations, vulnerable to natural infection and disease in TB outbreaks [13]. CT scan 

images analyzed through ML algorithms for automated scoring can be integrated with clinical markers, 

microbiological markers, and multiplex immune markers (e.g., panels of antibodies against M.tb. 

antigens, cytokines/chemokines etc., previously identified as valuable in TB diagnostics) [14-16]. 
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Materials and Methods 

Data Acquisition  

Animal Housing Conditions 

 

A group of six male rhesus macaques MMU35414, MMU35446, MMU35603, MMU35710, MMU36365, 

and MMU36727, were housed at the California National Primate Research Center (CNPRC) at the 

Animal BioSafety Level-3 (ABSL-3) facility, University of California, Davis (UC Davis), and cared for 

according to the American Association for Accreditation of Laboratory Animal Care (AALAS) 

guidelines. Experiments were performed under approval from Institutional Animal Care and Use 

Committees (IACUC: 15307) at UC Davis. NHPs were maintained in steel cages in pairs whose sizing 

was scaled to the size of the animal in a temperature-controlled vivarium with continuous monitoring of 

temperature and humidity. Veterinarians, animal health technicians, and staff technicians conducted daily 

clinical assessments of animals. This included monitoring weight, temperature, behavior, diarrhea, and 

opportunistic infections.  Animals were fed a balanced commercial macaque chow twice daily with fresh 

produce twice weekly, with free access to water 24 hours per day. Supplemental food was provided when 

clinically indicated. Environmental enrichment was provided daily, including manipulanda (forage 

boards, mirrors, puzzle feeders) and novel foodstuffs. Veterinarians at the CNPRC have established 

procedures to minimize pain and distress using several approaches. Animals were anesthetized by 

intramuscular injection (i.m) of ketamine-HCl at 10 mg/kg of body weight prior to all procedures. For 

M.tb. inoculation and prior to transport for CT scans, animals were additionally anesthetized with 0.03 

mg/kg medetomidine HCl injected i.m., and anesthesia was reversed with 0.15 mg/kg atipamezole HCl 

injected i.m. Analgesics were given to minimize pain and discomfort at the discretion of the veterinary 

staff, and nutritional supplements were administered as necessary. 

When euthanasia was necessary, animals were humanely euthanized at the end of the study by a 

barbiturate overdose, and necropsy procedures were performed by veterinary pathologists and support 

staff. If an animal’s physical condition deteriorated prior to the scheduled endpoint, the animal was 
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euthanized following the Guidelines for Humane Euthanasia of Animals on Projects (GHEAP) at the 

CNPRC. Criteria for assessments of health and well-being of the animals were as follows: weight loss of 

>20%, dyspnea for 24 hours, moderate tachypnea (40-60 bpm) for 36 hours, severe tachypnea (>60) for 

12 hours, lethargy longer than 24 hours, or anorexia longer than 36 hours. The fixed live-phase end point 

was 24 wk postinfection. All animals (tuberculin skin test (TST) negative) were experimentally 

inoculated with 500 colony-forming units (CFU) of M. tb., Erdman strain by bronchial instillation in 

lower right lung, as previously described [17]. As expected, due to the outbred nature of NHPs, disease 

outcome was variable. Two animals MMU36365 and MMU36727 became moribund and were humanely 

euthanized at 15 weeks post-inoculation. The rest of the animals were carried till the conclusion of the 

study at 24 weeks. Necropsy and pathology procedures were performed by veterinary pathologists [17]. 

TB was confirmed by postmortem examination including histopathology and M. tb. culturing from the 

homogenized lung tissue [17].  

 

Clinical Data Acquisition  

 

Daily clinical assessment of the animals was performed as previously described [17]. This included 

physical examinations (e.g., weight, temperature), appetite scores, behavior (breathing abnormalities, 

cough), diarrhea, and opportunistic infections. Pre- and post-inoculation procedures included blood 

collections for cryopreservation of plasma, clinical chemistry panel, complete blood counts with 

erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) measurements. EDTA blood samples 

were collected at week (WK) 0 (baseline) and longitudinally at 2, 4, 8, 12, 16, 20 and 24 weeks (WK). 

Plasma samples were collected and stored in aliquots at −80°C. 

 

Immunological Data Acquisition  

 

A panel of ten antigens comprising of RV 3875(ESAT6), Rv3874(CFP10), Rv0934, Rv1886c (Ag85b), 

Rv3881, Rv2031 (HSPX), Rv3841 (Bfrb), Rv2878c and Rv3619, Rv2875(MPT 70) and one fusion of 
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Rv3874–Rv3875 (CFP10-ESAT) were used in multiplex microbead immunoassay (Luminex, Austin, TX) 

as previously described [18,19, 20, 21]. Plasma antibody data from each antigen-coated microbead were 

reported as median fluorescence intensities (MFI). Cutoff values were calculated in non‐infected NHPs 

(N=405) as previously described (Cutoff = Mean MFI + (3 × standard deviation) [18]. 

