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Abstract

We present a local but fully nonlinear model of the solar tachocline, using three-dimensional direct numerical
simulations. The tachocline forms naturally as a statistically steady balance between Coriolis, pressure, buoyancy,
and Lorentz forces beneath a turbulent convection zone. Uniform rotation is maintained in the radiation zone by a
primordial magnetic field, which is confined by meridional flows in the tachocline and convection zone. Such
balanced dynamics has previously been found in idealized laminar models, but never in fully self-consistent
numerical simulations.

Key words: magnetohydrodynamics – (MHD) – stars: magnetic field – Sun: evolution – Sun: interior –
Sun: rotation

1. Introduction

1.1. The Importance of the Tachocline for Solar Models

Though its existence has been known for more than 30 years,
a completely self-consistent model of the solar tachocline is
still lacking. This is despite the crucial importance of the
tachocline in models of the solar magnetic cycle (e.g., Spiegel
& Weiss 1980; Wang & Sheeley 1991; Parker 1993).
Traditionally, numerical simulations of the solar dynamo have
modeled the convection zone in isolation (e.g., Gilman &
Miller 1981; Glatzmaier 1984; Miesch et al. 2008), in part
because attempts to include the radiation zone in these models
often lead to unsolar-like results (e.g., Miesch et al. 2000). The
absence of a self-consistent and realistically thin tachocline in
these models may explain why they have difficulty producing
solar-like magnetic cycles (e.g., Browning et al. 2006).
Although some models do generate dipolar magnetic fields
with regular reversals (e.g., Käpylä et al. 2012; Passos &
Charbonneau 2014; Strugarek et al. 2017), they lack the
smaller-scale features that characterize the solar dynamo, such
as the coherent magnetic flux tubes that form sunspots and
magnetic prominences, which are generally believed to
originate in the tachocline (Parker 1955). The tachocline may
also influence the dynamics of the convection zone in other
ways. For example, the presence of a latitudinal entropy
gradient in the tachocline may help to explain not only the
differential rotation of the tachocline itself (Gough &
McIntyre 1998), but also that of the convection zone
(Rempel 2005; Miesch et al. 2006; Balbus et al. 2012).

The most remarkable and puzzling feature of the tachocline
is that its thickness—inferred from helioseismology—is less
than 4% of the solar radius (Basu & Antia 2003). As first
recognized by Spiegel & Zahn (1992), this implies that angular
momentum transport in the tachocline must be predominantly
horizontal and also frictional (i.e., down-gradient in angular
velocity). The source of this transport could be either horizontal
turbulence (Spiegel & Zahn 1992; Zahn 1992) or the Maxwell
stress from a primordial magnetic field (Rüdiger & Kitchati-
nov 1997; Gough & McIntyre 1998). The main difficulty with
the turbulence explanation is that transport by horizontal
turbulence is generally not frictional (e.g., McIntyre 1994;
Gough & McIntyre 1998; Tobias et al. 2007). Moreover, even

if we suppose that horizontal turbulence can explain the
thinness of the tachocline, we must then invoke an additional
mechanism to explain the uniform rotation of the deep radiation
zone, such as angular momentum extraction by internal waves
(e.g., Kumar & Quataert 1997; Zahn et al. 1997).
The advantage of the magnetic explanation is that it explains

both the thinness of the tachocline and the uniform rotation of
the radiation zone, provided that the field remains confined
below the convection zone, meaning that the field lines do not
extend across the tachocline into the convection zone. An
unconfined field, on the other hand, would imprint the
differential rotation of the convection zone onto the radiation
zone through the Alfvénic elasticity of the magnetic field lines
(Ferraro 1937; MacGregor & Charbonneau 1999). The
problem, then, is to explain why the field should remain
confined to the radiation zone.

1.2. The Model of Gough and McIntyre

The first study to directly address the magnetic confinement
problem was that of Gough & McIntyre (1998). Previous
studies (Mestel & Weiss 1987; Rüdiger & Kitchatinov 1997)
had taken the confinement of the field for granted, assuming
that the field would be expelled from the convection zone by
convective turbulence (Zel’dovich 1957; Weiss 1966). How-
ever, although the ability of turbulence to confine a horizontal
magnetic field has been convincingly demonstrated in numer-
ical simulations (e.g., Nordlund et al. 1992; Tao et al. 1998;
Tobias et al. 1998), it is less clear that turbulence can confine a
vertical magnetic field. If the Sun’s primordial field has an axial
dipolar geometry, as suggested in Figure 1, then the vertical
component of the field will be strongest close to the poles. On
this basis, Gough & McIntyre argued that the polar magnetic
field can only be confined by meridional flows that downwell
in the tachocline and hold the field in an essentially laminar
advection–diffusion balance. Such downwelling meridional
flows are, in fact, expected in the high-latitude tachocline, as a
result of “gyroscopic pumping” by the retrograde rotation of
the overlying convection zone (Spiegel & Zahn 1992;
McIntyre 2000; Wood & McIntyre 2011; Miesch et al. 2012;
Wood & Brummell 2012). The characteristic velocity of this
downwelling, U, say, can be estimated from the observed
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differential rotation of the tachocline if we assume that the
tachocline is in thermal-wind balance and local thermal
equilibrium (Gough & McIntyre 1998; McIntyre 2007,
p. 194). In this way, Gough & McIntyre estimated a value of
U 10 5- cm s−1, sufficient to confine the magnetic field across
an extremely thin “tachopause” at the bottom of the tachocline.
The thickness of the tachopause in their model is

U 4 107h ´ cm, where 400h  cm2 s−1 is the magnetic
diffusivity of the tachocline. This is only a tiny fraction of the
tachocline thickness, R0.04 3 109´ cm.

