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A Safety-Focused Admittance Control Approach for Physical
Human-Robot Interaction with Rigid Multi-Arm Serial Link

Exoskeletons
Jianwei Sun1, Erik Harrison Kramer1, and Jacob Rosen1

Abstract—Ensuring safety in physical human-robot interac-
tion is challenging due to hardware and control architecture
differences across robots, and is often implemented as system-
dependent ad-hoc approaches. To offer a holistic solution, we
present a hardware-independent safety-focused admittance con-
trol approach which promotes safety at the reference-generation
level. This safety framework can restrict virtual dynamics
through soft virtual bounds. Hard bounds are also introduced
as a way to impose infinitely stiff soft bounds. As part of the
overall approach, we also present a method for serial manipulator
and multi-segment entity collision avoidance by using partial
Jacobians. In order to demonstrate the methodology’s versatility
across hardware platforms, we experimentally validate on two
robotic systems: (1) the V-Rex, a non-anthropomorphic full-
body haptic device composed of five robotic arms interacting
with the body at the hands, feet, and pelvis; and (2) the EXO-
UL8, an anthropomorphic bimanual upper-limb exoskeleton;
which exist on opposite ends of the task/joint space control,
non-redundant/redundant, off-the-shelf (industrial)/custom, non-
anthropomorphic/anthropomorphic spectra. Experimental re-
sults validate virtual dynamics, soft and hard bounds, and multi-
arm collision avoidance on both systems. In all cases, both systems
respect bound and collision constraints, supporting the approach
as a safety-focused admittance control design. Implementation at
https://github.com/jianwei-sun/gtfo.

Index Terms—Physical human-robot interaction (pHRI),
safety, admittance control, collision-avoidance, exoskeletons, se-
rial link manipulators, multi-arm systems

I. INTRODUCTION

In physical human-robot interaction (pHRI), admittance
control is often used to generate desired trajectories for
controlling how a robot should respond to human-applied
forces. In any human-robot interaction, safety is paramount,
and must therefore be addressed at not only the hardware
level, but also throughout the control. This paper presents
a safety-focused admittance control approach for pHRI with
rigid multi-arm serial link exoskeletons. Safety in pHRI is a
complex problem that has no perfect solution, but has been
approached through many ways. Most directly, mechanical
safety, such as joint-stops [1], [2], back-drivable actuators
[2], e-stops [2], [3], and compliance [4], [5], provide limited
degrees of safety. While actuator output can be reduced to
levels that minimize harm, doing so sacrifices performance and
can result in undesirable behavior [6]. E-stops require human
input, which may be delayed during dangerous situations.
Compliant and soft interfaces may be mechanically simple
to implement, but can significantly complicate the control [4],

1The authors are with the Department of Mechanical and Aerospace
Engineering at the University of California, Los Angeles (UCLA), USA
90095. {sunjianw1, ehkramer, jacobrosen}@ucla.edu

[5]. Furthermore, these mechanical solutions may not be viable
to off-the-shelf manipulators that were not designed with pHRI
in mind, and are better suited for custom designs.

Safety research also includes controller-level approaches,
which can be implemented entirely in software and/or rely
on minor hardware additions. These include: human-tracking
through vision [7] or motion-based sensors [8]; monitoring
instability through indices or heuristics [9], [10]; saturating
or filtering some aspect of human-applied signals [11]–[13];
and so on. While human tracking methods can provide useful
real-time information, they may require additional complexity
such as more sensors [7], [8], and/or placing sensors directly
on the human [14], [15], which detracts from ease of use.
Detection of unsafe interaction through performance metrics
or heuristics has shown good results [9], [10], but are usually
specific to the system and difficult to generalize. Saturation
of signals is not necessarily safer because the system can be
slower to respond to unsafe situations.

Safety can also be tackled at the reference-generation
level, which includes: dynamically tuning admittance control
parameters [9], [16]–[18], defining virtual bounding regions
[19]–[23], utilizing data-driven methods [18], [22], and col-
lision avoidance [24]–[31]. Collision avoidance involves two
aspects: detection (finding intersections between 3D shapes
representing the robot’s links) and avoidance (using robot
kinematics to prevent dangerous motions). Existing simulation
environments, such as MuJoCo [32], implement detection
by finding intersections between convex hulls of the links.
Although most accurate, the computation cost may not be
justified in pHRI, which would want large bounding regions
around human-operated exoskeletons. Other approaches make
this trade-off by using simpler geometries [26], [28], [29]. [26]
implements avoidance in task-space, requiring the Jacobian to
be invertible which poses a problem for redundant manipula-
tors. In [28] and [29], a series of virtual spheres encapsulate the
manipulator, and the velocity between colliding spheres is re-
stricted. However, adjusting the detection radius would modify
their number and positions, requiring Jacobian recomputation
for each sphere. [30] and [31] restrict the relative velocity
between closest points on colliding manipulators. Whereas
[30] assumes the closest points can be determined and only
restricts the velocity to a fixed value, [31] uses an iterative
scheme to compute these points and a quadratic program to
restrict the velocity.

Our approach improves upon previous methods and extends
the collision avoidance methodology of [26] by using line
segments to provide analytic expressions for distances between
primitives and utilizing the method from [33] to analytically
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compute partial Jacobians at any arbitrary collision point.
In this paper, we present a comprehensive safety-oriented

admittance control framework for pHRI with rigid multi-
arm serial link exoskeletons. We validate this approach on
two multi-arm exoskeletons which have significantly different
hardware and control. Our approach facilitates admittance
control by generating collision-free trajectories that emulate
virtual second-order systems, while incorporating soft and hard
boundary constraints for operation within a safe workspace.

