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ABSTRACT OF THE DISSERTATION
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In this thesis, we develop data-driven techniques to analyze unsteady aerodynamic flows under

extremely gusty conditions for global field reconstruction, low-order modeling, and control. We

first consider global field reconstruction from sparse sensors through the lens of generalized super-

resolution analysis. This thesis o�ers a survey with comprehensive case studies of machine-

learning-based super resolution for turbulent flows. Supervised machine-learning-based sparse

reconstruction is then performed with vortical flows in a pump sump, an example of industrial

turbulence. In addition, we establish a robust sparse reconstruction technique for situations in

which the numbers and positions of sensors are changing over time, referred to as a Voronoi-

tessellation-assisted convolutional neural network. We demonstrate its performance and robustness

against noisy sensor measurements with a range of fluid flow examples. Defining interpolation

and extrapolation conditions of machine-learning-based studies in unsteady flows is challenging

due to their high-dimensionality and scale-invariant nature. For this reason, we consider nonlinear

data-driven scaling of turbulent flows to reveal scale-invariant vortical structures across Reynolds

numbers. This nonlinear scaling provides insights for supporting machine-learning-based studies

ii



of turbulent flows.

To perform flow control leveraging the reconstructed fields from sparse sensors, we then consider

constructing a control strategy of flows in a low-order subspace identified by nonlinear machine-

learning-based data compression. We develop a nonlinear observable-augmented autoencoder that

can incorporate physical observables in identifying a low-dimensional latent manifold. This thesis

considers extreme vortex-gust airfoil interactions occurring when modern small aircraft fly in severe

atmospheric conditions. Under such extreme aerodynamic situations, wings experience massive

separation while exhibiting sharp and highly unsteady aerodynamic force responses. Although it is

challenging to analyze the nonlinear, transient nature of extreme aerodynamics with conventional

linear techniques, we reveal that the underlying physics of a collection of time-varying vortical

flows in a high-dimensional space can be expressed on a low-rank manifold leveraging the present

data-driven compression. It is also demonstrated that e�cient control strategies can be derived

at a minimal cost with the assistance of phase-amplitude reduction on the discovered manifold.

These developed data-driven strategies o�er a new perspective on reconstructing, modeling, and

controlling a range of extremely unsteady flows.
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CHAPTER 1

Introduction

Unsteady fluid flows are ubiquitous. Complex vortical structures emerge in various circumstances

associated with automobile, airplane, and industrial fluid-based machines. Since the presence of

vortical structures greatly contributes to the performance of fluid-based systems, unsteady fluid

flows have been examined through theoretical, experimental, and numerical approaches (Gol69;

MM98; WEA13).

Along with the recent developments in computational resources and digital tools such as

processors, memory, data transfer, and hard drives, we are now in the age of fluid-flow big data. A

large collection of computationally/experimentally measuring fluid flow data is becoming available.

In fact, there exist some open-source databases that not only include time-averaged statistics but

also cover unsteady, highly resolved flow snapshots, which can accelerate research activities in the

community (LPW08; WM08; TDB23).

At the same time, this increase in data availability may become a cause of headaches in analyzing

fluid flows. While being able to increase grid resolution as well as Reynolds number, the degree

of freedom would be continuously large as the number of grid points to su�ciently resolve vortical

flows scales on the order of '49/4 (KT16; KL24). Once we start to sweep in a parameter space

composed of an infinite number of variables such as Reynolds number, flow configurations, shape

of bodies, and actuator types, the data size quickly grows. Even if we can save them, monitoring

all the time series of fluid flow data and analyzing them is impractical. In other words, we are now

at a turning point to e�ciently analyze such fluid flow big data.

To systematically tackle a range of challenging problems in fluid dynamics, the aforementioned
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circumstance calls for data-driven approaches including machine learning. Machine learning, or

recently referred to as deep learning (LBH15), has evolved in computer science, exhibiting the

potential to extract features from a large pool of data sets (JM15). With such capabilities, data-

driven techniques have been widely examined to extract underlying physics involved in the fluid

flow big data to promote unsteady flow analyses (DIX19).

Applicabilities of machine-learning techniques to turbulence modeling have been of interest in

the community (DIX19; VYA23). For large-eddy simulations (LES), Gamahara and Hattori (GH17)

proposed a multi-layer perceptron-based subgrid-scale model of turbulent channel flows. Following

their study, machine-learning-based LES modeling has been extended to a range of tasks not only

in fluid mechanics (MS17; MSJ19a; MSR19; YZW19; ZHY21; MSF21; XWY23) but also in

combustion problems (SNS21; PNS21; SHP22). While a fully-connected model is often used for

LES modeling due to the advantage that local stencils on a grid can be reasonably handled (LB23),

convolutional neural network (CNN)-based models have also been examined to accommodate

spatial invariants of vortical flows (PSR20; LYH22; PSR23a; GSC23; MJW23; TH23).

As well as the e�orts for LES modeling, machine-learning-based closure modeling for Reynolds-

Averaged Navier–Stokes (RANS) simulations have been well investigated. The seminal study of

machine-learning-based RANS modeling was performed by Ling et al. (LKT16) who developed

the tensor-basis neural network (TBNN) guaranteeing the Galilean invariance. While extensions of

TBNN are widely examined (MLE21; BC20; PSS20; TWW23), some studies augment the existing

closure modeling such as the Spalart–Allmaras model (SMD17; YZC22; BHY23). However, most

of the studies above for LES and RANS are based on supervised learning, implying that the solution

obtained by high-fidelity simulations such as direct numerical simulations is generally needed for

training (Spa23). From this aspect, reinforcement learning has also recently been considered

towards low-cost and robust modeling (NLK21; BK22; MWG23).

Focusing on the capability to seek nonlinear relationships between input and output data, the

community has revisited inverse problems including sparse-sensor-based reconstruction and state

estimation with machine learning (YH19; DGP22; YBF23; Buz23; LBB23). Such problem set-
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tings had been tackled with linear-theory-based techniques such as Gappy POD (BDW04), linear

stochastic estimation (AM88), and Kalman filters (CCB11) for canonical flows. While they have en-

countered di�culty in reconstructing flows from limited measurements, nonlinear machine learning

can often achieve qualitative vortical flow reconstruction (LLN22; XS23; HZW24). For example,

Erichson et al. (EMY20) proposed a multi-layer perceptron-based global field reconstruction from

local sensors considering a two-dimensional cylinder wake, ocean temperature fields, and homo-

geneous isotropic turbulence. In the context of wall-bounded turbulence, Guastoni et al. (GGI21)

developed a CNN-based approach to estimate far-field conditions from only the wall information by

combining with proper orthogonal decomposition (POD; Lum67). These o�-wall state estimation

studies with machine learning can be regarded as an extension of the well-examined “footprint"

study by Bewley and Protas (BP04).

In addition to the studies with numerical data sets, applications to experiments are also per-

formed (MWM23; DHL19; OPD21; LU22; ZLH23). Cai et al. (CZX19) used CNNs for estimating

velocity fields from particle images. The proposed CNN-based model can provide a much finer

spatial resolution of flow fields compared to the conventional correlation method and optical flow

approach, suggesting the potential to find structures that cannot be captured with traditional tech-

niques (GN20; FK20; OLS22). A similar method for flows around blu� bodies was also proposed

by Morimoto et al. (MFF21), aiming to reduce measuring noise due to halation and reflection

around immersed bodies. Furthermore, multi-layer perceptron-based sparse reconstruction was

also examined with experimental data of NACA0012 airfoil flows at '42 = 75000 by Carter et

al. (CDS21).

Successful flow reconstruction from limited measurements suggests that a collection of flow

snapshots over time may be expressed with a few dynamically important modes (THB20a; BHT20;

THB20b). Along with this observation, machine learning, particularly nonlinear autoencoder, has

also been considered to extract nonlinear modes while compressing unsteady flow data sets (CJK19;

GKS20; XD20; PBK21; MLC23; FID23). Milano and Koumoutsakos (MK02) first applied a

multi-layer perceptron-based autoencoder to the burgers equation and turbulent channel flows,
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reporting its superior capability to linear compressions. To visualize nonlinear modal structures

extracted by nonlinear autoencoder, Murata et al. (MFF20) developed a mode-decomposing CNN

autoencoder and demonstrated it with flows around a circular cylinder. They also reported that

a linear autoencoder is mathematically equivalent to POD, suggesting the importance of the use

of nonlinear activation functions. Some advanced autoencoder models have been proposed to

achieve better compression of fluid flows while extracting modes that align based on kinetic

energy (LPB22; FNF20; ELH22).

Furthermore, the use of compressed representations obtained via nonlinear machine-learning

techniques has also been examined to construct surrogate models for high-fidelity simulations.

Similar to the idea of POD Galerkin projection model, another machine-learning model is pre-

pared to integrate the dynamics of low-dimensional representations. As a temporal integra-

tor model, a variety of machine-learning techniques has been investigated for unsteady flows

including multi-layer perceptron (LW19; DG23), long short-term memory (MLB21; ASR21),

echo state network (RDM23; CPL23), sparse identification of nonlinear dynamics (FMZ21;

CGF23), transformer (YZY23; YW23; WSV24), Gaussian process regression (MBR21b), and

neural ODE (SPM22; LG23).

Related to the neural network-based surrogate modeling for numerical simulations mentioned

above, physics-informed neural networks (PINN) have also gained attention in the community (RPK19;

RYK20; CMW22). PINN generally takes coordinates and time information as inputs while out-

putting flow variables at the corresponding input point. Contrary to regular machine-learning

models, the governing equations are considered inside of the cost function in optimizing network

parameters. It has been widely reported that this incorporation of physics from the equations

can enhance the reliability of machine-learning-based prediction while ensuring robustness against

noisy input measurements (JCL21; CWF21; SR23; SGD24). While the PINN was proposed in

the fluid mechanics field, the use of PINN can be currently seen in a wide range of science and

engineering (CDG22).

While flow variables and related coe�cients are often used for the cost functions of the afore-
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mentioned applications, one can also use a control objective as a cost function to design control

strategies with machine learning. Currently, machine-learning-based control can be mainly catego-

rized into two groups: namely, 1. combining with the existing control strategies and 2. deriving a

new control law with reinforcement learning. An example in the former group is Lee et al. (LKB97)

who used a multi-layer perceptron to learn the actuation pattern of opposition control (CMK94)

in turbulent channel flows for drag reduction. Park and Choi (PC20) has recently combined a

CNN-based o�-wall velocity estimator and opposition control of turbulent channel flows. They

reported that taking a low-pass filter can improve the drag reduction ability so that the e�ect of

reconstruction error can be mitigated.

For the reinforcement learning-based control, Rabault et al. (RKJ19) first developed a multi-

layer perceptron-based agent to reduce drag of flows around a cylinder. Following this seminal

study, the applicability for blu�-body wake stabilization has been extensively examined in recent

years (PBD21; GVL21; LZ22; PSR23b; NG23; ZFZ23; WFJ23). For wall-bounded turbulence,

Sonoda et al. (SLI23) has recently applied reinforcement learning to blowing/suction control of

turbulent channel flows. They reported that the linear model learned a similar actuation pattern

as the opposition control (CMK94) while the nonlinear model provides more complex patterns,

leading to a better drag reduction performance. Similarly, Lee et al. (LKL23) has also performed

a reinforcement learning-based control for turbulent channel flows and compared it to a traditional

suboptimal control (LKC98). These e�orts exhibit the potential of machine-learning techniques

to gain insights into unsteady flows, beyond what have been possible by relying on only human

insights.

As reviewed above, nonlinear machine learning has been recognized as an attractive tool for

a range of studies in fluid mechanics. From the aerodynamics viewpoint, of particular interest is

their usage for extremely unsteady situations in which the spatiotemporal scales of the baseflow

unsteadiness and disturbances reach almost the same level in magnitude. Such flight conditions

would occur when modern small-scale aircraft such as drones operate in severe weather (JCS22).

With the increased occurrence of extreme weather due to global warming, they are now asked to
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fly during adverse situations (FW15; GW22). However, it is currently challenging to achieve stable

flight since small air vehicles would encounter extremely strong gusts.

For steady or quasi-steady aerodynamic scenarios, there are a range of studies to analyze

aerodynamics with respect to small perturbations and time-averaging flows (And91; Lei06). To

extract dominant modes from a collection of fluid-flow data, linear modal analysis techniques such as

POD (Lum67) and dynamic mode decomposition (DMD; Sch10; Sch11; Sch22) can be considered.

These techniques provide physical insights as either modes or temporal coe�cients, which has

been demonstrated with a range of flow configurations (IR08; DHW16; RD17; RW17; LAN18a).

However, both techniques are generally not robust for time-varying mean flows or transient dynamics

due to their linear assumptions in the formulation. Although there are few methods to handle

nonlinear, transient nature of flows with linear theories for particular flows, e.g., introducing a shift

mode of flows around a circular cylinder (NAM03), it is challenging to develop a robust technique

that can accommodate time-varying baseline dynamics.

Focusing on the linearized operator, stability analysis has also been leveraged over the past

century to find characteristics of the flow dynamics about the given perturbation (SH01; The11).

Moreover, Resolvent analysis has also gained attention to identify the input-output relationship

of given flow dynamics (MS10). These operator-based techniques can reveal the underlying

physical mechanism (SL07; SSM19; NMM21; RJF22; BHZ22) while being able to provide clues for

controlling aerodynamic flows (LSM14; YT19; KNL19; JIS20; SYS22; MJC22; LTT23). However,

their formulations generally assume that the given dynamics can be linearized with respect to

time-averaging (mean) flow and small-amplitude perturbations. Since the baseflow under extreme

aerodynamic conditions would always be time-varying while the magnitude of disturbance is almost

a similar level to the unsteadiness of regular baseline flight operations, naïve applications of these

linear theory-based techniques may not appropriate to extract key features of extreme aerodynamic

flows.

While there exist a large number of parameters to determine the characteristics of gusts, the

gust ratio ⌧ ⌘ D6/D1, where D6 is the characteristic gust velocity and D1 is the cruise velocity,
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Figure 1.1: Overview of the current study.

is especially critical. Although operating aircraft under ⌧ > 1 is generally avoided, small air

vehicles would experience it under extremely gusty situations in urban canyons, mountainous

environments, and severe atmospheric turbulence. Furthermore, under the extreme aerodynamic

condition of ⌧ > 1, a wing experiences massive flow separations due to complex interactions

with extremely violent gusts. We also note that conventional vortex-gust airfoil interaction studies

including a PIV-based flow visualization (QWG23), sparse reconstruction (ZFA23; CKH24), and

gust mitigation control (HBP22; SGL23) are limited to ⌧  1. Since it is easily anticipated

that traditional linear-theory-based techniques cannot accommodate extreme level of unsteadiness

associated with transient e�ects, it is worth examining nonlinear data-driven approaches for taming

extreme aerodynamic flows.

In this thesis, we develop a basic foundation of data-driven techniques to support analyses of

extreme aerodynamic flows from the aspect of global field reconstruction, reduced-order modeling,

and flow control. Particularly, this thesis considers a systematic approach to control unsteady

fluid flows starting from only few sensor measurements in a data-driven manner, as graphically

summarized in figure 1.1.

We first aim to develop a method for reconstructing a flow field from limited measurements

with super-resolution analysis. Super resolution that originally emerged in image processing can

spatially reconstruct a high-resolution flow field from a low-resolution counterpart (IP91). We
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perform machine-learning-based super-resolution reconstruction in fluid flows with a survey study.

We also examine its applicability to an example of industrial turbulent flows, vortical flows in

a pump sump. Moreover, a Voronoi-tessellation-assisted neural network, which can deal with a

situation where numbers and position of sensors are in motion, is also proposed to enhance practical

uses of super-resolution models for unsteady flows.

Although machine-learning-based analyses can often provide reasonable performance beyond

training conditions for unsteady flows, i.e., extrapolation, it is important to correctly identify

interpolatory and extrapolatory conditions in the context of turbulent flows. To this end, we

develop the Buckingham Pi theorem-assisted nonlinear scaling of turbulent flows to distinguish

interpolatory and extrapolatory vortical structures in machine-learning applications. This enables

the quantitative characterization of seen and unseen physics by extracting scale-invariant structures

of turbulent flows across training and test data.

Once we obtain a su�cient amount of fluid flow information from limited measurements, we

then aim to identify a control strategy of flows in a low-order manifold space identified by non-

linear machine-learning-based compression, autoencoder. Autoencoder can low-dimensionalize

given fluid flow data into a low-order subspace while retaining the essential information that are

energetically or dynamically important. The resulting low-dimensional representation can provide

a compact form of fluid flow behavior in the low-dimensional space called latent space.

Our manifold identification is achieved using an observable-augmented autoencoder, providing

a physically-explainable form of latent expression. This is particularly helpful in deriving control

strategies by combining them with pre-existing mathematical tools. With an example of extreme

vortex-airfoil interactions, this thesis performs phase-amplitude reduction on an autoencoder-based

low-dimensional manifold to acquire e�cient control strategies that can quickly modify unsteady

flows to be a desired state.

This thesis is organized as follows: we survey machine-learning-based super-resolution recon-

struction of fluid flows in chapter 2. Supervised machine-learning-based sparse reconstruction of

vortical structures in a pump sump from pressure sensors is performed in chapter 3. The Voronoi
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tessellation-assisted sparse reconstruction is expressed in chapter 4. The data-driven nonlinear

scaling with Buckingham Pi variables is discussed in chapter 5. The autoencoder-based manifold

identification and phase-amplitude reduction-assisted fast flow control with an example of extreme

aerodynamic flows are respectively provided in chapters 6 and 7. Conclusions are remarked in

chapter 8.
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CHAPTER 2

Machine-learing-based super-resolution analysis for fluid flows

This section surveys machine-learning-based super-resolution reconstruction for vortical flows (FFT23).

While super resolution can be regarded as an image-based data recovery technique, it is also a gen-

eral framework for a broad range of applications in fluid mechanics. Hereafter, let us discuss recent

studies, challenges, and outlooks of machine-learning-based super-resolution analysis for fluid flow

applications.

2.1 Motivation

Super resolution reconstructs a spatially high-resolution field data qHR from its low-resolution

counterpart qLR (IP91; Sal16; Ban09). This problem set has been traditionally tackled in com-

puter visions with various techniques including interpolation (Key81; VSV06; JSK08; LK81),

example-based internal learning (MI13; GBI09; ZMI13; SFI11), high-frequency transfer (FF11;

YLC13; BK02; PPK03), neighbor embedding (RS00; BRG12; CYX04; FJP02; FPC00), and sparse

coding (LBR06; YWH08; LYY12; YWH10; ZGT12). Although these implementations are ef-

fortless, it is generally challenging to reconstruct high-wavenumber contexts. To address this

di�culty, machine learning has been used for accurate super-resolution reconstruction of im-

ages (DLH14; DLT16; YZT19). Machine learning can find a nonlinear relationship between input

and output data even under ill-posed conditions. This approach can be applied to a pair of low- and

high-resolution images, providing a finer level of images from extremely coarse images (DLH15).

Machine-learning-based techniques in general (BNK20; BHT20; BEF19) have been considered
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for a range of applications in fluid mechanics including turbulence modeling (DIX19; MSJ19b;

LKT16; NLK21; BK22), reduced-order modeling (LY19; CRL22; SM18; FMZ21; SGA19), data

reconstruction (SSS20; MBK18; FFT20; KKL23), and flow control (RKJ19; BPB20; ZFZ20;

PBD21; PC20; GVL21). Super-resolution reconstruction with machine learning is no exception.

The lower barrier to access open source codes in image science and implement models also enables

fluid mechanicians to apply methods for fluid flow data by replacing RGB components (red, green,

and blue) with velocity components {D, E,F}.

While super resolution can be regarded as an image-based data recovery technique, it is also

a general framework for a broad range of applications in fluid mechanics. For instance, a low-

resolution fluid flow image can be interpreted as a set of sparse sensor measurements. In this

aspect, the inverse problem of global field reconstruction from local measurements is an extension

of super-resolution analysis (FMR21; GVD22; SW20). If we consider low-resolution fluid flow data

as noisy experimental measurements, super-resolution analysis can also be extended to denoising

problem (GSW21; FPB20; VS09). Furthermore, large-eddy simulation (LES) can incorporate

super-resolution reconstruction to reveal finer structures inside a low-resolution grid cell (PD23;

BGL21).

This paper surveys the current status and the challenges of machine-learning-based super-

resolution analysis for vortical flows. We first cover several machine-learning models and their

applications to super resolution of fluid flows. We then o�er case studies using a supervised

learning-based super resolution for an example of two-dimensional decaying isotropic turbulence.

We consider embedding physics into the model design to successfully reconstruct a high-resolution

vortical flow from low-resolution data. We further discuss the challenges and outlooks of machine-

learning-based super resolution in fluid flow applications. The present paper is organized as follows.

We introduce machine-learning approaches of super-resolution reconstruction for vortical flows in

section 2.2. Applications of these machine-learning techniques are discussed in section 2.3. We

perform case studies in section 2.4. Extensions of super-resolution analysis for fluid dynamics are

discussed in section 2.5. Concluding remarks with outlooks are provided in section 2.6.
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Figure 2.1: Fully-connected model-based super resolution.

2.2 Approaches

A variety of machine-learning models have been proposed for the super-resolution reconstruction

of vortical flows. Machine-learning-based approaches can find a nonlinear relationship between

the low-resolution input and the corresponding high-resolution output from a large collection of

data through training. In super-resolution analysis, the dimension of the input (low-resolution data)

qLR 2 R< is smaller than that of the high-resolution output qHR 2 R= with < ⌧ =,

qHR = � (qLR), (2.1)

where � is the super-resolution model. Depending on the flow of interest and the size of data,

the machine-learning model should be carefully chosen. In section 2.2.1, we introduce three types

of machine-learning models that are widely used. We also discuss the use of physics-based loss

functions in section 2.2.2.

2.2.1 Machine-learning models

2.2.1.1 Fully-connected network (multi-layer perceptron)

The fully-connected network, also called the multi-layer perceptron (RHW86), is the most basic

neural network model. Nodes between layers are fully connected with each other, as illustrated

in figure 2.1. The minimum unit of a fully-connected network is called perceptron. For each
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perceptron, the linear combination of the inputs from layer (; � 1), 2(;�1)
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where i is the activation function and 1 is the bias added at each layer. We can choose a nonlinear

function for i, enabling the network to capture the nonlinear relationship between the input and the

output.

A fully-connected model can be used for supervised machine learning-based super resolution.

A training process for supervised machine-learning models is cast as an optimization problem to

determine the weights w inside the model �. The weights w are optimized by minimizing the loss

function E through backpropagation (KB14). This optimization procedure is described as

w = argmin
w
E(w). (2.3)

Since super-resolution reconstruction aims to obtain a high-resolution image qHR from the corre-

sponding low-resolution data qLR, the loss function (error) can be formulated as

E = | |qHR � � (qLR) | |%, (2.4)

where % indicates the norm. While the !2 norm is widely used, we can instead consider other

norms such as !1 norm and logarithmic norm depending on the data characteristics. The !1 norm

can be used for model construction that is not as sensitive for outliers in the data. The logarithmic

norm is suitable for cases where underestimation should be avoided.

As mentioned above, the di�erence of data dimension between the input and the output in

the super-resolution analysis is substantial. Hence, models generally comprise the decoder-type

structure (EMY20; WZK22), meaning that the number of nodes gradually increases towards the

output layer. This is especially the case for high-dimensional inverse problems such as super-

resolution reconstruction of fluid flows. This leads to the number of nodes and their connections

to drastically increase, leading to the prohibitively expensive computational cost and the failure of

13



…

H
H

M

Figure 2.2: Convolutional neural network-based super resolution.

non-convex optimization known as the curse of dimensionality (Dom12). Users should be mindful

of computational time and memory requirements for fully-connected models.

2.2.1.2 Convolutional neural network

To address the issue of the computational burden associated with the fully-connected models,

convolutional neural networks (CNNs) (LBB98) have been widely utilized in super-resolution

analysis of fluid flows. CNNs incorporate a function called filter sharing, enabling the processing

of large vortical flow data without encountering the curse of dimensionality (MFZ21).

A CNN is generally comprised of the convolutional layer, pooling layer, and upsampling layer.

The convolutional layer depicted in figure 2.2 captures the nonlinear relationship between input

and output data by extracting spatial features of supplied data through filtering operations. This

operation is expressed as

@
(;)

8 9=
= i ©≠

´
"’
<=1

��1’
?=0

��1’
@=0

⌘
(;)

?@<=
@
(;�1)
8+?�⌧, 9+@�⌧,<

+ 1
(;)

=

™Æ
¨
, (2.5)

where ⌧ = b�/2c, � is the width and height of the filter, " is the number of input channel, =

is the number of output channel, 1 is the bias, and i is the activation function. As in the fully-

connected models, a nonlinear function can be chosen for i to account for nonlinearlities in the

machine-learning model.

In addition to the convolutional layer, a pooling layer also plays an important role in CNN-based
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Figure 2.3: Generative adversarial network-based super resolution.

analysis. The pooling layer downscales the data, reducing data dimension. For regression tasks, it is

useful for reducing spatial sensitivity, producing a robust CNN model against noisy inputs (NF22).

It is also possible to expand the data dimension through the upsampling layer. Upsampling copies

the value onto an arbitrary region to expand the dimension. This function is especially useful to

align the data dimension inside the network.

For super resolution in which the dimension of the output R= is larger than that of the input R<,

there are several ways to treat the di�erence of the dimensions between the input and the output.

For example, the upsampling can be used inside a network to expand the dimension (WGS22). One

can also implement a resize or interpolation function for the input data to align the size with that of

the output (DLH15; FFT19b; RIM16). This can avoid the use of pooling or upsampling operations,

reducing the complexity of the model.

15



2.2.1.3 Generative adversarial network

In addition to supervised fully-connected networks and convolutional networks, unsupervised

learning with generative adversarial network (GAN) (GPM20) has also been proposed for super-

resolution analysis of fluid flows (XFC18; BGK19; KKW21; GDI21; MTK23). GAN is attractive

for cases in which it is di�cult to prepare paired input and output data. For example, the application

of super resolution with LES can correspond to this scenario. A model trained with a pair of

high-fidelity DNS and subsampled low-resolution data may not directly support super-resolution

reconstruction for LES data. Super resolution of PIV measurements with limited spatio-temporal

resolution (without corresponding high-resolution solution images) also needs to be carefully

considered.

GAN is composed of two networks, namely, a generator (⌧) and a discriminator (⇡). A

generator produces a fake image which is similar to the solution from random noise n. In contrast,

a discriminator judges the generated (fake) image as whether it is likely to be a realistic image by

returning a probability between 0 (fake) and 1 (real). A generator usually possesses a decoder-type

structure to expand the data dimension from noise to images, while a discriminator is composed of

an encoder-type network towards reducing the data size from images to the probability. Throughout

the training process, the weights inside the generator are being updated to deceive the discriminator

toward the direction of minimizing the probability by generating images increasingly similar to

the real data. Fake images produced by the generator eventually become high-quality images that

cannot be distinguished from the real image.

