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Wave Breaking over Sloping Beaches using a

Coupled Boundary Integral-Level Set Method ∗

M. Garzon†, D. Adalsteinsson‡, L. Gray§, and J.A. Sethian¶

December 8, 2003

Abstract

We present a numerical method for tracking breaking waves over
sloping beaches. We use a fully non-linear potential model for in-
compressible, irrotational and inviscid flow, and consider the effects of
beach topography on breaking waves. The algorithm uses a Bound-
ary Element Method (BEM) to compute the velocity at the interface,
coupled to a Narrow Band Level Set Method to track the evolving
air/water interface, and an associated extension equation to update the
velocity potential both on and off the interface. The formulation of the
algorithm is applicable to two and three dimensional breaking waves;
in this paper, we concentrate on two-dimensional results showing wave
breaking and rollup, and perform numerical convergence studies and
comparison with previous techniques.

1 Introduction and overview

The flow pattern of wave breaking over sloping beach floors has been exten-

sively studied, both experimentally and by means of numerical simulation,
due to the interest in surf-zone dynamics, sediment transport problems, and

impact forces on off-shore and near-shore structures.
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matical Sciences, and the Division of Mathematical Sciences, National Science Foundation
†Dept. of Applied Mathematics, Univ. of Oviedo, Spain
‡Dept. of Mathematics, Univ. of North Carolina, Chapel Hill
§Computer Science and Mathematics Division, Oak Ridge National Laboratory
¶Dept. of Mathematics, University of California, Berkeley, and Mathematics Depart-

ment, Lawrence Berkeley National Laboratory.
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The most commonly used mathematical models, based on various as-

sumptions, are the non-linear shallow water equations, the non-linear Boussi-
nesq models and the non-linear fully potential models (see for example [16],

[34], [24], [14]). More recent models account for turbulent dissipation forces
generated when the wave jet overturns. These are based on the Reynolds

average Navier-Stokes equation for the mean flow and several k-ε models for
the turbulent field ([18]). Slightly different approaches which also include

turbulent effects can be found in ([10]). The physical validity of these var-
ious models to accurately predict wave breaking is difficult to assess, since

physical experiments (laser doppler velocities, particle image velocity) fail
to give reproducible velocity data in the roller region of the breaking wave.

Under the assumptions that water is an incompressible, inviscid fluid, the

motion is irrotational, and imposing appropriate boundary conditions on the
free surface, the governing equations for the water wave motion are referred

as ’Fully non-linear potential model’ (FNPM) and are able to model strongly
non-linear waves. This model has been extensively used by, for example

Grilli et al. ([14], [15], [17]), to predict solitary wave shoaling and wave
overturning until the jet of the wave impinges against the flat water surface.

They use a Lagrangian Eulerian formulation of the model equations and a
high order Boundary Element Method (BEM) to approximate the boundary

integral equation for the computations of free surface velocity.
Such an approach can provide accurate solutions to wave breakage, how-

ever the numerical issues associated with regridding to maintain accuracy,

topological change, complexities in three dimensions, etc., are challenging.
If one considers the more general problem of two-phase flow, in which fluids

(in this case, water and air) form part of the computational domain, fully
Eulerian techniques that avoid these regridding and topological issues are

available. One option is Level Set Methods, introduced by Osher and Sethian
[23]. A large collection of simulations have been performed coupling level

set methods to Chorin’s projection method ([9]) to compute the solution of
incompressible, viscous and inviscid two-phase flow, often in the presence

of interface surface tension and considerable density variation between the
two fluids, see ([7, 31, 33, 30, 35]). In this approach, boundary conditions
are required for both fluids. However, it can difficult to specify appropriate

numerical boundary conditions for the air region in open domains that do
not adversely affect the calculation.

In this paper we present a different approach, designed to take advantage
of the well-studied robustness and topological properties of level set methods

for tracking moving interfaces, while maintaining the accuracy, sharpness,
and desirable single-fluid approach that can be obtained from a boundary
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integral formulation. The idea of the present work is to apply this approach

to the numerical solution of the FNPM for two-dimensional waves shoal-
ing over a constant and sloping bottom. This approach provides a simple

and direct way to solve the model equations by reformulating the problem
in a complete Eulerian framework, and straightforward upwind numerical

schemes give sufficiently accurate wave profiles while shoaling and breaking.
The formulation is unchanged in three dimensions, offering the possibility

of computing complex breaking wave motions.
The central ideas are as follows. The interface is represented by the zero

level set of an embedded level set function, defined throughout a narrow
band about the interface in question, see [1]. Similarly, an artificial velocity
potential is defined in this region that equals the correct velocity potential

along the interface; here, we were motivated by the recent work in [3] for
transport and diffusion of material quantities on propagating interfaces us-

ing level set methods. To advance the position of the interface, first a nodal
representation is extracted from the level set function, along with the veloc-

ity potential at these nodes. Then, a boundary integral method is used to
compute the velocity at each of these nodes. This velocity is then extended

throughout the narrow band, and both the level set function and the velocity
potential are updated by advancing initial value Eulerian partial differential

equations for both the level set function and the velocity potential. This
process is then repeated.

