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Abstract

Policy makers around the world have recognized the role that agriculture, forestry, and
land use can play in addressing climate change. These sectors are a growing source of greenhouse
gases (GHGs), emitting one quarter of global anthropogenic GHG emissions annually. However,
global integrated assessment models estimate that enhancing natural land-based CO, sinks, avoid-
ing deforestation, and using bioenergy to avoid fossil fuel use could provide nearly one third of
GHG abatement required to avoid the most extreme impacts of climate change. Through dedi-
cated management and preservation, natural and managed landscapes can remove CO, from the
atmosphere through photosynthesis, storing carbon in trunks, branches, roots, soils, and detritus
for decades and even centuries.

Yet outside the confines of optimization models, federal, state, and local policy makers are
often unsure how to efficiently deploy natural climate solutions, given the many markets, laws,
landowners, and natural systems that influence net GHG outcomes and the potential for negative
impacts to ecosystems and social welfare. In this dissertation, I provide three essays that inform
natural climate solutions policy, accounting for important sources of real-world complexity.

e Chapter 1. Addressing uncertainty and bias in land use, land use change, and for-
estry greenhouse gas inventories. National GHG inventories (NGHGIs) are the pri-
mary tool for tracking anthropogenic GHG emissions for individual countries, sectors,
and sources. I propose an analytical framework for implementing the uncertainty pro-

visions of the UN Paris Agreement Enhanced Transparency Framework, with a view to

iv



identifying the largest sources of land use, land use change, and forestry uncertainty in
National GHG Inventories and prioritizing methodological improvements. This chapter
was published in Climatic Change.”

e Chapter 2. Conserving carbon: Evaluating term-limited conservation programs. I
develop a structural model of the landowner decision to participate in a voluntary,
term-limited conservation program that constrains the optimal timing of land use
change and that allows for re-enrollment, addressing a key literature gap in the evalua-
tion of climate and conservation policy in forestry and agricultural sectors.

e Chapter 3. The problem with pricing “carbon”: exploring forest-driven albedo
effects in DICELAND. I update the Dynamic Integrated model for Climate and the
Economy (DICE) to endogenously control global forest carbon sequestration activity. I
use the so-called DICELAND model to estimate efficient global carbon prices and for-
est CO, mitigation levels when accounting for albedo (land-darkening) effects of global

forest expansion.

" McGlynn, E., Li, S., F. Berger, M. et al. Addressing uncertainty and bias in land use, land use change, and
forestry greenhouse gas inventories. Climatic Change 170, 5 (2022). https://doi.org/10.1007/s10584-021-
03254-2



1. Addressing uncertainty and bias in land use, land use change,

. . *
and forestry greenhouse gas inventories

Abstract

National greenhouse gas inventories (NGHGIs) will play an increasingly important role in tracking
country progress against United Nations (U.N.) Paris Agreement commitments. Yet uncertainty
in land use, land use change, and forestry (LULUCF) NGHGHI estimates may undermine
international confidence in emissions reduction claims, particularly for countries that expect
forests and agriculture to contribute large near-term GHG reductions. In this paper, we propose
an analytical framework for implementing the uncertainty provisions of the U.N. Paris Agreement
Enhanced Transparency Framework, with a view to identifying the largest sources of LULUCF
NGHGI uncertainty and prioritizing methodological improvements. Using the United States as a
case study, we identify and attribute uncertainty across all U.S. NGHGI LULUCF “uncertainty
elements” (inputs, parameters, models, and instances of plot-based sampling) and provide GHG

flux estimates for omitted inventory categories. The largest sources of uncertainty are distributed

" Co-authored with Serena Li, Michael Berger, Meredith Amend, and Kandice Harper. Emily McGlynn (lead
author) developed research objectives and analytical methods for all land use categories, wrote manuscript,
and carried out analysis for Wetlands and Alaska, Hawaii, and U.S. Territories. Serena Li carried out
analysis for Cropland and Grasslands sections, including the expert survey. Michael Berger developed and
oversaw analysis for Settlements. Meredith Amend coded the Monte Carlo analysis in R for Settlements
analysis. Kandice Harper developed and carried out analysis for Forests section and provided support for all

other analysis.



across LULUCF inventory categories, underlining the importance of sector-wide analysis: forestry
(tree biomass sampling error; tree volume and specific gravity allometric parameters; soil carbon
model), cropland and grassland (DayCent model structure and inputs) and settlement (urban tree
gross to net carbon sequestration ratio) elements contribute over 90% of uncertainty. Net
emissions of 123 MMT COse could be omitted from the U.S. NGHGI, including: Alaskan grassland
and wetland soil carbon stock change (90.4 MMT CO,); urban mineral soil carbon stock change
(34.7 MMT COsy); and federal cropland and grassland N,O (21.8 MMT COse). We explain how
these findings and other ongoing research can support improved LULUCF monitoring and

transparency.

1. Introduction

National greenhouse gas (GHG) inventories (NGHGIs) are the primary tool for tracking
anthropogenic (human-induced) GHG emissions at the country, sector, and source category level.
Over the coming decade and beyond, NGHGIs will support setting and measuring progress against
each country’s “nationally determined contributions” (NDCs) for reducing GHG emissions under
the United Nations (U.N.) Paris Agreement, while also supporting domestic climate policy
development and evaluation (U.N. Framework Convention on Climate Change (UNFCCC) 2019a;
UNFCCC 2019b; Andersson et al. 2008). In particular, NGHGI accounting for land use, land use
change, and forestry (LULUCF) is a priority for many countries: the first round of NDCs indicates
that LULUCF will provide 25% of planned GHG reductions leading to 2030 (Grassi et al. 2017).

Global integrated assessment models project that enhancing natural land-based sinks, avoided



deforestation, and bioenergy could provide 30% of GHG abatement required to keep temperature
increase below 1.5 C by 2050 (Roe et al. 2019).

Yet LULUCEF is a large source of uncertainty in estimating anthropogenic GHG emissions
(Friedlingstein et al. 2020, Pulles 2017, Jonas et al. 2014, National Research Council 2011). To
ensure international confidence in national GHG reporting, significant improvements in LULUCF
NGHGI estimation methods and transparency will be required. In this paper, we demonstrate an
analytical framework for identifying, quantifying, and reporting on sources of LULUCF
uncertainty and bias in NGHGI inventories at the level of individual datasets, models, submodels,
and other inputs (“uncertainty elements”). Using the United States as a case study, we suggest
countries can use this analytical framework to comply with U.N. Paris Agreement guidelines in
two ways:

(1) Transparently reporting on LULUCF NGHGI uncertainty estimation methods, including
clarifying which uncertainty elements are accounted for and how LULUCEF uncertainty is
calculated; and

(2) Identifying the largest uncertainty elements as a first step in prioritizing inventory
improvements.

In our framework, we identify and attribute uncertainty across all U.S. LULUCF GHG source

and sink (collectively, flux) estimates and provide initial GHG flux estimates for omitted

inventory categories." We make three contributions: (1) we propose and demonstrate an analytical

f In this paper, “flux” or “flux estimate” refers to a GHG source or sink calculation, over any geography,
sector, subsector, or gas; “inventory category” refers to the most disaggregated level of flux estimates
reported in an NGHGI.



framework that countries can use to fulfill U.N. Paris Agreement transparency provisions, (2) we
advance the large literature concerning NGHGI uncertainty by focusing on so-called individual
“uncertainty elements,” which allows for better targeting data and research needs, and (3) we
demonstrate a set of uncertainty attribution methods that can be applied across inventory
categories with varying methodological complexity, including the most sophisticated (Tier 3)
methods.}

1.1 Evidence of global and national LULUCF uncertainty

LULUCEF estimation uncertainty results from a combination of structural and conceptual
challenges, including: (1) large heterogeneity in fluxes across time and space, driven by complex
biological, geochemical, and physical processes combined with variable anthropogenic and natural
disturbances, (2) the inability to continuously observe fluxes over time and over large areas, and
(3) differences in definitions and accounting methods across countries and studies (Rypdal and
Winiwarter 2001, Grassi et al. 2018). These dynamics drive higher proportional and absolute
uncertainty when compared to GHG sources for which census data is available, underlying
processes are better understood, and available GHG accounting guidance is more prescriptive

(Pulles 2017).

t Tiers 1, 2, and 3 refer to Intergovernmental Panel on Climate Change (IPCC) methodologies for
estimating national GHG fluxes by source and sink categories (2006, 2019). Tiers 1 and 2 multiply activity
data by an emissions factor. Tier 2 applies country-specific emissions factors while Tier 1 uses IPCC-
recommended defaults. LULUCF Tier 3 methods include using country-specific models, repeated field
sampling and/or remote monitoring, and methods that account for climatic dependency. IPCC guidance
posits that Tier 3 methods are likely to provide higher accuracy than lower tiers (2006, 2019).
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NGHGIs play a useful role in tracking anthropogenic LULUCF GHG emissions.
Alternative methods (global land use change bookkeeping models and dynamic global vegetation
models (DGVMs)) exhibit large multi-model uncertainty for total atmosphere-to-land CO, fluxes,
with a standard deviation equal to 10% of annual global anthropogenic GHG emissions (4.0
Gigatonnes (Gt) CO, yr' over average, 2010-2019) (Friedlingstein et al. 2020). The disagreement
is driven in part by conflicting definitions of anthropogenic LULUCF fluxes. Combining global
bookkeeping models and DGVMs to align with the definition used by NGHGIs (all LULUCF
fluxes on managed land) achieves results consistent with aggregate NGHGI estimates (within 0.8
Gt CO, yr') (Grassi et al. 2018).% As such, NGHGIs appear to be able to collectively validate the
LULUCEF estimates of global models and vice versa.

However, individual NGHGIs vary widely in quality and precision, which creates
challenges in tracking country-level emissions trends and therefore NDC progress. The NGHGIs of
major-emitting countries reviewed in Table 1 cover 40% of global LULUCF fluxes (in absolute
value, see Supplementary Material (SM) Section 1). Reviewed countries report proportional
LULUCEF uncertainty ranging from 12% (Colombia) to 102% (Cambodia). Of the 5 major-

emitting countries with the largest LULUCF fluxes, we find that four (China, United States,

$ TPCC (2006, 2019) NGHGI guidelines recommend that anthropogenic LULUCF GHG fluxes be defined as
all GHG fluxes occurring on managed lands, the so-called “managed land proxy.” Given the objective of
NGHGIs to quantify all anthropogenic GHG fluxes, the managed land proxy has recognized flaws, including
the presence of naturally-occurring GHG fluxes on managed lands (e.g., wildfires) and indirect human-
induced fluxes on unmanaged lands (e.g., methane emissions due to permafrost thaw). However, several
rounds of [IPCC review have found the managed land proxy to be the most pragmatic approach to
delineating anthropogenic emissions in the LULUCF sector. For a useful review of the managed land proxy,
see Grassi et al. (2018).



Russia, India) exhibit sufficiently large uncertainty that the LULUCF emissions reductions
proposed in their first NDCs are at risk of failing statistical significance at the 95% confidence
level (Jonas et al. 2010, see SM Section 1 for further discussion).

Furthermore, there is significant heterogeneity in uncertainty estimation methods, making
it difficult to compare precision across NGHGIs and to know how well uncertainty values reflect
true variance of the flux point estimate. Challenges include not reporting LULUCF uncertainty at
all (India, South Korea), not reporting uncertainty for inventory categories (China, Brazil), and,
most commonly, providing insufficient information on how uncertainties were calculated (no
reporting on uncertainty measures for emissions factors or activity data; no information on how

uncertainty measures were estimated).



(1) (2) (3) (4) (5) Uncertainty reported? (6) (7) (8)

Economy-wide Half NDC

LULUCF, emissions, incl. LULUCF CI, LULUCF,

MMT LULUCF, MMT % Tier 3, Inventory  uncertainty MMT MMT
Country COse COqe LULUCF Sector Gas Category (%) COze  COse
China -1,103 11,484 4 X 21 232 160
United States -789 5,798 97 X X 278 213 20
Indonesiaf 639 1,513 0 X 34 217 450
Russia -533 1,614 1 X X 32 171 80
India -307 2,647 0 NR 50
Nigeria 307 648 0 X 22 68
Brazil 403 1,577 0 X 67 270 300
Malaysia -241 81 0 X X 17 41
Mexico -148 551 0 X X 19 28 60
Cambodia 131 166 0 X X 102 134 0
Thailand{f -91 270 0 56 51
Peruf 76 174 0 X 80 61
Turkey -84 425 0 X X 51 43 0
Chile -64 51 0 X X 65 42 50
Colombiaf 64 226 0 X 12 8 20
Japan -50 1,161 94 X X 14 7 30
South Korea -44 656 0 NR
Italyf -42 438 82 X 28 12
Spain -38 280 0 X X 48 18
Vietnamf -39 317 74 X 72 28

Table 1. LULUCF NGHGI uncertainty for 20 major emitting countries. Column (4) is
calculated by taking the absolute value of fluxes for all LULUCF inventory categories and finding
the proportion of flux absolute values labeled Tier 3. Column (6) reflects one direction of the 95%
confidence interval (CI) as percentage of central value (column (2)). NR = Not reported. Column
(7) shows half of the 95% CI range, derived from columns (2) and (6). Column (8) shows
LULUCF GHG reductions between 2010 and 2030, consistent with countries’ first NDCs (Grassi
et al. 2018). Not all countries quantify LULUCF actions in the first NDC. Gray rows indicate
countries with estimation error (column (7)) larger than NDC LULUCF reductions (column (8)).
For additional detail on sources and derivations, see Supplementary Material Section 1, Table 1-1.
TLULUCEF sector uncertainty is not reported, so column (6) is calculated using error propagation
and inventory category uncertainty. {{Uncertainty is calculated using error propagation and total
inventory uncertainty with and without LULUCF. $United States reports non-symmetric 95% CI,
27% reflects average of 35% lower bound and 19% upper bound; however column (7) reflects the

non-symmetric CI.



The large majority of LULUCF fluxes reported in NGHGIs are calculated using lower
order (Tier 1 and 2) methods, which likely limit accuracy (Ogle et al. 2003, Ogle et al. 2006). As
countries look to improve LULUCF monitoring methods, uncertainty estimation will become more
complex. Indeed, uncertainty estimates may increase to more closely approximate true variability,
particularly as more sources of uncertainty are accounted for. Therefore, it will be important for
countries to simultaneously improve NGHGI methods, transparently report uncertainty, and
identify opportunities for increasing precision to ensure NDC emissions reduction claims are well-
supported.

To date, non-Annex I (developing) countries have lacked mandates and resources to report
NGHGIs in a format comparable to Annex I countries, which has driven large heterogeneity in
non-Annex [ NGHGIs.” Going forward, however, Parties to the U.N. Paris Agreement have
agreed to implement an Enhanced Transparency Framework, under which both Annex I and non-
Annex I countries will regularly submit NGHGIs using 2006 Intergovernmental Panel on Climate
Change (IPCC) Guidelines for National Greenhouse Gas Inventories and the 2019 Refinement
(IPCC 2006, IPCC 2019, UNFCCC 2015, UNFCCC 2019a, UNFCCC 2019b). All Parties are
required to estimate uncertainty for all inventory categories and inventory totals, and to report on
uncertainty estimation methods and underlying assumptions (UNFCCC 2019a, Decision
18/CMA.1). Developing countries are given some flexibility to qualitatively discuss uncertainty for

key inventory categories, where data are unavailable.

* Annex [ is defined under the UNFCCC as countries that were members of the Organisation for Economic
Cooperation and Development (OECD) in 1992.



To support the Enhanced Transparency Framework, countries can use the methods
demonstrated in this paper to both transparently report on NGHGI uncertainty methods and to
identify the largest sources of LULUCF uncertainty as a way to prioritize inventory
improvements. We use the United States as a case study due to the scale of U.S. LULUCF fluxes
(the largest of all Annex I countries, Mooney et al. (in press)), the proportion of LULUCF fluxes
calculated using Tier 3 methods (97%, Table 1), and the degree of transparency in the U.S.
NGHGI. The methods and data underlying the U.S. LULUCF inventory are based on over 130
peer-reviewed articles and government reports and improvements made over 25 NGHGI reports
since 1996 (U.S. NGHGI 2021). The United States encompasses a large variety of land uses and
climatic regions, making it a useful basis for studying GHG estimation methods across LULUCF
inventory categories. The United States is also active in LULUCF carbon credit markets,
generating over 25% of LULUCF credits issued globally under existing voluntary and compliance
carbon crediting mechanisms (see SM Section 1, Table 1-3).

1.2 Defining and quantifying NGHGI uncertainty

We are interested in a quantitative measure of the potential difference between an NGHGI
flux estimate and the true value of the flux being estimated, referred to as model outcome
uncertainty or prediction error (Walker 2003, Harmon et al. 2015). Our analysis focuses on two
ways model outcome uncertainty can manifest: (1) random error around the true flux, and (2) bias
or systematic error between the estimate and the true flux.

As recommended by IPCC (2006, 2019) guidelines, NGHGI uncertainty assessments often

assume flux estimates are unbiased, that is, the true GHG flux can be recovered in expectation



(Magnussen et al. 2014). Using this assumption and standard statistical inference methods, one
can calculate a 95% confidence interval (CI) for each estimate, a measure of random error which
indicates the bounds within with the true flux will be located 95% of the time, assuming data
could be randomly sampled many times over relevant populations.

Previous work has relaxed the unbiasedness assumption by comparing independent
calculations for the same inventory category (Petrescu et al. 2020, Erb et al. 2013, Shvidenko et
al. 2010, Smith et al. 2008). Even if unbiasedness holds for individual flux estimates, NGHGIs as a
whole can be biased by omitting inventory categories due to lack of knowledge, data, or technical
capacity. Inventory-wide bias has been estimated by comparing aggregate NGHGI flux estimates
across historical inventory recalculations (Hamal 2010), a method which captures bias from
changes in inventory methods and inventory category omissions, but this approach will not be
useful for identifying potential inventory improvements.

Many studies have assessed uncertainty across entire NGHGIs (e.g., Bun et al. 2010,
Winiwarter and Muik 2010, Lieberman et al. 2007) and with a focus on agricultural and forestry
inventory sectors (e.g., Petrescu et al. 2020, Shvidenko et al. 2010, Leip 2010, Nilsson et al. 2007,
Monni et al. 2007a, Monni et al. 2007b), yet uncertainty estimates are limited to the level of
sector, gas (CO,, CHy, N,O), or flux. Few studies have performed more detailed uncertainty
attribution for agriculture and forestry sectors, and where this analysis occurs it is limited to Tier
2 inventory methods (Monni et al. 2007a, Winiwarter and Rypdal 2001, Winiwarter and Muik
2010). Studies that assess uncertainty for individual inventory categories provide useful context

and inputs for our analysis (Peltoniemi et al. 2006, Ogle et al. 2010).
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We look to build on these literature strands in two ways: (1) identifying individual sources
of uncertainty which we term “uncertainty elements,” for each NGHGI flux estimate, with a goal
of resolving uncertainty attribution at a level that is meaningful for setting programmatic,
research, and budgetary priorities, and (2) attributing uncertainty across all elements as
consistently as possible for the entire LULUCF sector. While for most fluxes we are unable to
account for bias, we suggest a measure of NGHGI bias by providing initial estimates of omitted

GHG fluxes.

2. Methods

Our analytical scope aligns with the IPCC (2006, 2019) definition of LULUCF fluxes,
encompassing all GHG sources and sinks from U.S. managed lands. We also broaden LULUCF to
include N>O and CHy emissions from agricultural soil management and rice methane for two
reasons: (1) the United States uses a single model, DayCent, to jointly calculate carbon stock
change and non-CO, fluxes on agricultural soils, and (2) previous studies identified agricultural
soil N»O emissions as the largest source of economy-wide NGHGI uncertainty (Ramirez et al.
2008, Winiwarter and Muik 2010, Petrescu et al. 2020), so including these inventory categories
would likely impact our analysis.

We describe here the two components of our analysis:

o Uncertainty attribution: We quantify the contribution of each uncertainty element to the

95% ClIs of all relevant LULUCF inventory categories.
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e Omitted flux estimation: We provide initial estimates of known omitted fluxes, using
literature review, expert input, and Tier 1 and 2 methods.
2.1 Uncertainty attribution
To identify sources of NGHGI uncertainty we must first justify an uncertainty taxonomy
tailored to the LULUCFEF NGHGI context. Based on the literature review described in SM Section
2, chapter 1.2, we define an uncertainty element as an individual input, parameter, model or
submodel, and any instance of design-based sampling error. We refer to input, parameter, and
model structure uncertainty collectively as model uncertainty, as distinct from sampling error. In
some cases, we aggregate uncertainty elements into a group of inputs or parameters for ease of
analysis and interpretation.
Given this taxonomy, we review methods for each LULUCF inventory category and
identify all uncertainty elements. For inventory categories where it was possible to recalculate the
central flux estimate given available data, we attribute uncertainty to each element using the

contribution index method (Equation 1).

