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Evidence Accumulation Modeling 
Understanding decision making requires a dynamic 

approach that accounts for the time taken to make choices as 
well as the choices that are made. The success of the 
dynamic approach is underpinned by cognitive models, such 
as the drift-diffusion model (DDM: Ratcliff & McKoon, 
2008) and linear ballistic accumulator (LBA: Brown & 
Heathcote, 2005, 2008), that attribute decisions to an 
evidence accumulation processes. The ability of these 
models, and elaborations of them, to account for the speed 
and accuracy with which people make decisions across a 
broad range of tasks has led to an increasing number of 
applications in Cognitive Science and Neuroscience (for 
recent examples see Cassey, Heathcote & Brown, 2014; 
Heathcote, Loft & Remington, in press; Mittner et al., 2014; 
Turner, Van Maanen, Forstmann, in press).  
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Figure 1 schematically illustrates an LBA model, for a 

binary (“left” vs. “right”) choice. Each choice has its own 
accumulator that linearly accrues corresponding evidence 
(illustrated by the arrows in Figure 1), starting from starting 
points (uniformly distributed over the interval 0-A) that 
represent random biases from trial to trial. The rate of 
accumulation (v), which also varies normally from trial to 
trial, corresponds to the strength of evidence for a choice. 
The first accumulator to reach its threshold (b) determines 
the choice. The time for non-decision processes (e.g., 
stimulus encoding and response selection, ter) is estimated 

by the difference between the observed response time (RT) 
and decision time (i.e., the time that evidence in the winning 
accumulator first equals the threshold). Brown and 
Heathcote (2008) showed that the LBA is able to account 
for a comprehensive set of benchmark phenomena in simple 
choice paradigms, such as speed-accuracy tradeoff (e.g., 
being more accurate at the cost of longer decision times by 
raising b). The LBA is easily extended to more than two 
choices, whereas the DDM, which consists of a single unit 
with two thresholds and extra sources of noise (in the 
evidence within trials and uniform trial-to-trial variability in 
non-decision time), only applies to binary choice.  

However, applying models like the LBA and DDM to real 
data sets can be challenging for a range of reasons: 1) 
suitable experimental designs are required with sufficient 
number of observations, experimental control, and 
manipulations that help to identify model parameters, 2) 
nonlinear interactions within the models, and only partial 
observation of the accumulation process (i.e., its end point), 
cause strong correlations among parameters that make them 
difficult to estimate, and 3) fitting can be computationally 
demanding and suffer from problems of numerical 
instability.  

Although excellent estimation packages based on both  
maximization (Vandekerckhove & Tuerlinckx, 2008; Voss 
& Voss, 2007) and Bayesian (Vandekerckhove, Tuerlinckx 
& Lee, 2011; Wiecki, Sofer & Frank, 2013) methods are 
now available that ease the computational problems for the 
DDM, they can impose assumptions that do not make them 
flexible enough for some applications, particularly in the 
Bayesian setting. This tutorial provides training in a more 
flexible approach that can be used with the LBA and DDM. 

Tutorial Overview 
The tutorial is presented by the developers of the LBA 

model, Scott Brown and Andrew Heathcote, along with 
Brandon Turner, who with Brown and colleagues proposed 
using the Differential Evolution algorithm as a way of 
dealing with the problem of correlated parameters in the 
Bayesian context (Turner, Sederberg, Brown, & Steyvers, 
2013). It teaches attendees to apply Bayesian estimation 
using DE, with a focus on the LBA model, although the 
techniques taught can be applied to any evidence 
accumulation model for which a likelihood can be 
computed.  

Figure 1. LBA Model for a decision between “left” and 
“right” responses. Accumulators (arrows) race and the 
first one to reach threshold determines the choice. 
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Flexibility is obtained by providing attendees with easily 
modifiable source code in the R language (R Core Team, 
2014). This means that some familiarity with the R language 
is necessary for attendees to best benefit from the tutorial. 
However, much of the tedious bookkeeping necessary to fit 
models, as well as graphing to check the results of sampling, 
is taken care of by convenience functions that users should 
not have to modify in most standard contexts. Hence, 
knowledge of R is mainly required to read in data and 
analyze the outputs of sampling. One the other hand more 
advanced R users can use these functions as a basis to 
implement model variants and/or to address non-standard 
applications. 

Likelihood computation uses the newly developed rtdists 
R package (Brown, Gretton, Heathcote & Singmann, 2014), 
so users do not have to be concerned with the associated 
mathematical details. This package robustly and efficiently 
implements likelihood computations for the LBA, including 
uniform trial-to-trial variability in non-decision time, and 
the full DDM model with trial-to-trial variability in starting 
points, mean rate and non-decision time1. 

The tutorial will begin with 30-minute overviews of 
Bayesian estimation, the LBA model, and DE sampling 
given, respectively, by Turner, Brown and Heathcote. The 
remainder of the tutorial will consist of hands on exercises 
using the suite of R functions provided to simulate data and 
run sampling for the LBA model, and to examine and 
interpret outputs. The first session up to lunch will focus on 
estimation for an individual participant in a design with two 
conditions. After lunch the idea of hierarchical modeling 
will be introduced (i.e., estimation of group as well as 
individual level parameters in a design with a within-
subjects factor. If time permits students will be introduced 
to code provided for more complex designs (e.g., both with 
and between-subjects factors).  

Finally, time will be set aside to discuss with the 
presenters how to approach the applications of the LBA and 
DDM model they are interested in making. Advice will be 
given on the design of appropriate experiments, analyses of 
existing data and approaches to more advanced designs and 
models. Students are encouraged to bring their own data sets 
or proposed designs in order to facilitate discussion. 
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