 

Radiological Data Acquisition  

 

All procedures were performed under ABSL-3 conditions as previously described [17]. Briefly, animals 

were anesthetized, intubated, and had an intravenous catheter placed. Under the direction of a veterinary 

radiologist, CT imaging was performed using iodinated contrast medium delivered intravenously at WK 

0, 2, 4, 8, 12, 16, and 20. Contiguous transverse images of the thorax were acquired using a 16-slice 

helical CT scanner and the following parameters: helical acquisition mode; 3 mm collimation; 1.5 pitch; 

0° gantry tilt; 120 kVp; 200 mA; 0.6 second acquisition, standard bone/thorax reconstruction algorithm. 

The anatomic volume of acquisition was determined from initial scout views and varied depending on 

subject size and relative position within the CT gantry. Following completion of the initial scanning, 

nonionic iodinated contrast medium (3 ml per kg, Isovue 370, Bracco Diagnostics, Princeton NJ) was 

administered as an intravenous bolus by manual injection over 1 to 2 minutes and CT images were again 

acquired using the same acquisition parameters. 

 

CT scan scoring by radiologists 

 

Two radiologists (T.G. and S.Z.) studied the chest CT images of all animals, at all the time points (0, 2,4, 

8, 12, 16, 20 and 24 WK’s). The extent of disease was assessed in each lung and scored from 0 to 100; the 

scores are subjective depending upon the degree of lung involvement. The scores for each monkey are 

presented in Table 1, Table 2, Table 3, and Table 4. The average scores of both radiologists and their 

standard deviations were calculated. 
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Disease-signs scoring  

 

Disease-signs were scored from 0 to 4, arbitrarily. Cough was taken as the clearest sign of TB, and given 

a score of 4. Abnormal and harsh breath, a score of 3. Diarrhea, a score of 2. All other signs (rash face, 

swollen face, oral lesion, and eyes red) were given a score of 1. No signs, given a score of 0.  

 

Data Analysis 
 

Data augmentation and preprocessing  

 

Due to a limited number of subjects (6 animals), artificial expansion of data set and variation in body 

posture from animal to animal was compensated by image data augmentation, a common practice in 

medical image analysis to increase the size of the training dataset, as previously demonstrated [22]. 

Images were rotated at random angles between 0 to 45 degrees, generating 21 rotations per image. Each 

image was resized to 256×256 pixels for faster training, and to reduce complexity. 

ML Model  

 

ML model in each group of experiments (whole, right, and left lung) was trained for 200 epochs or until 

the validation loss stopped improving, whichever came first. We used stochastic gradient descent [23] 

with learning rate η = 0.01 as the optimization algorithm using a batch size of 10 and categorical cross 

entropy as the loss in function [24]. Our proposed model , ‘TB-Net’ derived from ‘Inception- ResNet-v2’, 

was optimized by trimming it (removed 24 redundant convolution layers to improve its generalization and 

performance) to suit our dataset [25]. The proposed network was trained on a machine with GeForce RTX 

2080 graphics card with 8GB RAM, taking approximately 18 hours, completing approximately 21,600 

epochs. 

Training Data Strategy  
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Each CT scan was sub-divided into seven different groups of optical slices such that every 10th optical 

slice belonged to each group (3mm in thickness; ‘slice’ refers to the number of rows of detectors in the z-

axis of a CT) and included in the training from optical slice 20 to 80, covering the entire lung (Figure 2). 

In addition, one optical slice above and one below the said optical slice was included in the analysis for 

each group. Hence, each group comprised of three different optical slices. ML model was trained 

randomly where one out for 6 animals was used for testing and the remaining 5 for training at each time 

point. Following this strategy, models for each of 6 animals were generated for whole, right, and left lung 

such that 18 models per optical slice per group were generated. For the seven different groups, 18×7 = 

126 models were trained (Table 5 and Figure 2). WK0 was considered as ‘No TB’. All other time points 

(WK 4, 8, 12, 16 & 20) in all animals had ‘TB’ (Table 1 and Table 2). Since majority of the time points 

correspond to active-TB, class weights and cross entropy function were used to handle the imbalance 

[24,26]. Training data (data of 5 animals used for training) was divided into 80% for training and 20% for 

validation (after augmentation), while the images of the sixth animal were used only for testing, based on 

the trained model. The training methodology was kept consistent for the whole, right, and left lung. The 

Figure 7 explains why the CT scan slices between 20 and 80 were not include in the training.  
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Figure 2: Proposed testing strategy for imaging analysis. 

