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Laser cooling and trapping has been essential to the study of ultracold atoms. Convention-

ally, continuous wave (CW) lasers have been used almost exclusively to transfer momentum

to atoms, which is necessary for laser cooling and trapping. In this thesis, I will describe a

technique to laser cool and trap atoms with optical frequency comb generated by a mode-

locked (ML) laser, which is another type of laser that is better known as a metrology tool.

While atomic magneto-optical trap (MOT), a spatially confined atomic sample created

with laser cooling and trapping, has become the workhorse of ultracold atomic physics since

its first demonstration a few decades ago [80, 52], the first molecular MOT was only demon-

strated a few years ago [13, 76, 89, 92, 8, 7], with a relatively low number of molecules (≈ 5

[8]). The main reason for the low number of molecules in the trap is the low number of

molecules that can be slowed to a laser trappable speed, which is due to their high likelihood

of spontaneous emission into dark states. In this thesis I will also describe a mode-locked

laser slowing technique that suppresses spontaneous emission.
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CHAPTER 1

Introduction

Laser cooling and trapping has been essential to the study of ultracold atoms. Convention-

ally, continuous wave (CW) lasers have been used almost exclusively to transfer momentum

to atoms, which is necessary for laser cooling and trapping. In this thesis, I will describe a

technique to laser cool and trap atoms with optical frequency comb generated by a mode-

locked (ML) laser, which is another type of laser that is better known as a metrology tool.

While atomic magneto-optical trap (MOT), a spatially confined atomic sample created

with laser cooling and trapping, has become the workhorse of ultracold atomic physics since

its first demonstration a few decades ago [80, 52], the first molecular MOT was only demon-

strated a few years ago [13, 76, 89, 92, 8, 7], with a relatively low number of molecules (≈ 5

[8]). The main reason for the low number of molecules in the trap is the low number of

molecules that can be slowed to a laser trappable speed, which is due to their high likelihood

of spontaneous emission into dark states. In this thesis I will also describe a mode-locked

laser slowing technique that suppresses spontaneous emission.
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1.1 Optical Frequency Comb Laser Cooling and Trapping

Laser cooling and trapping has played a paramount role in many atomic physics experiments.

For example, many precision measurement experiments eventually need a determination of

a frequency shift ∆ω between two sublevels in the system. The shot-noise limit of frequency

sensitivity for such a measurement is given by δ(∆ω) = 1/(2πτ
√
N), where τ is the coherence

time of the experiment, and N is the number of detected particles [23]. Laser cooling

decreases this limit in two different ways: the low temperature allows atoms to be put

into a single quantum state, thus N can be increased by increasing the number of detectable

particles (this is especially true for molecules, because of the many rotational and vibrational

states in additional to the hyperfine states); in general laser cooled atoms are slow moving in

the laboratory frame, hence the interrogation time is also increased, potentially resulting in

larger τ . Further increases in τ could result if atoms are confined in a trap, for instance in a

magneto-optical trap (MOT), which would further decrease the shot-noise limit. In addition,

laser cooling and trapping enable precise control and manipulation of quantum state, and

has led to recent advances in quantum information [38, 19], the search to understand dark

energy [41], and quantum sensors [30]. Laser cooling and trapping has recently enabled the

measurement and control of ultracold chemical reactions at a new level of detail [103, 27]

with molecules made from alkali atoms that are well-suited to CW laser technology.

Laser cooled and trapped sample of hydrogen, in particular, is highly desirable. Spec-

troscopy of the 1S → 2S transition in hydrogen is also of great scientific interest. This

transition, together with subsequent transitions of the 2S state to higher states, collectively

determine the Rydberg constant, the proton radius, and ultimately provides a test of quan-

tum electrodynamics [26, 74, 17]. Although this transition can now be determined with

an incredibly small fractional uncertainty of 4.2× 10−15 [78], higher precision with reduced

systematic effects is desired to resolve mysteries such as the proton radius puzzle [74, 24],

and laser cooled and trapped hydrogen will be instrumental. Meanwhile, spectroscopy on

the same transition on anti-hydrogen, the antiparticle of hydrogen, requires 300s per data

point [5], partially due to the relatively small interaction volume [24]. A sample of laser
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cooled and trapped anti-hydrogen can increase the interaction time significantly, potentially

enables better data to be taken.

Despite the great scientific payoff laser cooled and trapped hydrogen and hydrogen, laser

cooling of hydrogen has only been demonstrated once [86], mostly because of the lack of

sufficiently powerful CW lasers in the deep ultraviolet (UV). For the same reason, other

abundant and chemically interesting species, for example, carbon, nitrogen and oxygen, are

not currently laser cooled and trapped, although they are likely to play prominent roles

in other scientific fields such as astrophysics [47] and precision measurement [20], where the

production of cold samples could help answer fundamental outstanding questions [34, 32, 42].

ML laser, on the other hand, is seldom used as a tool for control and manipulation of

atomic and molecular motions [18], in spite of its very high instantaneous intensity that can

be used for efficient production of UV light via frequency summing. Its power is divided

into thousands or tens of thousands of evenly spaced spectral lines (an optical frequency

comb). Most of the laser power would be wasted if only one or few comb teeth are used,

unless some clever scheme is used that makes use of the entire frequency spectrum of the

ML laser. It should be mentioned that Doppler cooling with combs has been investigated in

a mode where each atom interacts with only one or two comb teeth at a time, which uses

only a small fraction of the laser’s total power [90, 95, 54, 10, 25].

In Chapter 2, following the observation of a pushing force by Marian et al. [70] and

a proposal by Kielpinski [59], we utilize a coherent effect in far-detuned ML two-photon

transitions [11] to laser cool atoms with all of the comb teeth contributing in parallel to

enhance the scattering rate (Fig. 2.3). This technique is designed to utilize the high UV

conversion efficiency of ML lasers without wasting any of the resulting UV power, and

opens the door to laser cool H, C, N, O, and anti-hydrogen (H̄), species for which single-

photon laser cooling is beyond the reach of even ML lasers [59]. We extend these ideas to

create a magneto-optical trap, and find that the density of the comb spectrum introduces

no measurable effects in our system, demonstrating that it may be possible to create MOTs

of these species using this technique.

3



1.2 Suppressed spontaneous emission for coherent momentum trans-

fer

The rich internal structures of polar molecules and their readily available long-range and

anisotropic dipolar interactions make ultracold molecules uniquely promising candidates for

precision measurements [98, 48, 94, 6, 65], quantum information processing [28, 9, 81, 50, 12,

73] and quantum chemistry [77, 67]. However, for molecules, spontaneous emission populates

excited vibrational states, which has largely precluded the adaptation of atomic laser cooling

techniques for molecules.

Recently, the workhorse of ultracold atomic physics, the magneto-optical trap (MOT),

has been successfully demonstrated with some carefully chosen diatomic molecules [13, 76,

89, 92, 8, 7]. Despite this substantial step forward, the largest number of molecules that

have been trapped in a MOT (≈ 5 [8]) is still orders of magnitude less than a typical atomic

MOT. This number is primarily limited by the small fraction of molecules that can be slowed

from a molecular beam to the MOT capture speed [71]. Further, extension of this technique

to molecules with higher vibrational branching probability (such as polyatomics) will likely

require new methods for beam deceleration.

While the most commonly used laser deceleration methods employ spontaneous radiation

pressure, the time-averaged force is limited to a low value by the need to wait for spontaneous

decay after each ~k of momentum transfer. For molecules, slowing via spontaneous scattering

has been limited to a handful of specially-chosen diatomic species [91, 14, 102, 46, 100, 79]

with extremely low vibrational branching probabilities [31]. Moreover, multiple molecular

transitions must be driven that connect various ground states to the same excited state,

which further reduces the time-averaged force that can be achieved [16]. As a result, radiative

deceleration of molecular beams leads to long slowing lengths and low trap capture efficiencies

associated with molecule loss from transverse velocity spread and spontaneously populated

excited vibrational states.

Various optical forces that utilize stimulated emission are being pursued (as recently

4



reviewed by Metcalf [72]). For stimulated forces, a reasonable figure of merit for evaluating

the gain in requisite cycle closure of stimulated over spontaneous scattering is the average

momentum transferred (in units of the photon momentum, ~k) per spontaneous emission

event, which we denote by the symbol Υ. For spontaneous scattering, Υ = 1. For most

stimulated scattering schemes, the stimulated processes can be driven quickly compared to

the spontaneous emission lifetime, and the stimulated force can therefore be stronger than

the spontaneous scattering force by a factor of approximately Υ.

In Chapter 3, we demonstrate and benchmark an optical force derived entirely from

stimulated scattering of mode-locked (ML) laser pulses [58, 56]. Early work on this technique

showed order-of-unity force gains over spontaneous scattering [93, 75, 39]. By using a pre-

cooled sample of atoms to benchmark and optimize the force, we show that its performance

can be substantially improved. We are able to achieve an average of Υ = (19+6
−4) momentum

transfers of ~k per spontaneous emission event. This potentially extends optical deceleration

to molecules with state leakage probabilities an order of magnitude worse than currently used

species, such as complex polyatomics [63] and molecules well-suited to precision measurement

[65, 29, 69, 53].
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CHAPTER 2

Direct Frequency Comb Laser Cooling and Trapping

2.1 Introduction

It is not immediately clear why laser cooling and trapping with mode-locked laser should

be ever desirable. The broad spectrum coverage of the ML laser means the power on each

frequency comb tooth is tiny, and using a ML laser for single photon cooling and trapping

is undoubtedly wasteful. Yet, if a two-photon process is involved, then as we will see in this

chapter, all the frequency comb teeth can coherently add up, leading to an efficient use of

laser power. In addition, if a nonlinear effect (for example second harmonic generation) is

involved in the process of generating the photons for the two-photon process, mode-locked

laser can be more efficient overall, due to its high instantaneous intensity. As such, mode-

locked laser can be useful for laser cooling and trapping species with ultra-violet transitions

that are hard to reach with a conventional CW laser.

In this chapter, a technique to laser cool and trap using a mode-locked laser in the

optical frequency comb regime is described, and results from applying this technique in 1D

are presented.
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2.2 Dopper Cooling and Doppler Temperature

Care needs to be taken when the notion of temperature is applied to in cold atoms, because

a laser-cooled system may very well be in a steady-state but not in thermal equilibrium. In

laser cooling, temperature can be used to describe an atomic sample with 1D average kinetic

energy 〈Ek〉:
1

2
kBT = 〈Ek〉, (2.1)

where kB is the Boltzmann’s constant. For an atomic sample trapped still in space (for

example, by a magneto-optical trap), the kinetic energy can be written as

〈Ek〉 =
1

2
matom〈v2

z〉, (2.2)

where matom is the mass of an atom and 〈v2
z〉 is the 1D mean squared velocity of the atomic

sample. Eq. (2.1) and (2.2) allows the temperature to be found by

T =
matom

kB
〈v2
z〉. (2.3)

Eq. (2.3) also implies that a beam of fast moving atoms could be cold in the some reference

frame as long as the spread in velocity is small. It also means that for spatially confined

sample, narrowing its velocity spread would result in a colder sample.

In this section, following [35], we will derive a temperature limit for Doppler cooling.

Doppler cooling relies on applying a velocity dependent force that “pushes” atoms toward

zero velocity. One way to produce such a velocity dependent force is by illuminating the

atomic sample with two counter-propagating laser beams. To see how this works, we define

the on-resonance saturation parameter

s0 ≡ 2|Ω|2/Γ2 = I/Is, (2.4)

where Ω is the Rabi frequency, Γ the excited state decay rate, I the laser intensity and Is

the saturation intensity of a transition. In the low intensity limit where stimulated emission

is not important, the scattering rate of light from a laser field is given by

γp =
s0Γ/2

1 + s0 + (2δ/Γ)2
(2.5)

7



Here, δ ≡ ωl−ωa is the laser detuning from the atomic resonance frequency. The scattering

force from such a light beam is

~F = γp~~k =
~~kΓ

2

s0

1 + s0 + (2δ/Γ)2
. (2.6)

The sum of forces from two counter-propagating beams is

~FOM ≈
8~k2δs0

Γ(1 + s0 + (2δ/Γ)2)2
~v = −α~v, (2.7)

where

α = − 8~k2δs0

Γ(1 + s0 + (2δ/Γ)2)2
, (2.8)

and terms of order (kv/Γ)4 and higher have been neglected. Velocity dependence of this force

is illustrated in Figure 2.1. Within the capture velocity (v ≤ vc where vc = Γ/k, indicated

by the gray shaded region), this force is proportional to velocity with a negative gradient,

resulting in a viscous damping slowing force. Atoms with the wrong velocity (moving away

from zero) are pushed toward 0 by the negative velocity gradient. This technique is known

as “optical molasses.”

To find the cooling rate, we note that the change in kinetic energy of an atom,

d

dt

(
1

2
matomv

2
z

)
= vzmatom

dvz
dt

= vzFOM = −αv2
z , (2.9)

can be used to determine the average cooling power:

d〈E〉
dt

∣∣∣∣
cool

=
d

dt

(
1

2
matomv2

z

)
= −αv2

z . (2.10)

Eq. (2.10) suggests that atoms that fall into the capture velocity range can be slowed to

zero velocity, hence resulting in a absolute zero temperature. This is however not the case,

as photon illumination of atoms causes heating. There are two sources of heating during this

process: one from the random walk of the atoms as a result of spontaneous emission, and

one from the random walk of the atoms as a result of absorption. In the case of spontaneous

emission heating, absorption of N photons leads to N spontaneous emissions, and causes a

random walk of N steps. Such a random walk results in a mean square displacement of N

8
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Figure 2.1: Velocity dependent force from two counter-propagating red-detuned laser light

beams. The resulting force from the forward and backward beams produces a slowing force

approximately proportional to velocity for atoms with a small enough speed, indicated by

the gray region.
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times the square of the step length. For a given time t the total number of scattered photons

satisfies

N = γpt. (2.11)

Thus the mean square velocity is increased by

〈
v2
z

〉
spont

= ηv2
r γpt, (2.12)

where rr =
~k
m

is the recoil velocity, η = 1/3 for 3D isotropic spontaneous emission [35], and

the heating rate due to spontaneous emission is

d〈E〉
dt

∣∣∣∣
heat,spont

= ηmatomv
2
r γp. (2.13)

Here a factor of 2 is taken into account because there are 2 counter-propagating beams,

giving rise to twice the scattering rate.

