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ABSTRACT

Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical
Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the
degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz,
we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach
for a sample of several hundred objects from the Planck cluster sample; this procedure averages out fluctuations from the IR sky, allowing us to
reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-
separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich
effect (tSZ) signal, which dominate at ν ≤ 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported
at frequencies 353 GHz ≤ ν ≤ 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an
SED with a shape similar to that of the Milky Way. Planck’s beam does not allow us to investigate the detailed spatial distribution of this emission
(e.g., whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears
to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for
the signal, as well as its temperature. We additionally explore the evolution of the IR emission as a function of cluster mass and redshift.

Key words. galaxies: clusters: general – intracluster medium – infrared: general– diffuse radiation

1. Introduction

Despite being a minor component of the mass budget of galax-
ies, dust plays a significant role from an observational point of
view, and might also impact cosmological studies. Dust grains
can absorb and redistribute light, reddening radiation coming
from background sources, as well as affecting counts of high
redshift galaxies (e.g., Zwicky 1957) or quasars (e.g., Wright
1981; Ménard et al. 2010). Clusters of galaxies are special tar-

∗Corresponding author: B. Comis, comis@lpsc.in2p3.fr

gets for studying the large-scale distribution and evolution of
dust in the Universe. Furthermore, while the link between dust
and star formation is well established (Spitzer & Arny 1978;
Sanders & Mirabel 1996; Somerville & Davé 2015), its role and
impact on the inter-galactic medium (IGM) and intracluster
medium (ICM), as well as its global distribution of properties,
are still to be understood.

In clusters of galaxies, the bulk of the baryonic mass is a hot
(roughly 107–108 K), ionized, diffuse gas, mostly emitting at X-
ray wavelengths (e.g., Sarazin 1986). However, since the very
beginning, X-ray spectroscopy has shown the presence of heavy
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Planck Collaboration: Dust SED in galaxy clusters

elements within the ICM, presumably due to stripping of inter-
stellar matter from galaxies, dusty winds from intracluster stars,
and AGN interaction with the ICM (e.g., Sarazin 1988). By in-
jecting dust, which in galaxies contains the bulk of metals, these
processes are responsible for the metal enrichment of the IGM,
and the denser and hotter ICM. But the ICM is a hostile envi-
ronment for dust grains. The strong thermal sputtering that dust
grains undergo at cluster cores implies lifetimes ranging from
106 to 109 yr (Dwek & Arendt 1992), depending on the gas den-
sity and grain size. Thus, with only the most recently injected
material surviving, the cluster dust content is significantly lower
than the typical interstellar values. Despite this, dust can have
a non-negligible role in the cooling/heating of the intracluster
gas, regulated by the properties of the surrounding gas and the
radiative environment (Dwek et al. 1990; Popescu et al. 2000;
Montier & Giard 2004; Weingartner et al. 2006), and could rep-
resent an extra source of non-gravitational physics, influencing
the formation and evolution of clusters and their overall proper-
ties (i.e., cluster scaling relations, da Silva et al. 2009).

Heated by collisions with the hot X-ray emitting cluster gas,
ICM dust grains are expected to emit at far-infrared (FIR) wave-
lengths (Dwek et al. 1990). Therefore dust in the IGM/ICM is
expected to contribute to the diffuse IR emission from clusters.
In order to study the effects of cluster environment on the evo-
lution of the member galaxies, several studies have been con-
ducted on the dust component of galaxies that are in clusters (e.g.
Braglia et al. 2011 with BLAST data, Coppin et al. 2011 with
Herschel data) and in massive dark matter halo (Welikala et al.
2016 ∼ 1013 M� at z ∼ 1). However less has been done on
extended dust emission in clusters. Stickel et al. (2002) used
the Infrared Space Observatory (ISO) to look for the extended
FIR emission in six Abell clusters; only towards one of them
(A1656, the Coma cluster) did they find a localized excess
of the ratio between the signal at 120 µm and 180 µm, inter-
preted as being due to thermal emission from intracluster dust
distributed in the ICM, with an approximate mass estimate of
107 M�. Additionally, although in qualitative agreement with the
ISO result, Kitayama et al. (2009) found only marginal evidence
for this central excess in Coma, based on Spitzer data. On the
other hand, using a different approach and correlating the Sloan
Digital Sky Survey catalogues of clusters and quasars (behind
clusters and in the field), Chelouche et al. (2007) measured a
reddening, typical of dust, towards galaxy clusters at z' 0.2,
showing that this extinction is less near the cluster centres, sug-
gesting that most of the detected dust lies in the outskirts of the
clusters.

A direct study of the IR-emitting dust in clusters is difficult,
because the fluctuations of the IR sky are of larger amplitude
than the flux expected from a single cluster. However, by aver-
aging many small patches centred on known cluster positions, a
stacking approach can be used to increase the signal-to-noise ra-
tio, while averaging down the fluctuations of the IR sky. This sta-
tistical approach was applied for the first time by Kelly & Rieke
(1990) considering 71 clusters of galaxies and IRAS data. A sim-
ilar method was also the basis of the detection of the cluster IR
signal reported by Montier & Giard (2005), who exploited the
four-band observations provided by IRAS for a sample of 11 507
objects. Later, Giard et al. (2008) explored the redshift evolution
of the IR luminosity of clusters compared with the X-ray lumi-
nosities of the clusters. More recently, this approach was used
in Planck Collaboration XXIII (2016), where the correlation be-
tween the SZ effect and the IR emission was studied for a spe-
cific sample of clusters.

When dealing with arcminute resolution data, like those of
Planck 1 and IRAS, the main difficulty for the characteriza-
tion of the IR properties of clusters of galaxies is to disentan-
gle the contributions to the overall IR luminosity coming from
the cluster galaxies and that coming from the ICM. The over-
all IR flux is expected to be dominated by the dust emission
of the galaxy component, in particular from star-forming galax-
ies. Roncarelli et al. (2010) reconstructed the IRAS stacked flux
derived by Montier & Giard (2005) by modelling the galaxy
population (using the SDSS-maxBCG catalogue, consisting of
approximately 11 500 objects with 0.1< z< 0.3), leaving little
room for the contribution of intra-cluster dust. Consequently,
both the amount of mass in the form of dust and its location in
the clusters, are still open issues. If the dust temperature is only
poorly constrained, we can obtain only limited constraints on
the corresponding dust mass. In this work, following the method
adopted in Montier & Giard (2005) and Giard et al. (2008), we
combine IRAS and Planck data, stack these at the positions of
the Planck cluster sample (Planck Collaboration XXIX 2014)
and investigate the extension and nature of the corresponding
IR signal. Thanks to the complementary spectral coverage of the
two satellites, we are able to sample the IR emission over its peak
in frequency. With a maximum wavelength of 100 µm, IRAS can
only explore the warm dust component, while it is the cold dust
that represents the bulk of the overall dust mass.