2 The Governing Equations

Let Ω(t) be the 2D fluid domain in the vertical plane (x, z) at time t, with
z the vertical upward direction (and z = 0 at the undisturbed free surface),

and Γt(s) = (x(s, t), z(s, t)) a parametrization of the free boundary at time
t (see Figure 1).

Under the above mentioned assumptions, the mass and momentum con-

servation equations are given by

∇u = 0 in Ω(t) (1)

ut + u · ∇u =
−∇p

ρ
+ b in Ω(t) (2)

where u(x, z, t) is the fluid velocity, p(x, z, t) the pressure field, b(x, z, t) the
body forces (per unit mass), and ρ is the fluid density.

Since the motion is irrotational, fluid particles do not rotate and vorticity
vanishes everywhere in the field of flow. This means that the velocity field
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Figure 1: The domain

can be represented as the gradient of a scalar function referred to as the
velocity potential φ(x, y, t). If u = ∇φ, and b = −gz, being z a unit vector

in the vertical direction (z = ∇z), the momentum equation (2) reduces to
the so-called Bernoulli’s equation:

φt +
1

2
(u · u) +

p

ρ
+ gz = C(t).

We can take C(t) = 0 using the transformation φ → φ +
∫ s

0 C(s)ds, which
does not affect the velocity field, and, together with the transformation

p → p − pa, which does not affect the basic Euler equations (they only
depend upon ∇p), we have that

φt +
1

2
(∇φ · ∇φ) +

p− pa

ρ
+ gz = 0 . (3)

This gives the pressure field once φ is known (here pa denotes the atmo-
spheric pressure).

On the free boundary, the following boundary conditions are imposed:

1. Continuity of the stress tensor between water and air leads to p = pa,
and thus

φt +
1

2
(∇φ · ∇φ) + gz = 0 on Γt(s) .

2. If R(s, t) = (X(s, t), Y (s, t)) is the position vector of a fluid particle
on the free surface, we have the kinematic boundary condition

Rt(s, t) = u(R(s, t), t) on Γt(s)

where s identifies the fluid particle that is at x = X(s, t), z = Z(s, t)
at time t.
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Therefore, the model equations are:

u = ∇φ in Ω(t) (4)

∆φ = 0 in Ω(t) (5)

Rt = u on Γt(s) (6)

Dφ

Dt
= −gz +

1

2
(∇φ · ∇φ) on Γt(s) (7)

φn = 0 on Γb ∪ Γ1 ∪ Γ2 (8)

with the material derivative defined in the standard way as

D

Dt
=

∂

∂t
+ u · ∇.

3 Embedding the Equations of Motion in a Level

Set framework

Level set [23] methods embed a propagating interface as the zero level set of
a time-dependent, implicit function, and then solve the resulting equations

of motion in a fixed grid Eulerian setting. They rely in part on the theory of
curve and surface evolution given in [25, 26] and on the link between front

propagation and hyperbolic conservation laws discussed in [27]. Physically
appropriate viscosity solutions are obtained by exploiting schemes from the

numerical solution of hyperbolic conservation laws. Level set methods are
designed for problems involving topological change, curvature dependence

and singularities, and complex three-dimensional problems
Briefly, the main idea is to embed the initial position of the front as the

zero level set of a higher-dimensional function Ψ(x, z, t). One then links the
evolution of this function Ψ to the propagation of the front itself through a
time dependent initial value problem. At any time, the front is given by the

zero level set of the time-dependent level set function Ψ. An equation for
the motion for this level set function Ψ which matches the zero level set of

Ψ with the evolving front comes from observing that the level set value of a
particle on the front with path R(s, t) must always be zero:

Ψ(R(s, t), t) = 0 .

Hence by the chain rule, we have that

Ψt + ∇Ψ(R(s, t), t) · u = 0. (9)
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For the wave problem, let Ω1 be a fictitious fixed rectangular domain

that contains the free boundary at any time t. Equation (6), which states
that the front moves with velocity u can be replaced by the level set equation

(9) posed on Ω1.
To embed equation (7) in the level set framework, parametrize the curve

that represents the initial position of the front by its arclength: s → Γ0(s).
Let be u(x, z, t) the velocity field, the trajectory of a fluid particle at initial

position s is given by the solution of

Rt(s, t) = u(R(s, t), t) (10)

R(s, 0) = (X(s, 0), Z(s, 0)) . (11)

For any t > 0 the free boundary curves are parametrized with the same

parameter s, s→ Γt(s), in order to have the identity Γt(s) := R(s, t).
On the free boundary Γt(s) we define

Φ(s, t) = φ(x, z, t)|Γt(s) = φ(R(s, t), t),

and thus by fixing s and moving t, we are constrained to a fluid particle,

which means that Φt(s, t) is a total derivative,

Φt = φt + u · ∇φ =
1

2
(∇φ · ∇φ) − gz.