Overall testing strategy of the proposed model for machine learning (ML) analysis of CT scans. Optical 

slices in CT scan were divided into seven different groups. For convenience, four groups (Groups 1 and 2, 

and 6 and 7) are shown. Each group contained 3 optical slices such that every 10th optical slice (OS) was 

included in the analysis starting from Slice 20 to 80, capturing the entire lung. One OS above and one 

below were also included in the analysis. Augmentation (one CT optical slice equals 21 optical slices as 

described in the Materials and Methods section) of optical slices was performed for the right, left, and 

whole lung. Models for TB or NTB (no TB) were trained on augmented OS using well defined TB 

positive or negative scans (see Materials and Methods). Decision on disease was made based on the 

majority of slices (out of total 441) predicted TB positive or negative. 

CT Scans omitted from Training 

 

MMU36727 at WK0 for the left lung image analysis was not included in the training to avoid the 

incorrect training because of an abnormality detected by the two radiologists in the lower left lung (Figure 

3, marked in red circle). In animal, MMU36365, WK0 and 2 were not included in training for the whole, 
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right, and left lung to avoid the incorrect training because of a TB lesion detected by the two radiologists 

(Figure 3). In addition, MMU35414 at WK 2 was not included in raining (whole, right, and left lung) 

because of a low quality CT scan.   

 

Figure 3: Explanation of discrepant results. 

Unexpected and discrepant results in Figure 4 (right lung). In the top left image (MMU35603 at WK2), 

depicting slight abnormality in the lower right lung (red circle; site of inoculation), suggests inititation of 

TB which was missed by radiologists, but detected by machine learning, is likely a true positive. Top 

right image (MMU35446 at WK 2) depicts a slight abnormality in mid right lung (red circle) which is a 

possible reason for positive prediction by ML but called negative by radiologists; likely a false positive. 

In the middle row both images (MMU36365 at WK0 and WK2), contained TB related abnormalities, 

missed by TST, therefore, images at these time points were not included in ML image analysis, avoiding 
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incorrect training; radiologists’ scores are as shown in Figure 4. In MMU36727 at WK 0 (bottom row), 

first image shows the non-TB abnormality confirmed  by radiologists  in the lower right lung, it was 

included in the analysis for efficient detection of TB. The second image shows the TB abnormality 

confirmed by radiologists, this was not included in the analysis to avoid the incorrect training. 

 

Testing Data Strategy  

 

The above augmentation process was also performed for testing strategy. The augmented optical slices 

were tested against the trained whole, right and left lung models for each optical slice, in each of the 7 

groups. Predicted model output was binary, TB, or No TB (NTB), in a given augmented optical slice, 

based on the majority voting during testing. The number of predictions (TB or NTB) were counted for 

each of the 7 groups such that each group had 63 augmentations, therefore, for 7 different groups there 

were 63×7 = 441 predictions. For each test animal, at a particular time point, the decision of TB or NTB 

was made based on majority prediction out of a total of 441 predictions (Figure 2). 

Outcomes of ML Image Analysis  

 

The metrics used for performance comparisons are defined below. 

• True Positive (TP): This is defined as if our ML model predicted TB positive and its label 

was TB positive, e.g., predicted optical slice is TB positive and its true. 

• True Negative (TN):  This is defined as if our ML model predicted TB negative and its label 

was TB negative, e.g., predicted optical slice is TB negative and its true. 

• False Positive (FP): This is Type I error which is defined as: if our ML model prediction on 

the optical slice is TB positive, but its label was TB negative. 

• False Negative (FN): This is Type II error which is defined as: if our ML model prediction 

on the optical slice is TB negative, but its label was TB positive. 
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• ML Prediction (P): It gives binary output TB negative (NTB = No TB), or TB positive 

based on the majority voting. For example, If TN >FP then it was considered No TB, 

otherwise TB. Also, if TP > FN, it was considered as TB, otherwise No TB (S4A Table, right 

lung analysis, and S4B Table, left lung analysis. The positive predicted optical slices number 

was used to calculate the ML ratio, which is defined as the positive predicted optical slices 

divided by the total number of predictions. Finally, background (0.5) was subtracted from the 

ML ratio to obtain positive ML ratio. This ratio represents calculated ML Score.                                      

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 



13 
 

Results  

Lung CT image analysis by ML  
 

Right lung analysis  

 

In the initial assessment by the radiologists (TG, and SZ.), no TB lesions were visualized at WK 0, and it 

was assumed there would be none at WK2. At WK4, TB lesions clearly initiated at the sight of 

inoculation in all animals and progressed further at the later time points. Right lung ML scores (blue line 

(Figure 4); average of three experiments) displayed strong correlation (ranging from R = 0.79 to R = 0.99; 

Pearson Correlation) with radiologists’ scores (red line, average of two; Figure 4). Both types of scores 

show disease progression over time in all animals except MMU35710 where disease burden reduced after 

WK12 (Figure 4). A clear advantage of ML based scoring over radiologists’ manual scoring of CT 

images is the machine’s high consistency across three runs, in all animals, at most time points. In contrast, 

the error between two radiologists is high. 
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Figure 4: Right lung CT Scan imaging analysis. 