The paper is organized as follows. Section 2 presents the data
used for this study. We then detail in Sect. 3 the stacking ap-
proach, before discussing the results in Sect. 4. We summarize
and conclude in Sect. 5.

2. Data sets

2.1. Planck data

2.1.1. Frequency maps

The Planck High Frequency Instrument (HFI) enables us to
explore the complementary side of the IR spectrum (100–
857 GHz), compared with previous studies based on IRAS data
(100–12 µm). This paper is based on the full (29 month) Planck-
HFI mission, corresponding to about five complete sky sur-
veys (Planck Collaboration I 2016). We use maps from the six
HFI frequency channels (convolved to a common resolution of
10′), pixelized using the HEALPix scheme (Górski et al. 2005)
at Nside = 2048 at full resolution.

2.1.2. Contamination maps

While we expect dust emission to be the strongest signal at
both 545 and 857 GHz, at ν ≤ 217 GHz the intensity maps
will be dominated by cosmic microwave background (CMB)
temperature anisotropies. Furthermore, since we want to ex-
amine known cluster positions on the sky, we must also deal
with the signal from the thermal Sunyaev-Zeldovich (tSZ) ef-
fect (Sunyaev & Zeldovich 1972, 1980). This latter signal is pro-
duced by the inverse Compton interaction of CMB photons with
the hot electrons of the ICM. The tSZ contribution will be the

1Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).
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dominant signal at 100 GHz and 143 GHz (where it shows up
as a lower CMB temperature), negligible at 217 GHz (since this
is close to the SZ null), and also significant at 353 GHz (where
it shows up as a higher CMB temperature). Separating the tSZ
contribution from thermal dust emission at ν ≤ 353 GHz is a
difficult task, which can only be achieved if the spectrum of
the sources is sufficiently well sampled in the frequency do-
main. This is the case for the Planck satellite, whose wide fre-
quency range allows us to reconstruct full-sky maps of both the
CMB and tSZ effect (y-map, Planck Collaboration XXI 2014;
Planck Collaboration XXII 2016) using adapted component-
separation techniques.

These maps have been produced using MILCA (the Modified
Internal Linear Combination Algorithm, Hurier et al. 2013) with
10′ resolution. The method is based on the well known internal
linear combination (ILC) approach that searches for the linear
combination of the input maps, which minimizes the variance
of the final reconstructed signal, under the constraint of offer-
ing unit gain to the component of interest, whose spectral be-
haviour is known. MILCA relies on the different spatial local-
ization and spectral properties to separate the different astro-
physical components. The quality of the MILCA y-map recon-
struction has been tested in several ways in the past, compar-
ing different flux reconstruction methods, on data and simula-
tions (e.g. Planck Collaboration Int. V 2013; Hurier et al. 2013;
Planck Collaboration XXII 2016).

The reconstructed maps have been used to remove the tSZ
signal and the CMB anisotropies, which dominate the stacked
maps at frequencies lower than 353 GHz. The tSZ map also has
the advantage of probing the extension of the clusters, providing
a means to check that the IR signal belongs to the cluster.

Compared to the publicly released CMB map (specifically
SMICA, available through the Planck Legacy Archive2), the re-
construction obtained with MILCA, imposing conditions to pre-
serve the CMB and remove the SZ effect, allows one to obtain
a more robust extraction of the CMB signal at each cluster po-
sition. The SMICA CMB map is, however, more reliable at large
angular scales and has been used to test the robustness of the
CMB reconstruction at scales of 1◦. The SMICAmap has allowed
us to validate the MILCA map in the region around each cluster
position (0.◦5).

2.1.3. Cluster sample: the Planck Catalogue of SZ Sources

In order to stack at known cluster positions in rather clean sky
regions (e.g., with low Galactic dust contamination), we con-
sider the clusters listed in the Planck Catalogue of SZ sources
(Planck Collaboration XXIX 2014). For such high significance
SZ-detected clusters (SNR> 4.5) belonging to Planck SZ cat-
alogues, the robustness of the tSZ flux reconstruction has been
already investigated and tested (Planck Collaboration XXI 2014;
Planck Collaboration XXII 2016). We expect to be able to sub-
tract the tSZ signal with high accuracy (� 10 %), which is nec-
essary in order to reconstruct the spectral energy distribution
(SED) of the IR emission from clusters at ν ≤ 353 GHz.

The SZ catalogue constructed from the total intensity data
taken during the first 15.5 months of Planck observations
(Planck Collaboration XXIX 2014, PSZ1 hereafter,) contains
1227 clusters and cluster candidates. Unlike for the Second
Catalogue of Planck SZ sources (Planck Collaboration XXVII
2016, PSZ2,), the validation process and extensive
follow-up observations for PSZ1 have already been com-

2http://pla.esac.esa.int

pleted, as detailed in Planck Collaboration Int. XXXVI
(2016), Planck Collaboration Int. XXVI (2015), and
Planck Collaboration XXXII (2015). We thus limit our analysis
to PSZ1, in which redshifts and associated mass estimates
(derived from the Yz mass proxy, as detailed in section 7.2.2 of
Planck Collaboration XXIX 2014), are also available for 913
objects.

2.2. IRAS data

To sample the thermal dust SED across its peak and to con-
strain its shape, we complement the Planck spectral cover-
age with the 100 and 60-µm IRAS maps. We explicitly use
the Improved Reprocessing of the IRAS Survey maps (IRIS,
Miville-Deschênes & Lagache 2005) 3, for which artefacts such
as zero level, calibration, striping, and residual zodiacal light
have been corrected. The IRIS maps (like previous generation
IRAS maps) are a mosaic of 430 tangent plane projections,
covering the whole sky with 1.′5 pixels. Here, we have used
the corresponding sky maps provided in HEALPix format, with
Nside = 2048. For the purposes of the present work, the IRIS 100
and 60 µm maps are convolved to a resolution of 10′ in order to
match that of the Planck frequency and tSZ maps.

