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Probabilistic structure of the geodynamo

Christian R. Scullard
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Bruce A. Buffett
Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA

(Received 15 April 2018; published 27 December 2018)

One of the most intriguing features of Earth’s axial magnetic dipole field, well known from the geological
record, is its occasional and unpredictable reversal of polarity. Understanding the phenomenon is rendered very
difficult by the highly nonlinear nature of the underlying magnetohydrodynamic problem. Numerical simulations
of the liquid outer core, where regeneration occurs, are only able to model conditions that are far from Earth-like.
On the analytical front, the situation is not much better; basic calculations, such as relating the average rate
of reversals to various core parameters, have apparently been intractable. Here, we present a framework for
solving such problems. Starting with the magnetic induction equation, we show that by considering its sources
to be stochastic processes with fairly general properties, we can derive a differential equation for the joint
probability distribution of the dominant toroidal and poloidal modes. This can be simplified to a Fokker-Planck
equation and, with the help of an adiabatic approximation, reduced even further to an equation for the dipole
amplitude alone. From these equations various quantities related to the magnetic field, including the average
reversal rate, field strength, and time to complete a reversal, can be computed as functions of a small number of
numerical parameters. These parameters in turn can be computed from physical considerations or constrained
by paleomagnetic, numerical, and experimental data.

DOI: 10.1103/PhysRevE.98.063112

I. INTRODUCTION

Understanding the generation and reversals of Earth’s mag-
netic field is one of the enduring problems in geophysical and
planetary science. Although it is clear enough by now that
the source of the field is dynamo action in the liquid iron
outer core, vigorous convection leads to highly unpredictable
flow, making theoretical calculations of basic quantities, such
as the average reversal rate, almost impossible. In the last
two decades, some light has been shed by direct numerical
simulations of Earth’s core [1–3] that feature a self-sustaining
dipole-dominated field, that in many cases reverses at irregular
intervals just like the real system. However, the predictive
power of these calculations is severely hampered by the fact
that they do not have sufficient resolution to use Earth-like
parameters due to the core’s very low viscosity. In these
simulations, the Ekman number, a dimensionless measure of
viscous effects, and the Rossby number, a measure of inertia,
are orders of magnitude larger than what are thought to be
their true values. The situation is likely hopeless for the
Ekman number, but if the Rossby number could be brought
into line then simulations might eventually at least have the
correct force balance.

An alternative approach is to model the geomagnetic field
as a stochastic process, and there have been many models of
this type over the years [4–12]. These are usually predicated
on exploiting the qualitative similarity between paleomagnetic
data and some well understood or easily studied stochastic
process. We aim here to develop a stochastic differential
equation that is derived directly from the underlying equa-
tions of the system. That is, we will not appeal to mean

field magnetohydrodynamics, as in a previous approach of
Hoyng et al. [4], or impose a Langevin form [9,11]; rather,
our starting point will be the magnetic induction equation
with a random source, which, provided this random source
accurately captures the statistics arising from the chaotic
dynamics, is effectively what the dynamo system is. This
stochastic equation was previously written down by Parker
[13] but to our knowledge its consequences have not been
fully explored. We show that, when one considers only the
slowest-decaying modes of the most important poloidal and
toroidal components and makes fairly generic assumptions
about the fluctuations, one can derive a differential equation
for the probability distribution, a type of master equation.
Furthermore, we show that assuming small-amplitude fluctu-
ations leads to a Fokker-Planck equation in the toroidal and
poloidal field amplitudes. This equation can then be used to
compute various averages of interest in paleomagnetism, such
as the time between reversals, the strength of the dipole field,
and the duration of reversals, in terms of a small number of
parameters. Moreover, these are not merely fitting parameters
but rather they are connected to the underlying physical and
stochastic properties of the system.

II. INDUCTION EQUATION

The starting point of our analysis is the induction equation
for the magnetic field in Earth’s core,

∂B
∂t

= ∇ × (v × B) + η∇2B, (1)

where η = 1/(σeμ0), σe is the electrical conductivity of the
fluid outer core, and μ0 is the permeability. The fluid velocity
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v(r, t ) satisfies the Navier-Stokes equation with source terms
accounting for temperature or concentration gradients as well
as the Lorentz force resulting from the magnetic field. The
difficulties associated with the geodynamo problem stem from
this complicated interaction between the magnetic, velocity,
and temperature or concentration fields.