On the other hand, during time t an atom does not always absorb the same number of

photons. The mean number of cycles of absorption followed by spontaneous emission is also

given by Eq. (2.11). The result is another random walk with a mean square velocity increase

of

(
v2
z

)
abs

= v2
r γpt. (2.14)

Note that Eq. (2.14) does not have a factor η because this random walk is in 1D. The heating

rate due to absorption is thus

d〈E〉
dt

∣∣∣∣
heat,abs

= matomv
2
r γp. (2.15)

Now, we extend the system to 3 pairs of counter-propagating beams in x-, y- and z-direction

to form a 3D optical molasses. At equilibrium the total cooling rate equals total heating

rate, i.e.

−αv2
z = 3ηmatomv

2
r γp +matomv

2
r γp. (2.16)
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Note there is a factor 3 in front of the spontaneous heating term but the absorptive heating

term is unchanged. This is because we are only considering the velocity spread along z-

direction in Eq. (2.13), and to calculate the total heating rate due to spontaneous emission

we need to include all directions. Solving for equation Eq. (2.16), we can get

kBT =
~k
4

1 + (2δ/Γ)

(−2δ/Γ)
. (2.17)

Since we are trying to determine the minimum temperature we could get via Doppler cooling,

we take the derivative with respect to δ for Eq. (2.17) and set it to 0, and note that in the

low intensity regime s0 ≈ 0, to get

δ = −Γ/2. (2.18)

The temperature at this detuning is defined to be the Doppler temperature TD:

TD =
~Γ

2kB
. (2.19)
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2.3 Magneto-Optical Trap

Even though the optical molasses technique introduced in Section 2.2 provides a velocity

dependent slowing force that laser cools an atomic sample, it does not hold the atoms in

space because it does not have a position-dependent restoring force.

By choosing the appropriate laser polarization, and introducing a inhomogeneous mag-

netic field (for example a quadruple magnetic field with linear magnetic field gradient), a

position-dependent confining force can be produced to trap the laser cooled atoms. This

setup is known as the magneto-optical trap (MOT), which, since its first demonstrations

[80], has become the workhorse in cold atomic physics.

Figure 2.2 shows an arrangement for a type I MOT in 1D. A linear magnetic field gradient

induces a Zeeman shift given by

∆EZeeman = µBgFMFBz. (2.20)

where µB is the Bohr magneton, gF is the Landé g-factor, Bz = Az is the magnetic field in

the z-direction, A is the magnetic field gradient, and MF is the projection of the angular

momentum along Bz. At position z′ > 0 in the figure, the Zeeman sublevel Me = −1 is

shifted closer to resonance with the σ− polarized red-detuned laser light incident from the

right, while the sublevel Me = +1 is shifted further away from resonance for the right beam.

The atoms at z′ will thus be driven towards the center where B = 0. This configuration thus

creates a spatially-dependent restoring force. The magnitude of this restoring force can be

found by making appropriate changes to the detuning term in Eq. (2.6):

~F± = ±~~kγ
2

s0

1 + s0 + (2δ±/γ)2
, (2.21)

where the detunings δ± are modified by

δ± = δ ∓ ~k · ~v ± µ′B/~, (2.22)

where ~v is the velocity vector and µ′ ≡ (geMe − ggMg)µB is the effective magnetic moment

for the transition. If we assume both the Doppler shift term ~k ·~v and the Zeeman shift term

12



Figure 2.2: Arrangement for a MOT in 1D. For an atom at location z′, an energy shift is

caused by the presence of the magnetic field. A σ+ photon original detuned by δ will be

shifted further away from resonance, while a σ− photon will be shifted closer to resonance.

Hence the atom will preferentially absorb a σ− photon, and acquire a momentum kick

towards the trap center.
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µ′B/~ are small compared to the detuning δ, we can write the net MOT force as:

FMOT = |~F+ + ~F−| =
~kγs0

2

[
1

1 + s0 + (2δ+/γ)2
− 1

1 + s0 + (2δ−/γ)2

]
≈ ~kγs0

2[1 + s0 + (2δ/γ)2]2
(
(2δ−/γ)2 − (2δ+/γ)2

)
=

~kγs0

2[1 + s0 + (2δ/γ)2]2
−16δ (kv − µ′B/~))

γ2

= −αv − κz, (2.23)

where α is defined in Eq. (2.8), and κ is the spring constant

κ =
µ′A

~k
α. (2.24)

Eq. (2.23) is the equation of a 1D damped harmonic oscillator. The damping rate is

ΓMOT =
α

matom

(2.25)

and oscillation frequency is

ωMOT =

√
κ

matom

. (2.26)
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2.3.1 Measuring MOT Temperature

We can start by assuming a Gaussian-distributed atomic sample that follows Maxwell-

Boltzmann statistics. Then the probability of finding a given atom along a single dimension

at time t, P (x, t) (along x-direction), evolves according to an average over the initial ballistic

velocity distribution 〈P (x→ x+ vxt)〉vx at temperature T

P (x, t) ∝
∫
dvx exp

(
−1

2

(
x+ vxt

ω0

)2
)

exp

(
− mv2

x

2kBT

)
, (2.27)

P (x, t) ∝ exp

(
− x2

2ω2
0 + 2kBTt2

m

)
(2.28)

where ω0 is the
1

e
MOT extant at t = 0. The spatial width as a function of time, is

ω(t) =

√
ω2

0 +
kBTt2

m
. (2.29)

Therefore, the temperature of a MOT can be determined by setting the MOT into free

expansion and measuring the spatial extant of the atomic cloud as a function of time. In

the experiments we describe in this chapter and the following chapter, we perform a series

of MOT free expansions and measure the MOT spatial extants as a function of time with

absorptive imaging, then use Eq. (2.29) to determine the temperature of the MOT.
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2.4 Optical Frequency Comb Two-Photon Cooling and Trapping

In this section, we extend the theory we have developed in the previous two sections to a

two-photon transition driven by an optical frequency comb.

2.4.1 Scattering rate from a frequency comb

Scattering rate from a frequency comb on a two-photon transition is needed to determine the

theoretical two-photon Doppler limit. As shown in Figure 2.3(c), the frequency associated

with the nth comb tooth can be written as

fn = nfr + 2f0, (2.30)

where f0 is the carrier envelope offset frequency of the optical frequency comb, and fr ≡ 1/Tr

is the pulse repetition rate. For a transform-limited ML laser, we can model the effective

(time-averaged) resonant Rabi frequency of the nth tooth of this two-photon comb as

Ωn =
∑
p

g
(1)
p g

(2)
n−p

2∆p

(2.31)

where g
(1)
p is the resonant single-photon Rabi frequency for excitation from the ground |g〉 to

the intermediate state |i〉 due to the pth optical comb tooth and g
(2)
p is the same quantity for

excitation from the intermediate state |i〉 to the excited state |e〉 (Fig. 2.3a,b). In comparison,

when the pulse is chirped, different frequency components arrive at different times and hence

are not in phase, resulting in destructive interference. Mathematically, gp is complex and

the phase of the product g
(1)
p g

(2)
n−p becomes a function of p, reducing the magnitude of Ωn.

The single-photon detuning from the intermediate state is ∆p = pfr + f0 − ∆Egi/h where

∆Egi is the energy difference between the ground state and the intermediate state. We also

denote by N the index of the two-photon comb tooth closest to resonance (associated with

the optical sum frequency fN = Nfr +2f0). If the pulse duration Tp is short compared to the

excited state’s lifetime τ ≡ 1/γ (Tp � τ), the resonant Rabi frequency of each two-photon

comb tooth can be approximated by ΩN .
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Figure 2.3: Constructive interference of multiple paths in a two-photon transition driven by

a transform-limited optical frequency comb. All pairs of comb teeth whose sum frequency

matches the excited state energy interfere constructively to excite atoms. Two example pairs

are shown as a and b, and the effective two-level system that results from the sum is shown in

c. Every tooth of the resulting “two-photon comb” of resonant coupling strength Ω leverages

the full power of all of the optical frequency comb teeth through this massively-parallel

constructive interference.
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We define the resonant saturation parameter of the nth comb tooth of the two-photon

comb (shown in Figure 2.3(c)) to be

sn ≡ 2Ω2
n/Γ

2, (2.32)

where Γ is the decay rate of the excited state, which we will model as decaying only to the

ground state, and Ωn is the coupling strength between the ground and excited state from

the nth comb tooth in the two-photon comb. We consider sn � 1 and ΩnTr � π, which is

typically true due to the low Rabi frequency under realistic experimental conditions.

Experimentally we are interested in time-averaged instead of instantaneous behavior of

the optical force, thus we sum up the scattering rates due to each comb tooth instead of the

excitation amplitudes. The steady-state time-averaged scattering rate from the nth comb

tooth by a stationary atom will then be given by

γn ≈ Γ
sn
2

1

1 + (2δn/γ)2
(2.33)

where fge ≡ ∆Ege/h is the two-photon resonance frequency, ∆Ege is the energy difference

between the ground and excited state, and δn ≡ 2π(fn − fge) is the detuning of the nth

comb tooth of the two-photon comb from the two-photon resonance. For a two-photon comb

whose center frequency is near fge, we can approximate sn ≈ sN , where N is the index of

the comb tooth closest to resonance, because sn will not change much over the range of n

that is within a few Γ of resonance. We can then use the identity

∞∑
n=−∞

1

1 + a2(n− b)2
=
π

a

sinh(2π/a)

cosh(2π/a)− cos(2πb)
(2.34)

to write

γcomb =
∑
n

γn = Γ
sN
2

(ΓTr/4) sinh(ΓTr/2)

cosh(ΓTr/2)− cos(δNTr)
. (2.35)

In the limit where both δN/2π and Γ/2π are small compared to the repetition rate fr,

Eq. (2.35) reduces to Eq. (2.33) with γcomb ≈ γN . For the laser cooling and trapping with

rubidium we report in this chapter, the combined effect of all of the off-resonant comb teeth

to the scattering rate when δN = −Γ/2 is approximately 10−4γN , and we can neglect their

presence for slow-moving atoms.
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2.4.2 Doppler Limit for Two-Photon Optical Molasses

To derive the Doppler cooling limit for (approximately equal frequency) two-photon tran-

sitions, assume that the two-photon transitions are driven well below saturation (resonant

saturation parameter sN � 1) and with a two-photon detuning of Γ/2 to the red side of

resonance. In the case of cooling with an optical frequency comb, we will assume that the

single-tooth approximation discussed in Section 2.4.1 is valid.

The average cooling force can be obtained by replacing α in Eq. (2.7) by αN , where

αN = − 8~(2k)2δsN
Γ(1 + sN + (2δN/Γ)2)2

, (2.36)

note that the wavenumber k in Eq. (2.7) is replaced by 2k, where k =
1

2

ωge

c
, to account for

the fact that it takes 2 photons to complete the transition. Hence at δN = Γ/2, and in the

limit where the Doppler shifts are small compared to the excited state linewidth, the cooling

rate equation Eq. (2.10) becomes

d〈E〉
dt

∣∣∣∣
cool

= −αNv2
z = −αNkBT

matom

≈ −4~k2sNkBT

matom

. (2.37)

Similar to Section 2.2, this cooling power is balanced by two sources of heating: heating

due to randomly-distributed momentum kicks from absorption events and heating due to

momentum kicks from spontaneous emission. For the former, there are only contributions

from the single-beam processes since two-beam absorption does not induce a momentum

kick for counter-propagating beams, and the heating power from absorption is in the same

form as Eq. (2.15):

d〈E〉
dt

∣∣∣∣
heat,abs

= matomv
2
r γN =

sNΓ~2(2k)2

4matom

=
sNΓ~2k2

matom

. (2.38)

The second heating term is due to spontaneous emission and will depend upon the details

of the decay channels available to the excited state. If the probability that an excited atom

emits a photon with frequency ωi at some point on its way to the ground state is Pi, the

heating from these decays can be modeled with a probability-weighted sum of the squares
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of the momentum kicks from these spontaneously-emitted photons, viz.

d〈E〉
dt

∣∣∣∣
heat,spon.

=
1

2m
γtot

∑
i

Pi
(
~
ωi
c

)2

(2.39)

where γtot is the total excitation rate (see e.g. Eq. (2.35) for the case with a single beam from

an optical frequency comb) and we are for the moment modeling the spontaneous emission

as being confined to 1D, which gives a Doppler limit that agrees with the 3D calculation in

the standard single-photon case.

