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Abstract
For any given multivariate distribution, explicit formu-
lae for the asymptotic covariances of cumulant vectors
of the third and the fourth order are provided here. Gen-
eral expressions for cumulants of elliptically symmetric
multivariate distributions are also provided. Utilizing
these formulae one can extend several results currently
available in the literature, as well as obtain practically
useful expressions in terms of population cumulants,
and computational formulae in terms of commutator
matrices. Results are provided for both symmetric and
asymmetric distributions, when the required moments
exist. New measures of skewness and kurtosis based
on distinct elements are discussed, and other applica-
tions to independent component analysis and testing are
considered.
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1 INTRODUCTION AND MOTIVATION

Cumulant-based skewness and kurtosis measures for random vectors play a central role in
multivariate statistics going back to the early work of Mardia (1970). Beyond more traditional
applications to estimation and testing, these measures play an important role in such areas as
signal detection, clustering, invariant coordinate selection, as well as in pricing and portfolio
analysis. Some related literature, without any presumption of completeness, includes Malkovich
and Afifi (1973), Srivastava (1984), Koziol (1989), Móri et al. (1994), Oja et al. (2006), Balakr-
ishnan et al. (2007), Kollo (2008), Tyler et al. (2009), Ilmonen et al. (2010), Peña et al. (2010),
Tanaka et al. (2010), Huang et al. (2014), Lin et al. (2015), León and Moreno (2017), Nordhausen
et al. (2017), Jammalamadaka et al. (2020).

Several asymptotic results for multivariate skewness and kurtosis statistics are available; see
for instance Koziol (1987), Baringhaus (1991), Baringhaus and Henze (1991, 1992, 1994a, 1994b,
1997a, 1997b), Klar (2002), Henze (2002), Ilmonen et al. (2010), Nordhausen et al. (2017).

In this paper we develop results on the asymptotic theory of vector cumulants of the third and
the fourth order in a completely general setting. Our main results concern explicit expressions for
the asymptotic covariance matrices based on population parameters, and their computational for-
mulae. Typically, in the literature, asymptotic covariances are expressed in terms of expectations
of sample statistics while here the expectation step is solved in total generality, thus providing an
explicit connection to the cumulants of the underlying model.

As an example, consider theorem 2.1 of Klar (2002) which provides a very nice unified treat-
ment of the asymptotic properties of vectors of third-order cumulants: the asymptotic covariance
matrix is expressed there in implicit terms as an expectation of a quadratic function of sample
cumulants and their derivatives. This fact makes it quite difficult to implement the results in
practice beyond the Gaussian case.

The results developed here are useful in estimation and testing, for efficiency and power com-
parisons, as well as in deriving simple estimators of the asymptotic covariances. For example,
for the important subclass of elliptically symmetric distributions it turns out that estimation of
the asymptotic covariance matrix can be carried out by estimating only a few univariate parame-
ters, for which we provide a complete solution here. For asymmetric cases like multivariate skew
normal and skew t-distributions, the reader may consult Jammalamadaka et al. (2020).

To demonstrate the usefulness of the methodology discussed, we consider applications to new
weighted measures of skewness and kurtosis and tests-based thereon, for which the asymptotic
distributions under the null and under alternatives are given. Connections to existing indexes of
multivariate skewness and kurtosis as well as to independent component analysis (ICA) is also
discussed.

The Gram–Charlier (GC) expansion of a density function is the fundamental tool that will
lead us to the main results. The GC expansion is coupled with a vectorial approach to cumulants;
as we shall see, this fact considerably simplifies the derivation of asymptotic results for the higher
order cumulants of multivariate distributions.

To formally introduce the problem, consider a random d-vector X with mean vector 𝜇 and
covariance matrix 𝚺; if 𝜙X (𝜆) and 𝜓X (𝜆) = log𝜙X (𝜆) are, respectively, the characteristic function
and the cumulant function of X , then the kth order cumulant of X is given by

𝜅X ,k = Cumk(X) = (−i)kD⊗k
𝜆
𝝍X (𝜆)

|||𝜆=0
. (1)
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Note that Cumk(X) is a vector of dimension dk that contains all possible cumulants of order k
formed by X1, … , Xd. For instance, in Equation (1), one can see 𝜅X ,2 = Vec 𝚺. The operator D⊗

𝜆

in (1), which we refer to as the T-derivative, for any function 𝝓(𝜆), is defined as

D⊗
𝜆
𝝓(𝜆) = Vec

(
𝜕𝝓(𝜆)
𝜕𝜆⊤

)⊤

= 𝝓(𝜆)⊗ 𝜕

𝜕𝜆
.

Here and in what follows, the symbol ⊗ denotes the Kronecker product. Assuming 𝝓 is k times
differentiable, the kth T-derivative is given by

D⊗k
𝜆
𝝓(𝜆) = D⊗

𝜆

(
D⊗k−1
𝜆

𝝓(𝜆)
)
.

Jammalamadaka et al. (2020) show that linear and nonlinear functions of 𝜅X ,3 and 𝜅X ,4 cover
all existing cumulant-based indexes of skewness and kurtosis, revealing several connections and
equivalences among them, that have not been noticed before. Let 𝚺−1∕2 denote the symmetric
positive definite square root of 𝚺−1; in the paper, Y will always denote the normalized version of
X , that is,

Y = 𝚺−1∕2
(

X − 𝜇
)
. (2)

Also, given a random sample X1, … Xn of identical copies of X we define Zj = 𝚺̂
−1∕2 (

Xj − X
)

,

j= 1, … , n, to be the sample version of Y ; X and 𝚺̂ are the usual sample estimates of 𝜇 and 𝚺;
recall that we need n> d+ 1 and absolute continuity of the distribution of X in order to have a
nonsingular 𝚺̂ almost surely (see Eaton & Perlman, 1973).

The paper is organized as follows. Section 2 provides the GC expansion for the density of a
multivariate distribution and the main results of the paper. Section 3 discusses applications of
the results by presenting new measures of skewness and kurtosis and providing new insights into
ICA analysis based on scatter matrices. Section 4 provides some simulations which support the
asymptotic results of the previous sections. Two final sections present a real data example and
conclusions. An appendix contains the proofs, some technical details, and a general theorem on
the cumulant vectors of multivariate elliptical distributions.

