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Abstract 

We construct inter~ecting D-brane configurations that encode the gauge 

groups and field content of dual N = 4 supersymmetric gauge theories in three 

dimensions. The duality which exchanges the Coulomb and Higgs branches 

and the Fayet-Iliopoulos and mass parameters is derived from the S £(2, Z) 

symmetry of the type liB string. Using the D-brane configurations we con­

struct explicitly this mirror map between the dual theories and study the 

instanton corrections in the D-brane worldvolume theory via open string in­

stantons. A general procedure to obtain mirror pairs is presented and illus­

trated. We encounter transitions among different field theories that correspond 

to smooth movements in the D-brane moduli space. We discuss the relation 
"' 

between the duality of the gauge theories and the level-rank duality of affine 

Lie algebras. Examples of other dual theories are presented and explained via 

T-duality and extrem?-1 transitions in type II string compactifications. Finally 

we discuss a second way to study instanton corrections in the gauge theory, 

by wrapping five-branes around six-cycles in M -theory compactified on a 

Calabi-Yau 4-fold. 



1 Introduction 

Recently a duality between N = 4 supersymmetric gauge theories in three dimensions 

has been proposed under which the Higgs and Coulomb branches and the Fayet-Iliopoulos 

(FI) and mass parameters are exchanged [1]. The dual gauge theories have an ALE space 

as Higgs branch, and were based on Kronheimer's construction [2] of ALE spaces as a 

hyperkahler quotient. This duality has been generalized in [3] to gauge theo.ries whose 

Higgs branch is a quiver variety. The gauge groups and field content ofthe gauge theories is 

encoded in the quiver diagrams that serve as the starting point for Kronheimer-N akajima's 

hyperkahler quotient construction of the quiver varieties [4, 5]. Various interpretations of 

the duality have been proposed in [6-8]. 

It was suggested in [7] that the duality can be interpreted as arising from the S L(2, Z) 

symmetry of type liB string theory. One of the aims of this paper is to apply this idea 

to the families of dual theories (called A and B models) introduced and analyzed in [3]. 

(1) The A-model has U(k) gauge group, n hypermultiplets in the fundamental repre­

sentation of the gauge group and one hypermultiplet in the adjoint representation. Its 

dual B-model has U(kt gauge group and matter content specified by a quiver diagram 

corresponding to the Hilbert scheme of k points on an ALE space of An-I type. By the 

Hilbert scheme of k points on a complex surface X we mean a smooth resolution of the 

k-symmetric product of X, Symk X. Concretely, there will be one hypermultiplet in the 

fundamental representation of one of the U(k)'s, and n hypermultiplets charged under a 

pair of U(k)'s. 

(2) The A and B models have U(k)n and U(k)m gauge groups respectively, and matter 

content specified by quiver diagrams corresponding to the hyperkahler quotient construc­

tion of certain moduli spaces of instantons on vector bundles over ALE spaces of An-I 

and Am-I types. All matter is charged under either one or two U(k) gauge groups. 

The paper is organized as follows: In section 2 we associate intersecting D-brane 

configurations of type liB string with the quiver diagrams and use the S L(2, Z) symmetry 

to construct their duals and to derive the mirror map between the mass terms of the A­

model and the FI terms of the B-model, in agreement with [3]. The instanton corrections 

to the metric on the moduli space have an important role, as discussed in [9, 3, 10]. Vv"e 

study them in the framework of intersecting D-brane configurations as arising from open 

string instantons, and find agreement with what we expect from the field theory analysis. 

This enables us to gain further insight into the interelation between D-brane and field 

theory moduli spaces. In section 3 we study the condition for complete Higgsing in the 
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gauge theory corresponding to a general quiver diagram using D-brane configurations. 

We rederive results which were proposed in [3] from field theory viewpoint, and that 

were proven in [11]. The analysis of complete Higgsing provides a general procedure to 

obtain mirror pairs from quiver diagrams, which is illustrated by examples. We show that 

moving two 5-branes of the same type through each other is reflected as a phase transition 

on D3-brane worldvolume theory. We then take another point of view and discuss the 

gauge theory duality in relation to the level-rank duality of affine Lie algebras, which 

are represented on the middle homology of the moduli spaces of the gauge theories. In 

section 4 we consider dual Abelian gauge theories. We prove the duality using field theory 

methods as well as T -duality and extremal transitions in type II string compactifications. 

Finally, in section 5 we study once more the instanton corrections, this time by relating 

them to the wrappings of five-branes in M -theory around divisors of Calabi-Yau 4-folds, 

in a similar fashion as in [12]. 

2 Quivers and Intersecting Branes 

In this section we construct configurations of intersecting three and five-branes in type 

liB string theory, in such a way that the world-volume theory on the three-branes has the 

gauge groups and matter content associated with.quiver diagrams. We will then use the 

S L(2, Z) symmetry of type liB string theory to study mirror symmetry and verify part 

of the results of [3]. 

Following [7] we use NS 5-branes, Dirichlet 5-branes and Dirichlet 3-branes in order 

to construct configurations that preserve one quarter of the space-time supersymmetry. 

We will use conventions and notations similar to those used in [7]: The worldvolume 

coordinates of the NS 5-branes, the Dirichlet 5-branes and the Dirichlet 3-branes are 

(x 0 x 1 x 2 x 3 x 4 x 5 ) (x0 x 1 x 2 x 7 x 8 x 9 ) and (x0 x 1 x 2 x 6 ) respectively The coordi-' ' ' ' ' ' ' ' ' ' ' ' ' ' . 
nate x 6 , which is one of the dimensions of the world volume of the Dirichlet 3-branes is 

compactified on a circle of radius R. The fact that the coordinate x 6 is compactified on 

a circle will change the field content of the worldvolume theory compared to the cases 

studied in [7] where the coordinate x 6 took values on the real line. 

The position of the ith NS 5-brane in (x 7
, x 8

, x 9
) will be denoted by Wi. Between 

the ( i - 1 )th and ith NS 5-brane there will be ki 3-branes, whose world-volume theory 

contains a U ( ki) gauge group. The Fa yet- Iliopoulos parameters { (;} for this U ( ki) gauge 

group are related to the parameters { wi} by 

(- - -i = Wi- Wi-1 (2.1) 
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The position of the ith Dirichlet 5-brane in (x 3
, x\ x 5

) will be denoted by iii; and will 

correspond to the mass parameter associated with the ith hypermultiplet in the funda­

mental representation. This hypermultiplet arises from an open string stretching between 

the ith Dirichlet 5-brane and the Dirichlet 3-brane. The position of the Dirichlet 3-

brane in (x3 ,x\x5
) will correspond to the vev's of the scalars in the vector multiplet 

which together with the vev's of the scalars dual to the vector fields on the Dirichlet 

3-brane worldvolume parameterize the vector multiplet moduli space. The position of the 

Dirichlet 3-brane in (x 7
, x 8 , x9 ) will be non-linearly relate.d to the vev's of the scalars in 

the hypermultiplets and constitute part of the coordinates on the hypermultiplet moduli 

space. The x 6 component of the vector field provides the remaining coordinates. The 

U ( 1) isometries of the hypermultiplet moduli space correspond to gauge transformations 

of this component. 

After compactification in the x6-direction, the three dimensional theory on the (x 0
, x 1

, x 2
) 

worldvolume of the Dirichlet 3-brane is an N = 4 supersymmetric gauge theory. From 

now on we will refer to this three dimensions as the Dirichlet 3-brane worldvolume. The 

gauge coupling of the Dirichlet 3-brane worldvolume theory is determined by the separa­

tion r between the NS 5-branes on the circle. In particular with one NS 5-brane we have 

the classical relation between the three and four dimensional coupling constants 

1 T 
(2.2) -=-

gj gl 
where r denotes, in this case, the radius of the compact 6th direction. One expects, 

however, corrections to this classical formula. The R-symmetry group is SU(2)L x SU(2)R 

under which the masses and FI parameters transform as (3, 1) and (1, 3) respectively. The 

mass parameters deform the metric on the Coulomb branch and lift some of the Higgs 

branch, while the FI parameters deform the metric on the Higgs branch and lift some of 

the Coulomb branch. The Higgs branch is constructed as a hyperkahler quotient with an 

SU(2)R action and is not modified by quantum corrections. 