Next, let be G(x, z, t) a function defined on Ω1 with the following property

G(X(s, t), Z(s, t), t) = Φ(s, t) on Γt(s) .

Applying the chain rule, we have

Gt + u · ∇G =
1

2
(∇φ · ∇φ) − gz, (12)

which again holds on Γt(s). Note that u and the right hand side of equation

(12) are only defined on Γt(s). In order to solve equation (12) embedded in
the whole domain Ω1, we need to extend these variables off the front; this

is discussed below.
In summary, the Level Set model equations, written in a complete Eu-

lerian framework, are
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u = ∇φ in Ω(t) (13)

∆φ = 0 in Ω(t) (14)

Ψt + ∇Ψ · uext = 0 in Ω1. (15)

Gt + uext · ∇G = fext in Ω1 (16)

φn = 0 on Γb ∪ Γ1 ∪ Γ2 (17)

where f = 1
2 (∇φ · ∇φ) − gz and fext the extension of f onto Ω1.

4 Numerical Approximations and Algorithms

In this section, we provide overviews of the various components of the simu-

lation algorithm. More detailed discussions of level set methods, boundary
element methods, fast extension velocities, and potential initializations, may

be found in the cited references.

4.1 Initialization

The initial front position Γ0(s) = (x(s, 0), z(s, 0)) and initial velocity poten-
tial φ(x, z, 0)|Γ0(s) are needed to solve equations (15) and (16) respectively.

Given an initial solitary wave amplitude (H0) and the physical length of the
domain (L), Tanaka’s method gives a way of calculating these quantities (for

this we have used the Fortran code kindly provided by S.T. Grilli). Here,
we briefly discuss the theoretical basis of this method.

Assuming constant depth, the flow field can be reduced to steady state
by using a coordinate system that moves horizontally with speed equal to

the wave celerity c. The stream function ψ(x, z) is also harmonic and takes
constant values at the bottom and at the free surface of the domain. ¿From

the definition of the stream function and velocity potential we have

φx = ψy, φy = −ψx.

Under sensible assumptions about the smoothness of φ and ψ, these are

just the Cauchy-Riemman equations which are satisfied by the real and
imaginary parts of the complex potential function W = φ + iψ. It is an

analytical function of the complex variable Z = x+iz in the domain occupied
by the fluid. By interchanging the role of the variables Z and W , we can

take φ and ψ as independent variables, as W = φ+ iψ provides a one to one
correspondence between the physical and complex potential planes. With
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this transformation, the fluid region is mapped into the strip 0 < ψ < 1,

−∞ < φ < ∞ in the W plane with ψ = 1 on the free surface, ψ = 0 on
the bottom and φ = 0 at the wave crest. Denote by u, v the horizontal and

vertical components of the velocity u, q = |u| and θ the angle between the
velocity and the x axis. The complex velocity is defined by

dW

dZ
= φx + iφy = u− iv = qeiθ

and it is also analytic in the flow domain. Therefore, the quantity

ω = ln(
dW

dZ
) = ln q − iθ,

is an analytic function of W , so τ = ln q must be harmonic in the strip

0 < ψ < 1, −∞ < φ < ∞. The Bernouilli condition at the free surface and
the bottom condition can be expressed in terms of q and θ as:

dq3

dφ
= −

3

F 2
sin θ on ψ = 1 (18)

θ = 0 on ψ = 0, (19)

where F is the Froude number defined by F = c√
gh
.

The problem of finding a solitary wave solution can thus be transformed

into the problem of finding a complex function ω that is analytic with respect
to W within the region of the unit strip 0 < ψ < 1, decays at infinity, and
satisfies the boundary conditions (18) and (19). Tanaka’s method provides

a way to solve the previous outlined equations in terms of the new variables
τ , θ and a full description of the algorithm can be found in [32].

4.2 Level Set Methods

We use the standard Narrow Band Level Method, introduced by Adalsteins-
son and Sethian [2], which limits computation to a thin band around the

front of interest. Following the algorithm discussed in [23], we use second
order in space upwind differences to approximate the gradient in the level set

equation, and a first order time scheme to update the solution. For bound-
ary conditions, homogeneous flux boundary conditions are usually chosen.

This has been implemented by creating an extra layer of ghost cells around
the domain whose values are simply direct copies of the Ψ values along the

actual boundary. The level set function is built from the initial position of
the front by computing the signed distance function. This is done using the
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Fast Marching Method [28], which is a Dijkstra-like finite difference method

for computing the solution to the Eikonal equation in O(N logN ), where N
is the total number of points in the computational domain.