These processes can be mathematically expressed with regard to the cost function + (⇡,⌧),

min
⌧

max
⇡

+ (⇡,⌧) = Ed⇠?data (d) [log⇡ (d)] + En⇠?n (n) [log(1 � ⇡ (⌧ (n)))], (2.6)

where d is a real data set and ?data is the probability distribution of the real data. The parameters

in the generator ⌧ are trained towards the direction in which ⇡ (⌧ (n)) becomes 1. On the other

hand, the weights in the discriminator ⇡ are updated so that ⇡ (d) returns a value close to 1.

Since the discriminator becomes wiser through training, ⇡ (⌧ (n)) provides a value close to 0.
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Summarizing, the parameter inside the generator ⌧ is optimized by minimizing the loss function

while that for the discriminator ⇡ is adjusted by maximizing the loss function, referred to as

competitive learning (RZ85). Once the training ends, the trained generator can produce an output

with indistinguishable quality compared to the real data. For super-resolution problems, we can

use low-resolution data as the input for the generator ⌧ instead of random noise n, as illustrated

in figure 2.3. A generator in super-resolution reconstruction provides a statistically plausible high-

resolution output by learning the relationship between the input low-resolution data set and the

high-resolution data set, which need not be paired.

2.2.2 Choice of loss function

Here, let us discuss the choice of loss (cost) function for machine-learning-based super-resolution

analysis. In standard formulation, we can have the cost function defined by equations 2.4 and 2.6.

However, super-resolved flow fields with direct applications of machine-learning models do not

satisfy physical conditions, such as the conservation laws. To address such an issue, loss functions

that embed physics laws can be utilized (LLF98; RPK19). Together with the original data-based

cost E3 from equation 2.4 or 2.6, the loss function E incorporating a physics-inspired loss function

E? for super-resolution analysis can take the form of

E = E3 + VE?, (2.7)

where V provides a scale between E3 and E?.

There are several approaches to introduce the physics-based loss term for fluid flows. For

instance, we can directly substitute a reconstructed high-resolution field qHR into the governing

equation (RPK19) if we have all data for the state variables to have,

E? = | |N (x, qHR(x, C)) | |%, (2.8)

where N is an operator from governing equations. Minimizing a loss function incorporating only
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certain terms of the Navier–Stokes equation (LY19) can also be considered,

E
9

?
= | |N9 (qRef) �N9 (qHR) | |%, N =

’
9

N9 , (2.9)

where N9 is a term in the governing equation and qRef is a reference data. It is known that these

physics-based loss functions help in reconstructing flows with a small amount of data (GSW21).

What these terms in the loss function do is to better constrain the solution space (KKL21; CMW22).

This is a similar concept to semisupervised learning which combines a small amount of labeled

data with a large amount of unlabeled data (ZG09). In the present paper, we demonstrate the

e�ectiveness of training with small data set for super-resolution reconstruction of turbulent vortices

in section 2.4. We should however note that the so-called physics-inspired analysis can su�er from

large numerical error if qHR contains error or noise. This approach should be used with caution as

it assumes that qHR can be used to evaluate certain terms.

2.3 Applications

In this section, we survey recent super-resolution applications for fluid flows through supervised

(section 2.3.1) and semisupervised-/unsupervised learning (section 2.3.2).

2.3.1 Supervised learning

In machine-learning-based super-resolution reconstruction of fluid flows, supervised techniques are

often used. Supervised learning requires a pair of input and output flow field data as training data.

For super-resolution analysis, a high-resolution reference flow field and the corresponding low-

resolution data need to be available for training models. To avoid the curse of dimensionality, CNN

models are often used for image-based super resolution of fluid flows rather than fully-connected

models.

Fukami et al. (FFT19b; FFT19a; FFT21) proposed a CNN-based super-resolution reconstruc-

tion for fluid flows in a supervised manner. The CNN-based model was applied to examples of
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a two-dimensional cylinder wake, two-dimensional isotropic turbulence, and three-dimensional

turbulent channel flow. To capture multi-scale physics in turbulent vortical flows, they also pro-

posed the hybrid downsampled skip-connection/multi-scale (DSC/MS) model based on the CNN.

The model is composed of the up-/downsampling operations, the skip connection (HZR16), and

CNNs with various sizes of filters. While up-/downsampling operations support robustness against

rotation and translation of vortical structures, the skip connection provides stability of the learning

process (HZR16). Moreover, the multi-scale CNN aims to capture a variety of length scales in

turbulent flows. Especially for the examples of turbulence, it was shown that the DSC/MS model

is e�ective in accurately preserving the energy spectrum.

Following this study, supervised CNN-based super-resolution analysis has been actively studied

for a range of flows. Obiols-Sales et al. (OVM21) proposed a CNN-based super-resolution model

called SURFNet and tested its performance for wakes around various NACA-type airfoils, ellipses,

and cylinders. SURFNet includes a transfer learning-based augmentation (PY09). The model is

first trained using only low-resolution flow data, and then the pre-trained weights are transferred in

training with high-resolution data sets. Transfer learning over multiple levels of spatial-resolution

flow field can improve the accuracy of super-resolution reconstruction (GGI21), which is also

related to multi-fidelity learning (LPB22). U-Net-based model (illustrated in figure 2.4) can also

reduce the training cost for super-resolution reconstruction of turbulent flows since the size of fluid

flow data is reduced through an autoencoder-type model structures (PF20).

Incorporating physical insights and domain knowledge into model construction further sup-

ports or enhances supervised-learning-based super-resolution reconstruction in vortical flows. For

instance, accounting for spatial length scales of the flow structures in the models improves recon-

struction (FFT19b). Kong et al. (KCL20) developed a multiple path super-resolution CNN with

several connections inside the model to capture variations of spatial temperature distribution in

a supersonic combustor. They reported that the proposed multiple-path CNN provides enhanced

reconstruction of temperature fields compared to a regular CNN. Incorporating the time history

of flow fields is also useful for super-resolving vortical flows in a supervised manner. Liu et
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Figure 2.4: U-Net-based model for super-resolution reconstruction of vortical flows.

al. (LTH20) compared two types of supervised CNN-based models for super-resolution analysis:

namely the static CNN (SCNN) and the multiple temporal paths CNN (MTPC). While the SCNN

model uses instantaneous flow snapshots as the input, the MTPC model considers a time series of

velocity fields as the input to read spatial and temporal information simultaneously. With examples

of forced isotropic turbulence and turbulent channel flow, they found that the MTPC model can

improve the reconstruction of turbulence statistics such as kinetic energy spectra and the second

and third invariants of the velocity gradient tensor.

Once supervised models are trained, machine-learning models can be used for data compression

since we only need to save only the input data to recover high-resolution flow fields. Matsuo et

al. (MFN24) proposed an adaptive super-resolution analysis. They focused on how a low-resolution

field is prepared in training a supervised learning-based model. While max- and averaging pooling

operations are generally used for preparing low-resolution data sets, they considered the spatial

standard deviation in arbitrary subdomains in a flow field to determine the local degree of down-

sampling. This can account for the importance of flow structures in generating low-resolution data

sets. They reported that supervised CNN models can reconstruct a high-resolution field of three-
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dimensional square cylinder wake from adaptive low-resolution data, achieving approximately

0.05% data compression against the original data.

Compressing fluid flow data in the time direction can also be considered. Fukami et al. (FFT21)

used the DSC/MS model to reconstruct high-resolution turbulent flows from coarse flow data in

space and time inspired by a concept of super-resolution analysis and inbetweening (LRT19). In

their formulation, two spatial coarse flow fields at C = =�C and C = (= + :)�C are taken as the input

of the first machine-learning model. Once the spatial-reconstruction model provides two super-

resolved high-resolution flow fields, these outputs are then fed into the second model to perform

inbetweening that provides high-resolution snapshots between the beginning and the end frames. By

combining these two models, spatio-temporal high-resolution vortical flows can be obtained from

only two coarse snapshot data. It should be note that linear interpolation in time cannot capture

advective physics. They demonstrated the model capability with turbulent channel flows and

reported that the flow field can be quantitatively reconstructed, achieving 0.04% data compression.

Arora and Shrivastava (AS22) have recently combined this super-resolution/inbetweening idea with

physics-informed neural network (RPK19) to improve the reconstruction accuracy and demonstrated

it with an example of a mixed-variable elastodynamics system.

Furthermore, supervised super-resolution reconstruction can be used to examine how machine

learning extracts the relationship between small and large-scale vortical structures. Kim and

Lee (KL20) considered a CNN-based estimation of the high-resolution heat flux field in a turbulent

channel flow from poorly-resolved wall-shear stresses and pressure. They revealed that the CNN

model focuses on the relationship between vortical structures and pressure distribution in channel

turbulence to estimate the local heat flux from the wall-shear stress. Morimoto et al. (MFZ22)

has recently examined the e�ect of inter- and extrapolation with machine-learning-based super-

resolution reconstruction with respect to flow parameters. They considered two-staggered cylinder

wakes whose flow dynamics are characterized based on the diameters and the distance between

two cylinders. They found that the supervised CNN-based model can quantitatively reconstruct

a vortical flow even for untrained parameter cases by preparing flow field data based on the
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information of lift coe�cient spectrum.

Supervised super-resolution techniques have also been applied to larger-scale meteorological

flows (OSM19; YOH22). Onishi et al. (OSM19) proposed a CNN-based model for super-resolution

analysis of temperature fields in urban environment. The proposed model provides a high-resolution

temperature field at reduced computational time than the corresponding high-fidelity simulation,

suggesting the potential use of machine-learning models as a surrogate for large-scale numerical

simulations. To improve the model performance, Yasuda et al. (YOH22) extended their model

by incorporating skip connection (HZR16) and channel attention (HSS18). While skip connec-

tion (HZR16) helps stabilize the learning process of deep CNNs, channel attention (HSS18) can

discover the crucial and irrelevant spatial regions of fluid flow regressions. The model trained

with temperature fields in one city (Tokyo) provides quantitative reconstruction for test temperature

data for another city with similar climate (Osaka). They also observed that including building

height information as a part of the input of the machine-learning model is important for successful

temperature reconstruction.

In addition to the aforementioned studies with numerical data, applications to experiments

have also been considered (DL23). For such cases, the e�ects of noise in the input data must be

carefully considered. Deng et al. (DHL19) developed a machine-learning model to super-resolve

PIV measurements. For training the model based on CNN, a pair of high-resolution experimental

velocity data collected by PIV with cross-correlation method and downsampled low-resolution data

is used. The model was tested for turbulent flows around a single cylinder and two cylinders. For

more complex turbulent flows, Wang et al. (WYL20) proposed a super-resolution neural network

for two-dimensional PIV (PIV2DSR) based on CNNs. Once they trained the model with velocity

fields of turbulent channel flow at '4g = 1000 obtained by direct numerical simulation (DNS),

the model is assessed with not only numerical channel flow field data at a much higher Reynolds

number of 5200 but also real experimental PIV data for a turbulent boundary layer at '4g = 2200.

For the preparation of training data in these experimental studies, cross-correlation meth-

ods (Adr05) are generally used to obtain velocity fields from particle images. Instead of giving a
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Nonlinear modes (weights between latent variables and flow field)

Figure 2.5: Extraction of nonlinear modes (MFF20) from shallow decoder (EMY20) in super-reso-

lution reconstruction for an example of two-dimensional incompressible flow (vorticity field) over

a NACA0012 airfoil ('4 = 100 and U = 40 deg).

velocity field from the correlation method, one may consider providing a particle image directly

into a model to obtain a higher-resolution flow field. Cai et al. (CZX19) used FlowNetS (DFS19) to

estimate velocity fields of cylinder wake, backward-facing step flow, and isotropic turbulence from

synthetic particle images. They exhibited that a machine-learning model provides higher-resolution

flow field data than the conventional PIV. The proposed method was also tested with experimental

particle images of a turbulent boundary layer. Reconstructed flows based on machine learning may

capture phenomena that cannot be observed with conventional techniques. This FlowNetS-based

method has recently been commercialized as AI-PIV (MWK20). The super-resolution approach

with particle images has also been applied to a wake around blu� bodies to remove the influence

of reflection and halation in PIV measurements (MFF21).

Alternatively, a set of sparse sensor measurements can be considered as input to machine-

learning models instead of the low-resolution flow data. For instance, Erichson et al. (EMY20) used
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Figure 2.6: Reduced-order modeling-assisted super-resolution reconstruction (NG20; DGP22).

a fully-connected model to reconstruct a global flow field from local sensors. The model was applied

to geophysical flow and forced isotropic turbulence. Their fully-connected model is a shallow

decoder – the model that incorporates a dimension compression to nonlinearly extract key features

from sensors, after which the whole field is recovered from these latent representations of the input

sensors, as illustrated in figure 2.5. By visualizing the weight distribution between the latent space

representation and the whole field, the shallow decoder provides nonlinear modes that represent

the contribution of each latent variable for super-resolution reconstruction, which are analogous to

those captured by nonlinear autoencoders (MFF20; FT22; FNF20; ELH22; FHN21; LG20; FT23).

As mentioned above, fully-connected network-based reconstruction is prohibitively expen-

sive for global flow field reconstruction due to the very large number of parameters in the net-

work (WPC20). To address this issue, there are also some e�orts to estimate low-order represen-

tations such as coe�cients obtained through proper orthogonal decomposition (POD) from sparse

sensor measurements (CDS21; GA20; MFR20). For instance, Nair and Goza (NG20) proposed

a fully-connected model-based estimator of POD coe�cients and applied it to a laminar wake

around a flat plate. Their fully-connected model takes vorticity sensors on the airfoil surface

and then outputs POD coe�cients, as illustrated in figure 2.6. They considered wakes with two

di�erent angles of attacks, and reported that the neural-network model outperforms conventional

linear techniques such as Gappy POD (ES95; BDW04) and linear stochastic estimation (AM88).

Similarly, Manohar et al. (MMZ22) has also recently performed a fully-connected model and POD-
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based sparse reconstruction for wake interactions of two cylinders. Their model considers the time

history of sensor measurements with long short-term memory (LSTM) (HS97), achieving more

robustness against noisy inputs compared to a regular MLP model. These reduced-order strategies

in machine-learning-based vortical flow reconstruction are summarized in Dubois et al. (DGP22).

With flow examples of two- and three-dimensional cylinder wakes and a spatial mixing layer,

they discussed pros and cons of a variety of techniques such as POD (Lum67; HLB12; TBD17),

regular autoencoder (HS06), variational autoencoder (RMW14), linear/nonlinear fully-connected

networks, support vector machine (SS04), gradient boosting (Fri01), and library-based reconstruc-

tion (BPK16a; CMB19).

From the aspect of reducing the number of parameters inside machine-learning models, a

combination of a fully-connected model and CNNs has also been leveraged to overcome the

limitation of fully-connected networks. Morimoto et al. (MFM22) considered a combination of

multi-layer perceptron (MLP) and CNN (called MLP-CNN-based estimator) to estimate vortical

flows around urban structures and temperature data (DayMET) across North America from sparse

sensors. The sensor inputs are first given into the part of a fully-connected model and the model

extracts the features from the input sensors. The feature vectors extracted from it are then given to

the convolutional layers. Compared to solely using fully-connected layers, the computational cost

can be significantly reduced while maintaining the reconstruction accuracy. A similar MLP-CNN

model was also considered by Zhong et al. (ZFA22; ZFA23) for a vortex-airfoil gust interaction

problem. The model estimates a two-dimensional vorticity field from pressure sensor measurements

on an airfoil surface. They reported that transfer learning (PY09; LYF22) can help in reducing

the required amount of training data, while recurrent neural network (long short-term memory,

LSTM (HS97)) also improves the reconstruction performance of complex transient wake problems.

2.3.2 Semisupervised- and unsupervised learning

In addition to supervised-learning-based e�orts, semisupervised- and unsupervised learning can

be used in super-resolution analysis of fluid flows. Semisupervised learning combines a small
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amount of labeled data with a large amount of unlabeled data, which can also be augmented with

prior knowledge incorporated into the loss function. Gao et al. (GSW21) proposed a semisu-

pervised CNN-based super-resolution analysis for fluid flows. Through the investigation of a

two-dimensional laminar flow and a cardiovascular flow, they showed that the constraints based on

the conservation laws and boundary conditions enable successful super-resolution reconstruction

without high-resolution labeling. These physics-law-based augmentations inspired by physics-

informed neural network (PINN) (LLF98; RPK19; RYK20) achieve accurate reconstruction while

reducing the required amount of training data (YYL21; YYH22).

There are also a couple of studies on semisupervised super resolution. Bode et al. (BGL21)

proposed the physics-informed enhanced super-resolution generative adversarial network (PIES-

RGAN) for applications to subgrid-scale modeling of LES. To incorporate a physics-based loss

function, they used the following cost function E for training,

E = Eadv + VregEreg + VgradEgrad + VcontEcont, (2.10)

where Vreg, Vgrad, and Vcont are weighting coe�cients for the di�erent loss term contributions. The

first loss term Eadv corresponds to a regular adversarial loss used in GAN-based models, introduced

in equation 2.6 (WYW18). The second term Ereg is a regular supervised loss function, which is

equivalent to equation 2.4. The PIESRGAN also includes the gradient loss Egrad defined as the !2

error norm of the gradient of state variables (BGK19). Weighting the gradient of the flow field pro-

motes a smooth and physically-plausible reconstruction (HFM20b; HFM20a). They also considered

Econt, the divergence-free error for incompressible flow. Similarly, a combination of physics-based

loss and U-Net (figure 2.4) was proposed by Esmaeilzadeh et al. (EAK20) as MeshfreeFlowNet and

was applied for the Rayleigh-Bénard instability problem. Due to the U-Net-based augmentation,

the training for MeshfreeFlowNet takes only less than 4 minutes with 128 GPUs while achieving

quantitative reconstruction. To improve the generalizability of MeshfreeFlowNet (EAK20) for

a wide variety of problems, Wang et al. (WZG22) have recently proposed TransFlowNet which

weakens the constraint of initial and boundary conditions compared to MeshfreeFlowNet. Trans-

FlowNet was tested with examples of shallow water equation and Rayleigh-Bénard convection. The
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Figure 2.7: (0) ResBlock (HZR16) comprised of BatchNormalization layer, ReLU activation, and

convolutional layer. (1) Cycle GAN (cGAN) (ZPI17; MTK23).

model provides better reconstruction than the original MeshfreeFlowNet, although the instability

of training process is also observed due to the complexity of model.

While incorporating the aforementioned physics loss can promote a physically-plausible super-

resolution solution, we should be mindful of the fact that finding an appropriate balance between

the weighting coe�cients is challenging. We can consider the use of optimization for finding an

optimal set of coe�cients, although it is computationally expensive (PKK22). The influence of

balancing between an adversarial error and a regular !2 reconstruction error for sparse flow recon-

struction is discussed in detail by Zhang et al. (ZOK22) for an example of a flow around building

models. Moreover, achieving stable convergence during training is also di�cult with such complex

loss functions. To avoid this issue, additional machine-learning functions such as skip connec-

tion (HZR16) and BatchNormalization (IS15) can be leveraged. In fact, the aforementioned models

such as PIESRGAN (BGK19), MeshfreeFlowNet (EAK20), and TransFlowNet (WZG22) are com-

posed of ResBlock (HZR16) (illustrated in figure 2.7(0)), which includes both BatchNormalization

and skip connection, for stable and successful learning.

In contrast to supervised and semisupervised learning, unsupervised learning, which does

not require labeled data sets, is also used for super-resolution analysis. Kim et al. (KKW21)

proposed a cycle generative adversarial network (cGAN)-based framework for unsupervised super-
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resolution reconstruction of turbulent flows. While a regular GAN is composed of one generator

and one discriminator as presented in section 2.2.1.3, cGAN possesses two generators (⌧1 and ⌧2)

and two discriminators (⇡1 and ⇡2), as illustrated in figure 2.7(1). One generator ⌧1 attempts to

reconstruct a high-resolution data qHR from a low-resolution flow field qLR, while another generator

⌧2 provides low-resolution fields from the generated high-resolution flow data through ⌧1. The

discriminators⇡1 and⇡2 are trained to distinguish the real data from the generated data, as depicted

in figure 2.7(1). This operation allows the cGAN model to learn common features between low-

and high-resolution data, that need not be paired (ZPI17). The proposed model can reconstruct a

velocity field of turbulent channel flow from its low-resolution field. They also demonstrated that

the model trained with data from DNS can be applied to the LES data.

Following the study by Kim et al. (KKW21), the unsupervised GAN-based super resolution

has recently been examined for a variety of flows. Wurster et al. (WSG21) proposed a hierarchical

GAN to perform super resolution of fluid flows. Analogous to SURFNet (OVM21), a hierarchical

GAN is first trained with low-resolution data sets. The model weights are then transferred to

training with higher-resolution flow fields. Güemes et al. (GDI21) combined a GAN-based super-

resolution reconstruction and state estimation (BMT01; CHB06; CCB11; SH06) from the wall

sensor measurements of turbulent channel flow. They first perform super-resolution reconstruction

for wall-shear stresses and wall pressure. Another GAN model is then constructed to estimate wall-

parallel velocity fields at several wall-normal locations from the super-resolved wall measurements.

The GAN models are able to provide reasonable agreement with the reference simulation data up

to H+ ⇡ 50. Yousif et al. (YYL22b) extended a super-resolution GAN model by combining it with

multi-scale CNN (FFT19b) and applied it to a turbulent channel flow with large longitudinal ribs.

The reconstructed flow fields are shown to retain the temporal correlations and high-order spatial

statistics.

Moreover, the use of a CNN-based GAN for three-dimensional super-resolution analysis

was examined by Xu et al. (XLW20) for computed tomography (CT) of turbulent jet combus-

tor. With an example of turbulent atmospheric flow, Hassanaly et al. (HGS22) has comprehen-
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sively compared various models for super-resolution reconstruction, including a super-resolution

GAN (LTH17), stochastic estimation, a deconvolution GAN (SGH20), and diversity-sensitive con-

ditional GAN (YHJ19). Although GAN-based models have issues with stability during the learning

process, these models hold potential for high-wavenumber reconstruction of turbulent flows.

2.4 Case study: super-resolution reconstruction of turbulence

This section o�ers details of CNN-based super-resolution reconstruction for fluid flows through

a case study. As an example, we consider two-dimensional decaying isotropic turbulence, which

serves as a canonical turbulent flow. The flow field data to be studied is generated by a two-

dimensional DNS (TNB16), which numerically solves the two-dimensional vorticity transport

equation,
ml

mC

+ u · rl =
1
'40

r
2
l, (2.11)

where u = (D, E) and l represent the velocity and vorticity fields, respectively. The compu-

tational domain is a biperiodic square with !G = !H = 1. The initial Reynolds numbers for

training/validation and test data sets are respectively set to '40 ⌘ D
⇤
;
⇤

0/a = {451, 442}. Here, D⇤ is

the characteristic velocity defined as the square root of the spatially averaged initial kinetic energy,

;
⇤

0 = [2D2(C0)/l
2(C0)]

1/2 is the initial integral length, and a is the kinematic viscosity. The numbers

of computational grid points used by DNS are #G = #H = 512. For training the baseline networks,

we use 1000 snapshots over an eddy turn-overtime of C 2 [2, 6] with a time interval of �C = 0.004.

We consider a vorticity field l as the variable of interest.

We note that our previous studies (FFT19b; FFT21) on machine-learning-based super-resolution

reconstruction was performed with two-dimensional decaying turbulence but at lower Reynolds

numbers ('40 ⇡ 80) with smaller numbers of the grid points (# = 128). The present case study

examines how the model can be improved with regard to not only reconstruction accuracy but also

a large amount of necessary training data at a higher Reynolds number.

For the present study, we consider super-resolution reconstruction with a regular CNN and
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the hybrid downsampled skip-connection/multi-scale (DSC/MS) model (FFT19b). The design

of the DSC/MS model is illustrated in figure 2.8. The red portion of the downsampled skip

connection (DSC) model is composed of up-/downsampling operations and skip connection. The

up-/downsampling operations provide robustness against rotational and translational invariance.

The skip connection plays a crucial role in learning hierarchically the relationship between the

high-resolution output and the low-resolution input, while providing numerical stability during the

learning process of the CNN (HZR16). The present model also incorporates the multi-scale model

(MS) model (DQH18), corresponding to the blue portion of figure 2.8. This part of the model

performs filtering operations across three di�erent sizes, capturing a range of spatial length scales

in vortical flows.

To accurately reconstruct two-dimensional higher Reynolds number turbulent flow, we provide

additional internal skip connections between the DSC model and MS model, as depicted in the

green and orange boxes in figure 2.8. Each green box in the DSC model connects with each of the

orange boxes in the MS model, hence nine connections are present. With these interconnections,

this interconnected DSC/MS model enables the intermediate input/output from both submodels

to correlate with each other through the learning process. Since coverage of spatial length scales

increases with the Reynolds number, the interconnections are expected to be important in learning

the relationship between small and large vortical elements by the model. For the activation function

i, this study uses the ReLU function (NH10) to avoid vanishing gradients of weights during the

training process.

Furthermore, we consider a physics-based loss function to examine its e�ects on machine-

learning-based super-resolution reconstruction of turbulent vortical flows. As discussed in sec-

tion 2.2.2, the use of physics-inspired loss function may not only promote the physical validity

of reconstruction but also reduce the amount of necessary training data in a semisupervised man-

ner (GSW21; YYL21; EAK20; RRL22). Here, we use the nonlinear advection term and the linear

viscous di�usion term in equation 2.11 for the physics-based loss function. The present cost
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Figure 2.8: Interconnected DSC/MS model for super-resolution reconstruction of turbulent flows.

function E is hence defined as

E = El + VadvEadv + VviscEvisc, where (2.12)

El = | |lDNS � � (lLR) | |2,

Eadv = | |uDNS · rlDNS � uML · rlML | |2,

Evisc = | |r
2
lDNS � r

2
lML | |2,

in which lDNS and lLR, respectively, represent the reference (high-resolution) DNS field and the

low-resolution input flow field. The coe�cients Vadv and Vvisc determine the balance of the terms

in the loss function. The terms (·)ML inside Eadv and Evisc are computed with the super-resolved

vorticity field � (lLR).

In what follows, we assess six di�erent machine-learning models:

1. CNN-!2: a regular CNN model with E = El,

2. CNN-!phys: a regular CNN model with E = El + VadvEadv + VviscEvisc,
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Figure 2.9: Super-resolution reconstruction of two-dimensional decaying homogeneous isotropic

turbulence. The value underneath each vorticity contour plot presents the !2 norm of reconstruction

error n .

3. DSC/MS-!2: the original DSC/MS model (FFT19b) with E = El,

4. DSC/MS-!phys: the original DSC/MS model with E = El + VadvEadv + VviscEvisc,

5. IDSC/MS-!2: the interconnected DSC/MS model with E = El,

6. IDSC/MS-!phys: the interconnected DSC/MS model with E = El + VadvEadv + VviscEvisc.

These six machine-learning models are tasked to reconstruct the high-resolution vortical flow field

of size 5122 from the corresponding low-resolution data of size 162, generated by average-pooling

operations (FFT19b). We set Vadv = Vvisc = 0.1 to the balance of the order for each term.

