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An Analysis of Two-User Uplink

Asynchronous Non-Orthogonal Multiple

Access Systems

Xun Zou, Student Member, IEEE, Biao He, Member, IEEE, and

Hamid Jafarkhani, Fellow, IEEE

Abstract

Recent studies have numerically demonstrated the possible advantages of the asynchronous non-

orthogonal multiple access (ANOMA) over the conventional synchronous non-orthogonal multiple access

(NOMA). The ANOMA makes use of the oversampling technique by intentionally introducing a timing

mismatch between symbols of different users. Focusing on a two-user uplink system, for the first time,

we analytically prove that the ANOMA with a sufficiently large frame length can always outperform the

NOMA in terms of the sum throughput. To this end, we derive the expression for the sum throughput

of the ANOMA as a function of signal-to-noise ratio (SNR), frame length, and normalized timing

mismatch. Based on the derived expression, we find that users should transmit at full powers to maximize

the sum throughput. In addition, we obtain the optimal timing mismatch as the frame length goes to

infinity. Moreover, we comprehensively study the impact of timing error on the ANOMA throughput

performance. Two types of timing error, i.e., the synchronization timing error and the coordination

timing error, are considered. We derive the throughput loss incurred by both types of timing error and

find that the synchronization timing error has a greater impact on the throughput performance compared

with the coordination timing error.

Index Terms

Non-orthogonal multiple access, asynchronous transmission, oversampling, timing mismatch, inter-

ference cancellation.
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is envisaged as a promising technique for future

radio access [2]. Traditional orthogonal multiple access (OMA) techniques allocate orthogonal

resources to different users, e.g., orthogonal time resources in the time division multiple access

(TDMA) scheme. Differently, the NOMA provides the multiuser access by allocating non-

orthogonal resources to users [3]. For example, in the power-domain NOMA scheme, the signals

for multiple users are superposed at different power levels using superposition coding [4], and the

multiuser detection method, such as successive interference cancellation (SIC) [5], is employed

at the receiver. The advantages of the NOMA over the OMA have been extensively studied in [2]

and the references therein, e.g., providing higher system throughput compared with OMA and

supporting massive connectivity.

Another line of research is to study the effects of asynchronous transmission on the per-

formance of the wireless communication systems. Asynchronous transmission refers to the

case where the symbol epochs of the signals transmitted by the users are not aligned at the

receiver [6]. In particular, [6] first pointed out the potential advantages of symbol-asynchronous

communications in terms of increasing the capacity of a multiple-access channel. The work in [7]

applied the symbol-asynchronous channel estimation method to tackle the pilot contamination

problem in massive multiple-input multiple-output (MIMO) systems. Asynchronous transmission

was studied in [8, 9] as a tool to mitigate or cancel the inter-user interference. In addition, the

nonzero symbol offset was used to reduce the inter-antenna interference in MIMO systems

in [10]. Moreover, an asynchronous analog network coding scheme for multiuser cooperative

communications was proposed in [11] to provide a greater diversity order compared with that

of synchronous analog network coding. Also, adding intentional timing mismatch was proposed

in [12] to improve the performance of a relay network. The authors of [13, 14] further proposed

several differential decoding schemes for asynchronous multiuser MIMO systems based on

orthogonal space-time block codes (OSTBCs) and for differential distributed space-time coding

systems with imperfect synchronization.

The asynchronous transmission has also been studied in physical-layer network coding (PLNC).

In PLNC, the two end nodes send signals simultaneously to the relay in the first time slot,

where the symbol misalignment is inevitable. A general framework for decoding at the receiver

based on belief propagation was investigated in [15], which can effectively deal with symbol



3

and phase asynchronies while incorporating channel coding at the same time. The implementable

techniques used in PLNC were manifested in [16], which estimate time and frequency offsets, and

detect information symbols at the relay. In [17], an optimal symbol-misalignment estimator for

asynchronous PLNC was designed and the impact of misalignment-estimation error on a channel-

coded PLNC system was studied. First, we highlight that the existing work in asynchronous

PLNC and our work in this paper apply to different scenarios with different system setups.

Second, most of the existing work in asynchronous PLNC adopts the bit/symbol/frame error

rate as the performance metric. The throughput performance studied in this paper has not been

addressed. Third, the key idea of the existing work in asynchronous PLNC is to estimate and

then reduce the negative effect of or take advantage of the symbol misalignment while the timing

mismatch is considered to be intentionally added in this paper. Thus, the optimal system design,

including the optimal transmit power and timing mismatch, and the impact of timing error on

NOMA have not been studied prior to this work.

Applying the symbol-asynchronous transmission to NOMA, a scheme named asynchronous

NOMA (ANOMA) was studied in [18]. In fact, an idea similar to the ANOMA in [18], i.e.,

applying asynchronous transmission for multiple access, has also been proposed and investigated

in, e.g., [8, 9, 12]. Specially, a timing mismatch between signals for different users is intentionally

added as an additional resource to address the problem of inter-user interference. It has been

shown using the numerical simulation in [18] that the ANOMA outperforms the conventional

(synchronized) NOMA by achieving a larger throughput.

However, the work in [18] has several limitations. While addressing those limitations is

important to understand the ANOMA systems, to the best of our knowledge, no existing paper

has tackled the following issues. First, there is no analytical result on the comparison between

the performance of the ANOMA and that of the NOMA in terms of the throughput, although

numerically it is shown that ANOMA outperforms NOMA in certain scenarios. This is probably

because the existing expression for the throughput of the ANOMA system is given as a function

of the channel matrix but not the signal-to-noise ratio (SNR). The lack of such an expression

in terms of SNR makes the analytical comparison between NOMA and ANOMA almost in-

tractable. Second, the optimal design of ANOMA has not been investigated. Despite the fact

that the performance of ANOMA is directly affected by important design parameters such as

the transmit power and the timing mismatch, existing papers mainly focused on the performance

demonstration only. Third, the impact of timing error has not been studied on the ANOMA
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systems. In the ANOMA systems, existing studies ideally assumed that the timing information

was perfectly known. However, the timing information in practice cannot always be perfectly

obtained, and the timing error is often inevitable. The timing information plays a vital role in

ANOMA systems, since oversampling is designed using the timing information [7, 8]. Note that

the impact of timing error has been widely studied on different communication systems, such

as [19] on the direct-sequence code division multiple-access (DS-CDMA) system, [20] on the

multi-carrier code division multiple-access (MC-CDMA) system, and [21] on the multiple-input

single-output (MISO) system using distributed OSTBC to name a few.

In this paper, we comprehensively investigate the ANOMA in a two-user uplink system. The

primary contributions of the paper are summarized as follows:

1) For the first time, we analytically prove that the ANOMA with a sufficiently large frame

length can always outperform the NOMA in terms of the system sum throughput. To

this end, we derive the expression for the sum throughput of the ANOMA system as a

function of SNR, frame length, and normalized timing mismatch. A simplified throughput

expression is further obtained for the asymptotic case of infinite frame length.

2) We investigate the optimal design of the two-user uplink ANOMA system aiming at

maximizing the sum throughput. We find that each user should transmit at full power

despite the negative effect of inter-user interference. In addition, we prove that the optimal

timing mismatch converges to one half of a symbol time as the frame length goes to

infinity.

3) We analyze the impact of timing error on the performance of the uplink ANOMA system.

Two types of timing error are taken into consideration, i.e., the synchronization timing

error and the coordination timing error, which account for the timing error caused in

signal synchronization and the coordination of the timing mismatch between asynchronous

signals, respectively. We derive the expressions for the throughput loss of the ANOMA

system with respect to both types of timing error, and analyze how the synchronization

timing error and the coordination timing error individually and jointly affect the system

performance.

