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Abstract
Micro-scale biological tools that have allowed probing of individual cells - from the genetic, to
proteomic, to phenotypic level - have revealed important contributions of single cells to direct
normal and diseased body processes. In analyzing single cells, sample heterogeneity between and
within specific cell types drives the need for high-throughput and quantitative measurement of
cellular parameters. In recent years, high-throughput single-cell analysis platforms have revealed
rare genetic subpopulations in growing tumors, begun to uncover the mechanisms of antibiotic
resistance in bacteria, and described the cell-to-cell variations in stem cell differentiation and
immune cell response to activation by pathogens. This review surveys these recent technologies,
presenting their strengths and contributions to the field, and identifies needs still unmet toward the
development of high-throughput single-cell analysis tools to benefit life science research and
clinical diagnostics.

Introduction
With the advent of technologies that allow detailed investigation of individual cells – from
the genomic to phenotypic level, it is now clear that such a single-cell approach is essential
in understanding cellular heterogeneity and its biomedical importance. In particular, the
ability to isolate subpopulations of cells resistant to certain drugs in cancer treatment and
microbial pathogenesis, has lead to the understanding that cells comprising less than 1% of
the total population can, in fact, be the most important cells to eradicate during treatment.
Further, the development of next-generation immunologic therapeutics will require the
isolation of subpopulations of antigen-presenting and cytokine-producing cells, sometimes
comprising less that 0.2% of the total population of CD8+ cells in the blood. The
differentiation process of pluripotent stem cells, as well as induction of pluripotency from
somatic cells results in significant cell subpopulations, and, if better understood, this process
could be used to create complex tissues or cell-based therapies for implantation and tissue
regeneration.

This review will focus specifically on high throughput technologies recently developed for
the purpose of analysis and isolation of single cells from heterogeneous populations. The
goal of these technologies is two-fold: to increase the understanding of the biological
processes mentioned previously, as well as to develop improved clinical diagnostics and
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more effective therapeutics that can target rare cell populations. The technologies reviewed
here range from photolithographically patterned 3D microwell technologies and 2D
adhesive substrates, to continuous flow technologies and miniaturization of conventional
techniques to an automated, on-chip format.

Cancer Biology
Cancer is a complex, dynamic and heterogeneous disease, which requires an array of new
technologies to tackle. An invasive malignant phenotype can develop due to a variety of
genetic and epigenetic changes, resulting in significant heterogeneity of cancer cells both
within a single tumor and between ‘distinct’ tumors [1–4], ultimately affecting responses to
cancer therapeutics [5] and clinical outcome. Understanding the underlying cellular
heterogeneity, manifested as dysfunctional molecular pathways, holistic biophysical
differences, and differential response to therapies at the single-cell level will provide
insights to improve diagnostic and therapeutic strategies. An alternative source of single
cells for such analysis is available in the extremely rare population of circulating tumor cells
(CTCs) in peripheral blood of cancer patients, and recent work has focused on isolation and
analysis of these cells and their roles in metastasis [6,7]. Micro-scale technologies have been
developed to perform single-cell analysis to better understand the complexity of cancer and
achieve improved diagnostics through understanding genetic differences, resulting protein
expression, and overall drug susceptibility.

Advances in genomics and proteomics at the single-cell level can provide insights into
aberrant molecular pathways that contribute to the significant heterogeneity in cancer cells.
Single-cell genomic sequencing has identified rare, single copy mutations associated with
tumorigenesis [8,9]. These methods, however, are still low-throughput (tens to hundreds of
cells) and require significant manual effort. Single-cell PCR methods make use of integrated
fluidic circuits [10–13] or droplet-based digital-PCR [14,15] to analyze transcripts that vary
from cell-to-cell and can easily be masked by bulk measurements. These methods have also
been used to identify the cause of radiation treatment resistance of certain cancer cells [16].
Proteomic methods that can report protein levels down to the single-cell level have been
recently developed [17]. Future integration of proteomic methods with genomic methods at
the level of single cells would also expand our understanding of the heterogeneity in genetic
lesions and the associated protein pathways affected.