Within this unified safety framework, we introduce a method
for emulating infinitely stiff virtual bounds (sometimes re-
ferred to as virtual fixtures in robotic surgery [34]), which
avoids issues of stability typically seen with high-stiffness vir-
tual springs. We also present a method for collision avoidance
between multi-segment entities by utilizing partial Jacobians.
This collision avoidance technique uses the translational com-
ponents of a robot manipulator Jacobian evaluated at potential
collision points to determine safe motion directions, preventing
collisions with not only the end effector, but also any point
along the manipulator’s links.

In summary, our contribution is a broad safety-centric
admittance control approach that is comprised of emulating
infinitely stiff virtual bounds and avoiding collisions for serial
link manipulators. This framework can serve as both a safe
self-contained reference generator for admittance control and
a versatile lightweight safety intermediary layer, upon which
customized applications can be developed. Moreover, individ-
ual elements of this framework can be employed modularly to
enhance specific safety functionalities of pHRI systems.

II. METHODOLOGY

To enable pHRI, admittance control is used to generate
motions of a virtual system with some desired dynamics from
physical human-applied forces. The robot’s controller then
tracks these target trajectories, making the robot a physical
manifestation of the virtual system. This behavior forms the
foundation for advanced features such as safety bounds (limit-
ing movement and speed) and multi-arm collision avoidance.

A. Virtual Dynamics

Emulating how a light-weight system moves is commonly
done by propagating a virtual second-order mass-damper
model [9], [13], [16], [18]. The second-order dynamics are
chosen due to their similarities with physical mechanical
systems and our existing intuition about how they react.
Furthermore, their parameters are physically intuitive and can
be easily tuned. The dynamics in a single dimension are:

mp̈(t) + bṗ(t) = f(t), (1)

where p(·) : R → R is the position, f(·) : R → R is the input
force, m ∈ R>0 is the mass, and b ∈ R≥0 is the damping
coefficient. The dynamics of vector systems are similar, in
that each coordinate implements the scalar dynamics, allowing
the system to be used for both task or joint-space admittance
control. The state variables’ explicit dependency on time will
no longer be shown for brevity.

B. Bounds

One approach for safety in pHRI is to define regions in
which motions are hindered. To this end, we define a bound,
B ⊂ Rn, as a convex closed subset of the space of virtual
positions, where n is the dimension of the virtual system.
Convexity is necessary so that projections into B, denoted
by projB(·) : Rn → B, are unique. From practice, we saw
that norm bounds and rectangular bounds are most commonly
used, so we focus on them. However, the methodology applies
to any convex bound.

Moreover, we classify bounds as soft or hard. Soft bounds
allow violation but generate a restoring force as a function
of how far the virtual position is beyond the bound (typically
implemented as a virtual spring-damper system), similar to
impedance-based schemes [21], [35] or virtual fixtures [34],
[36]. Stiff or rigid boundaries can be simulated using a high
stiffness constant for the virtual spring, but such approaches
can cause stability issues [34].

To address the limitation of using soft bounds to emulate
infinitely stiff boundaries, we introduce hard bounds, which
are inviolable at the reference generation level. These bounds
constrain the virtual position and velocity directly, avoiding
the need to integrate large restoring forces. Hard bounds are
particularly useful for defining mechanical endpoints, such as
joint limits or physical boundaries. These bounds represent the
safe regions in which the pHRI should occur. Thus, the virtual
position must always start within the bound for the method to
be valid, otherwise the human should not even be interacting
with the robot if it is outside safety limits. Using hard bounds
alone can lead to abrupt velocity changes at their boundaries
when an operator moves rapidly towards them, which may be
uncomfortable. Therefore, our approach is designed to allow
utilization of both types of bounds simultaneously, with the
soft bound contained within the hard bound. This formulation
allows for fast motions to be gradually slowed instead of
abruptly stopped.

1) Soft Bounds: Let pk ∈ Rn, vk ∈ Rn be the position
and velocity of the virtual system at the current kth timestep,
respectively. Furthermore, let B ⊂ Rn be a bound. To emulate
a restoring force based on how much B is violated, let r ∈ Rn

be the vector from the current position to the closest bounded
position:

r := pk − projB(pk), (2)

which is well-defined and unique due to the convexity of B.
Then, when r is nonzero, let r̂ := ∥r∥−1r, and the restoring
force fr ∈ Rn can emulate a virtual spring-damper system:

fr = −ksr −max{vk · r̂, 0}dsr̂, (3)

where ks ∈ R≥0 and ds ∈ R≥0 are the restoring spring
constant and damping coefficient, respectively. Note that all
vector norms are the 2-norm, unless otherwise specified. The
max function is included so that the restoring force only hin-
ders movement that further violates the bound. The restoring
force is then added to equation (1) before the dynamics are
propagated.
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Fig. 1: Convex bounds, such as norms and rectangles, can be used as both soft
and hard bounds. In the norm bound, there is only ever a single unit surface
normal, so Sp1 = {n̂1}. However, the rectangular bound is not differentiable
at the corners, so Sp2 = {n̂2} and Sp3 = {n̂3, n̂4}.