3. Stacking Analysis

Because the sky fluctuations from the cosmic infrared back-
ground (CIB) are stronger than the brightness expected from a
single object, we cannot detect the dust contribution to the IR
emission from individual clusters of galaxies. However, we can
statistically detect the population of clusters by averaging lo-
cal maps centred at known cluster positions, thereby reducing
the background fluctuations (see e.g., Montier & Giard 2005;
Giard et al. 2008). Here we take advantage of the “IAS stacking
library” (Bavouzet et al. 2008; Béthermin et al. 2010) in order to
co-add cluster-centred regions and increase the statistical signif-
icance of the IR signal at each frequency. Patches of 2◦ × 2◦,
centred on the cluster positions (using 2′ pixels) have been ex-
tracted for the six Planck-HFI frequency channels, as well as
for the 100 and 60-µm IRIS maps. To ensure a high signal-to-
noise ratio and low level of contamination, the low reliability
(“category 3”) PSZ1 cluster candidates (126 objects) have been
excluded from the analysis.

We now detail the different steps of the stacking approach
that we adopt to perform our analysis. This includes extraction
of the maps at each frequency, foreground removal, and selection
of the final cluster sample.

3.1. Field selection

3.1.1. Exclusion of CO contaminated regions

The 100, 217, and 353-GHz Planck channels can be signif-
icantly contaminated by the signal due to the emission of
CO rotational transition lines at 115, 230, and 345 GHz, re-
spectively (Planck Collaboration IX 2014). Component separa-
tion methods have been used to reconstruct CO maps from
Planck data (Planck Collaboration et al. 2013). Since the CO
emission can be an important foreground for the purpose of
the present work, we choose to use a quite strict CO mask.
This mask is based on the released CO J = 1→ 0 Planck map
(Planck Collaboration et al. 2013) and is obtained by applying a

3http://www.ias.fr/IRIS/IrisDownload.html
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Fig. 1: Planck stacked maps at the positions of the final sample of 645 clusters. The maps are 2◦ × 2◦ in size and are in units of
MJy sr−1. Black contours represent circles with a radius equal to 10′, 30′, and 60′.

3 KRJ km s−1 cut on the map (where the KRJ unit comes from in-
tensity scaled to temperature using the Rayleigh-Jeans approxi-
mation). We conservatively exclude from the stacking procedure
all the fields in which we find flagged pixels, according to the CO
mask, at cluster-centric distances ≤ 1◦. This leads to the exclu-
sion of 55 extra clusters, living us with 1046 remaining cluster
positions.

3.1.2. Point source mask

Before proceeding to stack the cluster-centred fields, we check
that they are characterized by comparable background contri-
butions. As a first step we verify the presence of known point
sources, using the masks provided by the Planck Collaboration
for the six frequencies considered here, as well as the IRAS
point source catalogue (Helou & Walker 1988). We exclude all
fields in which point sources are found at cluster-centric dis-
tances ≤ 5′, even if this is the case only for a single channel.
For point sources at larger distances from the nominal cluster
position we set the corresponding pixel values to the mean for
the pixels within the 0.◦5 ≤ r < 1◦ region of the 2′ × 2◦ patch,
at each wavelength. We also check that all the selected cluster
fields have a variance in the 0.◦5 ≤ r < 1◦ region that is ≤ 5 times
that of the whole sample. These additional cuts lead to a reduced
sample of 645 clusters, with only two clusters lying at Galactic
latitudes lower than 10◦. We have also tested the more conser-
vative choice of excluding all the fields in which known point
sources are found at ≤ 10′ from the centre. This substantially
reduces the sample size (to 504 clusters), while giving no sig-
nificant difference in the recovered signal, as will be discussed
later.

3.2. Stacking of the selected fields

We give the same weight to all the cluster fields, since hav-
ing a particular cluster dominate the average signal is not use-
ful for the purposes of examining the properties of the whole
population. The choice of using a constant patch size is moti-
vated by the fact that the differences in cluster angular sizes are
negligible when dealing with a 10′ resolution map. Even if a
few tens of very low-z clusters (say z < 0.1) are present within
the final sample, the average typical size of the sample clusters
(θ500 = 7.′4 ± 5.′3, with a median of 5.′7) allows us to integrate
the total flux in the stacked maps within a fixed radius, which
we choose to be 15′. The suitability of this choice is verified by
looking at the integrated signal as a function of aperture radius.

In Fig. 1 we show the stacked 2◦ × 2◦ patches, for the
Planck-HFI frequencies. Since no foreground or offset removal
has been performed the dust signature is not easily apparent,
but instead we can see the negative tSZ signal dominating at
ν ≤ 143 GHz and CMB anisotropies at 217 GHz, with the dust
contribution becoming stronger at ν ≥ 353 GHz. We also stack
the CMB and tSZ maps (Sect. 2.1.2), i.e., ΣiMi

CMB and ΣiMi
tSZ,

summing over all the selected clusters i. These two quantities
are then subtracted from the raw frequency maps (ΣiMi

ν shown
in Fig. 1), specifically calculating M′ν =

(
ΣiMi

ν − ΣiMi
CMB −

Σi ftSZ,νMi
SZ

)
/N, where ftSZ,ν is the conversion factor from the

tSZ Compton parameter y to MJy sr−1 for each frequency ν.
Following Giard et al. (2008), we then perform a background-
subtraction procedure by fitting a 3rd-order polynomial surface
to the map region for which the cluster-centric distance is above
10′. Finally we also subtract the average signal found for pix-
els with a distance from the centre that lies between 0.◦5 and 1◦,
which is used to compute the zero level of the map.

The cleaned and stacked maps are shown in Fig. 2. The same
results are obtained if foregrounds and offsets are subtracted
cluster by cluster or if we directly stack the cleaned cluster-
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Fig. 2: Background- and foreground-cleaned stacked maps, for the final sample of 645 clusters. The units here are MJy sr−1. The
extent of the stacked y-signal is represented by black contours for regions of 0.5, 0.1, and 0 times the maximum of the signal (in
solid, dashed, and dot-dashed lines, respectively). See Sect. 3.2 for further details.

centred patches. Although we already have hints of a signal at
the centre of 143 GHz map, the detection of a significant cen-
tral positive peak starts at 217 GHz, and is very clearly observed
at ν ≥ 353 GHz. Between 100 and 217 GHz the signal is ex-
pected to be fainter, according to the typical SED of thermal
dust emission. The black contours in Fig. 2 allow comparison
with the distribution of the cluster hot gas, representing where
the stacked y-map has a value that is 0.5, 0.1, and 0 times its
maximum. As expected, the recovered IR emission follows the
distribution of the main cluster baryonic component, and thus
the extent of the clusters. Fig. 3 represents the average intensity
profiles as a function of radius.