Let us consider the reconstructed vorticity fields from machine-learing-based super-resolution

approaches in figure 2.9. The large-scale vortices can be reconstructed with the regular CNN

models. However, the reconstructed fields are pixelized around rotation and shear-dominated
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Figure 2.10: (0) The linear term r
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l and (1) the nonlinear term u · rl, computed from the

reconstructed flow fields for each machine-learned model. The value underneath each contour

presents the !2 norm error n . Shown results are from the same case as the vorticity snapshots

presented in figure 2.9.
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structures, which was also observed with a regular CNN-based super-resolution reconstruction in

our previous study (FFT19b). The !2 norm error, n = | | 5DNS� 5ML | |2/| | 5DNS | |2, is found to be larger

than 0.5 with the regular CNNs. The DSC/MS model with the !2-based optimization provides a

better and clear reconstruction for large vortical structures with an !2 norm error of 0.241. This

indicates that embedding the physics-inspired DSC functions and the MS filters enables accurate

reconstruction of vortical flows.

While the DSC/MS model achieves a qualitative reconstruction for vortical structures, finer

scales of shear layers that appear around large rotational elements cannot be recovered well. The

reconstruction over these scales that emerge in higher Reynolds number flows can be improved by

introducing either the physics-based loss function or the interconnection inside the DSC/MS model,

as presented in figure 2.9. With DSC/MS-!phys, IDSC/MS-!2, and IDSC/MS-!phys, these shear

layers are more accurately reconstructed compared to the reconstruction with the regular model,

as highlighted by the red boxes in figure 2.9. Hence, both the physics-inspired optimization and

model design greatly assist in the reconstruction of higher Reynolds number flows. Note that the

di�erence between the interconnection-based model enhancement and using the physics-based loss

function is in their robustness against noisy low-resolution input, as it will be discussed later.

We here examine each term in the physics-loss function; namely the linear term r
2
l and the

nonlinear term u ·rl of the present super-resolution reconstruction, as shown in figure 2.10. These

results are from the same case as the vorticity snapshots presented in figure 2.9. Examination of these

terms is a strict test since higher-order derivations can amplify errors greatly for high wavenumbers.

Let us first focus on the estimated linear viscous di�usion term visualized in figure 2.10(0). The

regular CNN completely fails to estimater2
l, as evident from the pixelized vorticity reconstruction

in figure 2.9. Using the DSC/MS model with the regular !2 optimization, the linear term field

also exhibits erroneous profiles comprised of pairwise structures that cannot be observed in the

reference field. These derivative-based assessments are again very sensitive and also a�ected by the

reconstruction of surrounding local structures. As expected, estimation is improved by including

the physics-based term in the loss function (DSC/MS-!phys). The accuracy of r2
l can be further
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Figure 2.11: Dependence of the reconstruction accuracy on the number of the training snapshots.

enhanced by using the interconnected DSC/MS models, presenting fine-scale structures in the high-

order derivation field. This indicates that adding the interconnections inside the machine-learning

model enables physically-compatible super-resolution reconstruction of turbulent flows in addition

to the physics-loss-based optimization.

The estimation of the nonlinear term is shown in figure 2.10(1). The whole trend in recon-

struction is analogous to that for the linear term, hence the interconnected DSC/MS models well

reconstruct the nonlinear term fields compared to the reference field. The !2 errors for the nonlin-

ear term with DSC/MS-!phys, IDSC/MS-!2, and IDSC/MS-!phys are higher than that of the linear

term. This suggests that the estimation for the nonlinear term is more di�cult than the linear term.

We also investigate the dependence of the reconstruction error on the number of the training

snapshots =snapshot. For all models, the error decreases as =snapshot increases, as shown in figure 2.11.

Both the interconnection and the physics-based loss enable a qualitative reconstruction with a

reduced number of training snapshots. The observation that a physics-inspired optimization reduces

the required amount of training data has also been reported in previous studies (GSW21; RYK20).

The interconnected DSC/MS model reconstructs fine vortical structures even with only =snapshot =
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Figure 2.12: Dependence of the reconstruction accuracy on the magnitude of noisy input.

50 (figure 2.11(2)), while the original DSC/MS model provides only large-scale structures, as

shown in figure 2.11(0). This suggests that the present machine-learning model e�ciently captures

a nonlinear relationship between the under-resolved input and the high-resolution vortical flow from

a small amount of training data by capitalizing on the interconnected skip connections.

The use of the physics-based loss function can lead to robustness against noisy inputs. Here, let

us examine the influence of noise on super-resolution reconstruction. We add the Gaussian noise

n to the low-resolution input lLR, and assess the reconstruction !2 error n = | |lHR � � (lLR +

n) | |2/| |lHR | |2, where the magnitude of the noise is given as W = | |n| |/| |l | |. Here, the models

trained with 1000 snapshots are used. The relationship between the error and the noise magnitude

is shown in figure 2.12. For all cases, the error increases with increasing magnitude W. The

reconstructed flow fields generally reveal the large-scale vortices, while the finer scales are a�ected

by the noisy input. Especially for W > 0.3, the DSC/MS models with the physics-based loss

function are observed to be more robust than models trained with the simple !2 error optimization.

Hence, it can be argued that physics-based loss function helps in devising robust models against

noisy measurements.
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Figure 2.13: Applications of machine-learning-based super-resolution analysis for moving sensor

and unstructured grid conditions. (0) Convolution on point clouds (KRG21; QSM17). (1)

Graph neural network (LZJ22; GGJ22). (2) Coordinate transformation (GSW20). (3) Voronoi

tessellation-based projection (FMR21).

2.5 Extensions

In the above sections, we surveyed various machine-learning-based super-resolution approaches

and their applications to vortical flows. Here, we discuss extensions of machine-learning-based

super-resolution analysis beyond their basic applications.

2.5.1 Changing input variable setups

When a machine-learning model is trained, the size of the input and output variables or more

specifically the setup of the input and output variables is fixed. If the setup is changed, the machine-

learning model generally needs to be completely retrained, which is a heavy burden. This issue is in

fact a limitation of many machine-learning models, and machine-learning-based super-resolution

models are no exceptions. If the number of pixels or their locations is di�erent from that used in
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the training process, the trained model cannot be used without retraining the model with the input

variable size changed. Preprocessing the di�erent-size input data with interpolation may work,

but care should be taken since such an approach generally loses information. Unstructured grid

and randomly sampled data also require some care since standard CNN-based models may not be

appropriate.

There are several approaches to address these challenges. For instance, PointNet (QSM17) is

able to handle unorganized and sparse data with a point cloud. Although this was originally used

for image classification and segmentation tasks, Kashefi et al. (KRG21) has recently applied it to

fluid flows. In their formulation, sensors on the grid can be directly treated and a model can learn

the relationship between the sensors and outputs, as illustrated in figure 2.13(0).

To handle spatially irregular sensor arrangements, graph neural network (GNN) (WPC20) can

be considered. GNN is able to perform a convolutional operation on unstructured mesh data, which

is similar to that inside of CNNs. Such GNN-based methods can be applied for machine-learning-

based super-resolution reconstruction by modifying the setup for data dimensions between input

and output, as shown in figure 2.13(1).

Coordinate transformation can also be considered to simply use regular machine-learning

models for vortical flows. PhyGeoNet (GSW20) includes coordinate transformation from an

irregular domain to a structured mesh space for fluid flow regression, allowing us to convolve on

flow fields, as illustrated in figure 2.13(2). Finding the appropriate coordinate transformation may

be a challenge for complex flow field domain geometry.

We can also generalize super-resolution analysis by considering sensor measurements in the

flow field as the input for machine-learning models to reconstruct the flow field. For a fixed number

of sensors with their positions unchanged, regular machine-learning models developed in image

science can often be directly used. However, when sensors go online or o�ine changing the number

of sensors and moving spatially over time, the machine-learning models cannot be applied without

special care. Voronoi-tessellation-based CNN (FMR21) can handle an arbitrary number of moving

sensors in a single model. In this formulation, sparse sensor measurements are projected onto grids
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generated from Voronoi tessellation, as illustrated in figure 2.13(3). The flow field discretized with

Voronoi tessellation is then used as an input for CNN-based super-resolution reconstruction. This

approach provides robust real-time super-resolution analysis for vortical flows.

2.5.2 Super resolution for turbulent flow simulations

With the ability to recover fine-scale flow structures from coarse images of the flow field, it

is natural to ask whether machine-learning-based super-resolution analysis can be incorporated

into numerical simulations to improve turbulent flow simulations. From a broader perspective,

this question translates to whether super-resolution analysis can be implemented in a simulation of

multi-scale physical phenomena to accurately reconstruct the subgrid-scale physics (PD23; BGL21).

For super-resolution analysis to reconstruct a physically accurate high-resolution flow field, it

is generally necessary that the low-resolution input data is accurate on its own coarse grid. If the

coarse flow field input is provided by some turbulent flow simulation (e.g., large-eddy simulation,

detached eddy simulation, and Reynolds-averaged Navier-Stokes simulation (KT16)), it is important

that the coarse flow be accurate to begin with. The super-resolved field would not be a physically

accurate if the low-resolution flow field (input) is deviated from the true solution. Conservatively

speaking, turbulent flow statistics may be predicted well with super resolution but highly-accurate

reconstruction of each and every instantaneous flow would likely be a major di�culty, if not

impossible (KSA21). In other words, we should not expect that LES results (or those from other

solvers with turbulence models) can be transformed to yield DNS results.

A worthy question to ask is whether super-resolution analysis can support the development of

subgrid-scale models. This could be di�erent from other turbulence modeling approaches that use

applied regressions to directly determine the subgrid-scale models for turbulent flow simulations.

Similar to an approximate deconvolution model (SAK01) which considers inverse mapping of

spatial filters, super resolution could be used to augment the subgrid-scale models. Furthermore, it

remains to be seen whether super-resolution analysis can simultaneously nudge the low-resolution
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field and recover the subgrid-scale flow structures. Again, the success of such simultaneous

corrections will likely require the low-resolution flow field to be fairly accurate on its own grid.

Alternatively, GAN-based techniques may also provide interesting approaches to achieve super

resolution for turbulence.

Ongoing research developments in super-resolution analysis of turbulent flows and data-driven

turbulence models (LKT16; DIX19) may address the issues identified here in the coming years. As

super-resolution methods are extended and incorporated into turbulent flow analysis and simula-

tions, it is important to ensure that the derived super-resolution method is generalizable over a range

of Reynolds numbers and turbulent flow problems to confirm robust and reliable performance. This

is critical if these techniques are to be implemented in general-use turbulent flow simulators.

2.5.3 Applications to real-world problems

Super-resolution analysis holds great potential for fluid dynamics as discussed above. However,

there still exists some challenges, especially toward applications to real-world problems. This

section discusses the current challenges and possible future directions of machine-learning-based

fluid flow super resolution.

One of the major challenges of machine-learning-based super-resolution reconstruction for fluid

flows is the necessity for a certain amount of training data. While unsupervised learning used for

GANs and semisupervised learning assisted with physics-inspired loss functions introduced in the

present survey can mitigate this issue, existing techniques still require learning the relationship

between coarse data and high-resolution vortical flows from either unpaired or paired training

data for successful reconstruction. Since the majority of real-world problems do not have access

to ground truth and only sparse and noisy measurements are available, one can consider the use

of data assimilation (DWZ23; DMB20; DMB18) to improve super-resolution reconstruction by

incorporating the latest observations with a short-range real-time forecast.

Yasuda and Onishi (YO22) has recently proposed a four-dimensional super-resolution data
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assimilation and demonstrated its performance with a two-dimensional periodic channel flow. The

proposed method considers the temporal evolution of a system from low-resolution simulations

with the aid of an ocean model, while a trained machine-learning model is simultaneously used to

perform data assimilation and super resolution. Since there is a huge amount of historical weather

and climate reanalysis data available, the unification of super resolution with data assimilation or

pre-existing models would be an interesting research direction.

In addition, most of the existing studies focus on designing a reconstruction model for a particular

flow problem, variable, or data shape. From this aspect, it would be desired to simultaneously

leverage a variety of multi-modal data such as point-wise measurements, image-based data, and

online measurements such as LiDAR-type data. Prediction of unavailable parameters from such

sparse and noisy but available measurements may also become an interesting direction of super-

resolution studies of fluid dynamics.

2.6 Conclusions

We provided a survey on machine-learning-based super-resolution reconstruction of vortical flows.

Several machine-learning approaches and the use of physics-based cost functions for super-

resolution analysis were discussed. We further performed case studies of super-resolution re-

construction of turbulent flows with convolutional neural network (CNN)-based methods. We

demonstrated that a super-resolution model with physics-based loss function or physics-inspired

neural network structures can reconstruct vortical flows even with limited training data and noisy

inputs. We also discussed extensions and challenges of machine-learning-based super resolution

for fluid flows from the aspects of changing input variable setups and applications for turbulent

flow simulations.

The insights obtained through the present survey can be leveraged for a variety of machine-

learning-based super-resolution models. For instance, the use of multi-scale filters inside CNN

can be generalized not only in supervised learning but also in unsupervised techniques (YYL22a).
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Physics-informed loss functions can also be extended for various machine-learning models. More-

over, it may also be interesting to develop super-resolution models in wavespace to incorporate

certain spectral properties.

We remind that studies surveyed in the present paper are generally based on clean train-

ing data. Preparing high-quality input data is essential for successfully reconstructing turbulent

flows. However, it is necessary to assess the robustness and sensitivity of the models against

noisy inputs (NFF22). This point will be important as machine-learning-based super-resolution

analyses become utilized in industrial applications (FAN22). Together with the accuracy of the

models, quantifying uncertainties in machine-learning prediction is also required to assess their

reliability and limitations. For these reasons, making computational and experimental fluid-flow

databases (LPW08; WM08; TDB23) available is critically important to advance studies on data-

driven analysis of vortical flows. We hope that this survey paper provides some guidance in

advancing algorithms and applications of machine-learning-based super-resolution analysis for a

variety of fundamental and industrial fluid flow problems.
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CHAPTER 3

Sparse pressure sensor-based vortical flow reconstruction in a

pump sump with machine learning

Here, we present a supervised machine-learning technique to reconstruct turbulent vortical struc-

tures in a pump sump from sparse surface pressure measurements (FAN22), which is an example

of the industrial applications of our techniques.

3.1 Motivation

Chaotic dynamics caused by turbulent vortices can make operations of industrial machines chal-

lenging. Large-scale turbulent vortices produce noise, energy loss, and vibrations, a�ecting the

performance of machines. Hence, it is critical that engineers are mindful of the large-scale turbulent

vortices for safe and e�cient operations of fluid-based systems (LAN20; Bre05; Bre11; HKK14;

KYK19).

Achieving accurate awareness of the flow state is important. Thus far, linear-theory-based

techniques have served a crucial role in reconstructing fluid flows from limited measurements.

Linear stochastic estimation (LSE) had often been used for flow state estimation of canonical

flows (AM88; NFF22). Kalman filter-based approaches have also been considered for fluid flow

reconstruction of wall-bounded turbulence (CHB06; CCB11) and airfoil wakes (HES14; LE21).

In addition, Gappy POD (ES95) has been utilized for global flow field reconstruction in both

numerical (BDW04; Wil06) and experimental studies (MU07). Although these linear techniques

provide insights from fluid flow data, they have limitations in extracting features from fluid flows
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with strong nonlinearities.

Recent advancement in machine learning paves a new way for data-driven fluid flow recon-

struction (BNK20; Dur21). Callaham et al. (CMB19) performed a library-based flow field recon-

struction from sparse sensors for flows, including a periodic cylinder wake, a mixing layer, and

geophysical flows. The global flow field is reconstructed through a linear combination of basis

vectors from the training library. They also reported the robustness of the linear sparsity-promoting

technique against noisy measurements. Such sparse sensing framework based on linear analy-

sis is also useful for identifying flow regimes and bifurcation phenomena in thermo-fluid flow

problems (KGB17). Moreover, nonlinear neural networks have been used for fluid flow reconstruc-

tion (BEF19; BBD21; FFT19b; LY19; LY21). Erichson et al. (EMY20) utilized a fully-connected

neural network for sparse turbulent flow reconstruction of a geophysical flow and forced isotropic

turbulence. Nair and Goza (NG20) also proposed a flow estimation technique based on multi-layer

perceptron by combining with low-dimensional representation of flows obtained through proper

orthogonal decomposition. In the context of super resolution which reconstructs a high-resolution

signal from its low-resolution counterpart, convolutional neural networks have also been considered

for fluid flow reconstruction (FFT19b; FFT21).

While the aforementioned studies focused on the application to structured grid data, the ex-

tension of neural network models to unstructured data is more recent. For instance, Leer and

Kempf (LK21) used a radial-logarithmic filter mask to handle unstructured data with a multi-layer

perceptron based estimator. They estimated flows around airfoils and ground vehicles. Fukami et

al. (FMR21) have recently proposed a Voronoi tesselation-assisted machine learning technique for

global flow field reconstruction from sparse sensors with arbitrary time-varying sensor locations

and number of sensors.

These recent data-driven e�orts are generally limited to academic problems. Of particular

interest in this paper is the applicability of the aforementioned machine learning models to industrial

turbulent flows that contain a broad range of spatio-temporal scales. This study presents a neural

network-based fluid flow estimator. As an example, we consider turbulent flow in a pump sump
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which can experience the emergence of air-entraining vortices and submerged vortices. These

vortices are harmful to pump operations as they cause unbalanced loading and loud noise with

the possibility of structural damage (Bre11; Zha10; ALT18; Yan17). Here, we consider a global

field reconstruction from sparse pressure sensors located on the surface of the pump inlet to

detect the aforementioned harmful vortices. We use a combination of multi-layer perceptron and

three-dimensional convolutional neural network for the present flow reconstruction. This network

structure enables us the handling of complex flow in a computationally e�cient manner.

The present paper is organized as follows. The data set used in the present study is described in

section 3.2.1. We then introduce the basic principles of machine learning models in section 3.2.2.

Results of the present reconstruction with discussions are provided in section 3.3. At last, we o�er

concluding remarks in section 3.4.

3.2 Methods

3.2.1 Data preparation of pump sump flow

We perform a large-eddy simulation (LES) with an incompressible flow solver in OpenFOAM (WTJ98)

to simulate the single-phase vortical flow in a pump sump. Wall-adapting local eddy-viscosity

model (WALE) (ND99) is adopted for the subgrid scale stress tensor in the present LES. The

computational setup and grid of a pump sump are illustrated in figure 3.1(0). The flow enters to the

sump area from the left inlet of the rectangular domain and leaves from the top outlet, as depicted

in figure 3.1(0). The steady-velocity boundary condition of 0.384 m/s and the static pressure

boundary condition (0 Pa) are applied at the inlet and outlet boundary, respectively. The flow rate

is set to 1.73 m3
/min. A no-slip wall boundary condition is imposed along the bottom wall and

side walls of the rectangular domain, and the wall of cylindrical domain. Along the top wall of

the rectangular domain, i.e., the free surface of water, we apply the slip wall boundary condition.

The characteristic Reynolds number is 16000 based on the bulk velocity + at the bell mouth of

0.122 m/s and the diameter of the pump inlet of 0.15 m. The present grid size is approximately

45



To pump

x

y
z

(c)

Inflow

Pump inlet
(bell mouth)

(a)

(b)

W
all

x

y
z

Inlet Free surface

Wall

1.8 m

1.2 m

0.2 m

0.3 m

0.14 m

0.15 m

0.15 m

0.5 m

Outlet

0 1-1
u

(m/s)

0.1 m

0.26 m

0.
40

 m

Figure 3.1: (0) and (1) Computational setup and grid used in the present study. (2) Vortical flow

in a pump sump. Turbulent vortices are visualized using the second invariance of the velocity

gradient tensor (& = 1500).
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Figure 3.2: The combination of multi-layer perceptron and three-dimensional convolutional neural

network for pump sump flow reconstruction from sparse sensors. Flow fields are visualized using

the second invariance of the velocity gradient tensor (& = 1500).

5 million with trimmed mesh. The accuracy of the LES computation has been checked to ensure

that relevant turbulent physics in the pump sump are well-captured (ALN19).

The present study aims to reconstruct a global vortical flow field shown in figure 3.1(2) from

sensors on the bell mouth using supervised machine learning. For training the present supervised

machine learning F , a set of inputs s and output q is prepared (FFT20). We prepare the training

data as a set of pressure sensor measurements on the bell mouth as the input and the second invariant

of the velocity gradient tensor as the output. The second invariant of the velocity gradient tensor is

known as the &-criterion (HWM88) which is used to identify vortex cores. For the output domain

of the interest, we focus on the region of 1.54 m  G  1.8 m and 0 m  H  0.4 m, as shown in

figure 3.1(1).

3.2.2 Machine learning models

The objective of the present study is to develop a machine learning model that takes a limited number

of pressure sensor measurements as inputs to accurately reconstruct the global turbulent flow field

(&). We use a combination of multi-layer perceptron (MLP) (RHW86) and three-dimensional

convolutional neural network (CNN) (LBB98) for the present model, as illustrated in figure 3.2.

The pressure measurements are first provided as input to the MLP portion of the network. Through
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Figure 3.3: (0) A single perceptron and (1) a multi-layer perceptron.

the nonlinear operations within the MLP, the model can acquire the high-dimensional representation

of input sensor measurements as the output of the hidden layers. This data is then fed to the CNN

section, which extracts the relationship between the representation of the input sensors and the

three-dimensional flow field with a manageable computational cost. Note that reconstructing a

three-dimensional turbulent flow field with a large number of grid points, such as the present flow,

is prohibitively expensive solely with MLP due to its fully-connected structure (WPC20). The use

of CNN can address this computational cost while maintaining accuracy. Below, we briefly present

the formulations of MLP and CNN, and discuss the hybrid MLP-CNN model.

3.2.2.1 Multi-layer perceptron (MLP)

Let us introduce the multi-layer perceptron (MLP) (RHW86). MLP can learn the nonlinear

relationship between the input and the output. MLP is an aggregate of perceptrons, as shown in
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Figure 3.4: Three-dimensional filter operations in a convolutional neural network.
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Here, i is the activation function and 1 is the bias added at each layer. By choosing a nonlinear

function for i, MLP can perform nonlinear regressions (and classifications), well beyond what can

be achieved by linear reconstruction techniques. The present study uses the ReLU function (NH10),

which is robust against vanishing gradients during the training of neural networks.

3.2.2.2 Three-dimensional convolutional neural network (CNN)

Convolutional neural network (CNN) (LBB98) is widely used for image recognition. Filter op-

erations inside the CNN enable us to process high-dimensional data without being limited by the

curse of dimensionality (the problem of having enormously large number of weights). This ca-

pability is especially attractive to manage fluid flow data that has large grid size (high degrees of

49



freedom) (MFZ21; GGI21; KL20). The operation of a three-dimensional CNN can be expressed

as

2
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where � is the width and height of the filter, ⌧ = floor(�/2),  is the number of channels in

the convolution layer, 1< is the bias, and i is the activation function. The convolutional layer

provides the output through the filters \ by giving the input data 2(;�1) , as illustrated in figure 3.4.

Similar to the MLP, the nonlinear activation function i is then taken for each output. The ReLU

function (NH10) is also chosen as the activation function here. Through the training process of

CNN, filter coe�cients \?3A;< for the filter are optimized to acquire an input-output relationship in

a supervised manner. Since this filter (weights) is shared over the whole field within the same layer

(;), the number of weights is much smaller than what is needed for a fully-connected MLP for the

same degrees of freedom. In addition to the filtering operations, we also incorporate upsampling

operations to recover the dimension of data towards the final layer of the CNN.

3.2.2.3 MLP-CNN based state estimator

We combine the aforementioned two machine learning models for the present reconstruction.

Pressure sensor measurements on the bell mouth s are fed into an MLP. The feature vectors

extracted through the MLP are supplied to the three-dimensional convolutional layers, as depicted

in figure 3.2. To provide a one-dimensional feature vector from the MLP into the CNN, the vector

is here reshaped into a three-dimensional tensor. The training process of the present MLP-CNN

based state estimator F is expressed as,

w
⇤ = argmin

w
| |q � F (s;w) | |2. (3.3)

This problem is solved to optimize weights w by minimizing the !2 error function between the

reference field q and the estimated field F (s). We use the Adam algorithm (KB14) for updating

weights w in the present model. To prevent overfitting the data, we incorporate an early stopping

criteria (Pre98) into the present training process.
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Figure 3.5: Machine-learning-based reconstruction of pump sump flow. Flow fields are visualized

using the second invariance & of characteristic equation with respect to a velocity gradient tensor

with the threshold of &th = 1500. The structures are colored by the streamwise velocity D. The

values underneath each subfigure represent the !2 error norm n .

3.3 Results

Let us discuss the present machine-learning-based pump sump flow reconstruction. Here, two

di�erent sizes of the output variable are considered:

Case I. the domain with flow inside the pump inlet (bell mouth) such that q1 2 R100⇥100⇥100,

Case II. the domain without flow inside the pump inlet (bell mouth) such that q2 2 R100⇥100⇥50.

We prepare two machine-learning models for each of these cases. As for the input sensors s, we

consider the pressure ?. We choose the second invariant& of the velocity gradient tensor (CPC90;

JH95) as an output variable q to capture vortical structures in the pump sump.

Let us present in figure 3.5 the reconstructed flow fields from pressure sensor measurements.

We consider di�erent numbers of input pressure sensors =sensor = {4, 8, 16}. As for the sensor
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placements, we use pink sensors for =sensor = 4, pink and blue sensors for =sensor = 8, and all (blue,

pink, and green) sensors for =sensor = 16, as indicated in figure 3.2. These sensors are placed around

the bell mouth in equispacing at the height of H = 0.103 m. The reconstructions shown in figure 3.5

are performed using models trained with 1400 snapshots spanning over C 2 [8, 15] seconds. For

the present model training, it takes approximately 3.5 hours with an NVIDIA Tesla V100 graphics

processing unit. We will revisit the dependence of the reconstruction performance on the number

of snapshots =snapshot later.

For all cases, the reconstructions are in agreement with the reference data. To quantify the

present reconstruction, we define the !2 error as n = | |qRef � qML | |2/| |qRef � q | |2, where qRef ,

qML, and q denote a reference variable, a machine-learning-based estimation, and the time-average

value of the reference, respectively. With =sensor = 16, the models achieve an !2 error of n = 0.131

(Case I) and 0.0949 (Case II), exhibiting almost indistinguishable vortical flow reconstruction from

the reference field. Although some spurious structures are observed, primary structures can be

captured even with =sensor = 4. We also observe improvements in the reconstruction by removing

the flow inside the bell mouth, as shown in figure 3.5. This is likely because the weights inside the

model only cover the region only around the bell mouth where complex vortical structures appear.

We further examine the probability distribution of the & variable, as shown in figure 3.6. We

consider the models trained with {=snapshot, =sensor} = {1400, 8}. The probability distributions

obtained by the machine-learning based reconstruction match the trends to that of the reference

data, which are consistent with the observations from the flow visualization in figure 3.5. We also

find that structures inside the inlet, that are removed in Case II, i.e., 2 ⇥ 106 / & / 6 ⇥ 106,

correspond to lower probabilities. It is known that supervised machine learning models with the

!2 optimization preferentially learn structures that appear with high probability (FFT21). This

observation can also be considered as the reason of the accuracy improvement for the case without

the interior flow.