2) Hard Bounds: Similar to soft bounds, a hard bound B
is also a convex closed subset of the space of virtual positions.
However, to ensure that pk is always contained within B, first
assume that the unbounded discretized dynamics of equation
(1) would result in pk+1 /∈ B. Then, the virtual position can
be updated as p′k+1 := projB(pk+1), which would ensure
containment within B.

For velocities, the components that try to escape B should
be removed. Let s(·) : ∂B → Rn be a map from points on the
boundary of B to its corresponding unit normal vector. Since
s(·) may not be defined everywhere on ∂B, e.g., at the corners
if B is a rectangle, define the unit surface normal at such a
point p as a set, Sp, of all possible limits of s(·) towards p.
For bounds where s(·) exists everywhere on ∂B, |Sp| = 1.
For other bounds, such as the rectangle example, there exist
p such that |Sp| ≥ 1, as shown in Fig. 1.

To ensure that future states of the virtual dynamics remain
bounded, update the position and velocity as follows:

p̃k+1 = projB(pk+1), (4)

ṽk+1 = argmin
v

∥v − vk+1∥2 (5)

s.t. n̂⊤v ≤ 0, ∀n̂ ∈ Sp̃k+1

Positions are guaranteed to always remain in B. The update
in velocity ensures that components that try to escape the
bound are removed, which is necessary for robot systems that
only use the virtual velocity as reference.

On each integration step, soft bounds are evaluated before
virtual dynamics are propagated with equation (1) in order to
integrate the restoring force. Then, hard bounds are enforced
with equations (4) and (5) to ensure they are always satisfied.
The same hard bound methodology in equations (4) and (5)
can be imposed on any higher-order derivatives of position.
This allows for further constraints on virtual quantities such
as velocity or acceleration.

C. Collisions

Collision avoidance is an integral part of safety in pHRI,
especially for multi-arm systems. Any controllable object
with which a collision can occur is henceforth denoted a
controllable entity. Objects that cannot be controlled, such as
the human, obstacles, or static links and frames of a robot, are

Fig. 2: A sample collision shown between two entities, each of which is rep-
resented by three vertices and two corresponding segments: EA = {sA1 , sA2 }
and EB = {sB1 , sB2 }. Green dotted lines indicate potential collisions that
do not exceed the threshold ϵ, whereas the red line shows the collision. The
intersections of the red line with sA2 and sB2 constitute the collided sets ÃA

and ÃB .

called uncontrollable entities. Uncontrollable entities can be
free or fixed. As mentioned in the literature review, collision
avoidance consists of two aspects: detection and avoidance.
Detection is concerned with finding entities that are too close,
whereas avoidance then restricts the relative motion between
the entities from becoming closer.

1) Detection: Let V i
j ∈ R3, j ∈ {1, . . . ,mi}, mi ≥ 1

be called entity vertices, which are a series of user-specified
locations along entity i in the system, such that the segment
drawn between adjacent points captures the geometry of the
corresponding link of the entity, as shown in Fig. 2. mi is
the number of entity vertices on entity i. Let sij := {λV i

j +
(1 − λ)V i

j+1 | λ ∈ [0, 1] ⊂ R} be the segment between two
adjacent collision points, and S be the space of segments.
Then, let Ei := {sij | j ∈ {1, . . . ,mi}} be the set of the
aforementioned segments corresponding to entity i. If mi = 1,
then Ei = {{V i

1 }} consists of a single zero-length segment.
Next, for each entity, enumerate the set Ci = {(sa, sb) |

sa ∈ Ei, sb /∈ Ei}, which is the set of potential collision
segments between entity i and every other entity that has
collision points. Certain collisions, such as self-collisions
between adjacent links or collisions between robots that are
physically farther than the limits of their workspace, can be
pruned from this set in order to speed up computation. Let the
pruned set be C̃i ⊆ Ci.

Let d(·) : S × S → R3 × R3 map segments sa, sb to
points ca ∈ sa, cb ∈ sb such that ∥ca − cb∥ is minimized.
To make d(·) well-defined, when sa and sb are parallel and
proximate, ca and cb are chosen as the midpoints of the
overlapping region. The definition for d(·) is discussed below.
For entity i, let Ai := {d(sa, sb) | (sa, sb) ∈ C̃i} and compute
Ãi := {(ca, cb) | (ca, cb) ∈ Ai, ∥ca − cb∥ ≤ ϵi}, called the
collided set, where ϵi ∈ R≥0 is a user-specified threshold
for detection. Note that Ãi can be computed in parallel. The
collided set tells not only whether a collision has occurred,
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but also its location and direction.
The aforementioned segment-segment distance function d(·)

needs to consider corner cases, such as: zero-length segments
and parallel-segments. Let two segments sa, sb ∈ S have
endpoints a0, a1 ∈ R3 and b0, b1 ∈ R3, respectively.

If a0 = a1 and b0 = b1, then d(sa, sb) = (a0, b0).
If only one of the segments has zero-length, say a0 = a1

without loss of generality, then project a0 onto sb and deter-
mine its ratio rb ∈ R along sb:

rb =
(b1 − b0)

⊤(a0 − b0)

∥b1 − b0∥2
. (6)

Then, depending on the value of rb, assign the point on sb:

d(sa, sb) =


(a0, b0), rb < 0,

(a0, b0 + rb(b1 − b0)), 0 ≤ rb ≤ 1,

(a0, b1), 1 < rb.