The tachocline model of Gough & McIntyre is characterized
by advection–diffusion balances in the induction and heat
equations, a balance between Coriolis, pressure gradient, and
buoyancy forces in the meridional directions, and a balance
between Coriolis and Lorentz forces in the azimuthal direction.
Several attempts have been made to reproduce this model in
self-consistent, fully nonlinear direct numerical simulations,
but such balanced dynamics have never been obtained. Instead,
the transport of angular momentum in such simulations is
generally dominated by viscosity, and the magnetic field is
found to diffuse out of the radiation zone and become
unconfined (Brun & Zahn 2006; Rogers 2011; Strugarek
et al. 2011). Under these conditions a significant shear between
the convection and radiation zones can only be maintained on a
relatively short timescale, and eventually the differential
rotation of the convection zone must spread into the radiation
zone (Brun et al. 2011). Of course, since numerical simulations
cannot be performed at the true parameter values of the solar
interior, these results may simply reflect the fact that the
simulations have not been performed in the correct parameter
regime. As discussed by Wood et al. (2011), the lack of field
confinement in these simulations is probably explained, at least
in part, by the predominance of viscosity in the dynamics,
which inhibits the burrowing of meridional flows into the
radiation zone. By contrast, the dynamics described by Gough
& McIntyre (1998) are essentially inviscid.

To determine whether or not the model of Gough &
McIntyre is truly applicable to the solar tachocline, we must
therefore determine the conditions under which viscosity does
not play a significant role in the dynamics. Despite a
considerable literature on the subject (e.g., Eddington 1925;
Vogt 1925; Sweet 1950; Mestel 1953; Howard et al. 1967;
Sakurai 1970; Spiegel 1972; Clark 1973, 1975; Osaki 1982;
Haynes et al. 1991; Spiegel & Zahn 1992; Elliott 1997;
McIntyre 2002; Garaud & Brummell 2008), until recently no
direct numerical simulation had ever achieved the dynamical

regime believed to operate in the tachocline, in which the
transport of angular momentum by meridional flows dominates
the transport by viscosity. This dynamical regime is typical in
astrophysical objects, but is very difficult to achieve in
numerical simulations (see Wood & Brummell 2012, and
references therein). The most crucial condition is that the
turnover time for the meridional circulation must be shorter
than the viscous diffusion time across the same region. For a
strongly stably stratified fluid such as the tachocline, this
condition can be expressed roughly as 1s < , where

N
Pr

2
. 11 2s =

W
( )

Here N is the buoyancy frequency, Ω is the mean rotation
rate, and Pr is the Prandtl number—the ratio of viscous and
thermal diffusivities. The tachocline has N 2 150W  and
Pr 2 10 6´ - , and so 0.2s  (Garaud & Acevedo-Arreguin
2009). Most numerical models of the solar interior use realistic
values for N and Ω, but owing to computational limitations
they use values of Pr that are much closer to unity. As a result,
these simulations have 1s  , leading to dynamics that are
dominated by viscosity. In order to achieve the correct “low-σ”
regime in numerical simulations, it is necessary to use non-
solar values of either N or Ω. To our knowledge, the first fully
nonlinear simulations ever performed in the correct “low-σ”
regime were those of Wood & McIntyre (2011), who used a
Boussinesq, cylindrical code to model the polar tachocline.
However, their model was laminar and axisymmetric, and was
only intended to model the bottom of the tachocline—the
tachopause of Gough & McIntyre. Subsequently, Wood &
Brummell (2012, hereafter referred to as WB12) used a fully
compressible, local Cartesian code to study the driving of
meridional flows in the radiation zone by the differential
rotation of the convection zone. For the first time, these
simulations demonstrated that the “radiative spreading” of
differential rotation by burrowing meridional flows described
by Spiegel & Zahn (1992) can operate in a self-consistent, fully
nonlinear model including the generation of internal waves by
convective overshoot.
Although the simulations of WB12 did not include a

magnetic field, the meridional flows obtained closely resembled
those anticipated by the model of Gough & McIntyre,
suggesting that magnetic field confinement might be possible.
The purpose of the present paper is to test this hypothesis. We
use the same local Cartesian model, but add a magnetic field
within the radiation zone in order see whether the field can be
confined and whether a thin tachocline is then obtained. We
emphasize that the magnetic field considered here is of
primordial, not dynamo, origin. Obtaining a self-consistent
solar dynamo is beyond the scope of the present study, and in
any case it seems likely that a self-consistent tachocline model
is a prerequisite for obtaining a realistic solar dynamo (e.g.,
Browning et al. 2006).
The timescale for ohmic decay of a primordial magnetic field

in the radiation zone is of the order of a billion years. This is
somewhat shorter than the age of the Sun, implying that at the
present age the remaining field must resemble a global-scale
dipole, but much longer than the dynamical timescale of the
tachocline, and so the field in the radiation zone can be
regarded as steady on the timescales of interest here. In our

Figure 1. Global-scale primordial magnetic field (shown in gray), confined
within the radiation zone (lightly shaded), can enforce uniform rotation in that
region. The dashed boxes indicate the high-latitude (H) and polar (P) regions
that we model numerically.
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local model we will therefore maintain a magnetic field by
adopting suitable boundary conditions, and we will choose the
geometry of the field to represent different latitudes within the
tachocline.

1.3. Selection of Parameter Values

It is crucial to choose the physical parameters of the problem
appropriately, and so we take guidance from the results of
previous studies. The hydrodynamic (i.e., non-magnetic)
parameters are chosen to match those of WB12 in a case
where they found the correct behavior for meridional flows. In
choosing the magnetic parameters, i.e., the field strength and
magnetic diffusivity, we are guided by the results of previous,
idealized models (Wood & McIntyre 2011; Wood et al. 2011;
Acevedo-Arreguin et al. 2013). Each of these models predicted
that, for a certain range of magnetic field strengths, a primordial
magnetic field can indeed be confined beneath the convection
zone, resulting in a thin tachocline. However, each of these
models considered only an axisymmetric steady-state balance,
and so the effects of turbulence and waves were either
parameterized or else neglected completely. Here, we will solve
the full set of three-dimensional, nonlinear, compressible MHD
equations self-consistently.

2. The Numerical Model

The computational model used here is an extension of that
used in WB12, which is based on the compressible f-plane code
of Brummell et al. (2002). The code solves the ideal-gas
equations in a Cartesian box using a rotating frame of
reference. The computational domain comprises two layers:
an upper, convectively unstable (and therefore turbulent) layer,
and a lower, stably stratified layer. The transition from stable to
unstable stratification is effected by a change in the thermal
conductivity, k, which is prescribed as a function of depth, z. In
all simulations this transition is located at the mid-height of the
domain. For simplicity, as in WB12, we take the rotation axis
to be vertical ( ezW = -W ). The main difference between the
model used here and that of WB12 is the inclusion of magnetic
fields, which influence the dynamics through the Lorentz force
and, to a much lesser extent, ohmic heating.

