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Free energy calculations are rapidly becoming indispensable in structure-enabled drug discovery 

programs. As new methods, force fields, and implementations are developed, assessing their 

expected accuracy on real-world systems (benchmarking) becomes critical to provide users 

with an assessment of the accuracy expected when these methods are applied within their 

domain of applicability, and developers with a way to assess the expected impact of new 

methodologies. These assessments require construction of a benchmark—a set of well-prepared, 

high quality systems with corresponding experimental measurements designed to ensure the 

resulting calculations provide a realistic assessment of expected performance when these methods 

are deployed within their domains of applicability. To date, the community has not yet adopted a 

common standardized benchmark, and existing benchmark reports suffer from a myriad of issues, 

including poor data quality, limited statistical power, and statistically deficient analyses, all of 

which can conspire to produce benchmarks that are poorly predictive of real-world performance. 

Here, we address these issues by presenting guidelines for (1) curating experimental data to 

develop meaningful benchmark sets, (2) preparing benchmark inputs according to best practices to 

facilitate widespread adoption, and (3) analysis of the resulting predictions to enable statistically 

meaningful comparisons among methods and force fields. We highlight challenges and open 

questions that remain to be solved in these areas, as well as recommendations for the collection 

of new datasets that might optimally serve to measure progress as methods become systematically 

more reliable. Finally, we provide a curated, versioned, open, standardized benchmark set adherent 

to these standards (PLBenchmarks) and an open source toolkit for implementing standardized 

best practices assessments (arsenic) for the community to use as a standardized assessment tool. 

While our main focus is free energy methods based on molecular simulations, these guidelines 

should prove useful for assessment of the rapidly growing field of machine learning methods for 

affinity prediction as well.

1 Overview

This guide focuses on recommended best practices for benchmarking the accuracy of small 

molecule binding free energy (FE) calculations. Here, we define benchmarking as the 

assessment of expected real-world performance relative to experiment. We contrast this with 

the assessment of methods or tools intended to arrive at the same target free energy, which 

we refer to as validation (Figure 1), the comparison of the computational efficiency or speed 

of these methods, or mapping of effort-accuracy trade offs, all of which also play essential 

roles in dictating real-world usage. Importantly, validation calculations are often performed 

on systems selected for tractability, rather than intended to be representative of real-world 

applications [1–3].

As illustrated in Figure 1, benchmarking against experiment would ideally be performed 

on high quality data in order to provide an accurate assessment of expected performance 

under conditions where structure or assay deficiencies do not limit performance. In good 

benchmark sets, the potential pitfalls and complications in the data are well understood, 

but these systems may still challenge methodologies to produce reproducible, consistent 

predictions due to conformational sampling timescales—unlike simpler systems selected 

for methodology validation. We also differentiate benchmarking from application (Figure 

1), where one is often constrained by the availability of experimental data and limited to 
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a particular target, which may not always fall within the domain of applicability of the 

methodology. We aim to construct benchmarks that provide a good predictor of the expected 

accuracy in applications that fall squarely within the domain of applicability and for which 

good experimental data is available.

Organization:

This best practices guide is organized as follows: First, we give a brief overview of protein-

ligand binding free energy methods and their use with the goal of highlighting key concepts 

that guide the construction of a meaningful benchmark. Next, we discuss recommendations 

for the construction of a high-quality experimental benchmark dataset, which must consider 

the availability of high-quality structural and bioactivity data as well as the expected 

domain of applicability. Next we provide recommendations on preparing structures for free 

energy calculations in a manner that will enable the benchmark dataset to be widely and 

readily usable by practitioners and developers, incorporating best practices for carrying out 

free energy calculations. We then discuss recommendations for the statistical analysis of 

both retrospective benchmarks and blind prospective challenges in order to derive robust 

conclusions about the accuracy of these methods and insights into where they fail. To 

address the absence of a standard community-wide benchmark, we provide a curated, 

versioned, open, standardized benchmark set adherent to these standards (PLBenchmarks). 

In addition, we provide an open source toolkit that implements standardized best practices 

for assessment and analysis of free energy calculations (arsenic). Finally, we conclude with 

recommendations for data collection and curation to guide the systematic improvement of 

available benchmark sets and drive the expansion of the domain of applicability of free 

energy methods.

2 Introduction

The quantitative prediction of protein ligand binding affinity is a key task in computer-aided 

drug discovery (CADD). Accurate predictions of ligand affinity can significantly accelerate 

early stages of drug discovery programs when used to prioritize compounds for synthesis 

with the goal of improving or maintaining potency [4, 5]. Binding free energy calculations

—particularly alchemical binding free energy calculations—have emerged as arguably the 

most promising tool [6]. Alchemical methods, which include a multitude of approaches such 

as free energy perturbation (FEP) [7, 8] and thermodynamic integration (TI) [9–11], have 

a substantial legacy, with the original theory dating back many decades. Seminal work in 

the 1980’s and 90’s demonstrated that molecular dynamics (MD) and Monte Carlo (MC) 

simulation packages could carry out these calculations for practical applications in organic 

and biomolecular systems [12–18].

Alchemical perturbations in binding free energy calculations involve the transformation of 

one chemical species into another, or its complete creation or deletion, via a chemically 

unrealistic pathway (alchemical) that can only be achieved in silico by manipulating its 

interactions in a defined way. This is achieved by changing an atom from one element 

identity to another. Alchemical calculations are often classified as either relative (RBFE) or 

absolute (ABFE) binding free energy calculations. While the underlying theory is similar, 
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the implementation differs in how the thermodynamic cycle is constructed and which 

quantities can be computed: In relative calculations (RBFEs), a generally modest alchemical 

transformation of the chemical substructures that differ between to ligands is performed 

to compute the difference in free energy of binding between two related ligands (ΔΔG). 

By contrast, absolute calculations (ABFEs) alchemically remove an entire ligand, enabling 

the absolute binding free energy of a ligand (ΔG) to be computed and directly compared 

to experiment. A detailed review of commonly-used alchemical methodologies and best 

practices for their use is provided in a separate best practices guide [19].

In drug discovery, lead optimization (LO) typically involves the synthesis of hundreds of 

close analogues, often differing by only small structural modifications, in order to identify 

the optimal leads that show a good balance of target potency and other properties. This 

makes it an ideal scenario for RBFE, where small differences in structure are well suited to 

alchemical perturbation.

A number of recent studies have highlighted the good performance of RBFE for LO tasks. 

An early influential publication from Schrödinger [20] reported mean unsigned errors of 

< 1.2 kcal/mol on a curated set of 8 protein targets, 199 ligands, and 330 perturbations 

using their commercial implementation of FEP. Minimal discussion was devoted to how 
these targets were selected, other than their diversity and the availability of published 

structural and bioactivity data for a congeneric series for each target; notably, some ligands 

appearing in the published studies from which the data were curated were omitted due to the 

presence of presumed changes in net charge and the potential for multiple binding modes 

that would fall outside the domain of applicability. Schrödinger utilized the same benchmark 

set to assess subsequent commercial force field releases (OPLS3 [21] and OPLS3e [22]). 

In the absence of other significant efforts to curate benchmark sets, this set (often called 

the “Schrödinger JACS set”) has become the de facto dataset for most large scale RBFE 

reports, used to compare the performance of Amber/TI calculations [23], Flare’s FEP (a 

collaboration between Cresset and the Michel group) [24], and PMX/Gromacs [25], as 

well as machine learning studies [26, 27]. By contrast, ABFE calculations have not been 

studied on datasets of similar scale to date, although individual reports have shown success 

accurately predicting binding affinities [28, 29].

Despite the reported success of RBFE calculations on these benchmark sets, there are 

many reports demonstrating that RBFE calculations still struggle in scenarios [30] such as 

with scaffold modifications [31], ring expansion [32], water displacement [33–36], protein 

flexibility [37–39], applications to GPCRs [40, 41], and the modelling of cofactors such as 

metal ions or heme [42, 43]. This is manifested in a large-scale study of FEP applied to 

active drug discovery projects at Merck KGaA, in which Schindler et al. reported several 

cases of disappointing outcomes [44].

In addition, new methods and implementation improvements for FE calculations continue 

to emerge, for instance the efforts on lambda dynamics [45, 46], and non-equilibrium 

RBFE calculations [25, 47]. Furthermore, there are many other methodologies such as 

end-point binding FE calculations (for instance MMGBSA, MMPBSA) or pathway based 

FE calculations that continue to be developed and applied. Therefore, we must balance the 
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increased confidence that simulation-based FE calculations can impact drug discovery, with 

the need to further understand, test, and overcome limitations of the current methods.

In brief, the issues mentioned above are related to three challenges for FE calculations, 

(1) an accurate representation of the biological system, (2) an accurate force field, and (3) 

sufficient sampling. Therefore, despite the importance of FE methods to drug discovery and 

chemical biology it is surprising that there are no benchmark sets or standard benchmark 

methodologies that allow calculation approaches to be compared in a manner that will 

reflect their future performance.