Equation 1: Contribution index

Range full,k — Range(i, k)

Index 1,k = 7
Z"j:lRange full,k — Range(j, k)

x 100

Where

i=1,..,J refers to uncertainty element i;
Range(full,k) is inventory category k 95% CI magnitude (97.5" quantile minus 2.5™
quantile);

12



Range(i,k) is inventory category k 95% CI magnitude holding element i at its mean or

point estimate; and

Index(i,k) is percentage contribution of element i to Range(fullk).

Other methods for uncertainty attribution have been utilized in the literature, including
sensitivity analysis (McRoberts et al. 2016, Rypdal and Flugsrud 2001), uncertainty importance
elasticities (Smith and Heath 2001, Winiwarter and Muik 2010), regression correlation coefficients
(Peltoniemi et al. 2006, Winiwarter and Muik 2010), and Gaussian error propagation (Harmon et
al. 2007, Phillips et al. 2000). We chose the contribution index method for its ability to account
for full probability distributions, to allow for non-linear relationships between elements and model
outputs and dependencies among uncertainty elements, and because we would be able to use
previously-published analyses for some inventory categories (Smith and Heath 2001, Ogle et al.
2003, Skog et al. 2004).

Where flux estimate recalculation was not possible, due to lack of access to data or
methods, we use published uncertainty attribution results or, in the case of Tier 3 cropland and
grassland fluxes, expert elicitation. U.S. EPA recognizes expert elicitation as one method for
NGHGI quality assurance and uncertainty analysis (U.S. EPA 2002). We tailored U.S. EPA
(2002) NGHGI expert elicitation guidance to the objectives of our study (methods described in
more detail below).

Uncertainty elements that we identified but were not able to quantify are listed in SM
Table 2-1. Table 2 summarizes the uncertainty attribution methods used for each LULUCF

inventory category.
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Uncertainty attribution method

Land Recalculati
an GHG flux category eca cu. & 1(.)n + Expert . NGHGI
category Contribution L Literature
Ind Elicitation (2018)
ndex

Living and standing v
dead biomass
Litter v
Soil v v
Non-CO:; from forest v
Forests fires
Harvested wood
products
N>O from N additions
to soils

Drained organic soils v

Tier 3 soils v
Tier 1 and 2 soils v
and

Non-CO; from

Grasslands ) v
grassland fires

Croplands

Urban trees v

Yard trimmings and
Settlements food scraps

N>O from soils

Drained organic soils

Peatlands
Wetlands

AN NN NI

Coastal wetlands

Table 2. Uncertainty attribution methods for each GHG flux category.

2.2 Omitted GHG flux estimation
Most of the omitted fluxes identified in this paper are already recognized in the U.S.
LULUCF GHG inventory as planned improvements. We identified additional omitted fluxes by
reviewing IPCC (2006, 2019) guidance, by including prompts to identify omitted GHG fluxes in
the cropland and grassland expert elicitation survey, and by prompting U.S. LULUCF NGHGI

inventory compilers to identify omitted GHG fluxes through direct communication.

14



For each identified omitted flux, we reviewed the literature to identify activity data and
emission factors. The resulting omitted GHG flux estimates are meant to be useful only for
purposes of prioritizing future work.

2.3 Methods by land use and inventory categories

We briefly summarize the methods used for each LULUCF inventory category here, with
further details provided in the SM. Our analysis is based on the 2018 U.S. NGHGI report, which
covers inventory years 1990 to 2016 and which was the most complete inventory report available
while the majority of our analytical work was completed. In the SM we note any significant
methodological updates in more recent U.S. NGHGI reports, none of which meaningfully influence
our findings.

Forests

Above- and belowground biomass in living and standing dead trees (SM Section 2, chapter
2.1): We recalculate the carbon stock change flux and 95% CI for above- and belowground tree
biomass and standing dead trees (hereafter, tree biomass), accounting for uncertainty in nine
groups of allometric model parameters (Table 2-2) as well as sampling error. We use Forest
Inventory and Analysis (FIA) data and allometric models specific to eastern Texas as the basis for
analysis to reduce Monte Carlo computational burden. Eastern Texas was chosen as a
representative region for national forest carbon fluxes, encompassing both shrub species common
in the western United States and hardwood and softwood species present in higher precipitation
regions. We find that eastern Texas tree biomass exhibits similar proportional uncertainty to

national uncertainty reported in the U.S. NGHGI (see SM Section 2, chapter 2.1 for more detail).

15



Litter and soil (SM Section 2, chapter 2.2 and 2.3): Using literature estimates of mean
litter carbon stocks by forest type (Domke et al. 2016), and the reported model prediction
uncertainty for litter carbon stocks (U.S. NGHGI 2018), we use Monte Carlo simulation to
estimate the national 95% CI for litter carbon stock change. Similar methods were used for soils,
accounting for model prediction uncertainty from estimating soil carbon stocks to 100 cm depth at
a subset of FIA plots as well as the Random Forest model used to extrapolate soil carbon stock
estimates to all FTA plots (Domke et al. 2017). A significant shortcoming of our approach for both
litter and soil carbon pools is that it requires assuming covariance of carbon stocks between two
time periods, because the U.S. NGHGI does not report 95% CIs by forest carbon pool. For this
reason, we provide sensitivity analysis for different levels of intertemporal covariance.

Non-CO:; from forest fires (SM Section 2, chapter 2.4): We recalculate the CHy and N,O
emissions from forest fires and their respective 95% Cls, using Monte Carlo simulation to account
for uncertainty from four input variables (burned area, fuel availability, combustion factor, and
emissions factor) using standard deviations reported in the U.S. NGHGI (2018) and IPCC (2006).

Harvested wood products (SM Section 2, chapter 2.5): We modify contribution index
results from Skog et al. (2004) to focus on inputs and parameters used in Skog (2008), which most
closely aligns with U.S. NGHGI (2018) methods.

Cropland and Grassland
The U.S. NGHGI uses consistent methods across many cropland and grassland inventory

categories, so we collapse analysis across the two land uses. The U.S. NGHGI uses Tier 3 methods
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on 78% of managed cropland and grassland soils, and Tier 1 and 2 on organic soils, federal
grasslands, shaley and gravelly soils, and minor crop types.

Carbon stock change, N-O, and rice CH; on Tier 3 soils (SM Section 2, chapter 3.1): It was
not possible to recalculate Tier 3 fluxes, due to National Resources Inventory (NRI) dataset
confidentiality. Therefore, we use expert elicitation to identify the largest sources of uncertainty
stemming from inputs and structure of the biogeochemical model DayCent as well as scaling NRI
plot estimates to population area. The expert elicitation included prompts to identify primary
research, model development and intermodel comparison, and data priorities for reducing cropland
and grassland Tier 3 flux uncertainty. Participation in uncertainty attribution sections of the
survey required knowledge of Century, DayCent or similar biogeochemical soil models and TPCC
GHG accounting guidance. Respondents were asked to confirm that they possessed this knowledge
before completing the survey. Respondent expertise was concentrated in soil science (87%),
biogeochemistry (67%), and the carbon cycle (67%); 53% worked in academia, 33% in
government, and the remainder in NGO or private sectors. Details on the expert elicitation
protocol and results are provided in the SM Section 2, chapter 3.1 and the full expert elicitation
survey is available in SM Section 3.

Carbon stock change and N20O in Tier 1, 2 soils (SM Section 2, chapter 3.2): We apply
contribution index results from Ogle et al. (2003) to 95% CIs reported in the U.S. NGHGI (2018).

Non-CO: from grassland fires (SM Section 2, chapter 3.3): We recalculate 2014 CH, and
N-O emissions, the most recent year for which burned grassland area estimates are available, and

follow methods similar to the forest fire inventory category.
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Omitted cropland and grassland GHG fluxes (SM Section 2, chapter 3.4): We use IPCC
(2006) default equations and literature emissions factors to estimate carbon stock change in woody
biomass and litter (USDA 2012, Udawatta and Jose 2012); non-CO, emissions from woody
biomass in grassland fires (U.S. NGHGI 2018, IPCC 2006); soil microbial CHy sink (Dutaur and
Verchot 2007, Del Grosso et al. 2000); and select GHG sinks and sources on federal cropland and
grassland (U.S. NGHGI 2018).

Settlements

Carbon stock change in urban trees (SM Section 2, chapter 4.1): We recalculate the CO,
flux and 95% CI attributable to carbon stock change in urban trees (Nowak et al. 2008, Nowak et
al. 2013). We attribute uncertainty to all inputs (Table 2-30) using error propagation and
contribution index methods.

Carbon stock change in yard trimmings and food scraps (SM Section 2, chapter 4.2): We
recalculate CO, fluxes and 95% Cls attributable to yard trimmings and food scraps discarded in
landfills (U.S. NGHGI 2018, Cruz and Barlaz 2010), accounting for uncertainty from all inputs.
Omitted settlement GHG fluxes (SM Section 2, chapter 4.5): We estimate CO, emissions resulting
from U.S. settlement mineral soils, which is omitted from the U.S. NGHGI due to lack of data,
consistent with IPCC (2006) guidelines. Using Tier 1 methods and IPCC (2006) default values, we
provide an initial estimate of this flux.

Wetlands
The U.S. NGHGI (2018) indicates there are 43 million hectares of wetlands in the United

States, yet GHG fluxes are calculated for only 2.9 million hectares of wetlands. The omission is
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due to lack of data that would allow for designating non-coastal wetlands as managed (that is,
wetlands directly created by human activity or areas where the water level has been artificially
altered) (U.S. NGHGI 2018). Due to this data gap we were not able to estimate omitted wetland
fluxes (SM Section 2, chapter 5).
Alaska, Hawaii, and U.S. territories

Alaska, Hawaii, and U.S. territories comprise nearly 20 percent of the total U.S. land base
(nearly all of this in Alaska), but they are not completely accounted for in the U.S. NGHGI. The
2019 U.S. NGHGI included forest carbon stock changes in interior Alaska for the first time, an
area covering 24.5 million acres (9% of U.S. managed forest area). We provide estimates for
omitted fluxes in Alaska, Hawaii, and Puerto Rico (the largest U.S. territory), based on IPCC
(2006) guidance, emissions data derived from the U.S. NGHGI (2018, 2019), and literature review

(SM Section 2, chapter 6).

3. Results

Uncertainty contribution results are reported as the uncertainty element’s contribution
index value (%) multiplied by its respective inventory category 95% CI range (MMT COse). We
present the 10 largest sources of uncertainty for each land use category, then collectively show
omitted GHG flux results. Complete results for all inventory categories and uncertainty elements
are available in the SM.

3.1 Forests
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The largest source of forest GHG flux uncertainty is design-based sampling error in
estimating tree biomass carbon stock change (434.3 MMT COse) (Table 3). Two groups of
allometric parameters are the largest sources of uncertainty in estimating individual tree biomass
(together, 131.9 MMT COse), which govern the conversion of tree diameter and height to gross
bole volume (volume coefficients) and the conversion of bole volume to biomass (wood and bark
specific gravities).

While we find that allometric volume coefficients are a large source of forest carbon stock
change uncertainty, we were not able to find an empirical estimate of volume coefficient
uncertainty. Sensitivity analysis of the coefficient of variation (5%, 10% (base case), and 20%)
found this assumption has large impacts on both the tree biomass 95% CI and the uncertainty
contribution ranking of allometric parameter groups (SM Table 2-4).

Model uncertainty for soil and litter carbon stock change are substantial (together, 91.7 to
288.9 MMT COse); we report a range for these pools to reflect sensitivity to carbon stock

intertemporal covariance (SM Section 2, chapter 2.2 and 2.3).
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Uncertainty
Element Type Description contribution
(MMT COz)

Design-based sampling error derived from post-
Tree biomass Sampling stratified variance of above-and belowground 434.3
biomass on Forest Remaining Forest.

. Model Total model prediction error in estimating soil i
Forest soils? o 81.2-255.7
(aggregate) carbon flux on Forest Remaining Forest.
. Uncertainty associated with species-specific
Forest tree biomass: .
. . Parameter parameters used to estimate tree stem volume 16.9-77.7
Volume coefficients® . )
from height and diameter measurements.
Forest tree hiomass: Uncertainty associated with species-specific
Wood and bark specific Parameter parameters used to convert tree stem volume to 54.2
gravities biomass.
Model Total model prediction error in estimating litter
Forest litter* P M & 10.5-33.2
(aggregate) carbon flux on Forest Remaining Forest.
. Uncertainty associated with input specifying
Forest fire input: Fuel . .
o ) Input mass of dry matter available for combustion per 28.7
availability, CONUS ) R ) .
unit area in the conterminous United States.
Harvested wood products: Uncertainty associated with input specifying
Input 14.0

Solid wood products data annual solid wood products production.

Harvested wood products: . . .
. Uncertainty associated with the parameter used

Solid wood products Parameter . . . 13.2

. to estimate carbon in solid wood products.

conversion to carbon

) . Uncertainty associated with parameters that
Forest fires: Emission

fact Parameter specify the mass of CHs and N2O gas emitted per 6.0
actors
mass of dry matter combusted.
Harvested wood products: Inout Uncertainty associated with input specifying A7
nput .
Paper data P annual paper production.

Table 3. Forest GHG flux uncertainty elements. a. Accounts for sensitivity to carbon stock
covariance between time steps; low value reflects 99.99% covariance as percentage of variance;
high estimate reflects 99.9% (see SM sections 2.2 and 2.3). b. Accounts for sensitivity to coefficient
of variation assumption; low estimate reflects COV =5%, high estimate reflects COV= 10% (see
SM Section 2, chapter 2.1).
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3.2 Cropland and Grassland

The DayCent model accounts for the vast majority of cropland and grassland soil carbon
stock change, agricultural N,O, and rice methane uncertainty (Table 4). DayCent model structure
and parameters (including organic matter formation and decomposition; nitrification and
denitrification; leaching, runoff, and volatilization) collectively contribute 117.2 MMT COse, while
DayCent inputs (including tillage, fertilization management, and manure and organic fertilizer
application) contribute 222.0 MMT COse. Input uncertainty is primarily driven by randomly
assigning management activities to NRI plots consistent with county-level statistics (Ogle et al.

2010).
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Uncertainty

Element Type Description contribution
(MMT COx.)
Uncertainty in soil texture and natural drainage
DayCent: Soil ot capacity for each NRI survey location derived 113
nput 31.
properties P from the Soil Survey Geographic Database (not
accounted for in NGHGI 95% CI).
) Uncertainty associated with DayCent inputs,
DayCent: Leaching, .
f and Input, Model parameters, and model structure used to estimate 98 6
runoff, an ) o .
Latilizati (aggregate) N lost through leaching, runoff and volatilization
volatilization
(not accounted for in NGHGI 95% CI).
DayCent: Organic Uncertainty associated with DayCent submodel
matter formation and Model structure  used to simulate soil organic C and N dynamics 25.6
decomposition across discrete litter and soil pools.
o Uncertainty associated with DayCent submodel
DayCent: Nitrification . S
o Model structure  structure used to simulate soil mineral N 24.1
and denitrification .
dynamics.
Uncertainty in occurrence of manure and organic
DayCent: Manure and . - -
- . . fertilizer application, application rates, and .
other organic fertilizer Input ] ] ] ) . o 23.4
o interaction with mineral fertilizer application at
applications .
NRI survey locations.
Uncertainty in tillage practices (conventional,
DayCent: Tillage Input T sep (co . 23.4
- reduced, no-till) at NRI survey locations.
Uncertainty in mineral N application rates at NRI
DayCent: Fertilization survey locations by crop and land use type,
Input . . 21.9
management derived from USDA Agricultural Resource
Management Surveys.
DayCent: Soil and Uncertainty associated with the DayCent
water temperature Model structure  submodel used to simulate water flows and 15.7

regimes

changes in soil water availability.

Table 4. Cropland and grassland GHG flux uncertainty elements.

3.3 Settlements

Urban tree gross to net sequestration ratio contribution is an order of magnitude larger

than any other settlement uncertainty element (Table 5). This uncertainty arises due to a

majority of states lacking data on net urban tree growth rates, requiring use of a national average

(Nowak et al. 2013).
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Yard trimmings and food scraps carbon stock change inputs account for less than 12% of
settlement GHG flux uncertainty, with negligible contributions from remaining fluxes (carbon

stock change on drained organic soils and N>O emissions from soil N additions).

Uncertainty
Element Type Description contribution
(MMT COz)
Uncertainty in state-level input reflecting
Urban tree: gross to net ot proportion of urban tree carbon lost to downed 86.5
nput 5
sequestration ratio b branches or tree decay. Where state-level data is
lacking, a national average value is used.
Urban tree: gross ot Uncertainty in state-level input reflecting mass of 70
nput .
sequestration rate b carbon per area stored in urban trees.
Uncertainty associated with deriving state-level
Urban tree:
urban/developed land area from Census/NLCD
Urban/developed land Input 6.5
data, used to expand urban tree carbon stock
area
change estimates.
Yard trimmings and
& Uncertainty in the proportion of total biological
food scraps: Food Parameter 6.3
. waste assumed to be food scraps.
scraps multiplier
Uncertainty in state-level input reflecting
Urban tree: Tree cover )
Input percentage of urban/developed land with tree 4.3
percentage
cover.
Yard trimmings and . . .
i Uncertainty in parameters reflecting amount of
food scraps: Percent ) . )
. Parameter carbon stored in each organic waste type, given 3.8
carbon stored in - - -
. decay rate.
organic waste
Yard trimmings and
food scraps: Moisture Uncertainty in parameters reflecting moisture )
. Parameter . . 1.8
content of organic content of each organic waste type.
waste
Yard trimmings and Uncertainty in volume of grass, leaves, and
food scraps: Yard Parameter branches as percentage of yard trimmings volume. 1.6
trimmings multiplier
Settlement soils: Direct Total uncertainty in N input data, NRI data,
N20O emissions from N Total default TPCC emission factors, and surrogate data 1.3

additions to soils

extrapolation in estimating N2() emissions.

Table 5. Settlement GHG flux uncertainty elements.
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3.4 Uncertainty attribution synthesis

Our findings suggest higher LULUCF uncertainty in the U.S. NGHGI than is currently
reported. While our recalculated uncertainty estimates generally align with reported values, two
notable exceptions are forest carbon stock change and cropland and grassland Tier 3 fluxes, where
we found 5-27% (with sensitivity to litter and soil carbon stock change uncertainty) and 94%
larger CI ranges, respectively. Total LULUCF CI magnitude could be 18-35% higher than U.S.

NGHGI (2018) reported values (Figure 1).

Lower bound (2.5 pctl) Upper bound (97.5 pctl)

2% |

Non-LULUCF CO2 -

LULUCF —

Forest carbon pools — =8 55% *
P 51% 51% *x
45% 45%  xxx
34% 34%
C/G Tier 3 67% 67%

Urban Trees

Non-CO2 from forest fires

Yard trimmings and food scraps -

Non—CO2 from grassland fires

48%
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100%
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Fig. 1. Reported and recalculated confidence intervals (CI) by inventory category. Magnitude
of one-direction CI as percentage of the point estimate is shown at the end of each bar. U.S.
NGHGI (2018) values for “LULUCEF?” reflect only inventory categories assessed in this paper, and
so is inconsistent with U.S. NGHGI (2018) Table 1-5; “Non-LULUCF CO,” results are as listed in
Table 1.5. “Forest carbon pools” (which includes tree biomass, soil, and litter) CI estimates are
aggregated using error propagation to allow for comparison with NGHGI (2018) reported values.

“Forest carbon pools” and “LULUCFE” results show sensitivity to soil, litter, and tree biomass
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volume coefficients uncertainty attribution (all uncertainty contribution values in MMT COse: soil
carbon stock change (CSC) = *255.7, ¥*81.2, ***¥81.2; litter CSC = *33.2, **10.5, ***10.5; tree

biomass volume coefficient = *77.7, **77.7 **%16.9).

Higher cropland and grassland Tier 3 uncertainty can be directly attributed to the expert
elicitation, which directed respondents to identify the uncertainty contribution from elements not
currently accounted for in reported U.S. NGHGI ClIs, which ultimately included the two largest
DayCent uncertainty elements (soil properties; leaching, runoff, and volatilization) (U.S. NGHGI
2018).

It is less clear whether higher forest carbon stock change uncertainty can be attributed to
our choice of analytical region (eastern Texas), including a larger number of uncertainty elements
in our analysis, or other assumptions made in our analysis (e.g. intertemporal covariance for litter
and soil carbon pools). Accounting for sensitivity to uncertainty contributions from soil and litter
carbon stock change and tree biomass volume coefficient assumptions, our high (low) end
uncertainty estimates for these elements result in 27% (5%) higher forest carbon pool CI compared
to U.S. NGHGI (2018) reported values.