Compared with our conference version [1] which briefly analyzed the impact of timing error

in the ANOMA systems, the new analyses incorporated in this paper include, e.g., the sum

throughput analysis of the ANOMA, the analytical comparisons between ANOMA and NOMA,
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User 1
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Fig. 1: Illustration of a two-user uplink system.

the asymptotic analysis for a large frame length, and the optimal transmit power and timing

mismatch designs. The remainder of the paper is organized as follows. The two-user uplink

system model is presented in Section II. The performance of the ANOMA system is analyzed

in Section III. We discuss the optimal design of the ANOMA system in Section IV. We analyze

the outputs of ANOMA matched filters with timing error and the throughput loss incurred by

timing error in Section V. Numerical results are presented in Section VI. Finally, we draw the

conclusions in Section VII.

Notations: (·)H denotes the Hermitian transpose, (·)T denotes the transpose, Tr(·) denotes the

trace operation, (·)−1 denotes the inverse operation, |x| denotes the absolute value of x, E[·]

denotes the expectation operation, CN (0, 1) denotes the complex normal distribution with zero

mean and unit variance, and 1(·) denotes the unit step function whose value is zero for negative

arguments and one for positive arguments.

II. SYSTEM MODEL

In this paper, we consider an uplink system which consists of a single base station (BS) and

two users, as shown in Fig. 1. The two users share the same frequency-time resource to transmit

signals to the BS. We assume that perfect channel state information (CSI) is known at the BS

via the uplink channel training.

A. ANOMA System

For the ANOMA, a timing mismatch is intentionally introduced between the symbols from

two users. By intentionally introducing the timing mismatch, the oversampling technique can

be adopted at the receiver, so that extra linearly independent samples can be obtained to have

sampling diversity. Then, the performance of the ANOMA can be improved by utilizing the
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Fig. 2: Illustration of the sampling for ANOMA.

sampling diversity. In contrast, one cannot get sampling diversity by oversampling the synchro-

nized signals in conventional NOMA schemes. As shown in Fig. 2, the intended timing mismatch

between the symbols of Users 1 and 2 is denoted by τT , where T is the duration of each symbol

and τ , 0 ≤ τ < 1, is the normalized timing mismatch. Note that the ANOMA system becomes a

synchronous NOMA system when τ = 0. In this section, we assume that τ is perfectly known at

BS via timing offset estimation and uplink timing control techniques, such as the timing advance

[22]. We will study the ANOMA system with timing error in Section V.

Let a1[i] = h1

√
P1s1[i] and a2[i] = h2

√
P2s2[i], where the subscripts 1 and 2 denote the

parameters for Users 1 and 2, respectively, sj[i] (j = 1, 2) denotes the ith normalized transmitted

symbol, hj denotes the channel coefficient in the block of transmission, and Pj denotes the

transmit power. The BS’s received signal at time t is then given by

y(t) =
N−1∑
i=0

a1[i]p(t− iT ) +
N−1∑
i=0

a2[i]p(t− iT − τT ) + n(t), (1)

where N denotes the number of symbols in a frame, i.e., the frame length, T denotes the time

duration of one symbol, p(·) denotes the pulse-shaping filter, and n(t) ∼ CN (0, 1) denotes the

normalized additive white Gaussian noise (AWGN). Without loss of generality, the rectangular

pulse shape is adopted, i.e., p(t) = 1/
√
T when t ∈ [0, T ] and p(t) = 0 when t /∈ [0, T ].

With the block fading model, we assume that the channels remain static during the transmission

of N consecutive symbols. As an initial study on the ANOMA systems, our paper adopts a

basic flat fading channel model without the consideration of a frequency selective channel and

OFDM. The assumption of flat fading has been widely used in the existing literature; see, e.g.,

[3, 10, 16, 18], and the references therein.
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The BS uses the oversampling technique to take advantage of sampling diversity in the

asynchronous systems [1, 7]. Oversampling uses the matched filter to sample signals at instants

iT and (i+τ)T , i = 1, · · · , N , which produces 2N samples without doubling the sampling rate.

It has been shown in [6] that the samples obtained by oversampling are sufficient statistics for

the transmitted messages in the symbol-asynchronous scenario.

As shown in Fig. 2, the BS obtains two sample vectors, denoted by [y1[1], · · · , y1[N ]]T and

[y2[1], · · · , y2[N ]]T . Specifically, the ith element in the first sample vector is given by

y1[i] =

∫ ∞
0

y(t)p(t− iT )dt

=

∫ ∞
0

a1[i]p(t− iT )p(t− iT )dt

+

∫ ∞
0

{a2[i− 1]p(t− (i+ 1 + τ)T ) + a2[i]p(t− (i+ τ)T )} p(t− iT )dt+ n1[i]

= a1[i] + τa2[i− 1] + (1− τ)a2[i] + n1[i], (2)

where n1[i] =
∫∞

0
n(t)p(t− iT )dt denotes the additive noise in the first sampled vector. The ith

element in the second sample vector is given by

y2[i] =

∫ ∞
0

y(t)p(t− iT − τT )dt = a2[i] + τa1[i+ 1] + (1− τ)a1[i] + n2[i], (3)

where n2[i] =
∫∞

0
n(t)p(t− iT − τT )dt denotes the additive noise in the second sampled vector.

From (2) and (3), we note that the inter-user interference exists, since the symbols for Users 1

and 2, i.e., a1[i] and a2[i], are added together to interfere with each other in the received samples.

We can write the outputs at the BS in a matrix form as

Y = RHX + N, (4)

where

Y = [y1[1] y2[1] y1[2] y2[2] · · · y1[N ] y2[N ]]T , (5)

X = [s1[1] s2[1] s1[2] s2[2] · · · s1[N ] s2[N ]]T , (6)

N = [n1[1] n2[1] n1[2] n2[2] · · · n1[N ] n2[N ]]T , (7)

R =


1 1−τ 0 ··· ··· 0

1−τ 1 τ 0 ··· 0
0 τ 1 1−τ ··· 0
... . . . . . . . . . . . . ...
0 ··· 0 τ 1 1−τ
0 ··· ··· 0 1−τ 1

 , (8)
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and

H =


h1
√
P1

h2
√
P2

. . .
h1
√
P1

h2
√
P2

 . (9)

We note that the inter-user interference is represented in matrix R. If there is no inter-user

interference, R becomes a diagonal matrix. With inter-user interference, R is given as (8) which

is a tridiagonal matrix, but not a diagonal matrix.

We assume that the transmitted symbols are independent, such that E
[
XXH

]
= I. Note that

the noise terms in (4) are colored due to the oversampling, and we have

E
{
n1[i]nH2 [i]

}
=

∫ ∞
0

∫ ∞
0

E
{
n(t)nH(s)

}
p (t− iT ) p (s− iT − τT ) dtds = 1− τ. (10)

Thus, the covariance matrix of N is given by

RN = E
{
NNH

}
= R. (11)

As an initial study on ANOMA, the analysis in this paper focuses on the rectangular pulse

shape. It is worth mentioning that the ANOMA with oversampling is also applicable to other

pulse shapes, such as the raised cosine pulse shape. Since the raised cosine pulse shape spans

more than T , it causes more severe inter-user interference compared with the rectangular pulse

shape. In terms of the mathematical expression, the matrix R in (8) changes accordingly while

(11) still holds. The (i, j)th entry of R for the raised cosine pulse shape is given as

Ri,j =



ρ

(
τT + bj − i

2
cT
)
, i is odd, j is even

ρ

(
τT + bi− j

2
cT
)
, i is even, j is odd

ρ

(
j − i

2
T

)
, otherwise,

(12)

where ρ is the auto-correlation function of the raised cosine function. The rest of the throughput

formulas remain the same.