The Drug Design Data Resource [48] (D3R) and Statistical Assessment of the Modeling of 

Proteins and Ligands [49] (SAMPL) prospective challenges have demonstrated the utility 

of focusing the community on common benchmark systems and using common methods 

to analyze performance [50–59]. Mobley and Gilson discussed the need for well-chosen 

validation datasets and how this will have multiple benefits to understanding and expanding 

the domain of applicability of FE methods [1]. They focused on validation systems that 

will confidently converge, and where the underlying issues are well understood. The aim 

was to describe systems that could be used only to assess method performance in a robust 

manner. As mentioned above, here we define benchmarking as assessing accuracy relative 

to experiment. This has implications that will be discussed in more detail throughout 

this article, for instance, the reliability of the underlying experimental data (structure and 

bioactivities), the confidence in the system setup such as protein and ligand preparation, 

the suitability of alchemical perturbations for FE, the statistical power of the dataset, the 

ability of the datasets to capture challenging real-world applications, and recommendations 

for analysing results. Essentially, we seek to understand what performance can be achieved 

when all these variables are handled to the best of our abilities.

Here, our proposed benchmark set augments existing datasets while recommending cleaning 

up or removing entirely some protein-ligand sets. We highlight key considerations in the 

construction of a useful set of protein-ligand benchmarks and the preparation of these 

systems for use as a community-wide benchmark. These recommendations are mirrored in 

a living benchmark set, which can be used to reliably launch future studies [60]. We seek 

to to improve the initial version of this benchmark set in the future with help of the whole 

community. We welcome any contribution either to improve the existing set or to expand 

the set with new protein-ligand sets, if they meet the requirements established in here. We 

also recommend statistical analyses for assessing and comparing the accuracy of different 

methods and provide a set of open source tools that implement our recommendations [61]. 

We hope these materials will become a common standard utilized by the community for 

assessing performance and comparing methodologies.

3 Prerequisites

We assume a basic familiarity with molecular dynamics (MD) simulations, as well as 

alchemical free energy protocols. If you are unfamiliar with both of these concepts we 

suggest the best practices guides by Braun et al. [62] on molecular simulations and Mey et 

al. [19] on alchemical free energy calculations as a starting point.
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4 Dataset selection

Details of our criteria for the construction of good benchmark datasets will follow 

throughout the rest of the manuscript. Here, we examine the purpose of protein-ligand 

benchmark datasets, and the rationale for expanding these sets. We propose a core of robust 

datasets that match our suggested optimal criteria for benchmarking, but emphasize the need 

to supplement this core with new datasets which explore increasingly difficult challenges in 

order to continue to expand the domain of applicability of predictive methods. A variety of 

parameters can guide future datasets.

4.1 Protein Selection

The selection of target proteins in the benchmark set is generally dependent on the 

availability of experimental data and whether the applied methods are applicable to the 

specific targets. A good benchmark system (consisting of a protein target and small 

molecules with available experimental binding data) should ideally be representative of 

classical drug discovery targets and chemistry; a good benchmark set should also be diverse 

in terms of targets and chemistry. Expansion of this set to include additional systems should 

ideally reflect the evolution of drug discovery and the emergence of new target families and 

chemistries. While binding free energy calculations are agnostic to protein classification, 

there can be a pragmatic value in expanding benchmark sets to new protein families that 

may present unexpected inherent difficulties (see Section 4.3).

To merit inclusion in a good benchmark set, the available structural data must meet certain 

quality thresholds to merit inclusion (Section 4.4), and the structure should be adequately 

prepared for molecular simulation to enable the benchmark to be broadly and readily useful 

(Section 5.1).

4.2 Ligand Selection

While some methods (such as machine learning and GBSA rescoring) can make rapid 

predictions of affinity, free energy methods are generally relatively costly in terms of 

computational effort. In order to make statistically meaningful comparisons among methods, 

however, a sufficient number of reliable experimental measurements (Section 4.5) will 

be necessary for a benchmark set. These measurements also need to cover an adequate 

dynamic range, i.e. the activity range should be sufficiently large. Such a set enables a 

statistical analysis with sufficient power to distinguish how methods are expected to perform 

on larger test sets for the same targets (Section 6). In addition, the set of ligands should 

be both unambiguously specified (with resolved stereochemistry or ambiguous tautomeric 

or protonation states) and have chemistries that fall within the domain of applicability of 

the particular free energy method used. In order for standardized benchmark sets to be 

broadly applicable to a range of methodologies and software packages, we recommend 

annotating systems in terms of common challenges that may exclude their assessment by 

certain methods or packages. For relative free energy calculations, these labels should denote 

transformations that include (1) charge changes, (2) change of the location of a charge, (3) 

ring breaking, (4) changes in ring size, (5) linker modifications, (6) change in binding mode, 

and (7) irreversible (covalent) inhibitors. Several of these issues are illustrated in Figure 2. If 
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the ligand sets are sufficiently large, they can then be split into separate subsets (subsets with 

e.g., different ring sizes or different charges).

Adequately sampling ligand conformers can pose a challenge for some methods, especially 

if the ligands contain many rotatable bonds, invertible stereocenters, or macrocycles. 

Aromatic rings with asymmetric substitution will usually sample dihedral rotations freely 

in solvent, but in complex can become trapped in protein pockets during short simulations 

[63, 64]. Barriers to inversion of pyramidal centers can sometimes be long compared to 

typical simulation timescales [65]. Macrocycles present more extreme challenges for ligand 

sampling, and likely require special consideration to ensure their conformation spaces are 

adequately sampled [66–68].

The chemical diversity of ligands considered for inclusion in a benchmark set also needs to 

be suitable for the given free energy method. Single RBFEs rely on common structural 

elements between the molecules being compared, and are hence more appropriate for 

a congeneric series of ligands. ABFEs are more amenable for comparing sets of small 

molecules that differ more substantially in scaffold, or where the common structural 

elements are minimal. In both kinds of calculations, the size of the structural elements 

that differ between ligands within a congeneric series is also important to consider, since 

larger changes may also affect the binding mode of the ligand; the quality and availability of 

crystal structures for representative ligands of this system becomes critical in assessing these 

assumptions.

4.3 Addressing specific challenges

Besides the challenges mentioned in Sections 4.1 and 4.2, there are specific challenges 

which can be addressed by a benchmark set. These include water displacement in binding 

sites, the presence of cofactors in the binding site, slow motions of ligands (e.g. rotatable 

bonds) and proteins, and activity cliffs. We recommend annotating these challenging cases in 

the benchmark set.

4.4 Structural Data

A successful free energy calculation requires a well-prepared, experimentally accurate 

model of the system to be simulated, with structure(s) representative of the equilibrium 

state of the system. Just as choices made selecting binding data are critical, the choices made 

when selecting a protein model will impact benchmarking.

Often structural studies use shorter constructs that might be missing several domains 

compared to the full-length protein. To facilitate crystallization or expression, mutations 

might have been introduced. In addition, parts of the protein might not be resolved or 

modelled in available structures. Ideally, such deviations should be kept to a minimum in a 

benchmark dataset.

Starting structures are typically obtained from experimentally constrained models, most 

commonly from X-ray diffraction data. Other sources include cryo-EM, NMR or homology 

models [6, 29, 44]. As free energy calculations are usually run at atomic resolution, 

the input structure needs to provide the coordinates of all atoms, with those coordinates 
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ideally determined by the experimental model. For X-ray and cryo-EM structures, this 

requirement is only met by high quality structures. The evaluation criteria defined by 

OpenEye Iridium [69] can guide the assessment of X-ray structures. The lower the Iridium 

score, the better the quality of the structure. The Iridium classification categorizes each 

structure into not trustworthy (NT), mildly trustworthy (MT) and highly trustworthy (HT) 

categories. It is important to note that the Iridium criteria were designed to assess structures 

for benchmarking docking and not necessarily for free energy calculations. As such there is 

one important criterion missing — completeness of the model — which is likely to be far 

more important for free energy calculations than docking.

Any protein structural assessment should be done using two filters; overall (global) and 

local. Traditionally, overall quality of the structure (global) had been assessed using X-ray 

or cryo-EM resolution as it is easily accessible. However, this metric provides a theoretical 

limit and does not assess the quality of the model. Therefore, it is not a good metric for 

accuracy, completeness or quality and should only be used alongside other metrics. Iridium, 

by design, does not set a resolution limit but suggests a resolution threshold of < 3.5 Å 

[69] because it is difficult to model side chain atoms precisely above that threshold. Stricter 

thresholds have been suggested (i.e. < 2.0 Å in a recent benchmark [44]).

More meaningful metrics for X-ray structures are R, Rfree and the coordinate error. 

Currently, equivalent metrics for cryo-EM structures either do not exist or are less well 

understood. As a result the rest of the discussion will focus on criteria for structures 

determined using X-ray or neutron diffraction data. It should be noted that cryo-EM maps 

can still be visualized with the model to get a idea of the agreement between the model 

and the data. The R-factor is a measure for the difference between the predicted data (by 

the model) and the measured data. A smaller R-factor indicates an experimentally consistent 

model. A complication with R-factor is that it is a non-normalized metric. For a given 

dataset the model with the lowest R-factor is best fit to the data. Unfortunately, for different 

datasets, even for the same protein, lowest R-factor may not be the highest quality model. 