Due to the N = 4 supersymmetry the Coulomb branch is a hyperkahler manifold 

with an SU(2)L action. Its metric is corrected by loop and monopole corrections. The 

monopoles are instantons in three dimensions and they provide exponential corrections 

to the metric. 

The duality between N = 4 supersymmetric gauge theories in three dimensions 

exchanges the Higgs and Coulomb branches, the Fayet-Iliopoulos (FI) parameters and 

masses and the R-symmetry groups SU(2)L and SU(2)R· 
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Figure 1: The D-brane configuration of the A-model is plotted on the left. The circles 

consist of k Dirichlet 3-branes, the n dashed lines are Dirichlet 5-branes and the solid line 

is an NS 5-brane. The corresponding quiver diagram is plotted on the right. 

2.1 Duality for U(k) Gauge Groups 

Consider the intersecting D-brane configuration in figure 1a. 

It consists of a NS 5-brane, n Dirichlet 5-branes and k Dirichlet 3-branes. In order to 

read off the gauge group and matter content of the three dimensional Dirichlet 3-brane 

worldvolume theory we have to apply the rules of [7]. When k Dirichlet 3-branes end 

on two NS 5-branes the gauge group is U(k). Since the NS 5-brane is positioned on a 

circle in figure 1a, the Dirichlet 3-branes do not have to end on it but can also be viewed 

as intersecting it and there is in addition a hypermultiplet in the adjoint representation 

arising from an open string connecting Dirichlet 3-branes as depicted in figure 1a. In 

the absence of Dirichlet 5-branes, the adjoint hypermultiplet together with the vector 

multiplet provide the field content for an N = 8 supersymmetry on the world volume 

of the Dirichlet 3-brane, which is the reduction to three dimensions of N = 1 super 

Yang Mills in ten dimensions. There are also n hypermultiplets in the fundamental 

representation arising from the open strings connecting the n Dirichlet 5-branes to the 

Dirichlet 3-branes. 

The Dirichlet 3-branes worldvolume theory in (x0
, x 1 , x2

) is anN= 4 supersymmetric 

theory with U(k) gauge group, n hypermultiplets in the fundamental representation and 
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a b 

Figure 2: The D-brane configuration of the B-model is plotted on the left, and the corre­

sponding quiver diagram is plotted on the right. 

one adjoint hypermultiplet. We will use the terminology of [3] and call this theory the 

A-model. 

The gauge group and matter content of the A-model is associated with the quiver 

diagram in figure lb, in a way which will be described below. The field content is precisely 

what is needed for the hyperkahler quotient construction of the moduli space of SU(n) 

k-instantons Mk(SU(n)) [13], which is the Higgs branch of the theory. 

We now perform an S £(2, Z) transformation 1 on the configuration of figure la. Recall 

that under this transformation an NS 5-brane is transformed into a Dirichlet 5-brane and 

vice versa, while the Dirichlet 3-brane is invariant. The S L(2, Z) transformation of figure 

la yields the configuration of of figure 2a, and the resulting gauge theory corresponds 

exactly the quiver diagram of figure 2b. This will be called the B-model. 

The gauge group and matter content is encoded in the quiver diagrams in the following 

way. Consider the quiver diagram in figure 2b, which contains figure la as a special case. 

We attach an index ki at each node i. There ~re n nodes in the diagram with ki = k 

(indicated by thick circles) and one node (indicated by a thin circle) with index 1. The 

1 ln an S L(2, Z) transformation we include a rotation that exchanges the coordinates ( x3
, x 4

, x 5
) and 

(x7, xs, x9). 
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gauge group and the field content of the theory are encoded in the diagram in the following 

way: We associate to each node (indicated by thick circles) i with ki = k a gauge group 

U ( k )i, to each link (connecting two thick circles) p--o j with ki = kj = k a hypermultiplet 

in the representation (k,k*) of U(k)i x U(k)j, and to the link (connecting a thick and 

a thin circle) attached to the node with index 1 a hypermultiplet in the fundamental 

representation of the U ( k) gauge group associated with the other node of the link. This is 

the field content needed for the hyperkahler quotient construction of the Hilbert scheme 

of k points on an ALE space of type An_ 1 , X An-I [4, 5], which is the Higgs branch of the 

B-model. 

It is worth noting that in fact we could get the matter content of the A-model without 

the use of an NS 5-brane in figure 1a. This corresponds to the absence of the extra 

fundamental hypermultiplet (thin circle) in the quiver diagram of the B-model in figure 

2b. These theories are equivalent to the A and B models when the mass of the adjoint 

of the A-model and the sum of the FI parameters of the B-model are zero, which is 

indeed the case here as we will discuss later. In the A-model, the relative position in the 

(x 7 ,x8 ,x9
) direction of the D3 branes with respect to the NS 5-brane corresponds in the 

B-model to the relative position in the (x3
, x\ x 5 ) direction of the D3 branes with respect 

to the D5 bran e. In other words, the parameters corresponding to the U ( 1) part of the 

adjoint hypermultiplet in the A-model correspond to those of the vector multiplet of the 

diagonal U(1) in the B-model. This is the D-brane picture of something discussed in the 

field theory context in [3], where the existence of a trivial R4 in the hypermultiplet moduli 

space of the A-model and in the vector multiplet moduli space of the B-model has been 

pointed out. 

Let us now recall some of the results of [3]. Consider the A-model: without mass 

terms, the vector multiplet moduli space is the k-symmetric product of an ALE space 

Mv(A- model, madj = 0, mfund = 0) = Symk XAn-! . (2.3) 

It has singularities inherited from the simple singularity of An_1 type of the ALE space 

X An-I, and also singularities coming from modding out by the action of the symmetric 

group. The masses for the fundamental hypermultiplets resolve the simple singularity of 

X An-!. The mass of the adjoint hypermultiplets resolves the quotient singularities of the 

symmetric product. The other effect of the mass terms is to lift some of the flat directions 

of the hypermultiplet moduli space. 

In the B-model, the resolution of the singularities of the hypermultiplet moduli space 

and the lifting of some of the flat directions for the vector multiplets are caused by 

turning on FI terms. The way in which the moduli spaces are resolved or lifted matches 
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exactly with the A-model when the vector multiplet and hypermultiplet moduli spaces 

are exchanged, provided that the FI parameters are related to the mass parameters of the 

A-model in a certain way. 

The mirror map between the mass parameters of the A-model and the FI parameters 

of the B-model takes the form [3] 

• n-1 

mi = 2:0, madj = 2:0' (2.4) 
1=0 1=0 

where mi are the masses of the fundamental hypermultiplets, madj is the mass of the 

adjoint hypermultiplet and 0 are the FI parameters. The freedom to shift the origin on 

the Coulomb branch of the A-model has been used to choose mn- 1 = madi· 

In the brane configuration of figure 1a, the mass of the adjoint hypermultiplet is zero 

since the length of the open string stretching between the Dirichlet 3-branes is zero. This 

corresponds in the dual theory to the case where the sum of the FI parameters is zero. 

It is not immediately clear how to turn on a mass for the adjoint hypermultiplet, or how 

to get a non-zero sum of the FI parameters in the intersecting brane configurations we 

consider. A possibility might be to turn on suitable string background fields, and it would 

be interesting to investigate this point further. 

Since the S L(2, Z) transformation exchanges the NS and Dirichlet 5-branes, it also 

exchanges Wi and mi. Using the relation between the FI parameters and wi in (2.1) we 

get the mirror map 

i = 1, ... , n- 1. (2.5) 

Equation (2.5) is equivalent to the mirror map (2.4) with maaj = 2:/:0
1 {z =·a. 

As indicated in (2.3), when the mass of the adjoint hypermultiplet vanishes, the v~ctor 

multiplet moduli space of the A-model with gauge group U(k) is a k-symmetric product 

of the vector multiplet moduli space of an U( 1) theory. This can be read from figure 1a as 

follows: A vev for the diagonal components of the adjoint hypermultiplet can separate the 

k Dirichlet 3-branes in (x7
, x 8

, x 9
), and each of them may be considered as independent. 