A meaningful reduction in U.S. LULUCF uncertainty would require addressing many of
the largest elements simultaneously. No single element or element group would reduce the
LULUCEF CI by more than 10% except for tree biomass sampling error (Figure 2.a). A 50%
reduction in LULUCF CI magnitude would require reducing tree biomass sampling error by at
least 15%, and reducing contributions of all other uncertainty elements by at least 50% (Figure

2.b). The optimal uncertainty reduction approach depends on availability and costs of alternative
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methods, but this exercise illustrates the inevitable need to focus on forest sampling error, soil

carbon modeling, and urban tree methods.
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Fig. 2. Inventory uncertainty reduction potential. Percent reduction in LULUCF NGHGI 95%
confidence interval (CI) magnitude (97.5% upper bound — 2.5% lower bound) given reduction in
uncertainty contribution for each uncertainty element or element group. Panel (a): LULUCF
uncertainty reduction for each uncertainty element, holding all other element contributions
constant. Panel (b): Cumulative LULUCF NGHGI uncertainty reduction if element uncertainty
contributions are sequentially reduced by 50%. “<10% cum. CI reduction” refers to uncertainty
elements that, in aggregate, reduce LULUCF NGHGI CI magnitude by less than 10% if known
with complete certainty. Forest soil model contribution is 255.7 MMT COse.

3.5 Omitted fluxes
In total, we find net emissions of 123 MMT COse could be omitted from the U.S. NGHGI,

with the majority occurring on croplands and grasslands (Figure 3). The largest omissions are due

27



to data gaps in Alaska, where grassland soil carbon stock changes (31 MMT COse) and wetland
soil carbon and methane emissions (41 MMT COse) are not currently estimated.

Emissions from settlement mineral soils are not included in the U.S. NGHGI due to a lack
of activity data and emissions factors, a challenge that the IPCC acknowledges in allowing this
omission as a Tier 1 method (IPCC 2006, 2019). We find settlement mineral soils could emit 35
MMT COse, assuming they are managed similarly to low input cropland (IPCC 2006, 2019).f
While the low input cropland emissions factor may reasonably reflect dynamics in undisturbed
lawns and parks, settlement soils undergo intensive disturbance at irregular intervals, driven by
landscaping and land grading, building development, and impervious surface cover, which are
unlikely to be captured by cropland emissions factors. However, an emissions factor based on
Boston mineral soil emissions suggests the omitted flux value could be much higher (Decina et al.
2016).

The U.S. NGHGI does not currently account for indirect and direct NoO emissions from
federally-owned croplands and grasslands with the exception of pasture, range, and paddock
(PRP) sources. Assuming that federal croplands and grasslands emit direct and indirect N>O at
the same per-area rates as non-federal lands, net of PRP N>O emissions, we find this omission
could reach 22 MMT COae.

The largest omitted sink category is microbial methane sequestration in cropland,

grassland, and forest soils (-25 MMT CO.e). However, we note that the soil methane sink is

f “Low input” refers to low carbon input management practices, including residue collection and low residue
return, residue burning, frequent bare fallow, production of low-residue crops, and no or low mineral
fertilization (TIPCC 2006).
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directly tied to methane’s atmospheric lifetime, and is likely already incorporated to some extent
in methane global warming potential (GWP) values. The IPCC (2006, 2019) does not yet provide
guidance on these issues. If countries decide to include the soil microbial methane sink in
NGHGIs, new methods may be needed to align inventory reporting with methane GWP estimates.
We do not provide error bars for these estimates to avoid suggesting precision — as described
above, these values are generated using highly simplified assumptions about average GHG fluxes
over large areas. Our estimates are meant only to provide a basis for prioritizing research and data

collection.
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Fig. 3. U.S. NGHGI omitted GHG fluxes. “CSC” = carbon stock change. “Alaska” fluxes labeled
as (A) wetland soil CHy, (B) wetland soil CSC, (C) grassland soil CSC, and (D) agricultural soil
management N>O. “Omitted flux as % of NGHGI reported fluxes” is calculated by summing
absolute values of all omitted fluxes by land use category and dividing result by sum of absolute
values of all fluxes for that land use category as reported in U.S. NGHGI (2018).

29



4. Discussion

4.1 Comparison to other studies

Our results compare well with U.S. NGHGI Approach 2 key category analysis, which ranks
source and sink categories, as defined by UNFCCC common reporting format (CRF) guidelines,
by their one-direction 95% CI magnitude (IPCC 2006, 2019). The top five LULUCF key categories
as identified using Approach 2 encompass the largest uncertainty elements identified in Figure 2
(U.S. NGHGI 2018).

However, our analysis provides important additional detail. For example, “Net CO,
Emissions from Settlements Remaining Settlements” is the second ranked key category, while our
analysis finds that addressing DayCent model uncertainty would have a larger impact than
focusing on urban trees. This inconsistency is due to the fact that the DayCent model is used
across nine different CRF key categories. Thus, uncertainty attribution analysis can usefully focus
on highly ranked CRF key categories, as long as cross-cutting uncertainty elements are recognized.
It is difficult to compare uncertainty attribution results across studies, since they vary widely in
scope and structure. However, our findings are consistent with studies that suggest design-based
sampling error outweighs allometric model uncertainty (Breidenbach et al. 2014, Stahl et al. 2014,
McRoberts et al. 2016), that forest soils are a large source of uncertainty (Peltoniemi et al. 2006,
Monni et al. 2007b), and that N>O emissions drive uncertainty in croplands and grasslands

(Winiwarter and Muik 2010, Ramirez et al. 2008, Monni et al. 2007a, Petrescu et al. 2020).
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4.2 Opportunities for inventory improvements

Countries looking to improve LULUCFEF GHG estimation methods can take advantage of
existing research, data gathering, and model development targeting the largest uncertainty
elements identified above.
Forest sampling error

Increasing the sampling rate or number of plots in existing forest inventories is a costly
option for reducing sampling error. Rather, research has increasingly focused on using remote
sensing data like LIDAR or radar to generate wall-to-wall forest biomass estimates (e.g., Blackard
et al. 2008, McRoberts et al. 2016, Ma et al. 2021). Model-assisted estimators that utilize LIDAR
and plot data have increased aboveground forest biomass precision by 2.5-6 times compared to
plot-based simple random sample or post-stratified estimators (McRoberts et al. 2013, Gregoire et
al. 2016, McRoberts et al. 2016). Historically, the necessary LiDAR and radar data has been
costly to collect and only intermittently available over space and time, but new and planned
global LiDAR and radar missions, including GEDI, ICE-Sat2, and NISAR, have the potential to
greatly improve LULUCF monitoring precision and to help align aboveground biomass monitoring
methods across countries (Duncanson et al. 2020, Babcock et al. 2018). Ongoing availability of
LiDAR or radar data will be critical to ensure countries can sustain new LULUCF monitoring
methods.

Care must be taken in comparing precision of plot-based and remote sensing-based

methods. Countries with national forest inventories tend to use design-based or probability-based
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statistical inference to estimate forest carbon fluxes, assuming that uncertainty is a function of the
probability of selecting a given sample (observations are considered constant). When using remote
sensing-based models, analysts may instead choose model-based inference, assuming that
uncertainty is driven by a population probability distribution (observations are realizations of a
random variable) (McRoberts 2010). It is not valid to rank precision across the two methods due
to different assumptions about the source of randomness (McRoberts et al. 2013). Inventory
compilers are therefore encouraged to clarify inference frameworks used to ensure uncertainty
reporting transparency.

Annually-updated remote sensing data products can help address concerns that land cover
and land use changes are not reflected in LULUCF flux estimates, a source of uncertainty that we
were not able to evaluate in this paper due to data constraints. For example, the 2018 U.S.
NGHGI uses the 2011 National Land Cover Database (NLCD) to stratify eastern Texas forest by
canopy cover. Though individual plots could capture disturbance after 2011, spatial weights would
reflect only area disturbed prior to 2011. As a result, large changes in U.S. forest GHG fluxes
would not be reflected in the inventory for up to five years under current stratification methods.
To address this issue, the United States has begun generating annual NLCD updates to more
closely monitor land use change (LCMAP 2021, LCMS 2021).

Tree-level biomass estimation

We find a higher contribution from allometric model uncertainty compared to other

studies (e.g., McRoberts et al. 2014, Breidenbach et al. 2014, Stahl et al. 2014), possibly due to

our assumption that allometric parameters are assigned by tree species or species group for each
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Monte Carlo iterate rather than to individual trees. This approach was chosen for its
computational efficiency and mimics a high degree of positive covariance between individual trees
of the same species or species group, but results in higher variance of forest carbon stocks across
Monte Carlo iterates than studies that assume independence at tree-level.

Tree-level biomass estimates are an important input to remote sensing models, and so will
be key to inventory methods even as remote sensing data is increasingly utilized. Challenges to
allometric model improvements include: inconsistent methods in biomass measurement, field
studies (Weiskittel et al. 2015); a dearth of data and models for estimating belowground biomass
(Russell et al. 2015); a lack of accounting for impacts of climatic variables on tree density and
other allometric parameters over time (Clough et al. 2016); and a lack of species-specific or region-
specific data and incomplete or non-random samples across studies (Jenkins et al. 2003).

In an effort to address some of these challenges, the U.S. Forest Service has compiled the Legacy
Tree Data platform, which contains over 15,000 individual tree biomass measurements (Radtke et
al. 2015). However, to address the climatic dependency of tree variables and to fully address the
data limitations described above, ongoing data collection and targeted research programs are
required.

Cropland and grassland fluxes

Our expert elicitation survey asked respondents to rank research, modeling, and data
priorities, as identified in the literature, for reducing uncertainty in cropland and grassland Tier 3

GHG flux estimates (SM Table 2-18).
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Survey respondents noted that they were keen to have more empirical data in order to
improve and validate existing soil models (Schmidt et al. 2011, Spencer et al. 2011). They
acknowledged the difficulties in modeling such a complex system but noted that more data is the
primary way to help reduce both input and structural uncertainty. For example, the NRI plot
system, which provides key inputs to DayCent, could form the basis of a national soil carbon
monitoring network, similar to FIA plots for forests. The U.S. NGHGI notes that the U.S.
Department of Agriculture (USDA) is developing a national soil monitoring network (U.S. NGHGI
2018), but it is unclear the extent to which this framework will address limitations identified in
this study — particularly, the input uncertainty driven by lacking model output (GHG fluxes) and
model input observations at the same plots.

Survey respondents also indicated that increased collaboration among model developers
would help refine soil carbon flux predictions (Paustian et al. 2016, Schmidt et al. 2011). Increased
inter-model comparison, model validation, and collaboration were highly ranked as opportunities
to reduce uncertainty (Brevik et al. 2015, Stockmann et al. 2013).

4.3 Application to other countries

Other countries with similar land cover and NGHGI methods can use U.S.-based
uncertainty attribution to inform priorities for further analysis. For example, most of the world’s
forest area is now covered by strategic forest inventories, with many countries utilizing statistical
sampling methods similar to the United States (McRoberts et al. 2010). Large forested countries
continue to develop systems to increase precision and accuracy of forest carbon stock estimates,

particularly in response to REDD+ financing programs (Brazil NC4 2020, Tewari et al. 2020,
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Zeng et al. 2015). For example, as part of the Estimativa de biomassa na Amazonia (EBA)
program, Brazilian researchers are working to integrate forest plot data, allometric models, and
remote sensing (both LiDAR and Landsat) data to estimate landscape-scale aboveground forest
biomass (INPE 2021). Many of the same uncertainty elements described above are relevant to
countries developing such systems.

There is more international heterogeneity in non-forest flux estimation methods, with
many non-Annex I countries omitting these inventory categories entirely (Smith et al. 2020).
Other countries may use results from this paper to inform priorities for expanding inventory
coverage. Several of the omitted fluxes identified here will be relevant for all other countries, given
current IPCC (2006, 2019) inventory guidance, including the soil microbial CHy sink and

settlement mineral soil fluxes.

5. Conclusion

Many countries have deprioritized NGHGI uncertainty estimation and reporting due to
lack of data and programmatic resources, as well as the complexity of uncertainty methods. As
Brazil indicated in their Third National Communication (2016), “Quantifying uncertainty for
individual data items is as or more difficult to assess as the actual information sought.” Countries
are likely to prioritize improvements in LULUCF accuracy by increasing the use of Tier 3 methods
and updating Tier 1 and 2 methods with the most recent science (Yona et al. 2020). However,
investments in uncertainty estimation and transparency will also be required as more complex

methods are adopted.
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NGHGI LULUCF uncertainty is a challenge for many major-emitting countries, and for
some, including the United States, is large enough that planned LULUCF emission reductions fall
within the margin of estimation error. The analytical framework suggested here is one approach
that governments can use to both transparently report uncertainty estimation methods and to
identify opportunities for improving NGHGI accuracy and precision, with a view to increasing
international confidence in NDC emissions reduction progress.

Using the United States as a case study, we detail the contribution of over 90 LULUCF
uncertainty elements and omitted fluxes to uncertainty and bias in the U.S. NGHGI. Most
inventory uncertainty is driven by a small set of elements distributed across forestry, cropland and
grassland, and settlement land use categories. Omitted fluxes could account for up to 13% of the
current LULUCF inventory on an absolute value basis, primarily driven by CO, and CH,
emissions in Alaska and urban mineral soils. Other countries can use these results to inform initial
priorities for further analysis, particularly those using similar NGHGI methods or those that plan

to take up similar methods in the future.
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2. Conserving carbon: Evaluating term-limited conservation

programs

Abstract

I develop a structural model of the landowner decision to participate in a voluntary, term-limited
conservation program that constrains the timing of land use change. Allowing for re-enrollment
addresses a key literature gap in the evaluation of climate and conservation policy in forestry and
agricultural sectors. I focus on the policy objective of managing urban sprawl, a growing contributor
to global land use change and greenhouse gas emissions. By accounting for important sources of
stochasticity in landowner decision-making and assuming that program re-enrollment is possible,
I show that term-limited programs can result in meaningful reductions in environmental impacts
through two key mechanisms, (1) by subsidizing agricultural land use (“subsidy effect”) and (2) by
shielding agricultural parcels from spikes in real estate prices (“shield effect”). Parameterizing the
model to agricultural profits and historical real estate prices in Santa Clara County, California, I
show that the cost-minimizing conservation program, as defined by its incentive level and contract
length, varies over time and balances the trade-off between conserving enrolled land for longer

periods and reducing landowner willingness to enroll.

1. Introduction

Land use and land use change activities generate a large portion (11%) of global anthropogenic
greenhouse gas (GHG) emissions, largely through conversion of forests and natural landscapes to
higher carbon-intensity uses (IPCC 2022). Adjusting patterns of land use change is expected to
contribute significantly to future GHG reductions: the first round of country pledges under the

United Nations (U.N.) Paris Agreement indicates that land use, land use change, and forestry ac-
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tivities would provide 25% of planned GHG reductions leading to 2030 (Grassi et al. 2017). Much
of this mitigation potential is expected to result from preserving high carbon stock landscapes, such
as primary forest, grasslands, and low-intensity agricultural use, from conversion to more inten-
sively managed land uses like commodity row crop production or urban development. Policy that
preserves high carbon landscapes and manages urban and agricultural land expansion is therefore
often discussed or implemented as a complement to climate policy in fossil fuel-intensive sectors.

Yet much of the economics literature has not accounted for the political, administrative, and
logistic realities of policies used to manage GHG emissions from land use and land use change. This
paper addresses an important literature gap by developing a structural model of the landowner
decision to participate in voluntary, term-limited incentive programs that constrain their land use
choice, the primary approach to land sector climate policy used globally to date. In this study
I focus on a particular category of land use change that is a growing contributor to global GHG
emissions, urban sprawl (IPCC 2019).

Urban sprawl is referred to in the literature as low-density, non-contiguous development around
an urban center (Irwin and Bockstael 2002). There is debate in the economic literature about
whether such a development pattern might be socially optimal — after all, dynamic decision making
by landowners may result in large areas around the urban center being held in reserve for future
development even in efficient markets, creating scattered urban development over time (Mill 1981).
However, many studies have identified the presence of spatial spillovers and environmental impacts
that are external to land prices, including congestion, higher costs of delivering public services, loss
of public environmental amenities, and higher GHG emissions compared to denser urban develop-
ment, all of which suggests unmanaged urban expansion can result in socially suboptimal outcomes
(Irwin and Bockstael 2002, Fujita 1976, Wheaton 1982, Mills 1981).

GHG emissions due to urban sprawl occur both at the land conversion event, during which
carbon stocks in trees and soil can be emitted as COz to the atmosphere (if combusted, non-COq
emissions may be emitted as well), and following the conversion event, as any additional emissions
that occur on the developed parcel that would not have occurred if the land had been maintained
in the previous use. As one might imagine, quantifying the amount of additional emissions due
to urban sprawl compared to denser development is complex. For example, if an agricultural

plot is converted to residential use, new emissions will result from electricity, natural gas, vehicle
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miles traveled (VMT) and other residential activities, but these emissions must be compared to a
counterfactual scenario in which that land conversion might occur in some other area which could
result in greater or fewer GHG emissions. Given this complexity, I focus the analysis below simply
on the amount of development avoided on agricultural parcels, and leave the analysis of a more
complete set of social and private costs and benefits of avoided development to future research.

Permanent conservation easements have received significant theoretical and empirical attention
in the environmental, agricultural, and land use economics literature, including with respect to their
impact on urban development patterns, optimal timing of landowner development, and property
values (Plantinga 2007, Towe et al. 2010), evaluation of how landowner and parcel characteristics
influence the decision to enroll (Lynch and Lovell 2003), spatial spillovers in the decision to enroll
(Zipp et al. 2017, Lawley and Yang 2015), the price of conservation as reflected in after-tax donation
values of easements (Parker and Thurman 2019), and the amount of adverse selection (or protection
of parcels at low risk of development) present in such programs (Stoms et al. 2009, Denning et al.
2010).

Term-limited conservation programs have also been evaluated in the literature, but only as
applied to agriculture and forestry management choices. To the best of my knowledge, no paper
has evaluated term-limited programs as a mechanism for managing land use change in general or
urban sprawl in particular, likely because to date no programs have been implemented with this
objective and because incentive levels in existing programs are too low to influence development
rates in areas where residential rents are high. For example, in the United States, the Conservation
Reserve Program (CRP) has been studied extensively as an agri-environmental program that enrolls
landowners in 10-15 year contracts which prohibit intensive crop management or development. In
exchange enrolled landowners receive incentive payments consistent with land rental rates in their
county. Previous research has looked at supply curves for conserved acres using CRP incentive
payments across counties (Plantinga et al. 2001), the performance of the CRP compared to a
program that maximized the number of protected acres for the same budget (Feng et al. 2003),
the effect of CRP enrollment on land values (Taylor et al. 2020), and landowner bidding behavior
during iterations of the CRP that required landowners to indicate their required land rental payment
(Kirwan et al. 2005). In a recent paper, Cramton et al. (2021) used a laboratory experiment to

evaluate how caps on CRP bids impacts landowner enrollment and program efficiency.
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Under the Williamson Act, California has a term-limited conservation program that allows
landowners to encumber their land from development for rolling 10 year commitments in exchange
for receiving a property tax evaluation consistent with agricultural use. Other than occasional case
studies and statistical analysis (Stewart and Duane 2009), to my knowledge there has been no
evaluation of the efficacy of the Williamson Act on avoiding agricultural land conversion.

Others have evaluated the theoretical efficacy of term-limited conservation contracts in the
context of biodiversity protection (Lennox and Armsworth 2011, Juutinen et al. 2014, Dreschler
et al. 2017), soil carbon payments (Gulati and Vercammen 2005), and in generic environmental
protection settings (Glebe 2022, Ando and Chen 2011).

However, few studies to date have structurally motivated the landowner choice to participate
in voluntary conservation programs or evaluated the effect of program design choices on both
landowner behavior and net environmental impacts. Some have argued in passing that term-
limited conservation programs would have limited effect on land use change patterns like urban
development due to the ability for agents to enroll while they wait for the optimal development
time (Parker and Thurman 2018). However, I show below that, by accounting for stochasticity in
real estate markets and assuming that program re-enrollment is possible, term-limited programs
can have meaningful reductions and delays in environmental impacts through two key mechanisms,
by subsidizing agricultural land use and by shielding agricultural parcels from spikes in real estate
prices.

There are several motivations for evaluating term-limited, voluntary conservation programs.
First, conservation programs are a significant budgetary outlay for federal, state, and local gov-
ernments, whether through direct payments to landowners through programs like CRP or local
conservation easement programs that compensate landowners for forfeited development rights, or
through reductions in tax revenue as compensation for donated easements. Conservation easements
comprise one quarter of global conservation finance flows annually (NatureVest 2014). Given the
large public financial commitment to land conservation, evaluating the performance of these pro-
grams and identifying opportunities for increasing cost-effectiveness should be policy priorities.

Second, many studies have identified contract length as a driver of landowner willingness to
enroll. As I will describe in more detail below, the contract length represents the amount of

time during which the enrolled landowner’s land is encumbered. Mitani and Lindhjem (2022)
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performed a meta-analysis of stated and revealed preference research on forest conservation program
participation. They found 26 papers published over 1983-2018 that reported program contract
length or evaluated the role of contract length on landowner enrollment, and show contract length
significantly impacts program participation rates. Counterintuitively, permanent contracts exhibit
higher participation rates than term-limited contracts. They do not provide an economic motivation
for their findings.