Eq. (2.39) shows the mechanism by which multi-photon cooling can give rise to a lower

Doppler limit than single-photon cooling; by splitting the decay into smaller, uncorrelated

momentum kicks, the mean square total momentum transfer (and therefore the heating)

will on average be lower than for a single photon decay channel. Eq. (2.39) also shows that

there is an additional heating mechanism for the CW case since γtot will in this circumstance

include two-beam excitations that are Doppler free for counter-propagating beams [101]. The

excitation rate from the two-beam terms (which does not contribute to the cooling in 1D)

is 4 times larger than each single-beam term, and the size of this effect for 1D two-photon

laser cooling of atomic hydrogen on a quenched 1S→2S transition, for example, would lead

to a comb-cooled Doppler temperature that is a factor of 2 lower than the predicted CW

limit [101]. In order to make a quantitative estimate of the magnitude of these effects, we

model the decay cascade as proceeding via a single intermediate state halfway between |g〉

and |e〉 (Pi = 1 and ωi = ωge/2 for i = 1, 2), which gives us

d〈E〉
dt

∣∣∣∣
heat,spon.

=
1

2m
γtot

∑
i

Pi
(
~
ωi
c

)2

=
1

2m
γtot · 2(~k)2 =

~2k2

matom

γtot. (2.40)

For the CW case there are 3 possible ways to contribute to γtot: both photons coming from

the left beam, the right beam, or one photon coming from each beam. When both photons

come from one beam,

γone−beam =
sNΓ/2

1 + sN + (2δN/Γ)2
≈ sNΓ

4
, (2.41)

while for the one-from-each-beam situation the scattering rate is 4 times that of the one-beam
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situation:γtwo−beams = 4γone−beam, since scattering rate ∝ intensity2. Then

γtot,CW = 2γone−beam + γtwo−beams =
3

2
sNΓ, (2.42)

and the corresponding CW heating rate from spontaneous emission is

d〈E〉
dt

∣∣∣∣
heat,spon.,CW

=
3sNΓ~2k2

2matom

. (2.43)

For the ML case, γtot only contains 2 terms because in general the two counter-propagating

beams do not overlap at the location of the atoms. Only the two one-beam scattering rates

contribute, and the total scattering rate for the ML case is

γtot,ML = 2γone−beam =
sNΓ

2
. (2.44)

The ML heating rate from spontaneous emission is

d〈E〉
dt

∣∣∣∣
heat,spon.,ML

=
sNΓ~2k2

2matom

, (2.45)

a factor of 3 lower than its CW counterpart due to the absence of Doppler free absorption.

The equilibrium temperature can be solved by setting the cooling and heating terms sum

to zero.

d〈E〉
dt

∣∣∣∣
cool

+
d〈E〉

dt

∣∣∣∣
heat,abs

+
d〈E〉

dt

∣∣∣∣
heat,spon.

= 0. (2.46)

For the CW case, the Doppler limit for two-photon 1D optical molasses with counter-

propagating CW laser beams is given by

−4~k2sNkBT

matom

+
sNΓ~2k2

matom

+
3sNΓ~2k2

2matom

= 0, (2.47)

TD,CW =
5

4

Γ~
2kB

. (2.48)

This is 25% hotter than single-photon cooling on a transition with the same linewidth,

despite the fact that it includes the reduction in heating from the cascade decay.

For the ML case, in a similar fashion we can find

TD,ML =
3

4

Γ~
2kB

, (2.49)

which is colder than both the CW and the single-photon cases.
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2.5 Experiment Results

We report first experimental test of direct frequency comb two-photon cooling and trapping

in this section. We demonstrate the technique using rubidium atoms. We drive the 52S1/2→

52D5/2 transition in rubidium on a two-photon transition at 778 nm for both cooling and

trapping. For the experiment described in this chapter, we operate a Tsunami Ti:Sapphire

laser that emits 2−5 ps pulses (less than 500 GHz bandwidth) at 778 nm at a repetition rate

of fr = 81.14 MHz.
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2.5.1 Laser Tooth Linewidth Modification

For the 52S1/2→52D5/2 transition in rubidium (Figure 2.4), the natural decay rate of the

excited state is Γ/2π = 667 kHz [87]. Eq. (2.49) gives a Doppler cooling limit of 12 µK, which

will also be true in 3D for a ML laser with non-colliding pulses. The transition linewidth,

however, is broadened by Doppler effects of moving atoms, as well as the laser linewidth. To

sensibly determine a theoretical Doppler temperature, we therefore attempt to quantify an

effective transition linewidth that accounts for both these effects.

26%

2%
53% 20%

25% 73%

420 nm

778 nm

5 2S1/2

5 2P1/2

5 2P3/2

4 2D3/2

4 2D5/2

5 2D3/2

5 2D5/2

6 2S1/2

6 2P1/2

6 2P3/2

74%

Figure 2.4: Relevant levels of 85Rb for two-photon laser cooling and trapping. A two-photon

transition from 5 2S1/2 → 5 2D5/2 state is performed with two 778 nm photons for laser

cooling and trapping. The excited Rb atom then decays to the 6 2P3/2 state 26% of the

time, which then decays back to the ground state 25% of the time. The 6 2P3/2 → 5 2S1/2

transition is a blue transition at 420 nm, and hence a background-free fluorescence detection

at 420 nm can be readily performed for characterization of transition linewidth.
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Figure 2.5: Laser-induced fluorescence spectrum of the 5S→5D two-photon transition driven

by an optical frequency comb. a: Spectrum from a natural abundance vapor cell and b: a

85Rb CW MOT. Solid curves are theory fitted for a Gaussian and b Voigt line shapes. These

spectra repeat with a period of fr = 81.14 MHz on the horizontal axis.

By monitoring the 420 nm fluorescence from a hot vapor cell (Fig. 2.5a), a continuously-

operating CW MOT (Fig. 2.5b), and the pre-cooled (and then released) rubidium atoms as

the ML laser frequency is swept (shown at the top of Fig. 2.9), we obtain a line shape that is

more broad than the natural linewidth of Γ/2π = 667 kHz [87]. For the latter, the Doppler

broadening expected from motion would be 630 kHz if taken alone, and the magnetic field

is zeroed to a level where magnetic broadening will not contribute to the spectral width.

We find that, after taking into account the natural linewidth and the expected Doppler

broadening, we have a residual FWHM of the two-photon spectrum of around 1.8 MHz, which

we attribute to the laser. It is worth noting that using this width to infer an optical (that

is, single-photon) comb tooth width or vice versa is highly dependent on the details of the

broadening mechanism (see, e.g. [84]), and we therefore rely on the two-photon spectroscopy
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exclusively for determining our relevant effective two-photon spectral linewidth, which is

model-independent. Combining this with the natural linewidth again via convolution gives

us an effective two-photon spectral linewidth with a FWHM of γeff/2π = 2.2 MHz.

To account for the effect of finite two-photon spectral linewidth on scattering rate, we

approximate the line shape as Lorentzian to adopt the model of Haslwanter et al. [43], which

in the low-intensity limit (sN � 1) gives the scattering rate

γN =
Ω2
N

Γ

Γ/Γeff

1 + (2δN/Γeff)2 . (2.50)

We can recognize this as Eq. (2.33) with the replacement

Γ→Γeff , n→N, (2.51)

and conclude that a first approximation of the Doppler temperature limit can be made in

the case of finite spectral linewidth by applying the replacement Eq. (2.51) to expressions for

the Doppler temperature (e.g. Eq. (2.49)). Using this approach for our experimental case

where cooling is applied in 1D but spontaneous emission is approximated as being isotropic

in 3D, we predict a Doppler limit of TD,comb = 31 µK.

The blue fluorescence from the 420 nm 6 2P3/2 → 5 2S1/2 transition photons can readily

be observed by shining a pair of counter-propagating ML laser whose nearest comb tooth is

slightly red-detuned. Figure 2.6 shows a MOT fluorescing 420 nm photons. The image is

taken with an Andor iXon EMCCD camera with a blue filter.
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Figure 2.6: Blue fluorescing MOT induced by the 5S→5D two-photon transition driven by

an optical frequency comb.
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2.5.2 Optical Frequency Comb Two-Photon Laser Cooling

To demonstrate optical frequency comb two-photon laser cooling, we prepare an initial sam-

ple of ≈ 107 85Rb atoms using a standard CW laser MOT at 780 nm. We then turn off the

magnetic field and the CW laser cooling light. The atoms are at a temperature typically

near 110 µK at this stage. The temperature is determined by using method described in

Section 2.3.1. A weak CW “repump” laser is left on continuously to optically pump atoms

out of the Fg = 2 ground state, and has no measurable direct mechanical effect. Each ML

beam typically has a time-averaged power of (500± 50) mW and a 1/e2 intensity diameter

of(1.1±0.1) mm. After illumination by the ML laser, the atoms are allowed to freely expand

and are subsequently imaged using resonant CW absorption to determine their position and

velocity distributions.

We measure the resonant excitation rate by monitoring momentum transfer from a single

ML beam. As illustrated in Figure 2.7, the amount of momentum transfers to the atoms by

a single ML laser beam from b right and c left after 2 ms of resonant ML laser illumination

can be found by comparing the change in center of mass from the unilluminated position in

a. We infer a resonant excitation rate to be γscatt = (6500±700) s−1. Our transform-limited

theoretical estimate from Eq. (2.31) and our laser parameters gives (13000±2000) s−1. Since

the two-photon Rabi frequency is inversely proportional to the pulse time-bandwidth product

[82], this suggests that there is residual chirp that is increasing the time-bandwidth product

by a factor of ≈
√

2. The measured rate is well above the threshold needed to support these

atoms against gravity (≈ 810 s−1), which suggests that 3D trapping should be possible with

additional laser power for the inclusion of four more beams.

We observe Doppler cooling and its dependence on two-photon detuning by applying

counter-propagating linearly-polarized ML beams to the atom cloud for 4 ms in zero magnetic

field. An illustration of the resultant laser-cooled atomic cloud is shown in Figure 2.7d.

Because of the inhomogeneity of the ML laser intensity profile, different regions of the MOT

experience different scattering rate, as demonstrated in Figure 2.7b and c. Therefore we

measure the spatial spread of the MOT for a selected region, indicated by the red dashed
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Figure 2.7: Absorption images of the atom cloud after free expansion following a: no ML

illumination, b: ML illumination from the right, c: left and d: both directions, detuned to

the red of resonance. Mechanical forces are evident in b and c, and the narrowing of the

velocity distribution in the horizontal direction in d is the hallmark of cooling. The region

bounded by red dashed lines indicates where the spatial spread of the MOT is measured

from.
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Figure 2.8: Sample absorption image of a laser-cooled atomic cloud. The image is a “mo-

saic”-ed image, where averaging is performed over 4×4 tiles on an original 656×492 image to

obtained an errorbar associated with each “superpixel”. Due to the small radius of the ML

laser beam, the width of the atom’s spatial distribution is performed for a selected region,

shown as the region between the white dotted lines. Note that gravity needs to be taken

into account for different expansion times when finding the correct selected region.

boundaries in 2.7d.

By fitting the spatial distribution of the atoms in the selected region at different expansion

times (See Figure 2.8), we extract a 1D temperature, shown in the bottom of Fig. 2.9.

The solid curve is based on the algebraic model developed in Section 2.4 to derive the

Doppler limit and is fit for a resonant single-beam excitation rate of (4800 ± 400) s−1 and

linewidth γeff/2π = (1.88 ± 0.07) MHz (see Section 2.5.1), consistent with the single-beam

recoil measurements and laser power fluctuations discussed above. We realize a minimum

temperature of (57± 2) µK (Fig. 2.10).

It should be noted the atoms are in a molasses during the ML laser illumination. The
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cooling force from the ML molasses is a damping force that introduces extra dynamics, which

is not captured by the simple model of Eq. (2.29). We therefore developed a Monte Carlo

simulation to model an expanding cloud of atoms (in three dimensions) that is subject to the

optical forces of counterpropogating laser beams in one dimension. The data points marked

“Constrained” in Figure 2.9 and Figure 2.10 are derived from analysis that relies on our

simulation. For each temperature data point we simulate experiment parameters (detuning,

initial sample temperature, initial sample width, ML cooling duration, etc.) along with

the experimental measured widths of our atomic cloud during free expansion. We run the

simulation multiple times as a function of scattering rate and select the simulation that

minimizes χ2 between the experimentally measured widths and the simulation widths. From

the best simulation we define a temperature using T ≡ m

kB

σ2
v where σv is the standard

deviation of the simulation’s velocity distribution. Despite the fact that the free expansion

model does not include effects of the ML laser, the two methods give almost the same

temperatures, which can be seen by comparing the blue and gray points in Fig. 2.9 in the

main text and the black and red points in the inset of that figure. There seems to be a slightly

higher inferred temperature when the Monte Carlo assisted analysis (“Constrained”) is used

in cases where the acceleration from the ML laser is large.