This implies that the vector multiplet moduli space which is parameterized by the vev's 

of the bosons in the vector multiplet in (x3
, x\ x5

) is a product of the vector multiplet 

moduli spaces of each brane modded by their permutation. 

This scenario is expected from another string theory viewpoint. We can use D-branes 

to probe the space-time geometry and the background gauge fields of string theory, where 

enhanced gauge symmetry in the space-time theory is reflected in the D-brane world 
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X Orientifold 
(23 of them) 

' 

06-brane 
(n of them, plus 
their images) 

02-brane probe 
{k of them, plus 
their images)) 

Figure 3: k D2-brane probes near n D6-branes in type I' 

volume theory by enhanced global symmetry. Consider a type I string theory on R7 x T 3 . 

Performing .a T-duality transformation on the T 3 coordinates we get the type I' theory: 

type IIA with eight orientifolds and sixteen Dirichlet 6-branes and their images. The 

probes are k Dirichlet 2-branes of the type IIA string. When the probes are near n 

coinciding Dirichlet 6-branes, as in figure 3, the worldvolume theory of the probes is 

that of the A-model: The gauge group is U ( k) as a consequence of having k probes, 

the adjoint hypermultiplet arises from the D2 - D2 sector and the n hypermultiplets in 

the fundamental arise from the D2 - D6 sector. Their masslessness reflects the U(n) 
space-time gauge symmetry as a global symmetry on the worldvolume of the probes. 

A vev for the adjoint hypermultiplet separates the Dirichlet 2-branes. The vector 

multiplet moduli space of each brane can be determined using the duality between M­

theory on R7 x K3 and Type I string on R7 x T 3 [14]. Under this duality each one of 

the Dirichlet 2-brane probes is mapped to an M-theory 2-brane whose world volume is 

R3 x {pt E K3 }, which implies that its vector multiplet moduli space is K 3 • More precisely, 

the vector multiplet moduli space is determined by a neighborhood of the singularity in 

the K3 and is an ALE space of An-l type. The symmetric product structure of the 

vector multiplet moduli space is a consequence of having k separated Dirichlet 2-branes. 
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a b 

Figure 4: The image in space-time of open string instantons. There are no instanton 

corrections from figure 4a, but there are from figure 4b. 

Analogous discussion has been presented for Sp( k) gauge group in [3] by taking the D2 arid 

D6 branes to lie in an orientifold point, and for N = 2 gauge theories in four dimensions 

in [15, 16]. 

Consider now the role of instanton corrections. When the adjoint hypermultiplet is 

massless we do not expect instanton corrections to the metric on the vector multiplet 

moduli space, while we do expect them when the adjoint is massive or absent [3]. In the 

following we will verify this expectation using the configurations of intersecting Dirichlet 

branes. This will also enable us to get an understanding of the stringy origin of the two 

types of coupling constants: electric and magnetic in the terminology of [7]. 

We expect the instanton corrections to the vector multiplet moduli space of the Dirich­

let 3-brane worldvolume theory to arise from monopoles which are instantons in three 

dimensions. The monopoles in the D-brane picture arise from open D-string instantons 

stretching between the Dirichlet 3-branes [17]. Open string instantons are holomorphic 

maps from the disc to space-time such that the boundary of the disc is mapped to the 

Dirichlet brane [18, 19]. Let us begin with a qualitative analysis. In order to have open 

string instantons contributions in the A-model we need holomorphic maps from the disc 

to the cylindrical shaded area in figure 4a. 

If we move the NS 5-brane as in figure 4a there is no such map. The reason is simple: 

if we think about the disc as a square then two of the edges are mapped to two Dirichlet 

3-branes. The other two edges have no boundary to be mapped to. This is consistent 
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Figure 5: An U(k) gauge theory with n fundamentals and no adjoint hypermultiplet is 

plotted in its Coulomb branch on the left and in its Higgs branch on the right. 

with what we expect from field theory considerations [3]. There is a delicate point in this 

discussion, since if we do not move the NS 5-brane, the remaining edges can end in it. 

However, we do not expect to have instanton corrections in this case, as will be discussed 

in section 5. We therefore conclude that although the relevant holomorphic maps exist, 

the coefficient of the contribution is zero. 

Consider now for comparison the D-brane configuration in figure 5a. This configura-

. tion yields on the Dirichlet 3-branes a U(k) gauge theory with n hypermultiplets in the 

fundamental representation but without an adjoint. In this case a typical open string in­

stanton is a holomorphic map from the disc to the shaded area in figure 4b, which has the 

topology of a disc. Such holomorphic maps exist, suggesting that we will, as expected, get 

instanton corrections. In section 5 we will confirm these results from a different viewpoint. 

Consider now the hypermultiplet moduli space corresponding to figure 5a which is 

depicted in figure 5b. ·As we noted previously, it is determined classically and in particular 

is not corrected by instantons. Naively, this seems to be in contradiction with the fact that 

there are holomorphic maps from the disc to the shaded area in figure 5b which has the 

topology of a disc. Recall however that the instanton corrections are exponentials of the 

instanton action ifi where ;j corresponds to the relative position of the Dirichlet 3-brane in 
9m 

(x7
, x8 , x9

) and + is the distance between the Dirichlet 5-branes [7]. The hypermultiplet 
g.,.. 

moduli space is obtained in the limit + -7 0 which means that the shaded area in figure 
9m 

5b shrinks to zero size, and therefore the instanton corrections are field independent, and 

should be taken into account at the classical level. 
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Let us now discuss the relation between open string instantons and the Dirichlet 3-

brane worldvolume instantons in a more quantitative way. First recall that the four 

dimensional gauge coupling is related to the string coupling as 

1 1 
(2.6) 

g~ 9st 

since the coefficient of the gauge kinetic term F 2 in the open string effective action is ...l... 
9st 

This together with (2.2) implies that 

1 r 

9st 
(2.7) 

where by 9e we denote the dimensionful three dimensional gauge coupling. We expect the 

"magnetic" coupling to be related to the electric one (2. 7) by an S L(2, Z) transformation, 

leading to 
1 

-2- = rgst . 
9m 

(2.8) 

In the field theory limit r --7 0, 9st --7 0 the magnetic coupling + vanishes while the 
9m 

electric coupling -\- can still be finite. This is the traditional field theory corner of the 
9e 

moduli space of D-branes. 

However, the above rough analysis clearly suggests that there are other parts of the 

moduli space of D-branes. Consider now the open D-string instanton corrections to the 

vector multiplet moduli space of the 3-brane worldvolume theory. These should take the 

form 

Open D-string lnstanton "' exp (-+-) , 
0:' 9st 

(2.9) 

where A is the area of the image of the instanton in space time. The area is r times 

the separation between the Dirichlet 3-branes which we denote by d. From field theory 

viewpoint the instanton contribution takes the form 

Field Theory lnstanton "' exp (- ( !~)) , (2.10) 

where ( ¢;v) is the vev for the scalars in the vector multiplet. This vev gives the masses of 

the W bosons through the Higgs mechanism. Since the masses of the W bosons,. which 

are associated with the open strings stretching between the Dirichlet 3-branes, are given 

by the length of the open strings times their tension we have 

d 
( ¢;v ) = ----; . 

0:' 
(2.11) 

Using (2.11) we see that indeed (2.9) and (2.10) are the same. 
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Consider now the open string instantons. Their correction should take the form 

Open String lnstanton '"" exp (-:,) . (2.12) 

From a "field theory" viewpoint the instanton contribution takes the form 

"Field Theory" lnstanton '""exp (- (:£)) , (2.13) 

where (¢H) is related to the vev's for the scalars in the hypermultiplet. Using a reasoning 

similar to the one above, with open strings replaced by D-strings, we have 

d 
(¢H)=-,-. 

Q' 9st 

Using (2.14) we see that (2.12) and (2.13) are equal. 

(2.14) 

The above identification of the field theory instantons with the open string instantons 

provides one of the main direct links between the brane and the field theory moduli spaces. 