In order to describe the effect of the global-scale field in our
local-scale model, we consider two different configurations for
the magnetic field, which approximate the topology of the
Sun’s primordial field at different latitudes. We refer to these
two field configurations as “horizontal” (H) and “polar” (P), as
indicated in Figure 1. The horizontal field configuration
represents conditions within the tachocline at high latitudes,
but away from the pole, where the field in the radiation zone is
approximately horizontal, whereas the polar field configuration
represents conditions in a neighborhood of the pole, where the
field is more vertical. We adopt Cartesian coordinates in which
z corresponds to depth; in the horizontal field simulations, x and
y correspond to azimuth and colatitude, respectively. In all
simulations, the computational domain is periodic in both x and
y. In order to implement the polar field configuration with
periodic boundary conditions, the simulations actually include
four magnetic poles, using a Peirce quincuncial projection, as
illustrated in Figure 2. The results we present in Section 3.2 are
averaged over the four poles. The boundary conditions
employed for the magnetic field in the horizontal and polar
configurations are described in detail in Section 2.1 below.

The horizontal field simulations have a box size of L2 3( ) ,
where L is the thickness of the convective layer, and a
numerical resolution corresponding to 100 100 200´ ´ grid
points. The polar field simulations have a box size of
L L L8 8 2´ ´ , and a numerical resolution of 2003 grid points.
As in WB12, the requirement of small Prandtl number, Pr ,
places a severe constraint on the maximum permitted
computational time step. Moreover, the simulations typically
must be continued for at least a domain-scale magnetic
diffusion time in order for the magnetic field to reach a
statistically steady state. Each of the simulations presented in
this paper was run for more than 5 million numerical time
steps. These computational constraints preclude a higher spatial
resolution.

2.1. Boundary and Initial Conditions

We impose constant temperature T0 at the top of the domain,
z=0, and a constant upward heat flux H k dT dz= - at the
bottom, z L2= . The fluid is initially at rest and in hydrostatic
balance with uniform vertical heat flux throughout, and has
pressure p0 and density 0r at the upper boundary, z=0. The
top and bottom boundaries of the domain are modeled as
impenetrable and stress-free. This ensures that the total mass of
fluid in the domain does not change during the simulation, and
that no viscous torque is exerted at the boundaries.
The remaining boundary conditions are chosen to allow the

system to achieve a statistically steady state with a finite mean
magnetic field. For the horizontal field simulations, we impose
“perfectly conducting” boundary conditions at the top and
bottom boundaries, meaning that B ´ is perpendicular to
the boundaries. Although these boundary conditions are
somewhat artificial, they are necessary for the volume-
integrated magnetic flux to be conserved. The initial field is a
layer of uniform flux in the y direction entirely confined below
the convection zone. The amplitude of the field is chosen so
that the volume-averaged field strength is B0.5 0, where B0 is a
parameter that measures the typical strength of the field in the
radiation zone.
For the polar field simulations, we use the same magnetic

boundary conditions at the upper boundary, whereas at the
lower boundary we use a generalization of the conditions used
by Wood & McIntyre (2011). These boundary conditions treat
the region below the computational domain as a large reservoir
of poloidal magnetic flux, and can be concisely formulated
after decomposing the magnetic field into poloidal and toroidal
scalars,

B e eB B . 2z zP T  = ´ ´ + ´( ) ( ) ( )

At the lower boundary, we impose that BT vanishes, and we
prescribe the vertical derivative of BP. In particular, we impose

B

z

L
B

x

L

y

L
B z L

4
sin

4
sin

4
and

0 at 2 . 3

P
0

T

p
p p¶

¶
=

= =

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

These boundary conditions ensure that there is no magnetic
torque at the bottom of the computational domain, and they
maintain a poloidal field of order B0 through the upward
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diffusion of BP. They also imply that
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so the horizontal field components are fixed, but the vertical
component is unconstrained. Because the boundaries are stress-
free, the field lines move completely freely on the boundaries.
In the absence of any flow, the field would relax to a current-
free (and therefore force-free) state with

B
L

B
x

L

y

L
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This steady state, which is plotted in Figure 2, is used as the
initial condition for the polar field simulations.

2.2. The Compressible MHD Equations

As in WB12, the ideal-gas equations are nondimensionalized
using the thickness of the convective layer, L, as the lengthscale
and L/c as the timescale, where c p0 0r= is the isothermal
sound speed at the top of the domain. The temperature, T,
pressure, p, and density, ρ, are nondimensionalized using T0, p0,
and 0r , respectively. The magnetic field, B, is nondimensionalized
using B0, and diffusivities are measured in units of Lc. The
dimensionless ideal-gas MHD equations then take the form

u u e u

B B e D F
t

p

g

2
2

2 6

z

z

0
r r

b
r m

 

 

¶
¶

+ - W ´ = - +

´ ´ ´ + + +
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⎞
⎠·

( ) · ( )
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7r r ¶
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B
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u
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where 5 3g = is the ratio of specific heats, 0b is the ratio of
gas pressure to magnetic pressure, i.e.,

p

B

8
, 110

0

0
2

b
p

= ( )

η is the dimensionless magnetic diffusivity, and D is the
deviatoric rate-of-strain tensor,

uD
u

x

u

x

1
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2
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3
. 12ij
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j
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i
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¶
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¶
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The other symbols have the same meaning as in WB12; in
particular, Ω and g are the constant, dimensionless rotation rate
and gravitational acceleration, and μ and k are the dimension-
less dynamic viscosity and thermal conductivity. We take η and
μ to be constant throughout the domain, whereas for k we
impose a vertical profile of the form

k z
k

z

k

z1 exp 20 1 1 exp 20 1
, 131 2=

+ -
+

+ -
( )

( ( )) ( ( ))
( )

so that k k1= in the upper layer, z 1< , and k k k2 1= > in the
lower layer, z 1> , the change occurring across a region of
dimensionless thickness 0.1 . The bottom of the convection
zone is therefore fixed at z=1, but convective motions are
able to overshoot into the radiation zone.
We write the three components of the velocity field as

u u u u, ,x y z= ( ). In the horizontal field simulations, the x, y,
and z directions correspond to azimuth, colatitude, and depth,
respectively, and so differential rotation is quantified by the x-
averaged flow in the x direction. In the polar field simulations,
on the other hand, we measure the differential rotation in terms
of the large-scale vertical vorticity,

u

x

u

y
. 14z

y xw =
¶

¶
-

¶
¶

( )