The Rfree-factor is calculated the same way, but uses only a held out randomly selected 

subset of the measured data. Thus, it can be used to identify overfit models as these result 

in a larger difference between R-factor and Rfree (typically more than 0.05). Both R-factors 

are easily accessible for reported crystallographic data, e.g. in the protein data bank (PDB) 

[95]. The coordinate error, while more difficult to find or calculate, provides the best way to 

assess the precision and quality of the model:

coordinate error = 2.22Rfree Ni
3 V a

nobs
5/6 , (1)

where Ni is the number of heavy atoms with occupancy of 1, Va is the volume of the 

asymmetric unit cell and nobs is the number of non-Rfree reflections used during refinement. 

A high-quality structure should have a coordinate error < 0.7. Recent PDB entries usually 

include a coordinate error estimate which can be found by searching for ESU Rfree, Cruick-

shank or Blow Density Precision Index (DPI). The coordinate error (as shown in Equation 1) 

is 3 · BlowDPI.
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While understanding the global quality of a structure is important, it is the local active 

site or ligand binding site that will have the largest impact on benchmarking performance. 

Therefore special care should be taken to assess the ligand and surrounding active site 

residues. Of highest priority is to identify all unmodeled residues and side chain atoms 

within 6 to 8 Å of any ligand atom. When multiple structures with similar coordinate 

error are available, the structure with no missing residues or side chain atoms that meets 

subsequent criteria should be used. The electron density around the ligand should cover at 

least 90% of the ligand atom centers, which can be checked visually or by checking for a 

real space correlation coefficient (RSCC) value > 0.90. Examples for a poor ligand density 

are shown in Figures 4A (in comparison to Figure 4B with a good density) and 4C. Ligand 

atoms where there are crystal packing atoms within 6 Å should be identified (see Figure 

4D), as such packing atoms may affect the observed binding mode. All ligand and active 

site atoms with occupancy < 1.0 should be identified. If there is only partial density for the 

ligand and the active site residue atoms, these partial-density atoms should be identified (see 

Figure 4A). If alternate conformations for the ligand or active site residues are available, the 

selected conformation should be determined based on the electron density (see Figure 4E). 

Local metrics such as electron density support for individual atoms (EDIA) [96] or a number 

of RSCC [97] calculators can indicate if the electron density is sufficient to support the 

crystallographic placement of a given atom. Covalently bound ligands should be identified 

and appropriately modelled.

Additional aspects should be considered beyond the quality of the model and the data (see 

also structure preparation, Section 5.1). The structure of a complex could be deformed due 

to crystal contacts or by experimental conditions like additives, pressure or temperature. 

These conditions might not be representative for the biological environment and therefore 

biologically active conformation of the complex (see Figure 4D). Other factors could play 

an important role in determining active conformations, such as crystal waters, cofactors 

or co-binders. These should usually be included to model the natural environment of the 

protein (see Figure 4F and 5C). It is also important to remember that for X-ray data, 

modeling water (versus amino acids or organic compounds) is less precise than for other 

atoms particularly when the crystal is formed in a high salt environment. The ligand in the 

experimental structure should be sufficiently close to the ligand to be simulated to have a 

model of the correct binding mode.

The criteria for selecting high-quality protein-ligand structures are summarized in the 

checklist “Choose Suitable Protein Structures for Benchmarking”. A use case for these 

selection criteria to score and select structures from prior benchmarking datasets is found in 

Table 1.

A choice of the simulation conditions like temperature, ion concentration, other additives 

like co-factors or membranes require additional considerations. Ideally, these conditions are 

close to those for the structural experiment, the affinity measurements and physiological 

conditions. Most likely, a trade-off between all of these has to be found. Where possible 

select structures where data was collected at room temperature that were crystallized using 

non-salt precipitants. Be aware that room temperature data will have lower precision and 

more conformational heterogeneity.
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If these requirements are not met, it does not necessarily mean that the data is not usable 

and the results will be bad. A structure not meeting the requirements may suffice after 

more manual intervention by the user, ideally an experienced one. Unresolved areas can be 

modelled with current tools and knowledge about atom interactions, though this can be a 

cause for concern if these are near the binding site. This concern has been validated, at least 

anecdotally, in a recent publication where different protein preparation procedures where 

shown to have a substantial effect on the accuracy of the free energy predictions [98].

Collective intelligence could be a way to mitigate the influence of individuals on the 

prepared input structures of a benchmark set. On a platform, other scientists could suggest 

changes to structures and updated versions could be deposited, increasing the quality of the 

benchmark set. Endorsement and rating of deposited structures could increase the level of 

trust given to specific structures and the database in general.

4.5 Experimental binding affinity data

Choosing high-quality experimental data is crucial for constructing meaningful benchmarks 

of methods that predict ligand binding affinities. Evaluating whether experimental data 

merits inclusion requires an in-depth understanding of the biological system and the 

particular experimental assay that assesses protein-ligand affinity. While a detailed overview 

of all experimental affinity measurement techniques is beyond the scope of this review, 

this section aims to summarize general aspects that should be considered when evaluating 

whether an experimental dataset is suitable for benchmarking purposes. We note that, in 

practice, it is often difficult to identify datasets that meet all the recommendations discussed 

below.

Overall, it is necessary that the experimental data used in benchmarks intended to measure 

the accuracy of reproducing experimental data are consistent, reliable, correspond well to the 

model system that is used in the simulations, allowing robust conclusions on accuracy to be 

drawn.

4.5.1 Deriving free energies from experimental affinities—Binding of a ligand to 

a receptor protein can be described as an equilibrium between unbound and bound states 

with the equilibrium constant of the dissociation Kd as

Kd = P L
PL ,

with [PL] being the concentration of the bound protein-ligand complex and [P] and [L] the 

concentrations of the unbound protein and unbound ligand respectively. The binding free 

energy ΔG can be related to the dissociation constant via the following equation

ΔG = kBT lnKd
Cɵ , (2)

with Boltzmann constant kB, temperature T and standard state reference concentration cɵ, 

which is typically cɵ = 1 M. In many drug discovery projects, potency of compounds is 
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assessed by measuring the half-maximal inhibitory concentration (IC50) of a substance on a 

biological or biochemical function. This is often converted to pIC50

pIC50 = − log10IC50 .

Typically, the substance is competing in these experiments with either a probe or substrate. 

For such competition assays, IC50 can be related to the binding affinity of the inhibitor Ki 

via the Cheng-Prusoff equation

Ki = IC50
1 + S

Km

, (3)

where [S] is the concentration of the substrate and Km the Michaelis constant. Many assays 

are conducted using a substrate concentration of [S] = Km. This leads to a conversion factor 

of 0.5 between IC50 and Ki based on Equation 3 and to a constant offset in ΔG. This offset 

cancels out for a congeneric ligand series with the same mode-of-action in identical assay 

conditions. Hence, in this case, ΔpIC50 values are a useful bioactivity that can be compared 

to relative binding free energy calculations. We can then use the approximation

ΔG ≈ kBT lnIC50 .

4.5.2 Consistency of datasets—The paucity of experimental affinity measurement 

data may tempt practitioners to cobble together all available measurements for a given target 

(say, from a ChEMBL query) to construct a dataset with a sufficiently large number of 

measurements to provide statistical power in discriminating the performance of different 

methodologies on a given target. This temptation should generally be resisted, as assay 

conditions or protocols in different labs might not be comparable. Figure 6 illustrates 

this by comparing two sets of data obtained by different methods. These differences 

could, for example, result from the concentration of the substrate (see Equation 3), the 

protein construct, the incubation time or the composition of the buffer, and might not be 

sufficiently documented in the reported experimental methodology. However, in comparison 

to the inherent experimental error (see below), mixing experimental data from different 

laboratories might add only a moderate amount of noise [99]. To ensure consistency within 

a dataset such that relative free energy differences are as reliable as possible, we highly 

recommend the use of data from a single source (e.g., a single publication or a patent).

To avoid rounding or unit conversion errors that often arise from automated or manual data 

extraction, data should be extracted from the original source.1 Going back to the original 

publication is also important to identify compounds that are outside of the detection limit of 

the assay but are still reported with specific numerical values (e.g., reported IC50 > 30 μM). 

1Excellent examples of significant errors that can be introduced are thoroughly described in this comprehensive United States 
Geological Survey report on errors in misreporting the solubility and partition coefficient of dichlorodiphenyltrichloroethane (DDT) 
and its primary metabolite [100], as well as this talk on automatic data extraction errors [101].
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Such ligands should be excluded from benchmark sets to ensure that accuracy measures can 

be properly evaluated.

4.5.3 Experimental uncertainty—To assess the reliability, ideally, errors are reported 

for all ligand affinities or at least for a subset. The primary publication of the experimental 

results is typically the best source of experimental uncertainty as cited affinities may 

occasionally be subject to rounding differences or unit errors [102]. Errors quoted will likely 

be an estimate of the repeatability of the assay, rather than true, independent reproducibility. 

Publications with essential experimental controls reported — such as incubation time and 

concentration regime to demonstrate equilibrium — can add confidence to the reported 

affinity, however these may be performed and not reported [103]. Meta-analyses of both 

repeatability [104] and reproducibility [102] found errors in pKi of 0.3-0.4 log units 

(0.43-0.58 kcal mol−1) and 0.44 log units (0.64 kcal mol−1) respectively. Another analysis 

for reproducibility found that variability in pIC50 were even 21-26% higher than for pKi 

data (0.55 log units) [99]. These values provide a guideline for experimental error, if none 

is available. Note that for difference measures ΔpIC50, the individual experimental errors 

propagate as σ1
2 + σ2

2.