The demonstrations above were performed using machine learning models trained with 1400

snapshots spanning over C 2 [8, 15] seconds. Next, let us investigate the dependence of the
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Figure 3.6: Probability density function of & for (0) Case I and (1) Case II.

reconstruction accuracy on the number of training snapshots =snapshot. Here, we consider =sensor = 8

for both cases with and without the flow inside the inlet. For this investigation, the number of

snapshots is varied while fixing the time step to �C = 0.005 seconds. Hence, the increment of

the number of snapshots corresponds to that of the time window over the training data regime.

As shown in figure 3.7, the error decreases as the number of snapshots increases for both cases.

Moreover, reasonable reconstruction can be achieved even inside the bell mouth, with as little

as 250 snapshots spanning over C 2 [8, 9.25] seconds. It is also worth pointing out that the !2

norm error used here is a strict measurement that does not account for translational or rotational

similarities (FFT19b). Although the cases with =snapshot = 250 report approximately 20% error,

it is mainly caused by the slight structural o�sets between the reference and the reconstruction.
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Figure 3.7: Dependence of the reconstruction accuracy on the number of training snapshots. (0)

The relationship between the number of training snapshots and the reconstruction error. (1)

Representative snapshots with the !2 error.

The large-scale structures are captured well with the present model despite the small numbers of

training snapshots.

At last, let us examine the influence of noise on the reconstruction. Here, we add noise n to the

sensor input s as

q = F (s + Wn), (3.4)

where F denotes the model trained without the noisy input, W = | |s | |/| |n| | is the magnitude of

noise, and q represents the output of the model. As for the noise n (| |n = 1| |), we use colored

noise whose power spectral density % varies over frequency such that % / 1/ 5 V. Changing

the coe�cient V, various types of noise can be generated. The present study considers V 2

{�2 (purple),�1 (blue), 0 (white), 1 (pink), 2 (brown)}. Note that the flat distribution is o�ered

with V = 0, while the positive/negative V produces the large spectral density at the low/high

frequency. This setup evaluates the robustness of the present machine learning model in terms of

both magnitude and frequency of the noisy input. For the present demonstration, we use models

trained with 1400 snapshots spanning over C 2 [8, 15] seconds, and then assess the performance

using test snapshots over C 2 [16, 17] seconds.
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Figure 3.8: Dependence of the reconstruction accuracy on the magnitude and frequency of input

noise.

The robustness of our model against noise is summarized in figure 3.8. For both cases with

and without the interior domain of the bell mouth, the error increases with increasing magnitude

W. Even with W = 0.25, large vortical structures are well-captured, while finer scales remain in the

reconstructed field. Notably, the model is robust for large-scale reconstruction even for W = 0.75,

although small scales and the interior of the bell mouth cannot be estimated due to the large noise

level over a broad range of frequency.

3.4 Concluding remarks

We presented a machine-learning-based technique to reconstruct turbulent vortical flows in a pump

sump. To reconstruct the turbulent flow structures from sparse sensor measurements collected along

the bell mouth, the proposed model combined two types of supervised machine learning techniques;

namely, the multi-layer perceptron and the convolutional neural network. This proposed network

was able to reconstruct the chaotic vortical flow over a three-dimensional domain with manageable

computational costs for both training and online estimations. We also examined the dependence of
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the model performance with the presence of noise. The present model can be robust for situations

with the limited availability of training data and noisy sensor data.

We envision a broad range of industrial applications for the present machine learning technique

to gain situational awareness of complex turbulent flows. Since the current technique identifies

the location of vortical structures, it can be combined with existing control methods that can ef-

fectively mitigate adverse vibrations and present structural damage (LAN18b; LAN20). Moreover,

combining the present approach with modal analyses may promote understanding of turbulent flow

analyses (TBD17; THB20b). The applicability to flows of other pump sump shapes and at di�erent

Reynolds numbers can be examined in the future. We believe that the present technique can serve

as a flow estimation tool to enhance the performance and safety of industrial fluid-based machines.
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CHAPTER 4

Voronoi tessellation-assisted flow field reconstruction

While convolutional neural network-based supervised machine learning has been considered for

space-time data recovery of turbulent flows (FFT21), they have often been limited to use for only

fixed grid/sensor data and are not suited for local sensor measurements placed randomly and in

motion. To enhance the practicability of the method, we develop a Voronoi-tessellation-assisted

approach, which solves issues associated with existing schemes of global field reconstruction from

limited measurements (FMR21).

4.1 Motivation

Spatial field reconstruction from limited local sensor information is a major challenge in the analysis,

estimation, control, and design of high-dimensional complex physical systems. For complex

physics including geophysics (MBK18), astrophysics (AAA19), atmospheric science (ALM10;

MKK14), and fluid dynamics (FFT20), traditional linear theory-based tools, including Galerkin

transforms (BD11; NE94), linear stochastic estimation (AM88; SH06) and Gappy proper orthogonal

decomposition (BDW04), have faced challenges in reconstructing global fields from a limited

number of sensors. Neural networks have emerged as hopeful nonlinear alternatives to reconstruct

chaotic data from sparse measurements in an e�cient manner (LBH15; BNK20). However,

there are key limitations associated with neural networks for field reconstruction. One of the

biggest di�culties is the applicability of neural network-based methods to unstructured grid data.

Almost all practical experimental measurements or numerical simulations rely on unstructured

grids or non-uniform/random sensor placements. These grids are not compatible with convolutional
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neural network (CNN)-based methods which are founded on training data being structured and

uniformly arranged (LBB98; FFT19b). While a multi-layer perceptron (MLP) (RHW86) can

handle unstructured data, its use is sometimes impractical due to their globally connected network

structure. Moreover, MLPs cannot handle sensors that may go o�ine or move in space. On the

other hand, graph convolutional networks (GCNs) have been utilized to perform convolutions on

unstructured data (WPC20). However, GCNs are also known to scale poorly and their state-of-

the-art applications have been limited to the order of 105 degrees of freedom (MBR21a). Even

such applications of GCNs have required distributed learning on several hardware accelerators.

This restricts their utilities for practical field reconstructions. A greater limitation stems from

the fact that all methods fail to handle spatially moving sensors. This implies that applications

of these conventional tools are limited to a fixed sensor arrangement as that used in a training

process. This limitation is a major hindrance to practical use of these reconstruction techniques,

since experimental sensor locations commonly evolve over time. The framework that integrates

convolutional architectures with time-varying unstructured data is crucial for bridging the gap

between structured field reconstructions and practical problems (CGL20).

In response to the aforementioned challenges, we propose a method that incorporates sparse

sensor data into a CNN by approximating the local information onto a structured representation,

while retaining the information of spatial sensor locations. This is achieved by constructing a

Voronoi tessellation of the unstructured data set and adding the input data field corresponding to

spatial sensor locations through a mask. Voronoi tessellation projects local sensor information

onto the structured-grid field based on the Euclidean distance. The currently technique achieves

accurate field reconstructions from arbitrary sensor locations and varying numbers of sensors with

existing CNN architectures. The present formulation will impact a wide range of research fields

that rely on fusing information from discrete sensors, e.g, buoy-based sensors and tracers in particle

tracking velocimetry (MHC19).

58



…

…

……

Voronoi image

Mask image
Convolutional neural network

Voronoi image construction Deep learning based global field reconstruction 

s1
s2
s3

s8…

t

s1

s2
s3

s4 s5

s6
s7

s8

Figure 4.1: Voronoi tessellation aided global data recovery from discrete sensor locations for a

two-dimensional cylinder wake. Input Voronoi image is constructed from 8 sensors. The Voronoi

image is then fed into a convolutional neural network with the mask image. In the mask image, a

grid having a sensor (blue circle) has 1 while otherwise 0.

4.2 Problem setup and approach

Our objective is to reconstruct a two-dimensional global field variable q 2 R=G⇥=H from local sensor

measurements s 2 R= at locations xs8 2 R
2
, 8 = 1, . . . , =. Here, =G and =H respectively denote

the number of grid points in the horizontal and vertical directions on a high-resolution field, and

= indicates the number of local sensor measurements. The challenge here is to handle arbitrary

numbers of sensors at any location over the field. The number of sensors can be changed in time

and the sensors can be moving. The reconstruction process should be performed with only a single

machine-learning model to avoid retraining when sensors move or change their numbers.

To achieve the goal of the present study, we utilize two input data files (images) for the CNN:

1. Local sensor measurements projected on Voronoi tessellation s+ = s+ (s) 2 R=G⇥=H .

2. Mask image s< = s< ({xs8}
=

8=1) 2 R
=G⇥=H which contains the local sensors positions, defined

as

s< ({xs8}
=

8=1) =

8>>><
>>>:

1 if x = xs8 for any 8,

0 otherwise.
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The two input images above are provided to a machine learning model F such that q = F (s+ , s<) 2

R=G⇥=H , where q is the desired high-resolution field. With these two input vectors holding magnitude

and position information of the sensors, the present idea can deal with arbitrary sensor locations

and arbitrary numbers of sensors. It should be noted that reconstruction cannot be achieved with

conventional methods, including MLPs and CNNs due to their structural constraints. In what

follows, we introduce Voronoi tessellation and machine learning framework, which are the two key

components in the present approach.1

To use a machine learning framework, the sensor data needs to be projected into an image file in

an appropriate manner. Voronoi tessellation (Vor08) is a simple and spatially optimal projection of

local sensor measurements onto the spatial domain. This tessellation approach optimally partitions

a given space ⇢ into = regions ⌧ = {61, 62, ..., 6=} using boundaries determined by distances 3

among = number of sensors B (Aur91). Using a distance function 3, Voronoi tessellation can be

expressed as

68 = {B8 2 ⇢ |3 (B8, 68) < 3 (B8, 6 9 ), 9 < 8}. (4.1)

Hence, for a Euclidean domain, the Voronoi boundaries between sensors are their bisectors.

Voronoi tessellation has two important characteristics which provide the foundation for the

present approximation constructed with local sensor measurements (Aur91). One is that each area

in a Voronoi tessellation is convex. This property enables us to establish a Voronoi tessellation

using bisections in a simple manner. The other is that a Voronoi tessellation does not include other

sensors inside it when a circle centered at the vertex of a Voronoi region 6 passes neighboring

sensors (Empty-circle property). This implies that each Voronoi region 6 is optimal for each sensor

B in a Voronoi tessellation. Note that the Voronoi discretization is influenced by the computational

domain size. Experimental setups are also influenced in analogous manner with their finite fields

of view. Additional details on the mathematical theory of Voronoi tessellation can be seen in the

study of Aurenhammer (Aur91).

1Sample codes are available on https://github.com/kfukami/Voronoi-CNN.
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Figure 4.2: Voronoi-tessellation aided spatial data recovery of a two-dimensional cylinder wake with

=sensor = 8 and 16. The input Voronoi image, input mask image holding sensor locations, and the

reconstructed vorticity field are shown. Dependence of the reconstruction ability on the number of

training snapshots is also shown. (0) {=sensor, =snapshot} = {8, 50}, (1) {=sensor, =snapshot} = {16, 50},

(2) {=sensor, =snapshot} = {8, 5000}, and (3) {=sensor, =snapshot} = {16, 5000}.

The spatial domains to be discretized by Voronoi tessellation and the high-resolution data are

taken to be the same size. All grid points in each portion of the Voronoi image have its representative

sensor value. Since Voronoi tessellation provides a structured-grid representation of measurements

from arbitrary placed sensors, the present approach enables us to use existing CNNs devised for

structured grid data. Note that a Voronoi tessellation needs to be performed solely once if sensors

are stationary. If the number of sensors change over time, only local regions in direct vicinity of

added or removed sensors need to undergo tessellation in an adaptive manner.

4.3 Applications

We demonstrate the use of the present Voronoi-based CNN for global fluid flow reconstruction. Our

examples include laminar cylinder wake, geophysical data, and three-dimensional wall-bounded

turbulence, which contain strong nonlinear dynamics over a wide range of spatio-temporal scales.
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4.3.1 Example 1: two-dimensional cylinder wake

We first consider the Voronoi-based fluid flow reconstruction for a two-dimensional unsteady

laminar cylinder wake at a diameter-based Reynolds number '4⇡ = 100. The training data set is

prepared with a direct numerical simulation (DNS) (TC07; CT08) which numerically solves the

incompressible Navier–Stokes equations. In this study, we consider the flow field data around a

cylinder body for the training and demonstration, i.e., ((G/⇡)⇤, (H/⇡)⇤) = [�0.7, 15] ⇥ [�5, 5] and

(#G , #H) = (192, 112). The vorticity field is used for both input and output attributes to the CNN

model in this case. The training data spans approximately 4 vortex shedding periods. We examine

the dependence of the reconstruction on the amount of training data. The number of sensors =sensor

is set to 8 and 16 with fixed input sensor locations for both training and testing.

The reconstructed fields are shown in figure 4.2. The reconstructed vorticity fields are in

excellent agreement comparing to the reference vorticity field l and in terms of the !2 error norm

n = | |lref � lML | |2/| |lref | |2 , where lref and lML denote the reference and the reconstructed

vorticity fields, respectively. It can be seen from the reconstructed vorticity field that the vortices

and shear layers in the near and far wakes are provided by the present deep learning technique with

great accuracy and detail. The vorticity field for =sensor = 8 shows some low-level reconstruction

error due to the low number of sensors. When =sensor is doubled to 16, we observe the error in

the reconstruction is reduced by half with accurate recovery of the global flow field. Furthermore,

reasonable data recovery can be achieved with =sensor = 16 using as few as 50 training snapshots.

4.3.2 Example 2: NOAA sea surface temperature

Next, let us consider the NOAA sea surface temperature data collected from satellite and ship-

based observations (http://www.esrl.noaa.gov/psd/). The data is comprised of weekly

observations of the sea surface temperature with a spatial resolution of 360 ⇥ 180. We use 1040

snapshots spanning from 1981 to 2001, while the test snapshots are taken from 2001 to 2018.

For this example, we take the sensors to be placed randomly over the water. The number of
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Figure 4.3: Comparison of spatial data recovery for NOAA sea surface temperature with

=sensor = 30.

sensors for training is set to =sensor,train = {10, 20, 30, 50, 100} with 5 di�erent arrangements of

sensor locations, amounting to 25 cases. The sensor locations are randomly provided for each

snapshot. For the test data, we also consider unseen cases with 70 and 200 sensors such that

=sensor,test = {10, 20, 30, 50, 70, 100, 200}. These numbers of sensors for the test data correspond

to {0.0154%, 0.0309%, 0.0463%, 0.0772%, 0.108%, 0.154%, 0.309%} against the number of

grid points over the field. Both seen and unseen sensor locations for all numbers of sensors are

considered for the present test demonstrations. We emphasize that only a single machine learning

model is trained and used for all combinations of sensor numbers and sensor placements.

Let us demonstrate the global sea surface temperature reconstruction in figure 4.3. As a

test case, we use a low =sensor = 30. The reconstructed global temperature field by the present

model shows great agreement with the reference data. This figure also reports the !2 error norm

n = | |)ref � )ML | |2/| |)ref | |2, where )ref and )ML are respectively the reference and reconstructed

temperature fields. We here also compare our results to standard linear and cubic interpolation.

Since those are simple methods, fine structures cannot be recovered and the !2 errors are larger than

that of the present method. These trends are noticeable from comparing the zoomed-in temperature

contours. The interpolation schemes are unable to reconstruct the fine-grained features of the

temperature fields accurately. However, the proposed technique performs very well. In addition

to enhanced reconstruction, the present method is able to recover the whole field, while classical

interpolation methods cannot extrapolate beyond the convex hull covered by the sensors, as evident

from figure 4.3. This observation also speaks to the significant advantage of the present model.

Next, let us assess how the current approach performs when the number of sensors are changed
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Figure 4.4: Voronoi based spatial data recovery of NOAA sea surface temperature. We show the

representative reconstructed fields with =sensor = 100 which corresponds to the number of sensors

contained in the training data and =sensor = {70, 200} which correspond to cases not available in

the training data set.

and when the sensors are in motion. We present the results for these cases in figure 4.4. With

=sensor = 100 being the number of sensors observed during training, the reconstructed sea surface

temperature field is in agreement with the reference field for both trained (left) and unseen sensor

(middle) placements. Cases of unseen placements correspond to instances of sensors coming online

or o�ine during development and being in motion. Despite that the input Voronoi tessellation

being significantly modified with the displaced sensors, the reconstruction is still successful. This

highlights the e�ective use of the mask image holding information on sensor locations. What is

also noteworthy is that successful reconstructions can be achieved with =sensor = 70 and 200, which

are numbers of sensors unseen during training. This corresponds to situations where sensors may

64



Unseen placement

Reference

0 2 4-2

In
pu

t
C

N
N

nsensor = 150 nsensor = 250

-4

In
pu

t
C

N
N

Trained placement
nsensor = 200 nsensor = 200

Unseen number of sensors

Figure 4.5: Voronoi tessellation-aided data recovery of turbulent channel flow. Considered are

G � H cross sections of streamwise velocity fluctuation D0 reconstructed with =sensor = 200 (trained

number of sensors) and =sensor = {150, 250} (untrained number of sensors). The error convergence

over =sensor is also shown.

come online or go o�ine during deployment.

The relationship between the number of input sensors and the !2 error norm is also investigated.

The error level of the test data with unseen placements (orange curve) is higher than that with trained

placements (blue curve) as shown in figure 4.4. However, the present model achieves a reasonable

estimation with an !2 error being less than 0.1, even when the number of unseen sensors reaches

200. This result suggests that the present approach employing the Voronoi input and the mask image

is robust for data sets where the number of sensors and the sensor placements vary considerably.

It also demonstrates the advantage of the present idea that a single trained model alone can handle

the global field reconstruction for arbitrary number of sensors and time-varying positions.
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4.3.3 Example 3: turbulent channel flow

The above two problems contain strong periodicity in time, appearing as periodic vortex shedding

and seasonal periodicity. To further challenge the present approach, let us consider a chaotic and

dynamically rich phenomenon of turbulent channel flow. The flow field data is obtained by a

direct numerical simulation of incompressible flow in a channel at a friction Reynolds number

of '4g = 180. Here, G, H, and I directions are taken to be the streamwise, wall-normal, and

spanwise directions. The size of the computational domain and the number of grid points are

(!G , !H, !I) = (4cX, 2X, 2cX) and (#G , #H, #I) = (256, 96, 256), respectively, where X is the half

width of the channel. Details of the simulation can be found in Fukagata et al. (FKK06). For the

present study, G� H section of a subspace is used for the training process, i.e., G, H 2 [0, 2cX]⇥ [0, X]

with (#
⇤
G
, #

⇤
H
) = (128, 48). The extracted subdomain maintains the same turbulent characteristics

of the channel flow over the original domain, due to the symmetry of statistics in the H direction and

homogeneity in the G direction. We consider here the fluctuating component of an G � H sectional

streamwise velocity D0 as the variable of interest. For training, we use =snapshot = 10 000. The

numbers of sensors for training data are chosen to be =sensor,train = {50, 100, 200} with 5 di�erent

cases of sensor placements. For the test data, we also consider the use of 150 and 250 sensors

with both trained and untrained sensor placements such that =sensor,test = {50, 100, 150, 200, 250}.

This setting allows us to assess the robustness of our approach for varied numbers of sensor inputs

analogous to Example 2, with consideration of both seen and unseen sensor locations for all numbers

of sensors.

The performance of Voronoi-assisted CNN-based spatial data recovery for turbulent channel

flow is summarized in figure 4.5 for =sensor = {150, 200, 250}. These numbers of sensors amount to

2.44%, 3.26%, and 4.07% with respect to the number of grid points over the field. We observe that

finer flow features can be accurately reconstructed from just 200 sensors indicating a remarkable

degree of sparsity in measurement. Although error levels for unseen placement (i.e., the same

number of sensors but at di�erent locations) is higher than that for trained sensor placement,

similar trends are obtained. Notably, reasonable reconstruction for both unseen number of sensors
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Figure 4.6: Root mean squared value of streamwise velocity fluctuation in turbulent channel flow.

and unseen input sensor placement as shown in the results for =sensor = {150, 250}. As these results

suggest, the present approach is a powerful tool for global reconstruction of complex flow fields

from sparse sensor measurements.

To quantitatively analyze reconstructed flow field, we examine the root-mean-square of the

streamwise velocity fluctuations, as shown in figure 4.6. The peak in the near-wall region and

profile are captured well for all considered numbers of sensors. The underestimations against the

reference DNS curve are likely due to the use of fluctuation components and the use of an !2

minimization during the training process (FNK19). Since the supervised model minimizes a loss

function through a training process, the machine learning model tends to provide solution near the

average value of training data to reduce the loss function. This implies that the present machine

learning model underestimates the fluctuations. Note that this is due to the supervised machine

learning framework and is not an issue imposed by the unstructured grid placements or the use of

Voronoi tessellation. This issue can be mitigated by using a loss function augmentation to the data,

such as through I-scoring.

To further assess the practical application of the present model, we analyze the e�ect of input

noise on reconstruction. Here, we consider the influence of two types of perturbations to the

training data. Case I: Add noise to local sensor measurements s< before performing the Voronoi

tessellation; and Case II: Add noise to the Voronoi tessellation input s+ . For Cases I and II, the
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Figure 4.7: Robustness of the present reconstruction technique for noisy input for the example of

turbulent channel flow. Input Voronoi tessellations (top) and reconstructed G � H sectional flow

fields (bottom) are shown for Cases I and II with ^ = 0.05, 0.5, and 1.0. Reference solution is

shown in figure 4.5.

error is assessed as

nI = | |qref � F (s+ (s + ^n), s<) | |2/| |qref | |2, (4.2)

nII = | |qref � F (s+ + ^n, s<) | |2/| |qref | |2, (4.3)

respectively, where ^ is the magnitude of the noise and n is the Gaussian distributed noise.

The reconstructed turbulent flows for =sensor = 200 with the noisy inputs are summarized in

figure 4.7. As shown, the input Voronoi tessellations defined by Case II exhibit noisy features

compared to those utilized by Case I since the noise for Case II is added after the preparation of

the Voronoi tessellations. The influence of noise for Case I is larger than that of Case II. This is

caused by the fact that the present CNN is trained for learning the relationship between the input

Voronoi images and high-resolution flow fields, which implies that large perturbations to the sensor

measurements produce greater error to the input images. If robustness is desired, we recommend

adding noise to the sensor measurements prior to the preparation of the Voronoi-based input images

during the training process. Overall, the present reconstruction technique is found to be robust

against noise.
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4.4 Discussion

Reconstruction of a global field variable from an arbitrary collection of sensors has been a long-

standing challenge in engineering and the sciences. In order to address this problem, we presented

a data-driven global reconstruction technique comprised of Voronoi tessellation and CNN. The

present method relies on inputs of mask images holding the sensor location and Voronoi images

representing the sensor measurements. The use of Voronoi tessellation translates the input sensor

data to be represented on a uniform grid, which then enables the applications of CNNs to derive

deep learning based reconstruction models. Three examples of global flow reconstruction from

local sensor measurements demonstrated the accuracy and robustness of the current method.

Since CNNs have a large collection of toolsets from the image processing community, the

present reconstruction approach is significant from the point of view of merging image processing

with sensor data analytics. This perspective now allows engineers and scientists to move through

the wealth of local and global measurements using data-driven techniques. Furthermore, Voronoi

tessellation has the beneficial property of being able to discretize the spatial information in an

adaptive manner only where sensor arrangements change in time. This provides computational

savings and an opportunity to develop spatially adaptive techniques.

The present approach can be extended to enforce physical constraints and properties (RPK19;

RYK20; HFM20b; LY19). For example, evolutional deep neural network (DZ21) has been able

to enforce the divergence free constraint for incompressible flow. Another possible extension is

the construction of robust models with regard to physical parameters by preparing proper training

data sets (MFZ22; HFM20a; KKW21). To obtain generalizable models for turbulent data sets,

unsupervised learning may also be helpful (KKW21).

The present data-driven approach was demonstrated with a set of local sensor measurements.

As this method performs spatial field reconstruction at each time, changes in the number of sensors

or motion of the sensors are easily accommodated. Having this flexibility allows for extensions to

incorporate other types of measurements, such as under-resolved satellite based measurements or
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particle image velocimetry. The current formulation also opens a path to incorporate intelligent

sensor placements (MBK18) to further reduce reconstruction error and enhance the robustness with

data redundancy. Moreover, the present method can be applied to cases where output attributes

are di�erent from the input data attributes. In such a scenario, the Voronoi-tessellation is akin to a

projection operation to extend learning one step further. While we use the Voronoi CNN solely for

flow reconstruction in the present paper, high-order turbulence statistics, e.g., root-mean-squared

values of velocity fluctuations, can be extracted as well. The power and simplicity of the present

approach will support scientific endeavor across a wide range of studies for complex data structures.
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CHAPTER 5

Exploring interpolatory and extrapolatory vortical structures

with data-driven nonlinear scaling with Buckingham Pi

variables

The above studies have shown that nonlinear machine learning is powerful enough to reconstruct

a global flow field from sparse sensors, they can often provide reasonable performance beyond

training conditions in turbulent flow studies. While these cases may appear as extrapolations, of

particular interest here is how interpolation and extrapolation for turbulent flows should be defined.

In part of this question, this section examines how machine-learning models extract scale-invariant

structures of turbulent flows across training and test data with the assistance of a data-driven

nonlinear scaling (FGT23).

5.1 Motivation

Trained fluid mechanicians can identify similarities in vortical structures for a variety of turbulent

flows. Even if there are scale or rotational di�erences, we can visually extract similar structures

due to their geometrical features across spatial and temporal scales. Analogously, recent machine-

learning models have capitalized on such structural similarities to achieve reliable performance

for the given training data. However, it is also known that machine-learning models often achieve

satisfactory performance even in untrained situations. Examples of models performing successfully

beyond the training data include, turbulence modeling (GCS22), state estimation (GGI21), and
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Figure 5.1: Concept of interpolation and extrapolation. (0) A one-dimensional example. (1) Evo-

lution of three-dimensional decaying isotropic turbulence over '4_ (C).

super-resolution (KKW21). This suggests that machine-learning models are able to incorporate

scale-invariant properties of the flows while optimizing the output to meet their objectives.

These observations imply that nonlinear machine-learning models are capturing data character-

istics in a more holistic manner. Traditionally, interpolation and extrapolation of models have been

associated with a particular variable or parameter (Dom12; Mar18), as illustrated in figure 5.1(0).

In this example, test data outside of the training data is captured by the temporal variable C. In

the case of more complex data set, such as turbulent flows, describing whether a certain type of

vortical structure appears in training data or not requires additional considerations, beyond a single

parameter such as the Reynolds number.

Given this motivation, we revisit the idea of interpolation and extrapolation in the context of

turbulent flow structures. Here, we consider the capturing vortical structures that have certain

similarities across training and test data to be “interpolation” and their structural features to be

“seen.” On the other hand, capturing structures in the test data that do not share similarities

with those in the training data are referred to as “extrapolation” and their structures as “unseen.”

With machine-learning models known to perform well for approximating the nonlinear relationship

between the input and output from a large collection of data, the presence of seen (or common)

features can provide robust performance under untrained flow situations (KKW21; GCS22). The
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current study presents a data-driven scaling approach to reveal seen/unseen structures of turbulent

flow data in machine learning.