Because the computational domain is horizontally symmetric in
all of our local Cartesian simulations, the Reynolds stresses in
the convective layer are not able to drive any mean differential
rotation. In order to mimic the generation of differential
rotation in the solar convection zone, we add a volume forcing
term to the momentum Equation (6). In the horizontal field
simulations, we use the same forcing as WB12,

F ez u y z u, , 15x x xTl r= -( ) ( ( ) ) ( )

where uxT is the “target” flow

u z y
2

1 sin 16xT
p

p=
W

-( ) ( ) ( )

and λ is the forcing rate

z1 exp 20 1
. 170l

l
=

+ -( ( ))
( )

In the polar field simulations, the forcing is

F e ez u y z u u x z u, , , 18x x x y y yT Tl r= - + -( ) [( ( ) ) ( ( ) ) ] ( )

where

u z y
2

1 sin 2 19xT
p

p=
W

-( ) ( ) ( )

Figure 2. Initial, current-free state of the polar field simulations. To allow for
horizontally periodic boundary conditions, the domain includes four magnetic
poles.
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u z x
2

1 sin 2 . 20yT
p

p= -
W

-( ) ( ) ( )

We emphasize that λ is exponentially small within the
radiative layer z 1> , so that region is unforced. In most of
the simulations we take 20l = W, so that the fluid within the
convective layer is pushed toward the target flow on a
timescale that is comparable to the rotation period. In all
simulations, the target flow has a maximum vertical vorticity
of 2W, equal to the background vorticity of the rotating frame,
implying a Rossby number of order unity in the convection
zone. We find that the mean flows established within the
radiation zone are significantly weaker than those in the
convection zone, and have a Rossby number 1 .

2.3. Choice of Parameters

With the boundary and initial conditions listed in Section 2.1,
each simulation is uniquely specified by the values of the nine
dimensionless parameters k1, k2, μ, g, Ω, H, η, 0b , and 0l . Each
simulation presented here, unless otherwise specified, has the
same non-magnetic parameters as Case1 of WB12, that is,
k 1.45 101

3= ´ - , k 2.41 102
3= ´ - , 1.45 10 5m = ´ - , g=

0.24, 9.6 10 3W = ´ - , H 1.4 10 4= ´ - , and 20l = W. The
horizontal field cases presented here therefore differ from Case1
of WB12 only through the presence of a magnetic field, and the
fact that the domain height here is reduced to L2 . In all the
simulations, the magnetic diffusivity is fixed at 2.9 10 5h = ´ - ,
and so the magnetic Prandtl number is 0.5m h = . In the next
section we present three horizontal field simulations (H) and three
polar field simulations (P). The values of the two remaining
parameters, 0b and 0l , in each simulation are shown in Table 1.

3. Results

Each simulation is continued until it reaches a statistically
steady state, which in practice takes about one domain-scale
magnetic diffusion time, equivalent to about 100 rotation
periods. The results presented below are based on time
averages taken over several rotation periods in this statistically
steady state.

3.1. Horizontal Field Cases

3.1.1. The Formation of a Tachocline

The top row of Figure 3 shows the time-averaged and
azimuthally averaged flow and magnetic field from Case H1.
We see that the differential rotation (i.e., the averaged ux) in the
convection zone, shown in the left panel, extends only partway
into the radiation zone, resulting in a thin tachocline. This is in
contrast to Case1 of WB12, shown in the bottom row of
Figure 3, in which the differential rotation was eventually

communicated all the way through the radiation zone by the
meridional flow. In CaseH1, the meridional flow that is
established in the convection zone extends only to the bottom
of the tachocline, at about z=1.44, and a weaker counter-
rotating cell develops beneath. We choose to define the bottom
of the tachocline as the depth below the convection zone at
which the differential rotation ux first becomes zero. The top of
the tachocline is at z=1, where the stratification changes from
adiabatic to sub-adiabatic, and so in CaseH1 the thickness of
the tachocline is approximately 0.44D  , as indicated by
dashed horizontal lines in Figure 3(a).
Since CaseH1 differs from Case1 of WB12 only through

the inclusion of a magnetic field, we must conclude that the
magnetic field is responsible for the formation of the thin
tachocline in this simulation, and that the field’s strength
determines the tachocline thickness. This hypothesis is tested
by CaseH2, which has a weaker magnetic field than CaseH1,
by a factor of 2, but is otherwise identical. As illustrated in
Figure 4, CaseH2 has a thicker tachocline, with 0.6D  , and
its meridional flows extend correspondingly deeper into the
radiation zone. We compare these results with the predictions
of several analytical models in Section 3.1.4.

3.1.2. Magnetic Confinement

In both Cases H1 and H2 we find that the mean poloidal
magnetic field remains confined below the convection zone, as
can be seen in the right panels of Figures 3(a) and 4. The
degree of confinement is illustrated more clearly in Figure 5,
which shows vertical plots of the time and horizontal averages
of Bx and By from CasesH1 and H2. In both cases, the mean
poloidal field, By, is close to zero within the bulk of the
convection zone, and increases rapidly at z 1 to a roughly
uniform amplitude within the radiation zone.
To quantify the processes that act to confine the poloidal

magnetic field, it is convenient to adopt a poloidal–toroidal
decomposition of the form

B e eB B . 21x xp t  = ´ + ´ ´( ) ( ) ( )

Note that this is a slightly different decomposition from that
given by Equation (2), but one that is more appropriate for the
mean field, which is axisymmetric (i.e., x-invariant). From the
induction Equation (9) we can derive an evolution equation for
the azimuthal average of the poloidal scalar Bp:

u B
B

t
B 22x

p 2
ph

¶

¶
= ´ + [ ] ( )

u B u B
y z

B , 23x p

2

2

2

2 ph= ¢ ´ ¢ - +
¶
¶

+
¶
¶

⎛
⎝⎜

⎞
⎠⎟[ ] · ( )

where an overbar denotes an x average, and primes denote
departures from the average. If the average is also taken over
time in the statistically steady state, then the left side of
Equation (23) vanishes, and the three terms on the right must
balance. We identify these three terms as the transport of the
mean poloidal field by waves and turbulence, mean meridional
flow, and ohmic diffusion, respectively. In order for the field to
remain confined, the first two terms together must balance the
upward diffusion of Bp. The contribution from the mean
meridional flow can be quantified by solving the induction
Equation (9) kinematically with the time-averaged flow shown