4.5.4 Choosing representative experimental assays for FE calculations—
There are two main requirements to consider in order to ensure that the experimental 

data are representative of the physics-based binding free energy that is calculated from 

the simulations. First, the measured output should reflect or closely correlate with actual 

protein-ligand binding. Second, the assay conditions and the protein-ligand system used in 

the simulation should match as closely as possible. The first point relates to choosing the 

appropriate type of experimental data to compare with. Ideally, these would be biophysical 

binding data such as KD determined from isothermal titration calorimetry (ITC) or surface 

plasmon resonance (SPR). However, this type of data is often only available for a small 

number of compounds in drug discovery projects (and the related literature), typically for 

a few representatives per series. In addition, ITC data are often only available for a narrow 

dynamic range [107, 108]. Since having a sufficiently large dataset with a large dynamic 

range is also very important (see below), it may often be necessary to use data from 

functional assays (e.g., IC50 from a biochemical assay) instead. For this assay, correlation 

with a biophysical readout should be checked before using the system as a benchmark 

dataset [99].

With regards to matching simulation and binding assay, as mentioned above, it is important 

to have detailed knowledge of the assay conditions available; e.g., salt concentrations and 

co-factors. This information is needed for setting up a simulation model that closely matches 

the experimental conditions (see Section 5.1). Generally, salt concentration should match 

experimental assay conditions to capture screening effects, though sometimes salt identity 
may be varied because of force field limitations. For a benchmark set, experimental data 

with assay conditions involving many co-factors or multiple protein partners should be 

avoided. In addition, one should check which protein construct was used in the structural 

studies compared to the assay (see Section 4.4). These should match as closely as possible.
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4.5.5 Ensuring sufficient statistical power—Finally, a dataset used for 

benchmarking of free energy calculations needs to be suitable to draw robust conclusions 

on the success of the methods ideally by both accuracy and correlation statistics. Whether a 

dataset is suitable depends on the number of data points in the set, the experimental dynamic 

range and the experimental uncertainty.

Quantifying the experimental uncertainty is necessary for understanding the upper-limit of 

feasible accuracy for a model [109]. Understanding this is both useful for fair comparison 

between methods, and for conveying the reliability of a model to medicinal chemists [110]. 

Building predictive models becomes more difficult with (a) a small experimental dynamic 

range and (b) large experimental uncertainties. It is useful to understand the upper limit of 

success a computational method can have for a set of experimental results;

Rmax
2 = 1 − σ measurement error

σ affinity
2
, (4)

where Rmax
2  is the highest achievable R2 for a dataset with a standard deviation of affinities 

(σ(affinity)) and an experimental uncertainty of σ(measurement error) [104]. This relation is 

illustrated in Figure 7.

For a typical experimental error of 0.64 kcal mol−1 (see Section 4.5.3) and a desired 

Rmax
2 = 0.9, a standard deviation of affinities σ(affinity) = 2.02 kcal mol−1 (≈1.5 log units) 

is required. Assuming a uniform distribution of experimental affinities in the dataset, this 

corresponds to a required dynamic range of 7.01 kcal mol−1 (e.g., from −12 to −5 kcal 

mol−1) or ≈ 5 log units (e.g., from 1 nM to 100 μM). This dynamic range and the associated 

standard deviation of affinities also allow to differentiate typical free energy methods from 

a trivial affinity prediction model where all predicted affinities ΔGpred
i  are equal to the mean 

experimental affinity i 1
N ΔGexp

i . Note that for such a model RMSE is equal to the standard 

deviation of the affinities σ(affinity), while there is no correlation between predicted and 

experimental affinities. In practice, experimental datasets with a dynamic range of 7 kcal 

mol−1 are difficult to obtain. Using the same assumptions as before, a dynamic range of 5 

and 3 kcal mol−1 correspond to a standard deviation of affinities of σ(affinity) = 1.44 kcal 

mol−1 and σ(affinity) = 0.87 kcal mol−1 and hence Rmax
2 = 0.8 and Rmax

2 = 0.45 respectively. 

Balancing data availability and achievable Rmax
2 , we recommend collecting datasets with a 

dynamic range of 5 kcal mol−1.

In order to robustly evaluate statistics with small confidence intervals, the dataset needs to 

be sufficiently large. Figure 8 illustrates the dependence of the confidence interval obtained 

by bootstrapping for correlation statistics and accuracy statistics for simulated toy data. The 

“experimental” toy data were simulated using a uniform distribution with an affinity range 

of 7 kcal mol−1 for the experimental toy data. This would be the optimal dynamic range for 

an experimental error of 0.64 kcal mol−1 (see Section 4.5.3). Predicted toy data were derived 

from the experimental toy data using a Gaussian distribution with standard deviation of σ = 

0.5, 1 and 1.5 kcal mol−1. While the absolute values that can be obtained for the correlation 
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statistics are strongly affected by the dynamic range of the experimental data, the effect on 

the confidence intervals estimated via bootstrapping is relatively small (very similar results 

in terms of the size of the confidence intervals can be obtained assuming a dynamic range of 

5 kcal mol−1).

Based on these simulations, we recommend a dataset size of 25 to 50 ligands. For a 

dataset size of 50, it is possible to distinguish between all three toy methods reliably in 

terms of RMSE. For an affinity prediction method with Gaussian error σ = 1.0 kcal mol−1 

this would yield the following estimated statistics: Kendall τ = 0.720.62
0.80 and RMSE = 1.00.81

1.18

kcal mol−1. Note that for relative calculations, a smaller number of ligands could be 

sufficient since multiple edges are typically evaluated for each ligand. On the other hand, for 

relative calculations, the experimental error for the relative free energies are larger because 

experimental errors for both ligands add up.

As stated before, in practice it is challenging to find datasets that meet these criteria 

for dynamic range and number of ligands. We therefore currently recommend annotating 

benchmark datasets according to these criteria to make challenges and limitations visible.

5 How to best set up and run benchmark free energy simulations

5.1 Structure preparation

Starting with an experimental crystal structure, often an X-ray structure for the protein or 

protein-ligand complex, the most error-prone stage of protein preparation is the translation 

from a this experimental structure into a simulation model: inferring missing atoms and 

making choices about which X-ray components to include. Having chosen the crystal lattice 

monomer based on the criteria in the above section, some domains of the structure may 

be removed if they are large and unlikely to affect the biological activities of interest. 

The truncation of the system needs to be assessed carefully as it has been shown in some 

cases, such as the dimeric form of PDE2 and the presence of cyclin with CDK2, as a more 

authentic representation of the system was beneficial for stability during simulations and 

improved the free energy calculations. In some cases, though, truncation gains efficiency by 

decreasing the size of the overall simulation system while maintaining its biological activity, 

with potentially minimal impact on results. Datasets for benchmarking may be run many 

times so this efficiency gain can be meaningful.

In addition to the protein itself, the subsystem carried forward from the X-ray structure into 

simulation may have other components: ligand, cofactors, structural waters, other ligands 

(if simulating a multimer), post-translational modifications (PTMs), and excipients. The 

cofactors should be deliberately included or excluded based on their role in the biological 

activity being modeled, removing a cofactor from its cavity might cause unexpected 

movements or collapse of the cavity during the simulations. To avoid this, a careful 

equilibration and solvation of that pocket might be needed. All structural waters close to the 

protein should be included: in principle the MD sampling could allow waters to arrange in 

equilibrium positions, but experimental and theoretical work has shown that the timescales 

for this can be impractically long. Also, internal structural waters even very distal from 

the active site are integral to the protein structure, and omitting them can adversely affect 

Hahn et al. Page 14

Living J Comput Mol Sci. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the protein dynamics. Generally, we recommend excluding excipients (often specific to the 

crystallization media and not present in the assay). PTMs require a judgement call: surface-

exposed and distal from the active site they can often be safely excluded, for example 

glycosylations which could otherwise greatly increase the size of the calculation. This again 

can save on the overall system size and from parameterization difficulties. PTMs proximal 

to the active site or known to be directly implicated in activity should be retained. Ligands 

other than that in the active site are again a judgement call: retaining them is only necessary 

if there is biological cooperativity in the biological assay. As this is in practice often not 

known, they should be kept if possible.

5.1.1 Protein preparation—The experimental protein structure has frequently missing 

coordinates for atoms, residues or groups of residues due to the lack of supporting data 

(electron density) from the X-ray experiments. These often include N-terminal and C-

terminal residues, mobile loops (e.g. the activation loop in kinases), and residue sidechains. 

Also, there can be extra coordinates available in the structure as “alternate locations” 

(AltLocs): residue sidechains, or occasionally entire residues or the ligand, for which the 

experimental density supports more than one distinct orientation in a single X-ray structure 

solution. For the simulation, the protein must have all the atoms provided for every residue 

modeled. Missing residue sidechains should always be modeled in, assigning them the most 

preferred rotamer given the local environment.