Indeed, the analysis yields the following picture: in the D-brane moduli space there exists 

a part where the physics is described by a traditional field theory. In this case the vector 

multiplet moduli space can be corrected by instantons while the hypermultiplet moduli 

space is determined classically. In addition, there is a dual part in the moduli space, the 

"magnetic phase", where the hypermultiplet moduli space is corrected, but the vector 

multiplet is not. And finally there are regions were both moduli spaces get corrections 

and both the electric and the magnetic couplings are finite. The traditional field theory 

mirror symmetry does not explain what is the mirror of a theory that has only a Coulomb 

branch but not a Higgs branch, since the mirror theory has a Higgs branch but not a 

Coulomb branch 2 • In order to describe such mirrors we have to enlarge the field theory 

moduli space to the D-brane moduli space. 

2.2 Duality for U(k)n Gauge Groups 

Mirror symmetry for U(kt gauge groups can be obtained from the intersecting D­

brane configuration in figure 6a. It consists of n NS 5-branes, n sets of Dirichlet 5-branes, 

each set containing Vi, i = 0, ... , n-1 different Dirichlet 5-branes, and k Dirichlet 3-branes. 

Applying the same rules as in the previous section we see that the three dimensional 

Dirichlet 3-brane worldvolume theory is an N = 4 supersymmetric theory with gauge 

group and matter content associated with the quiver diagram 6b. This will be called the 

2This reminds of an analogous phenomena in the Calabi-Yau moduli space where the mirror of a rigid 

Calabi-Yau manifold (h21 = 0) should have h 11 = 0 and is therefore not a Calabi-Yau manifold. 
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a b 

Figure 6: The D-brane configuration of the A-model and the corresponding quiver dia­

gram. 

A-model. The gauge group is U(kt, one U(k) for each node of the extended Dynkin 

diagram. There are two kinds of matter. As before, for each pair of gauge groups whose 

nodes are connected by an edge there is matter transforming as (k, k*) under U(k) x U(k ). 

In addition, there are Vi matter fields transforming in the fundamental representation of 

the ith U(k) gauge group. 

We denote the A-model as (U(k)n; {vi}). The Higgs bran<;h of the A-model is the 

moduli space of instantons on a vector bundle V over an ALE space of type An-l· More 

precisely, it describes the moduli space Mk(V) of instantons of instanton number k on 

V = EBR?v;, with gauge group U(V), where Ri are particular line bundles over the ALE 

space associated to the different representations of Zn [4]. 

Performing an S L(2, Z) transformation on the D-brane configuration in figure 6a yields 

a configuration which corresponds to the quiver diagram of figure 7 in the case where all 

Vi~ 1. 

In the notations of [3], the B-model gauge theory in figure 7 is (U(k )m; { wi} ), where 

n-l 

LVi = m, 
i=O 

m-1 

L Wi = n. 
i=O 

(2.15) 

The mirror map takes the following form: Denote by m!B)' L:1::-~ Wt < z < L:i=o Wt 
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Figure 7: The quiver diagram of the B-model. 

the masses of the hypermultiplets in the B-model charged only under the ph U(k). In 

addition, there are m masses of hypermultiplets charged under two U(k)'s. Using the 

freedom to shift the origin on the Coulomb branch, we can choose all these masses equal 

to the same value which we denote by iii~~), and in addition we can choose iii~~_)1 = 0. 

Then the relation between the Fl parameters (fA) of the A-model and the masses of the 

B-model reads [3] 

t EGA) 
1=0 
n-l EGA) 
1=0 

n-l 

( """""' ) -(B) 
~VI mzJ. 
1=0 

(2.16) 

In our case iii~~) vanishes since the open string stretching between Dirichlet 3-branes 

which gives rise to a hypermultiplet charged under two U(k)'s is of zero length at the 

origin of the Coulomb branch. This is the analog of the adjoint hypermultiplet of the 

previous sections. Similarly, the sum of the Fl parameters in the A-model is zero, which 

can be easily seen from (2.1). 

As before, the S £(2, Z) transformation replaces the NS and Dirichlet 5-branes, and 

exchanges wi and iiii. Using (2.1), the Fl parameters of the A-model are related to the 

mass parameters of the B-model by 

i = 1, ... , n- 1. (2.17) 
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a b 

Figure 8: The D-branes configuration of the A-model and the corresponding quiver dia­

gram. 

Equation (2.17) is equivalent to the mirror map (2.16) with m~~) = 0. 

3 Duality for Tii U(ki) Gauge Groups 

In this section we generalize the examples of the previous section to dual models based 

on Tii U(ki) gauge groups. Consider the quiver diagram in figure 8a, which encodes the 

field content of a Tii U(ki) gauge theory. 

We will analyze the mixed branches of this theory and find the criterion for complete 

Higgsing, both from a field theory viewpoint and via a consideration of D-brane configu­

rations. This will enable us to find the procedure to construct the mirror partner of the 

model. 

Denote the internal and external indices of the quiver diagram by the vectors k = 

( k0 , . .. , kn_t) and v = ( v0 , . .. , Vn-l) respectively. ~or a given choice of FI parameter 

( = ( (o, ... , ~-I) the hypermultiplet moduli space of the gauge theory is the quiver 

variety M((k, v) which is a certain moduli space of instantons. When ( is chosen to be 

generic, the gauge group is completely broken and M((k, v) is smooth. In this case, the 

theory only has a Higgs phase. 
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3.1 Mixed Branches in the Model with ( = 0, m = 0 

When the Fl parameters ( and the bare masses m are not generic, the moduli space of 

vacua consists of several branches touching each other at phase transition points (or lines, 

surfaces etc). We consider here the most special case ( = 0, m = 0. A mixed branch is 

characterized by a (conjugacy class of the) unbroken gauge group G. The classification of 

the possible unbroken gauge groups G C IL U(k;) is given in section 6 of [5] and section 

3 and 4 of [11]. According to these, G always takes the following form: 

P n-I 

G = II U(Ka) X II U(£;) . (3.1) 
a=l i=O 

Here U(Ka) is the diagonal subgroup of Tii:d U(Ka)i C Tif;01 U(k;);, and U(£;) is a sub­

group of U(k;)i. Let us denote k; = k;- 'L-a Ka -£;. Then, the mixed branch with unbroken 

gauge group (3.1) is the product H(k,K) X v(k,K)' where v(k,K) is a space of ( quaternionic) 

dimension 'L-a Ka + 'L.; f.; and H(k,K) is given by 

(3.2) 

where M~eg(k, v) IS the completely Higgsed phase of the model with internal indices 

k = (ko, ... , kr) and external indices v. SymK X is the subspace of the symmetric product 

SymiKIX, IKI = 'L-a Ka, consisting of configurations of IKI-points in X where Ka of them 

are in the same position. 

We can find a corresponding branch in a three and 5-brane configuration. We assume 

that the nonemptyness of M~eg(k, v) corresponds to the existence of a complete Higgs 

phase in the brane picture. It will be shown in the next subsection that this is indeed 

correct. The branch consists of configurations of Dirichlet 3-branes where £; of the k; 

Dirichlet 3-branes in the ith interval between the NS 5-branes are constrained to end on 

the NS 5-branes, and there are IKI Dirichlet 3-branes without boundary moving freely from 

the NS 5-branes but Ka of them (a= 1, ... ,p) are constrained to have the same position 

in the (x7
, x8

, x9 ) direction. In addition, there are other Dirichlet 3-branes, that are partly 

generated by passing Dirichlet 5-branes through NS 5-branes, as will be explained in detail 

in the following. 

3.2 Criterion for Existence of Complete Higgs Phase 

In [3] we proposed a condition for the existence of a complete Higgs phase in the models 

corresponding to quiver diagrams with indices (k, v ). It is given by (see e.g. equation 
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Figure 9: The ith interval of NS 5-branes. 

(8.5)) 
(3.3) 

In fact the same issue is discussed in [5] and solved in [11]. The criterion (Corollary 10.9 

of [11]) is indeed (3.3) provided that the condition 

(3.4) 

holds. We now derive (3.3) and (3.4) from the three and 5-brane picture. In order to get 

a complete Higgs phase we have to take all the 3-branes off the NS 5-branes and constrain 

them to end on the Dirichlet 5-branes. We do this as in [7] by moving Dirichlet 5-branes 

through NS 5-branes creating new Dirichlet 3-branes between them. Let us focus on the 

neighborhood of the ith interval of NS 5-branes in figure 9. 