Table 1
Parameters for the Horizontal (H) and Polar (P) Simulations

Case 0b 0l

H1 1.9 105´ 2W
H1a 1.9 105´ 2 5W
H2 7.6 105´ 2W
P1 4.8 104´ 2W
P2 4.8 105´ 2W
P3 4.8 106´ 2W
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in Figures 3(a) and 4. That is, we numerically integrate
Equation (9) using the time-averaged flow until the field
achieves a steady state. In both Cases H1 and H2, we find that
the steady-state poloidal magnetic field obtained is virtually
identical to that shown in Figures 3(a) and 4, demonstrating
that the meridional flow is primarily responsible for the field
confinement in these simulations. The confinement is produced
by the “flux expulsion” mechanism originally described by
Weiss (1966): the meridional circulation stretches out the
poloidal field lines, bringing fields of opposite sign into close
proximity and thereby enhancing the diffusion of the field
within the convection zone.

It is perhaps surprising that the meridional flow, rather than
the turbulence, dominates the transport of the mean magnetic
field in these simulations. However, it should be remembered
that the level of turbulence that can be obtained in any

numerical simulation is well below the level present in the solar
convection zone, and so our simulations almost certainly
underestimate the effect of turbulent flows on the mean field.
Moreover, the manner in which we force the flow in our
simulations also inhibits the turbulence in the convection zone.
We have therefore performed an additional simulation, which
we refer to as Case H1a, which is identical to Case H1 except
that the forcing parameter 0l is smaller by a factor of 5. Case
H1a has stronger turbulent flows than Case H1, and also has
weaker meridional flows, because it is the forcing in the
convection zone that ultimately “pumps” the meridional
circulation.3

In Case H1a, the mean (time-averaged and azimuthally
averaged) flow contains only about 5% of the total kinetic

Figure 3. (a) Meridional cross sections through Case H1, time-averaged over 10 rotation periods. (b) Comparable cross sections through Case 1 of WB12, which has
no magnetic field. Because this latter simulation used a deeper domain, we have truncated the plots at z=2. The left panels show contours of the azimuthal flow ux,
using cubically spaced contour levels to show more detail in the radiation zone, where the flows are weakest. The thickness of the tachocline, Δ, is indicated in the left
panel of (a). The right panels show streamlines of the meridional flow (dashed lines and arrows) and poloidal magnetic field (solid lines).

Figure 4. Same plots as Figure 3(a), but for CaseH2, and averaged over 7.5 rotation periods. The weaker magnetic field leads to a thicker tachocline and a deeper
meridional circulation.

3 Because Case H1a is more turbulent than Case H1, the numerical resolution
was increased for this simulation.
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energy in the simulation. Nevertheless, in Case H1a also, we
find that the geometry of the mean field is determined primarily
by the mean meridional flow, as illustrated in Figure 6. The
importance of the transport by the meridional flow arises
mainly from its persistence. Even though the meridional flow is
much weaker than the turbulent flow at each instant, the long-
term behavior of the magnetic field is controlled mainly by the
time-averaged flow.

This observation also explains why the degree of magnetic
confinement is so similar in cases H1 and H2, even though the
tachocline in Case H2 is significantly deeper. The field is
confined not by the weak meridional flow within the
tachocline, but by the stronger meridional flows in the
convection zone. A similar result was found in the global
axisymmetric model of Acevedo-Arreguin et al. (2013).

Although the majority of the mean poloidal field is confined
to the radiation zone, we note that some mean field also resides
in a thin layer at the top of the domain. The existence of this
layer results from the rather artificial nature of the boundary
conditions used, which impose that there is no advection,
induction, or diffusion of field through the top and bottom
boundaries. In reality, this field would be mixed in with the
bulk of the convection zone, and at the same time, field would

diffuse up into the tachocline from the bulk of the radiation
zone, maintaining a statistically steady state.
An interesting result visible in the left panel of Figure 5 is

that a mean toroidal field, Bx, is generated, with opposite sign
in the radiation and convection zones. The source of this
toroidal field is the chirality of the mean flow, and in particular
the correlation between the latitudinal gradient of the differ-
ential rotation, u yx¶ ¶ , and the vertical component of the
meridional circulation, uz. Within the tachocline, the net effect
of this correlation is an upward transport of positive Bx and a
downward transport of negative Bx. (Note that the total toroidal
field is still conserved, because of the boundary conditions.)
This result was not anticipated by earlier tachocline models
(Rüdiger & Kitchatinov 1997; Gough & McIntyre 1998; Wood
et al. 2011), which neglected the role of the meridional flow in
redistributing the toroidal magnetic field. However, in our
simulations the generation of mean toroidal field is probably
enhanced by the Cartesian f-plane geometry, which exaggerates
the correlation between the differential rotation and the
meridional flow. Whether a similar generation of toroidal field
would occur with more realistic spherical geometry is therefore
unclear.

Figure 5. Time and horizontal averages of Bx and By from simulations H1 (solid lines) and H2 (dashed lines). Case H2 has a larger ratio of toroidal to poloidal field,
but note that the magnetic scale B0 is smaller in Case H2 by a factor of 2. The vertical arrows indicate the thickness of the tachocline in these simulations.