B. Benchmark System – NOMA

By setting τ = 0, the ANOMA system becomes the synchronous NOMA system. For the

NOMA, the BS uses the typical matched filter instead of the oversampling technique, and the

ith sample at the BS can be written as

y[i] = a1[i] + a2[i] + n[i], (13)
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where n[i] =
∫∞

0
n(t)p(t− iT )dt. Note that (13) can be derived from either (2) or (3) by letting

τ = 0.

It is worth mentioning that the OMA systems also have the asynchrony issue in practice.

For OMA, different users transmit signals using orthogonal resources. For TDMA, orthogonal

time resources are allocated to different users. The asynchrony in time domain will destroy

such orthogonality, which will then degrade the system performance. For orthogonal frequency

division multiple access (OFDMA), orthogonal frequency resources are allocated to different

users. The asynchrony in frequency domain, for example in the form of frequency offsets, will

destroy such orthogonality, which will then degrade the system performance. In general, the

asynchrony does not benefit the OMA schemes.

III. PERFORMANCE ANALYSIS OF ANOMA SYSTEMS

In this paper, we employ the widely used performance metric, i.e., the sum throughput, to

investigate the rate performance limit of the ANOMA systems. From (4), the sum throughput

of the two-user uplink ANOMA system can be written as

RANOMA =
1

N + τ
log det

(
I2N + HHHR

)
. (14)

Some existing papers, e.g., [18], define the throughput of ANOMA as

RANOMA
exist =

1

N
log det

(
I2N + HHHR

)
, (15)

which is slightly different from (14). Although (14) and (15) converge to the same expression

as N → ∞, we highlight that our adopted expression in (14) is more accurate than (15) for

evaluating the throughput of ANOMA with finite frame length N , since the system actually

spends N + τ instead of N symbol times to transmit N symbols for each user.

It is worth mentioning that the practical transmission scheme may even simply allocate N + 1

instead of N + τ symbol times for the transmission, and the throughput becomes RANOMA
N+1 =

1
N+1

log det
(
I2N + HHHR

)
. Our analysis is still applicable to that case, since one can simply

revise (most) results according to RANOMA
N+1 = N+τ

N+1
RANOMA. It is also worth mentioning that

(14) and (15) are based on two main assumptions. The first assumption is the symbol-level

asynchrony. That is, there is a timing mismatch τT (τ ∈ [0, 1)) between symbols from different

users. The second assumption is that the timing mismatch is perfectly known at BS, which is a

common assumption in the existing literature, e.g., [8, 10, 18]. We will analyze the impact of

timing error in the case that the timing information is not perfectly known in Section V.
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In the following theorem, we derive the sum throughput of the two-user uplink ANOMA

system in terms of the receive SNRs, µ1 = P1|h1|2 and µ2 = P2|h2|2, the normalized timing

mismatch, τ , and the frame length, N .

Theorem 1: The sum throughput of the two-user uplink ANOMA system is derived as

RANOMA =
N

N + τ
log (µ1µ2) +

1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

, (16)

where

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)+

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
,

(17)

r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)−

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
.

(18)

Proof: See Appendix A.

Based on Theorem 1, we present the throughput of the two-user uplink ANOMA system for

the asymptotic case of N → ∞ in the following corollary, which characterizes the limiting

performance of the system when the frame length N is large.

Corollary 1: The throughput of the two-user uplink ANOMA system in the asymptotic case

of N →∞ is given by

lim
N→∞

RANOMA = log (µ1µ2r1) . (19)

Proof: See Appendix B.

A. Comparison with NOMA

In NOMA systems, SIC is adopted at BS to decode transmitted symbols, which works as

follows. The BS first decodes the message from User 1 (stronger user) while treating the

codeword from User 2 (weaker user) as an extra source of interference or noise. Then, the

BS subtracts the decoded message from the received signal, and decodes the message from

User 2.

According to (13), with perfect SIC at BS, the sum throughput of the two users in the uplink

NOMA system can be written as [23]

RNOMA = log(1 + P1|h1|2 + P2|h2|2) = log(1 + µ1 + µ2), (20)
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which can also be obtained from (16) by setting τ = 0.

Due to the complicated expression for the throughput of ANOMA in (16), it is difficult

to analytically compare the NOMA with the ANOMA for a general value of N . Instead, we

provide numerical results in Section VI and consider the asymptotic case of N → ∞ for an

analytical comparison in the following theorem. Our asymptotic analysis here aims to provide

useful insights for ANOMA in the scenario where the frame length, N , is relatively large. Most

results in the paper are valid for any arbitrary value of N , e.g., the throughput analysis, the

optimal transmit power design, and the impact of timing error.

Theorem 2: The two-user uplink ANOMA system as N → ∞ achieves an equal or higher

throughput compared with the NOMA system, i.e.,

lim
N→∞

RANOMA ≥ RNOMA, (21)

where limN→∞R
ANOMA = RNOMA if and only if the normalized timing mismatch τ = 0.

Proof: See Appendix C.

We note that the oversampling in ANOMA enables the sampling diversity, which leads to

the possible performance advantage of the ANOMA compared with the NOMA. On the other

hand, an extra τT time resource is used to transmit N symbols in the ANOMA, which has a

negative effect on the performance of the ANOMA compared with that of the NOMA. When

N is small, the negative effect of the extra transmission time dominates the sum throughput

of ANOMA. As N grows, the effect of the extra transmission time becomes negligible and

the sampling diversity dominants, which results in Theorem 2. Thus, one can expect a better

ANOMA throughput performance compared with the NOMA when N is larger than a certain

value.

The physical meaning of (21) is further clarified by the following corollary.

Corollary 2: With a sufficiently large frame length, the ANOMA outperforms the NOMA for

the two-user uplink system in terms of the sum throughput.

In general, the ANOMA system requires a higher detection complexity compared with the

NOMA system. ANOMA adopts the oversampling technique to obtain more samples of the

signal compared with the conventional NOMA system. Thus, the decoding process of the

ANOMA system involves a larger number of samples compared with that of the NOMA system.

Maximum-likelihood sequence detection, with relatively high complexity, can be used to decode

the transmitted messages. For the low-complexity decoding methods in the ANOMA systems,
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one can employ the methods in the existing literature with some modifications, e.g., SIC with

hard decision passing and the forward backward belief propagation detection proposed in [8] or

the low complexity decoder using dynamic programming in [13].

IV. DESIGN OF ANOMA SYSTEMS

From the analysis in Section III, we note that the throughput performance of the uplink

ANOMA system is directly determined by the transmit powers and the normalized timing

mismatch, i.e., P1, P2, and τ . In this section, we investigate the optimal P1, P2, and τ that

maximize the throughput of the system.

The design problem is formulated as follows:

arg max
P1,P2,τ

RANOMA, s.t. 0 ≤ τ < 1, 0 ≤ P1 ≤ P1,max, 0 ≤ P2 ≤ P2,max, (22)

where P1,max and P2,max are the maximum available powers at which Users 1 and 2 can transmit,

respectively. Note that the transmit powers are coupled together in a complicated way in the

expression for the throughput of the ANOMA system in (16), which is different from the case

of NOMA in (20). Thus, the optimal transmit powers for the ANOMA system are not easy to

determine, while it is easy to find that we shall use the maximum available transmit powers at

users for the NOMA system.