Mutations and protein expression differences result in whole cell biophysicial changes that
are linked to an invasive phenotype [18,19]. Hydrodynamic and optical methods have been
developed to assay cell mechanical properties - primarily the ability of cells to change shape
with an applied load [20,21]. Tools for analyzing cell dielectric characteristics have also
been developed [22]. Additionally, single-cell technologies to assay cell mass, cell cycle
progression, deformability and surface friction make use of the suspended microchannel
resonator (SMR) [23,24]. These label-free biophysical approaches have potential to achieve
low-cost diagnostic analysis of cancer, while maintaining the ability to sample large
heterogeneous populations and identify important outliers. Other label-free properties
include the migration of single cells, which can be assayed in an automated fashion to
uncover cell-cell interactions [25]. Measurements and throughputs of these approaches vary
substantially and will likely have separate application niches in diagnostics and in
identifying invasive phenotypes for research, quickly and inexpensively. Alternate methods
of applying stress to single cancer cells – using compressed microchannels [26] or magnetic
nanoparticles [27] – have begun to reveal the role of the mechanical environment in cancer
cell mitosis and polarization.
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Single-cell analysis tools are just beginning to be applied to determine drug response, with
future applications in determining the differential response to therapies at the single-cell
level. Droplet-based techniques have shown promise for drug-screening on single-cells by
creating arrays of encapsulated cells with various drugs and drug concentrations in a high-
throughput manner [28]. High-throughput single-cell image cytometry techniques, as well as
imaging based on ultrafast spectral imaging could also be applied for morphological analysis
of cell response to drugs [29,30].

With the development of such a wide suite of methods for the characterization of cancer cell
genetics, proteomics, and subsequent variations in biophysical properties at the fundamental
single-cell level of the disease, our understanding of tumor biology can be rapidly expanded.
The application of these methods to understanding fundamental processes of tumorigenesis,
metastasis and potential therapeutics will be critical, and should open up synergistic
diagnostic opportunities.

Stem cells and regenerative medicine
Stem cells encompass a subset of cells that display both differentiation and self-renewal
capabilities, and are often heralded for their potential to revolutionize medicine and
bioengineering [31,32]. Various intrinsic properties and signals from the cell
microenvironment contribute to stem cell fate and function. High-throughput, single-cell
analytical and isolation techniques are able to address core issues in the field, including the
biology behind individual stem cell fates by allowing the systematic probing of cell response
to different factors, and the isolation and purification of differentiated cell populations
essential for their application in regenerative medicine. Of particular note is the ability of
single-cell analysis to answer two major concerns in stem cell biology: 1) the importance of
the heterogeneity that naturally arises in stem cell populations and how it influences cell fate
[33,34], and 2) the ability to isolate and present cues to individual stem cells to better
understand and control differentiation[35,36].

Genetic expression patterns of stem cells are a unique marker by which their state is
determined. A number of single cell techniques enable the study of individual cell
expression, the most notable being single-cell RT-PCR [37]. This approach, in conjunction
with FACS to isolate cells has been used to generate expression data from large sets of
individual stem cells, and has been used to determine the heterogeneity and fate of stem cell
populations [38]. An alternative approach includes the use of fluorescence in situ
hybridization (FISH) and its variants to image genes directly [39,40]. These approaches,
although incapable of monitoring transcript number as in RT-PCR, can give spatial
information not possible in RT-PCR, and are an alternative to costly GFP cell lines.