To assess rotational and shear similarities between small- and large-length scales in turbulent

flows, we examine the flow field data in terms of the invariants of the velocity gradient tensor. In

the present analysis, the scaled invariants are found through sparse nonlinear regression using non-

dimensional parameters from the Buckingham Pi theorem (Buc14). The present approach o�ers

the optimal nonlinear scalings of the invariants, uncovering scale-invariant vortical structures in

a turbulent flow field. Analyzing the data distribution of the present scaled invariants reveals

what types of flow structures are seen and unseen. Furthermore, the findings from this study

provide guidance in the choice of machine-learning functions to o�er robustness for scale-invariant

vortical structures. The present paper is organized as follows. The proposed Buckingham-Pi sparse

nonlinear scaling of the invariants is introduced in section 5.2. We demonstrate the current approach

for three-dimensional isotropic turbulence in section 5.3. Concluding remarks are provided in

section 5.4.

5.2 Methods

Machine-learning models for turbulent flow structures are known to remain accurate beyond the

coverage of training data. This is the case especially when the nonlinear machine-learning models

have scale and rotational invariances embedded in their formulations. To explain this extended

validity of machine-learning models, this study aims to uncover nonlinear scalings that capture

the similarities in turbulent vortical structures across a range of Reynolds numbers. The central

hypothesis of this study is that the existence of such scalings enables nonlinear machine-learning

techniques to e�ectively perform across di�erent flow fields beyond the range of Reynolds numbers

provided in the training data. With these identified scalings, turbulent flow structures that linearly

and nonlinearly span across a range of scales may be considered seen beyond the training data due

to their structural similarities.
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Figure 5.2: Example flow snapshots with & � ' distributions of three-dimensional decaying

turbulence at (0) '4_ = 214, (1) 14.6, and (2) 4.18. Each distribution is colored by density.

Turbulent vortices are visualized with (0) & = 10, (1) 0.3, and (2) 0.02.

To examine turbulent flows, we consider the invariants of the velocity gradient tensor G = (ru)
)

such that the observations are independent of the frame of reference (CPC90). These invariants

are % = trace(G), & = 1
2 [%

2
� trace(G2

)], and ' = det(G). For the present study, we consider

incompressible turbulent flows, which makes % = r ·u = 0. The remaining two invariants of& and

' characterize the local rotation and shear, respectively (OMS99). According to these invariants,

the flow can experience vortex compression (& > 0, ' < 0), vortex stretching (& > 0, ' > 0),

biaxial strain (& < 0, ' < 0), and axial strain (& < 0, ' > 0) (Dav15). These invariants will be

nonlinearly scaled with non-dimensional Pi groups using a data-driven approach.

In this study, we consider three-dimensional incompressible decaying isotropic turbulence.

The flow field data is obtained from direct numerical simulation with a Taylor microscale-based

Reynolds number of 0.85  '4_  252 (Chu08; GT21), satisfying :max[ � 1, where :max is the

maximum resolvable wavenumber of the grid and [ is the Kolmogorov length scale, to resolve all
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important scales of motion. We present representative flows with their corresponding invariants on

the&–' plane over time in figure 5.2. The Reynolds number decreases as vortical structures evolve

as their characteristic size increases. Even at a large time when '4_ = 4.18, large-scale structures

are still observed while the flow is under decay. During this process, invariants& and ' decrease in

magnitude while the probability density functions of these invariants remain geometrically similar.

This suggests that there is some level of scale invariance in the distributions of the turbulent vortical

structures over the &–' plane. That is, the decaying isotropic turbulence holds similar rotational

and shear structures whose sizes vary over the Reynolds number.

Linear scaling for the &–' distributions based on the kinematic viscosity a and dissipation

n such as &/(n/a) and '/(n/a)3/2 do not completely collapse the distributions, given their long

tails especially at high Reynolds number, as presented in figure 5.2. This seems to be caused by

the wide range of Reynolds numbers and strong unsteadiness contained in the present decaying

turbulence data, implying that Kolmogorov’s similarity hypotheses do not hold in an instantaneous

manner. For example, skewness (' of the linearly-scaled distribution for ' in figure 5.2 is 2.74,

0.299, and 0.186 for '4_ = 214, 14.6 and 4.18, respectively. These observations suggest that

nonlinear scaling needs to be considered to accommodate non-equilibrium e�ects. Identifying

such nonlinear scalings of & and ' distributions with data-driven techniques can also reveal how

nonlinear machine learning extracts seen (or common) vortical structures that share similarities

with structures outside of the training data sets. Moreover, unseen structures can be captured by

uncovering the invariant space that do not overlap for the scaled data.

Let us consider scaling the invariants & and ' in a nonlinear manner using non-dimensional Pi

groups from the Buckingham Pi theorem (1914), which distills a number of dimensional parameters

into a smaller number of dimensionless groups (XSG22; BCB22). We assume that the scaling can

be obtained through superposing appropriate polynomials of the Pi variables. Denoting these

invariants as q (either & and '), the candidate polynomials are assumed to have the form of

\: (x, C) = ⇧<8 (C)⇧
=

9
(C)q(x, C), where 8, 9 = 1, 2, . . . , <, = 2 Z, : = 1, . . . , =! . (5.1)

Here, =! is the number of library-basis functions. Given these library candidates \: , we can express
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the scaled invariants q⇤(x, C) as

q
⇤
(x, C) =

=!’
:=1

0:\: (x, C) (5.2)

with a = (01, 02, . . . , 0=! )
)
2 R=! . Spatiotemporal discretization of this equation yields�⇤ = ⇥a,

where
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with 5(C) = (q(G1, C), . . . , q(G=G , C))
)

2 R=G and ): (C) = (\: (G1, C), . . . , \: (G=G , C))
)

2 R=G

being the scaled invariant and the library candidate, respectively, discretized in space. Here, the

invariants are spatiotemporally stacked into a tall vector. The coe�cients a are determined through

the sequential threshold least squares method (BPK16a), promoting sparsity of the coe�cient

matrix in a computationally e�cient manner (FMZ21).

For the present decaying turbulence, the Taylor length scale _ can be expressed as the function of

the characteristic velocity D (the square root of the spatially averaged kinetic energy), the kinematic

viscosity a, the computational domain size !, and viscous dissipation n such that _ = 5 (D, a, !, n).

Through the use of Buckingham Pi theorem, we can find three Pi variables, which namely are

⇧1 = D_/a, ⇧2 = D!/a, and ⇧3 = na/D4. The first Pi variable ⇧1 is the Taylor Reynolds number

'4_. In the present study, we take these Pi variables as a function of time. Given these Pi variables,

we can construct the library candidates for equation (5.1) as first and second-order polynomials of

the Pi variables such that

{⇧1, ⇧2, ⇧3, ⇧�1
1 , ⇧�1

2 , ⇧�1
3 , ⇧2

1, ⇧
2
2, ⇧

2
3, ⇧

�2
1 , ⇧�2

2 , ⇧�2
3 ,

⇧1⇧2, ⇧2⇧3, ⇧3⇧1, ⇧�1
1 ⇧2, ⇧�1

2 ⇧3, ⇧�1
3 ⇧1, . . . , ⇧<8 ⇧

=

9
, . . . },

(5.4)

where |< | + |=|  2.

With the Buckingham Pi-based library matrix ⇥, we seek coe�cients a by maximizing the

similarity of data distributions of the invariants over space and time. Here, we utilize the Kullback–

Leibler (KL) divergence (KL51) to assess the di�erence between a probability distribution 51 and
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the reference probability distribution 52. For two probability (data) distributions, the KL divergence

is defined as

⇡ ( 51 | | 52) ⌘

π
1

�1

51(5
⇤
)log

52(5
⇤
)

51(5
⇤)

d5⇤
. (5.5)

The minimization of the KL divergence finds the optimal coe�cients a⇤ for maximum similarity of

the scaled invariant distributions, which yields an optimization problem of a⇤ = argmin
a
[⇡ ( 51 | | 52)] .

Below, the data distribution from a snapshot at high '4_ is used as the reference 52.

5.3 Results

We apply the present nonlinear scaling analysis to three-dimensional decaying isotropic turbulence

over 0.85  '4_  252. The present data is comprised of 800 snapshots over time and 643 grid

points in a tri-periodic cubic domain. Here, we aim to (1) uncover the nonlinear influence of

characteristic variables on the evolution of the invariants & and ', (2) identify common (seen)

vortical flow features through the scaled invariants, and (3) provide guidance on proper training

and formulation of machine-learning models.

Based on sparse regression, we find the scaling factors for & and ' to be

&
⇤ = (5.76⇧1 + 4.17⇧�2

2 � 3.59⇧2⇧3)&, (5.6)

'
⇤ = (5.53⇧1 � 0.826⇧�1

2 + 4.42⇧�2
2 � 3.44⇧2⇧3)'. (5.7)

While isotropic turbulence is complex, the nonlinearly scaled invariants turn out to be surprisingly

compact in their expressions. For both scaled invariants, we have ⇧1 which is the Taylor Reynolds

number '4_. This reflects the decaying nature, corresponding to the fact that the data spread on the

&–' plane shrinks with decreasing Taylor Reynolds number over time, as shown in figure 5.3(0).

The present scaling also identifies the influence of ⇧2 = D!/a, the box-size-based Reynolds

number, revealing that the computational domain size influences the turbulent flow, especially as

time advances and vortical structures become comparable in size to the computational domain. This

is evident from the inverse and quadratic inverse nature of the scalings. The size of the periodic
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Figure 5.3: The data-driven Buckingham Pi scaling for three-dimensional decaying turbulence.

(0) The time series of the identified non-dimensional variables. (1) Scaled &⇤ and '⇤ invariants

with their probability density functions.

box a�ects not only the large-scale vortical motion over the domain but also the energy dissipation

of turbulence (Dav15).

Furthermore, the present analysis uncovers the importance of ⇧2⇧3 = D!/a · na/D4 = n!/D3,

which is the ratio between the instantaneous energy dissipation rate determined by small length

scales and the cascading energy flux from the system-size vortices. Thus, ⇧2⇧3 plays a similar

role to the dissipation coe�cient ⇠n ⌘ n;/D3, quantifying the degree of non-equilibrium (Vas15),

i.e., the violation of Kolmogorov’s similarity. Although ⇧2⇧3 is constant when the energy flux

of large-scale vortices and energy dissipation are in balance, that is not the case for the present

decaying turbulence (GV16). The present ⇧2⇧3 accounts for the time delay of energy-cascade

process between energy flux and dissipation due to strong nonlinearities in decaying turbulence.

This is achieved by correcting non-equilibrium e�ects in a nonlinear manner.

Next, the identified scalings are applied to the original & and ' data distributions, as shown in

figure 5.3(1) along with their probability density functions. The identified factors in equations 5.6

and 5.7 yield the optimal overlap of&⇤ and '⇤ over space and time. The scaled data distribution for

the high Reynolds number flow spreads over a larger area than that for the low Reynolds number,
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especially for &⇤
> 0. This implies high occurrence of vortex stretching and compression at high

Reynolds number.

Let us focus on the vortical structures for overlapping and non-overlapping regions of the data

over the &⇤–'⇤ plane, as illustrated in figure 5.4. For &⇤
> 1, similar shapes of vortical elements

can be observed across a range of length scales. These identified vortical structures are assessed

as ‘interpolatory’ (common) with the present scaling approach. The isosurfaces of &⇤
> 3 are

also visualized in figure 5.4. These strong rotational elements that barely appear in low Reynolds

number flows are ‘extrapolatory’ structures. Moreover, such ‘extrapolatory’ vortical structures

against the low-'4 flow field can be seen in the portion of '⇤
< �1.2 and '⇤

> 1.2. The region

of & < 0 and ' < 0 corresponds to biaxial strain, while that of & > 0 and ' > 0 reflects vortex

stretching (Dav15). Hence, the scaled data distribution suggests that these structures caused by

strong biaxial strain and vortex stretching correspond to ‘extrapolation’ for the present turbulence

data. The scaled &–' data distribution gives insights into turbulent flows, in addition to the

identified scaling.

The present Buckingham-Pi-based sparse nonlinear scalings can identify interpolatory and

extrapolatory vortical structures in isotropic turbulence. Nonlinear machine-learning models are

likely to capture the characteristics and behavior of what we refer to as the interpolatory structures

even in untrained situations. This explains why well-trained machine-learning models may perform

well beyond their training data. However, we caution that when the test data includes extrapolatory

structures, machine-learning models are no longer guaranteed to be valid. With regard to these

points, classifying interpolatory and extrapolatory structures solely by '4_ is not encouraged for

assessing nonlinear machine-learning models.

Based on the insights from the scaled invariants above, let us consider machine-learning-based

super-resolution reconstruction of turbulent flows (FFT23). Super resolution reconstructs the high-

resolution flow field qHR from its low-resolution data qLR with a reconstruction model F through

qHR = F (qLR). Recently developed machine-learning-based super-resolution analysis captures

the nonlinear relationship between small (unresolved) and large-scale (resolved) structures. This
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Figure 5.4: Interpolatory and extrapolatory vortical structures in three-dimensional decaying

isotropic turbulence.

study considers the ability of machine-learning-based reconstruction to recognize and reconstruct

common turbulent flow structures for a variety of flow field snapshots, even outside of the training

data.

For super-resolution reconstruction of turbulent flows, a machine-learning model should be care-

fully constructed to account for a range of spatial length scales while enforcing rotational and transla-

tional invariance of vortical structures. To satisfy these properties, we use the hybrid downsampled

skip-connection/multi-scale (DSC/MS) model (FFT19b). The DSC/MS model based on convolu-

tional neural network (LBB98) is composed of three main functions: namely, (A) up/downsampling
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operations, (B) skip connection, and (C) multi-scale filters. The up/downsampling provides ro-

bustness against rotation and translation of vortical structures. The skip connection allows com-

munication between the input low-resolution data and the intermediate output of the DSC model,

which is crucial in learning a step-by-step internal process towards the high-resolution output from

the low-resolution input while expanding the dimension of the flow field snapshot (HZR16). The

multi-scale filters apply filtering with a number of di�erent sizes of them (e.g., three here) in parallel

to capture a broad range of scales in turbulent flows. Further details on the present neural network

model are in Fukami et al. (FFT19b). We will discuss which function inside the present model

contributes to gaining robustness for scale invariance later.

Here, we consider two cases of training and testing for super-resolution reconstruction of

turbulent flows: (1) a model trained with a low-'4_ data set and tested with a high-'4_ data set

(low-'4_ training); (2) a model trained with a high-'4_ data set and tested with a low-'4_ data set

(high-'4_ training). We expect that the low-'4_ training cannot cover the non-overlapping portion

of the scaled invariants, which corresponds to extrapolation. The high-'4_ training, which covers

a wide portion of the scaled invariants, may amount to interpolation in terms of the turbulent flow

structures. For the present analysis with the two training scenarios, the threshold '4_ between the

low- and high-'4_ training cases is set to '4_ = 15. The velocity vector is used as data attributes q

with F reconstructing the high-resolution flow field on 643 grids from the low-resolution data on

43 grid.

The reconstructed flow fields are shown in figure 5.5(0). The vortical flows are visualized using

&-criteria and colored by the third invariant ' computed from the reconstructed velocities. For

the low-'4_ training case, the model reconstructs the vortical structures for the training '4_ with

an !2 error of approximately 0.1. In contrast, the visualized & variable at the high-'4_ exhibits

significant level of error rendering the reconstruction grossly incorrect. Such high errors can be

explained using the scaled variables in figure 5.5(1) due to the flow features residing over the

non-overlapping region on the present plane. The high error is also observed around the bottom

left of figure 5.5(1). This extrapolation region cannot be reconstructed with the low-'4_ training
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Figure 5.5: (0) Super-resolution reconstruction of three-dimensional decaying turbulence. The

reconstructed flow fields are visualized with the &-criteria, colored by '. The values underneath

each figure represent the !2 error norm. The gray and red boxes respectively highlight snapshots

for training and testing '4_ regime. (1) Scaled &⇤ and '⇤ at test '4_’s for low- and high-'4_

training cases, colored by the spatial !2 reconstruction error.

because these structures are barely seen in the low-'4_ data sets, as presented in figure 5.4.

Next, let us consider the high-'4_ training case. The reconstructed flow from the overlapping

case (interpolation) is in agreement with the reference data. In contrast to the extrapolatory low-

'4_ training, reasonable reconstruction can still be achieved at '4_ = 4.18. This suggests that

the high-'4_ training data holds insights into a wider range of vortical structures that also appear

in the low '4_ regime, which is confirmed from the scaled &⇤ and '⇤ data. It is worth pointing

out that the scaled invariants at the low '4_ include some non-overlapping portion (scale-variant

structures) in the region of &⇤
< 0 and '⇤

< 0. This implies that the model trained with only the

high-'4_ regime cannot cover vortical structures of &⇤
< 0 and '⇤

< 0. For better reconstruction

over this regime, we need to include training data that covers &⇤
< 0 and '

⇤
< 0. Such an
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Figure 5.6: (0) The three functions used in the DSC/MS super-resolution model. (1) The scaled

&
⇤-'⇤ data for five models. The two-dimensional sections of the reconstructed streamwise velocity

are also shown with velocity errors.

observation provides guidance on how the vortical flow data should be prepared to enable reliable

reconstruction.

We further examine the nonlinearly scaled invariants to assess which inner functions of the

machine-learning models contribute to robustness for scale-invariant regression. We here consider

five models using the aforementioned functions A, B, and C (figure 5.6(a)):

1. the original DSC/MS model (functions A, B, and C),

2. the original model without the skip connection (functions A and C),

3. the original model with up/downsampling only (function A),
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4. the original model with multi-scale only (function C),

5. a regular convolutional neural network (without any of the functions above).

We perform the low-'4_ training for all of these five cases. The corresponding error distributions

are presented in figure 5.6(1). For model (ii) which removes the skip-connection function from

the baseline model, the error behavior on the scaled data is similar to that of the original model. A

similar observation is seen for model (iii) which has no multi-filter functions. Since both models

(ii) and (iii) include function A, up/downsampling operations are crucial for robust super-resolution

reconstruction of turbulent flows.

This can be further confirmed with model (iv) which is comprised only of the multi-scale

filters (function C). The reconstruction error is significantly higher without the up/downsampling

operations. Including dimension compression and expansion plays an important role in obtaining

robustness for scale-invariant characteristics, which agrees with a number of studies on CNNs for

scale invariance characteristics in image science (JKR09; VP17). In contrast, multi-scale filters

have secondary importance in reconstructing the flow (model (iv)) as evident from its comparison

to the results from CNN (model (v)). While the regular CNN without functions A, B, and C

returns pixelized flow fields, model (iv) achieves qualitative reconstruction. These findings suggest

that robust turbulent flow reconstruction can be achieved by selecting machine-learning functions

based on the implication of scaled invariants. Model e�ectiveness and accuracy should be carefully

examined in terms of its construction and the richness of training data.

5.4 Concluding remarks

For nonlinear machine-learning models for turbulent flows, there is generally not a single parameter

that can reveal whether such models are performing an interpolation or extrapolation. This is due

to the turbulent flow data containing similarities in flow structures across a range of spatiotemporal

scales. These properties contribute to machine-learning models being accurate beyond the coverage
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of training data in some cases. To shed light on the validity of machine-learning models, we nonlin-

early scaled the invariants of the velocity gradient tensor& and ' with non-dimensional parameters

using a Buckingham Pi theorem-based sparse regression, which maximizes the similarity of invari-

ant data distributions over space and time across Reynolds numbers. As a canonical turbulent flow

example, we considered three-dimensional decaying isotropic turbulence for 0.85  '4_  252.

The present approach found nonlinear scalings that express the influence of the decaying nature of

the present flow, domain size of the simulation, and non-equilibrium e�ects of energy cascade on

the invariants & and '. With the scaled invariants &⇤ and '⇤, we were able to determine that the

training data lacked flow structures associated with strong biaxial strain and vortex stretching.

We further analyzed which types of machine-learning functions contribute to gaining robustness

for scale-invariant vortical structures within the context of super-resolution reconstruction. We

found that fluid flow reconstruction can be achieved for data of the overlapping portion on the

scaled&⇤–'⇤ plane even under untrained '4_ with an appropriate construction of machine-learning

models. The present findings suggest that transfer learning could be e�ective for training nonlinear

machine-learning models of turbulent flow across Reynolds number provided that extrapolatory

structures do not alter the physics significantly (IG20; GGI21). Including fractional exponents for Pi

variables would likely enhance the generalizability of the present method for discovering additional

nonlinear scaling in turbulent flows. The present procedure to examine nonlinear scalings of

turbulent flow structures provides guidance on how to develop robust machine-learning models and

compile the necessary training data, enabling us to depart from naïve training and being unaware

of the validity of these complex models.
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CHAPTER 6

Low-dimensional manifold of vortical flows: an example of

extreme aerodynamics with vortex-gust airfoil interaction

Successful reconstruction of vortical flows from sparse sensors suggests that flow fields possessing

a large degree of freedom may be expressed with a few important variables. Once we find

low-dimensional coordinates that can express the dynamics of given fluid flows while holding

the essence of the original high-dimensional state, such low-dimensional representations can be

used for a variety of applications such as reduced-complexity modeling and flow control. This

section examines how we can optimally find low-dimensional representations of fluid flows using

unsupervised machine learning with an example of extreme aerodynamic flows (FT23).

6.1 Motivation

Since the Wright brothers accomplished the first human-powered and controlled flight in 1903, a

wide variety of aircraft has been developed for transportation, defense, observation, search, and

rescue missions. What makes these aircraft uniquely di�erent from other modes of transportation is

their ability to stay aloft by taking advantage of aerodynamics. To support the development of these

aircraft, the field of aerodynamics has undergone tremendous growth over the past century. Despite

its expansive theory, the current aerodynamics is generally based on steady (cruise) or quasi-steady

flight conditions with linear analysis or its nonlinear extensions for small perturbations (And91;

KP01; Lei06).

We are now at an important transition point for aerodynamics. With novel materials and
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enhanced powerplants/batteries becoming available over the past couple of decades, there have been

tremendous e�orts in developing and operating smaller size personalized air vehicles and unmanned

air systems (PB06; SCC22; MAW16; PFM18; GMM18). They can traverse unconventional terrain,

including mountainous and urban environments (FGD21; Gro14; WBM20) that were traditionally

avoided by conventional aircraft. As a matter of fact, flight demonstrations of such air vehicles in

calm weather have taken place in recent years (GGL21). These new and amazing flying vehicle

concepts will likely revolutionize air-based transportation (LAD21; SCC22; STM21) and have

already been realized for some cases (YYJ18; Kug19).

However, there are major challenges in operating small-scale aircraft under these complex

airspace when adverse weather generates highly turbulent environments (FW15; JCS22; GHF21;

DDD22; DMS20). Moreover, the increased occurrence of extreme weather caused by global

warming limits the operations of aircraft. Flying small-scale aircraft near large natural or man-

made structures in adverse weather face additional complications as these vehicles need to navigate

through severe turbulence comprised of gusts and vortical disturbances, as illustrated in figure 6.1.

These disturbances come in a variety of forms (MMW23) and are far more disruptive than what

present-day commercial aircraft experience in inclement weather (Hob88). These extreme aerody-

namic environments can be characterized by a manifestation of a large number of strong vortices

with di�erent strengths, sizes, and orientations generated by the surrounding structures (SHB23).

Such a flight environment has been o�-limits due to the fact that there is virtually no available

theory for extreme aerodynamic problems and to avoid possible loss of aircraft.

With infinite scenarios of large and strong atmospheric disturbances hitting a flying vehicle,

we cannot only focus on a single cruise condition but must also consider a whole array of cases in

which wings experience extreme aerodynamic disturbances. These disturbances are characterized

by a variety of parameters, including the size, strength, orientation, position, and geometry of

the disturbances, necessitating massive experimental and computational campaigns if approached

naively. With a single extreme aerodynamic simulation already producing a very large amount

of flow field data, extensive parametric sweeps lead to an enormous collection of aerodynamic
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Figure 6.1: (Left) Illustration of possible extreme aerodynamic encounters by modern air vehicles

in urban environment during adverse weather. Air vehicles operating in such an environment

experience extreme level of unsteady aerodynamic forces due to strong gusts with spatial variations

comparable to their vehicle size. (Right) Model problem of strong disturbance vortex impinging

on an airfoil with vorticity distribution being visualized.

flow data and calls for significant computational and experimental resources. These extreme

aerodynamic flows exhibit rich nonlinear behavior over a range of spatiotemporal scales that cannot

be easily analyzed and modeled with existing theories.

One of the important parameters under such extreme aerodynamic situations is the gust ratio⌧ =

Dgust/D1, which is ratio between the characteristic gust velocity Dgust and the translational velocity of

the wing D1. For conditions of⌧ & 1, sustaining stable flight becomes challenging (JCS22; JC21).

In the present work, we consider high levels of aerodynamic disturbance with 0  ⌧  10, and

refer to cases of ⌧ > 1 as extreme aerodynamics. Strong gusts with ⌧ > 1 can be encountered in

urban canyons, mountainous environments, and severe atmospheric turbulence. The goal of this

study is to identify the unifying dynamics that a wing experiences from extreme gust disturbances.

At the most fundamental level, the present problem requires the identification of the underlying

nonlinear dynamics of the complex separated flows from an enormous amount of data in an e�cient

manner while gaining physical insights into extreme aerodynamics.

Although the aerodynamic influence of large-scale disturbances on lifting bodies take various
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forms, the underlying dynamics are generally shared. In this study, we seek these dominant

dynamics embedded in complex extreme aerodynamic flows. To achieve this objective, we examine

the reduction of massive fluid flow data into a low-dimensional space in which the right set

of variables describe the underlying extreme aerodynamic physics. This process is enabled by

incorporating physical observables and ensuring that the gained insights are interpretable and

beneficial for future aircraft operations and designs. In fact, we find that extreme aerodynamic

flows can be compressed by a carefully designed nonlinear machine-learning technique to only

three variables for a model problem of a strong vortex hitting a canonical airfoil. The present

findings further suggest that the discovered manifold holds potential to support downstream tasks

such as real-time flow estimation, dynamical modeling, flow control, and vehicle design.

6.2 Results

6.2.1 Extreme Vortex-Airfoil Interactions

We consider a strong vortex gust impacting an airfoil as a representative model problem for wings

experiencing extreme atmospheric disturbances. The present model problem involves wake vortices

shedding from a high-rise building, ships in rough seas, and mountain ridges (JCS22). The size of

such strong vortices can be comparable to the size of the wing, exerting tremendously large lift and

drag forces. In this study, we simulate two-dimensional incompressible flows with a vortex placed

upstream of the wing with varied vortex size, strength, and initial position, as shown in figure 6.1.

Because the airfoil wake responds di�erently for each combination of these disturbance settings,

the resulting flow fields exhibit vastly di�erent wake patterns and aerodynamic forces from case to

case due to the nonlinear vortex dynamics, as presented in figure 6.2. As the vortex passes around

an airfoil, the wing experiences massive flow separation (stall), which also causes the emergence of

additional vortical structures. All of these flow structures interact nonlinearly, making the dynamics

complex and di�cult to predict and control.