Mamine et al. (2020) carried out a similar meta-analysis of survey-based discrete choice experi-
ments applied to landowner’s willingness to accept an agricultural preservation contract. They find
34 studies published between 2006-2019 that evaluate the effect of contract length on landowner
enrollment choice while 117 studies evaluate the effect of incentive levels. While 20 of the 34 studies
find that increasing contract length has a negative effect on enrollment, the remainder find pos-
itive (6 papers) or nonsignificant (5 papers) effects. Similarly, only 69% of reviewed studies find
that increasing incentive levels has a significantly positive effect on enrollment, while 22% find a
significantly negative effect.

Few studies provide a robust analytical motivation for the effect of contract length on landowner
willingness to enroll. In a very informative paper for this exercise, Glebe (2022) derives a landowner’s
optimal sequences of bids in a repeated conservation auction, assuming a winning bid would en-
roll the landowner in a term-limited contract that results in annual operational and opportunity
costs. These costs are assumed to be known by the landowner with certainty, but the landowner is
uncertain about the maximum bid to be accepted in any given auction (cutoff bid). Through this
model, Glebe (2022) shows that longer contract length (as exogenously set by the auctioneer) will
increase the landowner’s optimal bid, to compensate for increasing operational and opportunity
costs. Through numerical analysis, they show that the cost-minimizing contract length for achiev-
ing some target area of enrollment depends on landowners’ perceived uncertainty in the cutoff bid
— for high (low) uncertainty, higher (lower) contract length is more cost-effective, conditional on
the landowner belief that the cutoff bid follows a uniform distribution.

Ando and Chen (2011) develop a simple theoretical model of the landowner choice to enroll
in a conservation program that prevents a landowner from earning farming income, and derive
optimal contract length (such that the discounted present value of environmental benefits across

all parcels is maximized, constrained by a conservation budget) through simulation. They find
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a similar tradeoff to what I describe below: longer contract lengths require a higher lump sum
payment to incentivize enrollment. For a given incentive level, increasing contract length will
increase the total environmental benefits delivered for a single enrolled parcel, but total enrollment
will be lower. They do not account for changing trends or non-stationarity in the expected value of
farming or the possibility for alternative land uses, nor do they endogenously account for optimal
timing of landowner enrollment — rather their setting assumes some landowners will optimally
choose enrollment and others will not for all time periods.

To address limitations in this literature, I propose a dynamic programming model structure tai-
lored to representing voluntary, term-limited conservation programs and that can predict program
impacts under various incentive levels and contract lengths over policy-relevant regions. I focus on
the policy case of a term-limited conservation program that pays landowners an incentive for every
enrolled acre-year in exchange for committing to agricultural or non-developed land use. I assume
that individual landowners are able to optimally choose, with respect to total net returns to land
use, when and whether to enroll in the program, as well as when to optimally sell their parcel to a
developer, assuming that real estate prices evolve stochastically over time.

I expand on the model structures in Glebe (2022) and Ando and Chen (2011) in a number of
ways. First, I relax the assumption that enrolled landowners incur fixed annual costs and instead
assume that the opportunity cost of conservation program enrollment occurs as constraint on land
use change — this model setup is of interest for policymakers that seek to preserve agricultural land
in the face of development pressure. I also assume that the opportunity cost is uncertain, consistent
with volatile real estate markets.

I parameterize the agricultural profits and real estate market in this problem to a particular re-
gion of policy interest, Santa Clara County, California. Home to Silicon Valley, Santa Clara boasts
the fifth largest county-level GDP in the United States (BEA 2020). Skyrocketing real estate val-
ues and suburban sprawl, driven by population and economic growth in the technology sector, put
significant development pressure on the County’s agricultural and open space land. Agriculture
contributes $830 million annually to the County’s economy (Santa Clara Valley Agricultural Plan
2018). Over 63,000 acres have been identified as at-risk of development in the next 30 years, or
26% of Santa Clara’s active farmland and rangeland (Batker et al. 2014). County planners and

agricultural and environmental stakeholders are concerned that rapid development will irreversibly
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degrade local rural culture and make remaining agricultural operations more costly through dis-
turbance restrictions, loss of agricultural infrastructure, and congestion (Towe 2010, Parker and
Meretsky 2004, Irwin and Bockstael 2002). In the model developed below, parcel characteristics,
landowner returns to agriculture and developed use, and real estate market trends and volatility

are tailored to Santa Clara County data.

1.1 Economic models of land use change and conservation applications

A variety of economic models have been developed over the last several decades in an attempt
to make predictions about how carbon prices and conservation policy might influence land use
patterns, operating at different geographic scales and to accommodate different policy structures
and spatial and market interactions. I briefly describe the main model structures employed in the
literature and explain how the approach used in this paper is a useful and novel addition to existing

economic land use models.

1.1.1 Partial equilibrium models

Partial equilibrium models covering large geographic areas have been frequently used by U.S.
federal policymakers to evaluate the potential contribution of land use and land use change to
future GHG reductions. For example, the Forest and Agricultural Sector Optimization Model-
GHG (FASOM-GHG), the Global Timber Model (GTM), and the U.S. Agricultural Sector Model
(USMP) have guided high-profile policy deliberations over the past two decades, including the
Waxman-Markey cap-and-trade bill (Murray et al. 2005), the EPA Biogenic CO2 Accounting
Framework (U.S. EPA 2019), and the U.S. Mid-Century Strategy for Deep Decarbonization (White
House 2016). These models optimize over welfare surplus in forestry and agriculture markets and
include a variety of control variables for land use and management choices, including area of land
devoted to commercial forestry or various crop types, timber rotation lengths, and reductions in
GHG emissions due to fertilization, tillage, and other agricultural practices.

In a recent policy application, Hultman et al. (2021) finds that land use, land use change, and
forestry (LULUCF) could sequester a net 1,000 MMT COge by 2030, contributing approximately
6% of the GHG reductions needed to reduce U.S. emissions by 51%. This estimate is based on 15

studies published since the year 2000 that use agriculture and forestry partial equilibrium models
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to estimate 106 scenarios of national LULUCF GHG reductions over 5-20 years. A large majority
(78) of these scenarios assume a universal, compulsory price on GHG emissions can be applied
to LULUCF activities, which in the context of these models assumes that every U.S. landowner
would receive an incentive for every ton of COsqe sequestered in soils or biomass and a fee exacted
for every ton of COge emitted (Murray et al. 2005, Schneider and McCarl 2002, Schneider and
McCarl 2003, Alig 2010, Haim et al. 2014, Haim et al. 2015, Jackson and Baker 2010, Latta et
al. 2011, Cai et al. 2018, Wade et al. 2021). The remainder of the scenarios (28) account for
the voluntary nature of carbon incentive programs, assuming that landowners will only enroll in
carbon incentive programs if it is profit maximizing (Lewandrowski et al. 2004, Latta et al. 2011,
Dumortier 2013). However, there are several limitations in how voluntary programs are represented
in partial equilibrium models to date; studies have either assumed that reversals (GHGs emitted
due to conservation practice abandonment after the conclusion of the program contract) or breach
of contract is impossible (Lewandrowski et al. 2004, Dumortier 2013) or they assume that reversals
or breach of contract will be taxed at the carbon price, similar to the compulsory setting (Latta et
al. 2011).

None of the studies discussed here account for the political reality that existing programs for
incentivizing GHG reductions in agriculture and forestry sectors are structured as term-limited
conservation programs, and that reversals are not penalized at the conclusion of the contract,
consistent with programs like CRP and EQIP. In the model I present below, individual landowners
across a given region choose whether or not to participate in a term-limited conservation program

over time, and may reverse conservation practices at the conclusion of the contract or re-enroll.

1.1.2 Discrete choice models

Many studies have utilized a discrete choice modeling framework to predict the probability
of land use change given returns to different land uses as well as regional, landowner, and plot-
level characteristics. To represent climate policy, the value of a carbon incentive can be added or
subtracted to the profits derived from each land use or management practice. For example, Lewis
and Plantinga (2007) and Lubowski et al. (2006) train nested logit models of land use change on
historical observations of land use and agricultural, forestry, and residential rental rates. They then

calculate the increase in returns to forestry under a variety of carbon prices and use the estimated
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logit parameters to predict total U.S. forest area and GHG reductions across policy scenarios. Other
studies have used similar methods to evaluate conservation policies as represented by subsidies for
agriculture and forestry (Plantinga and Ahn 2002), to evaluate the additionality of forest carbon
offset policies compared to a business-as-usual case (Mason and Plantinga 2013), to predict the
likelihood of landowner enrollment in conservation programs (Lynch and Lovell 2003, Langpap
2004), and to downscale the discrete choice model predictions to individual parcels, allowing for
spatially-explicit results (Nelson et al. 2008).

Many of these discrete choice studies take an essentially static approach, assuming that landown-
ers make land use choices based on current prices and profits or an infinite future flow of profits
based on current prices, and will convert land uses as soon as the NPV of one exceeds another
(usually conditional on some unobservable shock). In general, the model is cross-sectional, eval-
uating land use change between two historical time steps. De Pinto and Nelson (2009) note that
this approach is likely to suffer from omitted variable bias, since landowners are likely to make
land use decisions on a dynamic basis and so will care about future returns to land use. To ad-
dress this problem, De Pinto and Nelson (2009) incorporate landowner expectations of prices into
the discrete choice model, assuming agricultural prices are generated by a first order autoregressive
process. They find that incorporating dynamics into the discrete choice structure strongly improves
land use change predictions and, on balance, reduces the estimated likelihood of land use change
compared to standard multinomial and mixed logit specifications, perhaps due to the fact that
explicit representation of option value in the economic model better controls for landowner choices
to delay land conversion.

The primary challenge with the discrete choice approach to modeling the effects of carbon pric-
ing or environmental protection programs is that these programs generally do not take the form of
a pure subsidy or increase in market returns to a given land use. Rather, carbon offsets or conser-
vation programs will provide an incentive payment in exchange for some term-limited constraint
on land use or management practices. These types of constraints are not easily represented in the
discrete choice structure, particularly because time, and therefore contract length, is not explicitly
represented in the model. In the methods I outline below, the term-limited constraint on enrolled
landowner behavior can be explicitly represented. As a result, we might expect more pessimistic

estimates of landowner responses to environmental incentives than what is found in the discrete
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choice literature.

1.1.3 Real options, duration models

Land use change is also frequently modeled using a real options approach, recognizing that
landowners have the option to convert an agriculture or forest parcel to developed use which can
be postponed but, once exercised, is irreversible or comes with large sunk costs (Schatzki 2003,
Power and Turvey 2010). The real options framework accounts for the value of this option, and its
dynamics over time, in landowner choices. These methods are particularly useful in representing
stochastic land markets or commodity prices, sources of uncertainty which encourage landowners
to wait to gather more information before making irreversible investments.

The real options literature has found option value is likely to be a large driver of landowner
decision-making. Schatzki (2003) indicates option value could account for up to 81% of expected
agricultural land asset value in Georgia. Towe et al. (2008) use a duration model to find that
the mere existence of a permanent conservation easement program can delay agricultural land
conversion by an average of six years, by providing an alternative investment option to landowners.
Wrenn et al. (2017) use similar methods to identify the effect of housing prices on the likelihood of
agricultural parcel development, controlling for housing price endogeneity using an instrument of
distant neighborhood characteristics. Vercammen (2019) argues that development value uncertainty
can delay both the decision to develop as well as the decision to enroll in the easement.

The primary limitation of the real options literature is the focus on permanent as opposed
to term-limited conservation programs, which greatly simplifies the modeling approach required
because there is no need to account for the option to re-enroll or reverse land use decisions after
the contract term. I show how the more flexible dynamic programming approach outlined below

can fully account for more complex program structure.

1.1.4 Agent-based models

The fields of geography, urban planning, and land systems science have developed a variety
of spatially-explicit land use change models, such as agent-based models (ABMs), to explain and
predict land use change patterns under various ecological, policy, and economic scenarios (Kim

et al. 2020, Verburg et al. 2019). ABMSs are occasionally combined with a cellular automaton
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model but prioritize the representation of individual economic actors (e.g., landowners, developers,
households) through (sometimes heterogeneous) utility and profit functions, modeling agent-to-
agent negotiations to derive emergent properties of regional real estate and land markets (Chen et
al. 2011, Chen et al. 2021, Parker and Filatova 2008, Parker and Meretsky 2004, Filatova 2015,
Magliocca et al. 2015). Given the flexibility to represent individual utility and profit functions,
ABMs are able to represent equilibrium as well as non-equilibrium dynamics, spatially-explicit
results, and spatial spillover effects. However, to date no ABM has represented the potential for
landowners to choose timing of land conversion optimally given beliefs about future land prices —
to the best of my knowledge, ABM studies have exclusively assumed that landowner reservation
prices are calculated from current agricultural rents and that they will sell land to the developer
with the highest bid as soon as the reservation price is exceeded.

In summary, I propose a model structure that can address gaps in the land use model literature
by explicitly representing the landowner choice to participate in a term-limited, voluntary program,
deriving landowner reservation prices from dynamic economic theory and accounting for important
sources of stochasticity and heterogeneity across landowners. Allowing for the possibility to perpet-
ually re-enroll in the conservation program, I derive important differences in total program effects

compared to a one-shot enrollment setting.

2. Analytical Motivation

2.1 Agricultural landowner optimal stopping problem

Here I describe the landowner problem of whether to participate in a term-limited, voluntary
conservation program. Starting with the simplest case, in the absence of the option to participate
in a conservation program, I assume a risk-neutral agricultural landowner must decide when to stop
receiving a constant stream of agricultural profits and sell their parcel to a developer, at which time
they receive a lump sum payment for the parcel value and move away. The developer’s willingness
to pay evolves over time according to a stochastic process. I focus on the stochasticity of land
prices rather than agricultural profits for analytical clarity and due to the noted volatility of land
prices in the literature (2.8 times as volatile as real GDP) (Power and Turvey 2010).

As noted by Capozza and Helsley (1989) and Plantinga et al. (2002), this is a standard optimal
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stopping problem, shown in Equation (1).

¢
V(1) = max B / rae"5ds + P(t)e"] (1)
0
where:
w4 = constant agricultural profit
r = risk-free interest rate

P(t) = developer’s willingness to pay for parcel

I assume P(t) is exogenous to the landowner’s decision and follows a geometric Brownian
stochastic process, with p(t) = In(P(t)) defined as a function of constant positive parameters g

(drift) and o2 (variance) and standard Wiener process W (t):*

p(t) = gt + oW (2). (2)

The solution to this problem is characterized by a constant optimal reserve price P*, the price
at or above which the landowner would optimally sell their parcel to the developer, which will be
reached at some uncertain optimal stopping time, t* = {min(t : P(t) > P*)}, with expectation
E.[t*]. Dixit and Pindyck (1994) show that the necessary assumptions for the existence of P* are:
(1) that w4 — (r — ¢g)P(t) is monotonically decreasing in P(t), which holds if » > g, and (2) that the
P(t) process exhibits positive persistence of uncertainty, which we have by the normal distribution
and constant variance of W (t) increments.

I solve for P* explicitly using methods from Capozza and Helsley (1989). First I rewrite the

expectation in Equation (1) as:
TA TA\ —
E[==+ (P(t) = =) "] (3)

Conditioning Equation (3) on P* and initial value P(0), both of which are deterministic, Equa-

tion (3) becomes:

*A Wiener process is the continuous-time analogue of a random walk, or the sum of infinitesimally small, indepen-
dent, and normally distributed increments. A standard Wiener increment is distributed with mean 0 and variance
equal to the length of the increment: W (t + s) — W(t) ~ N(0,s) (Karlin and Taylor 1975).

TEquation (7) indicates an even stricter assumption on parameters r, g, and o is required for the existence of P*.
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The distribution of ¢t* under Brownian motion is known, so the expectation can be written as

(Karlin and Taylor 1975, pg. 364):

) i P0)\“
Et[e_rt |P*,P(0)] _ e—a(ln(P )—in(P(0))) _ (PS*)> . (5)

where:
(4% + 20%r)% — g
5 .

(o

Now I rewrite Equation (1) as a maximization problem over P* and use the first order condition

to find P* as a function of parameters.

V(P) = max T 4 (P - %(P;S)) , (6)
—— .

For P* to exist, @ must be greater than 1 and the interest rate must be larger than the price
growth rate, such that r > g + %O‘Q. The landowner will wait until the developer is willing to pay
the value of an infinite stream of agricultural profits (%2) multiplied by a term representing the
additional value that can be accrued by waiting for the price to increase (a/(a—1)). This term, and

therefore P*, is increasing in price drift (¢) and variance (02). Equation (5) shows that, consistent

with intuition, the expected time to reaching P* increases with P*.

2.2 Landowner conservation program enrollment choice, one-shot enrollment

In the next two sections I provide novel analysis by incorporating the choice to participate in a
term-limited, voluntary conservation program. If the landowner chooses to enroll in the conservation
contract, they receive a constant incentive value ¢, but in exchange they are not able to sell their
parcel for the length of the contract J. In the one-shot setting, I assume that the landowner must

decide whether to enroll at ¢ = 0 and can only enroll once. The three choice variables in this
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problem are J, which determines whether the landowner enrolls or not; tg, which is the optimal
stopping time if the landowner is not enrolled; and t;, which is the optimal stopping time if the

landowner is enrolled. The problem becomes:

to
V(6,t0,t1) = max (1 — 5)Et[/ mae”"Sds + P(tg)e "]
0

d,t0,t1

t1

J
+ 5Et[/ (ma +c)e”"ds +/ mae "Sds + P(ty)e” "] (8)
0 J

st. t1>J, o€ {0, 1}

If § = 0, the landowner has chosen to not enroll and the problem is equivalent to Equation (1).
Therefore t;; and Fj are equivalent to t* and P* in the previous section.

If the landowner chooses d = 1, they will be enrolled in the conservation program from ¢ = 0 to
t = J and their optimal parcel sale time ¢; will be constrained. Since the only change to problem
structure is the constraint on ¢;, P|" remains a single constant value. However, I must account for
the possibility that P; could occur prior to the end of the contract, or more specifically, that P(.J)
is higher than Py

For this reason, I rewrite the second line of Equation (8) as a function of P(J) and P;* (Equation
(9)). From the perspective of ¢ = 0, p(J) = In(P(J)) is a normal random variable with the
distribution N(p(0) + gJ,a2J), so I take the expectation over regions of the p(.J) distribution that

are less than and greater than pj = In(FPy):

r r r

M Caety + [ (@D = T p())dp()

v/ e =T B | )] e p)dpl) ()

—0oQ
s.t. tl 2 J

The last term of Equation (9) can be expressed as:
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where:

¢(-) = standard normal probability density

®(-) = standard normal cumulative distribution function

The second line uses a change of variable from p(.J) to standard normal variable z. The expected

value of (/) is weighted by a value greater than the probability that p(J) > p} to account for the

fact that the expectation is over the region above pj.

The fourth term of Equation (9) can be expressed as:

*

(@ = T8y [ e () ap() =

o0

(ep‘l‘ o E)e*ap’l‘fr(] /pl eap(J)fp(p(J))dp(J) =

r —00

(ep1 _ E)e—ap’{—rJ

ea(p(0)+gJ+a\ﬁz)¢(z)dZ _
r

/(p; —p(0)—gJ) /o T

(e 9]

ao

* 2
(ePT — TLA) e—a(pi—p(0)—gJ— 2T ) q,(Pl —p(0) —gJ —ac”J

r U\/j

)

(11)

Again, the expected value of e=®Pi=P(/) is weighted by a value less than the probability that

p(J) < p} to account for the fact that the expectation is over the region below pj.

With p(J) integrated out of the problem, I write Equation (9) as a function of only pji:

57



ot (O +gs+22 | e P1=PO) —gT =0T\ ma o p1—p(0) —g]
T e R e e )

+ e—a(p’f—p(O)—gJ—%Q‘])—rJ (ep*f . E) (I)(pi - p(O) —gJ — a02J)
r oVJ

(12)

I find an expression for pj using the first order condition for maximizing V' (p3):

dv(py) —e 21 py—p0)—gJ—0?J, 1—p0) —gJ
(PY) _ =" ooyragr+y? y Pi=P0) =9 ) - Tt p(0) — g

TN T s

r U\/j

* 2
i e—a(P’{—p(O)—gJ—%Q")—rJ (P — a(ePi — WA))(I)(pl —p(0) —gJ —ao J) (13)

1 M ¥ —p(0) — gJ — ac?J
+ (epl—i)¢(p1 p( ) g ) =0
ovJ r U\/j
Equation (13) simplifies to:
i =pr="4_¢ (14)
ra—1
Therefore, P = Py = P*, and the conservation program does not affect the landowner’s

optimal reservation price. Inserting Equations (12) and (14) into Equation (8), it is optimal for
the landowner to choose enrollment (6* = 1) if and only if the sum of the conservation incentive
(first term on left hand side) and the expected value of the constrained developer price (term in

square brackets) exceeds the expected value of the unconstrained developer price (right hand side)

(Equation 15):
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As J approaches 0, left and right hand sides of Equation (15) become equal, indicating the
one-shot conservation program has no value when the contract length is zero.