ML score of CT images, weeks post-inoculation (right lung) of six rehsus macaques with M.tb. (Erdman 

strain). Blue line represents average score of three ML runs, and red line average of two radiologists’ 

scores. Error bars represent standard deviation. Pearson correlation coefficient (R) is shown. 
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Left lung analysis  

 

The extent of disease is limited in left lung except at the later time points in MMU36365 and 

MMU36727. Because of a low occurrence of TB lesions, correlations between the ML scores and 

radiologists’ manual scoring are low (Figure 5). Nevertheless, a salient feature of the comparison is once 

again that ML scores are very consistent across three runs while radiologists’ manual scores are not 

(Figure 5). 
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Figure 5: Left lung CT Scan imaging analysis. 

 

ML analysis for left lung, as described for Figure 4. The scale for ML Score and Radiologist Scores are 

kept the same as for the right lung analysis in Figure 4 for direct comparison. 

 

 Whole lung analysis  
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 ML and radiologists’ scores for the whole lung were similar to those for the right lung (initial infection 

site), demonstrating right lung scores’ dominance in this study (Figure 8).   

 

Correlation of ML analysis (right lung) with TB granuloma and total TB-lesion volumes 
 

ML scores of CT scans available at the latest time points (WK12 for MMU36365 and MMU36727; 

WK20 for the rest) were compared with TB granuloma and total TB-lesion volumes at the time of 

necropsy (WK15 for MMU36365 and MMU36727; and WK24 for the rest). A high degree of correlations 

were achieved between the ML scores and granuloma volumes, as well as total lesion volumes, (Pearson 

Correlation, R = 0.68 and R = 0.69, respectively, Figure 6) strongly suggesting ML based scoring 

faithfully captures disease severity.     

 

 

 

Figure 6: Correlation analysis of ML score with Granuloma and Total lesion volume, cm3. 

 

Correlation of ML score to TB lesion volumes (right lung). The left scatterplot shows ML score versus 

granuloma volume, and on the right is ML score versus total TB-lesion volume (includes non-granuloma 

lesions), at necropsy, in all animals. The latest CT scans available for all animals were taken 3 to 4 weeks 

prior to necropsy. Pearson correlation coefficients ‘R’ are shown.  
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Correlation of CT scores by ML (right lung) with clinical and blood biomarkers data  

 

Disease signs 

 

A high degree of correlation between ML score and signs (R = 0.76 to 0.98) was observed in all animals 

except MMU35710 (R = 0.34) in which disease remained mild over 24 weeks (Figure 9). This shows 

disease severity demonstrated by CT ML score may reflect signs’ severity in the NHP model of TB, 

suggesting this approach may be valuable in the analysis of symptoms in TB patients with regards to 

disease severity. 

Blood markers 

 

Correlations of various blood markers with CT ML score were assessed and were generally found to be 

strong as follows: ESR (R = 0.84); C-reactive protein (0.58); total protein: (R = 0.70); plasma protein (R 

= 0.64); and lactate dehydrogenase (R = 0.46) (Figure 10). Among the above markers ESR, total protein, 

and CRP reflect inflammatory responses which in TB patients and macaques infected with M. tb. may 

serve as markers to identify correlates of TB disease progression [27-31]. 

Anti-M. tb. Antibodies 

 

A multiplex panel of ten antibodies (against ten M. tb. Antigens) displayed variable immune responses, as 

in humans [18,19]. Antibodies against one antigen, CFP10-ESAT6 fusion protein was consistently strong 

in 5 of 6 animals over 24 weeks, first appearing at WK4, showing good correlations in four animals (R = 

0.36 to 0.58) (Figure 11).    
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Discussion and Conclusion  
 

Among the top three global infectious killers, for the last many decades (TB, HIV-AIDS and malaria), 

yearly TB deaths are on the rise (1.6 million), while in the other two (HIV-AIDS: 1.0 million, and 

malaria: 0.4 million) are on the decline. Such roaring rise in global TB is surprising considering anti-TB 

drugs are generally curative. The problem lies in the dearth of globally available efficient diagnostic 

approaches. Majority of diagnostics, including even state-of-the-art molecular tests introduced in the 

recent times, are limited to sputum as a specimen while a complex disease like TB requires multi-

modality approaches for a holistic examination of the disease state and progression, as described here. AI 

based approaches offer Deep Neural Networks (DNNs) architectures with ready capacity to perform 

complex integrations in an automated fashion for comprehensive solutions, combining multimodal data 

[6, 7]. DNNs learn multifaceted representations and abstractions as in multi-dimensional data more 

efficiently, enabling training of machine learning computational models without using hand-crafted 

features, with minimal data preprocessing.  