This study considers two-dimensional extreme aerodynamic flows around a NACA 0012 airfoil
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at a chord-based Reynolds number Re = D12/a = 100. Here, D1 is the free-stream velocity, 2 is

the chord length, and a is the kinematic viscosity. The flow field is obtained with direct numerical

simulation using an incompressible flow solver (HI04; HMI06). The airfoil is positioned in the free

stream with its leading edge at the origin with angles of attack of U 2 [20�, 60�], enabling us to cover

cases of steady and unsteady wakes in undisturbed (baseline) cases. These wakes are disturbed with

a gust vortex having an angular velocity profile (Tay18) of D\ = D\,max(A/') exp[1/2 � A
2
/(2'2

)],

where the radius of the vortex is '.

The present disturbance vortex is characterized by the gust ratio ⌧ ⌘ D\,max/D1 2 [�10, 10]

with its size relative to the wing chord ! ⌘ 2'/2 2 [0.5, 2] and is introduced upstream of the wing

at G0/2 = �2 and H0/2 2 [�0.5, 0.5]. The combinations of these parameters provide a wide range of

large and strong gust vortices hitting the wing at various locations. The flow field around the airfoil

exhibits a rich dynamical response to the disturbance vortex characterized by a large parameter

space comprised of (U,⌧, !, H0/2). To fully resolve the dynamics over this parameter space, a

substantial number of flow cases for di�erent combinations of these parameters would be required.

In general, Re is also another parameter but is fixed for this study at 100. While the gust vortices

contained in actual atmospheric turbulence can be much more complex than what is considered

here, the primary dynamics of large vortex core interacting with the wing is captured well at this Re

at least in a two-dimensional manner. What is particularly important is to resolve the large vorticity

source from the surface under local flow acceleration (WMZ07). These phenomena have relatively

short time-scales compared to the much longer viscous scales associated with Re = 100, making

the current problem setup an appropriate test bed. In this study, we set the convective time to be

zero when the center of the vortex arrives at the leading edge of the wing G0/2 = 0. The snapshots

of the vorticity field and the lift history are examined in detail with data-driven analyses in what

follows.

Without any external disturbances, the wing experiences steady aerodynamic lift forces at low

angles of attack (U . 20�) and moderate unsteady aerodynamic force fluctuations at higher angles

of attack (U & 30�). These lift values are shown by the dashed lines for the di�erent angles of
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Figure 6.3: Nonlinear autoencoder. The vorticity field is taken as the input and output. The green

shaded portion becomes active when embedding lift into the compression process.

attack in figure 6.2. The unsteady lift fluctuations are exerted by the von Karman vortices shedding

from the leading and trailing edges, as visualized in figure 6.2. At this Reynolds number, these

cases are periodic in time and constitute limit cycles.

When the wing encounters a strong gust vortex, the flow around the wing is significantly

modified. The approaching vortex strongly influences the vorticity field around the wing and

triggers large-scale vortex formation. For example, let us consider the flow field for a case shown

in figure 6.2 for which a strong positive vortex with ⌧ = 3.8 hits a wing at U = 20�. Due to this

disturbance, two large vortices are formed shortly after impact, generating massive separation due

to the interaction of the gust vortex and the wing wake. These dramatic transient wake dynamics

exert sharp increase in aerodynamic forces on the wing. In fact, the lift force increases 714%

and drops 656% within a short duration of 1.8 convective time. Such a significant variation in

the lift force makes controlling air vehicles tremendously di�cult. While not shown, the moment

experienced by the wing also undergoes a tremendous change. We also display a total of 100 force

histories for cases of flows disturbed by extreme levels of gust vortices in figure 6.2. In all of these

cases, the airfoil wake dynamics undergo large transient changes within a short amount of time with

large aerodynamic force fluctuations with similar order of magnitudes. These violent disturbances

not only destabilize flight but can also damage vehicle structures, making the analysis of these flows

critically important.
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Because of the nonlinear nature of the dynamics, flow around the airfoil responds di�erently

to each di�erent gust vortex with massive flow separation and large-scale formation of additional

vortices, as visualized in figure 6.2. There is no aerodynamic model or theory that can easily describe

the highly nonlinear nature of the extreme gust-airfoil interactions. What is especially challenging

is that there is no simple scaling that collapses the collection of lift curves or the vortical flow fields

due to the strong nonlinearity. This is an enormous burden for studying extreme aerodynamic flows

since each and every case needs to be examined through painstaking computational or experimental

campaigns that require significant resources. We re-emphasize that even for the present problem

setup, there are a good number of parameters (vortex strength ⌧, size !, position H0/2, and airfoil

angle of attack U) that necessitate a very large number of cases of extreme aerodynamic flows

to map out the response dynamics. Practically speaking, such a campaign may not be possible

for all gust encounters with limited computational resources. Therefore, it is desirable to capture

the underlying dominant dynamics that form the basis of extreme gust response characteristics

without having to rely on expensive simulations with a very large degree of freedom, which in

this case is proportional to 2.88 ⇥ 104 grid (spatial) points to describe the instantaneous flow field

and 1.26 ⇥ 105 temporal frames for su�cient spatiotemporal solutions for all cases. While we do

have the Navier–Stokes equations as the governing partial di�erential equations to fully describe

the dynamics, solving them in real time for practical air vehicle operations is out of the question.

For the aforementioned reasons, it is important to extract the dominant low-dimensional dynam-

ics from the possible collection of extreme aerodynamic data sets. The rich responses to di�erent

gust vortices appear uniquely di�erent from one snapshot to another but possess some common and

identifiable features, including the disturbance vortex, flow separation, wake vortices, secondary

vortices, shear layers, vortex roll-up, vortex pinch-o�, and vortex deformation. The fact that

these features are indeed identifiable by the trained eyes of fluid dynamicists suggests that there is

likely some underlying low-dimensional representation of the high-dimensional complex dynamics.

Thus, we aim to capture the key dynamics in a space comprised of a very small number of variables

that can estimate the full state of the flow field and o�er insights into the nonlinear dynamics of the
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vortex-gust interaction. We find that a nonlinear autoencoder with physical observables illustrated

in figure 6.3 achieves the present objective.

6.2.2 Identification of Extreme Aerodynamic Manifold

To find a low-dimensional space that captures the essential physics of extreme aerodynamic in-

teractions between the gust vortex and the airfoil wake, we perform data-driven compression of

the flow field. Herein, we consider cases with randomly-sampled parameters from ⌧ 2 [�4, 4],

! 2 [0.5, 2], and H0/2 2 [�0.5, 0.5].

First, let us consider the most commonly used linear dimensionality reduction technique, namely

the principal component analysis (PCA), which is also known as the proper orthogonal decom-

position (POD) (Jol02; BHL93; TBD17). With this method, the low-dimensional representation

of a fluctuating variable is found by identifying the primary modes (or vectors) that best cap-

ture the variance about the mean. In the present study, we first analyze the vorticity fields over

(G, H)/2 2 [�1.4, 4] ⇥ [�1.2, 1.2], shown in figure 6.2 by applying PCA to determine the most

vortically energetic components of the flow field.

Shown in figure 6.4 are the temporal variations of the first three PCA components (b1(C), b2(C),

and b3(C)) of the vorticity field data. The gray curves represent the whole collection of extreme

aerodynamic data plotted in this coordinate space. Also highlighted are undisturbed baseline cases

for U = 20� to 60�. Here, we observe that the gray curves span a range of values over b1, b2,

and b3 in a seemingly incoherent manner. What is further problematic with this compression is

the overlap of the baseline cases. These observations reveal that PCA struggles to compress the

extreme aerodynamic data in a meaningful manner while keeping di�erent angles of attack cases

distinct. Because di�erent flows over di�erent angles of attack are collapsed as the same, the

overlapping low-dimensional representations produced by PCA cannot distinguish important flow

characteristics and yield grossly inaccurate flow reconstructions, as shown in figure 6.8.

The challenges of reducing degrees of freedom (dimension) of extreme vorticity dynamics
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the extreme gust-airfoil interaction manifold.

by PCA can be mitigated by utilizing a nonlinear compression technique. For this purpose,

we utilize a nonlinear convolutional autoencoder, presented in figure 6.3 (excluding the green-

shaded side network), to reduce a large number of vorticity field data to very few variables. An

autoencoder is a neural network composed of an encoder and a decoder with a bottleneck in the

middle (HS06; MFF20; OS19). Generally, this neural network framework is used to take an input

data and replicate the same data at the output. The variables that lie in the middle are referred

to as latent variables (red circles in figure 6.3), which hold the compressed information about

the input data. When the nonlinear autoencoder can replicate the same input data at the output,

this means that both the encoder and the decoder function e�ectively to nonlinearly transform

the full data set to a low-dimensional latent variable / and vice versa e�ectively. The present

autoencoder first compresses a flow field using a convolutional neural network (CNN) (LBB98) to

capture global features of the vortical flow field. The compressed vector (extracted feature) through

the CNN is then flattened at the reshape layer in figure 6.3 to pass into a multi-layer perceptron
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(MLP) (RHW86) towards the latent space. A similar operation is performed for the decoder side to

expand the dimension of the latent variable back to the size of the original flow field. The present

autoencoder is trained with the same data sets as that used for PCA. The details of the autoencoder

setup used in the present study are provided in Supplemental Material.

The nonlinear autoencoder is able to compress the flow field data and reproduce the flow field

accurately, as shown in figure 6.8. We also present the latent space comprised of only three

latent variables (b1, b2, and b3) in figure 6.4 (middle). The ability of the nonlinear autoencoder to

compress the vorticity field to mere three variables is not only surprising but also rea�rms that

the flow field is indeed comprised of common flow features. The compression capability o�ered

by a nonlinear autoencoder is promising to capture violent flow physics that appears tremendously

rich. Nonetheless, we should note that the full data set shown in figure 6.4 is distributed over the

latent space without a meaningful collapse of the latent variables. This is su�cient if the objective

is to ensure that data in latent space are distinct, thus covering as much space as necessary to

ensure uniqueness of the information. However, with regard to this study, we are aiming not only

to compress the extreme aerodynamic flow data but also to identify universal features among the

large number of flow field data holding dynamical information.

The above autoencoder analysis was performed purely from a data-centric perspective. Instead,

let us consider incorporating a physical measurement (observable) into the autoencoder to facil-

itate the identification of a low-dimensional subspace defined by the appropriate latent variable

coordinates. Capturing the low-dimensional nature of extreme aerodynamic flows can support the

flight stabilization of air vehicles in extreme levels of turbulence. For this reason, we weigh the

latent space variables / with lift force acting on the wing. This is achieved by supplementing the

autoencoder with a multi-layer perceptron that outputs the lift force for each vorticity field over

time, as shown by the green-shaded network in figure 6.3. In this case, training is performed to

compress the vorticity field to the latent variables and to estimate the lift force accurately from the

latent variables.

Incorporating lift into the learning process of the autoencoder assists in e�ectively extracting
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Figure 6.5: The lift-augmented autoencoder-based manifold expression and its output for a variety
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similarity index between the decoded and reference fields.
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the essence of extreme aerodynamics due to three main reasons. First, using the lift force with

the vorticity input comes as a natural choice since vorticity is theoretically known as the main

mechanism for generating lift on a body. We take advantage of this intimate relationship between

the vorticity field and lift. Second, the latent variables are guided to retain important information

held by the vorticity field correlated with the lift force. This means that vortical structures that

apply large vortical forces are well-captured by the lift-augmented autoencoder. Because extreme

aerodynamic disturbances exert enormous amounts of transient forces as presented in figure 6.2,

the autoencoder weights these extreme event appropriately and is able to accurately identify the

responsible vortical structures. Third, the latent variables are encouraged to distinguish cases that

yield di�erent lift responses to impinging gust vortices. This is crucial to avoid latent variables

from overlapping unnecessarily as observed in the struggling cases of PCA.

Now, let us examine the compression results from the lift-augmented autoencoder. The latent

space comprised of three variables b1, b2, and b3 is presented in figure 6.4. We observe that the

entire collection of extreme aerodynamic cases collapses well in these latent space coordinates,

confirming that the extreme aerodynamic responses to gust vortices possess a fundamentally low-

dimensional behavior if captured appropriately with a nonlinear compression method. Here, the

asymptotic periodic shedding states of the airfoil wakes provide shows a “cone” or a “chocolate

cornet” like structure with the extreme aerodynamic trajectories lying in its vicinity in the three-

dimensional latent space. As the dynamical trajectories converge to the cone-shaped structure,

this structure serves as the inertial manifold (FMT88; Tem89; DG23). This manifold geometry

can be considered as an hour-glass shape since there is a mirrored manifold for negative angle of

attack cases. It should be noted that the geometry of this structure is not specified a priori and

is discovered in an unsupervised manner. Here, this surface constitutes a manifold on which the

key dynamics of extreme gust response reside. That is, the trajectories of the presently considered

extreme aerodynamic flows are mapped onto the discovered geometry or to its vicinity.

Given the lift-augmented autoencoder collapsing all extreme aerodynamic response data onto

this cone-shaped manifold, let us examine the accuracy of state reconstruction for the disturbed
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flow and lift based on the three latent variables (b1, b2, b3). As representative examples, we present

the performance of the autoencoder for the cases of (U,⌧, !, H0/2) = (40�,�2.2, 0.5, 0.3) and

(60�,�2.8, 1.5, 0), which are unused in training but chosen from the training parameter range.

Here, the gust ratios ⌧ for these two cases are much higher than what are traditionally considered

in gust response studies, but are within the training data range of |⌧ |  4. The latent variable

trajectories for these cases and the reconstruction of lift and vortical flows are also shown in figure

6.5. To assess the reconstruction performance, we evaluate the structural similarity index (SSIM)

(WBS04) between the reference and the decoded flow fields. The SSIM value for each decoded flow

field is listed under the visualized flow reconstruction. Even the flow states exhibiting nonlinear

interactions between the wing and the extreme vortex gust can be reconstructed well by the present

autoencoder, as presented in figures 6.5 and 6.8. Note that the structural similarity index for a

regular autoencoder without lift being higher compared to that for the lift-augmented autoencoder

is expected. This is because a regular autoencoder is able to tune its weights solely to obtain accurate

reconstruction of the flow field from the latent variables. It is also possible to reconstruct lift solely

from the vorticity field. However, the lift-augmented autoencoder is critical for revealing the

manifold for extreme aerodynamic response dynamics. These successful reconstructions indicate

that high-dimensional extreme aerodynamic flows can be compressed into only three variables

without significant loss of key physics.

The trajectory in the present latent space for the disturbed cases reflects key features of nonlinear

vortex-gust interaction appearing in the high-dimensional space. For the extreme aerodynamic case

of U = 40�, the latent vector first drops towards the direction of the undisturbed periodic orbit of

U = 30� then comes back to the original undisturbed orbit of U = 40�. This is due to the approach

of negative vortex disturbance to the wing, decreasing the e�ective angle of attack. This indicates

that the lift-augmented autoencoder captures the relationship between high-dimensional extreme

aerodynamic flows and lift force in the low-order space. In fact, the reduction in b3 towards the

direction of U = 30� in the latent space coincides with the temporal evolution of lift responses, as

shown in figure 6.4. A similar trend is also observed in the case of U = 60� in which the latent
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vector first heads to the direction of the periodic orbit of U = 50� corresponding to the decrease

of the lift response. Being able to capture the extreme aerodynamic response of the wing on this

manifold enables us to relate the instantaneous dynamics to the e�ective angle of attack, which is

critically important for the flight stability of air vehicles. It is particularly encouraging that only

three values in latent space are required to accurately estimate the state of the violent flow around

the wing and transient lift force, which is promising for future development of sensors.

The discovered manifold captures dynamics beyond the trained gust strength ⌧. Let us

demonstrate how the present autoencoder approach is able to capture even more severe vortex

gust conditions with |⌧ | � 4 by presenting two cases (U,⌧, !, H0/2) = (40�, 6.4, 1.0, 0.1) and

= (60�,�6.0, 2.0,�0.3), as shown in figure 6.5. The trajectory of these seemingly extrapolative

cases exhibits a larger radius on the b1 � b2 plane compared to the variables of the interpolation

cases while also presenting the e�ective angle of attack as the latent vector moves in the b3 di-

rection. The wider radial trajectory is due to the stronger disturbance, which produces a higher

level of fluctuations in the vortical flow response likely away from the body without a�ecting lift.

The present decoder can also recover the high-dimensional flow states while estimating the very

large transient lift dynamics as presented in figure 6.5. This indicates that the present autoencoder

can be robustly applied for such extreme gust vortex-airfoil interactions while achieving a nearly

lossless compression of high-dimensional data. These findings also suggest that even under the

extrapolating condition of |⌧ | > 4, the underlying vortex dynamics shares common physics and

can be nonlinearly compressed to a low-dimensional and universal manifold. This provides hope

in estimating the flow states for cases that were not part of the extreme aerodynamic training data.

To further examine the robustness of the identified manifold and the autoencoder, let us consider

cases that are di�erent from the training cases, namely flows with noise and two extreme vortices,

as shown in figure 6.6. Here, the noisy flow field is generated by adding Gaussian noise that is

30% of the original extreme aerodynamic flow field (same as the case shown in figure 6.5(1)). The

present lift-augmented autoencoder not only reconstructs a vortical flow but also estimates the lift

response well from a noisy flow. The autoencoder noise rejection characteristics is beneficial in

100



ξ1

ξ2

ξ3
0

0.2

-0.2
0-0.2 0.2

0
-0.05

0.05

ξ1

ξ2

ξ3
0

0.2

-0.2
0-0.2 0.2

0
-0.05

0.05

ξ1

ξ2

ξ3
0

0.2

-0.2
0-0.2 0.2

0
-0.05

0.05

Initial
condition

0.5

1.0

1.5

Noisy data

Two vortices (vertical)

Lift

α = 40°, G = -2.2,
L = 0.5, y0/c = 0.3

α = 20°

30°
40°

50°
60°

0 5 Time

0

0.5

1.0

1.5

0 5 Time

: Decoded
: Reference

α = 50°, G = -2.8, L = 0.5,
 y0/c = 0.1, x2/c = -4

R
ef

er
en

ce
D

ec
od

ed

95.9%

90.8%

In
pu

t
D

ec
od

ed

81.5%

R
ef

er
en

ce
D

ec
od

ed

Two vortices (horizontal)

Initial
condition

0.5

1.0

α = 50°,
G = 2.0, L = 0.5,
y0/c = {0.5, -0.5}

0 5 Time

Lift

Lift

Figure 6.6: Extrapolation assessments of the present nonlinear autoencoder with lift augmentation.

Three extrapolating cases are considered: 1. noisy data, 2. two vortex gusts (vertically arranged),

and 3. two vortex gusts (horizontally arranged). The initial condition for the cases with two vortices

is illustrated in the plot of each latent space. The trajectories for the undisturbed cases are shown

in light color in latent space. The value presented on each decoded flow field corresponds to the

time-averaged structural similarity index between the decoded and reference fields.
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obtaining real-time situational awareness and working with turbulent flows in which less influential

smaller-scale structures may also be present around the extreme gust vortices.

We also consider cases of vortex-dominated gust flows that are challenging for most recon-

struction techniques trained only with single-gust disturbances. Here, we take two vortices that are

introduced vertically and horizontally upstream of the airfoil, as depicted in figure 6.6. In both

cases, the dynamical lift responses can be accurately estimated while the decoder reproduces the

presence of two vortex disturbances very well, as shown in figures 6.6 and 6.9. We can also notice

from the latent space that the trajectory of the two-horizontal-vortex case presents two inflections

at b2 ⇡ 0. This coincides with the observation in the lift dynamics which possesses two valleys due

to the impingement of two negative vortices. We note that these particular examples are di�cult

for linear techniques, including PCA which completely fails to reconstruct the flow field as shown

in figure 6.9.

Finally, let us demonstrate the potential of the present lift-augmented autoencoder for handling a

more challenging and realistic extreme flight condition. In this last example, we introduce randomly

generated five strong vortices upstream of the wing to simulate severe wake turbulence striking

the airfoil, as shown in figure 6.7 (top left). The decoded lift, reconstructed flow fields, and latent

trajectory are presented in figure 6.7. Even under this extreme operating condition, the present

autoencoder robustly provides accurate reconstruction of the flow variables despite the model being

trained only with single-gust disturbances. This success in flow compression/reconstruction and

lift estimation corroborates that the discovered low-dimensional manifold universally captures the

extreme gust vortex-airfoil interaction dynamics. This discovery provides great hope in establishing

flight in extreme gusts, which was traditionally considered impossible.

6.3 Discussion

Small-scale air vehicles flying in urban or mountainous environments need to maneuver through a

highly unsteady wake field full of strong vortices generated by manmade or natural obstacles. The
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Figure 6.7: Application of the present nonlinear autoencoder with lift augmentation to extreme

gust disturbance situation with multiple vortices, simulating severe wake turbulence striking the

airfoil. The initial condition with the gust parameters for each vortex is provided (top left). The

decoded lift history and the latent space dynamics are shown (top right). The trajectories for the

undisturbed cases are shown in light color in latent space. The value presented on the decoded

flow field corresponds to the time-averaged structural similarity index between the decoded and

reference fields (bottom).

interaction of these vortices with flying vehicles requires an understanding of extreme aerodynamic

flows, for which there are no established theories. In the current study, we presented a data-driven

approach to identify a low-dimensional manifold on which the key dynamics between strong gust

vortices and airfoil wakes can be collapsed. This manifold was found with an autoencoder designed

to retain the knowledge of aerodynamic lift as part of the latent variables. The existence of this

low-dimensional manifold is significant in a few ways.

First, the fact that only three variables can represent the complex vortical flow field confirms
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the low-dimensional nature of the strong gust vortices interacting with the airfoil wakes. While

the present study distilled the dynamics to only three variables, it actually can be further reduced

to two variables if the three variables are projected on the identified manifold. This significant

compression of the extreme aerodynamic flow fields was enabled with a nonlinear autoencoder-

based approach that incorporates aerodynamic insights embedded into its formulation. We also

note that noisy experimental data encountering a di�erent type of gust can also be coincidentally

low-dimensionalized to be three-dimensional variables through a nonlinear autoencoder with the

assistance of a topology-based concept (SFS23). Second, this low-dimensional representation of

the extreme aerodynamic flows suggests that only a small number of sensors on the airfoil may

be able to accurately reconstruct the surrounding flow field in real time. In fact, decoder-type

neural networks, that take sparse sensors as the input and high-resolution aerodynamic flows as

the output, have been recently developed to perform real-time fluid flow state estimation (EMY20;

FMR21; ZFA23; AW21). The observations in these studies imply that low-dimensional extreme

aerodynamic latent vectors can also be estimated from sparse sensor information, enabling us to

track the high-dimensional dynamics in a low-order, real-time manner. Third, given the present

findings, it is possible to develop a reduced-order model that can capture the dynamics in the latent

space to desired level of accuracy and complexity. While we could model the latent dynamics

using other data-driven techniques such as sparse regression (BPK16a), modeling and controlling

the high-dimensional extreme aerodynamic flows on the present manifolds from the perspective

of phase-amplitude space appears interesting (Nak16; TN18; KSN13). It can be anticipated the

phase-reduction analysis on the present nonlinear manifold o�ers a new aspect in modifying wake

dynamics by providing the optimal timing and locations of actuation.

With the discovered manifold, active flow control and vehicle stability control strategies can be

developed for mitigating the e�ects of extreme aerodynamic disturbances. While this study focused

on extreme two-dimensional vortex-airfoil interactions, there are other types of gust disturbances

present in severe atmospheric turbulence that require three-dimensional analysis (FGD21). Three-

dimensional flow extensions are important to further examine the potential of the present approach.
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As shown in this study, nonlinear data-driven compression techniques appear promising to support

the identification of other manifolds that capture the complex extreme aerodynamic interactions

between these other types of gusts and the aircraft. The present findings o�er a new perspective

on modeling and taming extreme aerodynamic flows in support of next-generation air vehicle

operations in conditions traditionally considered unflyable.

6.4 Methods

6.4.1 Simulations of Extreme Vortex-Airfoil Interactions

The present study considers the unsteady flow field generated by the extreme gust vortex-airfoil

interactions. The flow fields examined in this study are obtained from direct numerical simulations

of flows over a NACA 0012 airfoil at a chord-based Reynolds number Re ⌘ D12/a = 100. Here, D1

is the free-stream velocity, 2 is the chord length, and a is the kinematic viscosity. The simulations

are performed with an incompressible flow solver (HI04; HMI06) for an airfoil at six di�erent

angles of attack of U = 20�, 30�, 40�, 50�, and 60�. For the undisturbed cases, the flow at U = 20� is

steady while that at U � 30� exhibits unsteady periodic wake shedding. The computational domain

extends over (G, H)/2 2 [�15, 30] ⇥ [�20, 20] with the leading edge of the wing positioned at the

origin.

To study the gust-airfoil interactions, a very strong vortex with an angular velocity profile

prescribed by equation (Tay18) is introduced upstream of the airfoil at G0/2 = �2 and H0/2 2

[�0.5, 0.5]. The present disturbance vortex is parameterized by the gust ratio ⌧ ⌘ D\,max/D1 2

[�10, 10], its size ! ⌘ 2'/2 2 [0.5, 2], and the vertical position of the disturbance H0/2. From the

parameter space composed of these three variables, 40 randomly-sampled cases of the disturbed

flows are simulated for each angle of attack. For the purpose of learning the extreme aerodynamics

with the autoencoder, 20 cases are used for training and the remaining 20 cases are used for testing.

The simulated flows were validated with previous studies (ZFA23; Kur15; LLZ12; DCU18), in

particular with a study that considered a vortex-airfoil interaction problem (ZFA23).
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For each of the cases considered in the present study, we prepare 1200 snapshots of vorticity field

over 10.2 non-dimensional convective time C⇤ ⌘ D1C/2. We refer to this convective time as simply

‘time’ in the main text. Of the entire flow field, a subdomain (G, H)/2 2 [�1.4, 4]⇥ [�1.2, 1.2] with

spatial grid points (#G , #H) = (240, 120) is considered for the data-driven analysis since vortex-

airfoil interactions primarily occur in this region. Moreover, the history of the lift fluctuations is

provided by the numerical simulations. The non-dimensional lift coe�cient ⇠! ⌘ �lift/(
1
2dD

2
12),

where �lift is the lift force on the wing body and d is the density. In the main text, ⇠! is referred

to as ‘lift.’ Overall, the training data used for the present models amounts to 1.26 ⇥ 105 frames

comprised of 100 extreme aerodynamic gust response cases and 5 undisturbed wake cases with

1200 snapshots for each case.

Autoencoder Setup

To discover the universal nonlinear manifold that represents the high-dimensional extreme aerody-

namic flows in a low-dimensional latent space, we use an autoencoder (HS06) (see figure 6.3). Here,

we consider a convolutional neural-network-based autoencoder F , which is trained to output q̂ to

be the same data as the input q 2 R= such that q̂ ⇡ F (q;w), where w denotes the weights inside the

autoencoder. This autoencoder is comprised of an encoder F4 and a decoder F3 connected through

a low-dimensional variable / 2 R< in the middle, where < ⌧ =. Here, the high-dimensional input

q can be compressed into the latent vector / if the autoencoder F successfully recovers the data

accurately. That is, we seek to have an autoencoder that achieves

q ⇡ q̂ = F (q;w) = F3 (/) = F3 (F4 (q)). (6.1)

The autoencoder F is found based on data such that its weights w are optimized to minimize a

desired cost (loss) function E, yielding the following optimization problem

w = argmin
w
[E(q, F (q;w))] = argmin

w
kq � q̂k2. (6.2)

The weights w are determined with the Adam optimizer (KB14).
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We use an autoencoder composed of convolutional neural networks (CNN) (LBB98) and multi-

layer perceptrons (MLP) (RHW86), as illustrated in figure 6.3. In the encoder, the CNN captures

global features of the extreme aerodynamic flow field and the MLP is used to extract features

from the CNN while further reducing the size of the data. By leveraging nonlinear activation

functions, an autoencoder can achieve better compression than linear compression techniques such

as principal component analysis (PCA) (HS06). Note that using autoencoder with linear activation

functions is mathematically equivalent to performing principal component analysis (PCA) (HS06;

MFF20). As for the nonlinear activation function, we use the hyperbolic tangent function i(B) =

(4
B
� 4

�B
)/(4

B
+ 4

�B
), enabling us to consider the positive and the negative gust influence in

latent space. The hyperparameters used in the MLP and CNN follow previous work with similar

settings (MFF20; FNF20).