The velocity and the velocity potential are both initially defined only
on the interface. In order to create values throughout the narrow band,

required to update the fixed grid Eulerian partial differential equations, we
use the extension methodology developed by Adalsteinsson and Sethian [2].

The idea of building extension velocities was first introduced in [19]; in that
approach, the extension velocity at any grid point in the domain was taken

as equal to the velocity on the closest point on the front itself. As shown in
[6], this is equivalent to solving the equation ∇V · ∇Ψ = 0 for the velocity
V , and in [6] this equation was solved using a finite difference iteration. In

[2], Adalsteinsson and Sethian present a technique for computing this exten-
sion velocity using the very efficient Fast Marching methodology. Finally,

in [3], this approach was further developed to build extension values for ar-
bitrary material quantities (not just velocities) whose evolution affects the

underlying interface dynamics.

4.3 The Boundary Integral equation and the BEM approxi-

mation

A first order boundary element method is used to approximate equation (13).

Boundary integral equations are-well suited to moving boundary problems
for two principal reasons. First, determining the surface velocity generally

requires computing function derivatives on this boundary, which are accu-
rately evaluated within this formulation. Second, remeshing the moving

boundary is cleary simpler than remeshing the entire domain.
The Laplace equation for the velocity potential (14) is solved by approxi-

mating the corresponding boundary integral equation. Boundary conditions
are given by (17) and, on the free boundary, at each time step, by the up-
dated potential velocity given by equation (16). The solution of the integral

equation completes the knowledge of the potential and its normal derivative
on the boundary, and the potential gradient on the free surface (the velocity

u) is then computed in a post-processing step.
The boundary integral equation for the potential φ(P ), in a domain Ω(t)

having boundary Σ = ∂Ω(t), can be written as

P(P ) = φ(P ) + lim
PI→P

∫

Σ

[

φ(Q)
∂G

∂n
(PI, Q)−G(PI, Q)

∂φ

∂n
(Q)

]

dQ = 0 ,

(20)
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where n = n(Q) denotes the unit outward normal on the boundary surface

and {PI} are interior points converging to the boundary point P . The
Green’s function or fundamental solution (in two dimensions) is

G(P,Q) = −
1

2π
log(r) . (21)

The integral equation is usually written with the ∂G
∂n

singular integral eval-
uated as a Cauchy Principal Value (CPV), resulting in an ‘interior angle’

coefficient c(P ) multiplying the leading φ(P ) term [4, 5]. The reason for
employing the seemingly more complicated limit process will become clear

in the discussion of gradient evaluation. The exterior limit equation

lim
PE→P

∫

Σ

[

φ(Q)
∂G

∂n
(PE, Q)−G(PE, Q)

∂φ

∂n
(Q)

]

dQ = 0 . (22)

yields precisely the same equation: the jump in the CPV integral as one
crosses the boundary accounts for the ‘free term’ difference.

In this work, a Galerkin (weak form) approximation of Eq. (20) has been
employed, and the boundary and boundary functions are interpolated using

the simplest approximation, linear shape functions. Thus, the equations
that are solved are of the form

∫

Σ
ψ̂k(P )P(P ) dP = 0 , (23)

where the weight functions ψ̂k(P ) are comprised of all shape functions which
are non-zero at a particular node Pk [4]. These approximations reduce the

integral equation to a finite system of linear equations, and invoking the
boundary conditions allows the solution of the unknown values of potential
and flux on the boundary. Details concerning the limit evaluation of the

singular integrals can be found in [11].
As noted above, for the wave problem and moving boundary problems in

general, knowledge of the normal flux is not sufficient, the complete gradient
of φ is required to compute the surface velocity. The remainder of this section

will briefly discuss the algorithm for computing this gradient.
¿From Eq. (20) a gradient component in the direction Ek can be ex-

pressed as

∂φ(P )

∂Ek
= lim

PI→P

∫

Σ

[

∂G

∂Ek
(PI , Q)

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PI , Q)

]

dQ . (24)

Once the boundary value problem has been solved, all quantities on the right
hand side are known: a direct evaluation of nodal derivatives would therefore
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be easy were it not for well-known difficulties with the hypersingular (two

derivatives of the Green’s function) integral [13, 21, 22, 20]. As described in
[12], a Galerkin approximation of this equation,

∫

Σ

ψ̂k(P )
∂φ(P )

∂Ek

dP = (25)

lim
PI→P

∫

Σ
ψ̂k(P )

∫

Σ

[

∂G

∂Ek
(PI , Q)

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PI, Q)

]

dQ dP

allows a treatment of the hypersingular integral using standard continuous

elements.
Interpolating ∂φ(P )/∂Ek in terms of the linear shape functions results

in a simple system of equations for nodal values of the derivative everywhere
on Σ; the coefficient matrix is obtained by simply integrating products of

two shape functions. However, the complete boundary integrations required
to compute the right hand side of Eq. (25) are quite expensive.