It is worth mentioning that the performance of the uplink ANOMA system is also affected

by the frame length, N . However, the frame length is constrained by the channel condition, i.e.,

the length of each block of the block fading channel, and the acceptable transceiver complexity.

Hence, we do not investigate the design of N in this work and assume that it is fixed based on

the channel conditions and the overall system design.

A. Optimal Transmit Power

We first obtain the optimal transmit power scheme. We summarize the optimal transmit powers

for the ANOMA system as follows.

Theorem 3: For the two-user uplink ANOMA system with any frame length, N , and the

normalized timing mismatch, τ , the optimal transmit powers at Users 1 and 2, P ∗1 and P ∗2 , are

equal to the maximum available powers at which Users 1 and 2 can transmit, P1,max and P2,max,

i.e., P ∗1 = P1,max and P ∗2 = P2,max

Proof: See Appendix D.
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From Theorem 3, we find that the optimal design of transmit powers for the two-user uplink

ANOMA system is the same as that for the NOMA system.

B. Optimal Normalized Timing Mismatch

We now study the optimal normalized timing mismatch, τ ∗. The optimal normalized timing

mismatch, τ ∗, is analytically intractable for a general finite frame length N , while we can

numerically obtain τ ∗ for a given finite N by simply searching in the range of 0 ≤ τ < 1. In

addition, we present τ ∗ in the asymptotic case of N →∞ in the following theorem.

Theorem 4: For the two-user uplink ANOMA system with the frame length N → ∞, the

optimal normalized timing mismatch to maximize the sum throughput is given by τ ∗ = 0.5.

Proof: See Appendix E.

V. IMPACT OF TIMING ERROR ON ANOMA SYSTEMS

The analysis in the previous sections is based on the assumption that the BS perfectly knows

the timing information. However, the timing information cannot always be perfectly obtained in

practice, and the timing error is often inevitable. In this section, we study the impact of timing

error on the ANOMA system.

A. Timing Error

We consider two types of timing error for the ANOMA system, i.e., the synchronization timing

error and the coordination timing error.

1) Synchronization Timing Error: To synchronize the signals, we need a reference signal.

Without loss of generality, we use the signal from User 1 as the timing reference (the timing

offset is 0). This requires a symbol-level timing synchronization with User 1 at the BS, as it

is also done in NOMA. The normalized synchronization timing error, denoted by ε1 in Fig.

3, is due to the imperfect timing synchronization. Without loss of generality, we assume that

ε1 ∈ (τ−1, τ). With the synchronization timing error, y1[i] is taken from the time (i−1)T +ε1T

to iT + ε1T and y2[i] is taken from the time (i− 1)T + (τ + ε1)T to iT + (τ + ε1)T , although

the BS intends to take y1[i] from the time (i− 1)T to iT and y2[i] from the time (i− 1)T + τT

to iT + τT . We will study the effect of this timing error later.
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a1[i-1]

a2[i-1]

τT

T
ε1T

T

(ε1+ε2)T

ŷ1[i]
ŷ2[i]

a1[i] a1[i+1]

a2[i+1]a2[i]

Fig. 3: Illustration of the sampling for ANOMA with timing error.

2) Coordination Timing Error: In order to achieve the desired timing mismatch between the

two signals, the BS coordinates the uplink transmission timing of the two users to add the

intended timing offsets at each transmitter. For example, the timing advance is the technique

employed in long term evolution (LTE) systems to estimate and adjust the timing offsets among

uplink signals at BS [22, 24]. The normalized coordination timing error, denoted by ε2 in Fig. 3,

results from the imperfect coordination between the users. With the coordination timing error, the

actual timing mismatch becomes (τ+ε2)T , while the intended timing mismatch is τT . In addition

to the synchronization timing error ε1T , the sample y2[i] is taken from (i− 1)T + (τ + ε1 + ε2)T

to iT + (τ + ε1 + ε2)T , although the BS intends to take y2[i] from (i− 1)T + τT to iT + τT .

Without loss of generality, we assume that ε1 + ε2 ∈ (−τ, 1− τ).

Fig. 3 illustrates the sampling for an ANOMA system with timing error. It is worth mentioning

that the sign of the timing error stands for the direction in which the function of the matched

filter is shifted. For example, as shown in Fig. 3, the matched filter is shifted to the right by

ε1T if ε1 > 0 compared with the matched filter designed with no timing error in Fig. 2. Fig. 3

only presents the case when ε1 > 0 and ε1 + ε2 > 0, while our analysis works for any values of

ε1 and ε2.

B. Outputs of ANOMA Matched Filters with Timing Error

In the presence of timing error, the ith element of the first sample vector is given by

ŷ1[i] =

∫ ∞
0

y(t)p(t− iT − ε1T )dt

=

∫ ∞
0

a1[i]p(t− iT )p(t− iT − ε1T )dt
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+ 1(−ε1)

∫ ∞
0

a1[i− 1]p(t− (i− 1)T )p(t− iT − ε1T )dt

+ 1(ε1)

∫ ∞
0

a1[i+ 1]p(t− (i+ 1)T )p(t− iT − ε1T )dt

+

∫ ∞
0

a2[i− 1]p(t− τT − (i− 1)T )p(t− iT − ε1T )dt

+

∫ ∞
0

a2[i]p(t− τT − iT )p(t− iT − ε1T )dt+

∫ ∞
0

n(t)p(t− iT − ε1T )dt

= a1[i](1− |ε1|) + a1[i− 1]1(−ε1)(−ε1) + a1[i+ 1]1(ε1)ε1

+ a2[i− 1](τ − ε1) + a2[i](1− τ + ε1) + n̂1[i], (23)

and the ith element of the second sample vector is given by

ŷ2[i] =

∫ ∞
0

y(t)p(t− (i+ τ + ε1 + ε2)T )dt

= a2[i](1− |ε1 + ε2|) + a2[i− 1]1(−ε1 − ε2)(−ε1 − ε2)

+ a2[i+ 1]1(ε1 + ε2)(ε1 + ε2) + a1[i](τ − ε1 − ε2) + a1[i+ 1](1− τ + ε1 + ε2) + n̂2[i],

(24)

where n̂1[i] =
∫∞

0
n(t)p(t− iT − ε1T )dt and n̂2[i] =

∫∞
0
n(t)p(t− (i+ τ + ε1 + ε2)T )dt.

We note from (23) and (24) that the first sample vector is affected by the normalized syn-

chronization timing error ε1 only, while the second sample vector is affected by the sum of the

normalized synchronization timing error ε1 and the normalized coordination timing error ε2.