We use the standard decomposition into poloidal and
toroidal fields,

B = BP + BT , (2)

where

BP = ∇ × ∇ × P (r, θ, φ, t )r̂, (3)

BT = ∇ × T (r, θ, φ, t )r̂. (4)

The functions P and T are expanded in spherical harmonics,

P (r, θ, φ, t ) =
∞∑
l=0

l∑
m=−l

bP
lm(r, t )Ylm(θ, φ), (5)

T (r, θ, φ, t ) =
∞∑
l=0

l∑
m=−l

bT
lm(r, t )Ylm(θ, φ). (6)

We will focus our attention on the poloidal dipole field,
l = 1,m = 0, which is by far the dominant field seen at the
surface, and a quadrupolar toroidal field from which the dipole
is generated. Our system might be thought of as an α2 dynamo
or an α − ω dynamo in which the shears that generate the
poloidal field are stochastic in nature. However, our choices
are not crucial; any number and variety of components may be
considered here (although at minimum one needs one toroidal
and one poloidal field). For example, in Ref. [7] it was argued
that reversals are triggered by the interaction between the
dipole and poloidal quadrupole terms. We could easily add
this quadrupole term as well, but to illustrate the basic idea
we will consider the simpler system. The equations for the
components are found by inserting their expansions into the
induction equation [2], and after rescaling the length by Ro,
the radius of the outer core, and the time by the diffusion time,
R2

o/η, we find

∂

∂t
bP

10(r, t ) −
[

∂2

∂r2
− 2

r2

]
bP

10(r, t ) = r2

2
f P

10(r, t ), (7)

∂

∂t
bT

20(r, t ) −
[

∂2

∂r2
− 6

r2

]
bT

20(r, t ) = r2

6
f T

20(r, t ). (8)

The sources, f P
10(r, t ) and f T

20(r, t ), contain all the higher-
order magnetic and velocity field harmonics. We treat these
source terms as stochastic processes but, as we are interested
in fluctuating, as well as average, properties we do not resort
to mean field magnetohydrodynamics. Rather, a formal solu-
tion of the stochastic differential equation will be our starting
point. To facilitate a further simplification, we expand the
fields in spherical Bessel functions, the eigenfunctions of the
induction operator,

bP
10(r, t ) =

∞∑
n=1

cP
n (t )σnrj1(σnr ), (9)

bT
20(r, t ) =

∞∑
n=1

cT
n (t )μnrj2(μnr ), (10)

where jn(r ) is the nth spherical Bessel function of the first
kind and σn and μn are constants that are determined from
the boundary conditions. The condition that the poloidal field
must be continuous with the irrotational field external to the
outer core gives [13,14]

σn = nπ, (11)

while the vanishing of the toroidal field at the core-mantle
boundary leads to

j2(μn) = 0. (12)

The first few μn = {5.76, 9.1, 12.3 . . .}. The decay rate of
mode n is σ 2

n η/R2
o for the poloidal field, μ2

nη/R2
o for the

toroidal, and n = 1 is by far the slowest-decaying mode for
both. Their amplitudes satisfy the equations

dcP
1

dt
+ σ 2

1

Ro
2 cP

1 (t ) =
NP∑
i=0

gP
i δ

(
t − tPi

) + �T (t ), (13)

dcT
1

dt
+ μ2

1

Ro
2 cT

1 (t ) =
NT∑
i=0

gT
i δ

(
t − tTi

) + �P (t ), (14)

where �T (t ) and �P (t ) are noise terms, ti denotes the times
of convective events that add to the respective component,
and gi their contribution. Here, we have assumed that these
events occur on a time scale much shorter (e.g., [11]) than
those of interest in geomagnetism (hence the delta functions),
such as the average time between reversals. The occurrence
times are taken to be Poisson processes, to be described below,
and the associated gi are also random variables. To model the
generation of the two fields from each other, we assume the gi

to be of the form

gP
i = AP

i cT
1 (ti )fT

(
cT

1

)
, (15)

gT
i = AT

i cP
1 (ti )fP

(
cP

1

)
. (16)