We distinguish the following three cases: (i) k; ~ k;_ 1 ,k;+1 , (ii) k;+ 1 ~ k; ~ k;_ 1 and 

(iii) k; ::::; ki+l, k;_ 1 • We will derive the condition for taking the Dirichlet 3-branes off 

the NS 5-branes in the order (i)=?(ii)=?(iii) inductively. In case (i) we move k; - k;_ 1 

Dirichlet 5-branes in the interval to the left-next interval and k; - ki+l to the right-next 

interval. This is possible if and only if v; ~ (k;- k;_ 1 ) + (k;- k;+l) which is the condition 

(3.3). In case (ii), given that the Dirichlet 5-branes have been moved as in step (i), 

k;+1 - k; Dirichlet 5-branes enter in the interval from the right-next one. So now, there 

are v; + ki+l - k; Dirichlet 5-branes. Then, we only have to move ki - k;_ 1 of them to 

the left-next interval, which is possible if and only if v; + ki+l - k; ~ k; - k;_ 1 • Finally 

in the case (iii) where the condition (3.3) is trivially satisfied, given (i) and (ii), k;+1 - k; 

Dirichlet 5-branes enter from the right while k;_ 1 - k; from the left. At this stage it is 

obvious that all the Dirichlet 3-branes can be taken off the NS 5-branes. Now we have to 

find a phase where all the Dirichlet 3-branes are constrained to end on Dirichlet 5-branes. 
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a b 

Figure 10: A configuration with one Dirichlet 5-brane where there is no complete Higgsing 

since the condition (3.4) is not satisfied. 

If there is no Dirichlet 5-brane, it is impossible. If there is only one Dirichlet 5-brane as 

in figure 10, even though all the 3-branes can intersect with it, we can easily take them 

off because none of them has a boundary, and there is no complete Higgs phase. If there 

are two or more Dirichlet 5-branes as in figure 11, then, there is obviously a phase where 

all the 3-branes end on Dirichlet 5-branes at their boundaries which cannot be taken off 

the Dirichlet 5-branes. Thus, we rederived the condition (3.4). 

As an application of the condition for complete Higgsing, we will show that when two 

Dirichlet 5-branes pass each other the field theory may undergo a phase transition in the 

D-brane moduli space. To be precise, 5-branes of the same type do not have to pass each 

other but can be exchanged by moving them in the three coordinates transverse to their 

world volume. 

Consider the quiver diagram of figure 12a. The intersecting brane configuration cor­

responding to it can be brought by the usual rule for Dirichlet 5-branes passing an NS 

5-brane to the form of figure 12c. If we allow a Dirichlet 5-brane to pass another Dirichlet 

5-brane we get the brane configuration of figure 13a. 

Using S £(2, Z) transformations on figure 13a we will conclude that the quiver diagram 

of figure 13c is the mirror of the quiver diagram of figure 12a. However, this is incorrect 

since the model of figure 12a has a Coulomb phase while the model of figure 13c does 

not have a complete Higgs phase, since the condition (3.3) is not satisfied. One can 

also check this by counting the dimensions of the vector multiplet and hypermultiplet 

moduli spaces of the models. Therefore we are led to a contradiction. This implies that 

when two 5-branes of the same type pass each other, the field theory content on the 
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a b 

Figure 11: A modification of figure 10, with two Dirichlet 5-branes where there is a 

complete Higgsing since both conditions (3.3) and (3.4) are satisfied. 

2 

a b c 

Figure 12: A quiver, its Coulomb branch description via D-branes in 12b, and its Higgs 

branch description in 12c. 
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a b c 

Figure 13: The D-brane configuration 13a is derived from figure 12c if we we allow a 

Dirichlet 5-brane to pass another Dirichlet 5-brane. 13b is the S £(2, Z) dual of 13a. The 

quiver in 13c corresponding to 13b is a false mirror of 12a. 

D3 brane is changed - we have a nontrivial phase transition on its worldvolume. This 

phenomenon has a simple interpretation in terms of D-branes. The coupling contants, 

as well as the Fayet-Iliopoulos and mass parameters of the D3 brane worldvolume theory 

are determined by the positions of the various 5-branes. Varying them is simply moving 

around in the 5-brane moduli spaces. Incidentally, these moduli spaces also have a gauge 

theoretic interpretation, i.e. moduli spaces of the supersymmetric gauge theories on the 

5-brane worldvolumes. D-branes thus link different field theories as phases corresponding 

to different regions of the brane moduli space. 

This is one of the most important concepts emerging from this construction. It has 

much in common with the conifold transition [20]. Here we encountered phase transitions 

in field theory while moving smoothly in the D-brane moduli space. The conifold transi­

tion is a phase transition from the supergravity field theory viewpoint and is smooth in 

the closed string theory. 

3.3 Mirror Pairs 

The above consideration of three and 5-brane configurations leads to a recipe for 

the construction of mirror pairs. The mirror of the model based on affine An-I Dynkin 

diagram with indices (k, v) is the model based on affine Am-I Dynkin diagram with 
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indices (I, w ), I = ( !0 , .•• , lm-d, w = ( w 0 , ... , Wm-d, which are given in the following 

way. Without loss of generality, we may assume that k0 = max{ki}· Let us introduce the 

notations v = v- Cnk and w = w- Cml where Cn and Cm are the Cartan matrices for - -the affine Lie algebras sl ( ri) and sl ( m) respectively. Then, w and w are given by 

w (1' 0, ... '0, 1' 0, ... '0' 1' ... '1' 0, ... '0, 1' 0, ... '0) 
'-v---' ~ ~ ,_____....., 

(3.5) 

Vn-1 iio-I 

w (0, ... ,0,1,0, ... ,0,1,0, ... ,0,1, ... ,1,0, ... ,0,1, 0, ... ,0 ). 
,_____....., ,_____....., ......._,__, '-v---' ,_____....., 

(3.6) 

k0 -k1 VJ-1 v2-1 Vn-! vo+k1-ko -1 

Here, if there is a space of negative length Vi- 1 = -1, the left-next entry is added to the 

right next entry. If the negative space appears in the right extreme, the left-next entry is 

added to the first entry. Given wand w, the vector I is determined up to an ambiguity of 

adding (1, 1, ... , 1). This is fixed by saying that l0 = k0 • Note that n and mare related 

by 
n-I 

m = LVi, 
i=O 

m-1 

n= l:w. 
•=0 

(3.7) 

We can associate to vectors of indices Young diagrams v, v, w, w-+ Y(v), Y(v), Y(w), Y(w). 

Here, Y(v), Y(v) are Young diagrams whose rows have lengths L:i=o Vi,j = 0, ... , n- 1 

and I:i=o Vi,j = 0, ... , n- 1. The Young diagrams Y(w), Y(w) have columns of lengths 

L:{=q-j wi,j = 0, ... , m -1 and L:j=i-i wi,j = 0, ... , m -1, where q and ij are the largest 

indices such that Wq =I 0, Wq =I 0. The Young diagrams are related by 

Y(v) = tY(w), Y(w) = tY(v), (3.8) 

where ty is the transposition of Y along the North West-SouthEast diagonal. This gen­

eralizes the transposition rule [3] of the models with common internal indices in which 

V = V, W = W. 

As an illustration, consider gauge theory associated to the quiver diagram given in 

figure 14a. One can find its mirror by considering the corresponding brane configuration, 

moving D5 branes in an appropriate way, and performing an S L(2, Z) transformation. 

The result is given in figure 14b, the corresponding Young diagrams in figure 15 and 16. 

3.4 Mirror Symmetry and Level-Rank Duality 

In [5, 11] Nakajima showed that there is an action of the affine Lie algebra sl(n) on 

the middle dimensional homology groups Hmid(M,(k, v)) of the moduli spaces M((k, v) 

of the models based on the affine An-t Dynkin diagram where ( is chosen to be generic. 
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Figure 14: An example of a mirror pair. 

a b 

Figure 15: Young diagram for the model in figure 14a: Figure 15a is Y(v) and figure 15b 

is Y(v) . 
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Figure 16: Young diagram for the model in figure 14b: Figure 16a is Y(w) and figure 16b 

is Y(w) . 