2 MAIN RESULTS

2.1 Density expansion and vector Hermite polynomials

The GC expansion expresses the density function of a random variable in terms of its cumulants
(see e.g., Brenn & Anfinsen, 2017). Exploiting Equation (B1) in Section B1, which relates moments
to cumulants via multivariate Bell polynomials Bk, the characteristic function 𝜙 of a d-variate
random vector X can be written as

𝜙X
(
𝜆
)
=

∞∑
k=0

ik

k!
EX⊺⊗k𝜆⊗k =

∞∑
k=0

ik

k!
Bk

(
𝜅X ,1, 𝜅X ,2, … 𝜅X ,k

)⊤
𝜆⊗k.
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Let 𝜉 be a Gaussian random d-vector with expected value E𝜉 = EX = 𝜇, and variance vector 𝜅
𝜉,2 =

Cum2

(
𝜉
)
= Cum2

(
X
)
= 𝜅X ,2 = Vec 𝚺, so that we have

𝜙X
(
𝜆
)
= exp

( ∞∑
k=0

ik

k!

(
𝜅⊤X ,k − 𝜅

⊤
𝜉,k

)
𝜆⊗k

)
𝜙𝜉

(
𝜆
)

=

(
1 +

∞∑
k=3

ik

k!
Bk

(
0, 0, 𝜅X ,3, … 𝜅X ,k

)⊤
𝜆⊗k

)
𝜙𝜉

(
𝜆
)
.

Finally, defining Y = 𝚺−1∕2
(

X − 𝜇
)

and using the inverse Fourier transform, one can write the
density of Y in the form of a GC series:

fY

(
y
)
=

(
1 +

5∑
k=3

1
k!
𝜅⊤Y ,kHk

(
y
)
+

8∑
k=6

1
k!

Bk

(
0, 0, 𝜅Y ,3, … , 𝜅Y ,k

)⊤
Hk

(
y
))

𝜑
(

y
)
+ . (3)

Note that in (3) we use an approximation exploiting only terms up to order 8 which are enough for
our purposes, while  includes the remainder terms. In Equation (3), 𝜑

(
x
)

denotes the density
of a multivariate standard normal distribution, while 𝜅Y ,k denotes the kth cumulant vector of Y ;
recall that 𝜅Y ,1 = 𝜇 = 0, and 𝜅Y ,2 = Vec Id.

Hk is a vector Hermite polynomial of order k, with variance vector 𝜅Y . In order to compute
vector-multivariate Hermite polynomials, we use the definition in Holmquist (1996) who uses the
symmetrizer matrix Sd1k for symmetrization of a T-product of k vectors with the same dimension
d (see section B0.2). In particular Sd14

(
a1 ⊗ a2 ⊗ a3 ⊗ a4

)
is a vector of dimension d4, which is

symmetric in aj. For example we have:

H3

(
y
)
= Sd13

(
y⊗3 − 3𝜅Y ,2 ⊗ y

)
,

H4

(
y
)
= Sd14

(
y⊗4 − 6𝜅Y ,2 ⊗ y⊗2 + 3𝜅⊗2

Y ,2

)
.

It can be verified that for k= 3, 4, 5, the Bell polynomials have the simple forms:

B3

(
0, 0, 𝜅Y ,3

)
= 𝜅Y ,3,

B4

(
0, 0, 𝜅Y ,3, 𝜅Y ,4

)
= 𝜅Y ,4,

B5

(
0, 0, 𝜅Y ,3, 𝜅Y ,4, 𝜅Y ,5

)
= 𝜅Y ,5.

For higher-order terms we have a bit more complicated expressions, namely,

B6

(
0, 0, 𝜅Y ,3, 𝜅Y ,4, 𝜅Y ,5, 𝜅Y ,6

)
= Sd16

(
𝜅Y ,6 + 10𝜅⊗2

Y ,3

)
,

B7

(
0, 0, 𝜅Y ,3, 𝜅Y ,4, 𝜅Y ,5, 𝜅Y ,6, 𝜅Y ,7

)
= Sd17

(
𝜅Y ,7 + 35𝜅Y ,3 ⊗ 𝜅Y ,4

)
,

B8

(
0, 0, 𝜅Y ,3, 𝜅Y ,4, 𝜅Y ,5, 𝜅Y ,6, 𝜅Y ,7, 𝜅Y ,8

)
= Sd18

(
𝜅Y ,8 + 56𝜅Y ,4 ⊗ 𝜅Y ,5 + 35𝜅⊗2

Y ,4

)
.

By orthogonality of Hermite polynomials, one has EHk
(

Y
)
= Bk

(
0, 0, 𝜅Y ,3, … , 𝜅Y ,k

)
.
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2.2 Covariances

Using the GC expansion (3) and the results discussed above, we now provide general formulae
for the covariances of H3(Y ) and H4(Y ). The results are presented in a vector form, that is, in the
form of Cum2(H3(Y )) and Cum2(H4(Y )), and the proof is given in Appendix C.

Theorem 1. Let Y be as defined in (2). Then, assuming the required moments exist, we have

Cum2

(
H3

(
Y
))

= 𝜅Y ,6 + 10 Sd16𝜅
⊗2
Y ,3 + K−1

H4,2

(
𝜅Y ,4 ⊗ 𝜅Y ,2

)
+ K−1

3! 𝜅
⊗3
Y ,2 − 𝜅

⊗2
Y ,3. (4)

Cum2

(
H4

(
Y
))

= 𝜅Y ,8 + Sd18

(
56𝜅Y ,4 ⊗ 𝜅Y ,5 + 35𝜅⊗2

Y ,4

)
+ K−1

H6,2

((
𝜅Y ,6 + 10Sd16𝜅

⊗2
Y ,3

)
⊗ 𝜅⊗2

Y ,2

)
+ K−1

H4,2,2

(
𝜿Y ,4 ⊗ 𝜅⊗2

Y ,2

)
+ K−1

4! 𝜅
⊗4
Y ,2 − 𝜅

⊗2
Y ,4. (5)

The matrices KH 4, 2, KH 2, 2, 2, K3! KH 6, 2, KH 4, 2, 2, and K4! are commutator matrices whose
computational formulae are given in Appendix B2. Note that in particular, K−1

𝔭 = K⊤
𝔭 .