Figure 6. Mean poloidal field from Case H1a, and the steady-state field obtained by solving the induction equation with the mean flow only. The rightmost panel
shows vertical profiles of the horizontal average of By.
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3.1.3. Balance of Terms

The most crucial role of the magnetic field in the model of
Gough & McIntyre (1998) is that it balances the transport of
angular momentum by the meridional flow, which would
otherwise communicate the differential rotation of the convec-
tion zone into the radiation zone. This balance can best be seen
by taking the x component of the momentum Equation (6), after
first using the continuity Equation (7) to write it in conservative
form, and taking an average over x and t. We then find that

u Bu u B

u F

0 2
2

, 24

y x x

x

0
2

r r
b

m

 =- W - +

+  +

· ( ) · ( )

( )

so in a statistically steady state there must be a balance between
the mean Coriolis force, inertia, the Lorentz force, the viscous
force, and the imposed forcing. We note that the inertial term
actually contains contributions from both mean and fluctuating
fields. However, the mean flow in the tachocline and radiation
zone has a low Rossby number, meaning that its contribution to
the inertial term is negligible in comparison with the Coriolis
term. The model of Gough & McIntyre therefore predicts a
balance between the Coriolis and Lorentz terms within the
tachocline. Figure 7 shows plots of each of the five terms in
Equation (24), plus their total, in CaseH1. In the bulk of the
convection zone ( z0 1  ), the dominant balance is between
the imposed azimuthal forcing, F, and the Coriolis force from
the mean latitudinal flow. In this way, the imposed forcing
“gyroscopically pumps” the mean meridional circulation in the
convection zone, as in WB12. However, in the radiation zone,
where the forcing vanishes, the dominant balance is between
the Coriolis force and the Lorentz force. The magnetic field

thereby enforces uniform rotation in the radiation zone, and
prevents the “burrowing” of the meridional circulation seen in
WB12. We note that the viscous force is not a dominant term
anywhere in the domain.
The azimuthal momentum balance illustrated in Figure 7 is

the same as in the models of Gough & McIntyre (1998) and
Wood et al. (2011). However, these two models make different
predictions about the balance of forces in the meridional
directions, and in particular for the azimuthal vorticity
equation. The model of Gough & McIntyre (1998) assumed
that this equation would closely satisfy thermal-wind balance,
i.e., that the production of vorticity by the differential rotation
would be balanced by baroclinicity. However, Garaud (2007)
pointed out that if the poloidal magnetic field in the radiation
zone is sufficiently strong then the Lorentz force might modify
the thermal-wind balance. This suggestion was confirmed by
Wood et al. (2011), who considered stronger magnetic fields
than Gough & McIntyre (1998) and predicted a thinner
tachopause in magneto-thermal-wind balance. The boundary
between the weak-field and strong-field regimes can be inferred
by equating the two tachopause scalings, given by Equations
(77) and (78) in Wood et al. (2011). The result is

N L

2
, 252

2 2

k
L =

W
( )

where B 82 p rhL = W∣ ∣ ( ) is the Elsässer number of the
magnetic field in the radiation zone, L is the horizontal
lengthscale of the differential rotation, and κ is the thermal
diffusivity. In CaseH1, the Elsässer number in the tachocline is

15L  , and the right side of Equation (25), taking L=1, is
approximately 200, so we would expect a significant contrib-
ution from the Lorentz force. To see whether this is in fact the

Figure 7. Each of the terms from Equation (24), plus their total, for CaseH1. Contour levels are cubically spaced.
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case, we take the mean azimuthal vorticity equation in the form

u

B B D

u

p

0

1 2
2

26

x x

x
0

w w

r b
m



   

= -

+ ´ - + ´ ´ +
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥

· ( )

( ) ·

( )

where u e2 zw = ´ - W is the absolute vorticity. The first
term in Equation (26) represents the mean generation of
azimuthal vorticity by vortex stretching, and the other term
incorporates the contributions from baroclinicity, Lorentz
forces, and viscous forces. The baroclinic term is determined
by the angle between the density and pressure gradients, which
are both very nearly vertical. It is therefore common to
eliminate the density in favor of entropy, which is less
dominated by its vertical gradient, at least in the convection
zone (e.g., Balbus 2009). We therefore write
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where s pln 1 r= g( ) is the dimensionless specific entropy,
and where the last line assumes the hydrostatic approximation

ep g zr  . We anticipate that, below the convection zone, the
mean vorticity Equation (26) will be dominated by contribu-
tions from the mean fields, rather than the fluctuating fields,
and can therefore be approximated as
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where v B 4A
1 2pr= ( ) is the Alfvén velocity and

vA Aw = ´ is the Alfvén vorticity. Each of the terms in
Equations (26) and (30) is plotted in Figure 8, verifying that
Equation (30) does indeed closely approximate Equation (26)

in the tachocline and radiation zone. We also find that, within
the bulk of the tachocline, the leading balance is between the
first two terms of Equation (30), i.e., the usual thermal-wind
balance. Below the tachocline, the Lorentz term becomes
increasingly important, whereas the viscous term is negligible
everywhere, except in a thin boundary layer at the bottom of
the domain. These results are consistent with those of Wood
et al. (2011): the bulk of the tachocline is in thermal-wind
balance, but the Lorentz force modifies this balance in the
tachopause and beneath. A similar result holds in Cases H1a
and H2 (not shown). In Case H2, which has a weaker magnetic
field, the contribution from the Lorentz term is somewhat
weaker, but still significant below the tachocline.
The presence of thermal-wind balance within the bulk of the

tachocline allows us to predict the distribution of entropy
within that region. Equating the first two terms in
Equation (30), the vertical gradient of the differential rotation
ux within the tachocline must be balanced by a latitudinal
gradient of the specific entropy s. In Figure 8, in particular, s
must be minimum at y=1, and maximal at y=0, 2 within the
tachocline. Because temperature is closely correlated with
entropy within the tachocline, these entropy variations will
dissipate by thermal diffusion unless they are maintained by a
combination of viscous and ohmic heating, turbulent convec-
tion, and entropy advection by mean meridional flows.
Assuming that, beneath the convection zone, the contribution
from meridional flows is dominant, we can estimate the
strength of the vertical flow, U, required to maintain thermal-
wind balance using the method described in Section 1.2. For
the Cartesian geometry of our simulations, and using our
dimensionless variables, the result is

U
k L

N
u

2
31x z

2
2 3 1

r
W

D
=

⎛
⎝⎜

⎞
⎠⎟ ∣ ( )

(see Equation (74) of Wood et al. 2011), where N is the
buoyancy frequency, L is the horizontal scale, and Δ is the
tachocline thickness. In Case H1 we have N 0.1 , L=1,

Figure 8. Top row: the contributions to the azimuthal vorticity equation in CaseH1 from the Coriolis, baroclinic, Lorentz, and viscous terms in Equation (26). Bottom
row: the terms in Equation (30).

9

The Astrophysical Journal, 853:97 (14pp), 2018 February 1 Wood & Brummell



u 0.005x  , and 0.4D  , leading to a prediction of
U 4 10 4´ - . At the mid-depth of the tachocline, the mean
vertical velocity in Case H1 actually has an amplitude of
U 3 10 4´ - , very close to the analytical prediction.