We also note that the reduced temperature is hotter than the expected Doppler limit of

31 µK for our system (see Eq. 2.49). We find experimentally that the temperature inferred

from free-expansion imaging is highly sensitive to beam alignment, and therefore suspect the

discrepancy is due to imperfect balancing of the forward and backward scattering forces at

some locations in the sample [68]. We calculate that the scattering rate due to single-photon

excitation on 5S→5P under these far-detuned conditions is of order ≈ 1 s−1, which would

contribute a negligible amount of force in 4 ms. The absence of observable single-photon

processes from possible near-resonant optical comb teeth is further evident in the period of

the frequency dependence of Fig. 2.5a, b and Fig. 2.9, which repeat every fr (as opposed to

2fr, which would be expected for resonant single-photon processes [70]).
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Figure 2.9: Detuning dependence of 420 nm fluorescence (top) and the resulting temperature

(bottom) of rubidium atoms laser-cooled by an optical frequency comb on a two-photon

transition. The solid curve is fit for scattering rate, effective linewidth and detuning offset of

data analyzed with the aid of a Monte Carlo technique (data labeled “Constrained”). The

same data are also analyzed using a free expansion model (“Free”), and agree well with the

Monte Carlo assisted analysis.
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Figure 2.10: Temperature v.s. time when the laser detuning is optimized for cooling, giving

a minimum temperature of (57 ± 2) µK. The time decay of the 420 nm fluorescence shows

that atoms leave the interaction region due to transverse motion in (4.0 ± 0.3) ms (see

Figure 2.11), but steady-state 1D temperature is reached in τ = (1.28 ± 0.09) ms. Error

bars are statistical over repeated measurements, and do not include the systematic effect of

beam mode mismatch, discussed below.
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Figure 2.11: Time decay of the 420 nm fluorescence. Blue data points are the PMT counts

collected during cooling as a function of cooling duration. Red dashed curve is a fit to the

integral of the exponential decay function, with a decay constant 1.24 ms. This means that

≈ 95% of the atoms leave the interaction region in 4.0 ms.
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2.5.3 Optical Frequency Comb Two-Photon MOT

To investigate the feasibility of using this technique to make a MOT, a quadrupole magnetic

field with a gradient of 7.7 G/cm is introduced and the ML beam polarizations are set to

drive σ± transitions in the standard single-photon CW MOT configuration [80] to make a

1D MOT. We displace the atom cloud from the trap center and monitor the atoms as they

are pushed toward the trap center, as shown in Figure 2.12. The corresponding phase space

plot is shown in Figure 2.13. The system is modeled as a damped harmonic oscillator and

fitting the motion of the atoms yields a trapping frequency of νMOT = (40 ± 9) Hz and a

cyclic damping rate of (37 ± 4) Hz. These MOT parameters imply a resonant excitation

rate of (7000 ± 1000) s−1 and an effective magnetic line shift of (0.5 ± 0.2) µB (see Section

2.3). The average of the calculated line shifts for all ∆mF = +2 (σ+σ+) transitions would

be 1.2 µB for Fg = 3→Fe = 5. By measuring the polarization of the beam before and after

the vacuum chamber for each pass, we infer that the fraction of the laser power with the

nominally desired polarization at the location of the atoms is 97% for the forward beam and

87% for the retro-reflected beam. In a simple 1D model with magnetic field (quantization

axis) parallel to the light’s k̂-vector, σ+σ+, σ−σ−, σ+σ−, and σ−σ+ transitions can be driven.

Including the average line shifts from all of the ∆m = 0 (from σ+σ− and σ−σ+ transitions)

and ∆m = −2 transitions (from σ−σ−) weighted by our polarization measurements yields

an effective magnetic line shift of 0.68 µB. During the ≈ 4 milliseconds of ML illumination

before the atoms’ transverse motion causes them to exit the interaction volume, we do not

detect any atom loss due to photoionization, consistent with the measured photoionization

cross section [33].
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Figure 2.12: Position space trajectories for atoms trapped in a two-photon, optical frequency

comb MOT. The MOT is first displaced from the trap center by applying a bias magnetic

field to the CW MOT. We then release the MOT by turning off the CW lasers and the bias

field, and turn on the ML laser for 1D trapping. For four different displacements (shown

in red, yellow, green and blue), the atoms follow a trajectory that leads back to the trap

center. Purple dashed trajectories show the behavior when the ML beam polarizations are

intentionally reversed and exhibit an anti-confining force. The corresponding phase space

plot is shown in Figure 2.13
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Figure 2.13: Phase space trajectories for atoms trapped in a two-photon, optical frequency

comb MOT. Smooth curves are fits to a damped harmonic oscillator, with fit uncertainties

shown as bands. Purple features show the behavior when the ML beam polarizations are

intentionally reversed and exhibit an anti-confining force. Error bars are statistical over

repeated measurements. The corresponding position space plot is shown in Figure 2.12
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2.6 Outlook

Laser cooling and trapping with an optical frequency comb for one-photon transition typically

cannot efficiently use the full power of laser, because of the many frequency components that

are not used in the laser cooling and trapping process. However, optical frequency comb

laser cooling and trapping could be suitable if a laser cooling and trapping scheme can make

use of multiple comb teeth, by using the optical frequency comb as both the cooling and

repumping laser. Take this idea, one step further, multiple species can be cooled and trapped

simultaneously with a single optical frequency comb. For the demonstration of loading and

trapping of both species of rubidium atoms in an one-photon optical frequency comb MOT

with a single ML laser, see Appendix B.

Indeed, the techniques presented in this chapter is most powerful if simultaneous address-

ing of multiple transitions are required for ultraviolet light. The high instantaneous intensity

of the ML laser makes it suitable for generation of ultraviolet light from nonlinear processes.

It is possible to apply the techniques presented in this chapter in the deep UV to laser cool

and magneto-optically trap species such as H, C, N, O, and H̄ (anti-hydrogen).

Figure 2.14 illustrates a potential laser cooling and trapping scheme for H and H̄. Two-

photon Doppler cooling has previously been proposed on the 1S→2S transition for H and H̄

(through forced quenching of the 2S state) with a CW laser [101] or optical frequency comb

[59] centered at 243 nm. We propose to cool on the 1S→2S transition instead. There are

multiple reasons for using this transition: we have demonstrated a similar 5S→5D transition,

and the 1S→2S transition has a lower photoionization losses [55]. Further, multiple teeth

of the two-photon comb (see Eq. (2.31) and Figure 2.3) can be used simultaneously to drive

different hyperfine and fine-structure transitions in parallel at no cost in additional laser

power (Figure 2.14). In the limit that both the average and instantaneous excited state

probabilities are small (ΩN � Γ < 2πfr) with unequal detunings from resonance for each

transition being driven, coherences between multiple excited states can be neglected and

each line will act essentially as an independent two-level system.
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In addition, a comb tooth spacing of fr = 83.5 MHz will simultaneously drive all six of

the allowed [21] hyperfine and fine structure transitions [66] on 1S→3D with a red detuning

between Γ/3 and Γ. The optical frequency comb’s ability to “repump” its own hyperfine

states allows this scheme to be applied robustly to magnetically trapped samples, where the

presence of polarization imperfections or off-resonant excitation to undesired excited states

can cause spin flips that must be repumped. As mentioned at the beginning of this section

and documented in Appendix B, we have demonstrated a single ML laser can simultaneously

address multiple transitions to laser cool and repump a MOT.

Due to low anticipated scattering rates, H and H̄ (and species like C, N and O) will likely

need to be slowed using other means [49, 51]. Direct comb laser cooling and trapping would

then be used to cool them to the Doppler limit in a MOT.
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Figure 2.14: Calculated parameters for laser cooling atomic hydrogen on 1S→3D. a Cal-

culated excitation rate (blue) as a function of twice the optical frequency (the two-photon

effective frequency at 102.5 nm) for a comb with repetition rate fr = 83.5 MHz. The spec-

trum shown is the atomic spectrum modulo fr, which is how the spectrum will appear when

scanning a frequency comb.b The bandwidth spanned by the six allowed fine and hyperfine

transition frequencies modfr is less than the natural linewidth of Γ/2π = 10.3 MHz for this

repetition rate and a few others.
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CHAPTER 3

Momentum Transfer via a Stimulated Force

3.1 Advantages of Using a Stimulated Force for Laser Slowing

The rich internal structure and the readily available long-range and anisotropic interactions

present in diatomic molecules make them highly desirable candidates for precision measure-

ments [98, 48, 94, 6, 65], quantum information processing [28, 9, 81, 50, 12, 73] and quantum

chemistry [77, 67]. A few years ago, the first molecular magneto-optical trap (MOT) was

demonstrated by the Demille group at Yale with SrF [13] in 2014, and subsequently demon-

strated by the Doyle group at Harvard [8] and by the Tarbutt group at Imperial College

[92] in 2017, both with CaF. Despite the great success in producing molecular MOTs, the

number of molecules that can be loaded in a MOT is low. To date the highest number of

molecules ever loaded in a MOT is on the order of 105 [8]. The primary limiting factor to

the number of trappable molecules in a MOT turns out to be the number of molecules that

are slowed to a laser-coolable and -trappable speed. This is because unlike atoms, molecules

have complex structures. As shown in Figure 3.1, the presence of more than one atoms in a

molecule results in vibrational and rotational motions. This means that after a molecule is

driven to the excited state, there are a multitude of possible vibrational and rotational states

the molecule can spontaneously decay into. Take CaF for example, as illustrated in Figure

3.2 [8], one CaF molecule would decay into a dark state after every 500 excitations. On the

other hand, typically 104 photons are needed for laser slowing and trapping of molecules

coming off a cryogenic buffer gas beam or a supersonic beam source. Adding additional re-

pump lasers would get the molecule out of the dark states, at the cost of reduced scattering

rate, which subsequently results in prolongation of slowing distance. As the slowing distance
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Figure 3.1: Presence of rotational and vibrational motions in a diatomic molecule.

gets longer, the molecular beam becomes more spread-out in the transverse direction, thus

further reducing the number of laser coolable/trappale molecules.

Stimulated optical forces might be a better candidate to transfer momentum to a molec-

ular beam. Stimulated forces employ stimulated emissions instead of spontaneous emissions

to return an excited molecule back down to the ground state. This property has two main

implications: first, large number of momentum transfers can be delivered before a spon-

taneous emission sets in, thus reducing the possibility of the molecule accidentally falling

into a dark state; second, stimulated forces are not limited by the scattering rate γ of a

transition, and can be many times stronger than the spontaneous scattering forces - hence a

much smaller slowing distance. To demonstrate the short distance an ideal stimulated force

can bring, we following the deceleration scheme proposed by Jayich et al. [56] and make the

following computation (the details of the scheme are given in Section 3.2):

Assume we want to slow a cryogenic buffer gas beam source of CaF moving at v0 = 150

m/s [8]. Using a ML laser centered at 531 nm, the number of momentum transfers required

to slow the beam to a full stop is ≈ 16000. With a repetition rate of frep = 80 MHz, the

time required to apply this many momentum transfers is ≈ 2 ms, and the distance traveled

by a molecule before coming to a full stop is ≈ 1.5 cm. In comparison, white light slowing

has demonstrated laser slowing from 60 m/s to laser trappable speed in 20 cm for a small

population [46].
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Figure 3.2: Energy level diagram of CaF [8]. The solid lines are transitions for excitation,

while the wavy lines indicate potential decay paths to different vibrational levels from the

main photon cycling transitions.

3.2 Stimulated Force Slowing with ML Laser Pulses

In this section we describe our method of laser deceleration (proposed by Jayich et al. [56]).

The stimulated force we demonstrate here is generated by the fast repetition of a cycle in

which a time-ordered, counterpropagating pair of picosecond laser pulses (“π-pulses”) illu-

minate the sample. As illustrated in Figure 3.3 (see also [58, 56, 93, 75, 39]), a ground-state

molecule from a molecular beam is first excited by absorbing a photon from a “pump pulse”

that is counter-propagating with respect to the molecular beam, thereby losing momentum

~k. The molecule is then immediately illuminated by a co-propagating “dump pulse,” which

deterministically drives the molecule back to its original ground state via stimulated emis-

sion and removes another ~k of momentum from the molecule. By setting the spacial path

length difference between the pump and dump beam path, the temporal delay between the

pump and dump pulse can be chosen, hence the direction of net momentum transfers can

be controlled.

This cycle can be repeated immediately to create an approximately continuous decel-
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Figure 3.3: Pulse sequence of the stimulated force. A “pump” pulse, counter-propagating

to the direction of the molecular beam, excites each molecule, removing ~k momentum.

Before the molecule spontaneously decays (τ � 1/γ, where 1/γ is the spontaneous emission

lifetime), a co-propagating “dump” pulse deterministically removes another ~k momentum,

bringing each molecule back to its initial ground state.
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eration force that can be much stronger than spontaneous scattering. Assuming perfect

population transfer fidelity and infinite laser power, this scheme will only be limited by the

finite duration of the ML laser pulse. In addition, the broad spectrum coverage of the ul-

trafast laser pulses (> 10 GHz for a 30 ps pulse) allows for simultaneous deceleration of

molecules from a wide range of velocities.

The effectiveness of this scheme depends on how well each pump or dump pulse can

transfer population between the ground state and the excited state. Consider the case where

a first pump pulse fails to excite the molecule to its excited state. If the co-propagating

dump pulse successfully excites the molecule, then the molecule would gain instead of lose

a momentum ~k. A subsequent pump pulse could then de-excite the molecule, adding

another ~k and make things even worse: indeed, a failed population transfer could reverse

the direction of the stimulated force!

3.2.1 Single Photon Cooling

As a result of the broad spectrum coverage of the ML laser, the stimulated force slowing

method described in the previous section is not velocity-selective. This means that ML laser

pulses would keep transfering momentum to molecules that have been slowed to a full stop,

and the molecules would be accelerated in the reverse direction back to the beam source if

no stopping mechanism is applied.

In [56], the authors also provided a way to stop the molecules that have reached a desired

stopping velocity. After a burst of deceleration cycles of ML pulses, a narrow-band colinear

CW laser is turned on to optically pump molecules that have reached a desired stopping

velocity into a long-lived dark state. Because of Doppler shift, molecules that do not fall

into the stopping velocity range are not sensitive to the CW laser, hence only molecules that

have reached the stopping velocity would be “selected” out of the effect of further ML laser

pulses. By choosing the duration of the ML pulse burst, we can ensure all molecules that

have reached the stopping velocity are optically pumped and are no longer addressable by

the ML laser.
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This method has the advantage that it performs single-photon cooling at the same time.

Because of the narrow frequency band of the CW laser, dark state molecules optically pumped

by the CW laser are highly localized in velocity space, hence experience a phase space com-

pression. Entropy is carried away by the spontaneously emitted photons, and the molecular

beam is thus cooled.