I use numerical analysis to evaluate the effect of J on landowner willingness to enroll by fixing all
parameters in Equation (15) except contract length (J) and incentive level (¢). Brownian motion
parameters g = 0.035 and o2 = 0.083 are calculated following Pachamove and Fabozzi (2011)
as the average and variance, respectively, of the first differences of a Santa Clara County annual
agricultural parcel price index, described in detail in the Methods section. Given these values and
the constraint on parameter values derived from Equation (7), the discount rate is set to r = 0.087.
As described in more detail in the Methods section, I assume parcel prices can be decomposed into
additively separable temporal (varying at county-level over time) and spatial (varying at parcel-
level) factors. Therefore, initial parcel price p(0) = 12.7 is the 2020 value of the parcel price index
plus the estimated median parcel-specific value across all Santa Clara County agricultural parcels.
The 2020 level price of the parcel is $340,550. Agricultural profit w4 is the product of the 2020
California average annual cropland rental rate ($439 per acre, USDA NASS 2022) and the median
developable agricultural parcel size in Santa Clara County, 28 acres.

Figure 1 shows the effect of J and ¢ on expected net present value of the landowner enrollment
payoff. The figure plots the difference between the left and right hand sides of Equation (15), so

any region of the curve that lies above zero indicates that the landowner is willing to enroll for
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Figure 1: Landowner is willing to enroll in term-limited conservation incentive program when
“enrollment payoff” values are positive, indicating net present value of conservative payments and
constrained parcel sale price exceeds unconstrained parcel sale price (see Equation (15)). For a
given conservation incentive level, some intermediate contract length J maximizes expected net
present enrollment value.

those values of ¢ and J. For each ¢, there is an intermediate J that maximizes the expected net
present value of enrollment, balancing the total conservation incentive (increasing in J) and the
expected net present value of the constrained parcel price (decreasing in J). As ¢ increases, the
maximizing J increases. Importantly for the policy maker, as ¢ increases the maximum value of
J for which the landowner is willing to enroll also increases. For example, at ¢ = $100/acre, the
landowner will not enroll for J higher than 30 years, while at ¢ = $400 per acre contracts up to 85
years would be feasible.

I also evaluate the effect of contract length on the expected time of development. The time at
which a Brownian process reaches fixed value p* follows an inverse Gaussian distribution, such that

the conditional expected value of t* is:

Ey[t*[p*, p(0)] = (16)

Given the estimated parameters above, the business as usual expected time of development for
a representative undeveloped agricultural parcel in Santa Clara is 2068 (48 years after 2020).

Under a term-limited voluntary conservation program, development time will be J if p(J) exceeds
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p*, otherwise it will be some expected time after J depending on the value of p(J):

Bt | p*,p(0),J] = Jx Prob(p(J) > p*)

*
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Therefore, the expected time of development will be no lower than the contract length (first
term of Equation (17)), but will also provide some expected additional delay beyond J (second
term). Figure 2 shows that the second term is decreasing in J, consistent with the fact that as J
increases, the contract is more likely to be binding in determining optimal development time (it is

more likely that p(J) is higher than p*).
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Figure 2: Expected optimal time of development, net of contract length (J). The term-limited
conservation program delays development beyond the contract length, but the additional delay is
decreasing in J.

2.3 Landowner conservation program enrollment choice, unlimited re-enrollment

Now I assume it is possible for the landowner to re-enroll in the conservation program after
the contract ends. This case is important to evaluate because it is consistent with the reality of
existing term-limited programs (e.g. USDA’s CRP, EQIP, or CSP) and because there are important

differences in optimal landowner and policymaker choices.
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In the re-enrollment setting, the landowner chooses the optimal number of times to enroll in the
program (x), given some exogenous contract length J and incentive level ¢. Non-enrollment occurs
when z = 0. For simplicity I assume that once the landowner decides to stop re-enrolling they
cannot start again at some later point (this assumption will be relaxed in the numerical analysis

discussed in Section 5). Therefore the landowner problem is:

T i t
V(z,t) = max / (ma+c)e "*ds + Et[/ mae "5ds + P(t)e” "
Lt JI6E-1) Jx

st. t>Jx, zeNy

where x is restricted to the set of nonnegative integer values Ny.

It is helpful to rewrite Equation (18) as a quasi-discrete time optimal stopping problem (Equa-
tion (19)), wherein at the end of the 2" contract the landowner must choose to either re-enroll in
contract for the 2+ 1** time (the term in braces in Equation (19)) or to stop enrolling and sell their
parcel at the optimal reserve price, which could occur immediately at price P(zJ) if P(zJ) > P*(z)
(the second line of Equation (19)), or at some point after z.J if P(xJ) < P*(x) (the third line in

Equation (19)). The optimal z* occurs when the second term exceeds the first term:

A+ C
r

V(P*(x),z) = max [{ (lL—e™)y+e V(P (z+1),z+1)},

P(zJ) L(P(zJ) > P*(z)) (19)

+ (o= THEE)) WPen < P

where:

0, if A is false

1, if A is true.
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I use the term “quasi-discrete” to acknowledge that discounting still occurs in continuous time
in this problem, but the stochastic variable P(x.J) evolves in discrete time increments of length
P((z+1)J) _ oP(zJ)

~

J. Price increments are independent and normally distributed, such that e
N(gJ,02J). Note the change in notation which allows for the land sale reserve price P*(x) to

change with z.

I would like to find the optimal stopping value P*(z.J) at which point the landowner will stop
re-enrolling (also referred to as the enrollment reserve price hereafter). First I must demonstrate
that such a value exists, which requires that the marginal value of waiting to stop monotonically
decreases as P(xJ) increases (Dixit and Pindyck 1994). Formally, Equation (20) must be decreasing

in p(zJ).

(20)

P+l o “(a41) _ TA\ a(p((a+1)J)—p* (z+1))
+/ (B2 4 (e () — Z)eolr P fo(p((2 + 1)) dp((2 + 1))

) 1(p() > 57 @) + (T4 (@0 - TG T ) 1(p(0) < (o)

Using similar methods for rewriting Equation (9), I express Equation (20) in a form that allows

for taking the derivative with respect to p(x.J):
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Using numerical analysis, I find no cases with reasonable parameter values in which the deriva-
tive of Equation (21) with respect to p(zJ) is positive. Therefore, I proceed assuming P*(x.J)
exists.

By visual inspection, it is clear there is no optimal contract length for the landowner, an im-
portant distinction from the one-shot enrollment setting. When re-enrollment is possible, value to
the landowner continually increases as J approaches zero, such that the conservation incentive pro-
gram becomes a pure agricultural subsidy without development constraint. Landowner willingness
to enroll is monotonically decreasing in J.

However, as J decreases, any environmental benefits that depend on the amount of conserved
acres and length of conservation period will also decrease, since the landowner has more frequent
opportunities to develop at the end of each contract. Therefore, while there is no optimal J for the
landowner, the conservation program administrator will want to identify the contract length that
optimizes the trade-off between conserving enrolled land for a longer period of time and reducing
landowner willingness to enroll, similar to the trade-off identified in Ando and Chen (2011). The
optimal J is a function of conservation incentive ¢, since the continuation term in Equation (19) is
monotonically increasing in c.

For the remainder of the analysis I assume that the administrator must choose values for J

and ¢ that both (1) maintain total conservation spending below program budget and (2) maximize
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conservation outcomes (here, the only outcome I assess is expected area of avoided development)
with respect to J and c.

Such an analysis requires predicting the solution to Equation (19), P*(x.J), and therefore will-
ingness to enroll over time, for all parcels of interest. Given the difficulty of deriving an analytical
solution to a discrete optimal stopping problem, as well as the need for numerical analysis for any
comparative statics around J and ¢, I use numerical analysis to identify optimal values of J and ¢

in Santa Clara County, California.

3. Numerical methods

To undertake the numerical analysis, I make several adjustments to model structure. I dis-
cretize time into annual time steps. Developer offers follow a random walk approximated using a
first order autoregressive model, parameterized using methods discussed below. To enhance the
realism of the model, I relax the assumption that landowners cannot wait to re-enroll between con-
tract periods. This change introduces analytical complexity but is easily assessed using numerical
dynamic programming methods.

The problem therefore becomes a flexible Markov Decision Process (MDP) model in which the
landowner must decide the optimal action a (wait to enroll, enroll, or develop) in each state x,
defined by their current state of enrollment and the developer’s current offer, given the expectation

of future developer offers. The Bellman equation for this problem is shown in Equation (22).

V(z(j, P(t),1)) = V(x) = max E[Rq(z)|ga(z, 2")] + BE[V (2/)]2] (22)

where:
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t =

j =

Qa(xa xl) =

8 =

time index, ¢t € {0,1,...,T}

conservation enrollment index, j € {0,1,2, ..., J}; j = 0 indicates
the parcel is not enrolled, j > 1 indicates the parcel has been
enrolled for j time steps

developer offer, a continuous variable that follows a random walk
state at time ¢, defined by current enrollment status and developer
offer

state at time ¢t + 1, defined by the next period’s enrollment status
and developer offer

action chosen at state x, where a is an element of a set of possible
actions defined at each x, A(x); if 7 = 0 or j = J (parcel is not
currently enrolled or has reached end of contract),

A(x) = {wait, enroll, develop}; if 0 < j < J (parcel is currently
enrolled), then A(z) = {enroll}

payoff received from choosing action a at state x; if a = wait,

R, () = w4 (agricultural profit); if a = enroll, R,(x) =74+ ¢
(agricultural profit plus conservation incentive); if a = develop,
R,(x) = P(t) (developer offer at state )

conditional on choosing action a, probability of transitioning from
state z to 2’; a function of developer offer P(t) transition
probabilities as well as deterministic transitions with respect to
time and enrollment status

discrete time discount factor

I use data from Santa Clara County to parameterize MDP rewards, transition probabilities, and

developer offers. Given these model fundamentals, the MDP can be solved using value iteration,

starting with an initial guess at the value of being located at state x, Vp(z(j, P(t),t), for all z,

choosing the optimal sequence of actions given this guess, and recalculating a new iteration of state

values Vi (x(j, P(t),t). Iteration continues until the change in state values for all x fall below some

acceptable error.
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The model is solved for a subset of agricultural parcels in unincorporated Santa Clara County,
CA where at least one additional primary residence could be created through subdivision, as indi-
cated by the County of Santa Clara Zoning Ordinance (2003) (hereafter, developable agricultural
parcels - shown as all parcels with estimated agricultural profits in Figure 3.A). Parcels of interest
were further limited to areas with higher value agricultural production (Figure 3.A), higher risk
of development due to proximity to cities and parcel slope (Figure 3.C), and are not currently
protected by easements or other existing conservation programs, e.g. the Williamson Act (Figure
3.D). Santa Clara County planners used these variables to define the Agricultural Resource Area
(ARA), shown in dark red outline in each panel of Figure 3. Going forward analysis is limited to
ARA parcels, which range in size from less than an acre to over 2,500 acres and are at highest risk
of conversion from agricultural to developed use due to residential expansion surrounding Morgan
Hill and Gilroy.
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Figure 3: Developable agricultural parcels in unincorporated Santa Clara County, CA. Agricultural
Resource Area (ARA) outlined in dark red in each panel. Dark gray areas do not meet the definition
of “developable” (at least one additional primary residence can be created through subdivision).

I use the MDP model to find each ARA landowner’s decision to wait, enroll, or develop in

each state, given contract length .J, conservation incentive ¢, and stochastic sequence of developer
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offers P(t). The developer offers are generated for each parcel using a price prediction model that
accounts for both county-wide time-dependent factors and parcel-level characteristics. Given the
landowner’s optimal sequence of actions, I find the probability of the landowner choosing a given
action in each time step between 2020 and 2050. By comparing a business as usual case without
a conservation program (¢ = 0) to conservation program scenarios with varying J and ¢, I identify
the values of J and ¢ that achieve the highest area of avoided development while maintaining a
county-wide conservation program budget.

For the remainder of this section I describe how model fundamentals are parameterized using

Santa Clara County data.

3.1 Agricultural profit estimation

I estimate annual agricultural profits for each developable Santa Clara parcel using the USDA
Crop Data Layer (CDL), an annual 30m raster dataset of U.S. crop cover derived from LandSat
satellite imagery, the National Land Cover Dataset (NLCD), and USDA sample plot observations
(USDA NASS 2022). Agricultural profits are estimated by major agricultural land use (mixed
forest, shrubland, grassland/pasture, evergreen forest) and for the most common high value crop
types in Santa Clara County (tomatoes, grapes, cherries, lettuce/greens, corn, walnuts, beans).

Given the large variety of California crop types, CDL user accuracy (the likelihood that a
pixel’s designated crop type matches ground observation) in this region can be low, ranging from
25% for sweet corn to 90% for walnuts, with a total area-weighted user accuracy of 63% in Santa
Clara County (USDA NASS 2022). To reduce the impact of annual, pixel-level uncertainty, I
use 10 years of CDL data and aggregate pixel data to the parcel level. 1 create a composite
raster layer of the maximum agricultural profit earned in each pixel between 2010 and 2020. Each
developable parcel’s assumed future agricultural profits is the sum of composite layer profit values
for all intersecting pixels. This method assumes that future agricultural rents will be the maximum
potential agricultural value as reflected by recent historical land use.

Agricultural profits are estimated from several sources. Pixels designated as mixed forest,
shrubland, grassland/pasture, evergreen forest, winter wheat, alfalfa, hay, oat, lettuce, and greens
are assumed to have profits of $13 per acre, which is the average California pastureland rent for

2020 (USDA NASS 2020). Santa Clara County forested areas are likely to earn lower annual rents
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on average, based on estimates from the County of Santa Clara 2020 Crop Report (SCC 2020),
however I assume landowners have the option to remove tree cover and lease land as pasture. Cost
studies find lettuce and greens may generate negative returns, so I make a similar assumption for
this crop type (Tourte et al. 2019).

For major high value crops, I estimate per acre revenue from per acre yields and unit prices
reported in SCC 2020 and per acre operational costs from crop-specific cost studies produced by
the University of California Davis. All cost estimates are inflated to 2020 dollars. I ignore capital
and overhead costs, assuming these are sunk for agricultural landowners. Remaining crop types
cover 0.01% of Santa Clara developable land on average over 2010-2020 and are assigned profits of

$439 per acre, the average 2020 California cropland rent (USDA NASS 2020).

3.2 Developer offer estimation

My goal is to estimate the expectation of future developer offers that an agricultural parcel
owner would reasonably expect, for any future time step, given historical parcel sale observations.
To do this, I use an autoregressive econometric model, drawing on the economic literature for
deriving unbiased real estate price indices. Since I will use the model to predict future developer
offers for individual parcels, in addition to estimating a historical price index, I also seek high model
prediction accuracy conditional on hedonic parcel characteristics.

The primary dataset used in this section is proprietary CoreLogic data encompassing all sales
of developable agricultural parcels in Santa Clara County from 1985 to 2020, including observed
price and and a parcel identifier, assessor’s parcel number (APN). Additional geospatial data made
available by the Santa Clara County Department of Planning and Development and Open Space
Authority were used to allocate parcel hedonic variables to the CoreLogic observations, including:
parcel size; zoning designation; number of allowable primary residences; parcel slope; distance
to amenities like major road types and public open space; the portion of parcel protected by
permanent easement; level of farmland quality as measured by the California Farmland Mapping
and Monitoring Program; and dummy variables indicating whether or not the parcel is enrolled
in the Williamson Act program; location in urban service area, urban growth boundary, or urban
sphere of influence; flood zone; and high or very high fire risk.

To motivate the econometric model, I assume that if the landowner of parcel i were to receive
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a developer offer in any time step ¢, it would be a multiplicative function of parcel characteristics

X, and time varying component Z;:

Py =[x [[ 27 e (23)
j t

where:
Py = developer offer for parcel 7 at time ¢
X = hedonic characteristic j of parcel i
Zy = time-varying fixed effect (annual time dummy)
€it = normally distributed error term, independent over time and space, such that

eir ~ N(0, 062)

a, B, 062 = parameters to be estimated

Equation (23) admits a log-linear function which, lacking a complete panel, I estimate using
pooled ordinary least squares, representing the time-varying component Z; with annual time dummy
variables (Equation (24)):

2020

pit=PBo+ Y aiXij+ > BiZi+eu (24)
J

t=1986

The intercept of the log-linear model (5y) is the county quality-adjusted parcel price index
for 1985, where parcel quality is measured by hedonic variables X;;. Summing £y with each year
dummy parameter (S319s6, ..., S2020) provides the county index for the historical time frame, referred
to hereafter as I; for all . Hedonic parameter estimates &; are assumed to stay constant over time
and are saved for estimating future parcel prices.

One would expect volatility in the historical county price index I; for a number of reasons.
Developer willingness to pay for a unit of parcel quality, as measured by parcel-level covariates X;;,
may change as new information arrives in the market about the per unit value, for example about
residential homeowner willingness to pay for being located in Santa Clara County. The developer
population may also change, with opinions about parcel value shifting as individuals enter and exit
the market. While these market drivers are also likely to impact hedonic parameters, I simplify the

model by assuming that the only time-vary component of parcel prices is the county-wide index
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value. This reduces the number of assumptions needed for forecasting future parcel prices.

To enable forecasting, county index estimates are fit to a first order autoregressive model:

Al = pAl 1+ ACk + uy (25)
k
where:

Al = first difference of index I;

Chrt = county-wide covariate: population, personal income (income from wages,
government benefits, dividends and interest, business ownership, measured by place
of residence), and construction cost index

Ut = normally distributed error term, independent over time, such that u; ~ N(0,02)

0, Yk, 02 = parameters to be estimated

Including county-wide covariates (population, personal income, and construction costs) in Equa-
tion (25) necessitates assumptions about future values for these variables when creating expecta-
tions of future parcel prices. Therefore, economic and population growth scenarios are required.
The results reported below focus on a scenario in which county population, personal income, and
construction costs grow at a constant annual rate equal to the average annual growth from 1985 to
2020.

Since individual parcels are infrequently traded, there is a structural bias towards negative serial
correlation between proximate estimates of Iy, especially for indices created over small regions. That
is, there are unobservable characteristics of parcels sold in one time step that may be captured in
time dummies and that, since they are unlikely to appear in nearby time steps, result in spurious
negative serial correlation between index values. This would bias p away from zero and create
noisier forecasts, a key application for the index estimates here.

To address this issue, I follow methods from Case and Shiller (1989) and Kuo (1996), who
recommend a bootstrap approach to estimating Equation (25) parameters. For each iteration, the
historical parcel sales data is randomly divided into two samples. Equation (24) is estimated for
each sample and Equation (25) is estimated using one set of index results for the left hand side and
the other for the lagged index values.

I also want to ensure that Equation (24) admits an unbiased estimate of developer willingness
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to pay. Fisher, Geltner, and Pollajowski (FGP 2007) note that a naive regression of Equation (24)
will result in a biased estimate of mean buyer willingness to pay, since sales are only observed when
buyer willingness to pay exceeds seller willingness to accept. For this reason, I use FGP (2007)
methods to isolate buyer-side parameters, using a two-stage Heckman procedure to control for
the likelihood that any given transaction would be observed on the market. This is an important
consideration, since 1,118 out of 5,314 total developable agricultural parcels in Santa Clara County
have not been transacted since 1985.

In the real estate economics literature, controlling for likelihood of sale in a hedonic price model
generates a “constant liquidity index.” Real estate markets are characterized by variable liquidity
over time, or changes in the ease of selling an asset reflected through variables like number of days
on the market or number of transactions. A constant liquidity index controls for the fact that it is
more difficult to sell a property during a down market and therefore reflect that the true value of
a property may be lower than the transactions observed on the market (FGP 2007).

The constant liquidity index can also be interpreted as a buyer willingness to pay index. This
is because controlling for the probability of sale is, by definition, controlling for the probability
that the buyer willingness to pay exceeds the seller willingness to accept. The first stage probit
results of the Heckman procedure can therefore be used to identify price parameters specific to
buyer and seller populations. FGP (2007) and Fisher, Gatlaff, Geltner, and Haurin (2003) describe
the procedure to derive the buyer parameters from the two stage Heckman regression parameters,
which requires adding together the variable liquidity index parameters estimated from the sample
selection-controlled second stage Heckman regression and a term that is a function of the coefficients
on time dummies in the first stage probit regression, which removes the effect of market liquidity
from the index.