The computational cost of this procedure can be significantly reduced by
exploiting the exterior limit equation, Eq. (22). It appears to be useless for

computing tangential derivatives for, lacking the free term, the correspond-
ing derivative equation takes the form

0 = lim
PE→P

∫

Σ

[

∂G

∂Ek

(PE , Q)
∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PE , Q)

]

dQ , (26)

and the derivatives obviously do not appear. However, subtracting this
equation from Eq. (24) yields (with shorthand notation)

∂φ(P )

∂Ek
=

{

lim
PI→P

− lim
PE→P

}
∫

Σ

[

∂G

∂Ek

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n

]

dQ . (27)

The advantage of this formulation is that now only the terms that are dis-
continuous crossing boundary contribute to the integral. In particular, all

non-singular integrations, by far the most time consuming, drop out. The
calculation of the right hand side in Eq. (27) reduces to a few ‘local’ singular

integrations, and as these integrations are carried out partially analytically,
this produces an accurate algorithm. Further details about the evaluation

of the Galerkin form of Eq. (27) can be found in [12].

4.4 The velocity potential updating

The potential equation (16) is a convection equation with a strong non-linear
source term, and homogeneous Newmann boundary conditions are imposed
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on the boundary of Ω1. To update this equation in time, note that it is

similar to (15) except that it has a nonlinear source term, and therefore
similar schemes can be employed. For example a straightforward first order

scheme is

Gn+1
i,j = Gn

i,j − ∆t(max(un
i,j, 0)D−x

i,j + min(un
i,j, 0)D+x

i,j +

max(vn
i,j, 0)D−z

i,j + min(vn
i,j, 0)D+z

i,j ) + ∆tfn
i,j

where

D−x
i,j = D−x

i,j G
n
i,j =

Gn
i,j −Gn

i−1,j

∆x

D+x
i,j = D+x

i,j G
n
i,j =

Gn
i+1,j −Gn

i,j

∆x

are the backward and forward finite approximation for the derivative in the

x direction (and the same expressions for D−z
i,j and D+z

i,j .) Note that for
simplicity we have written u, v, G, f instead of uext, vext, Gext, fext, and
we have employed a first order explicit scheme with a centered source term.

Initial values of G0
i,j are obtained by extending φ(x, z, 0)|Γ0(s) as previously

discussed. However, at any time step n it is always possible to perform a

new extension of Φn(s, n∆t) to reinitialize Gn
i,j.

A key issue is how one obtains fext at the grid points of Ω1. There are

several ways of doing so. Here we choose to calculate f = 1
2 (∇φ ·∇φ)−gz on

free surface nodes and use these values together with the condition ∇f ·∇Ψ =

0 to obtain fext. This algorithm for extending quantities defined on the front
off the front works very well for the velocity front, because it maintains the

signed distance function for the level sets of Ψ. However, for the wave
problem, there are large variations in f along the front together with its
topological structure when overturning, the previous method creates strong

G and f gradients in Ω1. This fact strong limits the ratio between grid
spacing in Ω1 and the time step needed to maintain accuracy (see the section

on numerical experiments).

4.5 Regridding of the free surface

In a level set formulation the position of the front is only known implicitly

through the node values of the level set function Ψ. In order to extract the
front, it is possible to construct first order and second order approximations

of the interface using local data of Ψ on the mesh (see [8] for example.) Here
we use a first order linear approximation of the free surface, which yields
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a polygonal interface formed by unevenly distributed nodes, which we call

LS nodes. As a result of this extraction technique, we can sometimes get
front nodes which are very close together, and this can cause difficulties and

instabilities for boundary element calculations. To overcome this problem,
and also to achieve more front resolution when needed, we employed a front

node regridding technique. An initialization point on the front is selected
according to a particular criterion, such as maximum value of height, velocity

modulus, or front curvature. This point divides the front in two halves
and new nodes are chosen so that, lying in the same polygon, they are

redistributed by arclength according to the formula:

si+1 − si = d0(1 + si(f0 − 1))

where si denotes the arclength distance from node i to the initialization
point (i = 0) and d0, f0 are user selected parameters. These regridded

nodes on the front are used to create the input file for the BEM calculations
and are denoted by BEM nodes.

4.6 The algorithm

To initialize the position of the front and the velocity potential on the front,
we use Tanaka’s method for computing numerical exact solitary waves.

The basic algorithm can be summarized as follows:

1. Compute initial front position and velocity potential Φ(s, 0) on Γ0(s).

2. Extend Φ(s, 0) onto the grid points of Ω1 to initialize G.

3. Generate Ω(t) and solve (14), using the Boundary Element Method.
This yields the velocity u and source term f on the front nodes.

4. Extend u and f off the front onto Ω1.

5. Update G using (16) in Ω1.

6. Move the front with velocity u using (15) in Ω1

7. Interpolate (bi-cubic interpolation) G from grid points of Ω1 to the
front nodes to obtain new boundary conditions for (14). Go back to

step 3 and repeat forward in time.