3.3 Benchmarking Stimulated Force with ML Laser Pulses

To benchmark the effectiveness of the stimulated force molecular slowing scheme proposed

in Section (3.2), an atomic acceleration experiment is designed and performed. Instead of

directly testing the stimulated force on a molecular beam, we illuminate an atomic MOT

(initially at rest) with a train of ML pulses, and observe the resultant speed.

Benchmarking the stimulated force consists of two parts: benchmarking how well a single

ML pulse (pair) can transfer population between the ground and excited state, and bench-

marking the accelerating efficiency for a train of pulse pairs. In Section (3.4) we will develop

the theory for single ML pulse population transfer and describe the experiment that char-

acterize the single pulse population transfer fidelity in our system, and in Section (3.5) we’ll

develop the theory for momentum transfer for a train of pulse pairs, and the experimental

procedure that benchmarks the efficiency of our system.

3.4 Single ML Pulse (Pair) Excitations

In this section, we start by developing a theory to describe atomic excitation by a single ML

pulse. This theory provides the ML laser power needed to achieve the π-pulse condition for

an atom located at the beam waist center. We then develop a theory for a finite volume

atomic sample to account for the finite size of the atomic MOT in our experimental setup.

Finally we present experimental results for these space-averaged excitations by measuring

the fluorescence of single ML-pulse(-pair)-illuminated MOT. The results presented in this

section benchmark the effectiveness of ML pulses to transfer population between two states,
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which is an indicator for the effectiveness of the stimulated force with ML pulses to transfer

momentum.

3.4.1 Atomic Excitation by a Mode-Locked Pulse

In this subsection, we follow [83] to derive the probability of a ground state atom getting

excited by a ML laser pulse.

Consider an atom in the state described by

|ψ〉 = c1|1〉+ c2|2〉, (3.1)

subject to the following two-level Hamiltonian:

H =
~
2

−∆ Ω∗

Ω ∆

 . (3.2)

Here |1〉 and |2〉 represent the ground and excited state respectively, ∆ ≡ ωa − ωlaser is the

detuning between the laser and transition frequency, and

Ω(t) = −〈1|µ · E(t)|2〉
~

= −〈1|µE(t)|2〉
~

(3.3)

is the Rabi frequency, where µ is the electric dipole moment, E(t) is the time-dependent

electric field strength, and µ and E(t) are their amplitude. We have assumed the dipole and

the electric field aligns in the same direction implicitly. Further, we assume the ML laser

pulse’s electric field has a hyperbolic secant profile [44]:

E(t) = E0 sech

(
t

Tp

)
. (3.4)

Then

Ω(t) = Ω0sech

(
t

Tp

)
, (3.5)

where Ω0 = −〈1|µE0|2〉
~

= −E0
〈1|µ|2〉

~
, the peak Rabi frequency, is time-independent.

Apply the Hamiltonian to the time-dependent Schrödinger equation

i~
d

dt
|ψ〉 = H|ψ〉, (3.6)
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and for convenience define ε ≡ −∆

2
and ν ≡ Ω

2
, we get

iċ1 = εc1 + νc2, (3.7)

iċ2 = νc1 − εc2 (3.8)

which can be combined as

c̈2 −
ν̇

ν
ċ2 +

(
iε
ν̇

ν
+ ε2 + ν2 − iε̇

)
c2 = 0. (3.9)

Define a transformation

z =
1

2

(
tanh

t

Tp

+ 1

)
, (3.10)

ċ2 =
dc2

dt
=

dc2

dz

dz

dt
, (3.11)

c̈2 =
d

dt
ċ2 =

d2c2

dz2

(
dz

dt

)2

+
dc2

dz

d2z

dt2
. (3.12)

With the identity

sech2x+ tanh2x = 1, (3.13)

we can get

dz

dt
=

1

2Tp

sech2

(
t

Tp

)
=

2(1− z)z

Tp

, (3.14)

d2z

dt2
= − 1

T 2
p

sech2

(
t

Tp

)
tanh

(
t

Tp

)
= −4z(1− z)(2z − 1)

T 2
p

, (3.15)

and

ν2 =

(
Ω0

2

)2

sech2

(
t

Tp

)
= Ω2

0(1− z)z, (3.16)

ν = Ω0

√
(1− z)z. (3.17)

Also note

ν̇

ν
=

Ω̇

Ω
=

−Ω0sech

(
t

Tp

)
tanh

(
t

Tp

)/
Tp

Ω0sech
(

t
Tp

)
= − 1

Tp

tanh

(
t

Tp

)
= − 1

Tp

(2z − 1). (3.18)
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Putting Eq. (3.10), (3.11), (3.12), (3.14), (3.15), (3.16) and (3.18) into Eq. (3.9),

z(1− z)
d2c2

dz2
− (z − 1

2
)
dc2

dz
+

(εTp)2 + (Ω0Tp)2(1− z)z − iε̇T 2
p − iε(2z − 1)Tp

4(1− z)z
= 0. (3.19)

In the resonant case, ∆ = 0, ε = 0, Eq. (3.19) becomes

z(1− z)
d2c2

dz2
−
(
z − 1

2

)
dc2

dz
+

(
Ω0Tp

2

)2

= 0. (3.20)

Denote α =
Ω0Tp

2
, β = −Ω0Tp

2
, and γ =

1

2
, Eq. (3.20) can be written as

z(1− z)
d2c2

dz2
+ [γ − (α + β + 1)z]

dc2

dz
− αβc2 = 0. (3.21)

Eq. (3.21) is the hypergeometric equation, and its solution is given by [40]

c2(z) = AF (α, β; γ; z) +Bz1−γF (α− γ + 1, β − γ + 1; 2− γ; z), (3.22)

where F is hypergeometric function

F (α, β; γ; z) = 1 +
α · β
γ · 1

z +
α(α + 1)β(β + 1)

γ(γ + 1) · 1 · 2
z2 +

α(α + 1)(α + 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2) · 1 · 2 · 3
z3 + ... (3.23)

Then obviously

F (α, β; γ; 0) = 1. (3.24)

The following identity for the hypergeometric functions is also true:

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, (3.25)

Now consider an atom starting from the ground state. Equivalently c2(t → −∞) =

c2(z = 0) = 0 and c1(t→ −∞) = c1(z = 0) = 1. Then

c2(z = 0) = A =⇒ A = 0, (3.26)

c2(z) = Bz1−γF (α− γ + 1, β − γ + 1; 2− γ; z). (3.27)
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To get the value of B, differentiate Eq. (3.27) with respect to t,

ċ2(z) =
dc2(z)

dz

dz

dt

=
2(1− z)zB

Tp

[
(1− γ)z−γF (α− γ + 1, β − γ + 1; 2− γ; z) +

z1−γF ′(α− γ + 1, β − γ + 1; 2− γ; z)

]
(3.28)

where F ′ is understood to be
dF

dz
. Rearrange Eq. (3.8) and use ε = 0:

c1(z) =
1

ν
(iċ2(z) + εc2(z)) =

iċ2(z)

ν
(3.29)

Put Eq. (3.17), (3.24) and (3.28) into Eq. (3.29), and use γ =
1

2
,

c1(z) =
i
√

1− zB
Ω0Tp

F (α− γ + 1, β − γ + 1; 2− γ; z) +

2iz
√

1− zB
Ω0Tp

F ′(α− γ + 1, β − γ + 1; 2− γ; z). (3.30)

Apply the initial condition c1(z = 0) = 1,

iB

Ω0Tp

= 1 =⇒ B =
ΩoTp

i
. (3.31)

To obtain the excitation probability of an atom after illuminated by a ML pulse, consider

c2(t→∞) = c2(z = 1). Putting Eq. (3.25) and (3.31) into Eq. (3.27),

c2(z = 1) = BF (α +
1

2
, β +

1

2
;
3

2
; 1)

=
ΩoTp

i

Γ

(
3

2

)
Γ

(
3

2
− (α +

1

2
)− (β +

1

2
)

)
Γ

(
3

2
− (α +

1

2
)

)
Γ

(
3

2
− (β +

1

2
)

)
=

ΩoTp

i

Γ(3/2)Γ(1/2)

Γ(1− α)Γ(1− β)

=
ΩoTp

i

π/2

Γ(1− α)Γ(1 + α)

=
ΩoTp

i

π/2

αΓ(1− α)Γ(α)

=
ΩoTp

i

π/2

απ/ sin(πα)

= −i sin

(
πΩ0Tp

2

)
. (3.32)
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Hence the excitation probability of an atom by a ML pulse is given by

|c2(t→∞)|2 = sin2

(
πΩ0Tp

2

)
. (3.33)

This is known as the Rosen-Zener solution [83].

3.4.2 π-Pulse Condition

In this subsection, we will derive the ML laser beam condition in order to apply π-pulses

[22].

As mentioned in Section 3.2, the effectiveness of the stimulated force depends critically

on the ability of a single pulse to transfer population from one state to the other. Ideally

each ML pulse should either excite a ground state atom to the excited state, or de-excite an

excited atom to the ground state. A pulse that satisfies this requirement is called a π-pulse.

Equivalently, the population transfer fidelity is one if both sides of Eq. (3.32) are 1. That

is,

|c2(t→∞)|2 = sin2

(
πΩ0Tp

2

)
= 1, (3.34)

and Ω0 must satisfy

Ω0Tp = 1. (3.35)

Before we proceed further with Eq. (3.35), we attempt to characterize the ML laser field.

Without loss of generality we assume the atom is at the beam waist with a characteristic

1/e2 intensity radius (or equivalently a 1/e electric field amplitude radius) of w0. The electric

field can be written in the form

E(r, t) = Ecenter(t) exp

(
− r

2

w2
0

)
r̂, (3.36)

where r =
√
x2 + y2 is the radial distance from the center axis of the beam, Ecenter(t) is

the peak electric field amplitude at the center axis of the beam. Using the relation between

electric field and intensity

I(r, t) =
1

2
cε0|E(r, t)|2 =

1

2
cε0|Ecenter(t)|2 exp

(
−2r2

w2
0

)
(3.37)
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we find total instantaneous laser power

P (t) =
πcε0w

2
0|Ecenter(t)|2

4
(3.38)

We can only measure time-averaged laser power in the lab, hence to guide our experimen-

tal work we need to convert the instantaneous laser power in Eq. (3.38) to time-averaged

laser power. To do so, we start by finding the total laser energy in each ML pulse. Assume

the electric field amplitude takes the form given by Eq. (3.4):

Ppulse =

∫ ∞
−∞

P (t)dt =
πcε0w

2
0|

2
|E0,center|2Tp. (3.39)

For a ML laser with repetition rate fr, the time-averaged laser power P̄ is given by

P̄ =
πcε0w

2
0|

2
|E0,center|2Tpfr. (3.40)

The electric field amplitude at the center axis of the beam is

|E0,center| =

√
2P̄

πcε0w2
0Tpfr

. (3.41)

For an atomic transition with saturation intensity Isat

Isat ≡
~ω3

aγ

12πc2
, (3.42)

where ωa is the atomic transition (angular) frequency and γ ≡ 1/τ is the natural linewidth

(τ is the lifetime of the excited state), the Rabi frequency is related to the electric field of

the laser via

|Ω| = γ

√
I

2Isat

= |E|

√
3πγε0
~

(
c

ωa

)3

. (3.43)

In order to require the center axis Rabi frequency at the beam waist to satisfy the π-pulse

condition (3.35), we must have

|E0,center|

√
3πγε0
~

(
c

ωa

)3

Tp = 1, (3.44)

or

|E0,center| =
1

Tp

√
~

3πγε0

(ωa

c

)3

. (3.45)
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Combining Eq. (3.41) and (3.45) to get the π-pulse condition time-averaged laser power

P̄π =
~w2

0frω
3
a

6γTpc2
. (3.46)

For w0 = 0.65 mm, fr = 80 MHz, Tp = 30 ps on a 780 nm transition with a 6.07 MHz

linewidth (the 2S1/2 →2 P3/2 transition for 85Rb), the time-averaged laser power for π-pulse

condition at the beam waist (on the center axis) is ≈81 mW.

3.4.3 Single Pulse (Pair) Excitation for a Finite Size Sample

In this subsection, we will develop a theory to describe the atomic excitation in a sample of

atoms whose size is many times larger than the laser wavelength.

Each ML pulse can be thought of as an operator that rotates the internal state and

changes the momentum state of an atom. We can represent the state of an atom as |i, n〉,

where i ∈ {1, 2} represents the internal state of the atom, and n ≡ mv

~k
corresponds to the

number of ~k momentum an atom has in the pump beam propagation direction (assume the

atom starts from at rest). Using ∫ ∞
−∞

sech

(
t

Tp

)
dt = πTp, (3.47)

we can rewrite Eq. (3.33), the excitation probability of a ground state atom by a ML pulse,

as

Pe(θ) = sin2

(
πΩ0Tp

2

)
= sin2

(
θ

2

)
, (3.48)

where

θ ≡ π

∫ ∞
−∞

Ω(t)dt

= πΩ0

∫ ∞
−∞

sech

(
t

Tp

)
dt

= πΩ0Tp (3.49)

is the temporal pulse area (with a constant factor π). We can then write the pump beam
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pulse operator as

Up(θ) =

(∑
n

→

)
cos

(
θ

2

)
|1, n〉〈1, n|+ cos

(
θ

2

)
|2, n〉〈2, n| −

i sin

(
θ

2

)
|1, n− 1〉〈2, n| − i sin

(
θ

2

)
|2, n+ 1〉〈1, n|, (3.50)

and the dump beam pulse operator as

Ud(θ) =

(∑
n

→

)
cos

(
θ

2

)
|1, n〉〈1, n|+ cos

(
θ

2

)
|2, n〉〈2, n| −

i sin

(
θ

2

)
|1, n+ 1〉〈2, n| − i sin

(
θ

2

)
|2, n− 1〉〈1, n|. (3.51)

It should be understood that an implicit summation over n is taken for these operators even

if the summation is not written explicitly from now on.