With (23) and (24), we obtain the outputs of the two matched filters at the BS subject to the

timing error in the matrix form as

Ŷ = R̂HX + N̂, (25)

where Ŷ = [ŷ1[1] ŷ2[1] ŷ1[2] ŷ2[2] · · · ŷ1[N ] ŷ2[N ]]T , N̂ = [n̂1[1] n̂2[1] n̂1[2] n̂2[2] · · · n̂1[N ]

n̂2[N ]]T , and R̂ is given by

R̂

=


1−|ε1| 1−τ+ε1 1(ε1)ε1 0 ··· ··· 0

1−τ−ε1−ε2 1−|ε1+ε2| τ+ε1+ε2 1(ε1+ε2)(ε1+ε2) 0 ··· 0
1(−ε1)(−ε1) τ−ε1 1−|ε1| 1−τ+ε1 1(ε1)ε1 ··· 0

... . . . . . . . . . . . . . . . ...
0 ··· 1(−ε1−ε2)(−ε1−ε2) 1−τ−ε1−ε2 1−|ε1+ε2| τ+ε1+ε2 1(ε1+ε2)(ε1+ε2)
0 ··· 0 1(−ε1)(−ε1) τ−ε1 1−|ε1| 1−τ+ε1
0 ··· ··· 0 1(−ε1−ε2)(−ε1−ε2) 1−τ−ε1−ε2 1−|ε1+ε2|


= R
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+


−|ε1| ε1 1(ε1)ε1 0 ··· ··· 0
−ε1−ε2 −|ε1+ε2| ε1+ε2 1(ε1+ε2)(ε1+ε2) 0 ··· 0

1(−ε1)(−ε1) −ε1 −|ε1| ε1 1(ε1)ε1 ··· 0

... . . . . . . . . . . . . . . . ...
0 ··· 1(−ε1−ε2)(−ε1−ε2) −ε1−ε2 −|ε1+ε2| ε1+ε2 1(ε1+ε2)(ε1+ε2)
0 ··· 0 1(−ε1)(−ε1) −ε1 −|ε1| ε1
0 ··· ··· 0 1(−ε1−ε2)(−ε1−ε2) −ε1−ε2 −|ε1+ε2|


︸ ︷︷ ︸

E1

.

(26)

We note from (26) that the expression for E1 is related to the signs of ε1 and ε1 + ε2. For the

sake of brevity, we present the analytical results for the case of ε1 > 0 and ε1 +ε2 > 0 in the rest

of the paper, while our analytical method and findings are applicable to all cases. In addition,

we will present the numerical results in Section VI for all possible cases of ε1 and ε1 + ε2. With

ε1 > 0 and ε1 + ε2 > 0, the expression for E1 is rewritten as

E1 = ε1


−1 1 1 0 ··· ··· 0
−1 −1 1 1 0 ··· 0
0 −1 −1 1 1 ··· 0
... . . . . . . . . . . . . . . . ...
0 ··· 0 −1 −1 1 1
0 ··· 0 0 −1 −1 1
0 ··· ··· 0 0 −1 −1


︸ ︷︷ ︸

Z1

+ε2


0 0 0 0 ··· ··· 0
−1 −1 1 1 0 ··· 0
0 0 0 0 0 ··· 0
... . . . . . . . . . . . . . . . ...
0 ··· 0 −1 −1 1 1
0 ··· 0 0 0 0 0
0 ··· ··· 0 0 −1 −1


︸ ︷︷ ︸

Z2

. (27)

The covariance matrix of N̂ is given by

R̂N = E
{
N̂N̂

H
}

=


1 1−τ−ε2 0 ··· ··· 0

1−τ−ε2 1 τ+ε2 0 ··· 0
0 τ+ε2 1 1−τ−ε2 ··· 0
... . . . . . . . . . . . . ...
0 ··· 0 τ+ε2 1 1−τ−ε2
0 ··· ··· 0 1−τ−ε2 1



= R +


0 −ε2 0 ··· ··· 0
−ε2 0 ε2 0 ··· 0

0 ε2 0 −ε2 ··· 0
... . . . . . . . . . . . . ...
0 ··· 0 ε2 0 −ε2
0 ··· ··· 0 −ε2 0


︸ ︷︷ ︸

E2

, (28)

where E2 can be rewritten as

E2 = ε2


0 −1 0 ··· ··· 0
−1 0 1 0 ··· 0
0 1 0 −1 ··· 0
... . . . . . . . . . . . . ...
0 ··· 0 1 0 −1
0 ··· ··· 0 −1 0


︸ ︷︷ ︸

Z3

. (29)

We note from (29) that the covariance matrix of the noise terms is affected by the normalized

coordination timing error ε2, while it is not related to the normalized synchronization timing

error ε1.
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C. Impact of Timing Error on Throughput Performance

According to (25), the throughput of the ANOMA system with timing error is given by

RANOMA
e

=
1

N + τ
log det

(
I2N + R̂−1

N R̂HH
H
R̂H
)

=
1

N + τ
log det

(
I2N + (R + E2)−1(R + E1)HHH(R + EH

1 )
)

=
1

N + τ
log det

(
I2N +

(
I2N + (R + E2)−1(E1 − E2)

)
HHH(R + EH

1 )
)

=
1

N + τ
log det

(
I2N+HHHR + HHHEH

1 +(R + E2)−1(E1 − E2)HHH(R+EH
1 )
)
. (30)

When there is no timing error, i.e., ε1 = ε2 = 0, we have E1 = E2 = 0. Hence, substituting

E1 = E2 = 0 into (30), we obtain the throughput of the ANOMA system without timing error,

which is the same as (14).

From (14) and (30), we derive the throughput loss incurred by the timing error as

∆ = RANOMA −RANOMA
e

= − 1

N + τ
log det

{
I2N +

(
I2N + HHHR

)−1 [
HHHEH

1

+(R + E2)−1(E1 − E2)HHH(R + EH
1 )
]}
. (31)

In what follows, we separately analyze the throughput loss incurred by the synchronization

timing error and the coordination timing error with the practical consideration that these two

types of timing error both are relatively small.

1) Impact of Synchronization Timing Error: We first investigate the impact of synchronization

timing error on the throughput loss and consider the practical scenario where the error is relatively

small, such that ε2 = 0 and ε1 � 1.

In this case, by omitting high-order terms of ε1, we obtain the throughput loss incurred by

the synchronization timing error from (31) as

∆ε1 = − 1

N+τ
log det

{
I2N+ε1

(
I2N+HHHR

)−1 [
HHHZH1 +R−1Z1HHH(R+ε1Z

H
1 )
]}

(a)
≈ − 1

N + τ
log det

{
I2N + ε1

(
I2N + HHHR

)−1 [
HHHZH1 + R−1Z1HHHR

]}
(b)
≈ − 1

N + τ
log
(
1 + ε1Tr(F1) +O(ε21)

) (c)
≈ ε1c1, (32)
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where F1 =
(
I2N + HHHR

)−1 (
HHHZH1 + R−1Z1HHHR

)
, c1 = − 1

N+τ
Tr(F1), (a) is ap-

proximated by using R + ε1Z ≈ R as ε1 → 0, (b) is derived using the special case of Jacobi’s

formula [25], i.e., det (I + εA) = 1 + εTr(A) +O(ε2), and (c) is derived by omitting the high-

order terms of ε1 and applying the approximation log(1 + x) ≈ x when x� 1. From (32), we

note that the throughput loss is approximately linear to ε1 when ε2 = 0 and ε1 � 1.

2) Impact of Coordination Timing Error: We now investigate the impact of the coordination

timing error on the throughput loss and still consider the practical scenario where the error is

relatively small, such that ε1 = 0 and ε2 � 1.

By omitting high-order terms of ε2, we obtain the throughput loss incurred by the coordination

timing error from (31) as

∆ε2 = − 1

N + τ
log det

{
I2N + ε2

(
I2N + HHHR

)−1 [
HHHZH2

+(R + ε2Z3)−1(Z2 − Z3)HHH(R + ε2Z
H
2 )
]} (a)
≈ ε2c2, (33)

where F2 =
(
I2N + HHHR

)−1 (
HHHZH2 + R−1(Z2 − Z3)HHHR

)
, c2 = − 1

N+τ
Tr(F2), and

(a) can be derived by following the same steps in the derivation of (32). From (33), we note

that the throughput loss is approximately linear to ε2 when ε1 = 0 and ε2 � 1.