 

As a prelude to human studies, we demonstrate the utility of such high-powered computational models in 

a well-defined, high fidelity, and well-controlled rhesus macaque model of TB. Radiological (CT scan) 

imaging data were analyzed employing CNN based convolutional layered architectures yielding 

automated ML scores which correlated remarkably well with manual scoring by radiologists. If fact, the 

ML scores were much more consistent from run to run in comparison to the radiologists’ scores which 

displayed a high degree of error (Figure 4). Additionally, after the preliminary ML runs, in two animals, 

MMU36365 and MMU36727, lesions resembling TB were discovered in pre-infection (WK0) CT scans 

(TST (skin test) is low sensitivity and specificity TB test compared to CT imaging), prompting the 

radiologists to take a more probing look at the CT scans, confirming the presence of such lesions; ML 

training models were optimized accordingly in final runs. Incidentally, MMU36365 and MMU36727 not 

only displayed a rapid onset of disease but also more severe disease (Figure 4 and Figure 5), requiring 
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early euthanasia at WK 15. This episode emphasizes the enormity of human error introduced even by 

trained radiologists. 

 

The ultimate confirmation of TB lesions is achieved through histological examination of the affected 

tissues, as previously described [32,33]. In this study, we validated our ML based image analysis against 

histologically determined granuloma and total TB-lesion volumes, demonstrating a high degree of 

correlation (R = 0.68 and 0.69, respectively). This result demonstrates the accuracy of our ML based CT 

image analysis despite two key limitations: 1) Latest CT scans were obtained 3 to 4 weeks before the 

necropsied lung specimens, and 2) Histological determinations are marred by technical tediousness and 

human subjectivity [32-35].   

 

We also found a high degree of correlation between ML based CT scores and data from multimodality 

approaches: (1) Clinical signs (e.g., cough, abnormal breath etc.), 2) Blood markers (e.g., CRP, ESR, and 

other inflammatory markers valuable in understanding TB disease progression), and 3) Anti-M. tb. 

antibodies which have been shown by us to be of high diagnostic value [18,19]. Some of the other blood 

parameters such as total white blood cells, specific blood cell types, (e.g., neutrophils, eosinophils etc.) 

and other analytes (creatinine, sodium, potassium etc.) were variable among animals with inconsistent 

results. 

This study provides a model for undertaking human TB clinical studies, which the authors have already 

initiated. In the ongoing human study, ML based image analysis of CTs and chest X-rays (CXR) are 

under further optimization for complete automation. Radiological imaging data, and other multimodality 

data, from TB patients is under acquisition at different time points covering 6 months of directly observed 

therapy short course (DOTS) as follows: at diagnosis (Month 0), Month 2, Month 4, and Month 6). CT 

scan and CXR image scoring by ML, current diagnostic test scores (microbiologically validated by 

culture score), and upcoming blood biomarker scores (including immunological biomarkers), will be 
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integrated employing deep learning AI approaches. The eventual goal is to obviate the exclusive reliance 

on sputum specimen which is not only variable from patient to patient but also day to day. The AI based 

integrated score so obtained will be delivered to the physician as clinical decision support (CDS) via open 

medical record system (Open-MRS). In addition, individual scores on multimodal data sets, contributing 

to total score integrated by AI, will be made readily accessible on the physician’s PC for detailed clinical 

investigations as needed, at the click of a mouse (Figure 1).   
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Challenges and Limitations  
 

Noisy and limited data  
 

To reduce the respiratory motion artifacts during a CT scan process, patients are asked to hold their 

breath. Unlike humans it is difficult to do so in the non-human primates, which leads to the noisy and 

multidirectional CT scans for same animal at different time points. This led us to define our alignment 

criteria before imaging analysis. We consider the following four parameters for the alignment of the CT 

scan images.  

• where vertebral column is maximum. 

• where the diaphragm has the same area (shape) 

• where the white portion from vertebral column to the 

• diaphragm is the same in all images. 

• where the black portion is same in all images. 