(7)

If both segments have nonzero length, then check if they
are parallel. If so, i.e., (a1−a0)× (b1−b0) = 0, then find the
midpoints of the overlapping region: am ∈ sa and bm ∈ sb.
Then, d(sa, sb) = (am, bm). Otherwise, compute the mutual-
perpendicular segment sp with endpoints pa ∈ sa and pb ∈ sb.
This can be done by finding the ratios of pa along sa and
pb along sb. Now, define the normalized cross-product and
compute the ratio ra along segment sa as:

ĉ : =
a1 − a0
∥a1 − a0∥

× b1 − b0
∥b1 − b0∥

, (8)

ra =
1

∥a1 − a0∥∥ĉ∥2
det



(b0 − a0)

⊤

(b1−b0)
⊤

∥b1−b0∥

ĉ⊤


 , (9)

and similarly for rb. Then, d(sa, sb) = (a0+ra(a1−a0), b0+
rb(b1 − b0)). Note that this computation also handles the case
when sa and sb intersect.

2) Avoidance: Collision avoidance can only be imple-
mented on controllable entities, which are typically robot
manipulators. It is implemented in joint-space in order to
also consider internal motions of redundant manipulators,
which is particularly relevant for exoskeletons. The objective
is to restrict motions of the manipulator such that for each
(ca, cb) ∈ Ãi, the point ca is prohibited from moving in the
direction cb−ca. Since ca can be anywhere on the manipulator,
the kinematics of the robot are required. However, to be robot-
agnostic, our approach requires the translational components
of the Jacobian functions of the robot for which it is imple-
mented: J i

j(·) : R3×Rn → R3×n, where the first argument is
the location of the point, n is the degrees-of-freedom (DoFs)
of the robot, and J i

j(·) is henceforth referred to as the partial
Jacobian. The output of J i

j(·) is the upper three rows (linear
motion) of the spatial manipulator Jacobian for an arbitrary
point ca located on segment sij . A partial Jacobian can be
constructed online using [33, equation (14)].

Given a desired joint-space velocity θ̇d ∈ Rn, either from
the virtual dynamics if they are configured as being in joint-
space, or from the robot’s inverse kinematics if the virtual
dynamics are in task-space, the objective is to restrict the

reference joint-space velocity such that the velocity of each
collided point ca does not have positive dot product with
cb − ca. More succinctly, the restricted desired joint-space
velocity θ̇r ∈ Rn can be found by solving the following
quadratic program:

min
θ̇r

∥θ̇r − θ̇d∥2

s.t. (cb − ca)
⊤J i

j(ca, θ)θ̇r ≤ 0 (10)

∀(ca, cb) ∈ Ãi

where θ is the physical joint configuration, and each J i
j is

picked such that ca corresponds to segment sij . Note that each
collided point imposes one additional linear constraint on θ̇r.
The optimal θ̇r is then sent to the manipulator’s controller and
also used to update the velocity of the virtual model.

The proposed methodology of constraining potential col-
lision points from moving closer to each other is not in-
herently restricted to line segments, and can be extended to
other geometries in which a similar function to d(·) - which
computes the closest points between two objects - can be
constructed. For instance, planes can also be used to represent
static obstacles such as the floor or walls.

D. Summary
Algorithm 1 outlines the approach’s main safety sequence,

which runs within the system’s control loop.

Algorithm 1 Safety-Focused Admittance Control

1: for each controllable entity, Ei

2: Receive human-applied force measurements fh
3: Compute restoring Soft Bound force fr (equation 3)
4: Sum dynamics input force f = fh + fr
5: Propagate virtual dynamics (equation 1)
6: Restrict state via Hard Bounds (equations 4, 5)
7: Update entity vertices using physical position
8: Compute collided set Ãi

9: Restrict virtual velocity (equation 10)
10: Output virtual state to Ei’s controller

III. EXPERIMENT SETUP

To demonstrate the correctness and versatility of the ap-
proach, a series of experiments on two different multi-
arm robotic systems: (1) the V-Rex and (2) the EXO-
UL8, are conducted. The V-Rex is a non-anthropomorphic
exoskeleton consisting of multiple task-space-controlled off-
the-shelf industrial serial manipulators, whereas the EXO-
UL8 is a custom-built anthropomorphic bimanual upper-
limb exoskeleton controlled in joint-space. The existence
of the two systems on opposite ends of the off-the-shelf
(industrial) vs. custom, task-space vs. joint-space, and non-
anthropomorphic/anthropomorphic spectra demonstrates the
versatility and generalizability of the approach. The exper-
iments verify and validate both soft and hard bounds, as
well as multi-arm collision avoidance, on each of the two
systems. Each experiment also implicitly verifies and validates
the virtual dynamics, since it is necessary for any motion.
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A. Systems

1) V-Rex: The Virtual Reality Exoskeleton (V-Rex) is a
full body haptic device designed to provide force feedback
to a human interacting with a virtual environment visualized
with a virtual reality (VR) headset. The system is composed
of five task-space-controlled off-the-shelf Kawasaki industrial
serial manipulator robots. Two RS-007L robots are gripped
by the operator’s hands; two BX-100S robots are connected
with breakaways to the operator’s shoes; and one CX-210L
provides gravity offloading through a flying harness. All robot
arms have load cells between their end effectors and the human
interface (three ATI Omega sensors for the lower limbs and
body support plus two ATI Gamma sensors for the upper
limbs). Each manipulator takes human-applied wrenches and
propagates them into task-space motions of the end effector
using the model shown in Fig. 3a.