Consider an atom in the state |ψ〉 = |1, n〉. The state after a pump pulse is given by

ρ̃p = Up(θ)|ψ〉〈ψ|U †p(θ)

= Up(θ)|1, n〉〈1, n|U †p(θ)

=

[
cos

(
θ

2

)
|1, n〉〈1, n| − i sin

(
θ

2

)
|2, n+ 1〉〈1, n|

]
U †p(θ)

= cos2

(
θ

2

)
|1, n〉〈1, n|+ sin2

(
θ

2

)
|2, n+ 1〉〈2, n+ 1| −

−i sin

(
θ

2

)
cos

(
θ

2

)
(|2, n+ 1〉〈1, n| − |1, n〉〈2, n+ 1|) . (3.52)

In deriving Eq. (3.33), we assumed the atom is a point located at the beam waist center

position. In practice, however, the atoms are distributed over a macroscopic volume, typically

with a 1/e2 number density radius of ∼ 100 µm. This is a much bigger scale than the

wavelength of an optical transition, which means atoms at different spacial locations will have

different spatial phase. The overall effect of this finite sample size on ML pulse excitation is

that the phase of atoms in the sample are all scrambled. The approach we take to account

for this effect is to drop the off-diagonal matrix elements of the density matrix to average

over all relative pulse phases. The effective state after the pump pulse is therefore

ρp = cos2

(
θ

2

)
|1, n〉〈1, n|+ sin2

(
θ

2

)
|2, n+ 1〉〈2, n+ 1|. (3.53)
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By the same token, to get the state of the atom after the dump pulse, we can apply the dump

pulse operator to the density matrix ρp to find ρpd = Up(θ)ρpU
†
p(θ). However, this does not

account for the possible spontaneous emission that happens in between the pump and dump

pulses. To include the spontaneous emission effect, assume the atomic decay rate is γ and

the inter-pulse delay time is τ . The probability that a spontaneous emission happens for an

excited atom in between the pump and dump pulse is

Pγτ =
(
1− e−γτ

)
sin2

(
θ

2

)
. (3.54)

Then the state right before the dump pulse arrives is

ρτp = cos2

(
θ

2

)
|1, n〉〈1, n|+

(
1− e−γτ

)
sin2

(
θ

2

)
|1, n+ 1〉〈1, n+ 1|+

e−γτ sin2

(
θ

2

)
|2, n+ 1〉〈2, n+ 1|, (3.55)

and the state of the atom right after the dump pulse is

ρdτp = = Ud(θ)ρτpU
†
d(θ)

= |1〉〈1| ⊗

[
cos4

(
θ

2

)
|n〉〈n|+

(
1− e−γτ

)
cos2

(
θ

2

)
sin2

(
θ

2

)
|n+ 1〉〈n+ 1|+

e−γτ sin4

(
θ

2

)
|n+ 2〉〈n+ 2|

]
+

|2〉〈2| ⊗

[
cos2

(
θ

2

)
sin2

(
θ

2

)
|n− 1〉〈n− 1|+

(
1− e−γτ

)
sin4

(
θ

2

)
|n〉〈n|+

e−γτ cos2

(
θ

2

)
sin2

(
θ

2

)
|n+ 1〉〈n+ 1|

]
+ off-diagonal terms. (3.56)

The probability that an atom emits a photon after both pulses is

Pγdp = Trn(〈2|ρdτp|2〉) = (1 + e−γτ ) sin2

(
θ

2

)
cos2

(
θ

2

)
+ (1− e−γτ ) sin4

(
θ

2

)
. (3.57)

The expected number of photons emitted per atom per pulse pair, then, is

〈Nγ(θ)〉 = Pγτ + Pγdp = 2 sin2

(
θ

2

)[
1− e−γτ sin2

(
θ

2

)]
,

or

〈Nγ(θ)〉 = 2 sin2

(
θ

2

)[
1− e−γτ sin2

(
θ

2

)]
. (3.58)
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Next, we will average over different pulse areas θ. There are two reasons to why we need

to average over pulse areas: first, the MOT has a finite size, and for an atom located 100

µm away from the beam center of a 0.65 mm beam, the amplitude of electric field is 98.8%

compare to at the center of the beam. Second, there is pulse-to-pulse fluctuation in energy

per pulse (this will be addressed in Section 3.4.4).

We assume the pulse areas from the pump and dump pulses are completely correlated

but chosen from a normal distribution centered at θ0 with standard deviation κθ0:

D(θ, θ0, κ) =
1

κθo

1√
2π

e−( θ
θo
−1)

2
/2κ2 . (3.59)

Here κ is the fractional standard deviation. Using Eq. (3.48) and (3.59), we can find the

average expected excitation probability by a single ML pulse:

P̄1(θo, κ) =

∫ ∞
−∞

D(θ, θ0, κ)Pe(θ)dθ =
1

2

(
1− e−κ

2θ2o/2 cos (θo)
)
, (3.60)

or

P̄1(θo, κ) =
1

2

(
1− e−κ

2θ2o/2 cos (θo)
)
. (3.61)

At π-pulse condition, θo = π. We define

P̄κ ≡ P̄1(π, κ) =
1

2

(
1 + e−κ

2π2/2
)
, (3.62)

then

e−κ
2π2/2 = 2P̄κ − 1. (3.63)

We can also find the probability of an atom in the excited state after both the pump and

dump pulse, but this quantity is hard to measure directly because the possible spontaneous

emissions in between pump and dump pulses complicate any fluorescence measurement. An

easier quantity to measure is the expected average number of photons emitted per pump-

dump pulse pair:〈
N̄γ(θo)

〉
=

∫ ∞
−∞

D(θ) 〈Nγ(θ)〉 dθ

=
(

1− e−κ
2θ2o/2 cos (θo)

)
−

1

4
e−γτ

(
3 + e−2κ2θ2o cos (2θo)− 4e−κ

2θ2o/2 cos (θo)
)
, (3.64)
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or

〈
N̄γ(θo)

〉
=
(

1− e−κ
2θ2o/2 cos (θo)

)
− 1

4
e−γτ

(
3 + e−2κ2θ2o cos (2θo)− 4e−κ

2θ2o/2 cos (θo)
)
.

(3.65)

At the π-pulse condition, Eq. (3.65) reduces to

〈
N̄γ(π)

〉
= 1− 3

4
e−γτ + (1− e−γτ )(2P̄κ − 1)− 1

4
e−γτ (2P̄κ − 1)4. (3.66)

We will use the theory we have developed in this subsection to determine experimental

parameters in the next subsection (3.4.4).

3.4.4 Experimental Results on Single-Pulse(-Pair)-Induced MOT Fluorescence

As explained in Section (3.2), for ML deceleration of molecules, it is important to ensure

high population transfer fidelity between the ground and excited states by single pump and

dump pulses. In this subsection, we will describe a method that allows us to characterize

and optimize the population transfer fidelity in our system, and present the experimental

results.

As illustrated in Figure 3.4, we characterize population transfer fidelity by collecting

spontaneous emission fluorescence after illuminating the MOT with one ML pump pulse,

one dump pulse, and one pump-then-dump pulse pair. The path length difference between

the pump and dump beam path would give rise to a delay of (310± 60) ps. We first prepare

a 85Rb MOT of ∼ 107 atoms with initial temperature of ∼ 120µK. The MOT temperature is

determined by methods described in Section 2.3.1. We then turn off the MOT’s magnetic field

and CW lasers (both the cooling and repumping laser) to release the atoms, and illuminate

the ML laser pulse onto the atoms. A Conoptics Model 360-80 Pockels cell is used for pulse

picking (power extinction ratio≥ 0.7%). 2.5 µs elapses between the release of atoms and the

ML pulse arrives. Another 2.5 µs later the MOT’s magnetic field and CW lasers are turned

back on, and wait for another 45 µs later before starting the next fluorescence collection

sequence. A Thorlabs PDA36A photodiode is left on to collect the fluorescence emitted by

the excited atoms during the entire process, with a trigger synchronized to the ML pulse.
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Figure 3.4: Experimental setup for single-pulse(-pair)-induced MOT fluorescence. A pre–

cooled sample of atoms are released from a MOT by turning off the MOT magnetic field and

CW cooling laser, after which a single pump pulse, or a single dump pulse, or a pair of pump

and dump pulse, is sent to the atoms for excitation, after which fluorescence is measured

with a photodiode. The dump pulse is 310 ps behind the pump pulse, by introducing a beam

path length difference of ≈ 10 cm. Pulse picking is enabled by the pulse picker, which is a

Conoptics Model 360-80 Pockels cell.
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Figure 3.5: Fluorescence from single pulse pulse (red), dump pulse (blue) and pump-dump

pulse pair (black). We vary the laser pulse energy with an acousto-optical modulator. Each

data point is an average over 2000 runs where each run a single ML pulse or pulse pair is

illuminated onto the atomic cloud. The fluorescence is collected with a Thorlabs PDA36A

photodiode. A sample averaged time trace of fluorescence is shown in Figure 3.6.

This process is repeated 2000 times per pulse energy for averaging.

The results are demonstrated in Figure 3.5. The red points, blue points and black data

points are the fluorescence obtained from the pump pulse only, dump pulse only, and pump-

then-dump pulse pair configurations, respectively. The measured fluorescence is taken from

the maximum value of a fluorescence time series in scope trace (see sample scope trace see

Figure 3.6). The pump beam and dump beam need to be carefully mode-matched (including

beam size, power and alignment matching) for best signal.
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Figure 3.6: Sample time trace of fluorescence after single ML pulse (pair) illumination. The

maximum value of a trace is taken as the fluorescence of a particular data run.

At the best signal, the pump beam and dump beam signals match almost exactly at every

laser power (equivalently electric field strength, as is plotted in Figure 3.5). The pump-then-

dump signal should be at a local minima at where the pump and dump only signals are at

local maxima. This is expected if this laser power corresponds to the π-pulse condition.

It should be noted that the π-pulse condition as indicated by the single pulse maxima

and pump-then-dump local minima happens at a pulse energy of ∼ 1.2 nJ, or ∼ 96 mW

time averaged power. This value is in reasonable agreement with the 81 mW laser power

predicted in Section 3.4.2, and provides a calibration of
w2

0

Tp

, both of which are difficult to

measure precisely.

Another thing to note in Figure (3.5) is that the y axis is given in mV, whereas we want

it converted to excitation probability. In order to compare our results to the theory we have

derived in Section (3.4.3), we need to calibrate the level of fluorescence corresponding to an
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excitation probability of 1. While it is not possible to do so experimentally, Section (3.4.3)

shed some light to how a combination of data and theory could allow such a calibration.

Consider
〈
N̄γ(θ)

〉
and P̄1(θ, κ) at π-pulse condition. Using Eq. (3.61) and (3.66), we can

find the ratio between them:

µ =

〈
N̄γ(π)

〉
P̄1(π, κ)

=
1− 3

4
e−γτ + (1− e−γτ )(2P̄κ − 1)− 1

4
e−γτ (2P̄κ − 1)4

P̄κ
(3.67)

In terms of quantities we can measure, the ratio µ corresponds to the ratio between V2(π)

and V1(π) in Figure (3.5), since V1(π) and V2(π) corresponds to the pump-only or dump-only,

and pump-then-dump fluorescence at π-pulse condition:

µ =
V2(π)

V1(π)
(3.68)

For purpose of calibration, fluorescence signal from pump-only and dump-only data are

averaged per laser power, and we obtain

V1(π) = (69.72± 0.49)mV, (3.69)

V2(π) = (4.26± 0.50)mV. (3.70)

Subsequently, we can find the value of µ:

µ = 0.0611± 0.0072. (3.71)

From Eq. (3.67) and (3.71), we get

P̄κ = 0.980± 0.005 . (3.72)

The uncertainty is obtained by combining the uncertainty from the fluorescence measure-

ments and the uncertainty from the pump-dump pulse delay. The corresponding fractional

standard deviation κ can be found to be

κ = 0.09± 0.01. (3.73)

It should be mentioned that we have tried to measure κ experimentally to investigate

whether κ is dominated by temporal fluctuation in ML laser pulse energy. 10000 ML pulses
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Figure 3.7: Laser power fluctuation. 10000 ML pulses are reflected off a microscope slide onto

a SM05PD2A photodiode, and are then binned for the histogram. The y-axis is a counting

of the frequency of different laser power occurrence. The fractional standard deviation of

the shown data is 0.02.

sampled by a microscope slide are reflected onto a SM05PD2A photodiode. A fractional

standard deviation of 2% in laser power is obtained (see Figure 3.7), corresponding to 1%

fractional standard deviation in pulse area. Therefore transverse intensity variation of the

beam across the atomic sample is speculated to be the cause of the large volume of κ extracted

from the fluorescence measurements.

At this point, we infer the π-pulse area and characterize the x-axis of Figure 3.5 using

Eq. (3.61), as shown in Figure 3.8. Theoretical values for single pulse fluorescence and

pump-then-dump fluorescence are also plotted on Figure (3.8), as the purple dashed curve

and the grey dashed curve, respectively. As a test of consistency of this model (Eq. (3.61)

and (3.65)), we can compute the value of P̄1 at the 2π-pulse condition:

P̄1(2π, κ) = 0.07± 0.02. (3.74)

The measured value of P̄1(2π, κ)measured is P̄1(2π, κ)measured = 0.059 ± 0.008, in agreement
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Figure 3.8: Fits to fluorescence data. The y-axis is obtained from the calibration method

described in Section 3.4.4. The purple dashed line shows the fitting result of single pulse

data to Eq. (3.61), and the gray dashed line is calculated with Eq. (3.65) using parameters

obtained from single pulse data fitting.
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with the theory.