Cellular microarrays and microwell technologies have been used to control the cell
microenvironment and explore the combinatorial effect of microenvironmental factors
including matrix and cell-cell contacts [41–44]. Despite the capability of these platforms to
screen the effect of complex combinations of cell microenvironment signaling cues, they are
usually static and do not allow continuous manipulation of cell microenvironments, unlike
microfluidic-based approaches[45]. Microfluidic technologies allow for analyzing hundreds
of cells in parallel and are used for a variety of applications from automated tracking of
dividing hematopoietic stem cells (HSC) to high-throughput detection of cell cycle phases in
individual HSCs [46,47]. Because of their precise morphogen delivery capability,
microfluidic approaches are ideal for probing the effect of morphogen concentration on stem
cell differentiation while simultaneously controlling microenvironment factors [48,49], and
can be parallelized to perform multiplexed assays [49]. In addition to microfluidic platforms,
cell patterning is conventionally used to control the shape of multicellular constructs,
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thereby inducing differentiation down specific lineages, although it is usually limited to 2D
manipulation of the cell microenvironment [50]. To overcome the limitation of 2D
patterning, hydrogels of various chemistries can be used to isolate and study single cells,
capable of providing controlled environmental chemical and mechanical cues [51].

Microbiology and pathogenesis
Heterogeneity within bacterial cell populations is of increasing interest when considering the
emergence of antibiotic resistance, as well as cell-to-cell quorum sensing in communal
developments such as biofilm. Single-cell and species heterogeneity is also involved in the
development and equilibrium of the human gut microbiota, which cannot be investigated as
a blended parameter. Biofilm formation on implanted medical devices are the most
significant cause of hospital acquired infections, resulting in ~1 million cases, and $10
billion each year, and microbiota imbalance can lead to gastrointestinal pathophysiology and
improper acquired immunity development. Understanding the mechanisms by which single
or small populations of cells in a mixed population can dominate disease processes is of
utmost importance to develop rational treatments for infection, with long lasting
effectiveness, i.e. minimizing resistance emergence and controlling biofilm formation and
ecology.

Technologies enabling high throughput single cell analysis of bacterial cells separate and
compartmentalize individual cells for future nucleic acid, proteomic, secretion, or
phenotypic analysis and rely on plug based two-phase systems and stochastic confinement
into femtoliter compartments. The Chemistrode [52], and variations on this capillary plug
based technology, have enabled direct observation of single cell ‘founder’ phenomena in
which rare individual cells compartmentalized into single cell plugs with the antibiotic of
interest show marked resistance although the majority of the population is susceptible [53].
Further, this technique has been implemented to isolate rare single cells from multispecies
mixtures, and identify them downstream via 16sRNA probes [54]. Stochastic confinement
using micro-scale SU-8 wells has indicated that a single cell can ‘self’ quorum-sense, and
that quorum-sensing is highly variable in small clonal populations of cells; both previously
unobserved phenomena[55]. Confinement in a honeycomb array with connected
environments was also used to allow bacterial cells to travel through and sample each
environment [56]. This technology has shown that large gradients in antibiotic and niche
environments lead to accelerated emergence of antibiotic resistant cells. An alternate method
for confinement of single-cells using microfluidic valving was used for gene analysis of
environmental bacteria to study symbiotic relationships [57,58], and a technique combining
large scale integration of microfluidic valving and water-in-oil two-phase systems may
prove to be very useful in downstream applications of sequencing and molecular techniques
after single-cell confinement [59].

Automated imaging and computational analysis-based techniques have also proved useful
for analysis of single cell near-surface motility mechanisms. Motility via flagellar movement
has previously been postulated as a mediator of biofilm morphological development, and
Conrad et al. have employed an automated optical tracking method to demonstrate this
directly. Their method also allows quantitation and classification of rare subtypes of
movement, previously unobserved by the microbiology community, and has also been used
to characterize early biofilm development and show that single cell surface trajectories can
lead to enriched cell subpopulations [60].