3.1.4. The Tachocline Thickness

In summary, then, the results of the horizontal field cases are
generally in agreement with the model of Wood et al. (2011),
although their model was far more idealized than that used
here. A thin tachocline forms through a balance between the
transport of angular momentum by meridional circulations and
magnetic fields. The bulk of the tachocline is in thermal-wind
balance, but the Lorentz force breaks thermal-wind balance in
the tachopause and beneath, to an extent that depends on the
strength of the field in the radiation zone. The field in these
simulations is confined to the radiation zone because of flux
expulsion by the meridional flows in the convection zone, even
though these mean flows contain only a small fraction of the
kinetic energy. However, the convection zone simulated here is
far less turbulent, and less compressible, that the real solar
convection zone, and therefore almost certainly underestimates
the contribution of turbulent convection to the mean field
transport. Under more realistic conditions, we would expect the
turbulence to assist in the confinement of the field (e.g., Tobias
et al. 1998; Kitchatinov & Rüdiger 2008).

It is instructive to compare the tachocline thickness observed
in CasesH1 and H2 with that predicted by Wood et al. (2011),
and with earlier tachocline models that made different
assumptions about the balance of forces. For instance, the
model of Rüdiger & Kitchatinov (1997) neglected the role of
meridional flows entirely, instead assuming a balance between
(turbulent) viscous and Maxwell stresses. This led to the result
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where Δ is the tachocline thickness, L is the horizontal
lengthscale of the differential rotation, and vA is the Alfvén
speed in the vicinity of the tachocline. In our dimensionless
units, with L=1, this corresponds to
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The tachocline in CasesH1 and H2 is somewhat thicker than
this, reflecting the fact that the meridional flow—and not
viscosity—dominates the transport of angular momentum in
these simulations.

On the other hand, Gough & McIntyre (1998) predicted that
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where N is the buoyancy frequency in the tachocline,
k cpk r= ( ) is the thermal diffusivity, and ucz is the differential

flow velocity in the convection zone. In our dimensionless
units, with N 0.1 and u 0.005cz  , this corresponds to
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which is close to the thickness observed, but does not explain
the variation in Δ between CasesH1 and H2.

Finally, Wood et al. (2011) predict that
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which in our dimensionless units corresponds to
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This is roughly in accordance with the values 0.44D  and
0.6D  obtained in CasesH1 and H2, although we caution

that Equation (36) was obtained using a much more idealized
model than that used here. To determine whether Equation (36)
can reliably predict the tachocline thickness would require a
more extensive parameter study than that attempted here, and is
beyond the scope of the present paper.

3.2. Polar Field Cases

The results of Section 3.1 demonstrate that the dynamics
anticipated by the model of Gough & McIntyre can be achieved
in a self-consistent model, at least at those latitudes where the
magnetic field geometry is approximately horizontal. However,
closer to the (magnetic) poles the field becomes increasingly
vertical and can no longer be confined by flux expulsion from
the convection zone. We therefore expect the dynamics within
the polar tachocline to depart significantly from those described
in the previous section.
Figure 9 shows the time-averaged differential rotation and

magnetic field in CaseP1, averaged over seven rotation
periods. We find that the differential rotation is mainly
confined to the convection zone, with a concentration of
retrograde rotation (black) over the pole surrounded by
prograde rotation (white). By contrast, the radiation zone
rotates uniformly, and a thin tachocline is established at their
interface, z=1. Compared to the initial equilibrium field
(Figure 2), the magnetic field lines are much more horizontal
and are mostly confined to the radiation zone.
The artificial Cartesian geometry of the polar simulations

makes it difficult to meaningfully define the azimuthal average
of the fields, because the mean fields retain significant non-
axisymmetric features even in a long-time average. Never-
theless, it is still useful to extract the axisymmetric component
of the mean fields; this can be achieved efficiently by taking the

Figure 9. Time-averaged vertical vorticity, zw , in CaseP1, which is a proxy for
the differential rotation. Regions of significant prograde (cyclonic) and
retrograde (anticyclonic) rotation are colored white and black, respectively,
whereas regions of nearly uniform rotation are left transparent. A selection of
field lines are also shown, whose footpoints are randomly chosen locations at
the bottom of the domain.
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Fourier transform in the x and y directions and then calculating
the first term in the Jacobi–Anger expansion for each Fourier
mode. The result for CaseP1 is shown in Figure 10 in a
neighborhood of the pole. The confinement of the magnetic
field is evident in this plot; with the exception of a few field
lines very close to the rotation axis, the mean field is entirely
confined below the convection zone. The radiation zone is in
almost uniform rotation, apart from some slightly retrograde
rotation very close to the rotation axis, where the field lines are
not confined. However, it should be noted that the mean
rotation rate becomes rather ill-defined close to the rotation
axis, particularly in the convection zone, where time-dependent
velocity fluctuations greatly exceed the mean. For this reason, it
is much harder to measure the thickness of the tachocline in the
polar simulations than in the horizontal field simulations
presented earlier. (Of course, the same difficulty arises in
measuring the thickness of the solar tachocline close to the
poles, e.g., Basu & Antia 2003.) Based on a purely visual
inspection of Figure 10, we estimate the bottom of the
tachocline to be at a depth of around z 1.4 . Finally, we note
that the meridional flow is downwelling in the tachocline
throughout the region shown in Figure 10, as expected. The
meridional flow in the convection zone, on the other hand, is
more complex and is actually upwelling over the pole.