The Figure 12 shows the aligned images at different time points for animal MMMU35446. 

Another challenge was having a limited dataset (n =6) for training the ML models. This challenge was 

solved through data augmentation and choosing the less complex model to avoid overfitting.  

 

Generalizability of informatics methods  
 

One of the limitations of the study is the generalizability of the informatics methods i.e., ML/DL 

techniques applied to the imaging analysis in the NHP models for tuberculosis. When a ML model is 

trained on small dataset (n =6) in this study, it may not be able to capture all the patterns because it does 

not represent the entire population. The proposed model may not perform well when applied to the dataset 
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outside of the study. To overcome this issue, transfer learning can be employed by fine tuning a pre-

trained model on a small dataset. 
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Future Work  

 

Human TB Patients Analysis  
 

The automated solution for tuberculosis detection developed in this for NHP will be replicated for the 

human TB patients in combination with biomarkers. The human TB patient’s data (CT’s and X-rays) have 

been analyzed and annotated from two radiologists independently.  The radiological, clinical and 

microbiological data of TB patients have been collected at 0 months, 2 months, 4 months, and 6 months. 

The number of samples at these time points varies.  

We plan to perform the following analysis using the data mentioned above at each time point and across 

all time points. 

• Correlation analysis of clinical and microbiological  

• Correlation analysis of clinical and radiological 

• Correlation analysis of clinical and immunological  

• Correlation analysis of microbiological and radiological  

• Correlation analysis of microbiological and immunological  

Based on the results above, we will provide a TB diagnostic solution for humans utilizing computational 

modelling for clinical, radiological, and immunological variables.   

 

Synthetic CT generation  
 

Deep learning (DL) methods for synthetic CT (sCT) generation have been used in the literature recently. 

For example, generation of synthetic CT Images from MRI [36-37]. A systematic review of DL based 

methods for generating synthetic CT generation in radiotherapy and PET can be found here [38]. 
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sCT scans for tuberculosis detection can be achieved using deep learning-based methods.  By generating 

sCT scans that closely resemble real CT scans, deep learning algorithms can be trained on a diverse and 

large dataset of medical images for the purpose of medical image analysis, computer-aided diagnosis, and 

medical education, with the rationale that these algorithms can learn complex relationships between the 

input data and their associated labels, such as the presence or absence of tuberculosis.  

Synthetic CT scans can be useful in cases where the real data is limited or difficult to obtain, e.g., 

shortage of radiologist in specific areas or patients unwilling or unable to undergo CT scans due to 

concern about radiation exposure.  Synthetic CT scan generation has the potential to improve medical 

imaging and diagnosis, leading to better patient outcomes and more efficient healthcare systems. 

The following steps can be performed for synthetic CT scan generation for tuberculosis detection. 

• Gathering the dataset of CT scans that include both normal and tuberculosis-infected lung images. 

Preprocessing of the collected data to ensure that all CT scans are in the same format and 

resolution. 

• Training a deep learning network, e.g.  convolutional neural network (CNN), to learn the features 

that distinguish normal and tuberculosis-infected CT scans. 

• Use the above trained model to generate synthetic CT scans. This can be achieved through a 

technique called generative adversarial networks (GANs), which involves training two neural 

networks in combination: one to generate synthetic images, and the other to discriminate between 

real and synthetic images. The two networks are trained in a competition, with the generator 

trying to create increasingly realistic synthetic images, and the discriminator trying to distinguish 

between the synthetic and real images. 

• Evaluate the performance of the synthetic CT scans by comparing them to real CT scans using 

various metrics, such as accuracy, precision, recall, and F1 score. 
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Transfer Learning  

 

The model trained in this study will be used as a pre trained model for imaging analysis in the human TB 

patients. This will reduce the amount of data required for calculating the CT based ML score and improve 

the speed and accuracy of the learning process. 
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Contributions to health informatics  
 

The contribution of this thesis to the health informatics field includes, but not limited to the following: 

• Informatics methods 

The informatics methods developed in this thesis to automatically score the CT images based on 

the severity of the disease. These methods will be publicly available to fine-tune and use for the 

similar problems in the health informatics field.  

• Data availability  

 

Radiological, clinical, and microbiological data collected for non-human primates and human TB 

patients during this study will be publicly available to the community for further research purpose 

after the publication. 

• Solutions to the noisy and limited data  

Another contribution to the health informatics is solutions provided in this study to the noisy and 

limited dataset e.g., alignment criteria and less complex novel deep learning method to avoid 

overfitting.  
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Figure 7: Optical slices excluded from imaging analysis. 

The optical slices before 20 and after 80 were not included in image analysis as they display little lung 

information in CT scans. 
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Figure 8: Whole lung CT Scan imaging analysis. 