2.2.1 The case of elliptically symmetric distributions

A d-vector W has a spherically symmetric distribution if its distribution is invariant under the
group of rotations in Rd. This is equivalent to saying that W has the stochastic representation
W = RU, where R is a nonnegative random variable, U is uniform on sphere Sd−1, and R and U
are independent (see e.g. ,Fang et al., 2017, theorem 2.5). A d-vector X has an elliptically symmetric
distribution if it has the representation

X = 𝜇 + 𝚺1∕2W ,

where𝜇 ∈ Rd,𝚺 is a variance–covariance matrix, and W has a spherically symmetric distribution.
Hence the cumulants of X are just constant times the cumulants of W except for the mean, that
is, 𝜅X ,1 = 𝜇 and

𝜅X ,k =
(
𝚺1∕2)⊗k

𝜅W ,k, k ≥ 2. (6)

Theorem 3 in Appendix A1 provides detailed formulae for the cumulant vectors of d-variate ellip-
tically symmetric distributions. Note that from Theorem 1, under the assumption of elliptical
symmetry where odd cumulants vanish, one has (note also that 𝜅Y ,2 = Vec Id)

Cum2

(
H3

(
Y
))

= 𝜅Y ,6 + K−1
H4,2

(
𝜅Y ,4 ⊗ Vec Id

)
+ K−1

3! (Vec Id)⊗3. (7)

Cum2

(
H4

(
Y
))

= 𝜅Y ,8 + 35Sd18𝜅
⊗2
Y ,4 + K−1

H6,2

(
𝜅Y ,6 ⊗ (Vec Id)⊗2

)
+ K−1

H4,2,2

(
𝜅Y ,4 ⊗ (Vec Id)⊗2

)
+ K−1

4! (Vec Id)⊗4 − 𝜅⊗2
Y ,4. (8)
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If in addition, we assume 𝜅Y ,4 = 0, these expressions further simplify as

Cum2

(
H3

(
Y
))

= 𝜅Y ,6 + K−1
3! (Vec Id)⊗3.

Cum2

(
H4

(
Y
))

= 𝜅Y ,8 + K−1
H6,2

(
𝜅Y ,6 ⊗ (Vec Id)⊗2

)
+ K−1

4! (Vec Id)⊗4.

2.2.2 The Gaussian case

Under a further assumption of Gaussianity where all higher-order cumulants are null, we have

Cum2

(
H3

(
Y
))

= K−1
3! (Vec Id)⊗3,

Cum2

(
H4

(
Y
))

= K−1
4! (Vec Id)⊗4.

2.2.3 Computational aspects

Note that Theorem 1 provides an explicit form for the asymptotic covariances using two basic
elements: the cumulant vectors 𝜅Y ,k and commutator matrices (the symmetrizer is indeed a sum
of commutators, see Appendix B2).

Further simplifications of the above formulae for the case of elliptically symmetric distribu-
tions are possible by exploiting the results of Theorem 3 in Appendix A1. These results connect the
cumulants 𝜅W ,k, of a spherical random vector W to the corresponding cumulant of any element
of W for any even k (odds cumulants are null). Using the result we have

𝜅Y ,k = Cumk(W1)Sd1k (Vec Id)⊗k∕2, k = 2, 4, … (9)

that is, we can use univariate marginal cumulants to compute the vector cumulants. Formulae for
the commutators KH 4, 2, KH 2, 2, 2, K3! KH 6, 2, KH 4, 2, 2, and K4!, together with some more technical
details are provided in Appendix B2. We point out that the use of symmetrizers, although quite
useful in theoretical development, may quickly get intractable from the computational point of
view since computing Sd1k requires k! operations.

The use of the symmetrizers can be avoided by using sums of commutators which turn out
to be much faster to compute with a software code. Details on these can be obtained from the
authors.

Overall, Theorem 1 provides a feasible way, from both estimation and computational points
of view, to determine the covariance matrices CH3

and CH4
.

2.3 A general CLT

This section provides general theorems concerning the asymptotic normality of the estimated
third and fourth cumulant vectors. Consider a random sample X1, … ,Xn and the corresponding
standardized version Zj, j= 1, … , n. For any function g, let

g(Z) = 1
n

n∑
j=1

g(Zj).
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The cumulant vector 𝜅Y ,3 (which is actually the third-order central moment) and 𝜅Y ,4, can be

simply estimated by the method of moments; noting that Z = 0, we have

𝜅Z,3 = Z⊗3 = H3
(

Z
)

and 𝜅Z,4 = H4
(

Z
)
= Z⊗4 − K2,2[Vec Id]⊗2. (10)

The formula for K2, 2 is given in Appendix B2. The following theorem provides a result on the
asymptotic normality of the estimated cumulant vectors, and the proof is given in Appendix C.

Theorem 2. Let X1, … ,Xn denote a random sample from a d-variate distribution with mean
vector 𝜇 and covariance matrix 𝚺. If the required moments exist, then for q= 3, 4,

√
n
(
𝜅Z,q − 𝜅Y ,q

)
,

is asymptotically normal with mean 0 and covariance matrix CHq
, where Vec CH3

= Cum2

(
H3

(
Y
))

and Vec CH4
= Cum2

(
H4

(
Y
))

+ 16𝜅⊗2
Y ,3 ⊗ Vec Id. Formulae for Cum2

(
Hq

(
Y
))

, q= 3, 4 are
given in Theorem 1.

Remark 1. Comparing Theorem 2 with theorem 2.1 of Klar (2002), we note that in the latter
covariances are expressed in terms of sample statistics Z while in our Theorem 2, only the popu-
lation model Y is considered. Moreover in Theorem 2 formulae for CHq

are explicit, which makes
it more practical for real applications.

This difference can be better noticed by observing that, although Theorem 2 states that, for
symmetric multivariate distributions, the asymptotic distributions of

√
nHq

(
Z
)

and
√

nHq
(

Y
)
,

q= 3, 4 are the same, the Hermite polynomials of Z and Y are not the same since Z =
0 but Y may not be necessarily null. Indeed note that, unlike in Equation (10), H3

(
Y
)
=

Sd13

(
Y⊗3 − 3Y ⊗ 𝜅Y ,2

)
≠ Y⊗3 and H4

(
Y
)
= Sd14

(
Y⊗4 − 6𝜅Y ,2 ⊗ Y⊗2 + 3𝜅⊗2

Y ,2

)
.

3 APPLICATIONS

3.1 New measures of skewness and kurtosis based on distinct
cumulants

The vectors Hq(Y ), q= 3, 4, contain dq elements, which are not all distinct. Just as the covariance
matrix of a d-dimensional vector contains only d(d+ 1)/2 distinct elements, a simple computation
shows that Hq(Y ) contains

(
d+q−1

q

)
distinct elements.