In addition to PCA and a regular autoencoder, we develop a lift-augmented convolutional

autoencoder in this study. The present lift-augmented autoencoder trains the model with a lift

coe�cient ⇠! (C) in addition to a vorticity field q(C) such that [q̂(C), ⇠̂! (C)] = F (q(C)). The

additional side network based on an MLP is illustrated in the green-shaded portion of figure 3. This

additional network ensures that the latent vector / (C) holds relevant information related to the lift

coe�cient ⇠! (C) to support the manifold identification. The cost function in this case becomes

w
⇤ = argmin

w


| |q � q̂ | |2 + V | |⇠! � ⇠̂! | |2

�
, (6.3)

where V balances the vorticity field and lift reconstruction losses. In this study, we choose V = 0.05

based on the L-curve analysis (HO93). With the lift decoder F! , the reconstructed lift coe�cient

⇠̂! (C) is given by

⇠̂! (C) = F! (/ (C)) = F! (F4 (q(C))). (6.4)
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Figure 6.8: Reconstructed vorticity fields by PCA, a regular autoencoder, and the present

lift-augmented autoencoder for the cases of (a) (U,⌧, !, H0/2) = (40�,�2.2, 0.5, 0.3) and (b)
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6.5 Appendix: Reconstruction of vorticity fields

Comparative assessment of the reconstructed flow fields using di�erent techniques is o�ered in

this section. Here, we compare the reconstructed vorticity field from PCA, a regular autoencoder,

and the lift-augmented autoencoder. To quantitatively assess the reconstruction performance, we

evaluate the accuracy of the structural similarity index (SSIM) (WBS04) between the reference and

the decoded flow fields. The SSIM j is defined as

j
0 =

(2`A `3 + ⇠1) (2fA3 + ⇠2)

(`2
A
+ `2

3
+ ⇠1) (f

2
A
+ f2

3
+ ⇠2)

. (6.5)

Here, subscripts A and 3 are used for the reference and decoded flow fields, ` and f are the

mean and standard deviation of given data, respectively, fA3 is the covariance of the reference and

decoded flow fields, and the constants (⇠1,⇠2) = (0.16, 1.44) are used to stabilize division [41].

The SSIM j lies between 0, representing no similarity, and 1, representing an identical image. The

value of the SSIM is provided on every reconstructed vorticity field plot of the main text.

In this supplemental material, we present two cases of (U,⌧, !, H0/2) = (40�,�2.2, 0.5, 0.3)

and (60�,�2.8, 1.5, 0) in figures 6.8(0) and (1), respectively. We compare the performance of

PCA, regular autoencoder, and the lift-augmented autoencoder all with the number of the latent

vector being set to 3. As evident from these figures, PCA struggles to reconstruct high-dimensional

states over time for both cases of extreme aerodynamic flows. PCA completely fails to detect the

incoming gust vortex. In addition to the failure of reconstruction for the presence of the vortex

disturbance upstream of the wing and the wake structures, limitations of linear reconstruction

techniques are also observed around the wing with superpositions of wings appearing incorrectly.

In contrast, the reconstruction can be greatly improved with a nonlinear convolutional au-

toencoder, as shown in figure 6.8. The position of extreme vortex disturbance is estimated very

accurately over time including when a vortex gust impinges the wing causing strong nonlinear

interactions among the wing, gust, and wake. This observation shows that the collection of the

present extreme aerodynamic flow fields can be significantly compressed into only three variables

using a nonlinear autoencoder. The improvement of the reconstruction by the nonlinear model can

109



R
ef

er
en

ce
A

E 
w

ith
 li

ft 93.5%

PC
A

0.05%

R
ef

er
en

ce
A

E 
w

ith
 li

ft 90.3%

PC
A

0.04%

Time

(a)

(b)

t* = 1.15 t* = 2.00 t* = 2.85 

0
0.6

-0.6

Timet* = -0.56 t* = 0.13 t* =1.40 

Figure 6.9: Reconstructed vorticity fields by PCA and the present lift-augmented autoencoder for

the cases of two gust vortices that are (0) vertically arranged and (1) horizontally arranged. The

values listed on the decoded flow fields are the time-averaged structural similarity indices between
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also be observed with an example of disturbed flow fields with two extreme gust vortices.

The impingement with these multiple gust vortices causes challenges to stable flight with

extreme levels of nonlinear lift responses than single-gust cases. These unseen situations cannot

be generally analyzed with conventional linear analysis. The reconstructed flow fields with two

di�erent types of vortex gust placements, (1) vertical and (2) horizontal arrangements, using PCA

and the lift-augmented autoencoder are shown in figure 6.9. As expected, PCA cannot detect the

presence of two vortices and also completely fails to capture the influence of extreme disturbance on

the wake over time. On the other hand, the present lift-augmented autoencoder is able to reconstruct

the flow states, achieving over 90% SSIM for both examples. The ability to reconstruct such unseen

complex gust situations based on a variety of single-vortex disturbed flow training data suggests that

the discovered manifold space is indeed capturing the underlying extreme aerodynamic responses

in not only a low-dimensional manner but also in a universal fashion. It is hence anticipated that

the present manifold expression can be extended to wings flying into a wide range of extreme

vortex-dominated gusts.
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CHAPTER 7

Controlling unsteady flows on a machine-learned manifold:

vortex-gust airfoil interaction

Here, we demonstrate that control laws can be designed in a latent space identified by nonlinear

machine learning to modify unsteady fluid flows. We take an example of extreme aerodynamic

flows and use the extreme aerodynamic manifold to derive a control strategy to mitigate the impact

of vortex gust leveraging phase-amplitude reduction (FNT23).

7.1 Motivation

Small-scale air vehicles are used in a range of operations including transportation (CDS14), res-

cue (HJ11), agriculture (ZK12) and media reporting (HLL15). Although such small-scale aircraft

typically fly in favorable conditions, they are now being tasked to navigate in challenging environ-

ments such as urban canyons, mountainous areas, and turbulent wakes created by ships. As the

occurrence of these extreme scenarios has increased due to global warming, real-time and low-cost

control strategies are critical to achieving stable flight under sizeable and violent atmospheric dis-

turbances (JCS22; MMW23). In response, this study presents a data-driven control technique for

flows around a wing experiencing extreme levels of vortical gusts.

In violent and turbulent airspace, small-scale air vehicles encounter various forms of vor-

tex disturbance characterized by a number of parameters including strength, size, and orienta-

tion (BSJ21; SHB23). In studying vortex-gust airfoil interaction, the gust ratio ⌧ ⌘ D6/D1 is a

particularly important factor, where D6 is the characteristic gust velocity and D1 is the freestream
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velocity or cruise velocity. Flight condition of ⌧ > 1 is traditionally avoided, which can occur in

urban canyons, mountainous environments, and severe atmospheric turbulence (JCS22). Large-

scale aircraft do not encounter conditions of ⌧ > 1 due to their high-cruise velocity. However,

such a condition becomes a critical matter for small-scale aircraft such as drones because of its low

cruise velocity, leading to potentially large ⌧.

Previous studies of vortex-gust airfoil interaction have mainly focused on scenarios with⌧  1.

For example, (QWG23) experimentally investigated vortex-gust airfoil interaction under ⌧  0.5.

They examined the e�ect of various parameters such as gust ratio, angle of attack, and sweep

angle of the wing on vortical flows and aerodynamic forces through PIV measurements. (HBP22)

considered gust mitigation of flows around a DLR-F15 airfoil under vortex gusts with ⌧  0.1.

With trailing-edge flaps and a combined proportional-integral feedback/model-based feedforward

approach, they achieved 64% reduction in the lift deviation during quasirandom gust encounters.

For conditions of ⌧  0.71, (SGL23) has recently developed a closed-loop pitch control strategy

to mitigate lift fluctuation for transverse gust encounters.

The complex dynamics of vortex-airfoil interactions are driven not only by the gust ratio

but also by other factors such as the Reynolds number, wing geometry, disturbance size, and

orientation. Since di�erent combinations of these parameters create diverse patterns of vortex-

airfoil interactions, covering infinite scenarios with numerical and experimental studies by naïve

parameter sweeps is impractical. This calls for a smart way to sample and extract the fundamental

nonlinear dynamics. There is also a need to control these violent flows to achieve some form of

stable flight.

We have recently proposed a data-driven technique called a nonlinear lift-augmented autoen-

coder that uncovers the low-dimensional dynamics of vortical flows experiencing extreme levels of

vortex disturbances over a wide parameter space (FT23). Our previous study considered extremely

high levels of aerodynamic disturbances with 0 < ⌧  10. For aerodynamics with ⌧ > 1, we

refer to it as extreme aerodynamics due to the presence of violently strong gusts. We have found

that time-varying vortical flow fields spanning over the large parameter space can be compressed
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to only three variables using nonlinear machine learning. Furthermore, the compressed three

latent variables can hold the essence of the original high-dimensional flow physics, forming a low-

dimensional manifold that captures the influence of extreme vortex disturbance about the baseline

flow dynamics.

This study considers leveraging the machine-learned low-order manifold for gust mitigation

control. However, controlling such violent flows is challenging due to their inherent transient nature.

In response, this study applies phase-amplitude reduction (Nak21; SKN17) to a low-dimensional

manifold to design a control law. Phase-amplitude reduction is a mathematical technique to

analyze oscillatory signals or waveforms in a wide range of nonlinear dynamics (WLT13; WM16).

This analysis can model a given complex dynamics with its constituent components of phase and

amplitude. Phase can be thought of as the timing information of a signal, referring to the position of

a waveform at a particular point over time relative to a reference point. On the other hand, amplitude

represents the intensity of a waveform at a specific point in time, hence providing information about

the energy of a given signal (MM18; KOS20; MZN23).

A simplified form of a given complex dynamics with the reduction to its phase and am-

plitude can facilitate various analyses from the aspect of dynamical modeling and system con-

trol (Nak16; KSN13; MMM13; TIK23). Phase-reduction analysis has recently been used to charac-

terize and control fluid flows, including the periodic vortex shedding around cylinders (TN18; Iim19;

KT20; KKT21; LNJ21; LZK23), a flat plate (Iim21; Iim23), and airfoil (NTB21; KGT22; GKT23).

Synchronization characteristics to various forms of periodic perturbations in fluid flows can also

be examined via phase-reduction analysis, demonstrated with vortex shedding for a circular cylin-

der (TN18; KT20; KKT21; NTB21). For laminar-separated airfoil wakes, phase-reduction-based

control design has also exhibited potential not only to reveal responsible flow physics (KGT22) but

also to optimally modify wake behaviors (GKT23).

This study develops a feedforward control strategy to quickly mitigate the impact of extreme

vortex gusts by performing the phase-amplitude reduction on the extreme aerodynamic manifold.

The overview of the present study is shown in figure 7.1. There is a step-by-step procedure for
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Figure 7.1: Overview of the present study. 1. Nonlinear autoencoder-based manifold identification

of extreme aerodynamic flows (in section 7.2). 2. Sparsity-promoting latent dynamical modeling

(in sections 7.3.1 and 7.4.1). 3. Phase-amplitude reduction in a latent space (in sections 7.3.2

and 7.4.2). 4. Data-driven flow control with optimal waveform for gust mitigation (in sections 7.3.3

and 7.4.3).
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preparing the optimal control actuation, aiming to quickly modify the flow state.

The present paper is organized as follows. Extreme aerodynamic flow physics and their low-

dimensioalization through a machine-learning technique are introduced in section 7.2. Methods

used to prepare the optimal control actuation are described in section 7.3. Results and discussion

are provided in section 7.4. Conclusions are lastly remarked in section 7.5.

7.2 Extreme vortex-airfoil interactions on a low-dimensional manifold

This study considers extremely strong vortex-gust and airfoil interaction, exhibiting inherently

transient and nonlinear nature. To control such violent aerodynamic flows with minimal costs,

we develop a data-driven strategy assisted with phase-amplitude reduction analysis in a low-

dimensional manifold, as illustrated in figure 7.1.

The first step is to obtain a universal, low-dimensional representation of extreme aerodynamic

flows. This is achieved by a nonlinear machine-learning-based technique referred to as a lift-

augmented autoencoder (FT23). Once we obtain the low-dimensional expression, we model the

latent dynamics using sparsity-promoting regression. The identified dynamical model here is

needed to perform phase-amplitude reduction. Through the phase-amplitude reduction, we can

measure phase- and amplitude sensitivity functions that are used to derive a control law. In this

study, we aim to achieve significant control e�ects within a very short time duration because the

impact of the gust quickly generally appears within only 2–3 convective time. The phase-amplitude

reduction enables us to optimally gain a control actuation that can quickly modify the flow state

while suppressing the amplitude modulation of the dynamics. The derived time-varying control

actuation is finally applied to extreme aerodynamic flows.

This section first discusses complex transient flow physics appearing in extreme aerodynamics

while introducing a model problem. We also show how complex, high-dimensional vortical flows

under extreme aerodynamic conditions can compactly be expressed in a manifold space while

covering a principle of nonlinear autoencoder used for the present manifold identification.
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Figure 7.2: (0) The velocity profile of the vortex gust. (1) An example vorticity snapshot with a

vortex gust. The parameters considered in the present study are also shown.

7.2.1 Flow physics: extreme vortex-gust airfoil interaction

In this study, extremely strong vortex-gust airfoil interaction is considered to model a situation in

which a wing experiences a significant level of disturbance during flight operations. Such a strong

vortex gust induces a large excitation of aerodynamic forces within a very short time duration while

exhibiting highly nonlinear transient dynamics. Furthermore, the flow fields involve a variety of

wake patterns depending on a parameter combination of the vortex-gust setting such as vortex size,

strength, and initial position. Due to the nonlinear interaction between the vortex gust and a flow

around an airfoil, there are massive flow separations creating additional vortical structures with a

range of length scale. This study aims to mitigate the impact of such a strong vortex gust with a

data-driven control.

To model the aforementioned extreme aerodynamic conditions, we consider a vortex-gust airfoil

interaction around a NACA0012 airfoil with angle attacks U 2 [20, 60]� at a chord-based Reynolds

number of 100. The data sets are produced by direct numerical simulations (HI04; HMI06).

Without the presence of a vortex gust, a wake at U = 20� is steady while wakes at U � 30� exhibit

unsteady periodic shedding (limit-cycle oscillation). For the disturbed wake cases, an extremely

strong gust is introduced upstream of a wing at G0/2 = �2 and H0/2 ⌘ . 2 [�0.5, 0.5], as illustrated
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in figure 7.2. A Taylor vortex (Tay18) is used to model the disturbance with a velocity profile of

D\ = D\,max
A

'

exp

1
2
(1 �

A
2

'
2
)

�
, (7.1)

where ' is the radius at which D\ reaches its maximum rotational velocity D\,max. The vortex gust

is parameterized by the gust ratio ⌧ ⌘ D\,max/D1 2 [�10, 10], its size ⇡ ⌘ 2'/2 2 [0.5, 2], and

the vertical position of the disturbance . . Note that the gust ratio ⌧ considered herein is much

larger than that traditionally thought of as flyable (JCS22).

A parameter combination of the vortex-gust setting generates diverse patterns of violent vortex-

airfoil interaction (FT23). Let us exhibit in figure 7.3 the entire collection of lift responses in the

present data set with representative vortical flow snapshots. Here, the convective time is set to zero

when the center of the vortex arrives at the leading edge of the airfoil. The present data set includes

a variety of wake behaviors and lift waveforms over time, occurring due to complex vortex-gust

airfoil interactions.

Let us first take an example case at U = 30� shown in figure 7.3 which is disturbed by a strong

positive vortex gust with the parameters of (⌧,⇡,. ) = (3.4, 0.5, 0.1). With the approach of

positive disturbance, the lift drastically first increases from the undisturbed state. Once this positive

vortex gust impinges on the airfoil, the interaction between the gust and the airfoil wake triggers

massive separation.

A negative vortex disturbance conversely decreases the lift first, and then the lift value recovers

towards that of the original limit-cycle case in a transient manner, as shown in the case of U = 50�

in figure 7.3. The amplitude of lift fluctuation generally becomes larger as the size of the vortex

gust increases, as evident from the showcased example of U = 20� and 40� in figure 7.3. However,

the lift time series with a large, strong vortex gust such as the case of U = 60� in figure 7.3 with

the parameter combination of (⌧,⇡,. ) = (3.2, 1.5,�0.3) presents a di�erent asymptotic wave

pattern, due to the massive separation which additionally generates vortical structures around an

airfoil.

These sharp lift responses with extreme vortex-gust airfoil interaction occur within only two
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convective time for almost all considered cases. While we easily recognize the di�culty of

controlling air vehicles under such a significant variation in the lift force, it also implies that a

controller for the present extreme aerodynamic flows would be asked to quickly modify the flow to

attenuate the lift responses. This calls for a control that reacts in a fast manner.

For the present data-driven manifold identification, we use 1200 vorticity snapshots over

10.2 convective time per case, resulting in 1.26 ⇥ 105 collective snapshots. A subdomain of

(G, H)/2 2 [�1.4, 4] ⇥ [�1.2, 1.2] with spatial grid points (#G , #H) = (240, 120) is extracted from

the computational domain of (G, H)/2 2 [�15, 30] ⇥ [�20, 20] with the leading edge of the wing

positioned at the origin, capturing the primarily vortex-airfoil interactions.

7.2.2 Lift-augmented nonlinear autoencoder

The analysis of the present extreme aerodynamic flows is challenging due to their complexity and

nonlinearity. Furthermore, it is impractical to perform either numerical simulations or experiments

for studying vortex-airfoil interaction across a very large parameter space with limited resources.

Hence, it can be anticipated that the analysis can be facilitated with a reduced-order model that

universally captures the essential physics of extreme aerodynamics without necessitating expensive

simulations and experiments.

To this end, we have recently developed a lift-augmented nonlinear autoencoder (FT23) that

can compress a collection of extreme aerodynamic vortical flow data across a large parameter space

into few variables while holding the essence of the original vortex-airfoil interaction. Herein, we

introduce a principle of the lift-augmented nonlinear autoencoder.

Autoencoder (HS06) is a neural-network-based model reduction technique. As illustrated in

figure 7.4, an autoencoder is composed of an encoder F4 and a decoder F3 while having the

bottleneck called latent vector /. The autoencoder model is generally trained to output the same

data as a given input data. In other words, a given high-dimensional input data can be compressed

into the latent vector / if the autoencoder F can successfully decode the original high-dimensional
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Figure 7.4: Lift-augmented nonlinear autoencoder (FT23).

data.

In this study, a discrete vorticity field 8 is compressed through the autoencoder such that

/ = F4 (8), 8 ⇡ 8̂ = F3 (/), (7.2)

where 8̂ is a decoded vorticity field. The weights inside a regular autoencoder are optimized by

solving the following minimization problem,

w
⇤ = argmin

w
k8 � 8̂k2 = argmin

w
k8 � F (8;w)k2, (7.3)

where w is the weights of the autoencoder. With nonlinear activation functions inside neural

networks, autoencoder can nonlinearly compress high-dimensional data into a low-order subspace,

which often achieves better compression than linear techniques.

While nonlinear autoencoders can be used to compress a variety of vortical flow data (FHN21;

OS19; XD20), we have found that the regular formulation expressed in equation 7.3 does not

guarantee to obtain a physically-interpretable data distribution in the latent space. Especially,

extracting low-order coordinates associated with aerodynamic features is important in considering

not only the understanding of extreme aerodynamic flows but also downstream tasks such as

developing control strategies. To facilitate the identification of a low-dimensional subspace from the

aspect of aerodynamics, the proposed model referred to as a lift-augmented nonlinear autoencoder

incorporates a lift coe�cient ⇠! (C) for manifold identification.
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In the present formulation, the additional branch network connected with the latent variables

/ (lift decoder, the blue-shade portion in figure 7.4) simultaneously outputs ⇠! (C) with a vorticity

field 8(C). This can weigh the latent variables / with the lift coe�cient ⇠! . The optimization for

the weights inside the lift-augmented autoencoder is described as

w
⇤ = argmin

w


| |8 � 8̂| |2 + V | |⇠! � ⇠̂! | |2

�
, (7.4)

where V balances the vorticity field and lift reconstruction loss terms. By adding this lift decoder,

the latent vector / (C) can be relevant to the lift coe�cient ⇠! (C) in identifying a low-dimensional

manifold. More details on the autoencoder setup are referred to (FT23).

7.2.3 Vortex-airfoil interaction on a low-dimensional manifold

With the nonlinear lift-augmented autoencoder, the time series of extreme aerodynamic vortical

flows spanning over a large parameter space can be compressed into only three latent variables. The

latent variables / (C) in the present three-dimensional space are visualized in figure 7.5(0). Here,

undisturbed baseline cases are shown in color while gray lines correspond to all the trajectories

mapped from the disturbed vorticity flow field data. A variety of vortical flows with and without gust

disturbances across five di�erent angles of attack are considered. Each of the extreme aerodynamic

cases can reside in the vicinity of the undisturbed base states while representing how much they

are di�erent (or similar) from the baseline conditions across angle of attack in a low-order manner,

converging to the inertial manifold (FMT88; Tem89; DG23).

Let us first focus on the latent trajectories of the undisturbed flows. The latent vectors for the

undisturbed flows across the angle of attack are aligned along the b3 direction. While the di�erent

angles of attack can be distinguished in a low-order space, the shape of the trajectory for each angle

also reflects the wake behavior of the original high-dimensional space. The case of U = 20� is

mapped as a single dot while the other baseline cases possessing unsteady periodic shedding at

U � 30� exhibit cyclic trajectories. This corresponds to the steady flow at U = 20� and unsteady

limit-cycle oscillations at U � 30� of vorticity fields.
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Figure 7.5: Extreme aerodynamic trajectories in (0) the three-dimensional latent space and (1)

its two-dimensional view for the undisturbed baseline cases. (2) Undisturbed vorticity fields at

\ = c/4 and c for U 2 [30, 60]�. The values inside each snapshot report an unsteadiness factor

norm n8 = | |8(C) � 8| |2/| |8| |2.

The two-dimensional view of the latent space and representative vorticity fields with U 2

[30, 60]� at two di�erent phases \ = c/4 and c are shown in figures 7.5(1) and (2), respectively.

The radius of each circle for the undisturbed cases of U � 30� increases with the angle of attack. To

quantitatively examine this point, we assess an unsteadiness factor norm n8 = | |8(C) �8 | |2/| |8 | |2,

where 8 is a time-averaged vorticity field, and report it for each of the representative snapshots

with U 2 [30, 60]� in figure 7.5(2). As shown, the value increases with the angle of attack. In

other words, the expansion of the radius is due to the increases in flow unsteadiness for each angle

of attack case. Furthermore, undisturbed vorticity fields at each phase depicted in figure 7.5(2)

present a similar wake shedding pattern across the angle of attack. These observations suggest that

the undisturbed wakes can be successfully low-dimensionalized while preserving the information
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of phase (time) and amplitude (fluctuation) in the original high-dimensional space.

Next, let us examine the trajectories for disturbed wake flows. All gray trajectories corresponding

to extreme aerodynamic flows reside around the orbits of the undisturbed cases in a coherent manner.

To investigate the implication of low-dimensionalized extreme aerodynamic trajectories, we take

an example case of (⌧,⇡,. ) = (�2.8, 1.5, 0) for which a strong, large vortex gust impinges an

airfoil at U = 60�.

The latent variable trajectory and the reconstructed flow fields over time are also shown in

figure 7.6. The value shown in each decoded flow contour reports the spatial reconstruction

error norm Y = | |8ref � 8dec | |2/| |8ref | |2, where 8ref and 8dec are the reference and decoded

vorticity fields, respectively. Nonlinear interaction between the airfoil and vortex gust can be

reconstructed over time through the autoencoder-based compression of the three variables. This

successful reconstruction indicates that the three-dimensional latent variables retain the essence of

high-dimensional vortical flows without significant loss of key physics.

The extreme aerodynamic trajectory depicted in figure 7.6 reflects the e�ect of nonlinear

vortex-gust interaction in the high-dimensional space about the undisturbed baseline flow. From

the points (0) to (1) in figure 7.6, the latent vector dynamically rises and drops in the b3 direction.
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This is likely because of the approach of negative vortex disturbance to the airfoil, drastically

and dynamically changing the e�ective angle of attack Ue� (And91; SJL20), i.e., b3 / Ue� . In

other words, the present lift-augmented autoencoder can express the relationship between extreme

aerodynamic flows and lift force in a low-order manner.

Such physically-interpretable low-dimensional representations of extreme aerodynamic flows

can be obtained due to the lift-augmented network while a regular autoencoder cannot provide

understandable latent data distributions (FT23). We emphasize that expressing extreme disturbance

e�ects about the undisturbed baseline dynamics is critical in developing flow control strategies

because it enables us to identify the desired direction (or control objective) in the low-order

coordinates to mitigate the strong impact of extreme vortex gusts.

7.3 Phase-amplitude reduction and optimal control

With the uncovered space representation, we can quantitatively assess the influence of extreme

vortex gusts on the dynamics in a low-order manner. While being able to avoid the collection of

expensive time-history data, this coordinate also o�ers the possibility to examine the dynamics in

the vicinity of the three-dimensional manifold.

In particular, the present nonlinear coordinate transformation suggests that the extracted dy-

namics of violent vortex-airfoil interaction can be analyzed through the viewpoint of dynamics

expressed with phase \ and amplitude A, as illustrated in figure 7.7. The latent variable captures

similar wake structures at the same phase \ while showing the amplitude di�erence caused by

the vortex-airfoil interaction, as exhibited in figure 7.7(1). This observation suggests that control

strategies that push the extreme aerodynamic trajectory towards the direction of the undisturbed

baseline state in the latent space may mitigate the influence of vortex disturbance in the flow field.

In this study, we analyze and control extreme aerodynamic flows with the assistance of phase-

amplitude modeling. The procedure can be divided into three steps, namely;
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fold. The extreme aerodynamic trajectory colored by convective time for the case of

(U,⌧,⇡,. ) = (40�, 2.8, 0.5,�0.3) is shown in addition to the undisturbed baseline orbits of

U = 30�, 40�, and 50�. (1) Two-dimensional phase-amplitude plane for U = 40�. Flow fields at the

same phase but di�erent amplitudes chosen from undisturbed and disturbed wakes are visualized.