2) EXO-UL8: The EXO-UL8 is a custom bimanual re-
dundant powered joint-space-controlled upper-limb anthropo-
morphic exoskeleton with seven DoFs in each arm, built as
the latest system in a series of exoskeletons designed for
pHRI and robot-assisted rehabilitation [2], [13], [37]–[43].
The human-in-the-loop (HITL) requirement has motivated
specific hardware designs, such as rotating ring joints to allow
shoulder rotation and forearm supination/pronation [2], and
anatomically similar joint limits to align the exoskeleton’s and
operator’s arms. pHRI is enabled by joint-space admittance
control. Wrenches measured from three ATI Mini40 sensors
on each arm are fused and propagate virtual dynamics [37],
whose trajectories are tracked by a computed-torque controller
[44], [45], as shown in Fig. 3b.

B. Experiments

1) Bounds: Soft and hard bounds are first demonstrated
separately on the V-Rex. A single arm of the system is
restricted to move in a 2D plane parallel with the ground,
as shown in Fig. 4. For both bound types, the operator tries
to move the end effector to follow the desired trajectory at
a constant speed. The operator starts in the region’s center,
moves to the bottom-left side, traverses the desired trajectory
in a counter-clockwise direction, and then returns to the center.
In the soft bounds trial, a square bound of equal size (side
length: 37 cm) to the trajectory rotated by 45◦ is imposed.
The bound has parameters: ks = 250 N/m, ds = 60 Ns/m.
The hard bound trial utilizes the same bound shape. The ma-
nipulator implements the same second-order virtual dynamics
parameters m = 10 kg, d = 15 Ns/m for both trials.

Since the EXO-UL8 implements decoupled 1D virtual dy-
namics for each joint, hard and soft bounds are simultaneously
shown on the elbow (joint 4) and shoulder rotation (joint
3) DoFs. The hard bound restricts the elbow motion to the
range of [0, 70◦], whereas the soft bound on the shoulder
joint becomes active once the motion exceeds [15◦, 60◦]. The
parameters of the soft bound are ks = 10 N/m, ds = 0 Ns/m.
A movement trajectory, as shown in Fig. 5, is designed to
exercise both bound types in the joints.

2) Collision Avoidance: While our collision avoidance
method applies identically to avoidance of both dynamic free

entities and static fixed entities, we demonstrate only with a
static entity on each of the two systems for clarity of results.
With this methodology, the only difference is that the entity
locations are updated on each iteration. For the V-Rex, the
fixed entity is physically represented by the right arm oriented
with the elbow-to-wrist link nearly vertical. This segment is
located at (0.3m, 0.014m) as shown in images (1) and (2) of
Fig. 10. The operator initially aims to move the end effector
of the left arm to pass in front of the static right arm. Then,
the operator aims to move as far left from the static right arm
as they can before returning to the starting location. For ease
of data representation, motions of the end effector and elbow-
to-wrist link of the left arm are kept in a plane parallel with
the ground, similar to the bounds experiment. The collision
detection threshold is 0.27m.

For the EXO-UL8, the axes of rotation for shoulder flexion
and elbow flexion are first aligned. The other five joints
are locked so that the motion of the arm is restricted to
the plane perpendicular to these two unrestricted axes of
rotation. The quadratic program of equation (10) includes
these five locked joints as additional constraints: 0 ≤ θ̇r,i ≤
0, i ∈ {1, 3, 5, 6, 7}. A virtual collision segment is then
placed in front of the arm at (0.4 m,−0.43 m) and oriented
perpendicular to this plane, as shown in Fig. 6. The operator
is instructed to move the arm above the collision segment and
then return to the original location. The collision detection
threshold is 0.1m.

The collision avoidance algorithm requires the free entity
positions to be updated on each iteration. For the V-Rex
and EXO-UL8, free entities are the robotic manipulators. In
each system, the relative locations of the manipulator bases
are known, so the absolute locations of any point along the
manipulators can be determined through forward kinematics.
Thus, no calibration phase is necessary. For fixed entities, such
as structural elements of the frame, their static locations are
known (from design), so they can be added to the collision
algorithm at initialization and do not need to be updated.

IV. RESULTS

A. Bounds

1) V-Rex: Fig. 7 illustrate the operator’s trajectory in the
presence of a soft bound. When inside the bound, no restoring
forces are present, indicating unrestricted motion. However,
upon breaking a bound, restoring forces are generated with
a direction to move the operator back into bounds. Notably,
all restoring forces are normal to the broken bound surface,
and their magnitude increases with distance past the bound,
consistent with the virtual spring-damper. The trajectory loop
took approximately 18 seconds to complete, resulting in an
average speed of 8.2cm/s.