Whole lung image analysis (average of two experiments) of CT scans at various time points post-

inoculation of six rehesus macaques with pathogenic M. tb.  Blue line represents average score of three 

ML runs, and red line two radiologists’ score. Error bars show standard deviation. Pearson correlation 

coefficient (R) is shown. 
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Figure 9: Correlation analysis disease signs. 

ML Score (right lung) versus symptom scores for each animal. The Pearson correlation coefficient is 

shown.  
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Figure 10: Correlation analysis with blood markers. 

Scatterplots of ML Score (right lung) versus blood markers (LDH, C-reactive protein, total protein, ESR, 

plasma protein) for all animals at the time point right before necropsy. Pearson correlation coefficients are 

shown. For C-reactive protein, total protein, the outlier animal is MMU 35446. For ESR, LDL and plasma 

protein, the outlier animal is MMU 35710. 
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Figure 11: Correlation analysis with Antibodies. 

Scatterplot of ML Score (for right lung) versus CFP10-ESAT6 antibodies detected in 5 of 6 animals. 

Median Fluorescence Intensities (MFIs) and Pearson correlation coefficients are shown.  
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Figure 12: Images after alignment at different time points for animal MMU35446. 
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Table 1: Right lung CT scoring by radiologist, SZ. 

The right lung score for each animal (at each respective time point), out of a total score of 100 given by 

the radiologist, SS. 

Week MMU35414 MMU35446 MMU35603 MMU35710 MMU36365 MMU36727 

0 0 0 0 0 10 0 

2 0 0 0 0 30 5 

4 30 40 25 20 30 20 

8 40 50 30 25 60 30 

12 50 60 35 35 65 70 

16 60 65 35 20   

20 70 65 55 25   
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Table 2: Left lung CT scoring by radiologist, SZ. 

The left lung score for each animal (at each respective time point), out of a total score of 100 given by the 

radiologist, SS. 

Week MMU35414 MMU35446 MMU35603 MMU35710 MMU36365 MMU36727 

0 0 0 0 0 0 0 

2 0 0 0 0 0 0 

4 0 0 0 0 10 0 

8 0 10 0 0 15 5 

12 10 15 10 20 15 60 

16 20 20 15 0   

20 30 25 15 0   
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Table 3: Right lung CT scoring by radiologist, TG. 

The right lung score for each animal (at each respective time point), out of a total score of 100 given by 

the radiologist, TG. 

Week MMU35414 MMU35446 MMU35603 MMU35710 MMU36365 MMU36727 

0 0 0 0 0 3 0 

2 0 0 0 0 5 7 

4 25 20 20 10 30 40 

8 40 35 25 12 60 43 

12 40 45 30 25 70 65 

16 45 55 35 20   

20 30 65 40 20   
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Table 4: Left lung CT scoring by radiologist, TG. 

The left lung score for each animal (at each respective time point), out of a total score of 100 given by the 

radiologist, TG. 

Week MMU35414 MMU35446 MMU35603 MMU35710 MMU36365 MMU36727 

0 0 0 0 0 0 0 

2 0 0 0 0 5 5 

4 0 0 5 0 7 0 

8 0 2 5 0 5 10 

12 0 5 5 5 5 20 

16 10 10 5 0   

20 15 15 5 0   
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Table 5: Training strategy for whole (W), right (R), and left (L) lung imaging analysis. 

Training strategy for the whole (W), right (R), and left (L) lung image analysis. The × sign indicates that 

the respective training primate was not included in the training and that was a testing animal. The ✓ 

indicates that the respective primate was used in the training.  

Models TP1 TP2 TP3 TP4 TP5 TP6 Testing Animal 

M1-35414-W × ✓ ✓ ✓ ✓ ✓ MMU35414 

M2-35414-R × ✓ ✓ ✓ ✓ ✓ MMU35414 

M3-35414-L × ✓ ✓ ✓ ✓ ✓ MMU35414 

M1-35446-W ✓ × ✓ ✓ ✓ ✓ MMU35446 

M2-35446-R ✓ × ✓ ✓ ✓ ✓ MMU35446 

M3-35446-L ✓ × ✓ ✓ ✓ ✓ MMU35446 

M1-35603-W ✓ ✓ × ✓ ✓ ✓ MMU35603 

M2-35603-R ✓ ✓ × ✓ ✓ ✓ MMU35603 

M3-35603-L ✓ ✓ × ✓ ✓ ✓ MMU35603 

M1-35710-W ✓ ✓ ✓ × ✓ ✓ MMU35710 

M2-35710-R ✓ ✓ ✓ × ✓ ✓ MMU35710 

M3-35710-L ✓ ✓ ✓ × ✓ ✓ MMU35710 

M1-36365-W ✓ ✓ ✓ ✓ × ✓ MMU36365 

M2-36365-R ✓ ✓ ✓ ✓ × ✓ MMU36365 

M3-36365-L ✓ ✓ ✓ ✓ × ✓ MMU36365 

M1-36727-W ✓ ✓ ✓ ✓ ✓ × MMU36727 

M2-36727-R ✓ ✓ ✓ ✓ ✓ × MMU36727 

M3-36727-L ✓ ✓ ✓ ✓ ✓ × MMU36727 

 