It makes good sense in some cases to work only with these distinct elements of the cumu-
lant vector. The selection of distinct elements can be accomplished via linear transformations
and through the so-called elimination matrix which we denote here as E+

d,q (see Meijer, 2005 and
Jammalamadaka et al., 2020 for some details). The linear transformation

Hq,D
(

Y
)
= E+

d,qHq
(

Y
)
, (11)

contains only the distinct values of Hq(Y ) and has variance CHq,D
= E+

d,qCHq
E+⊤

d,q . Given the
availability of explicit formulae for the covariance matrices, it is natural to consider the weighted
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skewness and kurtosis measures based on 𝜅Y ,q,D = E+
d,q𝜅Y ,q, q= 3, 4, the third- and fourth-order

cumulant vectors with distinct cumulants, respectively; denote these as 𝛽1,T,d (skewness) and 𝛽2,T,d
(kurtosis). The corresponding sample version is obtained by replacing the cumulant vectors with
their estimators, that is,

bq−2,T,d =
‖‖‖‖C−1∕2

Hq,D
𝜅Y ,q,D

‖‖‖‖2
, q = 3, 4. (12)

As far as the asymptotic distributions of bi, T, d i= 1, 2 is concerned, exploiting Theorem 2 (see also
example A, p. 130 in Serfling (2009)), one has the following

Proposition 1. Let X1, … ,Xn be a random sample from a d-variate distribution with mean vector
𝜇 and covariance matrix 𝚺 and let q= 3, 4. If the required moments exist, the asymptotic distribution

of nbq− 2, T, d is a noncentral 𝜒2 distribution with
(

d+q−1
q

)
degrees of freedom and noncentrality

parameter 𝛽q−2,T,d.

Remark 2. A Slutsky-type argument shows that the above result also holds asymptotically when
CHq,D

is estimated from the data.

Remark 3. In the Gaussian case, the computational formula for b1, T, d, for 1≤ j, k, l≤ d, is

b̂1,T,d = 1
6
∑

j

(
1
n

n∑
i=1

Z3
ji

)2

+ 1
2
∑
j≠k

(
1
n

n∑
i=1

Z2
jiZki

)2

+
∑

j<k<l

(
1
n

n∑
i=1

ZjiZkiZli

)2

. (13)

This expression coincides with the first nonzero component of Neyman’s smooth test. Observing
(13) one may also note that the popular Mardia’s index of skewness (Mardia, 1970) b1, d satisfies the
equation b1, d = 6 ⋅ b1, T, d. Thus Mardia’s index can be interpreted as a weighted skewness measure
in the Gaussian case.

Since the distribution of b1, T, d with estimated covariance matrix is asymptotically a 𝜒2 with(
d+2

3

)
degrees of freedom either in the Gaussian or in the more general case of elliptically

symmetric multivariate distributions, a consistent test for elliptical symmetry can be based on
b1, T, d with the estimated covariance CH3,D

. Given the results in Sections A1 and 2.2.1, under the
null hypothesis, estimation of the covariance matrix only requires estimation of the marginal
cumulants.

Under the alternative hypothesis of asymmetry, the asymptotic distribution will involve a
noncentrality parameter 𝛽1,T,d.

3.2 Skewness and kurtosis measures of Móri et al. (1994)

As an illustration, in this section, we consider the indexes discussed in Móri, Székely and Rohatgi
(Móri et al. (1994) and connect them to the skewness and kurtosis vectors; for further examples
along these lines, see Jammalamadaka et al. (2020). Móri et al. (1994) define the “skewness vector”
b
(

Y
)

of Y as the quantity

b
(

Y
)
= E

[
Y⊤Y

]
Y =

(
(Vec Id)⊤ ⊗ Id

)
𝜅Y ,3. (14)



RAO JAMMALAMADAKA et al. 9

Let Cb denote the covariance matrix of b(Y ). Then Vec Cb =
(
(Vec Id)⊤ ⊗ Id

)⊗2Cum2

(
H3

(
Y
))

which, under the Gaussian assumption, Cb takes the form

Vec Cb =
(
(Vec Id)⊤ ⊗ Id

)⊗2K−1
3! (Vec Id)⊗3.

The index of skewness of Móri et al. (1994) is defined as b̃1,d =
‖‖‖‖((Vec Id)⊤ ⊗ Id

)
Z⊗3‖‖‖‖2

. From

Theorem 2 and the computations above, one has (see also Klar, 2002 and Henze (2002), under the
assumption of Gaussianity,

nb̃1,d

2(d + 2)
D
→ 𝜒2

d . (15)

In the special case that the distribution is elliptically symmetric, evaluation of Cb (details omitted),
shows that

nb̃1,d

(15 + (d − 1) (d + 7)) 𝜅6∕15 +
(
(d + 1)2 + 23

)
𝜅4∕3 + 2 (d + 2)

D
→ 𝜒2

d . (16)

For measuring kurtosis, Móri et al. (1994) suggest the kurtosis matrix B
(

Y
)

of Y which is defined
by the quantity

B
(

Y
)
= E

(
Y⊤Y

)
YY⊤ − (d + 2) Id = Vec B

(
Y
)
=
(
Id2 ⊗ (Vec Id)⊤

)
𝜅Y ,4. (17)

One can compute the variance of
(
Id2 ⊗ (Vec Id)⊤

)
H4

(
Y
)
, and derive its asymptotic distribu-

tions, under different hypotheses, using the results of Theorems 1 and 2.

3.2.1 A note on ICA

There are some interesting connections between ICA based on scatter matrices and Móri
et al. (1994) indexes defined above which allow one to exploit Theorems 1 and 2 for deriving
asymptotic results and tests. Consider the model

X = AV + b,

where the matrices of constants A and b are d× d and d× 1, respectively, and V is a d-vector
of independent random variables with null mean vector and unit covariance matrix; multivari-
ate normality in V is excluded. Oja et al. (2006) then define Location vector and Scatter matrix
functionals. The location vector T

(
X
)

is a d-vector, which is ’location-affine equivariant’ in the
sense that T

(
AX + b

)
= AT

(
X
)
+ b. In practice the location vector of order 1 is the mean, that

is, T1
(

X
)
= EX , and the location vector of order 2 based on third moments is a vector, which can

be connected to Móri et al. (1994) skewness vector b(Y ) defined in (14), since

T2
(

X
)
= 1

d
E
(

X − 𝜇
)⊤

𝚺−1
(

X − 𝜇
)(

X − 𝜇
)
= 1

d
𝚺1∕2E

[
Y⊤Y

]
Y = 1

d
𝚺1∕2EYY⊤Y

= 1
d
𝚺1∕2b

(
Y
)
= 1

d
𝚺1∕2 ((Vec Id)⊤ ⊗ Id

)
𝜅⊗Y ,3.
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The Scatter matrix S
(

X
)

is a d× d-matrix, which is positive definite and ”scatter-affine equivari-
ant” in the sense that S

(
AX + b

)
= AS

(
X
)

A⊤. The Scatter matrix of order 1 is the covariance
matrix, that is, S1

(
X
)
= VarX , and the Scatter matrix of order 2 is connected to the "kurtosis"

matrix (17), since:

S2
(

X
)
= 1

d + 2
E
((

X − 𝜇
)⊤

𝚺−1
(

X − 𝜇
))(

X − 𝜇
)(

X − 𝜇
)⊤

= 1
d + 2

𝚺1∕2E
(

Y⊤Y
)

YY⊤𝚺1∕2 = 1
d + 2

𝚺1∕2B
(

Y
)
𝚺1∕2 + 𝚺.