Fig. 8 presents the operator’s trajectory in the presence of
a hard bound. The trajectory took approximately 12 seconds
to complete, resulting in an average speed of 10.2cm/s. The
results demonstrate the effectiveness of a hard bound in
limiting motion to the bounded region in task space, without
destabilizing the system. Despite exerting forces in a direction
to break outside the bounds, the virtual position is constrained
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(a) The V-Rex is a full body haptic device consisting of five robotic arms, designed
for pHRI with virtual environments. Force-torque input from load cells is used to step
virtual dynamics and determine the next position reference, p in task space. Physical
joint state, θ, is read and utilized to find partial Jacobians, Jj , to adjust reference
position for collision avoidance. Utilizing an inverse kinematic solver, all viable joint
space configurations are found. A l2−norm is then applied to find the closest solution
to the current joint state, θ. The selected joint state is vetted through a secondary safety
check before the joint references θr are updated for the Kawasaki arm controller for
precise position control. The entire control cycle runs at 500Hz.

(b) The EXO-UL8 is a bimanual upper-limb exoskeleton designed for pHRI and robot-
assisted rehabilitation. Human-applied forces are measured by three load cells on each
arm located at the: upper-arm (u), lower-arm (l), and wrist (w). The measured wrenches,
Fs, s ∈ {u, l, w}, are transformed into joint torques through the Jacobian, J , and then
fused together into a single joint-space human-applied torque vector, f , with the algorithm
in [37]. This torque propagates the virtual dynamics in the admittance control, which also
uses the partial Jacobians, Jj for collision avoidance. The virtual states are then tracked
by the exoskeleton’s computed torque controller, which outputs motor torques, u. The
control rate is 1KHz.

Fig. 3: The V-Rex and EXO-UL8 systems exist on opposite ends of the task/joint space control, non-redundant/redundant, off-the-shelf (industrial)/custom,
and non-anthropomorphic/anthropomorphic spectra.

and instead slides along the virtual bounding surface in com-
pliance with the applied force. Conversely, when inside the
bound, motion remains unrestricted as expected.

2) EXO-UL8: The elbow flexion and shoulder rotation
reference trajectories are plotted in Fig. 9, with the four way-
points labeled. The trajectory was completed in approximately
20s, resulting in an average speed of 11◦/s. A soft bound,
which is only present for the shoulder, produces restoring
forces generated by a virtual spring whenever the trajectory
exceeds the boundary. Note that the soft bound is only config-
ured with a virtual spring, so the restoring force depends only
on position. Hard-bounds were implemented in both DoFs,
but only the elbow reached the limits due to the absence
of an additional soft-bound. The applied forces at the hard-

bounds show that the dynamics were only allowed to propagate
tangentially to the bound surface, as designed. This experiment
shows a typical application in which a soft bound is placed
inside a hard bound. Motions towards bound limits are gently
slowed while ensuring that the absolute limits are respected
(e.g., at point 3 of Fig. 9).

B. Collision Avoidance

1) V-Rex: The end effector’s trajectory and the elbow-to-
wrist link’s pose during key collision avoidance points are
shown in Fig. 10. At the first instance (1) of collision, the
end effector trajectory is restricted such that the link will
not continue into the collision detection region, despite the
operator’s force in that direction. Similarly, at the second
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Fig. 4: For bound experiments on the V-Rex, the operator is guided by a black
square (solid line) on the surface beneath one of the upper limb arms. A square
boundary (shown by the dashed line), either soft or hard, is positioned at a 45◦

angle relative to the trajectory, sharing the same centroid. Starting from the
centroid, the operator follows the trajectory to the best of their ability before
returning to the starting point. A laser pointer attached to the end effector
helps the operator track their progress during the experiment.

instance (2), the end effector trajectory is restricted; however,
the restriction is now in a direction away from the collision
detection region, since continued motion in the -X direction
would result in the left elbow colliding with the right arm.
Unlike the EXO-UL8, the operator’s arms are not aligned
with the manipulator, which could result in potential collisions
between the two. However, the operator can be modeled as
an uncontrollable free entity, so that the robotic manipulators
would avoid collisions with it in a similar fashion.

2) EXO-UL8: The contour of the collision detection region
of Fig. 6 is plotted in the shoulder and elbow flexion joint
space in Fig. 11. The trajectory and human-applied forces are
overlaid to show the motion being constrained from entering
the collision region, even when the operator is pushing into it.
Near (63◦, 9◦), the trajectory doubles back slightly, but colli-
sion constraints are respected. Once the operator flexes their
elbow, the region is avoided (from (30◦, 38◦) upwards), and
subsequent motion is unaffected. The experiment demonstrates
collision avoidance’s expected functionality.

V. DISCUSSION

A. Comparison to Existing Methods

In general, using runtime as a metric for comparison poses
several issues. The implementation has a significant influence;
for instance, using a compiled language can be faster than
an interpreted one, and parallelism or vectorized operations
can make the program even faster. As not all the studies
in this comparison [26], [28], [29], [31], [32] provide code
implementation, a comparison based on runtime alone may not

1. 2.

3. 4.

Fig. 5: The bounds experiment on the EXO-UL8 has the operator follow a
target trajectory consisting of 4 way-points (1 − 4). These way-points are
strategically placed to engage shoulder rotation (joint 3) and elbow flexion
(joint 4) near bound limits. Soft and hard bounds restrict the shoulder and
elbow positions, respectively. The operator traverses through the way-points
once, pausing at each for approximately 1s. The corresponding motions from
the previous way-point are indicated by red arrows, while the configuration
of the human arm at each way-point is shown by a green line.