If the N- and/or C-terminal residues are missing due to lack of electron density, this may 

provide a basis for omitting them from the model, but the truncated N- and C-termini 

should be “capped” by neutral termini, usually an acetate (ACE) cap on the N-terminus 

and an N-methyl (NME) cap on the C-terminus to mimic the peptide backbone out to the 

carbon-alpha. Of course, one must be careful not to cap the charged protein termini which 

are properly resolved in the X-ray: these can be critical for function and structure.

This “capping” tactic can also treat the termini of “gaps”: regions of missing residues over 

the span of the peptide chain, usually missing loop regions due to lack of experimental 

density. While capping the ends of a loop instead of modeling the whole loop may be 

acceptable for MD runs of relatively short duration, over longer simulations there is a risk of 

having the protein around the capped ends of the missing loop gradually lose its structure. 

Even if a loop is unstructured (and therefore missing in the X-ray structure), its presence 

still affects the remainder of the structure and can provide stability, such as by holding the 

connecting residues in place, raising concerns if these are capped instead. Strategic use of a 

distance restraints during the simulations can mitigate this liability.

Another possibility for missing loops is to close the ends with a short modeled loop of 

glycine residues of sufficient size to link the termini without introducing strain, but not 

necessarily of the full length of the missing loop. There are several reasons why this can 

be desirable. If the missing loop is particularly large (for instance >15 or 20 amino acids) 

accurately modeling its conformation could be challenging and introduce more uncertainty 

and instability to MD simulations. Furthermore, if the missing loop is distal from the 

binding site and not expected to affect protein-ligand interactions, the replacement only 

needs to stabilize the termini and avoids the use of restraints.
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However, all of these approaches are likely inferior to using a good quality model of the 

missing loop.

When multiple alternate models of a particular region of the protein are available, the 

experimental model indicates that this region potentially occupies two (or more) mutually 

exclusive conformations, but one must chosen for the model. Again, this selection can be a 

judgement call depending on where this region occurs relative to the active site: distal from 

the active site, the choice may be less critical; proximal requires more careful consideration. 

Higher occupancy for one of the alternate models could provide a reason to choose 

that particular model for the calculations. For critical or uncertain cases, we recommend 

repeating test calculations beginning from different models to analyze the sensitivity of the 

choice.

Once the above issues have been resolved, there remains one more round of decision-making 

to select sidechain rotamers and protonation states. Protein X-ray experiments cannot 

resolve the positions of hydrogens, making protonation states an issue. Sidechain flips are 

particularly relevant for HIS, ASN, and GLN, because these experiments cannot distinguish 

between different first-row elements O, N, and C: they all produce similar density and 

thus are indistinguishable. This means that even with good electron density the sidechain 

orientations of ASN and GLN can have either orientation, swapping O and N positions, 

and thus interchanging H-bond donors and acceptors. The two possible orientations of 

HIS sidechains effectively interchange N and C positions in the ring. Surface exposed, 

these different orientations may be of little consequence, but in the interior of the protein, 

proximal to the active site, or especially interacting with the ligand, this can be very 

important and can change patterns of hydrogen bond donors and acceptors. In principle 

these orientations can be sampled over the course of the MD run but only if the trajectory 

is long enough for the sampling scheme to allow it. Considering that these orientations 

are experimentally ambiguous, it is a matter of judgement at setup time of whether these 

sidechains should be reoriented to make a more chemically reasonable model.

Protonation of the protein model is generally straightforward with one key exception: the 

ionization state of sidechains which may undergo environmental shifts, especially HIS, ASP 

and GLU. Active site catalytic CYS is another case requiring care, and occasionally LYS 

can be deprotonated in some circumstances. The two main determining factors are the pH 

of the biological milieu and the microscopic environment around the ionizable sidechain. 

In general, the ionization state of each residue is chosen during the setup of the protein 

and remains constant over the course of the simulation, even if the microenvironment 

changes. Note that a formal charge on the bound ligand can also affect the ionization state 

of nearby protein residues; this can be particularly problematic when the ligand charge 

alchemically changes over the course of a relative free energy calculation. Unlike side-chain 

rotamers, which may sample other orientations within a simulation, incorrect protonation 

state assignments cannot correct themselves without the use of constant-pH algorithms, that 

have not been routinely implemented within free energy calculations yet.
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There are a number of tools to automate the steps described in this section, notably the 

Protein Preparation Wizard [111], the Molecular Operating Environment (MOE) [112], and 

Spruce [113]. We recommend manual inspections after applying these.

5.1.2 Ligand preparation—In the preparation of the ligand for simulation it is 

important to verify that the chemical structure is correct. While this is less problematic 

for structures generated from small-molecule sources, historically it has been a frequent 

problem for ligands taken from protein-ligand X-ray structures. Since X-ray structures lack 

protons and do not provide bond orders or other key information, if a PDB structure is used 

as input, some tool must be applied to supply this information, presenting a frequent source 

of failure (though, for structures in the RCSB, a ligand SMILES string can provide a more 

complete representation of the ligand’s identity).

Once the underlying chemical structure, including bond orders and stereochemistry, is 

correct, the key issues are the tautomer and ionization states. As with the ionizable 

protein residue discussed above, the main factors are the macroscopic pKa of the ligand 

(for ionization states), the intrinsic relative stability of different tautomer states, and the 

perturbing effects of the active site micro-environment of the bound ligand. Compounding 

the complexity is if the unbound ligand (used as a reference state) would have a different 

tautomer/ionization state. These need to be carefully examined at setup to make sure there 

is complementarity between the protein and ligand independently of the alchemical change 

between ligands, and then to flag and resolve alchemical conversions between inconsistent 

states of the protein.

5.1.3 Preparation of the complex—Once protein and ligand have been prepared, 

the complex is assembled and solvated in water with counter-ions at an appropriate ionic 

strength, or embedded in membrane if the protein belongs to a membrane protein family. 

Membrane simulations should use an appropriate equilibrated membrane that matches 

experimental criteria of thickness and area per lipid as well as the appropriate counter 

ions. Once the system box is constructed the step involves neutralizing the net charge on 

the protein-ligand complex, but beyond this a higher concentration of salt (usually sodium 

chloride) is often warranted to mimic the biological milieu being modeled; most assays are 

run in a significant salt concentration (100 to 150 mM) to emulate biological environments. 

The salt concentration can strongly affect experimental binding affinities, particularly with 

highly polar active sites.

Once the above decisions have been made and the complete simulation system has been 

set up, it is important to let it relax and equilibrate at simulation temperature and pressure, 

which should mimic the assay conditions.

5.2 Alchemical free energy calculations pose specific setup challenges

There are an abundance of details that must be considered during the set up of any 

simulation and in particular for alchemical free energy calculations. These simulations 

require setting up an alchemical perturbation of the small molecules, but also require making 

a variety of assumptions with respect to the environment at the two endstates. In the 

following we will address all essential choices that need to be made for the setup. For a very 
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detailed introduction to best practices for alchemical free energy calculations and a much 

broader discussion on choices for their setup please refer to the relevant best practices guide 

[19].

5.2.1 Should I run an absolute or relative free energy calculation?—There 

are two possible ways in which to run alchemical free energy calculations, which both 

provide free energies of binding, but will require different routes for their setup. Relative 
free energy calculations provide free energies of binding with respect to a reference ligand, 

meaning that all compounds that are to be assessed for their binding affinity should share 

a similar scaffold. In contrast, absolute free energies of binding can be used for a set of 

ligands that do not share any commonalities, since the reference state for the free energy of 

binding is the standard state. This is probably the easiest deciding factor in terms of what 

kind of calculation to run. If the particular benchmark dataset contains ligands that form a 

congeneric series then a relative calculation is likely a better choice. Of course, congeneric 

ligand series can also be assessed using absolute free energy calculations, or it may be of 

interest to compare relative to absolute calculations for a given benchmark dataset.

5.2.2 Alchemical pathway

Choices in topology: The choice of topology may be dictated by the simulation software 

of choice as not all common MD codes implement all topologies. The topology refers to 

the way in which a molecule A is changed to molecule B. Selecting either a dual or single 

topology approach is acceptable, unless performance of different topologies is assessed 

across the benchmark datasets. For more details on the different topology choices and 

implementations please refer to Mey et al. [19].

Choices concerning λ: In order to connect the initial and final state of the alchemical free 

energy calculation an alchemical pathway must be chosen. This pathway is regulated by a 

variable λ , which at λ = 0 represents molecule A and at λ = 1 molecule B. As free energy 

is a state function, the computed free energy is in principle independent on the pathway, but 

different choices in pathway can make the problem computationally more or less tractable. 

The simplest way to switch between molecule A and B is using a linear switching function 

for the potential energy of the form:

U( q , λ ) = (1 − λ )U0( q ) + λ U1( q ), (5)

where U is the potential energy q , is the set of positions and λ  the switching parameter. 

However, this typically approach fails when atoms are being inserted or deleted, requiring 

alternate choices, as reviewed elsewhere [19].

Considerable care needs to be taken in selecting the switching function and spacing of 

so-called λ-windows. Common choices are, how many λ-windows should be used? What 

functional form should my switching function take? The concept of difficult and easy 
transformation is more and more explored, but currently heuristics based on phase space 

overlap between neighboring λ-windows is the best way to assess how many windows 

should be simulated. This can for example be done by looking at the off-diagonals of an 
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overlap matrix [114, 115]. Furthermore, the choice of simulation protocol will influence 

what switching function and how many λ-windows should be used.