The scatter matrix S2
(

X
)

can be written in terms of the kurtosis 𝜅Y ,4 of Y as:

Vec S2
(

X
)
= 1

d + 2
(
𝚺1∕2)⊗2 (Id2 ⊗ (Vec Id)⊤

)
𝜅⊗Y ,4 + 𝜅

⊗
X ,2. (18)

If V satisfies the independence property, then 𝚺 = Id and

B
(

Y
)
=
(
Id2 ⊗ (Vec Id)⊺

)
𝜅V ,4 =

d∑
i=1
𝜅Vi,4

(
Id2 ⊗ (Vec Id)⊤

)
e⊗4

i =
d∑

i=1
𝜅Vi,4 e⊗2

i ,

S2
(

V
)
= 1

d + 2
diag

[
𝜅Vi,4

]
+ Id.

To test the hypothesis of independence of the components of V , a natural test statistic
is the fourth order weighted statistics b2, T, d (12). In order to implement the test in prac-
tice, let 𝜅V⧵d,4 denote the kurtosis vector 𝜅V ,4 without 𝜅V1,4, … , 𝜅Vd,4 and let b∗

2,T,d denote
the measure given in (12) computed using 𝜅V⧵d,4 with the corresponding covariance terms.
Then, from Proposition 1, the test statistic nb∗

2,T,d, under the null, has a central 𝜒2 distribu-

tion with
(

d+3
4

)
− d degrees of freedom. Under the alternative, this test statistic will have

a noncentral chi square distribution with
(

d+3
4

)
− d degrees of freedom and noncentrality

parameter 𝛽∗2,T,d.

4 SIMULATIONS

In this section, some numerical results will be provided in support of, and utilizing the different
theoretical results obtained here.

4.1 Testing hypotheses on skewness

In this subsection, we will consider an application for testing the hypothesis

H0 ∶ 𝜅Y ,3 = 0, (19)

which holds under symmetry. Here a Monte Carlo experiment is performed in order to compare:
(a) Mardia’s index b1, d (see Remark 3); (b) Mori et al. index b̃1,d (see Section 3.2), and (c) the
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new index based on distinct elements b1, T, d (see Section 3.1), as competing criteria for testing
the null hypothesis (19). The frequencies of rejection of the hypothesis in the tables are based on
M = 1000 replications of the same experiment for each sample size n= 250, 500, 1000, and 2000.
The following trivariate distributions are considered: (a) standard Normal; (b) t with 10 degrees
of freedom; (c) Skew-normal (see Azzalini & Dalla Valle, 1996) with skew vector 𝛼 = (−1, 1, 1)⊤
and covariance matrix

𝚺 =
⎛⎜⎜⎜⎝

1 0.5 0
0.5 1 0
0 0 1

⎞⎟⎟⎟⎠ . (20)

For the asymptotic distribution of b1, d we may refer to Klar (2002) (see also Baringhaus &
Henze, 1992), who shows that nb1, d has an asymptotic distribution which is a weighted sum of
independent 𝜒2 distributions, namely

nb1,d
D
→ 𝛼1𝜒

2
d + 𝛼2𝜒

2
d(d+1)(d+4)∕6, (21)

where 𝛼1 = 3
d

(
E||Y ||6

d+2
− 2E||Y ||4 + d(d + 2)

)
and 𝛼2 = 6E||Y ||6

d(d+2)(d+4)
. In particular, under the

assumption of Gaussianity, 𝛼1 = 𝛼2 = 6 and the limiting distribution in (21) reduces to a 𝜒2(
d+2

3

)
distribution.

Remark 4. Observe that nowhere in this section, the assumption of normality is imposed on the
data. The availability of consistent estimators of moments (and cumulants) assures that result
(21) actually provides an asymptotic result for b1, d in the general case of elliptical symmetry.
The same reasoning applies to (16) in the case of b̃1,d. Also, estimation of the covariance matrix
of 𝜅Z,3 will be carried out under the symmetry assumption exploiting the formulae given in
Theorem 3.

The covariance matrix to compute bT, d has been estimated exploiting (7) and (9); also 𝜅6 =
𝜇6 − 15𝜇4 + 30, 𝜅4 = 𝜇4 − 3 with

𝜇k = 1
dn

d∑
j=1

n∑
i=1

Zk
ij.

The values 𝜇k have also been used to estimate the parameters for determining the asymptotic
distributions of b1, d and b̃1,d.

Tables 1,2, and 3 report, for the three indexes discussed, the empirical frequencies of sam-
ples beyond the quantiles (0.9, 0.95, 0.99) of the corresponding asymptotic distribution. Results
of these tables can be used to verify the correctness of the theoretical results and the relative
performance of the three tests in testing H0. Recall that in all the tables, the asymptotic dis-
tribution of b1, d and b̃1,d is always determined, respectively, from (21) and (16) with estimated
parameters.

Note that in Tables 1 and 2 all indexes have an actual rejection rate very close to the nom-
inal level for all sample sizes. On the other hand, in the case of Table 3, b̃1,d shows slightly
lower power with respect to the other two indexes, both of which have comparable perfor-
mance.
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T A B L E 1 Relative frequencies of samples declared significant by the symmetry indexes for tests at size
0.10, 0.05, 0.01. Results are relative to 1000 samples of varying size from a N(0, I3)-distribution

b1, d b̃1,d b1, T, d

Sig → 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
n→ 250 0.114 0.056 0.006 0.088 0.046 0.010 0.111 0.052 0.005

500 0.106 0.057 0.012 0.103 0.059 0.014 0.110 0.057 0.013

1000 0.117 0.057 0.015 0.083 0.049 0.007 0.116 0.059 0.013

2000 0.105 0.060 0.010 0.099 0.049 0.009 0.102 0.061 0.010

T A B L E 2 Relative frequencies of samples declared significant by the symmetry indexes for tests at size 0.10,
0.05, 0.01. Results are relative to 1000 samples of varying size from a t10-distribution with covariance matrix 8

10
I3

b1, d b̃1,d b1, T, d

Sig → 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
n→ 250 0.158 0.086 0.025 0.099 0.036 0.006 0.154 0.084 0.026

500 0.129 0.073 0.024 0.088 0.004 0.008 0.124 0.065 0.021

1000 0.114 0.060 0.018 0.096 0.051 0.007 0.104 0.063 0.011

2000 0.120 0.072 0.018 0.093 0.048 0.013 0.118 0.072 0.018

T A B L E 3 Relative frequencies of samples declared significant by the symmetry indexes for tests at size
0.10, 0.05, 0.01. Results are relative to 1000 samples of varying size from a Skew-Normal-distribution with
𝛼 = (−1, 1, 1)⊤ and 𝚺 as in (20)

b1, d b̃1,d b1, T, d

Sig → 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
n→ 250 0.298 0.184 0.068 0.292 0.165 0.048 0.309 0.188 0.065