Fig. 6: For the EXO-UL8’s collision experiment, the shoulder and elbow joints
are aligned and allowed to move, while all other joints are locked. A virtual
fixed collision entity is placed in front of the arm and oriented parallel to the
joints’ axes of rotation. The collision avoidance distance is set to 0.1m.

be meaningful. Furthermore, methods such as [31]’s utilize a
neural net to solve the optimization, which could be fast, but
also requires more effort to train and setup. Whether this trade-
off is justified depends on the particular use case. We have
identified the most notable aspects of collision avoidance as:
(1) modeling, which uses simple shapes, known as primitives,
to represent the manipulators’ geometry, (2) enumeration of
primitives, which identifies potentially colliding primitives,
(3) distance between primitives, which computes the shortest
distance between primitives as well as the locations at which
this occurs, (4) partial Jacobian, which relates the velocities
of these locations to the manipulator’s velocity, and (5) opti-
mization solver, which is the method or tool used to complete
the computation. A comparison is presented in Table I.

7



-0.3 -0.2 -0.1 0 0.1 0.2

X (m)

-0.3

-0.2

-0.1

0

0.1

0.2

Y
 (

m
)

Soft Bound

Restoring Force

Reference

Position

Fig. 7: On the V-Rex, the operator’s trajectory (blue line) tries to track the
reference (green). However, the presence of a soft bound (dotted red) results in
a restoring force (yellow arrow) that amplifies with distance from the bound.
As the operator navigates around the corners of the reference, the restoring
force shifts from being fully antagonistic to providing some assistance in the
direction of motion. This sudden change is reflected in the lower accuracy of
the operator’s trajectory when compared to the hard bound trials.

Collision avoidance is a complex problem that requires
several trade-offs to be made. For instance, [32] uses meshes
to represent the manipulator, which can be highly accurate,
but comes at the expense of requiring a dedicated library
for computing contact. On the other hand, [28] and [29]
represent the manipulator as a union of spheres. Although
fast to compute pairwise distance, the method cannot find
exact collision points, and requires a partial Jacobian to be
precomputed for each sphere at setup, detracting from ease of
use. The neural net of [31] makes an even bigger trade-off
between speed, ease of use, and potentially even correctness.

Our strategy prioritizes generality and ease of use in col-
lision avoidance by using simple geometries and optimizing
where possible (e.g., primitive enumeration). In addition to
providing detailed specifications, such as OSQP for speed
and software compatibility (refer to [46] for its comparison
results), our entire approach is implemented as a free and
open-source library. This comparison aims to underscore the
distinctions in our approach, allowing implementers to make
an informed decision for their specific applications.

B. Potential Limitations

When a robot manipulator moves at high speeds, it becomes
impractical to immediately stop at a boundary, even if the
boundary is a hard bound. The proposed strategy focuses on
creating trajectories that prioritize safety, however the robot’s
ability to precisely track these trajectories is also determined
by its controller’s capabilities. Incorporating hardware or con-
troller information back into the reference generation can have
potential improvements, such as in model predictive control

-0.3 -0.2 -0.1 0 0.1 0.2

X (m)

-0.3

-0.2

-0.1

0

0.1

0.2

Y
 (

m
)

Hard Bound

Reference

Applied Force

Position

Fig. 8: On the V-Rex, the operator’s trajectory (blue line) tracking the
reference (green) is impeded by the hard bound (dotted black). At the bound,
the position is restricted and slides along the surface, despite the user’s exerted
force to move outside (blue arrows). Note that for clarity the forces are only
shown when the position is at the bound. In contrast, while inside the bound,
the virtual dynamics enable the operator to track the trajectory with high
fidelity.

(MPC). However, doing so creates an additional feedback loop
from state to reference, which may affect overall stability.
To ensure generalizability of the approach, we chose not to
allow for hardware-level information to influence the reference
generation. Doing so would detract the approach’s versatility
and possibly stability, despite potentially achieving better
results on specific systems.

A control rate of 1KHz is commonly recommended for
reliable haptic interaction, but is not a strict rule and depends
on specific factors such as desired virtual stiffness and the
robot’s mechanical capabilities. The haptic rendering presented
only focused on soft bounds, which were not overly stiff. High-
performance Kawasaki industrial manipulators of the V-Rex
enabled convincing virtual force emulation at a lower control
rate. Therefore, a control rate of 500Hz was chosen for the
V-Rex as a suitable compromise between haptic rendering
fidelity and CPU usage.

C. Choice of Parameters

The parameters of the V-Rex virtual dynamics simulate a 10
kg object in a damping medium of 15 Ns/m. The mass is not
difficult to move in the absence of gravity, and the damping
constant was selected as a compromise between transparency
and dissipative stability. Soft bounds were configured with a
spring constant of 250 N/m and damping of 60 Ns/m, in order
to provide a noticeable resistance to the user.