More precisely, for a fixed v, there is an action of the affine Lie algebra sl ( n) on the vector 

space 

E9 Hmid(M((k, v)) 
k 

where k runs over all possible internal indices. It is the irreducible integrable highest 

weight representation of highest weight Av where Hmid(M((k, v)) is the weight space for 

the weight Av - O:'k (Theorem 10.16 of [5], Theorem 10.3 of [11]). The symbols Av and 

O:'k in the statement are defined by Av = l:i=o v;A;, O:'k = 2::£=0 k;ai, where A; are the 

fundamental affine weights and 0:'; are the simple affine roots. It is interesting to note 

that the middle dimensional homology of the Higgs branch of the model based on the 

affine An-1 Dynkin diagram with indices (k, v) is a weight space of a representation of -sl(n) at level m while the one of the mirror (based on the affine Am_ 1 Dynkin diagram -with indices (1, w)) is a weight space of a representation of sl( m) at level n. Indeed the 

condition (3.3) for existence of complete Higgs phase in the model with ( = m = 0 simply 

says that Av- O:'k is non-negative, which implies that Av- O:'k is a weight of the integrable 

representation of highest weight Av (see [21] Proposition 12.5). The other condition (3.4) 

shows that the mirror is also based on an affine Dynkin diagram. This strongly reminds 

us of the "so called level-rank duality in two dimensional conformal field theories, solvable 

statistical models, and quantum groups (see [22] and references therein). Usually, level­

rank duality is stated in terms of transposition of Young diagrams which can be contrasted 

with (3.8). It would be interesting to pursue the relation between mirror symmetry and 

level-rank duality further and find its physical interpretation. In particular, we would like 

to know the meaning of the curious fact that the mirror symmetry does not map highest 
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weights to highest weights, and whether the middle-dimensional homologies of the moduli 

spaces have any interpretation in field theory. 

4 Abelian Dual Pairs 

In this section we describe a large class of dual pairs of Abelian N = 4 gauge theories 

with matter. In fact, modulo some subtleties, we will be able to find the dual of any 

given Abelian gauge theory with matter, as long as there is some matter charged under 

each U(1) gauge group. If this would not be the case, part of the theory would be a pure 

N = 4 U(1) Yang-Mills theory. The moduli space of this theory contains only a Coulomb 

branch with metric (for notations see [3]) 

( 4.1) 

which describes a cylinder R3 x s:, where s: is a circle with radius e, e being the gauge 

coupling. One could argue that in the "infrared" limit e2 -t oo this metric becomes 

the flat metric on R\ as the circle get decompactified. The dual theory of pure U(1) 

Yang-Mills theory is then easily found, it is a theory wi.th one free hypermultiplet and 

no gauge group, whose moduli space contains just a Higgs branch R 4
. We will in what 

follows never consider this trivial mirror pair 

pure U ( 1) gauge theory f-7 neutral hypermultiplet, (4.2) 

but one can always add arbitrary many copies of it to the Abelian dual pairs that we 

describe below. 

Let us now take any Abelian gauge theory with gauge group U(1)Nc and with N1 

flavors, and assume that it does not contain pure gauge groups or neutral hypermultiplets. 

We further assume that after a change of basis the hypermultiplets can be arranged in 

two sets Q;, i = 1 ... Nc and Qa, a= 1 ... Nf- Nc, such that Q; has charge 1 under the 

ith U ( 1) and is neutral with respect to the others. The charge of Q a under the ith U ( 1) 

gauge group can be an arbitrary integer which we denote by mia· This situation cannot 

always be achieved, take for example one U(1) with two hypermultiplets with charges 2 

and 3. We will discuss the general situation later. 

The total charge matrix for the hypermultiplets Q; and Qa is the Nc x Nf matrix 

(lim). We now claim that the dual of this theory is the N = 4 gauge theory with gauge 

group U(l)Nt-Nc and (NJ- Nc) X Nf charge matrix (11- mt), 

(4.3) 

24 



This is slightly reminiscent of the non-A bel ian duality in N = 1 theories in four dimensions 

(23], where the dual theories have gauge groups SU(Nc) and SU(NJ- Nc)· 

As a first check, we compute the dimensions for the Coulomb and Higgs branches. The 

first model has a Coulomb branch of ( quaternionic) dimension Nc, and a Higgs branch 

of dimension N1 - Nc, while the second model has these numbers interchanged, as it 

should. Furthermore, the first model has Nc Fayet-Iliopoulos parameters ~A, and Nf 

mass parameters. We can use the freedom to choose the origin in the Coulomb branch 

to choose the mass parameters of Qi to be zero, so that all what remains is the Nf - Nc 

mass parameters m~ of the Qcx. The dual theory has N1- Nc Fayet-Iliopoulos parameters 

~ and Nc independent mass parameters mf. The number of Fayet-Iliopoulos and mass 

parameters is indeed interchanged under the duality. In fact, we will demonstrate later 

that the precise mirror map is simply 

(4.4) 

Before giving a string theory and a field theory proof of this duality, we will first give 

an example. Consider a U(1) theory with n fundamentals, all with charge one. The dual 

theory has U(1)n-I gauge symmetry and charge matrix 

(4.5) 

and after a change of basis one sees that this is precisely the dual gauge theory proposed 

in [1]. 

4.1 String Theory Proof 

In [1],[24] it was proposed that mirror symmetry in three-dimensional gauge theories 

should be a consequence ofT-duality of type IIA and liB string theory. In [3] we elab­

orated on this proposal to provide evidence for the dualities proposed in that paper. In 

addition to this, various D-brane techniques to study three-dimensional gauge symmetries 

and their mirror symmetry have been developed [14, 3, 6, 7]. In the latter case, matter 

usually appears through open strings connecting D-branes, and is therefore charged un­

der at most two gauge groups. Since we are interested in the case where matter can be 

charged under arbitrary many gauge groups, the string theory analysis using T-duality 

will be more useful. 

We therefore view the three-dimensional gauge theories as being obtained from a 

compactification of the type IIA string on CY x SJt. To get a field theory in three 
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dimensions, we have to take a limit where R -+ 0 and a' -+ 0, while keeping R/ # 
finite. The type IIA compactification is T-dual to liB on CY x S!'/R' and the radius of 

this circle also shrinks to zero. Under T-duality, the vector and hypermultiplet moduli 

spaces are interchanged, which corresponds exactly to what happens in mirror symmetry 

in three dimensions. 

In order to apply T-duality, we first have to construct a singular Calabi-Yau mani­

fold so that type IIA compactified on it will give rise to a U(l )Nc gauge theory in three 

dimensions, with matter with charge matrix (lim). Only the local structure of the sin­

gularity is relevant for the field theory [25]. In order to get N1 hypermultiplets coming 

from wrapping D2-branes on two-cycles, we need N1 vanishing two-cycles, which we will 

denote by Ci and C01 • Furthermore, in order to get a U(l)Nc gauge symmetry, we need 

that these Nf two-cycles satisfy N1 - Nc relations in homology, so that there are only 

Nc homologically independent two-cycles. Since the charges of the hypermultiplets can 

be read off from the homology relations, we find that in our case the homology relations 

have to be [Ca] = Li mia[Ci]· For finite sizes of the two-cycles we are in the Coulomb 

branch of the gauge theory. After applying T-duality we end up in the Higgs branch 

of the dual theory. It is very difficult to recognize the gauge field and matter content 

of a gauge theory in the Higgs phase, and therefore it is better to first go to the Higgs 

phase of the original theory, and to apply T-duality after that, so as to end up in the 

Coulomb branch of the dual theory. The transition of the Coulomb branch to the Higgs 

branch is geometrically given by a conifold or extremal transition [20, 26, 27]. In type 

IIA string compactification, it is the process in which two-cycles shrink to points which 

are then deformed to three-cycles with finite volume. Denote by Ci and Ca the three 

cycles obtained after shrinking the corresponding two-cycle and replacing it by a three­

cycle. To find out the homology relations between these three-cycles, we use the results 

in [27]. Before shrinking the two-cycles, there are "magnetic" four cycles Ct which are 

dual to Ci in homology. In other words, the intersection numbers are< CtiCi >= 8ii and 

< CtiCa >= mia· After the conifold transition, these magnetic four-cycles have become 

four-chain (denoted again by en, with boundary given by 

(4.6) 

There are therefore Nc relations between the Nf three-cycles, given by 

(4.7) 

The Calabi-Yau with these vanishing three-cycles describes the Higgs phase of the original 

theory if we put the type IIA string on it, and after T-duality it should describe the 
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Coulomb branch of the dual theory if we put the type liB string on it. In type liB 

compactifications, vanishing three-cycles give rise to matter by wrapping D3-branes on 

them, the number of U(l) gauge groups is the number of homologically independent 

three-cycles, and the charges can be read off from the homology relations. By inspection 

of (4.7), we see that the dual theory is a U(l)NrNc gauge theory, with charge matrix 

(11- mt). Notice that the homology relations (4. 7) are such that the conifold transition is 

indeed possible [27]. This gives a string theory proof of the proposed duality. In order to 

also .derive the mirror map and to find the explicit forms of the metrics on the Coulomb 

and Higgs branches of the moduli space, we now turn to a field theory proof of the duality. 

