UC Irvine

UC Irvine Previously Published Works

Title

OXYGEN IMAGING IN TISSUES

Permalink

https://escholarship.org/uc/item/4c25v5m7

Journal

FASEB JOURNAL, 6(1)

ISSN

0892-6638

Authors

CARRERO, J FRENCH, T GRATTON, E

Publication Date

1992

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Jenny Carrero, Todd E French, and Enrico Gratton.

Oxygen imaging in tissues.

36th Annual Meeting of the Biophysical Society, Houston, Texas, 9-13 February 1992. *Biophys J.* 1992; 61(2 Pt 2): A177, 1015.

Abstract

The dependence of higher animals on cellular metabolism is well accepted. It has been shown that concentrations of oxygen up to 5 μ m are linearly related to metabolism. In the hope of a better understanding of cellular metabolism, we are attempting more accurate measurements of oxygen concentrations in tissue. A phosphorescent probe: Palladium Coproporphyrin (PDCO) has previously been shown to be a promising probe for the measurement of oxygen because of its Stern Volmer relationship with oxygen (J. of Biological Chemistry, 1987, pp. 5476). Frequency domain phosphorescence lifetime imaging is particularly suited to take advantage of the properties of this probe to quantitate concentrations of oxygen in the range of metabolic interest. We have performed experiments using rat livers that were perfused with a solution of PDCO. Phase resolved images have been obtained using a CCD camera. Oxygen images will be obtained from phase resolved images. This work is supported by NIH grant PHS-P41-RR03155.