5.2.3 Choice of simulation protocol—There are currently four common types of 

simulation protocols available, which are summarised in Figure 10, these are: Figure 10 

(A) independent replicas, (B) replica exchange, (C) Single replica, self adjusted mixture 

modelling and (D) non-equilibrium switching. Particularly for (B) and (C) the choice of 

λ-spacing will be important, as in (B) it dictates the success of replicas exchanging between 

λs and in (C), often tightly spaced replicas allow for a best exploration. Independent 

replicas are not necessarily recommended, but are still commonly implemented in software 

packages.

5.2.4 End-state environments—When setting up a relative calculation it is important 

to be aware of the similarity of the ‘end states’, i.e. of the conformational, hydration, 

and electrostatic environment of ligand A and B. Many of these end-state issues can be 

addressed with infinite sampling, but this may be impractical and should be considered 

when planning perturbations. Issues can arise, if there are two distinct bound conformations 

(different binding modes) for ligand A and ligand B, it may be necessary to sample both 

binding modes, or extend the simulation time to allow for sufficient rearrangements. A 

similar issue that may be addressed with extended sampling times are scaffold changes that 

occur between ligand A and B. Different hydration patterns may also cause inaccuracies in 

computed binding free energies. The probably most difficult issue to address are changes 

in charge states that occur either between the two ligands or may even affect the protein 

depending on the type of ligand binding.

5.2.5 Perturbation maps for relative calculations—In relative free energy 

calculations a network of perturbations between ligands needs to be constructed. The choice 

of which relative calculations to carry out is vast and can have a substantial effect on 

the accuracy of the results. The way in which different ligands are connected by relative 

alchemical calculations is called a perturbation map. In particular for benchmarking free 

energy methods, perturbation maps should be held fixed for a given benchmark set, unless 

the goal is to test different approaches for setting up perturbation maps. In this way each 

edge of the perturbation map will be maintained across subsequent tests and plots created 

during the analysis phase later will be comparable.

The simplest way of connecting ligands in a perturbation map is in a star shape, with 

each connected to a central crystal structure ligand, with the assumption that all ligands 

of the congeneric series will bind in the same binding mode as the available crystal — 

which may even be confirmed by other crystals, see Figure 11 (A), there are different 

methods available for creating interconnected perturbation maps using LOMAP [116] or 

Diffnet [117], as well as some work towards assessing trade off in terms of what network 

structure will actually provide most reliable estimates with as little computational cost as 

possible [117, 118]. To date, there are no rigorous guidelines to prioritise perturbations, but 

we recommend avoiding difficult perturbations such as those mentioned above involving 

ring breaking, changes in linker length, changes in charge, and where possible attempt to 

maximise structural similarity in 2D (via the maximum common substructure) and 3D.
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6. How to analyse benchmark free energy simulations properly

6.1 Measuring the success of free energy calculations requires careful analysis

Reliable reporting and analysis of the success of calculations is vital for the validation and 

benchmarking of free energy methods, as well as the dissemination of published results. 

The reporting and analysis falls into two major categories – visualization of results, and 

statistical analysis. Here, we make recommendations for both categories.

6.1.1 Plots of free energy results should adhere to certain common 
standards—Figures plotting experimental vs. calculated results are a very useful way to 

gauge the success of a method or a set of calculations. We recommend several key steps to 

ensure these plots are valuable, communicate accurate information, and are informative and 

readable. Experimental values (on the x-axis) should be converted into the same units as the 

free energy results (on the y-axis), and axes should use the same scale. One common issue 

with plotting free energy results is that different scales are used on the different axes, which 

can change the appearance of the results, as illustrated in Figure 12, where changes in the 

axis and ratios can make the data look more correlated.

Error bars can be very helpful in understanding the uncertainty in the data – both for 

calculated and experimental values, and thus both experimental and computational error bars 

should always be included in visualizations of the data. Different sources of error might be 

used to quantify this, whether an uncertainty directly from a free energy estimator, variance 

between repeats or a hysteresis-type analysis. If the experimental errors are not reported, the 

experimental error can be estimated as e.g. 0.64 kcal mol−1 (see Section 4.5.3). How the 

error bars have been calculated should be reported in the figure caption.

Additionally, experimental values which were not actually measured (e.g. values resulting 

from a measured KD value which only has experimental bounds, such as > 5 μM) should 

not be plotted or should be clearly indicated by different styles and symbols. Such data 

should not be included in the accuracy or correlation statistics, see discussion in Section 

6.1.2. However, confusion matrices and reporting sensitivity, specificity, and precision can 

be useful for asserting a models’ strength at classifying ligands as binders and non-binders, 

as demonstrated in [119].

Finally, plots of results across multiple targets should typically be shown as one figure per 

target. Differences in the success of free energy methods can vary widely between targets, 

and combining the data across targets onto a single plot can obscure actual performance on 

any given target. Additionally, when considering absolute free energies, the affinity ranges 

between targets may vary, which may result in analysis picking up the correlation between 

targets and their affinities, rather than the free energy methods ability to differentiate 

affinities for a particular target. One exception to this is if free energy calculations were 

being performed for selectivity analysis of similar proteins, whereby the targets are not 

independent parameters [120].

6.1.2 Consistent reporting of statistics, and understanding their limitations 
is vital for measuring success—Free energy calculations fall into two categories: 
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absolute and relative. Depending on which type of result are being analyzed — absolute 

or relative — different statistics will be appropriate. Accuracy statistics, such as root mean 

squared error (RMSE) and mean unsigned errors (MUE) provide information as to how well 

the computational method recapitulates the experimental results, and allow for a ‘best guess’ 

as to how far the computation prediction of new ligands’ affinities may be from experiment. 

Correlation statistics, such as R2 Kendall tau (τ) and Spearman’s rank (ρ) indicate how well 

a method does at ordering the results, at identifying the best and worst ligand in a set, which 

in an everyday drug design application, where these models may be used to make purchasing 

decisions or for synthesis planning, may be a more useful metric than accuracy. However, 

these statistics can have biases when the number of datapoints (i.e. ligands or edges) are low, 

as discussed in Section 4.5.

One mistake that is commonly made, is the use of correlation-type statistics for the 

benchmarking of relative free energy calculations. As relative calculations are pairwise 

comparisons between ligands, the direction, or sign of the calculation is arbitrary. If a ligand 

A is 2 kcal mol−1 higher affinity than ligand B, this could equally be plotted and reported as 

ligand B being −2 kcal mol−1 lower affinity than ligand A. The consequence of the possible 

inversion of data points can shift the correlation statistics, despite the underlying data being 

consistent. The same set of data points can give a range of statistical results depending on 

arbitrary sign-flips in the dataset, where there are 2N
2  possible permutations for a set of N 

relative free energies. While the size of this issue can be affected by the number, range and 

accuracy of the data points, this can still be problematic, as illustrated in Figure 13. If a clear 

protocol is used, such as mapping all of the results to either be all positive or all negative, or 

plotting both A → B and B → A then the statistics quoted will be reproducible, however it 

is our recommendation to avoid correlation statistics for relative free energy results.

Additionally, correlation statistics, which are appropriate for reporting absolute free energy 

results, can be sensitive to the number of data points, and the range that they cover, as 

illustrated in Section 4.5, Figure 8. This can be exacerbated by experimental uncertainties, 

which is covered in Section 4.5. Some statistical measures are available that attempt to 

capture the inherent experimental range in the analysis, such as GRAM [121] and relative 

root-mean-squared error (RRMSE). As the number, dynamic range, and experimental 

uncertainty can all limit the maximum achievable correlation and confidence intervals, it 

is worth assessing these values a priori when deciding if a particular protein-ligand dataset is 

appropriate for a benchmark (see Section 4.5).

6.1.3 Bootstrapping is a reliable method for determining confidence intervals 
for statistics—While statistics are a useful measure of the performance of a method, it is 

also important to understand how accurate those measures are themselves. Is a MUE of 1.2 

kcal mol−1 much better than 1.3 kcal mol−1? Would the performance be likely to change on 

the addition of new ligands in the series? Is the R2 being heavily leveraged by a handful 

of outliers? Performing bootstrap analysis allows for confidence intervals to be placed on 

the statistics, and for these questions to be answered with some confidence. A MUE of 1.2 

(0.6) kcal mol−1 is not statistically different than a MUE of 1.3 (0.5) kcal mol−1. Bootstrap 

analysis provides a measure of accuracy to the statistics through random sampling with 
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replacement. Bootstrapping should be performed on the data used to compute the statistic 

reported — for relative free energies this illustrate how sensitive the statistics are to the 

edges chosen, and for absolute free energies: the sensitivity to the ligands in the set. The 

statistical error for each data point should be incorporated in the bootstrap estimate, where 

bootstrapping is performed by taking a sample from each data point using its associated 

variance. It is best practise to report the bootstrapped statistical errors alongside data as 95% 

confidence intervals to appropriately evaluate the performance of a particular method, and 

identify if improvements or changes to a model are statistically significant.