Since IR dust emission cannot be detected for individual
clusters, average values have been obtained, and the associated
uncertainties determined using a bootstrap approach. This con-
sists of constructing and stacking many (300) cluster samples
obtained by randomly replacing sources from the original sam-
ple, so that each of them contains the same number of clusters
as the initial one. The statistical properties of the population be-
ing stacked can be then determined by looking at the mean and
standard deviation of the flux found in the stacked maps cor-
responding to each of the resampled cluster lists. We checked

that the average values obtained with this resampling technique
are equal to what we obtained directly on the original stacked
map (without any resampling). This is important, since it indi-
cates that we are indeed stacking a homogeneous population of
objects, and that the detected signal is not due to only a small
number of a clusters. The mean values recovered are also consis-
tent with the expectations described in Montier & Giard (2005),
given the redshift distribution of the sample considered here.

Figure 3 shows that we find no significant detection at 100
and 143 GHz, while the detection starts to become strong at
ν ≥ 353 GHz, consistent with what we saw in Fig. 2. In Table 1
we report, for each frequency: the average fluxes, F, found when
integrating out to 15′ from the centre; the standard deviation
found using the bootstrap resampling, ∆Fb; and an estimate of
the uncertainty on the flux at each frequency, ∆F. The flux un-
certainties, ∆F, have been obtained as the standard deviation of
the fluxes found at random positions in a 2◦ × 2◦ region, located
further than 15′ from the centre, both using the cluster-centred
stacked maps and the “depointed” stacked maps. The latter cor-
respond to regions centred 1◦ away from the cluster Galactic lat-
itude and/or longitude. They are also used to test our detection
against stacking artefacts, as will be discussed in Sect. 3.3.
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Fig. 3: Radial profiles obtained from the background- and foreground-cleaned stacked maps, for the sample of 645 clusters. The
units here are MJy sr−1. The black points correspond to the values obtained as the average of the pixels contained within each region
considered and associated uncertainties have been obtained using bootstrap resampling.

3.3. Robustness tests

In order to test the robustness of our results, we have per-
formed various checks, following an approach similar to that of
Montier & Giard (2005). Figure 4 shows the 2◦ × 2◦ depointed
maps that we obtain at 857 GHz when we repeat the same stack-
ing procedure by changing the cluster Galactic longitudes and/or
latitudes by ±1◦. This has been done for all the frequency chan-
nels and shows that the detection is not an artefact of the adopted
stacking scheme. The mean of the fluxes obtained at the centre
of the depointed regions is consistent with zero within the uncer-
tainties (i.e., ∆F).

The approach adopted to derive the uncertainty on the flux
∆F has also been applied to a random sample of positions on
the sky, whose Galactic latitude distribution follows that of the
real clusters in our sample. The derived uncertainties, ∆Fran,
are listed in Table 1. As for the depointed regions, the mean
fluxes obtained at the centre of the random patches are consis-
tent with zero, within the given uncertainties. The values ob-
tained for ∆Fran are systematically higher than ∆F. This was to
be expected, since Planck blind tSZ detections are more likely
in regions that are cleaner of dust contamination. For different
cuts in Galactic latitude, moving away from the Galactic plane,
∆Fran decreases. This might indicate that some residual contami-
nation due to Galactic dust emission is present. Indeed, in Fig. 2

we can see a correlation between frequencies for the residual
fluctuations in the region surrounding the clusters. Such a cor-
relation between frequencies could be also introduced by the
process of subtracting the contamination maps (CMB and tSZ),
since these are built from the same Planck-HFI maps. However
the CMB anisotropies and the tSZ signal are both negligible at
ν ≥ 545 GHz. The uncertainty ∆Fran is of the order as ∆Fb and
∆F at the frequencies for which we have a significant detection;
hence this contribution does not dominate the signal and we can
consider it to be accounted for in the error budget. For this rea-
son, we do not impose any extra selection cut in Galactic latitude
in order to maximize the sample size.

As a further cross-check, we have tested the robustness of
the results by alternatively adding and subtracting the patches
centred at the cluster positions. This approach shows that none
of the individual patches dominates the final average signal, in
agreement with the results of the bootstrap resampling proce-
dure.

4. SED of the cluster IR emission

4.1. Assumed SED shape

Using the cleaned stacked maps obtained in Sect. 3, we can
derive the IR fluxes for each of the frequencies considered. In
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Fig. 4: Tests of stacking on “depointed” regions. The central
panel shows the stacked result obtained at 857 GHz for the 645
cluster-centred patches (as in Fig. 2). This is surrounded by
the eight neighboring maps obtained by changing the cluster
Galactic longitude or latitude (or both) by ±1◦.

Fig. 5 we show the average SED of galaxy clusters from 60 µm
to 3 mm (as listed in Table 1). We divide our sample into two dif-
ferent sub-samples, according to their redshifts and their masses.
Specifically, we consider clusters above and below z = 0.25
(with 254 and 307 sources, respectively) and above and below
M500

tot = 5.5× 1014 M� (241 and 320 sources, respectively).4 The
left and right panels in Fig. 6 show the measured SED for the low
(orange) and high (blue) redshift and mass subsamples, respec-
tively. The corresponding fluxes and associated uncertainties are
also listed in Tables 2 and 3.