Because of the difficulty in defining the azimuthal average in
our Cartesian polar simulations, it is difficult to quantitatively
analyze the results in the same way as in the Section 3.1.3. But
by comparing results from simulations performed at different
parameters we can still determine how the thickness of the
tachocline, and the degree of magnetic confinement, depend on
the strength of the primordial field. We therefore present, in
Figure 11, Cases P2 and P3, which have weaker magnetic fields
than Case P1 but are otherwise identical. These plots highlight
the issue mentioned above, that the rotation rate of the
convection zone close to the axis fluctuates enormously, and
the mean rotation rate is not clearly defined even after
averaging over several rotation periods. The most conspicuous
differences in the angular velocity in Figures 10 and 11 result
from differing patterns of convective cells rather than from
significant differences in the dynamics. Nevertheless, these
plots demonstrate that if the primordial magnetic field is made
weaker then the mean field lines become more deeply confined
within the radiation zone. In order to more precisely define the
degree of magnetic confinement in these simulations, we first

note that, far below the convection zone, the flows become very
weak and so the mean magnetic field must converge
asymptotically to a potential field with B 0z

2 = . To meet
the lower boundary condition (3), the field must therefore have
the form
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near the bottom of the domain, for some constant z0. We will
refer to z0 as the “effective confinement depth,” because this is
the depth at which the magnetic field would become horizontal
if the vacuum solution (38) were continued up toward the
convection zone. We note that the initial condition for the polar
simulations (5) has a confinement depth of z 00 = , because the
boundary conditions at z=0 impose that the field is horizontal
there. To quantify the degree of magnetic confinement we
therefore take the Fourier component of Bz with horizontal
wavenumbers k kx y 4

= = p at the bottom of the domain, z=2,
and use it to compute the value of z0 in Equation (38). The
result is illustrated in Figure 12, which shows the amplitude of
this Fourier mode as a function of depth for Cases P1, P2, and
P3, and the corresponding vacuum solutions after matching at
z=2. The effective confinement depths for the three cases are
1.28, 1.59, and 1.73 respectively, demonstrating that a weaker
field is confined deeper within the radiation zone. For
reference, the dotted line in Figure 12 shows the initial
condition (5).
Figure 13 shows plan views of the time-averaged magnetic

field lines in Cases P1, P2, and P3, demonstrating that a weaker
poloidal field is more tightly wound up by the differential
rotation in the tachocline. The same result was found by Wood
& McIntyre (2011) in their axisymmetric model. The analogue
of Equation (24) in the polar tachocline, assuming an
axisymmetric balance between the mean Coriolis and Lorentz
torques, is

Bru rB2
2

39r
0

p
b

- W = f· ( ) ( )

where Bp is the poloidal magnetic field. In each of the polar
simulations, the strength of the meridional flow, ur, is similar,

Figure 10. Meridional cross section showing the mean poloidal magnetic field (solid lines), meridional circulation (dashed lines and arrows), and angular velocity
(color scale) in CaseP1, after averaging in azimuth. The angular velocity on the rotation axis is ill-defined and therefore not shown.
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Figure 11. Meridional cross sections comparable to Figure 10, but for Cases P2 and P3.

Figure 12. Solid lines: amplitude of the Fourier mode of Bz with k kx y 4
= = p in Cases P1, P2, and P3. Dashed lines: the vacuum solution (38), with z0 chosen to

match the true solution at z=2. Dotted line: the initial, unconfined vacuum solution (5).

Figure 13. Plan view of the time-averaged magnetic field lines in Cases P1, P2, and P3.
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and so a reduction in the strength of Bp must be compensated
for by an increase in Bf, in order to maintain this balance.

The fact that weaker magnetic fields are more deeply
confined near the pole—in contrast to the situation for
horizontal magnetic fields seen in Figure 5—suggests that
near the pole the degree of magnetic confinement is determined
primarily by the meridional flow in the tachocline. To confirm
this hypothesis we have performed an additional simulation in
which the forcing in the convection zone, and therefore the
differential rotation and meridional flows, are switched off.
This simulation was initialized with the confined magnetic field
realized in Case P1. On the timescale of magnetic diffusion
across the domain the field became increasingly unconfined,
eventually resembling the vacuum force-free magnetic field (5).
We conclude that the turbulence in the convection zone cannot
by itself confine the magnetic field, and so the magnetic
confinement achieved in Cases P1, P2, and P3 can be attributed
to the mean downwelling flow in the tachocline.

4. Summary and Conclusions

We have presented a fully nonlinear 3D numerical model of
the solar tachocline. These are the first numerical simulations in
which a tachocline forms self-consistently at the interface
between the convection and radiation zones, and remains thin
on long timescales (including the timescale of viscous diffusion
across the domain). Uniform rotation is maintained in the
radiation zone by a confined primordial magnetic field, whose
azimuthal Lorentz force balances the Coriolis force from the
mean meridional flow. In the absence of the magnetic field, the
tachocline would thicken and ultimately extend deep into the
radiation zone, as in the simulations of WB12. At the same
time, the mean meridional flow confines the magnetic field
below the convection zone, as originally envisaged by Gough
& McIntyre (1998). Crucially, viscous stresses are subdomi-
nant in the tachocline and beneath, so our results demonstrate
the magnetostrophic balance that is expected to hold in the real
solar tachocline.

We have considered two different magnetic field geometries,
to represent the conditions within the tachocline at different
latitudes. The horizontal field cases presented in Section 3.1
qualitatively resemble the laminar axisymmetric models of
Gough & McIntyre (1998) and Wood et al. (2011), and the
balance of forces roughly agrees with the results of those
models. In particular, the tachocline is approximately in
thermal-wind balance, with latitudinal variations in entropy
that are maintained against thermal diffusion by the meridional
flow. In the “tachopause” at the bottom of the tachocline, and in
the layers beneath, thermal-wind balance is modified by the
Lorentz force. In these simulations the confinement of the
magnetic field is produced by flux expulsion by the meridional
flow in the convection zone, even though the meridional flow is
much weaker than the turbulent convection in that region.

The polar field cases presented in Section 3.2 closely
resemble the axisymmetric polar model of Wood & McIntyre
(2011). The magnetic field is confined by the downwelling
meridional flow in the tachocline, whose penetration depth into
the radiation zone depends on the strength of the magnetic
field. A weaker magnetic field is thus more deeply confined,
producing a thicker tachocline.

In all of our simulations, the confinement of the field can be
attributed entirely to the mean meridional flow. However, in the
real Sun, convective turbulence is also expected to play an

important role in the transport of the mean field, through flux
expulsion (Zel’dovich 1957; Weiss 1966; Rädler 1968;
Kitchatinov & Rüdiger 1992; Tao et al. 1998) and topological
pumping (Drobyshevski & Yuferev 1974; Tobias et al. 1998;
Dorch & Nordlund 2001; Kitchatinov & Rüdiger 2008). The
absence of significant pumping in our simulations is probably
explained by the relatively small density contrast across the
domain, which is a limitation of our local model. Ultimately,
global simulations are required to determine how the tachocline
dynamics described here are modified by the transport of
magnetic flux and angular momentum within the convection
zone. Our simulations can inform the choice of parameters in
such global models.
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