A more detailed algorithm including regridding is:

Initialization: Given Γ0 = Γ0(s),Φ
0 = Φ(s, 0)
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1. Calculate Ψ0 and LS nodes.

2. Extend Φ0 to obtain G0.

3. Redistribute LS nodes to obtain BEM nodes.

4. Calculate u0 at BEM nodes.

5. Find u0 and f0 at LS nodes and extend onto Ω1.

Steps: Given Ψn,Φn,un

1. Calculate Ψn+1 and LS nodes.

2. Calculate Gn+1 in Ω1 grid points.

3. Redistribute LS nodes to obtain BEM nodes.

4. Interpolate G on BEM nodes to find Φn+1.

5. Calculate un+1 at BEM nodes.

6. Find un+1 and fn+1 at LS nodes and extend onto Ω1. Go to step 1

and repeat.

7. If reinitialization

(a) Take LS nodes and reinitialize Ψn+1.

(b) Take BEM nodes and extend Φn+1.

4.7 Numerical accuracy

The model equations imply that the wave mass and its total energy should

be conserved as the wave evolves in time. One way to check the numerical
accuracy of the discretized equations is to compute these quantities each
time step. The wave mass above z = 0 is given by

m(t) =

∫

Ω(t)
dΩ =

∫

∂Ω(t)
znzds =

∫

Γt(s)
znzds

and the total energy is E(t) = Ep(t) + Ek(t), where Ep(t), Ek(t) denotes

the potential and kinetic wave energy respectively. They can be calculated
using the expressions

Ep =
1

2
ρg

∫

Ω(t)

zdΩ =
1

2
ρg

∫

Γt(s)

z2nzds,
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which is the potential energy with respect to z = 0. For the kinetic energy

Ek =
1

2
ρ

∫

Ω(t)
∇φ · ∇φdΩ =

1

2
ρ

∫

∂Ω(t)
φ
∂φ

∂n
ds =

1

2
ρ

∫

Γt(s)
φ
∂φ

∂n
ds,

where the divergence theorem has been applied to the three formulas and we

have used the fact ∂φ
∂n = 0 on Γb,Γ1,Γ2. These integrals are approximated

by a composite trapezoidal rule, using the values of the quantities on the

free boundary BEM nodes. The components of the normal vector to the
free surface are computed using the level set embedding function to obtain

surface geometrical variables.
A common procedure to study the accuracy and convergence properties

of the discretized equations with respect the mesh sizes and the time step

is by means of an analytical solution. A solitary wave propagating over
a constant depth is a traveling wave that moves in the x direction with

speed equal to the celerity of the wave (c). The velocity potential and the
velocity on the front as functions of x are also translated with the same speed

c. Therefore, in this case, by calculating initial wave data with Tanaka’s
method and translating it, we are able to compute the L2 norms of the errors

for the various magnitudes. For the case of a solitary wave shoaling over a
sloping bottom, the accuracy can only be checked looking at the mass and

energy conservation properties and comparing breaking wave characteristic
obtained here with those reported elsewhere, for example in [15].

5 Numerical Results

The system of equations to be discretized is a non-linear system of strongly
coupled partial differential equations. First order in time and second order

in space schemes are used for equation (15); first order in time and in space
schemes are used for equation (16); and a first order BEM solver is used for

the velocity updating.
To study the convergence properties of this method and its capability to

predict wave breaking characteristics, the numerical results corresponding
to the following physical settings are presented: a solitary wave propagating

over a constant depth and the shoaling and breaking of a solitary wave
propagating over various sloping bottoms.

5.1 Constant depth test

In order to tune the discretization parameters and see how they affect nu-
merical accuracy we performed a series of numerical tests with a solitary
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wave of H0 = 0.5 m (wave height at the crest) propagating over a constant

depth of 1 m. The wave crest is initially located at x = 6.5 m and the
domain has L = 15 m of length. In what follows, the units are taken as

meters and seconds for length and time, respectively.
Let Ω1 = [0, 15] × [−0.3, 1] be the fictitious domain that contains the

free boundary for all t ∈ [0, 0.5], ∆x = ∆z the grid size and ∆t the time
step. To discretize ∂Ω(t) for the input to the boundary integral calculation,

a variable mesh size is used: ∆l = 0.1 for Γ1 and Γ2, ∆l = 0.2 for Γb, and
the regridding parameters for Γs(t) are chosen to be d0 = 0.005, f0 = 10.

This gives 193 BEM nodes on the moving front and 98 nodes on the fixed
boundaries. We ran the following test cases:

• (a) ∆x = 0.1, ∆t = 0.01.

• (b) ∆x = 0.1, ∆t = 0.001.

• (c) ∆x = 0.01, ∆t = 0.001.

• (d) ∆x = 0.01, ∆t = 0.0001.