Both unique phenotypic analysis and isolation of molecules at high concentration in small
microfluidic compartments have significantly moved the field forward. There is still much to
learn about cell-cell communication and motility in the development of prokaryotic tissues.
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Neuroscience
The patch clamp technique is widely used to investigate cellular behavior of excitatory
neurons at the single-cell level in vitro. Initially, patch clamping – applying a fixed voltage
and measuring the current across the cell membrane using a pipette - allowed researchers to
study electrophysiology in one single cell at a time. To achieve more statistically robust
datasets, parallelized multi-patch clamp setups and chip-based planar patch clamp systems
with multiple addressable pores were developed[61], allowing higher throughput for drug
screening and the investigation of rare defects in ion channels related to neurodegenerative
diseases[62]. Cellular phenotypes are highly susceptible to a complex extracellular
environment, comprised of cell-neighbors and topological and mechanical ques. To
understand their contributions to physiology, micro and nano engineered cell culture tools
are necessary, where microfluidic platforms[63–69], micro- and nano-structured and
patterned surfaces[70–72], and multi cell arrays[73,74] have found application areas in
neuroscience research.

Microfluidic platforms compartmentalize neural cell structures in different dimension
channels [64,65,75], allowing the separation of the cell body from its neurites and local
chemical treatments. While most microfluidic platforms separate two or more cell
populations, controllable single neural cell alignment was realized by Dinh et al. [63] or by
Takayama et al. [69] through a combination of cell cages and fluid flow.

Methods to shape and control the extracellular topography precisely around neural cells
have advanced from simple stripe and dot shaped protein patterns towards complex
combinations of shorter and longer patterns [76]. To polarize the cytoarchitecture of single
dissociated neurons a hexagonal star pattern with one continuous and multiple stepped
pattern generated a long versus multiple short neurites in more than 60% of seeded cells
[72]. This pattern technique yields highly controllable cell arrays with hetero-directional
stage 1 polarized neurons in a culture [77], suitable for pharmaceutical screens.

While the patterning techniques target early developmental questions, synapse formation is
the next critical step towards functional neural circuits. A large-scale synapse assay called
synapse microarray has been developed by Shi et al. to quantitatively screen drugs involved
in synaptogenesis [74].

Single-cell culture platforms have already been employed by the neuroscience field and
have provided initial results in manipulating both single-cell architecture and neural
networks with the ability to control cell and network polarity. Researchers have now started
to combine single-cell tools with co-cultures of neurons and non-neural cells, however the
role of non-neural cells in cell polarization and neural development, especially related to cell
models of mental disorders remains an open topic. In the future, cellular disease models
should be more strongly integrated into current single-cell techniques. Questions concerning
how polarity and guidance impact neural development, or in a later stage, the degeneration
of neurite networks still remain.

Immunology
The human immunological network is complex, and known to play roles in a number of
disease states including bacterial and viral pathogenesis, tumorigenesis and metastasis[78–
80], as well as autoimmune disorders. The development of acquired immunity is driven via
the presentation of antigens on the major histocompatibility complex (MHC) types I and II
by a variety of cell types and subsequent recognition by T cells. Antibodies are produced by
B cells after successful antigen presentation on MHCII molecules and subsequent T cell
recognition. Immune cells also secrete factors including many types of interleukins that
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modulate coordinated immune response, interferon gamma (IFN-γ), known to regulate viral
replication, and tumor necrosis factor alpha (TNF-α) which is thought to inhibit tumorigenic
growth and modulate both acute and chronic inflammatory responses.

At any given point, there is thought to be 106 to 108 different types of MHC-antigen
complexes being presented, with the potential for a similar number of unique antibodies to
be produced. This poses a fundamental problem of cellular heterogeneity when sampling
immune cells for isolation of therapeutic human monoclonal antibodies (mAb), for
monitoring the dynamics of the immune system in a pathological state, and for the isolation
of single cells to characterize active molecular pathways and phenotype. In order to further
understand the immune system’s role in controlling cancer as well as bacterial and viral
infections, isolation and characterization of the diverse set of specialized single immune
cells is necessary. Both flow through systems characterizing gradient effects on
immunological phenotypes [81], as well as microwell technologies for single cell analysis
have proven effective in furthering our understanding of immune system function.