7 Key learnings

7.1 Analysis tools

We developed a python-based analysis package (http://github.com/openforcefield/arsenic) to 

compute statistics from the results of analyzing binding free energy calculations. If statistics 

from different approaches and sets of calculations are calculated with this package, users 

can ensure that they are comparing exactly the same statistics calculated in the same way. 

Results become invariant to different software and definitions of metrics, especially with 

respect to error or confidence interval calculations. We also see this as a first step towards 

a containerized benchmarking of methods as is planned for the SAMPL challenges [49]. 

There, users will ultimately compare their methods by submissions of containerized methods 

instead of independently calculated predictions. Thus, all methods will use exactly the same 

input and their results will be analyzed in the same way.

For the evaluation of X-ray structure quality, we also provide scripts to calculate Iridium 

scores and classifications. The Iridium score yields an objective evaluation of the structure.

7.2 Benchmark set

We assembled a benchmark set using data from prior benchmark studies of relative binding 

free energy calculations. [44, 71, 122] During evaluations of the given data (Table 1), we 

found quality defects which render parts of the data not appropriate for benchmarking 

according to our established criteria.

We found deficits in the dataset regarding all our established criteria. There are not 

trustworthy protein structures (e.g. the PDB 2GMX of Jnk1, Section 4.4), too few data 

points (e.g. only eight ligands of galectin, 4.5), or narrow dynamic ranges (e.g. 0.9 kcal 

mol−1 in BACE_P2 4.5). We tagged the protein targets as deprecated which did not meet a 

proposed set of minimal criteria (see our Checklist “Minimal requirements for a dataset”). 

After improvement by addition of new data (such as binding data for additional ligands or 

binding data spanning a broader dynamic range, availability/use of higher quality protein 

structures, etc.), these targets could potentially be added to a benchmark set again.

We acknowledge that the proposed benchmark set does not meet the ideal requirements we 

established. To date, these requirements are challenging to meet due to scarce high-quality 

experimental data, especially after applying all the criteria we layout. Experimental affinities 

measurements from a single source often do not cover dynamic ranges > 5 kcal mol−1 and 

much larger dynamic ranges become unrealistic. Large numbers of single source affinity 
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data points are rarely available and additionally impose the practical limitations of large 

computational resources for benchmarking calculations. As a chain is only as strong as its 

weakest link, the above points need to be paired with high-quality structural data and a good 

preparation of the simulation input.

We welcome community contributions and assistance to build a benchmarking dataset that 

will eventually fulfill our high standards.

8 Recommendations

Methods for binding free energy calculations have been continuously developed over the 

last decades and are increasingly used both in academic research, as well as pharmaceutical 

industry applications in structure based drug discovery [25, 30, 44], making their validation 

and benchmarking particularly crucial.

In order to reliably benchmark methods, we provide best practices recommendations 

for setting up benchmark calculations. This setup begins with the appropriate choice of 

experimental inputs and data, which includes the choice of target(s) and ligands (Section 

4). We require both structural information (Section 4.4) and affinity data (Section 4.5. This 

input information needs to be adequately prepared to generate simulation inputs (Section 

5.1) before the systems are simulated with a specific choice of software, calculation setup, 

and simulation protocol. Here, we made a variety of recommendations as to how to select 

and prepare systems for benchmarking.

Benchmarking also requires analysis and comparison with experiment, thus we also 

recommend standard reporting procedures (Section 6). These provide a mechanism to assess 

the accuracy of the calculations, present the results and compare to calculations done with 

other methods. These standard procedures will make it far easier to compare results across 

studies done by different researchers or using different tools.

Our recommendations are exemplified in publicly available tools for the analysis 

of calculations (http://github.com/openforcefield/arsenic) and a living protein-ligand 

benchmark dataset (http://github.com/openforcefield/PLBenchmarks). This set is living in 

the sense that we expect it to be subject to ongoing updates, curation, and improvement – 

both by ourselves and by the community, and we welcome community input via the GitHub 

issue tracker at http://github.com/openforcefield/PLBenchmarks/issues. Additionally, further 

curation is clearly necessary as our recommendations are in part not fulfilled in the initial 

version of this benchmark dataset. Partially,this is because we have begun from previously 

used benchmark sets and are beginning the curation process, but also because it is difficult to 

find large and accurate experimental datasets meeting all the desired characteristics. Thus, in 

our initial set, the relevant issues are annotated and we expect the benchmark set to evolve to 

better meet the recommendations given here.

We hope that our recommended best practices will be adopted and where necessary 

improved by the community. We believe that these best practices will ultimately help 

advance the accuracy, applicability, and availability of binding free energy calculations.
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9 Checklists

CHOOSE SUITABLE PROTEIN STRUCTURES FOR BENCHMARKING

Find experimental structural data: Section 4.4

Global criteria

• Select the best available structure using DPI or coordinate error (< 0.7)

• Ensure experimental data is available, i.e. electron/neutron density or cyro 

EM map

• Ensure the reported Rfree < 0.45 when resolution ≤ 3.5 Å

• Ensure that the reported difference between R and Rfree ≤ 0.05

Local criteria

• Determine if there are crystal contacts and assess if they effect protein 

conformation. Select structures with no crystal packing atoms within 6 Å 

of any ligand atom.

• Confirm that the ligand has at least partial density (check visually or real 

space correlation coefficient (RSCC) > 0.90) and the density is adequate to 

confirm ligand presence and binding mode

• Ensure that all ligand and active site atoms have occupancy >0.80

• Identify active site atoms with partial density and confirm these are acceptable 

and not key contacts

• Confirm active site crystallographic waters have density and no difference 

density

• Identify any alternate conformations for ligand and active site atoms. Select 

the alternate conformation with the highest occupancy and fewest clashes.

• Confirm that the ligand is not covalently bound as deposited, and is also not 

likely to have reacted to become one

• Check for any missing loops or residues and side chain atoms in the structure 

and confirm these are not near the binding site/not key for the study

AFFINITY DATA

Find experimental affinity data: Section 4.5

• Select single source data.

• Extract binding data from original source and convert carefully.

• Remove data points outside detection limits.

• Ideally data should be from biophysical assays. With functional assays, more 

care must be taken.
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• Assess dataset quality in terms of number of datapoints, experimental affinity 

range and experimental error to know the maximally achievable precision.

PREPARE THE SYSTEM WITH CARE BECAUSE FAILURES HERE ARE 
CRUCIAL

Prepare structural data for simulation: Section 5.1

• Assess which domains of the X-ray structure are needed and retain 

domains present in the experimental study, unless it is known that further 

simplifications can be made without affecting accuracy.

• Check other components (cofactors, crystallographic waters, other ligands, 

PTMs) of the structure and make sure you include everything which is key for 

the study.

• Split the protein and ligand structures to prepare separately.

Protein preparation

• Add caps if the structure’s termini are not resolved.

• If possible, model missing loops, if loops are too long(> 15 to 20 residues) 

or too mobile, consider capping the ends and adding restraints, or modeling a 

short glycine loop that links both ends. These must not be in the binding site.

• Inspect for side chain flips of side chains which can fit density similarly 

when reoriented (HIS, ASN, GLN); confirm that the orientations chosen lead 

to preferred interactions with the ligand. Evaluate alternate placements if 

necessary.

• Check the protonation states of the ligand and receptor, again checking in the 

context of the interactions that would be formed with the ligand.

Ligand preparation

• Ensure that the chemical structure is correct (bond orders, stereochemistry).

• Align the ligand series based on conformations of (X-ray) reference 

compound(s).

• Check tautomer and ionization states. Determine whether multiple 

possibilities need to be considered.

• Check whether alternate rotamers may need to be considered after alignment 

to reference compound(s).

System preparation

• Assemble the protein, ligand and cofactors.

• Without removing crystallographic waters and ions, solvate the complex or 

embed it in a membrane.
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• Add ions; use an appropriate salt concentration (sodium and chloride ions) to 

model the assay.

• Equilibrate the system.

CAREFULLY SELECT APPROPRIATE SIMULATION DETAILS

Choose simulation setup: Section 5.2

• Choose absolute vs. relative calculations.

• Choose topology approach and alchemical pathway.

• Choose sampling protocol.

• Plan a perturbation map if calculations are relative.

PRESENT GRAPHS OF RESULTS IN A CONSISTENT MANNER

Presenting results in an appropriate format: Section 6.1.1

• Clearly label the data with titles, legends, and captions.

• Plot results with the dependent variable (calculated) on y-axis, and the 

independent variable (experimental) on the x-axis.

• Ensure that the data are reported in the same units on both axes, and labelled. 

The scale of the axis in real space should be consistent, such that a 1 cm 

change on the x-axis corresponds to the same change in affinity to 1 cm on 

the y-axis.

• Plot only one target per plot, unless specifically looking at selectivity.

USE CAREFUL STATISTICAL ANALYSIS TO QUANTIFY PERFORMANCE

Quantifying the success of a method: Section 6.1.2

• Identify which metrics are appropriate for your method. Statistics that 

measure accuracy, such as RMSE and MUE, are commonplace; correlation 

statistics are appropriate for absolute free energies, but not relative free 

energies.

• Bootstrap statistics to provide confidence intervals.