3.5 Momentum Transfer with ML Pulse Stimulated Force

In this section, we continue to develop the theory from the previous section to benchmark the

effectiveness of transferring momentum with ML pulse stimulated force. We also compare

the experimental results with the theoretical predictions.

3.5.1 Theoretical Description of Momentum Transfer from a ML Pulse Stimu-

lated Force

We have derived the expected number of spontaneous emission events per pulse (pair) in

Section 3.4.3, and we can calculate the expected number of momentum transfer per pulse

pair 〈n~k(θ)〉 from the number of spontaneous emission events. Specifically, in our formalism

in Section 3.4.3, the initial momentum of an atom in state |i, n〉 is

pi = n~k, (3.75)

and the final momentum state right after the dump pulse is a superposition of different

momentum states, with the probabilities given by the diagonal matrix elements of Eq. (3.56).

The expected momentum of the final state pf can be calculated as

pf =

[
n+ 2e−γτ sin4

(
θ

2

)]
~k. (3.76)

Hence the number of expected momentum transfer after this pump-dump pulse pair is

〈n~k(θ)〉 =
pf − pi
~k

= 2e−γτ sin4

(
θ

2

)
. (3.77)
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Similar to Section 3.4.3, we want to average over different pulse area θ to account for the

finite sample size:

〈n̄~k(θ)〉 =

∫ ∞
−∞

D(θ)〈n~k(θ)〉dθ

= 2e−γτ
∫ ∞
−∞

D(θ) sin4

(
θ

2

)
dθ

=
1

4
e−γτ

(
3 + e−2κ2θ2o cos (2θo)− 4e−κ

2θ2o/2 cos (θo)
)
. (3.78)

At the π-pulse condition, θo = π,

〈n̄~k(π)〉 = e−γτ
(

3

4
+ (2P̄κ − 1) + (2P̄κ − 1)4

)
. (3.79)

The overall efficiency of the ML pulse stimulated force can be obtained by dividing 〈n̄~k(θo)〉

by 2:

εML =
1

2
〈n̄~k(π)〉 =

1

8
e−γτ

(
3 + 4(2P̄κ − 1) + 4(2P̄κ − 1)4

)
. (3.80)

3.5.2 Experimental Characterization of Momentum Transfer with a ML Pulse

Stimulated Force

The experimental measurement done on population transfer fidelity in Section 3.4.4, and

theoretical derivation in Section 3.5.1 provide an upper bound on the performance of the ML

pulse stimulated force. In this section, we report the direct measurement on the effectiveness

momentum transfer from ML pulse stimulated force.

As illustrated in Figure 3.9, we illuminate a cloud of atoms at rest with 1000 pump-dump

ML pulses, and measure the final speed of the atoms by performing time-of-flight (TOF)

measurements along the direction of the pump pulse beam. A resonant, cw laser beam

centered 4-6 mm away from the initial position of the atomic cloud in the direction of the

stimulated force is used to record absorption as a function of time for atoms accelerated by

the pump-dump pulse pairs.The pump-dump pulse pairs are separated from one another by

250 ns. This delay is enabled by a Conoptics Model 360-80 pulse picker (see Section 5.2),

and is chosen such to minimize potential comb tooth effects. Figure 3.10 shows the relevant

time intervals and frequencies for this experiment.
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Figure 3.9: Experiment setup for measuring momentum transfers resulted from ML laser

pulse. A resonant probe laser is placed at different displacements along the pump beam

direction for time-of-flight measurement. The pulse picker allows pulse pairs to be introduced

into the interaction region every 250 ns. This timing is chosen to eliminate potential comb

tooth effects, such that a P -state Rb atom, excited by a first pulse pair, decays to the ground

state 99.99% of the time when the next pulse comes in.
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Time (ns)
1000 300200

Frequency (MHz)
100-100

250 ns

1/γ = 26 ns 12.5 ns

0
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γ/2π = 6 MHz
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Figure 3.10: Time domain (upper) and frequency domain (lower) illustration of single-beam

processes in this work. The ML laser generates 30 ps pulses at 12.5 ns intervals (80 MHz, red).

A Pockels cell increases this inter-pulse delay to 250 ns (4 MHz, blue) to ensure > 99.99%

decay probability between pulses. The excited state probability for an atom excited by the

first pulse is represented by the yellow area in the time domain figure. The corresponding

atomic spectrum is shown in the frequency domain figure.
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We vary the ML pulse energy to find the optimal pulse energy that gives the earliest

arrival times, which corresponds to the largest number of momentum transfers from 2000

total possible momentum transfers of ~k. Two typical traces are plotted in Figure 3.11. The

blue “good” trace has an earlier arrival time than the orange “bad” trace, indicating a better

ML pulse energy to use to efficiently transfer momentum to the atoms.

Figure 3.11: TOF traces of a good (high population transfer fidelity) versus bad (low pop-

ulation transfer fidelity) ML laser pulse power for efficient momentum transfer. A TOF

trace with an earlier arrival time, marked by an earlier rising edge, corresponds to a better

momentum transfer efficiency and hence a higher population transfer fidelity.

The effect of of varying ML pulse energy on TOF measurements are demonstrated in

Figure 3.12. In proximity to the π-pulse energy, the stimulated force becomes more efficient,

resulting in better acceleration and earlier arrival times. Further, as the population transfer

fidelity nears 1, the outcome of each pulse pair becomes more deterministic, and a narrower

speed distribution follows. For perfect population transfer, the final speed distribution has

a spread exactly equal to the starting velocity distribution, while for a population transfer

fidelity of 50%, the pulse pairs impose a random walk to the atoms, resulting in a velocity

spread proportional to
√
N , where N is the number of pulse pairs. The clumping up of atoms
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during earlier arrival times for the data with better population transfer fidelity in Figure 3.12

is a result of narrower speed distribution. While the observed spread in arrival times of the

atoms are clearly on the order of 0.1 ms, the spread expected from quantum projection noise

is on the order of 0.01 ms (See Appendix A). This much wider spread implies systematic

variations in population transfer fidelity associated with the nonuniform transverse inten-

sity profiles of the beams. Some locations in space thus experience systematically higher

population transfer fidelity than others. We are most interested in these atoms since these

represent the ensemble most interesting for considering future applications to molecules. As

such, we focus on optimizing the fastest moving 10% of the atomic population.

We park the ML laser pulse energy at a power that gives optimal momentum transfer

(earliest arrival timein Figure 3.12), and vary the location of the TOF detection probe

laser at 5 different displacement from the initial MOT location. The arrival times of the

fastest moving 10% of the atoms are plotted in Figure 3.14. For these atoms, we obtain a

velocity of (11.0 ± 0.3) m/s, corresponding to a total momentum transfer of (1820 ± 50)~k

from 2000 pulses. Using this momentum transfer efficiency, Eq. 3.80 can be solved for the

effective average π-pulse population transfer fidelity, yielding P̄ = (0.958 ± 0.014). The

lower values of P̄ measured from in situ acceleration measurements as compared to those

inferred from few-pulse fluorescence experiments (e.g. Fig. 3.8) highlight the need to perform

measurements of this kind by measuring the actual momentum transfer, which is sensitive

to more potential systematic effects than observations of internal state dynamics.

3.5.3 Comb Tooth Effect

Despite the 0.7% extinction ratio obtained from the pulse picker, small comb tooth effects

can become important for a long pushing sequence. To investigate the comb tooth effect

from our pulses, we scan the frequency of the nearest comb tooth by applying scanning the

ML laser cavity piezo voltage. Similar to Section 3.5.2, we perform TOF measurement at 3

different displacements for all frequencies. We then calculate the speed and predicted initial

position via a linear fit from the arrival times of the fastest 10% of the atoms in each TOF
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Figure 3.12: Effect of varying pulse energy on the arrival times of the atoms at the TOF de-

tection position. Each vertical cross-section is a TOF trace (see Fig 3.13). The dashed guide

lines represent the theoretical arrival times if the indicated momentum had been transfered

to the atoms. These diagnostic data were taken before optimizing the force, and the arrival

times of the fastest 10% atoms corresponds to Υ ≈ 6.
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Figure 3.13: Sample TOF trace used to calculate the arrival time of the fastest 10% of

the atoms (blue shaded region) with a 4.5 mm displacement from the initial atomic cloud

position.

Figure 3.14: Arrival times of the fastest 10% of the atoms at 5 different TOF detection

positions, and the velocity fit (dashed line) obtained from the position and time data.
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trace. The results are shown in Figure 3.15. The spikes in arrival time around 0 V, 4 V

and 8 V correspond to nearest comb tooth frequencies that are in resonance with the atomic

transition. Away from the proximity of the atomic transition, the nearest comb tooth has

little effects on the fitted speeds and initial positions.

Figure 3.16 shows the calculated quasi-steady-state normalized scattering rate for illu-

mination by a ML pulse train. We calculate the comb tooth visibility for our experiment

parameters. The comb tooth visibility for the desired pushing pulses with a 250 ns separation

is 0.017, consistent with the observation from Figure 3.15 in frequency ranges away from the

resonance frequencies. To ensure the comb tooth effects are minimized in this experiment,

we therefore choose a long pump-dump pulse pair separation of 250 ns, and deliberately

adjust the ML laser comb tooth positions such that no frequency comb tooth is near the

transition.
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Figure 3.15: Stimulated force comb tooth dependence. The top plot shows the arrival times

of the fastest 10% of the atoms for different ML laser cavity piezo voltages. The spikes in

arrival time around 0 V, 4 V and 8 V correspond to nearest comb tooth frequencies that are

in resonance with the atomic transition. The middle and bottom plots are the fitted initial

positions and final speeds after momentum transfers from the arrival times. Away from the

proximity of the atomic transition, the nearest comb tooth has little effect on the speed and

initial position. The pink band in the middle and bottom plots shows the range of initial

positions and speeds that fitted initial positions and falls speeds falls into for the data not

in the proximity of the atomic transition.
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Figure 3.16: Calculated quasi-steady-state normalized scattering rate for illumination by a

ML pulse train. For the experiments in this work, the frequency comb was operated in the

shaded region with respect to the blue curve.

3.6 Comparison of the ML Pulse Stimulated Force to Other Forces

As mentioned in Section 3.1, one advantage of the stimulated force over spontaneous scat-

tering force is the large number of momentum transfers that can be delivered before a

spontaneous emission happens, which reduces the possibility of molecules falling into dark

states. A reasonable figure of merit for evaluating the gain in requisite cycle closure of stim-

ulated over spontaneous scattering is the average momentum transferred (in units of the

photon momentum, ~k) per spontaneous emission event, which we denote by the symbol Υ.

For spontaneous scattering, Υ = 1. For most stimulated scattering schemes, the stimulated

processes can be driven quickly compared to the spontaneous emission lifetime, and the

stimulated force can therefore be stronger than the spontaneous scattering force by a factor

of approximately Υ.
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For the work in Section 3.4 and 3.5, we assume full spontaneous emission of any excited

population before the next pulse pair. This allows us to write the figure of merit Υ as

Υ =
〈n̄~k(π)〉〈
N̄γ(π)

〉 =

(
8P̄κ

e−γτ
(
3 + 4(2P̄κ − 1) + (2P̄κ − 1)4

) − 1

)−1

. (3.81)

Note that Υ is evaluated at the π-pulse condition because we are trying to look for the

maximal attainable factor gain. For the population transfer fidelity obtained by fluorescence

measurement in Section 3.4, P̄κ = 0.980± 0.005, giving Υ = 32± 4, while for the population

transfer fidelity obtained by directly measure the speed of atoms illuminated by a ML pulse

train with TOF in Section 3.5, P̄κ = 0.958± 0.014, and the figure of merit Υ = 19+6
−4.

Comparison of this measurement of Υ to other methods in the literature is complicated

by the fact that very few demonstrations of stimulated slowing techniques report the average

gains in cycle closure that they are designed to provide (though a recent demonstration of

the bichromatic force on polyatomic molecules [62] achieved Υ = (3.7±0.7) [61]). Two other

performance indicators are more common: the excited state fraction, which determines the

ensemble-averaged radiative decay rate, and the force gain factor, which is the ratio of the

magnitude of the stimulated force over the theoretical maximum radiative force for an ideal

two-level system. The time-averaged excited state fraction induced by the bichromatic force

for a two-level system can be optimized to 41%, though it could be improved further to

24% with a four-color force scheme [36]. The pulsed scheme in this work can be viewed

as a polychromatic limit of the bichromatic force, and the time-averaged pump-then-dump

excited state fraction achieved here is (1.0± 0.2)%. Likewise, experimental work on bichro-

matic deflection has demonstrated a force gain factor improvement of 1.1 [62] on polyatomic

molecules and a similar value on diatomic molecules [37], whereas spontaneous scattering

force experiments on polyatomic [64] and diatomic [88] molecules have shown force gain fac-

tors of 0.5 and 0.29 respectively. With the intentionally low repetition rate adopted in our

measurement to eliminate comb tooth systematics (See Section 3.5.3), we measure a force

gain factor of (0.38± 0.01), already comparable to spontaneous scattering.
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3.7 Application of the ML Pulse Stimulated Force

One possible application of this scheme would be for laser deceleration of YbOH, a poly-

atomic molecule candidate for future measurements of the electron electric dipole moment

[29]. White light slowing with five repump lasers has been proposed to produce a sponta-

neous scattering force sufficient for stopping a beam of YbOH [65], whereas use of this pulsed

stimulated optical force with Υ = 19 would reduce the number of repump lasers by three,

and is likely to apply a much stronger force, thereby increasing the molecular flux. Other ap-

plications for the pulsed stimulated force include those for which spontaneous emission leads

to decoherence of quantum superpositions of momentum states, such as atom interferometry

and trapped ion entangling gates [60, 57, 99, 15, 45].
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CHAPTER 4

Conclusion

In this thesis, I present my work on two experiments: direct frequency comb laser cooling

and trapping on a two-photon transition, and demonstration of a stimulated force that has

suppressed spontaneous emissions.