Compartmentalization technologies have been employed as effective tools for proteome and
secretome analysis for immunophenotyping. In particular, the ‘micro-engraving’ process
allows both time dependent, high throughput analysis of secreted factors via
immunofluorescence while simultaneously detecting multiple cell types from cellular
surface markers[82–84]. Similarly, Jin et al have created a complementary immunospot
array based method for isolation of antibody secreting cells (ASCs) called ‘ISAAC’, in
which microwells are etched into silicon and coated with ‘catching’ antibodies to
fluorescently detect secreted antibodies of interest[85]. Zhu et al have employed similar
microwell techniqes, where instead PEG hydrogels are used as the structural component and
detection of secretions occurs via integrated aptamer-on-gold electrode sensors [86,87].
These microwell based technologies make use of the fundamental concepts of ELISA and
ELISPOT, the current gold standard approaches for secretion and proteome analysis[88].
However the compartmentalization of single cells using microfabrication, coupled with
simultaneous detection of cells and their individual secretions is what has allowed new
powerful insights into the heterogeneity of the immune system, such as the discovery that T-
cells programmatically, sequentially release cytokines, although this occurs asynchronously
in a population [84]. Recent results also indicate that an increasing fraction of cells is
digitally activated in response to increasing TNF- α concentration, but are capable of
analogue information processing after stimulation, producing unique classes of NF-κB
signals[89].

Conclusion
The advent of single-cell analysis has brought both an increase in understanding of cellular
heterogeneity, but also revealed that our understanding of how individual cells contribute to
tissue phenotypes and pathology is limited. In order to further our understanding of
important disease states manifested at the tissue and organismal level, such as tumorigenesis
and metastasis, neurological disorders, compromised immunity and auto-immune disorders,
and tissue regeneration, the development of high-throughput single-cell analysis approaches
have been and will continue to be necessary. These technologies increase statistical
significance, as biological variance is often high at the individual-cell level, while
simultaneously empowering multiplexed analyses incorporating control over multiple
environmental factors and stimuli. Successful, next-generation technologies will combine
previous technology fundamentals to make direct comparisons between cellular biophysics
(e.g. response to force, migration in gradients, growth under fluid shear), genomics, and
phenotype, as well as further multiplex stimuli and quantify outputs. Besides aiding in
answering fundamental questions concerning cell control, such correlations can enable
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future low-cost biophysical diagnostic readouts, backed by extensive molecular data.
Finally, new approaches to identify epigenetic changes within single-cells (e.g. chromatin
methylation, acetylation, and structure) is also fundamentally missing and will provide
additional key insights in the near future.
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Highlights

• Single-cell analysis is necessary to understand complex tissue-scale biology.

• Biological variance and heterogeneity require high-throughput, quantitative
methods.

• Single-cell platforms will enable novel diagnostics for tissue-scale analysis.
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Figure 1.
High throughput, single cell analysis tools grouped by the cellular property which they
quantify. Single cell techniques range from phenotypic characterization of antibiotic
resistance in plug-based systems (bottom left) to proteome, genome, and transcriptome
analysis using bar-codes and integrated valving microfluidics. Continuous flow microfluidic
systems are currently being developed to measure whole cell deformability in high
throughput, towards real-time patient diagnosis and new regenerative medicine tools.
Massively parallel cellular surface patterns are used to probe cell-matrix interactions, as well
as force generation within cells when coupled with magnetic nanoparticles.
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Figure 2.
(A) Important cell population subsets and dynamics can be easily masked by conventional
bulk analysis. (B) Confinement of single cells into two-phase plug systems has allowed for
direct observation of the ‘founder’ phenomenon in bacterial antibiotic resistance. When cells
are pre-incubated then segmented, all plugs have a low baseline fluorescence, but when each
cell is segmented individually and exposed to antibiotic only in the plug, cells either die
(dark), or proliferate because they are resistant (red). (C) siRNA knockdown of a
housekeeping gene GAPDH shows high variability cell to cell, where in some cases
knockdown is ~100%, and in others is only ~50% effective, giving the typical 25% activity
bulk measurement of an ‘effective’ knockdown. (D) Single cell analysis of differentiating
stem cells shows a distinct difference between differentiated and pluripotent cells.
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