For the low-redshift and low-mass sub-samples we have
no detection at ν < 353 GHz. The SEDs for the two red-
shift sub-samples are consistent with each other (within ∆Fb),
even though fluxes are systematically higher at higher z.
This is expected since in more distant (younger) clusters
there will be more gas-rich active (i.e., star-forming) spirals.
Conversely, nearby clusters mainly contain elliptical galax-
ies, with a lower star-formation rate and little dust. The same
trend in redshift (for z< 0.15 versus z> 0.15) was also seen in
Planck Collaboration XXIII (2016), in which a similar stack-
ing was performed on Planck data to investigate the cross-
correlation between the tSZ effect and the CIB fluctuations.
Given that our integration radius is significantly larger than the
typical cluster size for both sub-samples (θ500, Table 4), we can
exclude the possibility that the larger fluxes found for z > 0.25
are biased high because of the smaller angular size of more dis-
tant objects. For the high- and low-mass sub-samples, the differ-
ence between the two SEDs becomes even more important, with
higher fluxes when M500

tot > 5.5× 1014 M�. We expect dust emis-
sion to be proportional to the total cluster mass, because they
should both be tightly correlated with the number of galaxies
(Giard et al. 2008; da Silva et al. 2009). A similar behaviour for
the sub-samples in M500

tot and z is not surprising. The two parti-
tions do not trace exactly the same populations, but they are not
completely independent, as shown in Fig. 7. The lower redshift
bin strongly overlaps with lower mass systems and vice versa.

4 M500
tot is the total mass contained within a radius (θ500) at which the

mean cluster density is 500 times the critical density of the Universe.

Table 1: Fluxes found in the co-added maps for a sample of 645
clusters extracted from the first Planck Catalogue of SZ sources.
∆Fb is the uncertainty estimated using bootstrap resampling,
while ∆F is obtained by integrating at random positions around
the cluster and around the regions centred 1◦ away from the clus-
ter Galactic latitude and longitude (see Sect. 3.3 and Fig. 4), and
∆Fran is determined the same way as ∆Fd except replacing the
cluster position with random positions on the sky.

F ∆Fb ∆F ∆Fran

[Jy] [Jy] [Jy] [Jy]

100 GHz . . . . −0.0009 ±0.0031 ±0.0028 ±0.0031
143 GHz . . . . 0.0010 ±0.0030 ±0.0023 ±0.0034
217 GHz . . . . 0.0103 ±0.0092 ±0.0056 ±0.012
353 GHz . . . . 0.098 ±0.036 ±0.020 ±0.042
545 GHz . . . . 0.34 ±0.12 ±0.063 ±0.13
853 GHz . . . . 0.94 ±0.33 ±0.18 ±0.34
100 µm . . . . . 0.86 ±0.40 ±0.22 ±0.59
60 µm . . . . . . 0.269 ±0.097 ±0.083 ±0.34

100 1000
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Fig. 5: Average SED for galaxy clusters. In black points we show
the flux, as a function of frequency, found in the co-added maps
obtained for a sample of 645 clusters. The error bars in black
correspond to the dispersion estimated using bootstrap resam-
pling (∆Fb, Table 1). The red error bars have been estimated as
the standard deviation of the flux integrated at random positions
away from each cluster region (∆F, Table 1). The black solid
line shows the best-fit modified blackbody model (with β = 1.5).
Note that the highest frequency point (60 µm from IRAS) is not
used in the fit.

The SEDs shown in Figs. 5 and 6 behave like Galactic dust,
confirming the hypothesis of thermal dust emission. They can
be well represented by modified blackbody emission (the black
curve in Fig. 5), with spectral index β. This accounts for the fact
that the clusters are not perfect blackbodies, but have a power-
law dust emissivity κν = κ0(ν/ν0) β, i.e.,

Iν = A0

(
ν

ν0

)β
Bν(Td0), (1)

where β is the emissivity index, Bν is the Planck function, Td0
the dust temperature, and A0 an overall amplitude (directly re-
lated to the dust mass, as will be discussed in Sect. 4.3). The
combination of Planck and IRAS spectral coverage allows us
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to sample the SED of the average IR cluster across its emis-
sion peak. The reconstructed SED can be used to constrain the
dust temperature and also the amplitude A0 (Eq. 1). This model
has the advantage of being accurate enough to adequately fit the
data, while providing a simple interpretation of the observations,
with a small number of parameters. Even though studies of star-
forming galaxies have demonstrated the inadequacy of a single
temperature model for detailed, high signal-to-noise SED shapes
(e.g., Dale & Helou 2002; Wiklind 2003), the cold dust compo-
nent (λ >∼ 100 µm) tends to be well represented using a single
effective temperature modified blackbody (Draine & Li 2007;
Casey 2012; Clemens et al. 2013). Fig. 5 shows that a further
component would indeed permit us to also fit the 60 µm point
(the rightmost point in Fig. 5). This excess at high frequency
could be caused by smaller grains that are not in thermal equi-
librium with the radiation field; they are stochastically heated
and therefore their emission is not a simple modified blackbody
(Compiègne et al. 2011; Jones et al. 2013). However, this addi-
tional contribution would be sub-dominant at λ ≥ 100 µm and
so would not significantly change the derived temperature and
mass of the cold dust, which corresponds to the bulk of the
dust mass in galaxies (Cortese et al. 2012; Davies et al. 2012;
Santini et al. 2014). Even if the signal at 60 µm indicates that
a two-temperature dust model may eventually provide a more
accurate representation of the average cluster dust SED over
the whole frequency range explored here, we choose to adopt
a single-component approach and exclude the 60 µm from the
data used for the fit. Not doing this would bias the estimate of
the temperature and mass of the cold dust.

4.2. Dust temperature

By representing the recovered SEDs with a single-temperature
modified blackbody dust model and fixing β, we can constrain
the SED and estimate the average dust temperature. This is for
the observer’s frame, while the temperature in the rest-frame
of the cluster will be given by Td = Td0(1 + z). We use a χ2

minimization approach and account for colour corrections when
comparing the measured SED to the modelled one.

In Planck Collaboration Int. XXII (2015) the Planck-HFI in-
tensity (and polarization) maps were used to estimate the spec-
tral index β of the Galactic dust emission. On the basis of nom-
inal mission data, they found that, at ν < 353 GHz, the dust
emission can be well represented by a modified blackbody spec-
trum with β = 1.51 ± 0.06. At higher frequencies (100 µm–
353 GHz) β = 1.65 was assumed. In the following we have
adopted a single spectral index over the whole spectral range,
and β = 1.5 will be our baseline value. In some other stud-
ies an emissivity index β = 2 has been used instead, for ex-
ample in the analysis of Davies et al. (2012), which focused on
Herschel data (at 100–500 µm) to explore the IR properties of
cluster galaxies (specifically 78 galaxies in the Virgo cluster).
The spectral index β is known to vary with environment. Shown
by Planck to be equal to 1.50 for the diffuse ISM in the Solar
neighbourhood, β is known to be higher in molecular clouds
(Planck Collaboration XI 2014). This reflects variations in the
composition and structure of dust, something that is clearly seen
in laboratory measurements (e.g., Jones et al. 2013).