Despite the success in both demonstrations, neither experiments are likely to be pursued

further in the Campbell group. Optical frequency comb laser cooling of hydrogen on a two

photon transition would require a lot of laser power in the ultraviolet, and would require a

slowing stage to slow hydrogen to a laser coolable speed. Laser slowing of molecules with

the ML laser pulse stimulated force would also require additional laser power to expand

the ML laser beam size that would slow down a comparable number of molecules as other

slowing methods, for example white light slowing. Nevertheless, with enough knowledge on

the molecule structure and with enough laser power, the ML laser pulse stimulated force

could be a promising candidate to efficiently slow down a molecular beam.
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CHAPTER 5

Experiment Apparatus and Software

In this chapter, we document the apparatus and software used in experiments for future

reference.

5.1 LabRAD

LabRAD (Lab Rapid Application Development) is a software platform developed and main-

tained by the Martinis Group at the University of California, Santa Barbara. It is designed

for research or production environment requiring complex instrument control and/or data

acquisition. It provides a platform to break up a complex software project into small, man-

ageable modules that can be written in different programming languages, run on different

computers, and independently maintained by different developers [3].

The work presented in this thesis uses pyLabRAD [4], a Python interface to Labrad.

Servers and clients used to control experiment apparatus can be found in [1] and [2].

5.2 Tsunami Mode-locked Ti:sapphire laser

A mode-locked laser is a laser that applies either passive or active mode-locking such that

different frequency component can be locked in-phase and constructively interfere, resulting

in emission of ultrashort pulses. We use a Spectra-Physics Tsunami Mode-locked Ti:sapphire

laser for both experiments in Chapter 2 and Chapter 3.

We use LabRAD to control the switching on and off of the Tsunami ML laser. To ensure

mode-locking, the output of the ML laser is sampled to a Electro-Optics Tech GaAs ET-
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4000 photodiode, whose signal is then sent to a spectrum analyzer. We use the spread and

steadiness of the comb observed on the spectrum analyzer as an indicator for the robustness of

mode-locking (see Figure 5.1). It is possible to change the temporal pulse width produced by

the ML laser. The Gires-Tournois interferometers inside the ML laser needs to be replaced.

Figure 5.1: Illustration of a spectrum analyzer data for a well-mode-locked frequency comb.

The frequency comb seen by the spectrum analyzer is the beating signal between different

frequency comb teeth. The comb spreads out to 10 GHz, which is the cutoff frequency of

the GaAs ET-4000 photodiode.

5.2.1 Pulse Picking with Conoptics Pockels Cell

We use a Conoptics Model 360-80 Modulator for pulse selection. The pulse picker is con-

trolled by a Conoptics Model 305 Synchronous Countdown module and is amplified with a

Conoptics Model 25D. We prepare a ML laser beam with a 1/e2 intensity radius of ≈ 1.5 mm

with a max time-averaged laser power of ≈ 2.2 W. Higher laser power makes extinction ratio

inconsistent, which might be due to heating in the modulator crystal. We use a Glan-laser

polarizer (Thorlabs GL10-B) to clean up polarization before the ML laser beam enters the

pulse picker. To characterize the extinction ratio of the pulse picker, set the pulse picker
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trigger mode to single shot mode (S.S. on the Model 305 front panel) on the pulse picker

electronics, and send in a series of TTL pulses to the pulse picker. A microscope slide is used

to sample ML laser pulses onto a photodiode, which can be connected to a scope. By care-

fully aligning the ML beam with respect to the pulse picker, and tuning the BIAS Control

knob on the Model 25D amplifier, a minimum extinction ratio of 0.7% can be reached.

5.2.2 Locking the ML laser

For the experiment described in Chapter 2, we frequency lock the optical frequency comb to

stabilize the nearest comb tooth with respect to the two-photon resonance for the 5S→5D

two-photon transition in rubidium (Figure 2.4). We sample a fraction of the laser power and

send it to a hot Rb vapor cell in a counter-propagating geometry [82]. Each excitation to the

52D5/2 state produces a spontaneously emitted 420 nm photon as part of a cascade decay

6.5% of the time (Fig. 2.4), which is collected from the pulse collision volume and monitored

with a photon-counting detector.

Figure 5.2: Heated rubidium vapor cell. Two counter-propagating 778 nm beams are intro-

duced into the rubidium vapor cell and overlapped. The blue trace is the fluorescence from

the 6 2P3/2 → 5 2S1/2 transition with a 420 nm, where the 6 2P3/2 state is a decay product

from the 5 2D5/2 state, which is the two-photon transition excited state. The tiny bright

spot in the middle is a Doppler free region where mode-locked laser pulses collide.

To maintain sufficient laser stability for Doppler cooling and trapping, we stabilize the
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ML laser by locking it to an external cavity. The free spectral range of the external cavity is

pressure tuned to be an integer multiple (q = 25) of the ML laser repetition rate to guarantee

that multiple teeth from across the laser spectrum contribute to the Pound-Drever-Hall error

signal used for the lock. A piezo-mounted mirror on the external cavity is then used to

stabilize it to the 52S1/2, Fg = 3 to 52D5/2, Fe = 5 line using FM spectroscopy of the vapor

cell. We note that this optical frequency comb is not self referenced and that we feed back

to an unknown combination of fr and f0 to maintain the two-photon resonance condition,

which is the only frequency parameter that needs to be actively stabilized. The pulse chirp

is periodically minimized by adjusting a Gires-Tournois interferometer in the laser cavity to

maximize the blue light emitted from atoms in the initial CW MOT. The frequency of the

ML laser light used for cooling and trapping is tuned from the vapor cell lock point using

an acousto-optic modulator downstream.

5.3 CW Lasers

We use a total of three CW lasers for the experiments described in Chapter 2 and Chapter 3: a

reference laser (Bamm Bamm) that is locked by saturated absorption (sat-abs) spectroscopy,

a main cooling laser for the MOT (Pebbles), and a repump laser (Dino).

5.3.1 Saturated Absorption Lock

We use saturated absorption spectroscopy [35] to lock a reference laser to the 85Rb 52S1/2 →

52P3/2 transition. Figure 5.3.
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Figure 5.3: Schematic for the saturated absorption lock. Some beam pointing mirrors for

easier alignments have been removed from the schematic drawing for simplicity.

The sat-abs reference laser made from a Photodigm PH780DBR180T8 DBR laser diode.

We use a Stanford SRS laser diode controller box to control the laser. Error signal from

the electronics is sent to a New Focus LB1005 Servo controller to feed back to the laser

controller. A schematic of the electronics circuits for the sat-abs lock is shown in Figure 5.4.

A sample trace from the saturated absorption signal for locking is shown in Figure 5.5
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Figure 5.5: Saturated absorption lock signal. The feature to lock to is indicated by the

arrow.
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5.3.2 Cooling and Repumping Lasers

Both the cooling laser and repumping lasers are offset-locked to the reference sat-abs laser

[85]. The schematic setup for the offset lock optics are drawn in Figure 5.6. LASER 1 (the

reference laser) and LASER 2 (the cooling or the repump laser) in Figure 5.6) are combined

by a beam splitter and the polarization is cleaned up with a polarizing beam splitter, and

their beating is then detected with a photodiode.

LASER 1

HWP
QWP

LASER 2
HWP
QWP

PH
O

TO
DIO

DE

PBSBS

MIRROR

Figure 5.6: Schematic for the offset lock optics.

The cooling laser is made from a Photodigm PH780DBR120T8 DBR laser diode. Same

as the reference laser, we use a Stanford SRS laser diode controller to control the cooling

laser. The repump laser is a homemade external cavity diode laser, which is controlled by

a MOGLab laser controller box. The schematic of the electronics circuit to produce the

feedback error signal is shown in Figure 5.7.
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Appendix A

Variance in Number of Momentum Transfers and

Spread in TOF Arrival Times

Getting the arrival time of the absolute maximum absorption for each of the 5 different TOF

measurement position, and fitting to a straight line results in a max-density speed of 9.8

m/s, or 81.4% overall pushing efficiency. This corresponds to 〈n̄~k(π)〉 = 1.63, P̄ = 89.8%

using Eq. (3.80) and Eq. (3.79), and κ = 0.215 using Eq. (3.61)

If we denote the probability of getting n~k per pulse pair by Pn, and assume the pump and

dump beams are exactly the same so that P1 = P−1, then from the calculation above, P2 =

0.814. By combining and integrating terms in Eq. (3.56), we can find P1 = P−1 = 0.0747, and

P0 = 1−P−1 −P1 −P2. These outcomes form a multinomial distribution, whose definition

are given in [96]. Instead of following the terminologies in [96], it is easier to interpret the

multinomial distribution as N independent categorical trials [97]. A categorical distribution

is a discrete probability distribution whose sample space is the set of n individually identified

items. It is the generalization of the Bernoulli distribution for a categorical random variable,

which is a random variable that takes on one of a limited number of possible values. The

probability mass function f is:

f(x = i | p) = pi, (A.1)

where p = (p1, . . . , pn), pi represents the probability of seeing element i and
n∑
i=1

pi = 1.

Let Xi for i = 1, . . . , N denote the outcome of N independent trials to sample from

a categorical distribution, and X =
N∑
i=1

Xi. Then we can find the variance of each Xi by
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definition:

Var(Xi) = E(X2
i )− E(Xi)

2, (A.2)

and the total variance of X is given by

Var(X) =
N∑
i=1

Var(Xi) = NVar(X1) (A.3)

since these are N independent trials.

Now back to our case. We have p1 = P2 = 0.814, p2 = P1 = p3 = P−1 = 0.075,

p4 = P0 = 1 − P−1 − P1 − P2 = 0.036, and the outcome of each category x1 = 2, x2 = 1,

x3 = −1, x4 = 0. Then

E(X2
1 ) =

n∑
i=1

pix
2
i = 0.814 ∗ 4 + 0.075 ∗ 1 + 0.075 ∗ 1 + 0 = 3.406. (A.4)

Then

Var(X1) = E(X2
1 )− E(X1)2 = 3.406− 1.6282 = 0.756, (A.5)

hence Var(X) = 1000 × Var(X1) = 756, standard deviation is then 27.5. Then the max-

density speed is 9.8±0.2, which would give a uncertainty of approx15µm for a displacement

of 4.5 mm. In contrast, from Figure 3.13, the spread in arrival time is clearly on the order

of 100 µm. Therefore the difference in momentum transfer fidelity is not due to quantum

projection noise.
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Appendix B

Dual Species MOT

This appendix reports the production of a dual species MOT of rubidium 85 and 87 with

a single ML laser as the cooling and repumping laser. The experiment was performed by

Andrew Jayich, a previous postdoc and now an assistant professor at University of California,

Santa Barbara. The author of this thesis was not involved in this experiment. This appendix

is put in this thesis since the author is the only graduate student working on its subsequent

experiment.

87Rb MOT

85Rb MOT

Figure B.1: Simultaneous dual species MOT absorption as probe laser frequency is scanned.

A saturated absorption spectroscopy is performed simultaneously as the probe laser is

scanned.

Due to the many different frequency components in an optical frequency comb, a single

ML laser can simultaneously act as the cooling and repumping laser for laser cooling and
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trapping. In addition, because of its broad bandwidth, the ML laser can simultaneously

address multiple species. In Campbell lab a dual species MOT has been produced with a

single ML laser. Similar to a regular CW laser MOT (see Section 2.3), three pairs of counter-

propagating ML lasers beams orthogonal to one another overlap in a rubidium vapor cell

that is subject to the inhomogeneous magnetic field produced by a anti-Helmholtz coil.

Both nearest comb teeth, one for 85Rb and one for 87Rb, must both be red-detuned to allow

cooling. A weak CW probe laser illuminates on the atomic sample, whose absorption signal

is collected with a photodiode.

Figure B.1 shows the absorption spectrum of the dual species MOT as the frequency of

probe laser is scanned. To identify the absorption peaks, the same probe laser is used to

perform a saturated absorption spectroscopy on a rubidium vapor cell simultaneously. The

laser frequencies for making a 85Rb MOT and a 87Rb are indicated by two arrows.MOT appears for each comb tooth

Figure B.2: Simultaneous dual species MOT absorption as the nearest comb tooth to the

cooling transition is scanned. The periodicity demonstrates that a single comb tooth is

responsible for the laser cooling and trapping.

To verify the optical power comes primarily from a single tooth of the optical frequency

comb, the frequency of the nearest comb tooth to the 85Rb 52S1/2 → 52P3/2 transition is

scanned by scanning the piezo voltage applied to a ML laser cavity mirrow. This changes the
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length of the ML laser cavity length, which changes the repetition frequency fr and hence

the frequency of the nearest comb tooth (See Eq. 2.30). Figure B.2 shows the resulting

absorption signal. The periodic absorptive feature demonstrates that a single frequency

comb tooth is responsible for the cooling and trapping of 85Rb.
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[82] S. Reinhardt, E. Peters, T. W. Hänsch, and T. Udem. Two-photon direct frequency
comb spectroscopy with chirped pulses. Phys. Rev. A, 81:033427, 2010.

[83] N. Rosen and C. Zener. Double stern-gerlach experiment and related collision phe-
nomena. Phys. Rev., 40:502–507, May 1932.

95
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