Buyer-side parameter estimates for Equation (24) are shown in Figure 4 and parameter estimates
for Equation (25) are reported in Table 1. The variables with the largest positive influence on parcel
price include being located in an urban service area, which indicates that the parcel is sufficiently
close to one of Santa Clara’s cities to receive waste removal, water, sewer, and other municipal
services. Being located in a “design review” special district, which indicates proximity to visual
and environmental amenities protected by the County zoning ordinance, is associated with an

increase in parcel value. Conversely, being located in zones with large minimum lot sizes (5, 20,
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and 40 acres) is associated with lower parcel values, likely because these zoning designations reduce

the total number of primary residences that could be created through subdivision.
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Figure 4: Buyer-side, sample selection-corrected parameter estimates (é;) for log-linear parcel price
model (Equation (24)). Average model R? = 0.30. “Zoning, Design Review” is a dummy variable
for parcels located in a special district requiring review of the impact of any development on
local visual and environmental amenities. “Zoning, Scenic Roads” is a dummy variable for parcels
subject to special development and sign regulations protecting the visual character of scenic roads.
“Zoning, X Acres” refers to parcel zone’s minimum lot size restriction. “Zoning, Base Zone X”
refers to parcel base zone, which defines allowable uses; “A” = “Exclusive Agriculture”, “AR” =
“Agricultural Ranchlands”, “HS” = “Hillside”, “RR” = “Rural Residential”.

Using Monte Carlo analysis, I draw many realizations of the county index error term wu; for
all forecasted years, given estimated 2. With the resulting iterations of future county index
paths (Figure 5), I discretize the space of possible future index values into bins for each time step
and calculate the probability of transitioning from one price bin to another. The expected index

values within each bin, summed with each parcel’s hedonic value as estimated from Equation (24),
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Table 1: County index autoregressive parameter estimates, Equation (25)

Parameter Bootstrap 2.5th pc 97.5th pc
Average

p (AL_q) -0.103 -0.410 0.163

YPI (ACPI, 2.00 1.09 2.98

Personal income)

vp (ACP, -1.36 -9.45 9.95

Population)

vo (ACe, -3.15 -9.64 -0.347

Constr. costs)

o2 0.136 0.066 0.433

are used as the rewards to choosing development (Rgepeiop()) and the estimated index transition

probabilities serve as qq(z,2’) in the MDP model.
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Figure 5: County-wide agricultural parcel price index (estimated 1985-2020, in red), and forecasted

future price indices, assuming constant future growth in county population, personal income, and
construction costs (forecast 2021-2060, in gray).

Some of the model assumptions used here are usefully relaxed in the real estate economics lit-

erature, but since the focus of this exercise is to evaluate the likelihood of landowner participation
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in conservation programs, I do not pursue more elaborate analysis of real estate market structure.
For example, a number of past studies find that real estate prices follow a random walk, identified
through autoregressive models on differenced prices (Case and Shiller 1989, Kuo 1996, Plazzi et
al. 2011) while others demonstrate the presence of more complex market cycles, including regime
switching (Crawford and Fratantoni 2003, Gu 2002, Ghysels et al. 2013). While I assume hedonic
parameters are constant over time to simplify forecasting, similar to FGP (2007) and other ap-
plications in conservation literature (Cho et al. 2014), other studies have relaxed this assumption
(Wallace 1996, Ghysels et al. 2013, Glumac et al. 2019), for example separately estimating Equa-
tion (24) in each time step (Murphy 2018). Other studies have been able to exploit complete panels,
for example using real estate investment trust data that provide asset value estimates in every time
step, to use a Kalman Filter approach to jointly estimate Equations (24) and (25) (Brown et al.
1997, Guirguis et al. 2005). Applying these methods in my setting would provide a useful sensi-
tivity but would require evaluating tradeoffs between spatial and temporal error variance. Finally,
while T assume homoskedasticity in estimating parcel price parameters, through Breusch-Pagan
analysis I find that parcel size significantly affects estimated error variance. Future refinements to

this analysis could account for higher price uncertainty for larger parcels.

3.3 Calculating county-wide expected development

This analysis seeks to inform conservation program design choices. A simple measure that
county planners could use to compare choices of J and c is expected area of development across all
eligible parcels, with a programmatic objective of minimizing expected developed area for a given
budget. Using parcel-level MDP solutions, I calculate expected county-wide developed area, from
the perspective of ¢t = 2020, for a chosen policy evaluation year ¢:

s 7 t

E[D] =Y { > <; Zt: 1(aik,st = develop) P(h)) Aci} p(s) (26)

where:
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E[] = expectation over realizations of county price index I;, indexed by s, and
parcel-shocks, indexed by k; for all parcels 7, for all t = 2020, ...,

Dy = cumulative area of developable agricultural land sold to developer
between ¢ = 2020 and ¢

1(aik,st = develop) = 1 if it is optimal for landowner i to accept developer offer at time ¢, given

county index realization s and parcel shock realization k;, 0 otherwise

p(k;) = probability that parcel shock realization k; occurs
p(s) = probability that county index realization s occurs
Ac; = size of parcel 7 in acres

Equation (26) can be interpreted as each parcel’s cumulative probability of development (the
term within the round brackets), conditional on a given county index realization, weighted by each
parcel’s area and summed over all parcels. This value (the term in the braces) is then summed
over the probabilities of all possible county index realizations (experienced simultaneously by all
parcels). The equation can be rearranged for ease of calculation such that the MDP model solves
for each parcel’s cumulative probability of development separately, over all possible county index

realizations, then parcel results are weighted by parcel area and summed:

ED] =) Aci> > Y 1(ai,s = develop) p(k;) p(s) (27)
7 s k; ot

4. Results

All results reported here assume a future scenario in which annual county population, personal
income, and construction costs increase at the same average annual rate over 2050-2080 as observed

1985-2020.

4.1 Business as usual development in Santa Clara

In the absence of a conservation program, the model predicts high likelihood of development
for most parcels in the Santa Clara County ARA region: over 72,000 acres out of 153,000 total
ARA developable acres have a greater than 50% probability of developing before 2050 (Figure 6.A).

Using Equation (27), the expected area of development in the ARA increases from 22% to 33%
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to 43% of developable ARA area in 2030, 2040, and 2050, respectively. The areas with highest
development risk are found within Gilroy and Morgan Hill spheres of influence, or areas closest
to existing urban and suburban development (Figure 6.B). Visual and environmental amenities
protected by “design review” and “scenic road” zoning provisions also drive higher predicted real

estate values and therefore development risk.
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Figure 6: Probability and drivers of development in the Santa Clara County Agricultural Resource
Area (ARA), business as usual scenario.

To evaluate the performance of the MDP and price prediction models, I compare the business as
usual results to an independent, qualitative study of open space development risk in the San Fran-
cisco Bay region carried out by the Greenbelt Alliance (GBA 2017). The GBA analysis primarily
focuses on spatially-varying drivers of development risk, including city and county general plans
and zoning ordinances, urban service areas, spheres of influence, proximity to roads, land slope, and
environmental, habitat, and agricultural protection policies. They also use information on planned
development projects from county websites, news, and local interviews. They then attribute qual-
itative “development pressure factors” to the range of possible values for each variable assessed,
and use the union of all spatial layers to identify regions that are (1) high risk (urban development
likely within 10 years), (2) medium risk (urban development likely from 10 to 30 years) and (3) low
risk (development unlikely within 30 years).

Overlaying this study’s business as usual development predictions for all of Santa Clara County
with the GBA risk assessment, the findings are largely consistent. Table 2 shows that, for example,

out of the 28,874 acres identified as “high risk” in the GBA analysis, this study finds that expected
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development reaches 39.4% of that area by 2050. Conversely, only 8.5% of the area identified as
“low risk” is predicted to be developed by 2050 in this analysis. The modeling approach used here
therefore broadly aligns with analysis that benefited from even more detailed data on project-level

announced and planned development in the region.

Table 2: Greenbelt Alliance comparison

GBA analysis This study, expected developed area
(% of GBA acres)
Risk Santa Clara 2030 2040 2050
categories acres
High risk 28,874 8.0 21.4 39.4
Medium risk 105,895 4.7 13.3 29.5
Low risk 571,836 0.5 2.0 8.5

4.2 Conservation program effect on a single parcel

As shown in Equation (19), landowner behavior in the conservation program re-enrollment
setting simplifies to two reservation prices, one the developer offer price at which they will stop
enrolling in the conservation program (enrollment reserve price, p*(xJ) in log form) and the other
the developer offer price at which they will sell their parcel to the developer (sale reserve price,
p*(x) in log form). Solving for landowner reserve prices using numerical analysis provides several
findings (Figure 7). For this exercise, I report results for a single parcel with annual agricultural
profits of approximately $150,000 and the median parcel-specific (hedonic) component of developed
land value across all ARA parcels. The numerical analysis throughout this section operates on 5
year time steps.

First, p*(z) is substantially larger than p*(z.J) for all scenarios assessed, suggesting that landown-
ers will stop enrolling in the conservation program even if market prices are substantially lower than
their ultimate sale reserve price. The difference between p*(x) and p*(x.J) depends on, in addition
to other problem parameters, the landowner’s discount rate and their beliefs about future real

estate prices.
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Second, the reserve price series p*(x) is essentially constant across contract length J for all
time steps, consistent with the single-shot enrollment setting - that is, the length of the contract
does not influence the landowner’s sale reserve price. However, p*(z) increases as the conservation
incentive ¢ increases, a departure from the single-shot enrollment setting. When the landowner
can only enroll once, the value of the conservation program is not accounted for in the landowner’s
value of the property (Equation (7)). However, when repeated enrollment is possible, the landowner
increases their reservation price to reflect the ability to permanently increase agricultural land rents.
Across scenarios assessed here, for each increase in ¢ of $100 per enrolled acre, the landowner’s sale
reserve price (in levels) increases between 3% and 9%. The rate of increase in reserve price for a
given increase in incentive level is higher for shorter contracts, which provide more flexibility and
therefore value to the landowner.

Third, the enrollment reserve price p*(z.J) does not follow the same patterns as the sale reserve
price. First, the enrollment reserve price is not estimated for time steps in which the landowner is
certain to be enrolled (there are no states for that time step in which waiting to enroll is optimal)
(Figure 7). This is more prevalent for scenarios with higher enrollment incentives, as well as
scenarios where the contract length is equal to the temporal resolution of the model and therefore
not a constraint on development (here, 5 years).

Enrollment reserve price is influenced by both contract length and incentive level. For every
5-year increase in contract length, enrollment reserve price decreases between 5 and 25% (in levels),
for two reasons. First, holding incentive level constant, increasing contract length decreases the
value of the conservation program to the landowner and therefore reduces the sale reserve price.
Second, a longer contract length increases the probability that the sale reserve price is reached at
some point during the contract. Both effects increase the range of states over which it is optimal
to wait rather than enroll.

Similar to sale reserve price, enrollment reserve price is increasing in incentive level. For each
$100 increase in ¢, enrollment reserve price increases between 8% and 25% (in levels), more rapidly
than sale reserve price. By increasing the sale reserve price, higher incentive levels increase the
range of developer offers over which it is optimal to enroll, pushing up enrollment reserve price.

For states where the landowner is not enrolled and where the developer offer is less than p*(x.J),

the landowner will choose to enroll and will be enrolled for the length of the contract J. For
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Figure 7: Representative landowner reservation prices for sale of parcel to developer (p*(x)) and for
conservation program enrollment (p*(z.J)). Contract length J varies in panels from left to right (5
years to 25 years) and conservation incentive ¢ varies from top to bottom ($100-$600 per enrolled
acre).

example, a 5 year contract allows the representative parcel in this analysis to develop whenever the
developer offer exceeds p*(x) (Figure 8). That is, the conservation incentive acts as an agricultural
subsidy, and it will always be optimal to either enroll or develop in each (5 year) time step. As
the contract length extends to greater than one time step (10 years and above), the landowner will
only enroll if the developer offer is less than p*(x.J), which is a function of both J and ¢. Finally,
for instances where the landowner is not enrolled but the developer offer is between p*(zJ) and
p*(x), the landowner will wait to decide whether to sell or re-enroll at a later point. For example,
see the conservation program scenario where ¢ = $100 and J = 20 years (Figure 9). The landowner
will not enroll in 2020 because the developer offer exceeds p*(x.J), but there are some states where
the developer offer has decreased below p*(xJ) in 2025 and 2030, increasing the probability of
enrollment in those years.

To estimate the expected area of development for each parcel, the metric of interest is cu-

mulative probability of development for each time step (Figure 9). It is instructive to attribute
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Figure 8: Probability that representative landowner is enrolled in the conservation program, 2020-
2050. Contract length J is shown by panel (5 years to 30 years, left to right).

cumulative development results to two drivers: first, the incentive ¢ increases the value of agricul-
tural land use, and through the ability to re-enroll, increases p*(x) and delays the expected time to
development. This so-called “subsidy effect” is isolated in the 5-year contract scenarios (Figure 9),
where increasing the subsidy decreases the cumulative development probability for all time steps
but there is no lasting conservation protection.

Second, extending the term of the contract ensures the landowner cannot choose to develop
even if there is a transitory surge in the developer offer higher than p*(x). This so-called “shield
effect” can be seen by comparing the same incentive level across increasing contract lengths in
Figure 9. Conditional on the landowner being willing to enroll, a longer contract length will shield
parcels from price spikes in the real estate market over longer periods, delaying the expected time
of development (Table 3). As a result, for sufficiently high incentive levels (e.g. ¢ = $800), a long
contract period (e.g. J = 30 years) can significantly reduce cumulative probability of development
(equivalently, increase expected time of development) from the business as usual scenario. However,
if the incentive is too low (e.g., ¢ = $100, J = 30 years), the landowner will not enroll and the

program will have no effect on timing of development (Table 3).
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Figure 9: Cumulative probability of development for representative landowner, 2020-2050. Contract
length J is shown by panel (5 years to 30 years, left to right).

Table 3: Single parcel expected time of development

Contract length, J
Incentive, ¢ D years 10 years 20 years 30 years
Business as 2050
usual
$100 2050 2055 2051 2050
$200 2051 2057 2059 2062
$400 2057 2064 2062 2064
$600 2061 2066 2071 2070
$800 2063 2069 2071 2072

4.3 Agricultural Resource Area conservation program effect

Given spatial heterogeneity in agricultural profits and real estate values, a given conservation
program will have a wide variety of impacts on development across parcels (Figure 10). The program
administrator will be interested in total conservation program performance in a given region.

I assume the Santa Clara County program administrator’s objective is to minimize the expected
area of development within the ARA for a given budget level. The budget-constrained development-
minimizing program will manage the trade-off between attracting landowner enrollment (which

increases as J decreases and as ¢ increases) and protecting enrolled acres from development (which
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Figure 10: Cumulative probability of development in 2050 for Agricultural Resource Area (ARA)
parcels. Contract length J is shown left to right (20 years, 30 years, and permanent easement) and
incentive level is shown top to bottom ($100, $400, and $800 per enrolled acre).

increases as J increases). As the county budget increases, the program is able to protect more
acres by increasing the per acre enrollment incentive (¢), which also allows for increasing contract

length J without impacting enrollment rates. Evaluating a range of annual county budgets ($10-30
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million), this study predicts upwards of 40,000 acres of development could be avoided by 2050
compared to the business as usual scenario, on an expected value basis (Figure 11).

Figure 11 makes clear that the development-minimizing conservation program is not consistent
across time steps. For example, in 2030, the 20-year contract length achieves the most avoided
development for all incentive levels, whereas in 2040 the 30-year contract performs best. Since
many parcels are predicted to enroll in 2020, the performance of each contract length declines
following the end of the first enrollment cycle, and so by 2050 the 30-year contract falls behind
both the permanent easement program and the 20-year contract.

Using these results, the program administrator would choose their preferred evaluation year
and budget level, which would allow them to identify the contract length J that delivers the
maximum avoided development for that year, and the incentive level ¢ that ensures the budget
constraint is met. For example, having chosen a budget of $20 million and evaluation year of 2050,
the administrator would use results in Figure 11 to choose a contract length of 20 years and an

incentive of slightly greater than $200 per acre.

5. Discussion and Conclusion

This study highlights important structural differences between a single-shot enrollment con-
servation program and a program in which re-enrollment is possible. First, re-enrollment allows
for the conservation incentive to be capitalized into agricultural land value and therefore increases
the landowner’s reserve price at which they are willing to sell to a developer. The effect of the
incentive on reserve price depends on contract length, with longer contracts resulting in stronger
protection but lower capitalization effect. Second, unlike the single-shot enrollment setting, under
the re-enrollment setting there is no optimal contract length from the perspective of the landowner
because as contract length approaches zero the conservation program approaches a pure agricul-
tural subsidy without constraint on land use change. However, program administrators will want to
identify the conservation program, defined by a contract length and incentive level, that minimizes
expected area of development for a given budget. The choice of optimal conservation program
depends strongly on the evaluation year, particularly when evaluating a small region where the

contract length can cause large swings in the amount of protection provided year to year.
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This study demonstrates that term-limited conservation programs may be able to reduce devel-
opment rates by (1) subsidizing agricultural use and (2) “shielding” parcel from unanticipated real
estate price shocks. However, unmanaged, long term market trends can drive suboptimal develop-
ment as contracts end. Therefore, the term-limited program should be viewed as only one tool in
the arsenal for managing land conservation. Options for long-term protection include changes to
zoning ordinances, although any changes to allowable land uses may reduce land value and therefore
agricultural landowner welfare.

There are a number of future avenues for research building on the results of this study. As with
many dynamic and predictive models, it’s difficult to validate model structure and to test historical
predictions, due to limited time series availability. In this application, it is rare to find programs
that implement a variety of contract lengths and incentive levels that would allow for testing the
comparative statics described above. Future research could identify empirical settings that allow
for testing key model predictions.

In estimating program effects over larger regions, the methods would need to account for the
impacts of constraining agricultural land supply on real estate markets. Accounting for real estate
market complexities is not trivial, markets are highly regionalized, and both locating and charac-
terizing regional supply and demand elasticities can be confounded by business cycles. This work
would also usefully account for regional preferences for alternative residential development options
like urban in-fill.

The results presented here focus on a single scenario, where average county-wide parcel value
grows constantly at the historical rate observed from 1985 to 2020. Scenario analysis should be
employed to evaluate program performance over a broader range of possible futures.

Here I focused on a single measure of program benefit, expected area of development. Program
performance should be evaluated across a suite of benefits, including avoided greenhouse gas emis-
sions, avoided water runoff, and other development impacts. Accounting more fully for program
benefits would allow for designing a conservation program that increases social welfare rather than
simply minimizing programmatic costs.

There are many complications in landowner decision making for which this study’s model struc-
ture does not account. In addition to landowner risk neutrality, I assume the landowner’s objective

is only influenced by agricultural profits and land asset value, while many landowners value non-
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market amenities like open space and family tradition that are not fully priced into land markets.
Hedonic valuation methods could therefore usefully be paired with this modeling approach. Fur-
thermore, landowners are likely to be influenced by demographic and generational dynamics, with
agricultural parcel sales more likely when a parent passes. Lacking data on parcel ownership age
or landowner age distribution, it is difficult to predict about how this structural omission would
impact results.

The modeling approach demonstrated in this study could be usefully applied in any setting
where we seek to predict voluntary landowner decisions over a limited term, given some stochastic
component. In particular, this approach could be used in evaluating the effect of voluntary carbon
offset and conservation programs on net greenhouse gas emissions, a literature which currently
abstracts many of the nuances of both realistic policy and landowner decision-making. Structural
representation of landowner decisions to participate in term-limited programs can help determine
the true costs of attracting enrollment as well as the effects of limited contract length on environ-

mental gains and reversals over time.
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3. The problem with pricing “carbon”: exploring forest-driven

albedo effects in DICELAND"

Abstract

Climate change policies encouraging up to a billion hectares of new forest this century focus only
on COs sequestration, ignoring other drivers of radiative forcing and risking inefficient outcomes.
Increasing forest area, stand age, and carbon density removes CO, from the atmosphere, but may
also decrease Earth's albedo, which increases radiative forcing and thus global surface
temperatures. We build on the literature exploring this trade-off by directly quantifying the
impact of forest-driven albedo change on global climate damages, carbon prices, and industrial vs.
forest sector mitigation levels using the Dynamic Integrated model of Climate and the Economy
(DICE) and the Global Timber Model (GTM), dubbing the new model DICELAND. Under policy
limiting global warming below 2 degrees Celsius, the unexpected damages from ignoring albedo
reach 22% of 2100 climate damages, with unexpected temperature change reaching 0.27 degrees

Celsius. Accounting for albedo effects increases 2100 carbon prices by 36%, and requires the

" Co-authored with Alice Favero (Georgia Institute of Technology) and Bernardo Adolfo Bastien Olvera
(University of California Davis). Emily McGlynn (lead author) developed the research design, developed the
DICELAND model and methods, wrote DICELAND code and results calculations, and drafted the
manuscript. Alice Favero produced all Global Timber Model outputs and provided guidance on methods,
results, and discussion. Bernardo Adolfo Bastien Olvera provided guidance on the DICE model and
supported DICELAND development.
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industrial sector to reach zero greenhouse gas emissions a decade earlier (2050 rather than 2060).

We suggest policymakers account for albedo effects to minimize climate mitigation costs.