4.2 Field Theory Proof 

The field theory proof will simply consist of an explicit computation of the metrics 

on the Higgs and Coulomb branches of the moduli space of the U(l)Nc gauge theory. 

The Coulomb branch of the moduli space is given a hyperkahler manifold, whose metric 

can be computed in perturbation theory. Because the gauge group is Abelian, there can 

be no monopole corrections to the metric and perturbation theory should give the full 

answer. Each U(l) vector multiplet contains three scalars, whose expectation values we 

denote by ri, i = 1, ... , Nc. In addition, there are Nc angular variables <Pi which is the 

expectation value of the scalar dual to the gauge fields, and which is periodic with period 

27r. Constant shifts of these angular variables <Pi is a symmetry of the theory that is 

unbroken in perturbation theory, and gives rise to Nc triholomorphic U(l) isometries of 

the Coulomb branch metric. Such metrics can always be written in the form [28, 29] 

(4.8) 

where 

( 4.9) 

Either by comparing to known cases, or by doing a direct one-loop calculation, one finds 

that through one loop the metric gij is given by 

( 4.10) 

where e is the bare gauge coupling. Mirror symmetry will only hold in the limit where 

e --1- oo. Although we have no rigorous proof, it seems plausible that gij does not receive 
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any further higher loop corrections. If there would be a good off-shell formulation of 

N = 4 multiplets in three-dimensions, the first term of the metric ( 4.8) would come 

from an F-term, and one could use this to argue in favor of the absence of higher loop 

corrections to 9ii. The absence of higher loop corrections is also supported by the string 

theory considerations in the previous section, and we will assume this to be the case from 

now on. 

It remains to compute the metric on the Higgs branch, which is given by an hyperkahler 

quotient of an N1 - Nc quaternionic dimensional vector space with the flat metric by the 

action of the group U(1 )Nc. Luckily, the metric on the Higgs branch is not subject 

to perturbative or non-perturbative corrections, and the classical considerations will be 

exact. The moment map equations for the hyperkahler quotient are certain quadratic 

equations for the expectation values of the scalar fields in the hypermultiplets. However, 

since we are dealing with an Abelian hyperkahler quotient, we can perform a change of 

variables that linearizes the moment map equations, see [30] and section 4.3 of [3]. In this 

change of variables, we replace the two complex numbers that are the expectation values 

of the two complex scalars in a hypermultiplet by a three vector and an angular variable. 

Denote the vector and angular variable coming from < Qi > by si, '1/Ji, and those coming 

from < Qo: > by so:, '1/Jo:. Then the flat metric for < Qi > and < Qo: > in terms of the 

new variables reads 

~ c:ildsidsi + !si!(d'I/Ji +wi · dsi) 2
) 

+ ~ CL
1

dso:dso: + !so:!(d'I/Jo: +wo:. dso:) 2
), ( 4.11) 

where w is determined by means of ( 4.9). The s are clearly the natural variables to 

compare the Higgs branch metric to the Coulomb branch metric. The moment map 

equations in terms of the new variables read 

ili = Si + L mio:So: = G, i = 1, ... ,Nc (4.12) 
o:' 

where the (are the Fayet-Iliopoulos parameters. The vector fields that generate the action 

of U(1)Nc are 

The moment map equations can be used to solve for S; in terms of so:. If we substitute this 

solution in (4.11), we find the metric on the constrained manifold iJ- 1
((). Subsequently, 

we can use the U(1 )Nc symmetry to gauge fix '1/Ji = 0, so that so:, '1/Jo: are the coordinates on 

the hyperkahler quotient M = iJ- 1 
( () / U ( 1 )Nc. To compute the metric on the hyperkahler 
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quotient, we need to project its tangent vectors in the direction perpendicular to the gauge 

group. For example, let us compute the inner product of the vectors Va = a I O'lj;a and 

V,g = 8j8'1j;,g on M. If(,) denotes the inner product on il-1((), and (, )M that on M, 

then 

where Nij = ( V;, Vj). Explicitly, this becomes 

(Va, V,g)M - lsaloa,g -lsalmia(N-I)ijls,glmje 

Nij - lsiiOij + mialsalmja 

( 4.14) 

( 4.15) 

where Si is expressed in terms of sa by means of ( 4.12). After some algebra, one can show 

that (Va, V,g)M is the inverse of the matrix 9af3 = lsal- 1oa,6 + mialsil- 1mjf3· In a similar 

fashion one can find all the remaining components of the metric on M, with as final result 

that the metric on the Higgs branch is given by 

( 4.16) 

with 
_ Oa(J ~ ffiiaffii,6 

9a,6 - -
1

_ I + L..,. - _ 
Sa i l(i- mi,s,l 

(4.17) 

By comparing ( 4.10) and ( 4.17), we immediately see that the duality m ~ -mt indeed 

exchanges the metrics on the Higgs and Coulomb branches, and that the mirror map is 

given by (4.4). 

4.3 General Charges 

The duality we considered so far was restricted to the case where the charge matrix 

had the specific form (lim). Here we consider what happens if the charge matrix has 

a generic form (aijlbia), with aij a non-degenerate matrix. This situation can always be 

achieved, if necessary after a relabeling of the hypermultiplets. In addition, we have the 

freedom to choose a different basis for the generators of the U(1 )Nc gauge group. In order 

to keep the same gauge group, and not a multiple cover of it, different bases must be 

related by an Nc x Nc integer-valued matrix Cij with determinant ±1. Thus, the theory 

with charge matrix (aijlbia) is equivalent to the theory with charge matrix (cikakjlcikbka)· 

If the determinant of aij is ±1, we can choose c = a- 1
, and we are back in the situation 

we already discussed. It remains therefore to discuss the case where the determinant of a 

is not equal to ± 1. 
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First, we consider what happens to a general metric of the form ( 4.8) if we introduce 

new variables </>i = Cij</>j, with Cij some non-degenerate integer-valued matrix. If we at the 

same time repla~e ri = rj(c1)ji, 9ii = CikCji9kz and Wij = CikCj[Wkz, the metric keeps the 

form ( 4.8) in terms of the primed variables, and ( 4.9) remains satisfied. If we assume that 

the</>~ are also periodic with period 2rr, then the metric in the primed variables describes a 

f-fold cover of the metric in the unprimed variables, where f is the finite group zn jc(Zn). 