For a given solitary wave parameters (H0 and length L in the x direction)

Tanaka’s method gives the initial wave magnitudes, front location, velocity
potential, velocity components at front points and wave celerity c. At any
time t, let (xex, zex), φex, uex, vex be the values of these variables obtained

by translating initial values a distance ct along the x direction and spline
interpolating in LS nodes. Denote by (xc, zc), φc, uc, vc the computed

values at LS nodes, L2(z) =‖ zc−zex ‖L2(Γs(t)), L
2(φ) =‖ φc −φex ‖L2(Γs(t)),

L2(u) =‖ uc − uex ‖L2(Γs(t)) and L2(v) =‖ vc − vex ‖L2(Γs(t)) the L2 norm

of the errors. Table 1 shows these errors at the final time t = 0.5 for the
various test cases.

Test L2(z) L2(φ) L2(u) L2(v)

(a) 0.007239 0.095254 0.025147 0.025856

(b) 0.009762 0.021451 0.039635 0.035685

(c) 0.001476 0.011363 0.0099744 0.009356

(d) 0.001699 0.00424601 0.0106674 0.010188

Table 1: Values of the L2 error norms at t = 0.5

Figures 2 and 3 show L2(z), L2(φ), L2(u), L2(v) versus time for cases (c)
and (d) respectively. As observed from these results the L2 error norm in
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front location and velocity components decreases with mesh size (∆x) but

not with the time step (possibly due to the accumulation of round off errors).
Only the velocity potential gains accuracy when ∆x

∆t
= 100 and this is due

to the high G and f gradients occurring on Ω1.
Regarding wave mass and energy conservation, at each time step we

calculate m(t) and E(t) as explained in 4.7. Figures 4 and 5 show the values
of |m(t) −m(0)| and |E(t) − E(0)| versus time and the same behaviour of

these quantities with respect to discretization parameters is observed.
Next, to see if we gain accuracy in the velocity calculations by increasing

the number of BEM nodes, we take ∆l = 0.05 on Γ1 and Γ2, ∆l = 0.1 on
Γb, and d0 = 0.001, f0 = 5 on Γs(t). This gives 1720 BEM nodes on the
moving front and 196 nodes for the fixed boundaries. For this discretization

of the boundary we run two more cases:

• (e) ∆x = 0.01, ∆t = 0.001.

• (f) ∆x = 0.01, ∆t = 0.0001.

Values of the L2 error norms for case (e) and (f) are almost identical to

those obtained for case (c) and (d) respectively, which means that accuracy
in velocity is not gained by increasing the number of bem nodes. However,

as shown in Figure 5, |m(t) − m(0)| has decreased by almost an order of
magnitude due to the accuracy in front position and the improvement in

the integral approximation to calculate m(t). Figure 6 shows for case (e)
the absolute errors in Ep(t), Ek(t), E(t) versus time and, in agreement with

the previous discussion, the kinetic energy is much less accurate than the
potential energy.

¿From these numerical experiments we conclude that the proposed algo-

rithm converges, but we do not achieve exactly first order convergence with
respect to discretization parameters. This is due to the strong interdepen-

dence of the equations. Note that f depends nonlinearly on u and linearly
on z and that the boundary condition imposed on Γs(t) for the bem solver

builds up numerical and round off error as we step forward in time; we note
that the level set approach is stable and robust with respect to these small

sawtooth instabilities resulting from velocity calculations on very closely
spaced nodes, and the use of filtering or smothing was not required.

Case (c) discretization parameters give sufficient accuracy and we show
wave profiles, velocity potential and velocity components for various times
in Figures 7, 8 and 9 respectively.
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5.2 Sloping bottom test

A solitary wave propagating over a sloping bed changes its shape gradually,

slightly increasing maximum height and front steepness, until a point where
a vertical front tangent is reached. This is usually called the breaking point

BP=(tbp, xbp, zbp), where xbp represents the x coordinate, zbp the height at
xbp and tbp the time of occurence. Beyond the BP the wave tip develops, with

velocities much bigger than the wave celerity, causing wave overturning and
the subsequent falling of the jet toward the flat water surface. Denote this
endpoint as EP=(tep, xep, zep). Total wave mass and total energy should be

theoretically, conserved until EP. However beyond the BP a loss in potential
energy and the corresponding gain in kinetic energy is expected, due to the

large velocities on the wave jet.
Wave breaking characteristics change, mainly according to initial wave

amplitude (H0) and bottom topography. To study how the numerical me-
thod predicts wave breaking, we run the following test cases:

• (a) H0 = 0.6, L = 25, slope=1 : 22, xc = 6.05, xs = 6

• (b) H0 = 0.6, L = 18, slope=1 : 15, xc = 5.55, xs = 5.4

and compare the results obtained here for case (b) with those reported in
([14]). Here xc denotes the x coordinate at the crest for the initial wave and

xs the x coordinate where the bottom slope starts.
A series of numerical experiments have been carried out, and optimal dis-

cretization parameters found are: ∆x = 0.01, ∆t = 0.0001 and d0 = 0.005,

f0 = 10 (approximately 193 BEM nodes) for all cases. Front regridding
has been implemented according to maximum height before the BP and ac-

cording to maximum velocity modulus beyond BP. Beyond the BP, and due
to the complex topography of the wave front, reinitialization of Ψ and new