We also chose rectangular and norm bounds for their
intuitive nature. Rectangular bounds are easy to understand
and configure, while norm bounds also prove useful for ve-
locity by representing speed limits. However, the methodology
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Aspect\Study Bosscher [26] Liu [28] Lin [29] Zhang [31] Todorov [32] Ours
Modeling

(location accuracy)
Spherical shells

=
Spheres

−
Spheres

−
Line segments

=
Meshes

+
Line segments

=

Enumeration of
Primitives

(complexity)

Pairwise with
pruning

=

Pairwise
−

Pairwise
−

Pairwise
−

Pairwise with
pruning

=

Pairwise with
pruning

=

Distance between
Primitives

(complexity)

Unspecified
Unknown

Analytic
=

Analytic
=

Iterative
−

Iterative
−

Analytic
=

Partial Jacobian
(setup)

Unspecified
Unknown

Analytic for
each sphere

−

Analytic for
each sphere

−

Unspecified
Unknown

N/A
Analytic for

any point [33]
=

Optimization
Solver

Simulink Unspecified Simulink Neural network Newton OSQP [46]

TABLE I: The comparison examines the main aspects of collision avoidance using a suitable metric across five different recent publications. In each aspect,
the relevant metric (shown in parenthesis) is assessed relative to our proposed approach and reported with one of the symbols: {+,−,=}, to indicate more
performant, less performant, or comparable, respectively. The “unknown” keyword indicates that a comparison to our approach could not be made.
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Fig. 9: On the EXO-UL8, the operator’s trajectory (blue line) starts at point
1 (green dot) outside the shoulder’s soft bound (dotted red line), resulting
in restoring forces (yellow arrows). While moving towards point 2, a hard
bound (dotted black line) blocks the elbow, despite human-applied forces
(blue arrows) pointing out of the bound. The shoulder soft bound applies
another restoring force towards point 3. Since the soft bound is configured as
a virtual spring, the restoring force is only a function of displacement past
the bound. At the intersection of the shoulder upper soft bound and the elbow
upper hard bound (between points 2 and 3), the soft bound restoring force
appears suddenly. However, this is not the case; as the trajectory slides up
along the elbow hard bound, soft bound restoring forces increase continuously,
and the largest force arrow visually occludes the smaller arrows underneath.

accommodates any convex bound. In our experiments, position
bounds were centered at the robot’s starting point for clarity
and to allow movement in any direction, but can generally be
placed anywhere around the starting point.

D. Safety at Hard Bounds

When the virtual position reaches a hard bound, human-
applied forces perpendicular to the bound do not impact mo-
tion (see Fig. 8 and Fig. 9). However, these force components
are still resisted by the robot, potentially leading to increased

(1) (2)

Fig. 10: On the V-Rex, the operator’s trajectory (blue line) starts at the green
dot and ends at the maroon dot. During the trajectory, two collisions are
avoided with a detection radius around the right arm (pink region). A physical
representation of the data at the two time instances ((1) and (2)) is shown in
the subfigures above. At instance (1), motion is restricted in the direction
of the right arm, even though the operator is applying force to continue in
that direction. At instance (2), motion is restricted from continuing in the -X
direction despite applying force in that direction, because the elbow would
collide if the motion were unrestricted.

motor currents. Safety implications are examined in detail for
the shoulder interior/exterior joint of the EXO-UL8, which has
the smallest gear ratio. Fig. 12 shows the motor current when
the operator pushes against the hard bound at 55◦. The current
remains within the motor’s continuous operating range (RE50
series 578298 from Maxon Motor). Although safety can be
addressed at the reference generation level, hardware remains
crucial for overall pHRI safety. The proposed methodology,
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through inverse kinematics of the EXO-UL8 into the joint-space of the
shoulder and elbow flexion DoFs. Even though human-applied forces try to
push the trajectory into the region, it respects the collision constraints. Human-
applied forces are only plotted at the boundary for clarity.

being hardware agnostic, enhances safety at the reference
generation level, without subjecting the robot’s controller to
any situation more dangerous than tracking a continuous
position trajectory. However, controller-level safety must also
be ensured by the implementer, otherwise any algorithm would
be subject to the same potentially dangerous situations.

VI. CONCLUSION

This study presents a comprehensive safety-focused admit-
tance control approach, consisting of soft virtual bounding
regions, emulation of infinitely stiff bounds, and collision
avoidance at any point along the manipulator. Experimental
results validate the effectiveness of soft and hard bounds,
which produce restoring forces, and rigidly confine trajecto-
ries, respectively. Results also validate the multi-arm collision
avoidance methodology on both the V-Rex and EXO-UL8
systems by successfully restricting trajectories to prevent any
part of the manipulators from colliding, despite the systems’
differences in control and redundancy.

Future directions plan to incorporate the human operator as
a free entity in the collision avoidance algorithm. This would
further improve safety by also ensuring that the robot ma-
nipulators cannot collide with the operator. The time-varying
location of the operator’s body could be determined using a
vision-based system, which would likely require calibration to
account for varying lighting conditions.

For utilization of our approach in existing and future
systems within the pHRI community, an implementation as
a free and open-source templated C++ library is available
at: https://github.com/jianwei-sun/gtfo. The library requires
a C++17 compiler and depends on Eigen [47] and OSQP
[46]. Future work completed on this framework will be made
available within the open-source library.
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Fig. 12: A hard bound at 55◦ on the shoulder interior/exterior rotation joint of
the EXO-UL8 resists the operator’s attempts to push past it. The commanded
motor current (-1.01A) remains in its maximum continuous operation range
of ±4A. Prior to the position reaching the bound, the motor current varies
due to the computed torque controller generating torques that compensate for
reaction torques from the other joints’ motions. However, at the hard bound,
the current appears flat as all joints are stationary. Friction at the joint and low
back-drivability limit the variation in the human-applied torque from being
easily seen in the current profile. In general, pHRI hardware should ensure
that all currents always remain in safe operating ranges, despite adversarial
attempts by the operator to cause unsafe situations.
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