That is, to compute the source of the poloidal (toroidal) field,
a convective event is associated with an amplitude AP (AT )
which we multiply against the present toroidal (poloidal)
field. These events are essentially flows of nonzero helicity,
and, although we will not consider any specific models of
them, the amplitudes are related to the various properties
of these flows such as their energy and angular momentum.
Here, we will simply take the A to be random variables. The
functions fT and fP above are quenching functions; if the
fields become large, Lorentz forces oppose regeneration and,
for example, gP

i → 0 as cT
1 → ∞. It is necessary to model

this effect in some way for the system to have stable, nonzero
magnetic fields. Again, we will not be too specific about this,
and assume only that these are nonincreasing functions of
their arguments. The noise terms in (13) and (14) represent
sources of fluctuations that do not contribute on average to the
magnetic fields. As such,

〈�P (t )〉 = 〈�T (t )〉 = 0. (17)

Although this noise has zero average, its fluctuations can be
a significant influence on geomagnetic time scales, affecting
quantities such as the average reversal rate and the time taken
to complete a reversal. We shall make the assumption that the
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noise is a Gaussian process with correlation functions

〈�P (t )�P (t ′)〉 = q2
P δ(t − t ′), (18)

〈�T (t )�T (t ′)〉 = q2
T δ(t − t ′), (19)

i.e., that the correlation time of the noise is much shorter
than time scales of interest, such as the average polarity
duration. Given the episodic and chaotic nature of convection
in turbulent systems, this assumption is surely reasonable.
The noise strengths qP and qT can in principle depend on
the magnetic fields, but as evidence from both paleomagnetic
[10] and numerical simulation data suggests the dependence
is likely weak, we do not explicitly include this here.

III. MASTER EQUATION

Equations (13) and (14) can be formally solved; for
example,

cP
1 (t ) =

NP∑
i=0

gP
i e−σ 2

1 (t−tPi ). (20)

That is, the mode is usually decaying at the rate σ 2
1 but at

the times tPi the finite quantities gP
i are added to cP

1 (t ). This
process has two stochastic components; the events occur at
random times and they have random amplitudes. The arrival
times, tPi and tTi , are taken to be Poisson processes. Three
of the defining features of such processes are [15] (1) the
probability that exactly one event occurs in an interval �t

is ξ�t where ξ is the rate (or intensity), (2) the probability
that more than one event occurs is O(�t2), and (3) events
occur independently of one another. These assumptions are
reasonable if the correlation time of the process is short
compared to the time scales we care about, which is surely
the case for our system. The events will actually be taken to
be an ensemble of Poisson processes, each member having
its own amplitude A and rate function ξ (A)dA. It will not be
necessary to have explicit forms for these, but one feature of
the functions ξ (A) can be immediately deduced; they are not
symmetric under A → −A for the geodynamo. The Earth’s
magnetic field remains for long durations in the same polarity
between apparently sudden reversals. This would seem to
imply that regenerative events, characterized by positive A,
are far more common than degenerative. As ξ (A)dA is the
rate of processes with amplitude between A and A + dA, the
total rates of all the different amplitudes are given by

ZP ≡
∫ ∞

−∞
ξP (A)dA, (21)

ZT ≡
∫ ∞

−∞
ξT (A)dA, (22)

so, for example, ZP �t is the probability that an event of any
amplitude regenerates the poloidal field in the interval �t .

With these preliminaries out of the way, we turn now to
the time evolution of the probability for the process. The
joint distribution, P (x, y, t )dxdy, is the probability at time
t that cP has a value between x and x + dx, and cT has a
value between y and y + dy. In the following analysis, we
will set �T = �P = 0. We assume these noise processes are
uncorrelated with the fluctuations that regenerate the field, and

thus their contribution can simply be added to the diffusion
coefficient at the end of the derivation. Let us now think about
what happens in this process during a small time interval �t .
With probability 1 − (ZP + ZT )�t , there are no regeneration
events in the interval. In this case, both fields simply decay at
their natural rates so that we have