1 

 

 

 

 

 
1 TP: training primate; TP1: MMU 35414; TP2: MMU 35446; TP3: MMU 35603; TP4: MMU 35710; 

TP5: MMU 36365; TP6: MMU 36727; M: model  
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Table 6: Right lung ML imaging analysis. 

Right lung image analysis i.e., the number of positive predicted optical slices (average of three 

experiments) by the ML model at each time point for each animal and the prediction (NTB or TB) made 

based on majority voting. The optical slices predicted to be positive for TB were used to calculate the ML 

ratio, as described in materials and methods. 

 

MMU# WK 0 WK 2 WK 4 WK 8 WK 12 WK 16 WK 20 

 TN FP P TN FP P TP FN P TP FN P TP FN P TP FN P TP FN P 

35414 391 350 NTB NI 292 149 TB 409 32 TB 400 41 TB 338 103 TB 398 43 TB 

35446 336 105 NTB 123 318 TB 407 34 TB 369 72 TB 419 22 TB 384 57 TB 391 50 TB 

35603 249 192 NTB 171 270 TB 384 57 TB 329 112 TB 368 73 TB 414 27 TB 422 19 TB 

35710 316 125 NTB 224 217 NTB 283 158 TB 340 101 TB 360 81 TB 308 133 TB 249 192 TB 

36365 NI NI 278 163 TB 404 37 TB 418 23 TB NX NX 

36727 99 342 TB *376 *65 TB 402 39 TB 390 51 TB 420 21 TB NX NX 

 

 
2 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 TN: True Negative; FP: False Positive; P: Prediction; TP: True Positive; FN: False Negative; NTB: No 

Tuberculosis; TB: Tuberculosis; NI: Not Included; NX: Necropsy  

 
*376 and *65 for animal MMU 36727 at WK 2 was assigned positive score by radiologists, therefore they 

are not TN and FP, they are TP and FN respectively.  
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Table 7: Left lung ML imaging analysis. 

Left lung image analysis i.e., the number of positive predicted optical slices (average of three 

experiments) by the ML model at each time point for each animal and the prediction (NTB or TB) made 

based on majority voting. The optical slices predicted to be positive for TB were used to calculate the ML 

ratio, as described in materials and methods. 

 
MMU# WK 0 WK 2 WK 4 WK 8 WK 12 WK 16 WK 20 

 TN FP P TN FP P TN FP P TN FP P TP FN P TP FN P TP FN P 

35414 272 169 NTB NI 357 84 NTB 264 177 NTB *83 *358 NTB 223 218 TB 222 219 TB 

35446 295 146 NTB 258 183 NTB 353 88 NTB 355 86 NTB 207 234 NTB 257 184 TB 167 274 NTB 

35603 245 196 NTB 260 181 NTB 253 188 NTB 150 291 TB 223 213 TB 222 219 TB 174 267 NTB 

35710 365 76 NTB 306 135 NTB 291 150 NTB 238 203 NTB 179 262 NTB *165 *276 NTB *251 *190 NTB 

36365 NI NI *133 *308 NTB *187 *254 NTB 366 75 TB NX NX 

36727 NI 143 298 TB *220 *221 TB *266 *175 TB 384 57 TB NX NX 

 

3 

 

 

 

 

 

 

 
3 TN: True Negative; FP: False Positive; P: Prediction; TP: True Positive; FN: False Negative; NTB: No 

Tuberculosis; TB: Tuberculosis; NI: Not Included; NX: Necropsy  

 

 

*133, *308, *187 and *254 for animal MMU 36365 and *220, *221, *266 and *175 for animal MMU 36727 

at WK 4 and WK 8 were assigned a positive score by radiologists, therefore they are not TN and FN, they 

are TP and FN.  

*83 and *358 for animal MMU 35414 at WK 12 were assigned a zero score by radiologists, therefore they 

are not TP and FN, they are TN and FP respectively.  

*165, *276, *251 and *190 for animal MMU 35710 at WK 16 and WK 20 were assigned a zero score by 

radiologists, therefore they are not TP and FN, they are TN and FP.  

 