The impact of the adopted emissivity index on our results
is explored by varying its value between 1.3 and 2.2. For the
total sample of 645 clusters, we have explored how this affects
Td0 and Mdust, and we summarize the results in Table 4. When
we compare the dust temperature obtained with the same choice
of β, i.e., β = 2, the dust temperatures that we find are simi-

lar to those obtained by Davies et al. (2012) for the galaxies of
the Virgo cluster. The range explored shows that when reducing
β the inferred T0 increases, and vice versa. However, the dif-
ferences are not significant within the associated uncertainties,
reflecting the fact that our data are not good enough to simul-
taneously constrain the temperature, the amplitude, and also the
spectral index. Different values of β can affect the dust mass es-
timates by up to 20 %, which is negligible with respect to the
existing uncertainty on the dust opacity κν (as will be discussed
in Sect. 4.3).

In Table 4 we report the best-fit values that we obtain for Td0
and Mdust

5 when considering the sample of 645 clusters, as well
as the two redshift and mass sub-samples. The associated un-
certainties are derived from the statistical ones obtained through
the χ2 minimization in the fitting procedure (with ∆Fb being the
error on the flux at each frequency). The corresponding best-fit
models (β = 1.5) are represented in Figs. 5 (by the black solid
line) and 6 (blue dashed and orange dot-dashed lines).

Figure 5 shows that the 143 and 353 GHz intensities are
slightly lower and higher, respectively, with respect to the best-
fit model. This might indicate a residual tSZ contamination,
since the tSZ signal is negative at 143 GHz and positive at
353 GHz. The SZ amplitude that we subtract has been estimated
under the non-relativistic hypothesis, and this could result in a
slight underestimation of the cluster Comptonization parameter
y. Although the relativistic correction is expected to have a small
impact on the inferred Compton parameter, we should note that
for cluster temperatures of a few Kelvin the relativistic correc-
tion boosts the tSZ flux at 857 by a factor of several tens of a
percent. Given the amplitude of the SZ contribution at this fre-
quency with respect to the dust emission, this contribution re-
mains negligible. On the other hand, the cluster IR component
we are considering here is not included in none of the simula-
tions used to test the MILCA algorithm and might bias somehow
the reconstruction of the tSZ amplitude. Then we have verified
that the residual tSZ contamination is negligible by fitting, a pos-
teriori, the dust SED as a linear combination of the modified
blackbody and a tSZ contribution. For the two components we
find an amplitude consistent with 1 and 0, respectively. For the
whole sample of 645 objects, we assume that the mean redshift is
the mean of the known redshifts (z = 0.26±0.17). We then obtain
Td = (24.2 ± 3.0 ± 2.8) K, where the additional systematic un-
certainty is due to the redshift dispersion of our sample (see the
second column of Table 4). We observe a slight increase of dust
temperature with redshift, obtaining Td(z≤ 0.25) = (24 ± 11) K
and Td(z> 0.25) = (27.1 ± 4.5) K, but no significant evolu-
tion within the uncertainties. For the low- and high-mass sub-
samples we have Td(M500

tot ≤ 5.5 × 1014M�) = (23.7 ± 6) K and
Td(M500

tot > 5.5 × 1014M�) = (26.4 ± 4.5) K, respectively. The
recovered dust temperatures are in agreement with those ob-
served for the dust content in various field galaxy samples (e.g.,
Dunne et al. 2011; Clemens et al. 2013; Symeonidis et al. 2013)
and with the values expected for the cold dust component in
cluster galaxies, e.g., the Virgo sample explored by Davies et al.
(2012); di Serego Alighieri et al. (2013).

4.3. Dust mass

Following the prescription of Hildebrand (1983), the dust mass
can be estimated from the observed flux densities and the modi-

5We report Mdust rather than A0, the overall amplitude to which it is
proportional, see Sect. 4.3.
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Fig. 6: SEDs for cluster sub-samples. Left: In blue circles the 254 clusters at z > 0.25 and in orange triangles the 307 clusters at
z ≤ 0.25 (307 clusters), plotted along with the corresponding best-fit models (dashed and dash-dotted lines, respectively). Right: In
blue the 241 clusters with Mtot > 5.5 × 1014M� and in orange the 320 clusters with Mtot ≤ 5.5 × 1014M�, along with the best-fit
models (dashed and dash-dotted lines, respectively). The fluxes at each frequency are also listed in Tables 2 and 3. The rightmost
(IRAS) point is not used in the fit.

Table 2: Integrated fluxes from the stacked maps obtained, for each frequency, by co-adding patches extracted at the positions of
307 clusters at z ≤ 0.25 and 254 clusters at z > 0.25. As in Table 1, ∆Fb is the uncertainty estimated using bootstrap resampling,
while ∆Fd is obtained by integrating at random positions around the cluster and around the regions centred 1◦ away from the cluster
Galactic latitude and longitude positions (see Sect. 3.3 and Fig. 4).

z ≤ 0.25 z > 0.25

F ∆Fb ∆F F ∆Fb ∆F
[Jy] [Jy] [Jy] [Jy] [Jy] [Jy]

100 GHz . . . . . . . −0.0042 ±0.0047 ±0.0034 −0.0002 ±0.0046 ±0.0034
143 GHz . . . . . . . −0.0032 ±0.0046 ±0.0047 0.0037 ±0.0046 ±0.0047
217 GHz . . . . . . . 0.004 ±0.015 ±0.0041 0.022 ±0.016 ±0.0041
353 GHz . . . . . . . 0.083 ±0.056 ±0.012 0.144 ±0.070 ±0.012
545 GHz . . . . . . . 0.33 ±0.18 ±0.049 0.50 ±0.22 ±0.049
853 GHz . . . . . . . 0.93 ±0.53 ±0.14 1.40 ±0.62 ±0.14
100 µm . . . . . . . . 1.00 ±0.60 ±0.38 1.37 ±0.69 ±0.38
60 µm . . . . . . . . . 0.26 ±0.14 ±0.46 0.44 ±0.17 ±0.46

Table 3: Integrated fluxes from the stacked maps obtained, for each frequency, by co-adding patches extracted at the positions of
320 clusters with M500

tot ≤ 5.5×1014 M� and 241 clusters with M500
tot > 5.5×1014 M�. As in Table 1, ∆Fb is the uncertainty estimated

with bootstrap resampling, while ∆F is obtained by integrating at random positions around the cluster and around regions centred
1◦ away from the cluster Galactic latitude and longitude positions (see Sect. 3.3 and Fig. 4).