500 0.480 0.361 0.167 0.443 0.310 0.131 0.486 0.366 0.171

1000 0.734 0.614 0.388 0.702 0.576 0.360 0.736 0.612 0.383

2000 0.959 0.935 0.847 0.946 0.902 0.766 0.957 0.936 0.847

4.2 Testing hypotheses on kurtosis

This subsection provides results of a Monte Carlo experiment that is performed in order to com-
pare the kurtosis indexes b̃2,d and b2, T, d defined in the previous section as criteria for testing the
hypothesis:

H0 ∶ 𝜅Y ,4 = 0. (22)

Recall also that the test for independence of Section 3.2.1 can be seen as a subcase of (22).
For varying sample sizes, using M = 1000 replications, respectively from the following trivariate
distributions: (a) standard Normal; (b) t with 20 degrees of freedom;

Note that in Table 4 both indexes have an actual rejection rate very close to the nominal level
for all sample sizes. Table 5 shows that the two indexes have comparable performance, with a
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T A B L E 4 Relative frequencies of samples declared significant by the kurtosis indexes for
tests at size 0.10, 0.05, 0.01. Results are relative to 1000 samples of varying size from a
N(0, I3)-distribution

b̃2,d b2, T, d

Sig.→ 0.10 0.05 0.01 0.10 0.05 0.01
n→ 250 0.098 0.045 0.005 0.096 0.066 0.033

500 0.115 0.052 0.012 0.093 0.059 0.014

1000 0.131 0.064 0.011 0.085 0.052 0.016

2000 0.096 0.045 0.011 0.095 0.053 0.012

T A B L E 5 Relative frequencies of samples declared significant by the kurtosis indexes for
tests at size 0.10, 0.05, 0.01. Results are relative to 1000 samples of varying size from a
3-variate t-distribution with 20 degrees of freedom.

b̃2,d b2, T, d

Sig.→ 0.10 0.05 0.01 0.10 0.05 0.01
n→ 250 0.573 0.480 0.325 0.568 0.501 0.379

500 0.844 0.791 0.647 0.771 0.712 0.586

1000 0.989 0.978 0.933 0.948 0.922 0.847

2000 1.000 0.999 0.996 0.998 0.997 0.987

slight advantage for b2, T, d over b̃2,d for small sample sizes, and the other way around for larger
sample sizes.

5 A PRACTICAL APPLICATION

The Australian Institute of Sport (AIS) data (Weisberg, 2002) contains various biomedical mea-
surements on a group of 202 athletes (102 males and 100 females). Here, we use a subset of the
variables in the data set (viz., Percentage of Body Fat, Body Mass Index, Lean Body Mass and Sum
of Skin Folds). The same variables have been used by Azzalini and Dalla Valle (1996) and mod-
eled using a multivariate (d= 4) skew normal distribution. Here we use these data to compute
and compare measures of skewness and kurtosis. Note from Figure 1, that a closer look at the
data shows that distributions by gender are quite different and this may partly explain the phe-
nomenon. We adapt indexes of skewness and kurtosis to the whole group of data, and separately
for the subgroups of males and females.

Table 6 reports the estimated values of the skewness indexes b1, d, b̃1,d, and bT, d and those of
the kurtosis indexes b̃2,d and b2, T, d for the three groups of athletes. The p-value in the (estimated)
asymptotic distribution are used to interpret correctly the position of the estimated value within
its distribution. Note that, although the three indexes of skewness exhibit slightly different ten-
dencies (e.g., bT, d increases in both the subgroups of males and females), the p-values for all three
skewness indexes indicate a marked asymmetry in all the groups.

For the case of kurtosis, there is a discrepancy between b̃2,d and b2, T, d in the female subgroup,
where the latter does not detect a marked kurtosis. This may be due to a higher sensitivity of the
index b2, T, d which uses all the mixed cumulants of the fourth order, while b̃2,d does not.
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Contour density plots by Gender − AIS data

F I G U R E 1 Australian Institute of Sport data: contour density plots. Blue points: Males; Red points:
Females [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 6 Australian Institute of Sport data: skewness and kurtosis indexes and their p-values for all
athletes and the subgroups of males and females

b1, d b̃1,d bT, d b̃2,d b2, T, d

Est. Sig. Est. Sig. Est. Sig. Est. Sig. Est. Sig.
Males 7.84 0.000 9.82 0.000 0.64 0.000 11.0 0.000 2.77 0.000

Females 4.71 0.001 2.40 0.000 0.46 0.000 2.13 0.124 0.91 0.000

All 6.10 0.000 4.61 0.000 0.39 0.000 4.17 0.000 1.56 0.000

6 SUMMARY AND CONCLUSIONS

A general framework for analyzing the asymptotic distributions of cumulant vectors of multivari-
ate distributions is presented here, focusing in particular on the third- and fourth-order cumulant
vectors and various statistics based on them. Formulae for asymptotic covariances, which can be
obtained through computational algorithms, are provided.

The availability of such general formulae for the covariances helps, for instance, in obtaining
simple new measures of skewness and kurtosis or in developing asymptotic distributions under
different situations that prove useful in estimation as well as in efficiency and power comparisons.

http://wileyonlinelibrary.com
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Moreover, the approach through cumulant vectors allows reinterpretation of existing statistics
and to readily obtain their asymptotic covariances, as demonstrated here for the ICA and Móri
et al. (1994) indexes of skewness and kurtosis.
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APPENDIX A. MOMENTS AND CUMULANTS FOR SYMMETRIC
MULTIVARIATE DISTRIBUTIONS

Recall the definition of a spherical random vector W = (W1, … ,Wd)⊤ given in Section 2.2.1.
We now provide general results for the cumulants of such a W . In what follows, we use
the multifactorial !! notation, which stands for the product of integers in steps of two. Recall
that the moments of the components of W , when they exist, can be expressed in terms of a
one-dimensional integral (Fang et al., 2017, theorem 2.8, p. 34), and the characteristic function
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has the form

𝜙W
(
𝜆
)
= g

(
𝜆⊺𝜆

)
=

∞∑
j=1
𝜇⊤

j
ij

j!
𝜆⊗j, (A1)

where g is called the characteristic generator, and R is the generating variate with a generating
distribution F (say). The coefficients in the expansion are the moments 𝜇

j
= (−i)jD⊗j

𝜆
𝜙W

(
𝜆
)|||𝜆=0

.