VI. NUMERICAL RESULTS

In this section, we present numerical results to compare the throughput performances of

NOMA and ANOMA systems and illustrate the impact of timing error on the performance

of the ANOMA system. Figures 5, 6, and 7 show the ANOMA system without timing error

while the other figures are for the impact of timing error. In our simulations, we set the symbol

length T = 1 and the AWGN with unit power. If not specified, the normalized timing mismatch

between the two signals τ is set to 0.5.

At first, we present the throughput performances of NOMA and ANOMA systems under

different channel conditions and pulse shapes in Figure 4. In Fig. 4, the curves of “ANOMA in

(14)” are derived directly from the definition in (14), and the curves of “ANOMA in (16)” are

obtained from our result in Theorem 1. Note that the performance of NOMA is not affected by the

adopted pulse shape if the pulse shape has unit power and causes no inter-symbol interference. It

is shown that, for the rectangular pulse shape, the throughput computed by Theorem 1 completely

aligns with that calculated by (14) for different combinations of channel conditions, which

confirms the correctness of Theorem 1. Besides, Fig. 4 demonstrates that the throughputs of
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Fig. 4: The sum throughput of two users as a function of channel gains for ANOMA and NOMA systems when

P1 = 1, P2 = 1, τ = 0.5, and N = 10.

ANOMA and NOMA systems increase with the channel gains |h1|2 and |h2|2 for both rectangular

and raised cosine pulse shapes. Furthermore, the ANOMA systems using the rectangular pulse

shape outperform those using the raised cosine pulse shape with roll-off factor β = 0.5. It is

because the raised cosine pulse shape spans more than one symbol time, causing more severe

interference compared with the rectangular pulse shape.

Then, we compare the throughput performances of NOMA and ANOMA systems. Figure 5

shows the throughput as a function of the frame length N . In Fig. 5, it is demonstrated that as

N increases, the throughput of ANOMA systems converges to the result in Corollary 1, which

provides the throughput in the asymptotic case of N →∞. Furthermore, we note from the figure

that the throughputs of ANOMA systems for different τs as N →∞ are greater than that of the

NOMA system, which is consistent with our analytical results in Theorem 2 and Corollary 2.

In global system for mobile communications (GSM), there are approximately 156 symbols in

a normal burst (a physical channel carrying information on traffic and control channels) [26].

In LTE, there are 140 symbols with normal cyclic prefix (CP) in a frame [22]. We find from

Fig. 5 that the ANOMA outperforms the NOMA if N is greater than 20, which is much smaller

than the number of symbols in a burst/frame of GSM/LTE. Since the needed frame length of

ANOMA to outperform NOMA is much less than the burst/frame length in GSM/LTE systems,
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Fig. 5: The sum throughput of two users as a function of the frame length N for ANOMA and NOMA systems

when P1|h1|2 = 1, P2|h2|2 = 0.5, τ = 0.5 or 0.1.
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Fig. 6: The sum throughput of two users as a function of transmit powers of Users 1 & 2 for ANOMA systems

when |h1|2 = 1, |h2|2 = 0.5, P1,max = P2,max = 1, τ = 0.5, and N = 10.

the detection delay is within a reasonable range.

In addition, we illustrate the optimal parameter design of the ANOMA system in Figures 6

and 7. Figure 6 demonstrates the sum throughput of two users as a function of their transmit
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Fig. 7: The optimal normalized timing mismatch τ∗ to maximize the sum throughput of two users as a function of

the frame length N for different channel conditions.

powers. It is shown that the maximal sum throughput is reached when the transmit powers are

equal to the maximum available powers, which aligns with Theorem 3. We present the optimal

normalized timing mismatch τ ∗ found by exhaustive search to maximize the sum throughput of

two users in Figure 7. As shown in Fig. 7, τ ∗ starts with 0, and then increases with N , finally

converges to 0.5 as N grows, which verifies the correctness of Theorem 4.

Figure 5 demonstrates that ANOMA outperforms NOMA for N ≥ 20 in the considered

scenario. Also, from Fig. 7, we note that the optimal τ closely approaches 0.5 as N ≥ 50. It

is worth mentioning that having N ≥ 50 is reasonable for practical communication systems.

For a high-speed train traveling at 200 km/h using a 900 MHz carrier, the coherence time is

approximately 3 ms [26]. In GSM (operating at 900 MHz), the symbol rate is approximately

271 ksymbols/second. As a result, it is reasonable to assume a static channel with flat fading if

the frame length N does not exceed 3 ms × 271 ksymbols/second = 813, which is much greater

than the threshold needed, i.e., 50.

In what follows, we evaluate the impact of timing error on the throughput of ANOMA systems.

In the following figures, the throughput loss ratio is defined as the ratio of the throughput loss in

(31) and the throughput of the ANOMA system without timing error in (14), i.e.,γ = ∆
RANOMA .
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Fig. 8: The throughput loss ratio as a function of the normalized synchronization timing error ε1 and the normalized

coordination timing error ε2 when P1|h1|2 = 1, P2|h2|2 = 0.5, τ = 0.5 and N = 10.
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Fig. 9: The individual impacts of the normalized synchronization timing error ε1 and the normalized coordination

timing error ε2 on the throughput loss ratio when P1|h1|2 = 1, P2|h2|2 = 0.5, τ = 0.5, and N = 10.

In Fig. 8, we present the throughput loss ratio as a function of ε1 and ε2 ranging from -0.1

to 0.1. As shown in Fig. 8, the throughput loss ratio increases with both the synchronization

timing error and the coordination timing error. We also find that the throughput loss ratio γ is a
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Fig. 10: Comparison of throughputs among OMA, NOMA, and ANOMA when P1|h1|2 = 1, P2|h2|2 = 0.5,

τ = 0.5, and N = 10.

continuous function with respect to ε1 and ε2 but non-differentiable when ε1 = 0 or ε1 + ε2 = 0.

This is because there are non-linear step functions in the expression for E1 in (26). We find from

the figure that there still exists a considerable performance loss when ε1 + ε2 = 0, which can be

explained as follows. Note that ε1 + ε2 = 0 does not necessarily mean that ε1 = 0 and ε2 = 0,

since ε1 and ε2 can be negative values. The system may be still affected by non-zero timing

errors, even when ε1 + ε2 = 0. According to (23) and (24), when ε1 + ε2 = 0, the first sample

vector is still affected by ε1, although the second sample vector will have no timing error.

We also study the individual effects of the timing synchronization error and the coordination

timing error on the throughput of ANOMA systems. In Fig. 9, we show the throughput loss ratio

as a function of ε1 when ε2 = 0 and ε2 when ε1 = 0. Note that the curves of “impact of ε1” and

“impact of ε2” are the slices of Fig. 8 when ε2 = 0 and ε1 = 0, respectively. The approximated

results are calculated by ∆ε1/R
ANOMA and ∆ε2/R

ANOMA using (32) and (33). It is demonstrated

that the expressions in (32) and (33) are good approximations of (31) when |ε1| < 0.05 and

|ε2| < 0.05, respectively. Besides, ε1 causes almost twice throughput loss compared with ε2

for the same value of error. This phenomenon reveals that the synchronization timing error

deteriorates the system performance more severely compared with the coordination timing error.

This observation can be explained as follows. With the oversampling, the sampling instants are
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at (i + ε1)T and (i + τ + ε1 + ε2)T , i = 1, · · · , N , which illustrates that the synchronization

timing error affects all sampling instants while the coordination timing error only has impacts

on half of the sampling instants.