M500
tot ≤ 5.5 × 1014 M� M500

tot > 5.5 × 1014 M�

F ∆Fb ∆F F ∆Fb ∆F
[Jy] [Jy] [Jy] [Jy] [Jy] [Jy]

100 GHz . . . . . . . −0.0036 ±0.0047 ±0.0034 −0.0015 ±0.0054 ±0.0034
143 GHz . . . . . . . −0.0031 ±0.0042 ±0.0047 0.0034 ±0.0055 ±0.0047
217 GHz . . . . . . . −0.0033 ±0.0126 ±0.0041 0.031 ±0.018 ±0.0041
353 GHz . . . . . . . 0.035 ±0.048 ±0.012 0.214 ±0.079 ±0.012
545 GHz . . . . . . . 0.152 ±0.155 ±0.049 0.75 ±0.25 ±0.049
853 GHz . . . . . . . 0.45 ±0.44 ±0.14 2.10 ±0.71 ±0.14
100 µm . . . . . . . . 0.60 ±0.52 ±0.38 1.93 ±0.80 ±0.38
60 µm . . . . . . . . . 0.16 ±0.12 ±0.46 0.57 ±0.19 ±0.46

fied blackbody temperature as

Md =
S νD2(1 + z)K
κνBν(Td0)

, (2)

with the “K-correction” being

K =

(
νobs

νem

)3+β e(hνem/kTd0) − 1
e(νobs/kTd0) − 1

, (3)
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Table 4: For the different cluster samples considered here, we provide the average redshifts (z), characteristic radii (θ500) and total
masses at a radius for which the mean cluster density is 500 and 200 times the critical density of the Universe (M500

tot and M200
tot ).

The best-fit temperature and dust mass are also provided, exploring different choices for the emissivity index β for the full sample
of 645 clusters.

Sample 〈z〉 〈θ500〉 〈M500
tot 〉 〈M200

tot 〉 β Td0 [K] Mdust

[arcmin] [1014 M�] [1014 M�] [K] [1010 M�]

Full sample . . . . . . . . . . . . . . . . . . . 0.26 ± 0.17 7.4 ± 5.3 5.1 ± 1.9 5.6 ± 2.1 1.5 19.2 ± 2.4 1.08 ± 0.32
2.2 15.3 ± 1.2 1.25 ± 0.36
2.1 15.7 ± 1.2 1.24 ± 0.34
2.0 16.2 ± 1.4 1.25 ± 0.37
1.9 16.7 ± 1.5 1.24 ± 0.37
1.8 17.2 ± 1.6 1.20 ± 0.35
1.7 17.8 ± 1.8 1.17 ± 0.36
1.6 18.5 ± 2.1 1.14 ± 0.34
1.4 20.0 ± 2.8 1.03 ± 0.32
1.3 20.9 ± 3.3 0.97 ± 0.32

z ≤ 0.25 (307) . . . . . . . . . . . . . . . . . 0.139 ± 0.063 9.6 ± 6.3 4.0 ± 1.6 4.3 ± 1.7 1.5 20.7 ± 9.9 0.34 ± 0.17
z > 0.25 (254) . . . . . . . . . . . . . . . . . 0.41 ± 0.13 4.68 ± 0.38 6.4 ± 1.3 7.0 ± 1.5 1.5 19.2 ± 3.2 2.56 ± 0.91

M500
tot ≤ 5.5 × 1014 M� (320) . . . . . . . 0.17 ± 0.11 9.1 ± 6.4 3.7 ± 1.1 4.1 ± 1.2 1.5 20.3 ± 5.1 0.21 ± 0.14

M500
tot > 5.5 × 1014 M� (241) . . . . . . . 0.38 ± 0.16 5.2 ± 1.7 6.8 ± 1.1 7.5 ± 1.2 1.5 19.2 ± 2.0 3.48 ± 0.99
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Fig. 7: In the redshift–mass plane, we show the distribution of
the 561 Planck clusters with known redshift, which are used in
this paper. Different colours (black and red) are used for the low-
and high-redshift sub-samples, while different symbols (dots and
diamonds) are used for the low- and high-mass sub-samples.

which allows translation to monochromatic rest-frame flux den-
sities, S ν. Here νobs represents the observed frequency and νem
the rest-frame frequency, with νobs = νem/(1+z), and D is the ra-
dial comoving distance. The amplitude parameter A0 (see Eq. 1)
then provides an estimate of the overall dust mass:

Md =
A0

κν0

ΩD2(1 + z)K, (4)

provided we know κν0 , the dust opacity at a given frequency ν0,
with Ω being the solid angle. Here we adopt the value κ850 =
0.0383 m2 kg−1 (Draine 2003).

Dust mass estimates obtained from Eq. (4) are also listed in
Table 4. The corresponding uncertainties have been derived us-
ing random realizations of the model, letting Td0 and A0 vary

within the associated uncertainties and accounting for the corre-
lation between the two.

For the whole sample we obtain an average dust mass of
(1.08 ± 0.32) × 1010 M�. Our estimates are similar to those ob-
tained with different approaches by Muller et al. (2008) (Md =
8× 109 M�) for a sample with a comparable redshift distribution
and Gutiérrez & López-Corredoira (2014) (Md < 8.4 × 109 M�)
for a relatively low-mass cluster sample. For the low- and
high-mass sub-samples we find (0.21 ± 0.14) × 1010 M� and
(3.48 ± 0.99) × 1010 M�, respectively. This implies that the dust
mass is responsible for the difference between the two curves
in the right panel of Fig. 6. The similar trend in mass and
redshift, i.e., (0.34 ± 0.17) × 1010 M�, when z ≤ 0.25 versus
(2.56 ± 0.91) × 1010 M�, when z > 0.25, is due to the fact that
most of the low-mass objects are detected at low redshift and
vice versa.