P (x, y, t + �t )dxdy = P (x ′, y ′, t )dx ′dy ′, (23)

where

x ′ ≡ xeσ 2
1 �t , (24)

y ′ ≡ yeμ2
1�t . (25)

The other possibility for the interval �t is the occurrence of
either a poloidal or toroidal regeneration event, of amplitude
between A and A + dA. It is possible that more than one event
occurs in �t , but the probability of this is of order (�t )2 by
the assumption of a Poisson process, so we may neglect it.
The probability of a single poloidal source is ξP (A)dA�t ,
and likewise ξT (A)dA�t for toroidal. Now, if an event of
amplitude A adds to the poloidal field we have

P (x, y, t + �t )dxdy = P (x − AyfT , y, t )dxdy, (26)

that is, the probability that cP is at x at time t + �t is simply
the probability that it was at x − AyfT (y), that is x minus the
quantity added by the event, at time t . A similar formula holds
for the toroidal field. Putting everything together we have

P (x, y, t + �t )dxdy

= (1 − ZT �t − ZP �t )P
(
xeσ 2

1 �t , yeμ2
1�t , t

)
× eσ 2

1 �t eμ2
1�t dxdy

+
∫ ∞

−∞
ξP (A)P (x − AyfT (y), y, t )dA�tdxdy

+
∫ ∞

−∞
ξT (A)P (x, y − AxfP (x), t )dA�tdxdy, (27)

where we have integrated over all possible values of A that
can appear in the toroidal and poloidal amplitudes. Expanding
everything to first order in �t and taking the limit �t → 0, we
have the integrodifferential equation,

∂P

∂t
= σ 2

1
∂

∂x
(xP ) + μ2

1
∂

∂y
(yP ) − (ZP + ZT )P

+
∫ ∞

−∞
ξP (A)P (x − AyfT (y), y, t )dA

+
∫ ∞

−∞
ξT (A)P (x, y − AxfP (x), t )dA. (28)

This is a kind of master equation for the probability distri-
bution. It is linear in P and conserves normalization, as it
must. Although it is surely possible to study this equation
numerically, we will now discuss an important regime, namely
the one in which the quantities added during an event, Af , are
small. In this case, the distribution function satisfies the more
familiar Fokker-Planck equation.
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IV. FOKKER-PLANCK EQUATION

When Af 	 1, the distribution can be expanded in A,

P (x − AyfT , y, t ) ≈ P (x, y, t ) − AyfT (y)
∂P

∂x

+ A2y2fT (y)2

2

∂2P

∂x2
, (29)

and similarly for P (x, y − AxfP , t ). The result is the Fokker-
Planck equation,

∂P

∂t
= − ∂

∂x

[
D(1)

x (x, y)P
] − ∂

∂y

[
D(1)

y (x, y)P
]

+D(2)
x (y)

∂2P

∂x2
+ D(2)

y (x)
∂2P

∂y2
, (30)

where the drift coefficients are

D(1)
x (x, y) = −σ 2

1 x + 〈AP 〉yfT (y), (31)

D(1)
y (x, y) = −μ2

1y + 〈AT 〉xfP (x) (32)

and the diffusion coefficients, after we have added the parts
arising from the additive terms �T (t ) and �P (t ),

D(2)
x (y) = 1

2

〈
A2

P

〉
y2[fT (y)]2 + 1

2q2
P , (33)

D(2)
y (x) = 1

2

〈
A2

T

〉
x2[fP (x)]2 + 1

2q2
T (34)

with

〈AP 〉 ≡
∫ ∞

−∞
ξP (A)AdA, (35)

〈AT 〉 ≡
∫ ∞

−∞
ξT (A)AdA, (36)

〈
A2

P

〉 ≡
∫ ∞

−∞
ξP (A)A2dA, (37)

〈
A2

T

〉 ≡
∫ ∞

−∞
ξT (A)A2dA. (38)

It is rather interesting that in passing from the master equation
to the Fokker-Planck equation we no longer need explicit
forms for the rate functions, ξ (A). We only need to know
〈A〉, which is nonzero by the asymmetry of ξ (A), and 〈A2〉 for
the poloidal and toroidal fields. Equation (30) contains all the
information about the process, and its solutions can be used
to extract various properties, such as the rate of reversals, the
average time of a reversal, and the variation of these with core
parameters.