Finally, we compare the performances of OMA, NOMA, ANOMA without and with timing

error in Figure 10. In our simulation, the conventional TDMA is adopted as the OMA scheme.

As shown in the figure, the throughput curve of OMA is a single point because it is not a function

of timing error. The throughput of the NOMA system is calculated under the assumption that

perfect SIC is realized at BS. It is demonstrated that the rate performance for ANOMA without

timing error is better than that of NOMA with SIC which is further greater than that of OMA.

Also, ANOMA always outperforms a perfectly synchronized OMA. We note that for small

values of timing error, ANOMA outperforms even a perfectly synchronized NOMA. For the

same timing error, the performance of ANOMA is better than that of NOMA. Besides, as shown

in Fig. 10, the throughput decreases with the absolute value of ε2 monotonously, while the

throughput decreases at the beginning and then increases as the absolute value of ε1 increases.

This phenomenon can be explained as follows: If there is no timing error (ε1 = ε2 = 0) and

τ = 0.5, the sampling moments are at iT and (i + 0.5)T , i = 1, · · · , N . If |ε1| = 0.5 and

ε2 = 0, the sampling moments are at (i ± 0.5)T and (i + 1 ± 0.5)T , i = 1, · · · , N , which are

equivalent to advancing (ε1 = −0.5) or delaying (ε1 = 0.5) all sampling moments by 0.5T .

The sampling diversity can still be achieved except that there will be throughput loss due to

the shift of sampling moments. For the case ε1 = 0 and |ε2| = 0.5, the second sample vector

is a duplicate (ε2 = −0.5) or shifted version (ε2 = 0.5) of the first sample vector. Hence, the

sampling diversity cannot be obtained and only the first sample vector can be used to recover

the transmitted symbols.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the performance of a two-user uplink ANOMA system and

compared it with the NOMA system. We derive an analytical expression for the two-user sum

throughput in the ANOMA system as a function of SNR, frame length, and normalized timing

mismatch. We have demonstrated that the ANOMA outperforms the NOMA when the frame

length is sufficiently large. Furthermore, we have shown that two users should transmit at full

power to maximize the two-user sum throughput. The optimal timing mismatch to maximize the

sum throughput converges to a half of one time slot as the frame length goes to infinity. Besides,
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we discuss the impact of timing error on the throughput performance of the ANOMA system,

including the synchronization timing error and the coordination timing error. We have shown

how these two types of timing error individually and jointly affect the throughput performance

of the ANOMA system.

As an initial comprehensive study on uplink ANOMA systems, our paper can lead to a

number of future research directions in this area. While this paper has considered only 2 users,

the ANOMA scheme can be extended to the multi-user (more than 2 users) scenario. In a K-

user scenario, the BS should use K samples per symbol length, each aligned with one of the

users to obtain sampling diversity. The study of ANOMA in a more than two-user scenario is

an interesting future work. It is also an interesting problem to study the ANOMA in a multicell

scenario. Besides, it is worthwhile extending the considered ANOMA in this paper into the

OFDM systems, since current wireless communication systems are often based on the OFDM

technique. For OFDM systems, one can introduce the frequency-domain asynchrony instead of

the time-domain asynchrony and apply similar ideas presented in this paper to design ANOMA

OFDM schemes. Moreover, a further analysis on the bit error rate performance of the ANOMA

systems can be a good future work.
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APPENDIX A

PROOF OF THEOREM 1

Proof: According to (14), we can rewrite det
(
I2N + HHHR

)
as

det
(
I2N + HHHR

)
= det

(
HHH

)
det
(
(HHH)−1 + R

)
=
(
P1|h1|2

)N (
P2|h2|2

)N
det
(
(HHH)−1 + R

)
. (34)

According to (8) and (9), (HHH)−1 + R is a 2N × 2N matrix calculated by

(HHH)−1 + R =



1+(P1|h1|2)
−1

1−τ 0 ··· ··· 0

1−τ 1+(P2|h2|2)
−1

τ 0 ··· 0

... . . . . . . . . . . . . ...
0 ··· 1−τ 1+(P2|h2|2)

−1
τ 0

0 ··· 0 τ 1+(P1|h1|2)
−1

1−τ

0 ··· ··· 0 1−τ 1+(P2|h2|2)
−1

 .

(35)
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For simplicity of presentation, we define µ1 = P1|h1|2, µ2 = P2|h2|2, and

dm =



det




1+µ−1
1 1−τ 0 ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

... . . . . . . . . . . . . ...
0 ··· 1−τ 1+µ−1

2 τ 0

0 ··· 0 τ 1+µ−1
1 1−τ

0 ··· ··· 0 1−τ 1+µ−1
2


m×m

 , if m is even,

det




1+µ−1
1 0 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

... . . . . . . . . . . . . ...
0 ··· τ 1+µ−1

1 1−τ 0

0 ··· 0 1−τ 1+µ−1
2 τ

0 ··· ··· 0 τ 1+µ−1
1


m×m

 , if m is odd.

(36)

Thus, det
(
(HHH)−1 + R

)
= d2N .

By the method of cofactor expansion [27], the determinant of det
(
(HHH)−1 + R

)
can be

expressed as a weighted sum of the determinants of its minors. The minor Mi,j is defined as

the determinant of the matrix that results from (HHH)−1 +R by removing the ith row and the

jth column. Then, we have

d2N =
2N∑
j=1

(−1)2N+ja2N,jM2N,j

= (−1)2N+2N
(
1 + µ−1

2

)
det




1+µ−1
1 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ ··· 0

... . . . . . . . . . ...
0 ··· 1−τ 1+µ−1

2 τ

0 ··· 0 τ 1+µ−1
1


(2N−1)×(2N−1)


︸ ︷︷ ︸

d2N−1

+ (−1)2N+2N−1(1− τ) det




1+µ−1
1 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ ··· 0

... . . . . . . . . . ...
0 ··· 1−τ 1+µ−1

2 0
0 ··· 0 τ 1−τ


(2N−1)×(2N−1)


=
(
1 + µ−1

2

)
d2N−1

− (1− τ)2(−1)4N−2 det




1+µ−1
1 1−τ 0 ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

... . . . . . . . . . . . . ...
0 ··· 1−τ 1+µ−1

2 τ 0

0 ··· 0 τ 1+µ−1
1 1−τ

0 ··· ··· 0 1−τ 1+µ−1
2


(2N−2)×(2N−2)


︸ ︷︷ ︸

d2N−2

=
(
1 + µ−1

2

)
d2N−1 − (1− τ)2d2N−2, (37)
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where N ≥ 2 and ai,j denotes the element of the matrix (HHH)−1 + R at the ith row and the

jth column. Similarly, we can also write the recursive formula for d2N−1 as

d2N−1 = (1 + µ−1
1 )d2N−2 − τ 2d2N−3. (38)

From (37) and (38), we obtain

d2N =
[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]
d2N−2 − τ 2(1− τ)2d2N−4. (39)

To formalize (39) as the recursion formula of a geometric progression, (39) can be rewritten

as

d2N − r1d2N−2 = r2(d2N−2 − r1d2N−4), (40)

d2N − r2d2N−2 = r1(d2N−2 − r2d2N−4), (41)

where

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)+

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
,

(42)

r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)−

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
.