Φ(s, t) extensions have been performed every 1000 time steps.
Table 2 shows the breaking characteristics for the test cases. Grilli et all

reported in ([14]) for test (b) values of tbp = 2.41, xbp = 15.64 and zbp = 0.67.
The discrepancies can be attributed to the slightly different position of the

initial wave (xc = 5.5) and the higher order approximations used in their
Lagrangian-Eulerian formulation.

In Figure 10 we show m(t) versus time for case (a) and (b) and Figures

11 and 12 show the evolution of Ep, Ek and E with time for cases (a) and (b)
respectively. The maximum absolute error in wave mass is 0.01 before BP ,

and 0.02 beyond BP, and the maximum absolute error in total wave energy
is 0.02 near the BP. Although these errors could be improved by increasing
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Test tbp xbp zbp tep xep

(a) 2.76 17.39 0.674 3.36 20.2

(b) 2.34 15.20 0.662 2.90 17.8

Table 2: Breaking characteristics

the number of BEM nodes on the free boundary (as shown in the constant

depth cases), it would require considerably more CPU time per run due to
the high cost of the BEM solver (which can be significantly reduced using

fast methods). Regarding the evolution of the potential and kinetic energy
of the wave we observe the expected behavior beyond the BP.

Figure 13 shows wave shape for case (a) at t = 0, 1, 2, 2.76, 2.94, 2.14, 3.34

and Figure 14 shows wave shape for case (b) at t = 0, 1, 2, 2.34, 2, 48, 2.68, 2.90.
In Figures 15 and 16 we show in more detail the wave profiles from the BP

to the EP for cases (a) and (b) respectively. Finally in Figure 17 the front
BEM nodes for case (a) and time 3.34 are shown.

¿From these numerical experiments we conclude that the numerical me-
thod presented here is capable of reproducing wave shoaling and breaking

until the touchdown of the wave jet. Considering that we use only first order
approximations of the model equations, a piecewise linear approximation

of the free boundary, and a first order linear BEM, the results are quite
accurate. The absolute errors in mass and energy seem to be higher than
those reported in ([14]). This is not surprising due to the fact that in ([14])

a higher order BEM is used (both higher order elements to define local
interpolation between nodes and spline approximation of the free boundary

geometry) and time integration for the free boundary conditions is at least
second order in time.

5.3 Sinusoidal bottom test

To see how wave shape and breaking characteristics change with bottom
topography, we consider two more tests, this time with a sinusoidal shape
bottom:

• (c) H0 = 0.6, L = 25, xc = 6.05, Ab = 0.5, hmin = 0.5

• (d) H0 = 0.6, L = 25, xc = 6.05, Ab = 0.8, hmin = 0.2

where Ab denote the amplitude of the sinusoidal function that represents
the bottom and hmin the minimum depth.
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As can be seen in Table 3, the breaking characteristics are considerably

different for these simulations, and, in particular, case (c) behaves like a
spilling breaker rather than the plunging breaker of case (a) and (b). In

Test tbp xbp zbp tep xep

(c) 1.6 12.5 0.71 1.96 14.1

(d) 1.0 10.5 0.55 1.38 13.6

Table 3: Breaking characteristics

Figures 18 and 19 we show wave profiles for various times corresponding to
case (c) and (d) respectively. Measurements for the mass and total energy

conservation behave similarly to previous cases. In Figure 20 we show the
evolution of wave mass for cases (c) and (d). Finally, Figures 21 and 22

show the evolution of Ep, Ek and E corresponding to cases (c) and (d)
respectively.

These results show that, in response to the bottom topography, wave
height follows a sinusoidal curve, as does the potential and kinetic wave
energies, with an amplitude related to the sinusoidal bottom amplitude.

To summarize, we have built a coupled level-set boundary element al-
gorithm for modeling two-dimensional breaking waves over sloping beaches.

The algorithm rests on a fully-nonlinear potential model for a single fluid
with appropriate boundary conditions, with both the interface location and

the velocity potential recast as an embedded function throughout the do-
main. The use of a boundary integral method avoids far-field boundary

conditions for the air, and the use of a level set method avoids complex
gridding. The formulation is unchanged in three-dimensions; we shall re-

port elsewhere on the extension of this approach to three-dimensional flow,
as well as introduce a new model for what happens when the breaking wave
reconnects with the surface.
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Figure 3: L2(z), L2(φ), L2(u), L2(v) vs time for case (d)
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Figure 17: Front BEM nodes at t=3.34. Case (a)
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Wave Energy

time

E

Ep
Ek
E
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