V. DIPOLE EQUATION

Although P (x, y, t ) is the joint probability for the poloidal
dipole and toroidal quadrupole fields, only the poloidal field is
observed at Earth’s surface. A natural question is now whether
we can derive a Fokker-Planck equation, P (x, t ), for the
dipole amplitude alone. In general, the answer is no; if we can
imagine reversing the sign of only, say, the toroidal field, the
statistics of the poloidal field would then change dramatically
(we may, for example, have triggered a reversal of the poloidal
field). However, given the somewhat disparate decay rates of

the poloidal and toroidal modes, we can derive an approx-
imate P (x, t ) using adiabatic elimination. The idea is that
because the toroidal field decays the faster of the two, we can
assume that it takes on a quasisteady value that depends only
on the current poloidal field; it is sometimes said that the fast
variable is “slaved” to the slow one [16]. The systematic deter-
mination of P (x, t ) from P (x, y, t ) under this approximation
is straightforward but somewhat tedious so we omit the details
here. Our calculation is essentially identical to the one given
in Sec. 8.3 of Risken [16]. Note that this procedure actually
gives an expansion in 1/λ where λ is the decay rate of the
fast variable. Because the disparity between the poloidal and
toroidal decay rates is only a factor of 3, these 1/λ corrections
might prove to be important. However, in what follows we
keep only the leading-order term, neglecting those of order
1/λ and higher. To carry this calculation through, we assume
the quenching functions have the form

fT (x) = e−γT x2
, (39)

fP (y) = e−γP y2
. (40)

A more careful consideration of the effect of the magnetic
field strength on the convective upwellings would allow us to
calculate the parameters appearing in the quenching functions,
(39) and (40), or to relate them to other core properties which
can then be estimated from the data. For now we leave them
as fitting parameters. The result is the Fokker-Planck equation
for P (x, t ),

∂P (x, t )

∂t
= − ∂

∂x
(D

(1)
(x)P (x, t )) + ∂2

∂x2
(D

(2)
(x)P (x, t )).

(41)

To get simple forms for the diffusion and drift coefficients, we
set γT = 0, and find

D
(1)

(x) = −σ 2
1 x + 〈AP 〉〈AT 〉

μ2
1

xe−γP x2
, (42)

D
(2)

(x) =
〈
A2

P

〉
2μ2

1

(〈
A2

T

〉
2

+ 〈AT 〉2

μ2
1

)
x2e−2γP x2

+ 1

2

(
q2

T

μ2
1

+ q2
P

)
. (43)

The drift term (42) describes the generation of the dipole field.
A typical example is shown in Fig. 1. Where the curve is
positive, the regeneration rate of the field is greater than its
decay. The value of x = x0 > 0 such that

D
(1)

(x0) = 0 (44)

is the typical value of the dipole field between reversals. Note
that if x0 is a solution of (44) then so too is −x0, consistent
with the symmetry of the magnetohydrodynamic equations.
It is possible that there is no positive region, and in this case
dynamo action is not sufficient to support the dipole field and
there is no x0 > 0. This would occur whenever

dD
(1)

(x)

dx

∣∣∣∣∣
x=0

< 0 (45)
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0 2 4 6 8
x [1022  A m2 ]

-50

0

50

100

150
D

(1
) (x

)

FIG. 1. The drift coefficient D
(1)

(x ) in Eq. (42) fit to the
PADM2M data set. Where the curve is positive, regeneration of the
field is effective against its decay.

and from (42) we can therefore show that the dipole field is
only regenerated when

〈AP 〉〈AT 〉 > σ 2
1 μ2

1. (46)

The formulas (42) and (43) for the drift and diffusion
coefficients can be compared with data. In Fig. 1, we fit
our Eq. (42) to the drift coefficient calculated by one of us
[10] from the PADM2M model, a data set constructed from
observations of Earth’s dipole [17]. The fit appears to be very
good, and thus the formula we have derived is well supported
by the data (see also Figs. 3 and 4 of Ref. [11]). We stress

that D
(1)

(x) must be odd in x by the symmetry of the MHD
equations, so if there was sufficient small-field data available
it would look similar to our formula, at least qualitatively. We
point out here that for large x the drift coefficient becomes

D
(1)

(x) ≈ −σ 2
1 x, i.e., a line that passes through the origin.