Marginal moments
Moments of univariate elliptically symmetric distributions have been discussed by Berkane and
Bentler (1986). Let us denote log (g) = f , and define 𝜈k = g(k) (0); in general,

EW n
j =

{
0 if n odd,

(−1)𝓁2𝓁 (2𝓁 − 1)!!𝜈𝓁 if n = 2𝓁 even.

Notice that the right hand side above does not depend on j, and then all marginals are identically
distributed. The odd cumulants are also zero. Note that 𝜈k is not the moment of R, the relationship
between the distribution F of R and g is given through the characteristic function of the uniform
distribution on the sphere (see Fang et al., 2017 , p. 30).

Multivariate moments and cumulants
Now, the characteristic generator g is a function of one variable with the series expansion

g (u) =
∞∑

j=1
gj
(−1)j

j!
uj,

such that gj = (−1)jg(j) (0) = (−1)j𝜈j. Rewrite 𝜙W
(
𝜆
)
= g

(
𝜆⊺𝜆

)
=
∑∞

j=1 gj
(−1)j

j!

(
𝜆⊺𝜆

)j
, and calculate

the moments by

𝜇
k
= (−i)kD⊗k

𝜆
𝜙W

(
𝜆
)|||𝜆=0

= (−i)k
∞∑

j=1
gj
(−1)j

j!
D⊗k
𝜆

(
𝜆⊺𝜆

)j
||||||𝜆=0

=

{
0 if k ≠ 2j,

1
j!

gjcj if 2j = k,

and the vector cj does not depend on g. Use g(j) (0) = ijgj, hence cj = (−1)jD⊗2j
𝜆

(
𝜆⊺𝜆

)j
, and conclude

that

EW⊗2𝓁 = (−1)𝓁

𝓁!
g(𝓁) (0)D⊗2𝓁

𝜆

(
𝜆⊺𝜆

)𝓁 =
EW2𝓁

j

𝓁!2𝓁 (2𝓁 − 1)!!
D⊗2𝓁
𝜆

(
𝜆⊺𝜆

)𝓁
.

We apply the same argument for the cumulant generator 𝜓W
(
𝜆
)
= log𝜙W

(
𝜆
)

and get

𝜓W
(
𝜆
)
=

∞∑
j=1
𝜅⊤j

ij

j!
𝜆⊗j,

with Cumn

(
W

)
= (−i)nD⊗n

𝜆
𝜓W

(
𝜆
)|||𝜆=0

. We can conclude directly from the series expansions of

cumulant functions, that odd orders are all zero and
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Cum2𝓁

(
W

)
= (−1)𝓁

𝓁!
𝜌𝓁D⊗2𝓁

𝜆

(
𝜆⊺𝜆

)𝓁
.

Since 𝜌𝓁 =
(
log (g)

)(𝓁) (0) is connected to the 𝓁th cumulant of a component of W , we write

Cum2𝓁

(
W

)
= Cum2𝓁 (W1)

2𝓁𝓁! (2𝓁 − 1)!!
D⊗2𝓁
𝜆

(
𝜆⊺𝜆

)𝓁
.

The above cumulant can be calculated if either the generator function is known, or by using the
stochastic representation W = RU, of W where R is a non-negative random variable, and U is
uniform on sphere Sd−1. Furthermore, R and U are independent. Let Uj be a component of U, then

Cum4 (W1) = ER4EU4
j − 3

(
ER2EU2

j

)2
,

Cum6 (W1) = ER6EU6
j − 15ER4ER2EU4

j EU2
j + 30

(
ER2EU2

j

)3
.

These formulae are very useful in applications and simulations where, given a univariate random
variable R, we can arrive at a complete specification of the cumulants of W .

Theorem 3. Let W have a spherically symmetric distribution. We then have

EW2𝓁
1 = (−1)𝓁2𝓁 (2𝓁 − 1)!!𝜈𝓁 ,

EW⊗2𝓁 = EW2𝓁
1 Sd12𝓁 (Vec Id)⊗𝓁 ,

Cum2𝓁
(

Wj
)
= (−1)𝓁2𝓁 (2𝓁 − 1)!!𝜌𝓁 ,

Cum2𝓁

(
W

)
= Cum2𝓁 (W1) Sd12𝓁 (Vec Id)⊗𝓁 .

Proof. For a full proof of the above theorem, see Jammalamadaka et al. (2021). ▪

APPENDIX B. SOME TECHNICAL BACKGROUND

In what follows, we use the notation 1 : d to denote 1, 2, … , d.
From cumulants to moments

Moments can be expressed in terms of cumulants via the formula

EX⊗k =
∑

∈(1∶k)

K−1
𝔭()

⊗∏
bj∈

Cum|bj|(X) = Bk

(
𝜅X ,1, 𝜅X ,2, … 𝜅X ,k

)
, (B1)

where the summation is over all partitions  = {b1,b2, … ,bk} of 1 : n, and Bk are multivariate
Bell polynomials.

Commutators and symmetrizers
Some preliminary discussion of commutation matrices is helpful. Let E i, j denote the (d× d)
elementary matrix, i.e. one for which all entries are zero except for the (i, j)th element, which
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is 1. Set Kd•d =
[
VecE⊺

i,j

]
, so that Kd • d has dimension d2 × d2. The vector VecE⊺

i,j = Vec Ej,i, is
the ((i − 1) d + j)th, i= 1 : d, j= 1 : d, unit vector of the unit matrix Id2 , and Kd•d

(
a1 ⊗ a2

)
=

a2 ⊗ a1. The matrix Kd • d is called a commutation matrix (see e.g., Graham, 2018; Magnus
& Neudecker, 1999). By changing the neighboring elements of a Kronecker product, we can
obtain any permutation of them. For instance, if 𝔭 = (i1, i2, i3, i4) is a permutation of the numbers
1,2,3,4, we can introduce the commutator matrix K𝔭 for changing the order of a Kronecker prod-
uct, namely K𝔭

(
a1 ⊗ a2 ⊗ a3 ⊗ a4

)
= ai1

⊗ ai2
⊗ ai3

⊗ ai4
. In particular, if we set 𝔭1 = (1, 3, 2, 4),

then

K𝔭1

(
a1 ⊗ a2 ⊗ a3 ⊗ a4

)
= (Id ⊗Kd•d ⊗ Id)

(
a1 ⊗ a2 ⊗ a3 ⊗ a4

)
= a1 ⊗ a3 ⊗ a2 ⊗ a4.