• Provide confidence intervals for all reported values and avoid overinterpreting 

results given these intervals.

MINIMAL AND IDEAL REQUIREMENTS FOR A DATASET

Summary of the most important points from the checklists above and definition of 
minimal as well as ideal (boldface) requirements for a benchmark set.

Hahn et al. Page 26

Living J Comput Mol Sci. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Experimental structure should be Iridium classified as at least MT (ideally 
HT).

• Single source experimental activities (ideally from a biophysical assay).

• At least 16 (ideally 25) data points/ligands.

• A dynamic range of at least > 3.0 kcal mol−1 (ideally > 5 kcal mol−1).

• Well prepared structures (charge and tautomeric states) checked by at least 

one other experienced person (ideally by the community).
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Figure 1. Illustration of the definitions of Validation, Application, and Benchmarking used in this 
guide.
For each term, the definition, advantages (green) and potential short-comings (red) in terms 

of method evaluation are listed in the three panels. Validation (top left panel) uses systems 

that will confidently converge, the expected results are known, and the underlying issues are 

well understood. Validation sets allows robust development and improvement of methods. 

Application (bottom left panel) of a method, on the other hand, uses real-world systems and 

enables methods to be continuously evaluated on real-world applications of interest. Because 

the systems may not be well understood, it is possible for methods to fail in new ways 

that are difficult to detect. Benchmarking (right panel) bridges validation and application 

by aiming to assess the accuracy of real-world applications relative to experiment in cases 

where experimental data quality is not limiting and the method is known to be applied 

within its domain of applicability. Compared to validation, the size and complexity of the 

system may introduce challenges to producing robust, repeatable results.
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Figure 2. Five ligand pairs (A, B) for different targets (with each pair for a single target) having 
structural differences which can be challenging to simulate.
(A) Eg5: charge change, (B) SHP2: charge move, (C) PDE10: linker change, (D) HIF2α: 

ring creation, (E) CDK8: ring size change.
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Figure 3. The PDB structure validation report percentile score panels for the Jnk1 structures 
PDB IDs 2GMX and 3ELJ from the RCSB PDB.
(A) Note that 2GMX is a poorly ranked structure relative to all and structures of similar 

resolution in the PDB. (B) In contrast 3ELJ is as good or better than structures of similar 

resolution or all structures in the PDB.
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Figure 4. Examples of common challenges encountered when using X-ray crystal structures.
The protein is shown in green and the ligand in orange. If not stated differently, the 2Fo-Fc 

maps are illustrated as grey isomesh at 2σ level. (A) PDB ID 4PV0 shows poor density 

(at 3σ) for residues in the active site. The beta sheet loop at the top of the active site 

has residue side chains modeled with no density to support the conformation and the end 

of the loop has residues that are not modeled. (B) The recommended structure PDB ID 

4PX6 for the same protein has complete density (and modeled atoms) for the whole loop 

(at 3σ). (C) PDB ID 5E89 shows poor ligand density, especially for the m-Cl-phenyl (left) 

and the hydroxymethyl (center). This means that the ligand conformation, as shown, is 

not specified by the data, and thus should not be used as input to a computational study 
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unless there is additional data supporting this binding mode. (D) The ligand of PDB ID 

1SNC has crystal contacts with the residues K70 and K71 (blue) of the neighboring unit 

that directly interact with the ligand, potentially affecting the binding mode relative to 

a solution environment. (E) PDB ID 3ZOV has two alternate side chain conformations. 

Residue R368 in the B conformation (magenta) has clearly more density (0.75 σ) than the A 

conformation (blue). The B conformation interacts with the ligand (distance 3.2 Å) whereas 

the A conformation does not interact with the ligand (distance 6.5 Å). If the user does not 

look at both conformations and chooses A (by default), this would likely be incorrect and 

miss a potentially important protein-ligand interaction. (F) In PDB ID 5HNB, there is an 

excipient (formic acid) that interacts directly with the ligand (2.7 Å O-O distance shown in 

black). The formic acid could be replacing a bridging water. From the data it is not possible 

to determine how the excipient is affecting the ligand/protein conformation, but for a study 

of ligand binding in the absence of formic acid, this should be removed.
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Figure 5. Examples of challenges encountered for ligand modelling using X-ray crystal 
structures.
The protein is shown in green and the ligand in orange. If not stated differently, the 2Fo-Fc 

maps are illustrated as grey isomesh at 2σ level. In some panels, the difference density 

Fo-Fc map is illustrated as cyan isomesh at +3σ level. (A) In PDB ID 3FLY, there is 

significant difference density, likely indicating that the ligand conformation is not modeled 

correctly. It is suspected that there is a low occupancy alternate conformation that is not 

modeled. (B) The suggested alternate structure of the same protein, PDB ID 6SFI, has no 

difference density. (C) PDB ID 2ZFF shows unexplained electron density in the binding 
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pocket (difference map, bottom, center, cyan). This could be either water or a Na+ ion, as 

Na+ is present and modeled in other sites.
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Figure 6. Experimental uncertainties can be on the order of 0.64 kcal mol−1.
The binding affinity of 365 molecules assayed by two different methods for the open source 

COVID moonshot project [105]. Molecules that were predicted to bind in one assay, but 

inactive (i.e., affinity lower than the assay limit) in the other are shown in blue. The RMSE 

agreement between the methods, for both purple and blue data points is 0.64 kcal mol−1. 

Data was collected from the PostEra website [106] accessed 22/11/2020. The grey region 

indicates an assay variability of 0.64 kcal mol−1.
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Figure 7. The larger the experimental uncertainty, the larger the affinity range required for a 

given Rmax
2

.

Corresponding to Equation 4, the maximum achievable R2 for a given dataset is limited by 

the range of affinities and the associated experimental uncertainty. The illustration assumes 

that σ(measurement error) and σ(affinity) are in the same units, with an experimental error 

of 0.64 kcal mol−1 indicated.
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Figure 8. The larger the dataset, the smaller the uncertainty in the performance statistics.
(A) Kendall τ and (B) RMSE were evaluated for 1,000 toy datasets for a given size of 

the dataset N. The experimental data were simulated from a uniform distribution over the 

interval [−12:−5] and the predicted affinities were simulated from the experimental toy data 

using a Gaussian distribution with different standard deviation σ. The statistic was evaluated 

for the whole dataset and 95% confidence intervals were estimated via bootstrapping. These 

were then averaged over all 1,000 toy datasets.
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Figure 9. Outline of the system preparation steps.
First the protein is prepared (left, Section 5.1.1) by modelling missing atoms, assigning bond 

orders, protonation and tautomeric states. Similarily, the chemical structure of the ligands is 

translated into a simulation model (right, Section 5.1.2). The ligands are simulated in two 

different environments, once complexed with the protein (bottom left) and once in solvent 

(bottom right). For the solvated complex, the ligand structures need to be docked into the 

binding site of the protein, typically by using the information of a reference ligand in the 

X-ray structure.
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Figure 10. There are four simulations protocols available for generating samples and all λ
states.
(A) Independent replicas run in parallel at different λs as indicated by differently colored 

arrows, (B) Replica exchange attempts after short simulation for each replica (C) Self-

adjusted mixture sampling with a single replica exploring all of λ, (D) Non-equilibrium 

methods with equilibrium end-state simulation and frequent non-equlibrium switching 

between endstates. The clock icon is indicating the flow of simulation time and the pair 

of dice indicate a Metropolis Hastings based trial move
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Figure 11. Typically either star shaped perturbation maps or multi-connected perturbation maps 
are used in relative calculations.
(A) The star map will have a central ligand, of which the crystal structure is known and 

all other ligands distributed in a star. (B) A multi-connected map introduces redundancies 

into the network, allows for larger perturbations through multiple connections and allows 

assessment of robustness of calculations. The diamond and green shading indicates the 

crystal structure.
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Figure 12. Changes to the plotting style can change the appearance of the data.
The above three figures illustrates the same toy data. (A) shows the data correctly, with the 

same units (which are labelled) and scales on both axes. (B) shows the same data, however 

the limits on the y-axis have been changed such that the scales is not consistent. (C) is also 

not consistent, but this is due to the scale of the plot, rather than the limits.
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Figure 13. Using correlation statistics with relative free energy results are unreliable.
(A) The original set of N datapoints of relative free energy results yields specific statistics 

for R2, Kendall τ and ρ. However, there are 2N/2 possible permutations in the sign for the 

datapoints, where the changes in sign results in a range of possible statistics from the same 

underlying data. (B) The distribution of possible values (210/2 = 512) for R2, Kendall τ and 

ρ are illustrated in the violin plot. In the following plots ((C)-(H)), the order of permutations 

are illustrated that result in the lowest (red: (C), (E) and (G)) and highest (green: plots (D), 
(F) and (H)) correlation statistic. The correlation statistic for R2 ((C) and (D)), Kendall τ 
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((E) and (F)) and ρ ((G) and (H)), which illustrates how varied the correlation statistics for 

for the same relative free energy results can be achieved by simply using different definitions 

of relative ‘directions’ for various edges. For this reason, best practise is to avoid reporting 

correlation statistics for the reporting of relative free energy calculations, and using accuracy 

statistics such as RMSE and MUE instead.
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