Determining the slope of this line will allow an estimate of
the conductivity of the core (the conductivity appears when
we convert from dimensionless units). It seems from Fig. 1
that we do not yet have sufficient data in this linear regime,
but perhaps this will change in the future.

In Fig. 2 we plot the diffusion coefficient, where the fit
uses the same parameters as those that produced Fig. 1. Once
again, our formula seems to capture the main features of the
PADM2M model. However, here it is not as clear what will
happen in the small-field region where there are no data. The
diffusion coefficient is even in x and the shape of our curve
arises from the assumption that the noise amplitudes qT and
qP do not depend on the field. This is apparently a reasonable
approximation for larger fields, but whether it holds as x goes
to zero is unclear.

Finally, we turn to the question of the reversal rate. For this,
we can exploit the analogy between (41) and the equation for
a heavily damped particle in a potential, V (x) [16], where

D
(1)

(x) = −∇V (x). A slight complication here is that in
order to make contact with existing theory, we must transform
from x to a new variable in terms of which the diffusion
coefficient is a constant, D. Details of this transformation are
omitted but the procedure is laid out in Ref. [16]. Choosing

0 1 2 3 4 5 6 7 8
x [1022 A m2]

0

50

100

150

D
(2

)  (x
)

FIG. 2. The diffusion coefficient, D
(2)

(x ) in Eq. (43), fit to the
PADM2M data set.

D = 1, we find the potential plotted in Fig. 3. The Kramers
escape formula gives the approximate reversal rate in the limit
of a deep well [16] in the sense that �V ≡ V (0) − V (xmin) �
D,

r = 1

2π

√
|V ′′(0)|V ′′(xmin) exp(−�V/D). (47)

Using an electrical conductivity σe = 1.2 × 106 � m (needed
to convert from dimensionless time), consistent with recent
density functional theory calculations (DFT) [18], we find
r ≈ 0.7 Myr−1. This r is a bit low, but there are many
areas of uncertainty here. For example, numerical [18,19]
and experimental [20,21] results have produced a range of
electrical conductivities for the core, and the issue appears far
from settled. Halving the conductivity doubles the computed
reversal rate, although this is still lower than the current pale-
omagnetic estimates of 3–4 Myr−1 [22,23]. A much greater
source of uncertainty lies in the noise amplitudes, qT and
qP . As demonstrated in Ref. [12], estimates of these kinds
of quantities are highly error prone and can vary widely
between data sets. If, for example, qT and qP are doubled,
then, using the conductivity from DFT, r ≈ 4 Myr−1. We can
therefore obtain a realistic reversal rate by making plausible
variations to the conductivity and noise, and perhaps a more

FIG. 3. Double-well potential derived from Fig. 1 (after a change
of variable described in the text).
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sophisticated calculation will eventually be used to constrain
those quantities.

The single-variable Fokker-Planck equation cannot be used
to study every quantity of interest. For example, if we wish to
examine the issue of which field leads during a reversal, we
must drop the slaving assumption that led to (41) and instead
track the evolution of both components using the coupled
formulation (30).

VI. CONCLUSION

Starting with the magnetohydrodynamic equations for
Earth’s core, we have derived a set of stochastic differential
equations, characterized by a handful of parameters, gov-
erning the evolution of the dominant poloidal and toroidal
fields. From these, we further found a Fokker-Planck equation
satisfied by the dipole field, the coefficients of which we were
able to compare directly with data. The parameters that appear

in our model all arise from consideration of the underlying
properties of the dynamo system and, in principle, finding
their values from fits to data can give important information
about the core. We believe that this framework will prove use-
ful in analyzing and characterizing observations, laboratory
experiments, and numerical simulations. There are also many
ways in which this work can be extended, such as including
more modes beyond just the dipole poloidal and quadrupole
toroidal, and considering a more detailed physical model of
the core.
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