1. Introduction

Economists have long dealt with the problem of environmental and natural resource
externalities, most simply identified by Pigou as “incidental uncharged disservices” (1920). To
efficiently address externalities, policy makers must (1) identify the problem (what is the
phenomenon resulting in “uncharged” costs or benefits?), (2) quantify the resulting marginal costs
or benefits, and (3) ultimately use regulation or pricing structure to manage economic activities
such that the marginal cost of mitigation equals the marginal benefit of reducing the externality.
Much of the economic literature has focused on steps (2) and (3), pointing to the efficiency of
using taxes or market-based mechanisms to price the externality in accordance with marginal
conditions of efficiency (e.g., Freeman 1982, Lyon and Farrow 1995, Muller and Mendelsohn 2009,
Hsueh 2017). Yet inadequately or incompletely specifying the scope of the problem in step (1),
whether purposefully or not, can create its own potential for economic inefficiency, even if steps
(2) and (3) are executed to perfection.

A case in point is climate change policy, which has largely focused on the need to directly
regulate or price greenhouse gas (GHG) emissions (Stern 2008, Weitzman 2009, Dasgupta 2014,
Linn et al. 2014). GHG emissions are in fact a proxy for the primary externality driving climate
change, which is radiative forcing in the Earth’s atmosphere. The Intergovernmental Panel on

Climate Change (IPCC) uses the concept of radiative forcing, measured as “the net change in the
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energy balance of the Earth system due to some imposed perturbation” to quantify and compare
how a variety of physical drivers contribute to anthropogenic climate change (Myhre et al. 2013).
The largest of these drivers are increasing atmospheric concentrations of GHGs like CO,, CH,, and
N-,O, making emissions of these gases a prime target for climate change policy. But other radiative
forcing drivers include the effects of land use change on global albedo—the percent of incoming
solar radiation reflected by the Earth’s surface—and a host of other atmospheric dynamics (e.g.
indirect formation of ozone and stratospheric water vapor; direct emissions of aerosols and their
interactions with clouds). In this paper, we identify the economic inefficiency of focusing climate
change policy solely on GHG emissions, particularly at the expense of ignoring land-driven albedo
changes under global climate policy, even when GHG pollution is managed efficiently.

Radiative forcing due to anthropogenic GHG emissions over the Industrial Era (post 1750)
is 2.83 Wm?, while the albedo effects of anthropogenic land use change over this period, largely
characterized by conversion of forests to agriculture and settlement, has decreased radiative
forcing by 0.15 Wm?® (Myhre et al. 2013). To date, therefore, the “surface lightening” impact of
land use change has had a cooling effect. But current policy proposals to expand and recover
global forests are likely to reverse this trend.

Governments indicate forests will deliver 25% of GHG reductions pledged to date under
the UN Paris Agreement (Grassi et al. 2017). Under scenarios to keep global warming below 1.5
°C above pre-industrial levels, global forest area could expand by up to 1.2 billion ha (Rogelj et al.
2018), an area greater than the size of China (World Bank 2018), with an upper bound of

approximately 1.9 billion ha of new forestland (IIASA 2019, Riahi et al. 2017).
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The challenge is that forests have one of the lowest albedos of any land surface cover, so
converting agriculture or grasslands to forest can have a significant increase in radiative forcing at
the Earth’s surface (Myhre et al. 2013, Gibbard et al. 2005, Bala et al. 2007, Bonan 2008,
Kirschbaum et al. 2011, Jones et al. 2013, Jones et al. 2015) and this effect is particularly
pronounced in snow and ice-covered areas (Betts 2000, Gibbard et al. 2005, Bonan 2008, Arora
and Montenegro 2011). Even if forest area is kept constant, extending forest stand age and tree
density to increase carbon storage can result in land darkening and lower global albedo (Mykleby
et al. 2017; Favero et al. 2018).

The albedo effect can be substantial in counteracting forest carbon sequestration benefits.
Favero et al. (2018) found that, under a 2100 carbon price of US$147 tCO.", albedo effects reduce
global forest climate mitigation potential by 46 percent. They further found that pricing albedo
changes on a COs-equivalent basis encourages optimal location of forest area expansion, lower
levels of forest expansion, decreases forest optimal rotation, and increases in forest carbon-
equivalent density (again, with albedo change measured on a CO, equivalent basis and counted
against forest carbon stock).

A significant contraction in forest climate mitigation potential for a given carbon price is
equivalent to higher forest climate mitigation costs and therefore higher global climate mitigation
costs overall. As a result, economic analysis suggests that efficient global carbon prices (that is,
carbon prices that correspond to optimal global welfare when considering both climate damages
and climate mitigation costs) will increase. More costly mitigation results in lower levels of

efficient global climate mitigation, and more mitigation will come from the industrial sector rather
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than the forest sector. We motivate these results using a simple economic model in the Theory
section below.

To quantify the economy-wide climate policy implications of albedo change, we
incorporate the global forest sector as an endogenous mitigation option into the Dynamic
Integrated model for Climate and the Economy (DICE), a global model that maximizes net
economic output with respect to climate mitigation costs, climate damages, and capital investment
(Nordhaus 1992, Nordhaus 2014, Nordhaus 2018). We use the Global Timber Model (GTM) to
parameterize the DICE forest sector mitigation costs, branding our new model DICELAND. DICE
considers the land sector to be exogenous while GTM considers carbon prices exogenous, so
pairing these models can answer the dynamic economy-wide questions posed here. With
DICELAND we assess carbon prices, mitigation activity in the industrial and forestry sectors, and
total climate damages across scenarios that both account for and ignore forest-driven albedo
changes. We detail these models and scenarios in the Methods section.

Our work builds on previous research assessing the forest sector’s role in global climate
mitigation. Sohngen and Mendelsohn (2003) solved iteratively between GTM and DICE for carbon
rental rates that are consistent across both models, finding that forest carbon sequestration could
account for one third of future CO, abatement. Favero et al. (2017) similarly solved iteratively
between the integrated assessment model WITCH and GTM to assess scenarios of using forests for
bioenergy production versus carbon storage. However, neither paper includes a control variable for
mitigating land sector radiative forcing in the general equilibrium model as we do in this paper, so

their carbon prices do not reflect optimal mitigation across both industrial and forest sectors, nor
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does either paper reflect albedo interactions. Eriksson (2015) included three new control variables
in DICE to optimize over roundwood harvest, bioenergy harvest, and deforestation to achieve
optimal global climate mitigation in both the industrial and forest sectors, but does not include
the option of forest management intensification, as GTM does, nor are albedo effects included.
Increasing forest management intensity is an important carbon sequestration alternative to forest
expansion, particularly when assessing albedo effects.

We also benefit from literature that identifies trade-offs between forest carbon
sequestration and albedo change through dynamic optimization. Thompson et al. (2009) first
looked at the effects of albedo on optimal forest age under climate policy for a single stand.
Mykleby et al. (2017) estimated these trade-offs with respect to optimal forest rotation age in
different climatic and vegetation regions in North America, identifying a latitudinal dividing line
between areas that resulted in net climate benefits of expanding forest area vs. net climate
damages. We build on this literature by incorporating forest albedo effects into a global integrated
assessment model and exploring effects on optimal mitigation levels in forests and other sectors,
carbon prices, and climate damages.

A number of integrated assessment models, such as GCAM (JGCRI 2019), IMAGE
(Stehfest et al. 2010), MESSAGE-GLOBIOM, and REMIND-MAgPIE (IAMC 2018), already have
endogenous land modules and could perform these types of analyses. For example, Jones et al.
(2015) incorporated albedo impacts from land use change into GCAM to identify potential effects
on energy sector GHG reductions and carbon prices. However, their carbon price is not applied to

albedo effects directly, so they do not allow for increasing efficiency of land use in response to
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pricing albedo effects, nor are they able to estimate efficient mitigation levels across both land and
industrial sectors. Furthermore, Jones et al. (2015) only considers the albedo effects of changes in
forest area, not due to changes in forest management, for example the additional darkening that
occurs due to increasing forest stand age. Finally, GCAM, like many other integrated assessment
models, does not include the potential to increase forest management intensity, other than shifting
forest land to more productive regions.

Albedo considerations have been built into GTM by Favero et al. (2018), allowing for
directly pricing the radiative forcing effects from albedo change due to changes in forest area and
forest management. We take advantage of the simplicity and transparency of the DICE model, as
well as Favero et al.’s (2018) work to incorporate albedo into GTM, to complete our analysis
efficiently. Similar analysis using other integrated assessment models is welcome. Given that other
integrated assessment models do not include potential for forest management intensity, and thus
rely more heavily on forest area expansion to increase carbon sequestration, we expect they may
find greater economic effects of accounting for albedo.

Our analysis accounts for forest impacts on global surface temperature through albedo
changes and carbon sequestration. However, other factors can influence the net effect of forests on
global surface temperature. For instance, forests increase evapotranspiration, contributing to cloud
formation (Spracklen et al. 2008) and lowering surface temperatures (Duveiller et al. 2018).
Duveiller et al. found that observed global land use change over 2000-2015, largely driven by
agricultural expansion and forest loss in lower latitudes, resulted in a net increase in local surface

temperatures, with effects of lower evapotranspiration more than compensating for increased
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albedo (2018). Furthermore, incorporating more trees into urban and settlement areas can reduce
energy needs for heating and cooling (Wang et al. 2018). Any albedo effect from changes in forest
area or management might be tempered or exacerbated by these other factors, which our model
does not account for. Future research would usefully expand the model scope to estimate the total
impact of land use and land management changes in a given region on global average surface

temperature.

2. Theory

We introduce here a simple economic model to motivate how accounting for albedo might
affect mitigation levels across sectors, total economy-wide mitigation levels, and mitigation
shadow prices. The model is based on Cropper and Oates (1992) basic theory of environmental
policy.

Consider a static system in which there is a phenomenon (here, radiative forcing) that
results in negative impacts to society’s utility. In this example, for simplicity, radiative forcing can
occur through CO, emissions or through changes in albedo. CO; emissions result from production
of some good that enhances social utility, thus we risk inefficient levels of production that do not
account for the negative impacts of the radiative forcing without some mitigating policy. There
are two options for mitigating radiative forcing, other than reducing production: (1) reduce the
CO:; intensity of good production, and (2) absorb COs in forests, but this option can also increase

radiative forcing by reducing albedo.
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Assume social utility is strictly increasing in good consumption and strictly decreasing in
radiative forcing, and twice continuously differentiable and strictly quasiconcave in its inputs.
Good production and radiative forcing are defined by strictly convex production sets and are twice
differentiable in their inputs. These assumptions allow for a unique solution that exists and is
interior. For simplicity, we assume the options to mitigate CO- in either the goods producing
sector or the forest sector are equivalent in terms of effectiveness (i.e. the marginal reduction in
radiative forcing from absorbing one unit of CO, in forests is equal to the marginal reduction in
radiative forcing from reducing one unit of CO, from goods production).

Let social utility be represented by equation (1):

W = U[X(E,1,Q),Q(E, Mg, Mpc, Mpp(Mgc))] (1)

Where U[ e | represents social utility as a function of consumption of good X, which is
increasing in investment I and in CO, emissions E through the production process, and is
negatively impacted by radiative forcing (). Utility is also directly decreasing in radiative forcing
@, which is increasing in CO, emissions E, and can be mitigated at levels Mg (reducing CO,
intensity of good production) and Mrc (absorbing CO; in forests). Land darkening Mpp will
increase radiative forcing as a function of forest CO, mitigation levels Mpc.

Investment in good production and total productive activity required for radiative forcing
mitigation (f(Mg), f(Mpc)) must fall below some budget constraint R, so by strict monotonicity of

W we can assume I + f(Mg) + f(Mr) = R. Therefore, production of good X is a function of
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mitigation activity through the resource constraint R, such that X(E,[,Q) = X(E,Mg,Mrc,Q) —
there are input tradeoffs between CO. mitigation and good production. We assume R is exogenous
and unchanging and so do not include this as an input to good X production for the remainder of

the analysis. To summarize the relationships in W:

ou
Xe>0, Xy, <0, Xy, <0  Xo<0
QE > 0' QME < 0' QMFC < 0’ QMFD > 0

QMg = Qumg, Dy equivalence of mitigation options

>0
dMgc

Second derivatives of radiative forcing ) with respect to CO; mitigation (Mg, Mrc) are
positive, consistent with decreasing marginal benefit of mitigation. Second derivatives of X with
respect to mitigation are also positive, consistent with increasing marginal costs of mitigation.

We want to maximize social welfare W with respect to CO; emissions E (as an “input” to

production of good X), CO, mitigation in good production Mg, and CO, mitigation in the forest

sector Mpc. First, let’s ignore the land darkening term (ZAA//IIF 2 — 0 for all Mrc). By first order
FC

conditions we find the solution is characterized by the marginal cost of mitigation equaling the

marginal benefit of mitigation, for M representing Mg or Mpc:
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Xu

k=T [UQI?MR + XQQMk] (2)

X

The marginal cost of mitigation is represented by the reduction in good consumption (left
hand side of equation (2)) and the marginal benefit represented by the increase in utility due to
lower radiative forcing (first term on the right hand side of equation (2)) and the increase in good
production due to lower radiative forcing (second term on the right hand side of equation (2)).

By the fact that Qum, = Quy,, the marginal benefit of CO> mitigation is equivalent in both
good production and forestry for any quantity of CO, mitigation. Thus the solution is also
characterized by the marginal cost of mitigation being equal across consumption good and forest
sectors, as we would expect.

Now we include the albedo term. The solution to good production CO, mitigation remains

the same as equation (2), but the solution to forest CO, mitigation changes from equation (2) to:

XMFC + (Z_f( + XQ) (QMFD ZII\\/I/II;[C)) =T [%ZFC + XQQMFC] (3)

Accounting for albedo increases the marginal cost of CO; mitigation from forests, on the
left hand side of equation (3), which is now represented by the marginal cost with respect to good
consumption (first term), and the marginal cost of higher radiative forcing from land darkening
(second term). The marginal benefit remains the same on the right hand side of equation (3), thus

we retain equality of marginal mitigation costs across good producing and forest sectors.
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Since any given quantity of forest CO. mitigation is now characterized by higher marginal
costs (a leftward shift in the mitigation supply curve), optimal forest CO, mitigation quantity Mgc
will decrease. With the shadow price of CO, mitigation occurring where marginal cost equals
marginal benefit, accounting for albedo effects will raise shadow prices. The unchanged mitigation
supply curve of the goods sector, combined with a higher solution shadow price, results in higher
mitigation from the goods sector.

This example simplifies these questions in a static, general model. To fully quantify these
effects, and given the complexity of both the climate system and forestry sector, we require

dynamic models and numerical analysis, which we undertake next.

3. Models and Methods

For the discussion of methods and results below, we use the term “carbon price”
throughout, but for certain scenarios our carbon price also reflects marginal damages from albedo
effects. A more appropriate term would be “radiative forcing price” but we use carbon price
throughout for ease of policy communication. We make clear where albedo is and is not
considered.

Our analysis uses DICE and GTM to assess the effects of considering forest-driven albedo
changes on efficient global climate policy. We modify DICE to include an additional control
variable representing the level of CO, mitigation in the forest sector and use GTM to parameterize
the costs of forest sector CO, mitigation within DICE. The resulting model is called DICELAND.

We describe DICELAND and GTM in more detail below.
105



With DICELAND we assess carbon prices, mitigation activity in the industrial and
forestry sectors, and total climate damages across two radiative forcing accounting (Traditional,
Integrated) and two global climate policy (Optimal, 2 Degree) scenario components (Table 1). We
also present Traditional, Net Albedo (TNA) results, wherein albedo effects are accounted for ex
post under the Traditional accounting scenario, as well as a No Land scenario, wherein GHG
mitigation can only be provided by the industrial sector. Table 1 shows how we use these scenario
components to build eight different scenarios, with each scenario represented by one radiative

forcing accounting component and one global climate policy component.

. Scenarios
Scenario L
¢ Description Opt Opt Opt Opt 2 Deg 2 Deg 2 Deg 2 Deg
omponents
compe ° Trad | TNA Int No Land | Trad TNA Int No Land

DICELAND considers
only forest CO2
Teaditional sequest“raj[ion im}@cts v v
on radiative forcing
when optimizing forest
sector mitigation
DICELAND accounts
for both albedo and

CO2 sequestration

impacts, converting
Integrated any f()rest—drivt?n v v
albedo change into
carbon-equivalents on
a radiative forcing
basis (Favero et al.
2018)

DICELAND uses

Traditional forest

Forest carbon accounting, policy

carbon accounting.
Albedo effects on net
forest CO2 v v

sequestration, global

Traditional,

net albedo

temperature, and

climate damages are

calculated ex post
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DICELAND only
No Land allows mitigation from 4 v
the industrial sector
DICELAND optimizes
Optimal global welfare over v v v v
2015-2520
unconstrained
DICELAND optimizes
global welfare such
that global

2 Degree i v v v v
temperature increase

Global climate policy

stays below 2 degree
Celsius following 2110

Table 1. DICELAND Scenarios

The Global Timber Model (GTM) is a detailed partial equilibrium economic model that
accounts for spatially-explicit global forest stocks and growth rates and optimizes the net present
value of consumer and producer surplus in timber markets, originally developed by Sohngen et al.
(1999). The model covers 200 forest types, 16 global regions, and three carbon pools (aboveground
biomass, soil carbon, and wood products). Forest carbon stock at a given point in time is a
function of historical changes in forest land area, forest growth rates, and management intensity
choices (e.g. planting, fertilization, and other management inputs like thinning). GTM uses
exogenous carbon prices to predict changes in forest management behavior and forest area under
climate policy scenarios. For more discussion of GTM’s structure, see Favero et al. (2018) and
Tian et al. (2018).

Favero et al. (2018) used GTM to assess the effect of accounting for albedo on optimal
forest carbon sequestration. They used MODIS satellite imagery and the MODIS white-sky albedo

dataset to estimate the difference in mean annual albedo between mature forests and cropland or
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bareland by dominant forest type for each climatic region. The difference in albedo between land
cover types is converted into surface radiative forcing, which is then converted into an equivalent
change in atmospheric CO- concentration. Finally, the change in atmospheric CO, concentration is
converted into an equivalent CO, emission per hectare, or the amount of COs-equivalent emissions
that would result in the same radiative forcing as that attributable to albedo changes from a
hectare of cropland or bareland being converted to mature forest. They also calculated albedo
‘decay’ as forest matures, interpolating albedo between bare land and mature forest. The result is
regional- and forest type-specific empirical estimates of the albedo impacts of converting land to
forest and increasing forest stand age. Favero et al. (2018) incorporated these estimates into GTM
by subtracting any albedo changes from forest carbon stock on the radiative forcing basis
described above. Thus as the model seeks to optimize producer surplus under a carbon pricing
regime, inefficient albedo change is avoided to achieve higher carbon payments. We use this
version of GTM for our analysis below.

The Dynamic Integrated model of Climate and the Economy (DICE) is a well-studied
model originally developed by Nordhaus (1992). It is a global optimal control model that
optimizes social welfare with respect to climate damages and climate mitigation costs. We use a
version of DICE coded for MATLAB by Faulwasser, Kellett, and Weller (2016); conventional
DICE is coded in GAMS. The DICE-2013R manual provides additional information about model
structure and code (Nordhaus and Sztorc 2013), but the equations listed below conform to the

2016 MATLAB version. We use parameter values consistent with Nordhaus (2016), except when
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otherwise specified. In particular, we use DICE 2016 default pure rate of time preference (1.5%)
and default elasticity of marginal utility of consumption (1.45) for all scenarios.

The two DICE control variables are savings rate of global economic output (s) and CO,
mitigation rate in the industrial sector (u). Three state variables are global average surface
temperature (T, atmospheric CO, concentration (M), and capital (K). Global population is
exogenous and acts as the labor input to a Cobb-Douglas global economic output function
(equation (4)).

The conventional DICE industrial CO, mitigation control variable (u) enters the system of
equations as a percent reduction of global emissions (equation (5)), and the mitigation cost enters
as a proportional reduction of global economic output (equations (6) and (8)). In conventional
DICE, the land sector emits CO- at exogenously determined levels which decline to zero over

time. Global welfare is a function of per capita consumption ¢; (equation (9)).

Ge= AR LY 4)
E; = 0,(1— )Gy + Ef*™™ (5)
A = 91,t.“1?2 (6)
Dy = ay(TH" (Ep))% (7)
Ny = (1 - D¢ —ApGe (8)
=1~ s)p (9)
Where, in time ¢ G; = Gross global economic output, US$ trillion;
ATFP = Total factor productivity, exogenous;
K; = Capital, a function of net economic output and saving rate,
function not shown;
L; = Population, exogenous;
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E; = Total global GHG emissions, Gt COe (DICE includes exogenous
non-CO; climate forcing);

Ot = GHG emissions intensity of gross global output, declines over
time at exogenous rate;

Efand — GHG emissions from land, exogenous in conventional DICE,
starting at 2.6 Gt CO, per year in 2015 and declining by 11.5%
every 5-year time step;

A = Cost of GHG mitigation, proportion of gross global economic
output;

01, 0, = GHG mitigation cost parameters, 6, ; declines over time at
exogenous rate;

D, = Climate damages due to GHG emissions, proportion of gross
global economic output;

TAT = Global average surface temperature change from 1900, degrees
Celsius, a function of the state variable atmospheric CO»
concentration (M), which is a function of emissions (E;);

a,,az = Climate damage parameters;

N; = Global net economic output;

Ct = Per capita consumption, input to the social welfare function;

St = Saving rate, control variable; and

Ut = GHG mitigation rate, control variable.