The above remarks are useful when we study the Higgs branch of the theory with 

charges (aijlbia)· The moment map equations read 

(4.18) 

and these can again be used to solve for Si in terms of sa. In addition, the U( 1 )Nc 

symmetry can be used to gauge 'l/Ji = 0, but in contrast to the previous case, this does 

not yet completely fix the U(1)Nc gauge symmetry. A finite subgroup r still acts on the 

'l/J&, while preserving 'l/Ji = 0. This means that (4.16), with G replaced by (a-1)ik0o and 

mia by (a- 1 )ikbka, describes in fact a f-fold cover of the Higgs branch. The finite group 

r is given by 

( 4.19) 

In order to find the metric on the Higgs branch itself, we have to mod out by the action 

of the group r, which is similar to the situation described above where we replaced 

</>i = Cij</>j etc. Here, we need to replace 'l/Jcr = Caf3'l/J~, with similar replacements for the 

other variables. In order to correctly implement the action of the group r, the N1 x Nf 

matrix Caf3 must be chosen in such a way that its columns form a basis for the lattice 

zN, EB bt( a-I )t(zNc ). This then finally yields the following metric on the Higgs branch, 

where we dropped the primes 

( 4.20) 

It is straightforward to compute the metric on the Coulomb branch through one loop 

in a theory with arbitrary charge matrix, by simply generalizing ( 4.10). Comparing 

with (4.20) we then find that the Higgs branch of a U(1)Nc theory with charge matrix 

(aijlbia) is the same as the Coulomb branch of a U(1)Nf-Nc theory with charge matrix 

((c-1 )crt3l- (c-Ibt(a-I)t)ai)· Furthermore, the mirror map reads mi = (a-1)ij0- As an 

example, on finds that the Higgs branch of a U(1) 2 theory with charges 

( 4.21) 
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is the same as the Coulomb branch of a U(1) theory with charges 

( 57 -83 2 ) . ( 4.22) 

At this point ~e have only established one-half of a mirror symmetry. We still have 

to show that the Coulomb branch of the theory with charge matrix ( aij jbia) is equal to 

the Higgs branch of the theory with charge matrix ((c- 1)a,al- (c-Ibt(a-I)t)ai). We will 

skip the details, but after a careful analysis one finds that the Coulomb branch of the 

(alb) theory is the quotient of the Higgs branch of the (c- 1 1- c-1 bt(a- 1 )t) theory by a 

finite group Z. This finite group is the subgroup of U(1)Nc that acts trivially on all 

hypermultiplets with charge matrix (alb). For generic charges (ajb), this subgroup will be 

trivial and we have an exact mirror symmetry. For non-trivial Z, there exists no exact 

mirror symmetry, but only an approximate mirror symmetry, where one moduli space is 

a finite cover of the other. A different way to phrase the condition that Z is trivial is to 

demand that the gauge theory has complete Higgsing, because Z is the discrete subgroup 

of the gauge group that survives on the Higgs branch. This is remarkably similar to the 

condition we encountered in section 3, and may well be a condition that applies to all 

dual pairs. 

5 Instanton Corrections from Type IIA String Theory 

In this section we discuss a D-brane wrapping framework to study instanton corrections 

to the metric on the vector multiplet moduli space of N = 4 supersymmetric gauge 

theories in three dimensions. The field theories arise as the particle limit of type IIA 

string theory compactified on M 6 x 5 1
, where M6 is a Calabi-Yau 3-fold and the radius c 

of S! is sent to zero. The gauge group and matter content of the gauge theories depend 

on the nature of the singularity of the CY 3-fold. We will be mainly interested in the 

case of a 3-fold M6 constructed as a family of K3 fibered over a complex curve of genus 

g. The singularity that we will consider arises when the K3 has singularities of the type 

Ak at n isolated points which are resolved to Ak-I over a generic point. 

The set up is as follows: Consider M-theory compactified to three dimensions on a 

Calabi-Yau 4-fold M 8 of the type M6 x T 2
, where M 6 is a Calabi-Yau 3-fold. This yields 

an N = 4 supersymmetric three-dimensional theory. Denote by c2 the area of T 2
• In the 

the limit c -7 0 we get the type IIA string compactified on Ms X s; with radius of s; 
sent to zero. 

It was argued in [12] that the instanton corrections in the three dimensional theory 

arise from the 5-branes in M-theory wrapping divisors of the 4-fold. Two types of divisors 
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are distinguished: 

(a) Vertical divisors: Divisors of the type D = C x T 2 where C is a divisor of M 6 . 

(b) Horizontal divisors: In our case M6 itself. 

In the limit c; --7 0 only the vertical divisors are relevant. Moreover, in the particle 

limit we only probe the local structure of the singularity and therefore only the exceptional 

divisors contribute. 

In [12] a necessary condition for a divisor to contribute to the superpotential of an 

N = 2 theory in three dimensions was found, namely that its arithmetic genus has to be 

one. In our case, the divisors contribute to the J d4 () term and therefore to the metric on 

the moduli space, since there are four fermionic zero modes associated with the breaking 

of half of the supersymmetry by the 5-brane. Also, the condition on the arithmetic genus 

X of the divisor D is modified to 

x(D) = o. (5.1) 

The reason for this change compared to [12] is that the U(1) charge of J d40 is zero while 

that of J d2
() is one. In fact it is trivial to see that the arithmetic genus of a divisor of the 

type D = C x T 2 is always zero. This however is not a sufficient condition, since there 

are in general other fermionic zero modes that may cause the contribution to the metric 

to vanish. A sufficient condition is 

h1,o( C) = h2,o( C) = 0 , (5.2) 

which means that there are no fermionic zero modes other than those that arise from the 

breaking of half of the supersymmetry by the 5-brane. 

Let us now apply this framework in order to see when to expect instanton corrections. 

Consider the following examples which follow from the analysis of [31-33, 25]: 

(i) A singularity of the conifold type where n isolated 2-spheres with n -1 linear relations 

among them shrink to zero size. Stated differently we have a singularity of A1 type at n 

points over a curve of genus zero P 1, which is resolved at a generic point. In the particle 

limit we have an N = 4 gauge theory in three dimensions with gauge group U(1) and 

n hypermultiplets in the fundamental representation. Being isolated singularities, the 

resolution does not lead to exceptional divisors that can contribute. Thus there are no 

instanton corrections in this case. This is compatible with field theory, since there are no 

monopoles in an A bel ian gauge theory. 

(ii) A singularity of the type Ak-l over a curve of genus zero P 1 . In the particle limit 

we have an N = 4 gauge theory in three dimensions with gauge group SU(k) and no 

matter. There are k- 1 exceptional divisors of the form P 1 over P 1
. These are complex 
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• 

surfaces C;, i = 1, ... , k -1 which satisfy h1,0 (Ci) = hz,o(Ci) = 0. Thus we are guaranteed 

to have instanton corrections in this case. This is compatible with what we expect from 

field theory. In this case the instanton corrections are essential to make the metric on the 

vector multiplet moduli space positive definite. 

(iii) A singularity of type Ak_1 over a curve of genus g, L:9 • In the particle limit we have 

an N = 4 gauge theory in three dimensions with gauge group SU(k) and g adjoints. 

There are k- 1 exceptional divisors of the form P1 over L:9 . These complex surfaces do 

not satisfy h 1,0 ( Ci) = 0. Thus we expect no instanton corrections. Indeed in the presence 

of massless adjoints we do not expect instanton corrections (nor higher than one loop 

corrections) [3]. 

(iv) A singularity of type Ak at n points which is resolved to Ak-1 over a generic point 

of a curve of genus zero P 1
• In the particle limit we have an N = 4 gauge theory 

in three dimensions with gauge group U(k) and n hypermultiplets in the fundamental 

representation. There are k - 1 exceptional divisors Ci of the form P 1 over P1 which 

satisfy h1,0 ( Ci) = h2,0 ( Ci) = 0. Thus we expect instanton corrections. ·we considered a 

similar example in section 2, where we showed that there are open D-string instantons 

contributing to the worldvolume field theory on the Dirichlet 3-branes. 

(v) A singularity of type Ak at n points which is resolved to Ak-1 over a generic point 

of a curve of genus g ,L:9 . In the particle limit we have an N = 4 gauge theory in three 

dimensions with gauge group U(k), g adjoints and n fundamentals. There are k- 1 

exceptional divisors Ci of the form P 1 over L:9 • These complex surfaces do not satisfy 

h 1,0 ( Ci) = 0. Thus we expect no instanton corrections in this case . We considered a 

similar example corresponding to g = 1 in section 2, where we showed that there are no 

open D-string instantons contributing to the worldvolume field theory on the Dirichlet 

3-branes. 

In [12] the instanton contributions to the superpotential of the three dimensional 

N = 2 theories were computed in several cases using the wrapping of the 5-branes. It 

would be interesting to do an analogous computation of the instanton corrections to the 

metric on the vector multiplet moduli space using the above framework. 
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