(43)

Since µ1 > 0, µ2 > 0, and τ ∈ [0, 1), we note that the part under the square root symbol in

(42) and (43) is always positive, such that[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2 − 4τ 2(1− τ)2

=
[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 4τ(1− τ)

] [
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2

]
> 0. (44)

From (40) and (41), we obtain

d2N − r1d2N−2 = rN−1
2 (d2 − r1d0), (45)

d2N − r2d2N−2 = rN−1
1 (d2 − r2d0). (46)

Solving d2N from the equation group constituted by (45) and (46), we derive

d2N =
rN1 (d2 − r2d0)− rN2 (d2 − r1d0)

r1 − r2

. (47)

Substituting d0 = 1 and

d2 =

1 + µ−1
1 1− τ

1− τ 1 + µ−1
2

 =
(
1 + µ−1

1

) (
1 + µ−1

2

)
− (1− τ)2 = r1 + r2 + τ 2 (48)
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into (47), we have

d2N =
(rN+1

1 − rN+1
2 ) + τ 2(rN1 − rN2 )

r1 − r2

. (49)

Finally, based on (34) and (49), we obtain the throughput as

RANOMA =
N

N + τ
log (µ1µ2) +

1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

. (50)

This completes the proof.

APPENDIX B

PROOF OF COROLLARY 1

Proof: Note that µ1, µ2, r1, r2, and τ are all independent of N . We then have

lim
N→∞

RANOMA = lim
N→∞

N

N + τ
log(µ1µ2) +

log
[
(rN+1

1 − rN+1
2 ) + τ 2(rN1 − rN2 )

]
− log(r1 − r2)

N + τ

(a)
= log(µ1µ2) + lim

N→∞

(rN+1
1 log r1 − rN+1

2 log r2) + τ 2(rN1 log r1 − rN2 log r2)

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

(b)
= log(µ1µ2) + lim

N→∞

(r1α
N log r1 − r2 log r2) + τ 2(αN log r1 − log r2)

(r1αN − r2) + τ 2(αN − 1)

= log(µ1µ2) + lim
N→∞

αN(r1 + τ 2) log r1 − (r2 + τ 2) log r2

αN(r1 + τ 2)− (r2 + τ 2)

(c)
= log (µ1µ2r1) , (51)

where α = r1/r2, (a) is derived by applying L’Hospital’s rule, (b) is derived by dividing both

the numerator and the denominator by rN2 , and (c) is obtained from the facts that r1 > r2 > 0

and α > 1 according to (17) and (18). This completes the proof.

APPENDIX C

PROOF OF THEOREM 2

Proof: The expressions for limN→∞R
ANOMA and RNOMA are given by

lim
N→∞

RANOMA = log (µ1µ2r1)

= log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2

 (52)



29

and RNOMA = log(1 + µ1 + µ2), respectively.

If τ = 0, it is easy to find that limN→∞R
ANOMA = log(1 + µ1 + µ2) = RNOMA.

If τ 6= 0, i.e., τ ∈ (0, 1), we have 2τ − 2τ 2 > 0. According to (52), since µ1 > 0 and µ2 > 0,

we obtain

lim
N→∞

RANOMA = log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2


> log

1 + µ1 + µ2

2
+

√
(1 + µ1 + µ2)2

2

 = RNOMA. (53)

Until now, we have proved limN→∞R
ANOMA = RNOMA if τ = 0 and limN→∞R

ANOMA >

RNOMA if τ 6= 0. Next, we need to prove τ = 0 if limN→∞R
ANOMA = RNOMA.

If limN→∞R
ANOMA = RNOMA, we have limN→∞R

ANOMA = log(µ1µ2r1) = log(1 + µ1 +

µ2) = RNOMA.

After simplifications, we have√
(1+µ1+µ2)2+2 (1+µ1+µ2)µ1µ2(2τ − 2τ 2) = 1+µ1+µ2−µ1µ2(2τ − 2τ 2). (54)

Note that (54) holds only if the right side of (54) is non-negative, i.e.,

1 + µ1 + µ2 − µ1µ2(2τ − 2τ 2) ≥ 0. (55)

Squaring both sides of the equal sign in (54), we obtain

4(1 + µ1 + µ2)(2τ − 2τ 2) = µ1µ2(2τ − 2τ 2)2. (56)

Then, (56) holds if 2τ − 2τ 2 = 0 or 4(1 +µ1 +µ2) = µ1µ2(2τ − 2τ 2). It is easy to prove that

4(1 + µ1 + µ2) = µ1µ2(2τ − 2τ 2) contradicts (55). As a result, (56) holds only if 2τ − 2τ 2 = 0

which then leads to τ = 0.

Therefore, limN→∞R
ANOMA ≥ RNOMA is always true and the equal sign is achieved if and

only if τ = 0. This completes the proof.
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APPENDIX D

PROOF OF THEOREM 3

Proof: From Theorem 1, we have

RANOMA =
N

N + τ
log (µ1µ2) +

1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

(a)
=

N

N + τ
log (µ1µ2) +

1

N + τ
log

[
N∑
i=0

ri1r
N−i
2 + τ 2

N−1∑
i=0

ri1r
N−1−i
2

]

=
1

N + τ
log

[
N∑
i=0

µN1 µ
N
2 r

i
1r
N−i
2 + τ 2

N−1∑
i=0

µN1 µ
N
2 r

i
1r
N−1−i
2

]

=
1

N + τ
log

[
N∑
i=0

(µ1µ2)N−i(µ1µ2r1)irN−i2 + τ 2

N−1∑
i=0

(µ1µ2)N−i(µ1µ2r1)irN−1−i
2

]
,

(57)

where (a) is derived by applying aN−bN = (a−b)(
∑N−1

i=0 aibN−1−i). In what follows, we prove

that r2 is a non-decreasing function of µ1 and µ2, and µ1µ2r1 increases as µ1 and µ2 increase,

so that RANOMA increases as µ1 and µ2 increase.

From (17), we can find that ∂r1
∂µ1

< 0 and ∂r1
∂µ2

< 0. Since r2 = τ 2(1− τ)2/r1, we further find

that
∂r2

∂µ1

= −τ
2(1− τ)2

r2
1

∂r1

∂µ1

> 0 and
∂r2

∂µ2

= −τ
2(1− τ)2

r2
1

∂r1

∂µ2

> 0. (58)

With (17), we have

µ1µ2r1 =
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2
. (59)

From (59), we can derive that
∂(µ1µ2r1)

∂µ1

> 0 and
∂(µ1µ2r1)

∂µ2

> 0. (60)

Based on (58) and (60), we note that r2 is a non-decreasing function of µ1 and µ2, and µ1µ2r1

increases as µ1 and µ2 increase. In addition, since µ1, µ2, r2, and µ1µ2r1 are positive, the term

(µ1µ2)j(µ1µ2r1)irM−i2 (i = 0, · · · ,M − 1, j ≥ 0) is an increasing function of µ1 and µ2 for any

positive M . Then, RANOMA is an increasing function of µ1 and µ2 because it is constituted by

a sum of (µ1µ2)j(µ1µ2r1)irM−i2 (i = 0, · · · ,M − 1, j ≥ 0, M > 0). Hence, maximizing the

throughput is equivalent to maximizing µ1 and µ2 simultaneously, which means that the two

users should transmit at full power. This completes the proof.
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APPENDIX E

PROOF OF THEOREM 4

Proof:

τ ∗ = arg max
τ

lim
N→∞

RANOMA = arg max
τ

log (µ1µ2r1)

= arg max
τ

log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2


(a)
= arg max

τ

[
2τ − 2τ 2

]
= 0.5, (61)

where (a) is derived due to the fact that µ1 and µ2 are positive and independent of τ . This

completes the proof.
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