Furthermore, 6, is a function of the industrial sector mitigation “backstop price” and the

change in backstop price over time (8, is an exogenous constant):

Where

PB

APB

PB
01t = ot (9_

2)(1 — APB)t1 (10)

backstop price; and

annual percent change in backstop price
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A backstop price is required to identify a unique carbon price path. By defining 8, ; in this
way, the marginal cost of mitigation will equal the backstop price when py; = 1, or 100%
mitigation of all industrial emissions.

3.1 DICELAND

To make the global forest sector endogenous within DICE, we removed the exogenous land
sector emissions EF%"® and added a control variable u, , to indicate absolute emissions reduced in
the forest sector (Gt CO,), as well as a parameter indicating maximum mitigation potential from
the land sector, Uyyax (Gt CO,). We also include two additional parameters to reflect the cost of

land sector mitigation (63, 8,) which are analogous to parameters 6, ; and 6, in the industrial

sector. We incorporate these new variables into equations (5) and (6) to create equations (11) and

(12):
E = 0,(1 = u)Ge + (Ef 7% — pp) (11)
— 4 Hat o
Ap = Opp” + 93,t(ﬁ) * (12)
Where Ef~Pase — exogenous baseline forest sector GHG emissions, reflects GTM

baseline scenario with no carbon price
03¢, 04 = Forest sector GHG mitigation cost parameters
Uz, = Forest sector GHG mitigation control, GtCO

Uamax = Maximum land GHG mitigation, GtCO»

We also designate backstop price and change in backstop price parameters for the land
sector in order to specify 83, (6, is a constant):

PB _
93,t = (9_:)(1 - APBL)t ! (13)
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Where PB = Land sector mitigation backstop price; and

APBL = Land sector annual percent change in backstop price

The forest sector mitigation control variable u, ; is specified as an absolute reduction
rather than a proportional reduction like in the industrial sector because the industrial sector is
characterized by rapidly increasing marginal costs as emissions approach zero. This is not
appropriate for the forest sector. While there are increasing marginal costs, there is no asymptote
for forest CO, emissions levels around zero, because the forest sector can readily sequester CO,
(i.e., negative CO, emissions). Thus, representing total net emissions in equation (11) requires
subtracting p, ; from baseline land sector emissions Ef ~4%¢. Further, representing mitigation
costs in terms of proportional reduction in equation (12) requires introducing the pypax term.

We introduce four new DICELAND parameters (PBy,, APBy, 0,4, and pypax), as well as
the Ef~P4se exogenous time series. To set these parameter values, we use GTM. Ef ~bas¢ ig
derived by first running conventional DICE without mitigation (setting the upper bound of u; to
zero for all t), recording ¢; (per capita consumption) and real interest rate for all ¢, and feeding
these two series into GTM to derive a baseline series of forest sector GHG emissions under a “no
carbon price” scenario. The GTM baseline series is fit to a fourth-order polynomial which is then
coded into DICELAND as the exogenous forest sector GHG baseline.

Uamax is readily defined by the maximum GTM mitigation level found through eight

carbon price scenarios assessed by Favero et al. (2018) and is set at 25 Gt CO, for all ¢t. Griscom

et al. found maximum global land sector mitigation potential of 23.8 Gt CO, by 2030, with cost-

112



effective mitigation potential limited to 11.3 Gt CO, (achievable at less than $100 tCOse™) (2017).
Smith et al. identifies annual demand side land sector mitigation potential at 15.6 Gt CO.e by
2050 for carbon prices less than $100 tCOse? (2013). Ultimately the pypax value is arbitrary, and
the other forest sector mitigation cost parameters are defined with respect to this assumed value.
The three forest mitigation cost parameters (PBy, APBy, 0,) are determined through a

convergence process between DICELAND and GTM (Figure 1).

Figure 1. DICELAND-GTM forest sector cost parameter convergence process.

The convergence process requires (1) setting a grid search of 4 values for each of the three
cost parameters, resulting in 64 total DICELAND runs for every combination of the 3 parameters’
4 values; (2) generating DICELAND outputs of per capita consumption, real interest rate, and
carbon price path for each of the 64 runs, which are used as inputs to GTM, generating 64
concomitant GTM runs; and (3) comparing the forest GHG emissions paths for each of the 64

runs across the two models using root mean squared difference (RMSD). " The run with the lowest

fRMSD = (% I 1(Ept — Eg)»)%® where t = 1,..,T represents each 10 year time step, Ep, is DICELAND

forest sector emissions in time step t, and E¢, is GTM forest sector emissions in time step t.
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RMSD is used to set a tighter parameter grid search around the 3 candidate parameter values.
This process iterates until there is adequate convergence.

We performed this convergence process for each of four climate policy-carbon accounting
scenarios: (1) Optimal climate policy, Traditional carbon accounting; (2) Optimal climate policy,
Integrative carbon accounting; (3) 2 Degree climate policy, Traditional carbon accounting; and (4)
2 Degree climate policy, Integrative carbon accounting.

The DICELAND-GTM convergence process resulted in RMSDs across scenarios of 1.73-
2.38 Gt CO; between the two model’s forest emissions pathways from 2020-2100 (for reference, the
maximum annual forest mitigation achieved across scenarios is 16.5 Gt CO,), the timeframe used
for model convergence. Years after 2100 are less useful due to terminal condition assumptions in
GTM. The DICELAND forest CO, emissions pathway can be best interpreted as representing
long term GTM emissions trends for a given carbon price path.

DICELAND forest mitigation cost parameters for the lowest RMSD pathways are distinct
across forest carbon accounting scenarios, as well as across global climate policy scenario. This
indicates that, while it is meaningful to assess effects of forest carbon accounting approaches on
efficient carbon prices, parameterization needs to be redone for any significant changes in climate

policy (Table 2).
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Optimal 2 Degree

Units Traditional | Integrative | Traditional | Integrative
Land backst ice (PB $/t
and backstop price (PBi) | §/ton 200 200 200 1467
CO;
Annual decrease in PB,, ]
Ratio 0.005 0.005 0.005 0.0867
(APBy)
Land cost function exponent ]
(0 Unitless 5 3.7 5 5
4

Table 2. DICELAND forest mitigation cost parameters for four forest carbon accounting-climate

policy scenarios.

3.2 Traditional net albedo ex ante calculations

The Traditional accounting scenario ignores albedo effects when determining efficient
forest sector mitigation activity. To estimate total temperature change and climate damages under
the Traditional scenario, we must calculate incremental temperature change and climate damages
due to albedo to generate the Traditional Net Albedo (TNA) results. First, we run DICELAND
using the Traditional parameters (Table 2) for either Optimal or 2 Degree policy and record all
results offline. We then take the appropriate GTM time series of albedo change COs-equivalent
emissions (consistent with the DICELAND parameters used in the previous step) and add albedo
COs-equivalent emissions to the DICELAND forest sector emissions derived from the previous
step. Since DICELAND operates over 5-year time steps and GTM over 10, the TNA forest sector
emissions must be fit to a spline, the interpolated results of which are used as the input into
DICELAND dynamic equations. The result is a TNA forest sector emissions pathway. We then

use an offline version of the DICELAND dynamic equations (equations (4), (7)-(9), (11)-(12)) that
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takes all offline DICELAND results and the TNA forest sector emissions pathway as inputs to

generate updated temperature and climate damage results.

4. Results

4.1 The role of forests in climate change mitigation

In Figure 2, we show that the carbon price under Optimal and 2 Degree policies drives
large increases in global forest carbon stock, even when accounting for albedo effects (Figure 2.a,
2.b), compared to a global climate policy that does not include the forest sector as a mitigation
option (No Land). Note that in Figure 2 forest carbon stock levels under Integrative and TNA
scenarios reflect albedo effects in terms of carbon stock equivalent on a radiative forcing basis,
consistent with methods in Favero et al. (2018). Thus, DICELAND indicates the forest sector
provides climate mitigation benefits even when albedo effects are accounted for.

Accounting for albedo ex ante under the Integrative scenario affects total efficient
mitigation provided by forests. By 2100, under the Integrative scenario forest carbon stock is 5%
(Optimal policy) and 6% (2 Degree policy) higher compared to TNA. While the higher Integrative
forest carbon stock is primarily due to more efficient allocation of forest expansion over space,
consistent with Favero et al. (2018) results, under a 2 Degree policy 25% of the difference between
Integrative and TNA forest carbon stock is due to higher albedo-sensitive carbon prices (Figure

2.b, compare Integrative and Integrative, same carbon price as Traditional results).
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Figure 2. Forest sector Global Timber Model outputs: a. Forest carbon stock, net albedo (GtC),
Optimal policy; b. Forest carbon stock, net albedo (GtC), 2 Degree policy.

4.2 Effects on carbon price and forest mitigation cost-effectiveness

The No Land policy results in higher carbon prices than when the forest sector is included
in climate policy under either Traditional or Integrative accounting approaches. The 2100
Traditional carbon prices are 7% (Optimal policy) and 85% (2 Degree policy) lower than the No
Land scenarios.

The Integrative scenario is characterized by more costly forest sector mitigation than
under Traditional forest carbon accounting, resulting in 2100 carbon prices that are 3% (Optimal
policy) and 36% (2 Degree policy) higher (Figure 3.a, Figure 3.b).

We compare the forest carbon stock accumulated under climate policy with the carbon
prices required to reach increasing forest mitigation levels (Figure 3.c, 3.d). While Traditional

carbon accounting appears to allow for the least costly forest carbon accrual, this is an artifact of

! Note for DICELAND to generate a solution for the No Land — 2 Degree policy scenario, the start of the 2
degree constraint is delayed until 2200 (compared to a start year of 2110 for Traditional and Integrative
scenarios). This reflects the difficulty of meeting the 2 degree temperature target without employing the
land sector.
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the albedo omission accounting error — the TINA scenario has the highest marginal cost of
increasing forest carbon stock for all mitigation quantities. The average cost of generating the
highest forest mitigation quantity under TINA carbon accounting is 34% higher (Optimal policy)
and 9% higher (2 Degree policy) than Integrative carbon accounting.

Note that there is less of an efficiency gain from using Integrative accounting under the 2
Degree policy compared to Optimal policy. This is because under the higher carbon prices of 2
Degree policy, forests are approaching maximum potential area and carbon storage. This dynamic
results in little difference in the costs of Integrative versus TNA carbon accounting, since both
account for albedo effects and exhibit similar forest area and management characteristics. Yet as
shown by Figure 3.b, accounting for albedo ex ante remains important under 2 Degree policy for
purposes of estimating an efficient carbon price pathway, which in turn affects mitigation levels in

other sectors, global temperature change, and climate damages.
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Figure 3. Carbon price and forest mitigation cost-effectiveness: a. DICELAND carbon price (US$
tC™1), Optimal policy; b. DICELAND carbon price (US$ tC'), 2 Degree policy; c. GTM change in
forest carbon stock compared to no climate policy (Gt C), by DICELAND carbon price (US$ tC
1), Optimal policy; d. GTM change in forest carbon stock compared to no climate policy (Gt C),
by DICELAND carbon price (US$ tC), 2 Degree policy.

Table 3 shows the consistency of carbon price results across two DICELAND No Land
(Optimal; 2.5 degree maximum) scenarios and equivalent conventional DICE (Optimal controls;
2.5 degree maximum, respectively) scenarios. Here we have added the 2.5 degree maximum
scenario in order to compare to Nordhaus (2016) results, which constrains temperature change
below 2.5 degrees Celsius for the entire optimization time frame. The differences in DICE and
DICELAND carbon prices for these scenarios result from the DICELAND baseline land sector
having larger emissions, derived from the GTM base case, than the DICE exogenous land sector.
There are also differences due to the fact that the DICELAND No Land carbon prices are a

function of the marginal benefit of easing the forest sector mitigation constraint, unlike
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conventional DICE which does not account for the potential for land sector mitigation. The
difference between DICELAND No Land and DICE carbon prices under the Optimal scenario is
1% by 2055, while the difference between DICELAND No Land and DICE under the 2.5 degree
maximum scenario reaches 11% by 2055, reflecting the increasing marginal cost of constraining
mitigation from the forest sector. Including the land sector as a mitigation option results in lower
carbon prices for DICELAND under both Optimal and 2 Degree policies compared to DICE

Optimal controls and 2.5 degree maximum scenarios, respectively.
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Model Assumptions 2015 2020 2025 2030 2055
DICE Optimal 30.7 37.3 44.0 51.6 102.5
DICE 2.5 degree

) 184.4 229.1 284.1 351.0 1,006.2
maximum
DICELAND No Land,
30.7 36.7 43.6 51.2 103.7
Optimal
DICELAND No Land, 2.5
degree 204.0 253.1 313.4 387.0 1,119.3
maximum
DICELAND Optimal,
29.6 35.4 42.0 49.3 99.2
Traditional
DICELAND Optimal,
30.0 35.9 42.6 50.0 101.0
Integrative
DICELAND 2 Degree,
75.8 94.0 115.8 141.9 361.8
Traditional
DICELAND 2 Degree,
98.0 121.7 150.4 184.8 480.2
Integrative

Table 3. Comparison of carbon price (2010 US$ tCO,!) series across DICE (2016 parameters) and

DICELAND scenarios. DICE values are derived from Table 1 in Nordhaus (2016).

4.3 The industrial sector adjusts to higher albedo-sensitive carbon prices

The No Land scenario exhibits the lowest industrial sector GHG emissions under both

Optimal and 2 Degree climate policy, since the industrial sector provides the only mitigation

option and there is no flexibility to provide large-scale forest carbon sequestration.

Again, forest mitigation is more expensive under Integrative accounting compared to

Traditional accounting, resulting in higher mitigation effort from the industrial sector. For

instance, under Optimal climate policy, the industrial sector has an average 0.5% lower annual

CO, emissions between 2020-2060 under Integrative forest carbon accounting compared to
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Traditional (Figure 4.a), while 2 Degree climate policy results in 43% lower annual industrial
sector emissions on average under Integrative accounting for 2020-2060 (Figure 4.b).

Across both Optimal and 2 Degree climate policy scenarios, total global emissions are
therefore lower under the Integrative approach, due to both lower land sector emissions as well as
lower industrial sector emissions, driven by the higher carbon price. This is the price paid for a

more accurate accounting of forest mitigation potential.
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Figure 4. Industrial sector CO, emissions (Gt CO.), 2020-2100. (a) Optimal policy; (b) 2 Degree
policy.

4.4 Temperature change and climate damages from albedo

Results illustrate that not accounting for albedo has the potential to significantly influence
the global average temperature trajectory and thereby climate damages. In fact, Ignoring albedo
effects of forest mitigation could lead to 0.14 degrees Celsius (Optimal policy) or 0.27 degrees
Celsius (2 Degree policy) of unexpected temperature change in 2100 (Figure 5.a and 5.b), reaching

5% and 11% of total 2100 temperature change from pre-industrial levels, respectively. These
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values reflect the difference in 2100 between temperature increase under the Traditional and TNA
scenarios.

Under Optimal policy, 2100 annual unexpected climate damages due ignoring albedo
effects could reach 0.2% of global gross economic output while the 2 Degree policy would see
unexpected damages accounting for 0.3% of global gross economic output in 2100. By the end of
the century, the unexpected annual climate damages attributable to albedo change reach 22% of

total 2100 climate changes.
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Figure 5. Temperature change and climate damage results: a. Global temperature change since
1900 (degree Celsius), Optimal policy; b. Global temperature change since 1900 (degree Celsius), 2
Degree policy; c. Global climate damages (trillion US$), Optimal policy; d. Global climate
damages (trillion US$), 2 Degree policy.
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5. Discussion

We find that accounting for albedo effects from forest mitigation activity has potential to
meaningfully impact global carbon prices and mitigation levels across economic sectors,
particularly under a 2 Degree global climate policy. Under Optimal climate policy, the unexpected
damages from ignoring albedo effects (9% of total climate damages by 2100, Figure 5.c) as well as
the potential cost reductions from adopting albedo-sensitive forest carbon incentives (34%
reduction in average forest mitigation cost; Figure 3.c) are substantial. Unexpected albedo-driven
climate damages are even larger under the 2 Degree policy (22% of total climate damages by 2100,
Figure 5.d). It is also more important under 2 Degree policy to capture the effects of albedo when
estimating efficient carbon prices: albedo-sensitive carbon prices could be 36% higher in 2100 than
carbon prices that do not consider the albedo effects of forest mitigation (Figure 3.b). Albedo-
sensitive accounting also requires substantially higher industrial sector mitigation under 2 Degree
policy, decreasing average annual industrial emissions by 43% between 2020 and 2060 (Figure

4.b).
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Optimal 2 Degree
. Traditional, . No | Traditional, . No
Units Integrative Integrative
Net Albedo Land | Net Albedo Land®
Aggregate
discounted net US$
. o 1,733 1,733 1,730 1,705 1,700 1,693
economic output, | trillion
2020-2100*
Carbon price, USS$
252 260 271 1,177 1,606 8,110
2100 tCOy!
Forest sector
contribution to
total CO,
L Percent 22.3 23.0 0 18.2 18.6 0
mitigation,
average, 2020-
2100
°C
Global average change
3.3 3.3 3.5 2.4 2.1 2.3
temperature, 2100 | from
1900
Cumulative
discounted US$
26.1 25.6 28.5 17.1 14.6 14.8
climate damages, | trillion
2020-2100

Table 4. DICELAND results for six accounting-policy scenarios. a. Discounted aggregate net
economic output is the sum of discounted global gross economic output net climate mitigation
costs and climate damages for each 10-year time step 2020-2100. The pure rate of social time
preference used in DICELAND is 1.5% and the elasticity of the marginal utility of consumption is
1.45. This results in a real interest rate ranging between 3.0% and 5.1% across scenarios and time
steps. For consistency we use the PRTP across scenarios and time steps to discount 2020-2100 net
economic output. b. For the No Land-2 Degree scenario the start year for the 2 degree constraint
is 2200, the earliest start year possible for DICELAND to generate a solution. All other 2 Degree

scenarios require temperature change below 2 degrees C following 2110.

To assess the social welfare outcomes across scenarios, we calculate aggregate discounted

net economic output for 2020-2100 (Table 4, row 1). The No Land scenarios exhibit the lowest
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total welfare for both Optimal and 2 Degree policies. This indicates that even if albedo cannot be
incorporated into climate policy ex ante, whether due to data constraints or analytical
uncertainty, the TNA scenario is preferable to excluding the land sector from climate mitigation
efforts entirely. Forestry mitigation provides flexibility to reduce CO- emissions in the event of
global temperature goal overshoot, a role it can play even if albedo is incorrectly ignored.

Note that under 2 Degree policy, the TNA scenario exhibits higher discounted net
economic output than Integrative (Table 4, row 1). This is due to the fact that Integrative carbon
prices start higher than TNA carbon prices early in the time series, resulting in higher mitigation
costs, but the benefits of avoided albedo are largest later in the time series. To observe the social
welfare benefits of the Integrative scenario, we would need to show DICELAND outputs over a
longer time period, but this is limited by the GTM optimization timeframe.

Even when considering albedo effects, using either Traditional or Integrative carbon
accounting approaches would allow forests to contribute nearly a quarter of global CO, mitigation
on average between 2020-2100 (Table 4, row 3), largely consistent with countries’ Paris
Agreement commitments. The 2 Degree policy requires significantly more effort from the
industrial sector, resulting in lower percentage contribution from the land sector.

Given the potential impact of albedo effects on efficient global carbon prices, forestry and
industrial sector mitigation activity, and global climate damages, we suggest policy-makers
carefully consider this issue in climate mitigation planning. While greenhouse gases continue to be
the dominant driver of anthropogenic climate change, moving toward a more comprehensive

recognition of the major factors influencing radiative forcing can help avoid unintended and costly
126



outcomes. Forest-driven albedo effects are not currently addressed in documents like the 2006
IPCC Guidelines for National Greenhouse Gas Inventories or its 2019 Refinement (IPCC 2006,
IPCC 2019a). The recent IPCC Special Report on Climate Change and Land points to the effects
of land cover on surface albedo, yet does not provide guidance for how governments should
incorporate this issue into policy planning (IPCC 2019b). As governments put in place forest
carbon programs to meet Paris Agreement commitments and beyond, our analysis suggests some
mechanism is needed to avoid significant albedo change.

As with any integrated assessment model, DICELAND uses a particular model structure
and set of parameter assumptions that affect the results of this analysis. Given the potential scale
of impact we identify here, we welcome further analysis using alternative models that can assess
the economic implications of albedo changes on global climate policy. Future work would usefully
incorporate additional interactions between forest ecosystems and the global climate system, such
as the role of forest-cloud interactions and accounting for the impacts of changes in

evapotranspiration by region.
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