The Draine (2003) value of κ850 was derived from a dust
model (including assumptions about chemical composition, dis-
tribution of grain size, etc.) that shows good agreement with
available data. However, using a different approach, James et al.
(2002) found κ850 = (0.07 ± 0.02) m2 kg−1, nearly a factor of
2 higher. The latter value uses a calibration that has been ob-
tained with a sample of galaxies for which the IR fluxes, gas
masses, and metallicities are all available, and adopts the as-
sumption that the fraction of metals bound up in dust is con-
stant for all the galaxies in the sample. From just these two pub-
lished results, it appears that the normalization of the dust opac-
ity represents the major source of uncertainty in deriving dust
masses from observed IR fluxes (Fanciullo et al. 2015). In fact,
Planck Collaboration Int. XXIX (2016) has shown that the opac-
ity of the Draine (2003) model needs to be increased by a factor
of 1.8 to fit the Planck data, as well as extinction measurements,
and this moves the normalization towards the value suggested by
James et al. (2002).

4.4. Dust-to-gas mass ratio

We now estimate the ratio of dust mass to gas mass, Zd, directly
from the observed IR cluster signal. To do so we need an es-
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timate of the cluster gas mass. The IR fluxes used in the pre-
vious section to estimate Md were obtained by integrating the
signal out to 15′ from the cluster centres, without any rescal-
ing of the maps with respect to each cluster’s characteristic ra-
dius. In the PSZ1, the mass information is provided at θ500, and
for our sample this size is significantly smaller than 15′ for al-
most all clusters (see Table 4). However, we can take advan-
tage of the self-similarity of cluster profiles, from which it fol-
lows that the ratio between radii corresponding to different over-
densities is more or less constant over the cluster population.
Therefore we will use θ200 and assume that θ200 ' 1.4 × θ500
(Ettori & Balestra 2009) to obtain the corresponding enclosed
total mass M200

tot = (4πρcθ
3
200)/3. Here, θ500 is obtained from

the M500
tot values listed in the PSZ1. The cluster total mass also

provides an estimate of the gas mass, M200
gas ' 0.1 M200

tot (e.g.,
Pratt et al. 2009; Comis et al. 2011; Planck Collaboration Int. V
2013; Sembolini et al. 2013). Assuming that Md and M200

tot cor-
respond to comparable cluster regions, we find that Zd = (1.93±
0.92) × 10−4 for the full sample. For the low- and high-redshift
sub-samples we find (0.79± 0.50)× 10−4 and (3.7± 1.5)× 10−4,
respectively, while for the low- and high-mass sub-samples we
obtain (0.51 ± 0.37) × 10−4 and (4.6 ± 1.5) × 10−4, respectively,
Note that the uncertainties quoted here do not account for the
fact that the gas fraction might vary from cluster to cluster, and
as a function of radius/mass and redshift.

These dust-to-mass ratios are derived from the overall IR
flux, which is the sum of the contribution due to the cluster
galaxies and a possible further contribution coming from the
ICM dust component. Therefore they represent an upper limit for
the dust fraction that is contained within the IGM/ICM. These
values are consistent with the upper limit (5 × 10−4) derived by
Giard et al. (2008) from the LIR/LX ratio and a model for the
ICM dust emission (Montier & Giard 2004).

5. Conclusions

We have adopted a stacking approach in order to recover
the average SED of the IR emission towards galaxy clusters.
Considering the Catalogue of Planck SZ Clusters, we have used
the Planck-HFI maps (from 100 to 857 GHz) as well as the IRAS
maps (IRIS data at 100 and 60 µm) in order to sample the SED of
the cluster dust emission on both sides of the expected emissivity
peak.

For a sample of 645 clusters selected from the PSZ1 cata-
logue, we find significant detection of dust emission from 353
to 857 GHz, as well as at 100 µm and 60 µm, at the cluster posi-
tions, after cleaning for foreground contributions. By co-adding
maps extracted at random positions on the sky, we have veri-
fied that the residual Galactic emission is accounted for in the
uncertainty budget. For the IRAS frequencies, we find average
central intensities that are in agreement with what was found by
Montier & Giard (2005). The 143 GHz and 353 GHz data may
be slightly affected by residual tSZ contamination. Although
the dust component contributes to the high frequency bands in
Planck, its impact on the reconstruction of the tSZ amplitude is
expected to be very small. However we have verified a posteriori
that this does not impact our results significantly. The measured
SED is consistent with dust IR emission following a modified
blackbody distribution.

These results have allowed us to constrain, directly form its
IR emission, both the average overall dust temperature and the
dust mass in clusters. From the average cluster SED we infer
an average dust temperature of Td = (24.2 ± 3.0) K, in agree-

ment with what is observed for Galactic thermal dust emission.
The average dust temperature, as estimated for the total sam-
ple of 645 clusters, leads to an average dust mass of Md =
(1.25±0.37)×1010 M�. By dividing our initial sample of 645 ob-
jects into two bins, according to either their mass or redshift, we
find that the IR emission is larger for the higher mass (or higher
redshift) clusters. This difference is mainly due to a larger dust
mass ((0.21±0.14)×1010 M� versus (3.48±0.99)×1010 M�), the
recovered temperatures being instead consistent with each other.
However, we stress that our sample is not ideal for constraining
the mass and redshift evolution of the IR emission of the cluster
dust component, since it is not complete and not characterized
by a well characterized selection function. Furthermore, the red-
shift and mass bins, although not tracing exactly the same clus-
ter population, are not independent either. With a larger sample,
and a wider distribution in mass and redshift, the separate mass
and redshift dependance could studied much more thoroughly,
perhaps by correlating the weak signals from individual clusters
with Mtot and z. This approach would allows us to better account
for different distances, masses, and selection effects.

Using the total mass estimates for each cluster, we derive
the average cluster total mass and so the dust-to-gas mass ra-
tio Zd = (1.93 ± 0.92) × 10−4. This leads to un upper limit on
the dust fraction within the ICM that is consistent with previ-
ous results. Most of the IR signal detected in the maps stacked at
cluster positions was expected to be due to the contribution of the
member galaxies (e.g. Roncarelli et al. 2010). And the recovered
temperature, typical of values found in the discs of galaxies, is
in agreement with this. However, if we also take into account the
additional uncertainties on the dust mass estimates coming from
the spectral index and the dust opacity (up to 20 % and 50 %,
respectively), our results cannot exclude a dust fraction that, ac-
cording to Montier & Giard 2004), would imply that the IR ICM
dust emission is an important factor in the cooling of the cluster
gas.
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