It is worth noting that Kd • d, and in general each commutator matrix, depends on the dimen-
sions of the vectors under consideration. In our example, the dimension of Kd • d is d2 × d2, while
the dimension of K𝔭1 is d4 × d4. As far as the commutators used in Section 2 are concerned, the
formulae are:

K2,2 = K−1
(3,4,1,2) + K−1

(2,4,1,3) + K−1
(2,3,1,4),

K−1
H2,2,2 =

∑
j=1∶3,k=4∶6

K−1
(j,k,p2!((1∶6)⧵(j,k))), K−1

H4,2 =
∑

j=1∶3,k=4∶6
K−1

((1∶6)⧵(j,k),j,k).

For instance, p2! ((1 ∶ 6) ⧵ (j, k)) |j=1,k=5 = (2, 4, 3, 6) + (2, 6, 3, 4),

K−1
(j,k,p2!((1∶6)⧵(j,k)))|j=1,k=5 = K−1

(1,5,2,3,4,6) + K−1
(1,5,2,6,3,4),

K−1
3! = K−1

(1,4,2,5,3,6) + K−1
(1,4,2,6,3,5) + K−1

(1,5,2,4,3,6) + K−1
(1,5,2,6,3,4) + K−1

(1,6,2,4,3,5) + K−1
(1,6,2,5,3,4).

K3! provides a specific permutation needed since E𝜑H3

(
y
)⊗2

is not symmetric. We remark that
the results in Holmquist (1996) are valid for symmetric vectors. next

K−1
H6,2 =

∑
j=1∶4, k=5∶8

K−1
([(1∶4)⧵,j],[(5∶8)⧵,k],j,k),

K−1
H4,2,2 =

∑
j1, j2 = 1 ∶ 4, k1, k2 = 5 ∶ 8
j2 > j1 k2 > k1

K−1
(j1,j2,k1,k2,p2!((1∶8)⧵(j1,j2,k1,k2))).

Also, K−1
4! =

∑
4!K

−1
(1,k1,2,k2,3,k3,4,k4), with the sum taken over all permutations (k1, k2, k3, k4) of the

numbers (5 ∶ 8). Algorithms for computing K2, 2 K3!, KH 2, 2, 2, KH 4, 2, K4!, KH 4, 2, 2, and KH 6, 2 are
available.

Holmquist (1996) uses the symmetrizer matrix Sd1q for symmetrization of a T-product of q
vectors with the same dimension d. That is, Sd14

(
a1 ⊗ a2 ⊗ a3 ⊗ a4

)
is a vector of dimension d4,

which is symmetric in aj. It can be computed as Sd1q =
1
q!
∑

p∈Pq
Kp,where Pq denotes the set of all

permutations of the numbers 1 : q; the sum includes q! terms. The symmetrizer Sd1q provides an
orthogonal projection to the subspace of Rdq which is invariant under the transformation Sd1q . A
vector will be called symmetrical if it belongs to that subspace.
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APPENDIX C. PROOFS

Proof of Theorem 1. Consider first H3(Y ) and note that Cum2

(
H3

(
Y
))

= EH3
(

Y
)⊗2 − 𝜅⊗2

Y ,3,

where

H3(Y )⊗2 = H6
(

Y
)
+ K−1

H4,2

(
H4

(
Y
)
⊗ 𝜅Y ,2

)
+ K−1

H2,2,2

(
H2

(
Y
)
⊗ 𝜅⊗2

Y ,2

)
+ K−1

3! 𝜅
⊗3
Y ,2.

Noting that EH2
(

Y
)
= 0, it follows that

EH3
(

Y
)⊗2 = EH6

(
Y
)
+ K−1

H4,2

(
EH4

(
Y
)
⊗ 𝜅Y ,2

)
+ K−1

3! 𝜅
⊗3
Y ,2,

from which result (4) follows.
In the case of H4(Y ) we have Cum2

(
H4

(
Y
))

= EH4
(

Y
)⊗2 − 𝜅⊗2

Y ,4, where

H4(Y )⊗2 = H8
(

Y
)
+ K−1

H6,2

(
H6

(
Y
)
⊗ 𝜅Y ,2

)
+ K−1

H4,2,2

(
H4

(
Y
)
⊗ 𝜅⊗2

Y ,2

)
+ K−1

H2,2,2

(
H2

(
Y
)
⊗ 𝜅⊗3

Y ,2

)
+ K−1

4! 𝜅
⊗4
Y ,2.

Taking expectations and recalling that EH2
(

Y
)
= 0, we have

EH4
(

Y
)⊗2 = EH8

(
Y
)
+ K−1

H6,2

(
EH6

(
Y
)
⊗ 𝜅Y ,2

)
+ K−1

H4,2,2

(
EH4

(
Y
)
⊗ 𝜅⊗2

Y ,2

)
+ K−1

4! 𝜅
⊗4
Y ,2.

By the GC expansion, where the expected values are expressed in terms of Bell polynomials, we
finally get expression (C). ▪

Proof of Theorem 2. Details are provided for the case q= 4 which requires some more computa-
tions; the proof for the case q= 3 is similar. In the proof, when the use of the symmetrizer Sd14 is

needed, we denote this fact as
Ⓢ
=. Note that

H4
(

Z
)
= H4

(
𝚺̂
−1∕2 (

X − X
))

=
(
𝚺̂
−1∕2)⊗4

H4

(
X − X

)
.

Since 𝚺̂ → 𝚺 in probability, by Slutsky theorem, we only need to consider the distribution of
H4

(
X − X

)
. Since the kurtosis is affine invariant, we assume 𝜇 = 0 and 𝚺 = Id. It follows that X

corresponds to its standardized version Y (see formula (2)). Then

√
nH4

(
X − X

)
Ⓢ
=
√

n
(

X − X
)⊗4

− 6 (Vec Id)⊗
(

X − X
)⊗2

+ 3
(
Vec⊗2 Id

)
Ⓢ
=
√

n H4
(

X
)
− 4H3

(
X
)
⊗

√
n X + 6

√
n X⊗2 ⊗ X

⊗2
− 4

√
n Xi ⊗ X

⊗3

+
√

n X
⊗4

− 6Vec Id ⊗ X
⊗2

+ 3
(
Vec⊗2 Id

)
D
≃
√

n H4
(

X
)
− 4𝜅X ,3 ⊗

√
n X ,
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since, using Slutsky’s argument, when n→∞, we obtain that
√

nX is asymptotically multivariate
standard normal, X

⊗k
= op (1) for k≥ 1 and H3

(
X
)
→ EH3

(
X
)
= 𝜅X ,3. The variance

Cum2

(
H4

(
X
)
− 4𝜅X ,3 ⊗ H1

(
X
))

= Cum2

(
H4

(
X
))

+ 16𝜅⊗2
X ,3 ⊗ Vec Id

where Cum2

(
H4

(
X
))

is given in (5). ▪