1. dynamical modeling in the latent space using sparse regression (section 7.3.1),

2. performing phase-amplitude reduction to measure phase- and amplitude sensitivity functions

(section 7.3.2), and

3. controlling extreme aerodynamic flows with amplitude-constrained optimal waveform for

fast synchronization (section 7.3.3).

Throughout these steps, we aim to derive a control law to suppress the large fluctuation of lift

force due to the vortex disturbance within a very short time duration. Hereafter, let us introduce

approaches used at each step of the present control strategies.
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7.3.1 Sparsity-promoting low-dimensional dynamical modeling

Here, the dynamics of the latent vector / is modeled with a system of ordinary di�erential equations

(ODE) using sparse identification of nonlinear dynamics (SINDy) (BPK16a). This data-driven

technique can identify nonlinear governing equations from given time-series data. Let us consider

a dynamical system for the latent vector / (C) 2 R3,

§/ (C) = L(/ (C)). (7.5)

The temporally discretized data of / are collected to prepare a data matrix ⌅,

⌅ =

©≠≠≠≠≠≠≠
´

/
)
(C1)

/
)
(C2)

.

.

.

/
)
(C<)

™ÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠≠
´

b1(C1) b2(C1) b3(C1)

b1(C2) b2(C2) b3(C2)

.

.

.

.

.

.

.

.

.

b1(C<) b2(C<) b3(C<)

™ÆÆÆÆÆÆÆ
¨

2 R<⇥3
. (7.6)

Similarly, the time-series data of the time-di�erentiated value §/ (C) is arranged to construct a time-

di�erentiated data matrix §⌅. We also prepare a library matrix �(⌅) including nonlinear terms of

⌅. This study uses sine and cosine functions for the library matrix construction,

�(⌅) =

©≠≠≠≠
´

| | | | | | |

sin(⌅) sin(⌅/2) sin(⌅/4) sin(2⌅) sin(4⌅) · · · cos(2⌅) cos(4⌅)

| | | | | | |

™ÆÆÆÆ
¨
,

(7.7)

where we include sine and cosine functions of b8, b8/2, b8/4, 2b8, and 4b8. While polynomials

constructed by given variables are often considered for the library matrix construction (BPK16a;

BPK16b; KKB18; LKL19), we have found that a trigonometric function-based library can provide a

more accurate solution. A coe�cient matrix can be obtained by solving the following regression

problem,

§⌅(C) = �(⌅) , (7.8)
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with

 = (kb1 kb2 kb3) =

©≠≠≠≠≠≠≠
´

k(b1, 1) k(b2, 1) k(b3, 1)

k(b1, 2) k(b2, 2) k(b3, 2)
.
.
.

.

.

.

.

.

.

k(b1, ;) k(b2, ;) k(b3, ;)

™ÆÆÆÆÆÆÆ
¨

, (7.9)

where the subscript ; denotes the row index of the library matrix. In this study, the adaptive

Lasso (Zou06; FMZ21) is used to optimize the coe�cient matrix  .

Once we obtain an accurate low-dimensional dynamical model §/, the model is then used to

perform the phase-amplitude reduction which can provide the optimal timing and location of

control actuation to e�ciently and quickly modify the dynamics. For the present analysis, we

model the undisturbed baseline dynamics (i.e., periodic limit-cycle oscillation) using SINDy with

some auxiliary training data picked up in the vicinity of the limit cycle to obtain a dissipative and

non-Hamiltonian low-dimensional model, which we explain in details later.

7.3.2 Phase-amplitude reduction analysis

As illustrated in figure 7.7, the current low-dimensional latent variables / can be analyzed through

the lens of phase \ and amplitude A . Here, let us introduce the phase-amplitude reduction for

the periodic, stable limit-cycle oscillator §/ (C) = L(/ (C)) obtained through the SINDy for each

angle of attack case. It is assumed that this ODE has an exponentially stable limit-cycle solution

/0(C) = /0(C + )), where ) = 2c/l/ with the natural frequency l/ of the latent variable / for the

undisturbed baseline case at each angle of attack.

Given the aforementioned ODE system, the phase and amplitude in the basin of j can be

expressed with the phase function ⇥(/) and the amplitude functions '8 (/). Here, the generalized

phase and amplitude dynamics are described as

§⇥(/) = hr⇥(/), §/i = hr⇥(/), L(/)i = l/ ,

§'8 (/) = hr'8 (/),
§/i = hr'8 (/), L(/)i = _8'8 (/), (7.10)
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where_8 (8 = 0, 1, 2) denotes the Floquet exponents. Using them, we define the phase and amplitude

variables of the latent system state / for each angle of attack case,

\ = ⇥(/), A8 = '8 (/). (7.11)

Now considering an external input f (C) to the system, the oscillator dynamics is described as

§/ (C) = 5 (/ (C)) + f (C). (7.12)

For this perturbed system, the dynamics of phase \ and amplitudes A8 can be derived as

§\ (C) = l/ + hr⇥(/ (C)), f (C)i,

§A8 (C) = _8A8 (C) + hr'8 (/ (C)), f (C)i, (7.13)

where the control input f (C) is su�ciently weak such that of the order of O(n) with 0  n ⌧ 1. In

other words, these equations can be approximated by neglecting the terms of order O(n
2
),

§\ = l/ + h`(\), f (C)i, §A8 = _8A8 + h_8 (\), f (C)i, (7.14)

where `(\) = r⇥|/=6(\) and _8 (\) = r'8 |/=6(\) are the phase and amplitude sensitivity functions,

respectively.

The phase sensitivity function `(\) exhibits how the system is sensitive with respect to the

phase shift against an external forcing over dynamics, while the amplitude sensitivity function_8 (\)

tells us how much the amplitude of system becomes excited from the periodic orbit due to a given

forcing. Although it is generally di�cult to measure the phase and amplitude sensitivity functions,

they can be analytically obtained by assessing the left Floquet eigenvectors if a dynamical model is

explicitly given (Kur84; TKN21).

Since we now have a low-order model through the SINDy as expressed above, we can analytically

obtain the phase and amplitude sensitivity functions ⇥ and '8 with the Floquet theory. With the

)-periodic solutions of the following equations,

§[8 (C) = [J (/0(C)) � _8][8 (C),

§\8 (C) = �[J (/0(C))
†
� _

†

8
]\8 (C), (7.15)
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where the superscript † represents the Hermitian conjugate and J is a)-periodic Jacobian matrix of

L evaluated about / = /0(C). Here,[ and\ are respectively the right and left Floquet eigenvectors.

The phase and amplitude sensitivity functions `(\) and _8 (\) can be expressed as

`(\) = \0(\/l/), _8 (\) = \8 (\/l/), (7.16)

for 0  \ < 2c. Hence, the phase and amplitude sensitivity functions `(\) and _8 (\) can

be obtained by numerically solving the adjoint linear equations (7.15) so that [ and \ can be

calculated.

7.3.3 Optimal fast flow control with amplitude constraint

Next, we consider a feedforward control based on the phase and amplitude sensitivity functions

`(\) and_8 (\). The present controller is designed to quickly modify the dynamics to be at the target

frequency while suppressing the amplitude modulation in the low-dimensional latent dynamics /.

As exhibited in figure 7.7, the latent trajectory departs from the baseline (undisturbed) periodic

dynamics when the airfoil encounters an extreme aerodynamic gust. Hence, modifying the latent

space dynamics towards the direction of the periodic limit cycle while suppressing the amplitude

modulation in the latent space corresponds to the mitigation of the impact from vortex gusts in a

high-dimensional vortical flow field.

The above objective is achieved by leveraging the optimal-synchronization waveform with

amplitude suppression (TKN21). The present control considers the alignment between the original

system frequency and the target frequency, i.e., phase locking. The optimal waveform provides the

actuation pattern over the dynamics to achieve the fastest synchronization (HTH10; ZNK16).

To begin with, let us introduce the concept of the relative phase (phase di�erence) q(C) =

\ (C) � l f C where l f is the forcing signal frequency. We assume that the the control input f is

given in the form of f (C) = b/ (l f C). The governing phase dynamics becomes

§\ = l/ + h`(\), b/ (l f C)i. (7.17)
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With the averaging methods (Kur84; HI97), the dynamics of the relative phase is provided as

§q(C) = �⌦ +
1
) f

π
)f

0
h`(q + l f g), b/ (l f g)i3g (7.18)

where ) f is a period of the periodic forcing input and �⌦ = l/ � l f . The asymptotic behavior of

the relative phase dynamics can be approximated as

§q(C) = �⌦ + �(q), �(q) =
π

)f

0
h`(q +⌦ pg), b/ (⌦ pg)i3g, (7.19)

where �(q) is called the phase coupling function. In other words, phase locking can be achieved

if the relative phase becomes a constant such that §q ! 0. This phase locking (synchronization)

condition is given as �max�(q) < �⌦ < �min�(q), uncovering the Arnold tongue used in

synchronization studies of nonlinear dynamical systems (SIM07).

Now, let us seek the optimal input to synchronize the system to a forcing (target) frequency

as quickly as possible while suppressing the excitation from the limit-cycle dynamics in the latent

space. In other words, the rate of convergence of q to a fixed point q⇤ needs to be maximized to

satisfy §q⇤ = �⌦+�(q⇤) = 0. To derive the periodic waveform that can satisfy the above condition,

we consider the following cost function to formulate optimization maximizing | §q|,

L(b/) = ��0(q⇤) + a(% � hb/ · b/i) + `(�⌦ + �(q⇤)) � :8 [h_8 (q⇤ + l f C), b/ (l f C)i
2
]C , (7.20)

where 8 = 1, ...," with the first " amplitude variables, a and ` are Lagrangian multipliers, and % is

a constant satisfying
p
% ⇠ O(l/X). The first term contributes to maximizing the synchronization

speed, the second term can constrain the energy of actuation, and the third term corresponds to the

increment of the rate of convergence of q. In addition, we can also penalize the excitation of the

8th amplitude variable of amplitude sensitivity function with the weight :8.

The above optimization can be analytically solved using the calculus of variations (ZCK13;

TKN21) once we obtain the phase and amplitude sensitivity functions `(\) and _8 (\) through the

Floquet analysis for the latent governing equation derived by SINDy. We can finally derive the

optimal waveform as

b/ (l f C) =
1
2

⇢
aO + :8_8 (q

⇤
+ l f C)_

†

8
(q

⇤
+ l f C)

��1

· {�`
0
(q

⇤
+ l f C) + ``(q

⇤
+ l f C)}, (7.21)
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Figure 7.8: Conversion from latent perturbation to forcing in the original space. (0) Examples of

perturbed vorticity fields 8 +�l and the corresponding latent vector / +�/̃. (1) The perturbation

in the high-dimensional space toward a particular direction �88.

where 8 = 1, ...," and O is an identity matrix. Note that the weight value :8 is empirically chosen

so that the e�ect of the input on the 8th amplitude becomes su�ciently small (TKN21).

Because the optimal waveform in equation 7.21 provides how the actuation dynamically varies

for controlling the latent system, it is also necessary to convert the latent perturbation to the

forcing in the original latent space. We derive the relationship of the perturbation between the

latent and physical spaces. For this, we assume that the encoder F4 is continuously di�erentiable.

Given an input vorticity field 8(C
⇤
) with a perturbation in the high-dimensional space �8̃(C

⇤
), the

corresponding latent vector can be approximated with the Jacobian matrix J/ (8) of F4 evaluated

at time C⇤ such that

/ + �/̃ = F4 (8 + �8̃)

' F4 (8) + J/ (8)�8̃. (7.22)

For the current model yielding a three-dimensional latent vector from the given vorticity field, we

consider giving three di�erent patterns of perturbation to the original input �q̃< (< = 1, 2, 3). The

132



deviation of the latent vector from the evaluation point is expressed as

�/̃< = J/�8̃<, where < = 1, 2, 3. (7.23)

With these deviations, a set of unit vectors (e1, e2, e3) can be expressed as

©≠≠≠≠
´

| | |

e1 e2 e3

| | |

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

| | |

�/̃1 �/̃2 �/̃3

| | |

™ÆÆÆÆ
¨

©≠≠≠≠
´

�11 �12 �13

�21 �22 �23

�31 �32 �33

™ÆÆÆÆ
¨

= J/N, (7.24)

where N 2 R3⇥3 is a coe�cient matrix. To individually perturb the latent system in the e1, e2,

and e3 directions, the perturbation in the high-dimensional space toward a particular direction �88

(8 = 1, 2, 3) is prepared as

�88 = �98�8̃ 9 , (7.25)

where 9 = 1, 2, 3 and the coe�cient matrix can be determined as N = J
�1
/

.

In the present study, the three di�erent perturbations in the physical space (for equation 7.23)

are prepared by momentum injection at the leading edge of the airfoil with 45�, 90�, and 135� about

the local tangential direction (NTB21). The actuation cost with the steady momentum coe�cient

2` is set to be 0.016. At each \ over the periodic dynamics, three perturbations are individually

prepared so that the relationship of the perturbation in the latent and high-dimensional spaces can

be obtained at each timing used for the linearization.

The perturbed flow fields and latent vectors (in equation 7.22) and the derived forcing in the

high-dimensional space corresponding to a perturbation for each direction in the latent space (in

equation 7.25) are shown in figure 7.8. The magnitude and shape of forcing structures vary over

the dynamics and across the latent variables. Due to the assumption in equation 7.22 and small

injections in preparing the three di�erent patterns of �8, the designed forcing is very localized.

This actuation enables us to examine whether extreme aerodynamic flows can be controlled by
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such localized actuation spanning over a very small area with the assistance of optimal waveform

analysis within a very short time duration.

Note that the identified relationship of the perturbation in the latent and high-dimensional spaces

is also used to verify the phase sensitivity function `(\) which is analytically derived in equa-

tion 7.16, which we explain in detail later. The designed perturbation Ql (x, C) = nb/ (C)�8(x, C)

is added to the vorticity transport equation as

mC8(x, C) = �u · r8 + '4
�1
r

2
8 + Q8 (x, C), (7.26)

where the designed perturbation in the velocity form Qu = r ⇥ Ql is used for performing the

present simulations (KGT22). In the next section, we assess how much extreme aerodynamic flows

can be controlled with the present localized forcing and the optimal waveform.

7.4 Results and discussion

This section demonstrates the present data-driven and phase-amplitude-inspired modeling and

control of extreme aerodynamic flows. We consider cases at U = 40� as an example of complex

vortex-airfoil interaction whose undisturbed baseline wake dynamics is time-periodic. A low-

dimensional dynamical model identified by SINDy is first introduced. Once the phase and amplitude

sensitivity functions are evaluated from the Floquet analysis for the identified low-order model, we

apply the present control strategy to the extreme aerodynamic flows for gust mitigation.

7.4.1 Identification of low-dimensional latent dynamics

Here, let us discuss the SINDy-based low-dimensional latent dynamical modeling. As expressed

in section 7.3.1, SINDy requires a data matrix ⌅ and its time derivative §⌅ to approximate the

dynamics in a least-square manner. While the periodic limit-cycle dynamics only need to be

learned to measure both the phase and amplitude sensitivity functions from the model, giving

only the data of the undisturbed periodic oscillation for training SINDy cannot achieve accurate
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Figure 7.9: (0) Weakly-disturbed transient data used for SINDy training. The latent variables and

the initial vorticity snapshot for cases with a positive vortex gust with . = 0.1 are visualized. (1)

SINDy-based latent dynamics identification.

modeling. This is simply because an identified model does not incorporate information o� from

the limit cycle. The SINDy-based modeling with periodical latent vectors generally finds the

energy-conserving Hamiltonian system which cannot cover dissipative nature appearing in a high-

dimensional flow physics (FMZ21). This indicates that the time trajectory of the Hamiltonian

system does not return to the original limit cycle after the perturbation and would create a new

periodic oscillation with a di�erent radius. Since phase-amplitude reduction analysis assumes a

)-periodic, stable limit cycle function, correctly identifying the non-Hamiltonian dynamics in a

low-order manner is critical.

To this end, the present training data for SINDy includes not only the periodic oscillation but

also the transient process of weakly disturbed cases with a vortex gust. Examples of training

vorticity snapshots and corresponding latent vectors are shown in figure 7.9(0). To consider the

transient process, the latent vector / and their time derivatives §/ corresponding to twenty cases with

a parameter combination of ⌧ = (±0.1,±0.3,±0.5,±0.7,±0.9), . = (�0.3, 0.1), and ⇡ = 0.5 are

prepared. The snapshots after C = 0.34, when the vortex disturbance starts to impinge an airfoil, are

used, enabling the SINDy model to accurately learn how the dynamics can return to the periodic
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limit-cycle orbit.

The time-integrated results using the identified model equation §/ = 5 (/) with perturbations

are shown in figure 7.9(1). After the perturbation at C = 0, the amplitude gradually returns to

the original level across all latent vectors. This reflects the given airfoil wake physics in the high-

dimensional space in which the e�ect of perturbation dies out over the convection and the wake

dynamics come back to the undisturbed periodic shedding oscillation.

7.4.2 Phase-amplitude-based modeling of latent dynamics

Next, we apply the phase-amplitude model reduction to the identified equation above to obtain the

phase and amplitude sensitivity functions `(\) and_8 (\). As expressed in equations 7.15 and 7.16,

these functions can be analytically obtained by assessing the left Floquet eigenvectors. These two

functions for the present latent dynamics over 0  \ < 2c are depicted in figures 7.10(0) and

(1). We find that the relative magnitudes of the sensitivities among the latent variables reflect the

high-dimensional wake physics mapped into the low-order latent space.

The phase sensitivity functions `(\) in the b1 and b2 directions are much larger than that for b3.

This is because the latent variables b1 and b2, which mainly compose the phase plane as illustrated

in figure 7.7, possess a larger variation over the dynamics compared to b3 capturing the e�ective

angle of attack on the present manifold. This indicates that perturbing the system in the b1 and b2

directions is e�ective in modifying the dynamics from the aspect of phase delay or advancement.

On the other hand, the relative magnitude of the amplitude sensitivity function _ (\) for b3 is

of a similar order to that for the other two variables. This implies that the perturbation in the b3

direction can contribute to the amplitude modulation of the latent dynamics. This also coincides

with the aerodynamic observation in a high-dimensional space in which pitching the wing (in the

b3 direction) greatly modifies the fluctuation from the mean state of periodic wake shedding.

While being able to analytically derive the phase and amplitude sensitivity functions, these

model-based sensitivity functions can be verified by perturbing the vorticity field in a numerical
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Figure 7.10: (0) Phase sensitivity function `(\) and (1) amplitude sensitivity function _ (\) for

the latent vector /. (2) Phase sensitivity function `⇠!
(\) for the lift coe�cient ⇠! . For the phase

sensitivity functions, the analytical result through the Floquet analysis (�: Model) and the verified

result with the forcing in equation 7.25 (�: DNS) are also shown.

simulation with the conversion via equation 7.25 and directly measuring the phase shift over the

dynamics. The phase sensitivity functions evaluated in this way are also plotted with circles in

figure 7.10. The verified results with the forcing are in agreement with the model-based phase

sensitivity function, indicating that the SINDy-based model successfully captures the asymptotic

flow behavior in a low-order manner.

Although we have discussed the phase sensitivity function for the latent variables, we can also

measure the phase shift of the lift coe�cient ⇠! since the present nonlinear autoencoder includes a

lift decoder that estimates ⇠! from the latent variables /. The phase sensitivity function for ⇠! is

shown in figure 7.10(2). The overall trend of `⇠!
(\) is similar to that of `(\), implying that the

latent dynamics highly correlates with the vorticity field and lift coe�cient. The verified results

with the forcing quantitatively match the model-based sensitivity functions, similar to the case of

the latent variables. The accurate estimation of phase sensitivity function for ⇠! also suggests that

the present low-order model-based phase reduction can serve as a surrogate for the conventional

phase analysis of fluid flows requiring expensive computational campaigns.
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7.4.3 Amplitude-constrained fast synchronization control

With the phase and amplitude sensitivity functions `(\) and _ (\) at hand, we are ready to derive

the optimal waveform through equations 7.20 and 7.21. In this section, we demonstrate how the

present method can mitigate the gust impact within a very short time by adding the forcing shown

in figure 7.8 with the optimal waveform.

We first apply the present control to the case of (U,⌧,⇡,. ) = (40�, 2.8, 0.5,�0.3). Similar

to the representative cases shown in figure 7.3, the lift coe�cient in this case is violently a�ected

due to the approach of the extreme vortex gust and shows significant fluctuation over a short time

of less than 1 convective time. Our aim is to suppress such a sharp force fluctuation within a short

time range. We imitate actuation at C = �1.58 when a vortex gust appears at the left edge of the

domain of the interest.

To quantify the control e�ect, we consider the percentage change of lift fluctuation,

[ = (�⇠!,cont � �⇠!,nocont)/�⇠!,nocont, (7.27)

where �⇠! ⌘ max(⇠!) �min(⇠!) over �1.58 < C < 2 (during a vortex gust impinges a wing) with

the subscripts (·)nocont and (·)cont being uncontrolled and controlled variables, respectively. Hence,

a negative [ corresponds to suppression of the lift fluctuation.

To derive the optimal waveform through equation 7.21, the ratio between the natural frequency

l/ and the target frequency l f , � = l f /l/ , is set to be 1.5 in this case. The choice of target

frequency l f is motivated to quickly modify a flow state since the actuation with � > 1 provides

faster flow modification than that with � < 1 (GKT23). In the context of vortex-gust airfoil

interaction, it is anticipated that the impact of the gust can be mitigated in a fast manner by

changing the vortex-shedding frequency while suppressing the lift excitation due to the approach

of vortex gust. Hereafter, we consider the waveform and forcing derived by the latent variable

b3 based on our aerodynamic knowledge that the e�ective angle of attack captured by b3 strongly

relates to the lift coe�cient. This study chooses an actuation amplitude of n = 0.12 to achieve

entrainment for extreme aerodynamic flows.
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Figure 7.11: Phase-amplitude-based control of an extreme aerodynamic flow of

(U,⌧,⇡,. ) = (40�, 2.8, 0.5,�0.3). (0) Optimal waveform 1b with : = 0, 0.5, and 5. (1)
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fields and (3) lift force elements of the uncontrolled and controlled cases with : = 0 and 5.
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The optimal waveform for the case of (U,⌧,⇡,. ) = (40�, 2.8, 0.5,�0.3) is shown in fig-

ure 7.11(0). To examine the e�ect of amplitude penalty constrained via equation 7.20, we consider

three di�erent weights, namely : = 0, 0.5, and 5. The waveform with amplitude penalty provides a

more deformed pattern compared to that with : = 0 designed for purely fast synchronization only,

analogous to the observation with several low-dimensional ODE models in (TKN21).

This wave pattern with amplitude penalty provides enhanced suppression of the transient lift

fluctuation. The time series of the lift coe�cient for each case is presented in figure 7.11(1).

While the lift coe�cient with the waveform with : = 0 is more amplified, the actuation with the

amplitude-constrained optimal waveform can successfully suppress the lift fluctuation, achieving

[ = �0.357. We emphasize that the present optimal flow modification strategy is designed with

minimal computational cost since all procedures expressed in section 7.3 are performed in a three-

dimensional latent space. This suggests that the present method exhibits the potential to significantly

and quickly reduce the impact of the extreme vortex gust on a wing in real time.

Let us further examine the control e�ect with vorticity snapshots, as summarized in fig-

ure 7.11(2). While the actuation at the leading edge can be seen at C = �0.895, the e�ect on the

vortex gust is clearly observed at C = 0.125. For : = 0, the vortex core is shifted up due to the

actuation, resulting in massive separation at C = 0.975. Although this largely contributes to the

amplification of lift response, we note that a vorticity field at C = 3.53 apparently presents a faster

vortex shedding form. This suggests that the fast synchronization-focused optimal waveform can

quickly modify the flow states to be a target frequency (GKT23).

In contrast, the amplitude-constrained optimal actuation with : = 5 can shift the vortex core

downward and the gust slips on the pressure side of the airfoil. Because of this modification of

vortex-core position, what would happen at C = 0.975 is that the strong vortex gust naturally merges

with the trailing-edge vortex. The wake behavior then eventually returns to the baseline natural

vortex shedding. In other words, the control strategy developed in a low-order space to suppress

the amplitude modulation of latent vector while quickly modifying the low-order dynamics is now

elegantly translated to the high-dimensional aerodynamic behavior.
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To further analyze the aforementioned control e�ect with the vortex-core move on the lift

response, we also perform force element analysis (Cha92) which identifies responsible vortical

structures for lift generation. For an auxiliary potential function q! satisfying the Laplace equation

r
2
q! = 0 with the boundary condition �n · rq! = n · eH on the wing surface, where eH is the unit

vector in the lift direction, the lift force �! can be expressed as

�! =
π
D

8 ⇥ u · rq!3⇡ +
1
'4

π
m⇡

8 ⇥ n · (rq! + eH)3;, (7.28)

where the first and second terms correspond to the surface integral and the line integral on the wing

surface, respectively. The first term is called the lift element !⇢ , which has often been used to infer

the source of lift generation in vortical flows (MSJ21; ZSB22; RYZ22; MKM22).

Lift element fields over extreme vortex-airfoil interaction are shown in figure 7.11(3). For the

uncontrolled case, the impingement of the vortex gust at C = �0.045 greatly contributes to the

large lift force increment. It is also observed that the interaction between the vortex gust and the

separated leading edge vortex causes positive contribution to lift, which is di�cult to assess from

vorticity fields only.

The mechanism of fluctuation suppression with the present control can be understood with the

lift element analysis. As shown, the downward shift of vortex core at C = �0.045 significantly

reduces the positive contribution to the lift force. In addition, at C = 1.15, the positive vorticity

structure generated due to the merging of the vortex gust and the trailing-edge vortex near the

pressure side of the airfoil exhibits a negative e�ect on the lift force. These suggest that the shift of

the vortex gust with the present control can indeed reduce the lift force over the complex interaction

dynamics.

Let us also apply the present control to the case of (U,⌧,⇡,. ) = (40�,�4, 0.5, 0.1), experi-

encing a negative vortex disturbance. In contrast to the case with positive vortex gusts, the lift force

first drops and then increases, which is similar to the representative cases at U = 40� and 50� in

figure 7.3. The ratio between the target and natural frequencies is set to be � = 1.3 following our

preliminary analysis.
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Figure 7.12: Phase-amplitude-based control of an extreme aerodynamic flow of

(U,⌧,⇡,. ) = (40�,�4, 0.5, 0.1). (0) Optimal waveform 1b with : = 0, 0.5, and 5. (1) Lift

coe�cient ⇠! of the uncontrolled and controlled cases with : = 0, 0.5, and 5. (2) Vorticity fields

and (3) lift force elements of the uncontrolled case and the controlled cases with : = 0 and 5.
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The optimal waveform b/ , the corresponding lift response, and vorticity fields are shown in

figures 7.12(0)–(2). The actuation with : = 0 focusing on the fast entrainment only less modifies

the vorticity fields and the lift dynamics compared to the case with positive gust in figure 7.11,

due to a larger gust ratio. By introducing the amplitude penalty, the lift fluctuation can be greatly

suppressed, reporting [ = �0.410.

Interestingly, the lift force with the amplitude penalty is increased by the actuation around

C = �0.8 so that the first drop of the lift force around C = �0.3 can be mitigated. This mitigation

of lift fluctuation can also be evident from the shift up of vortex core occurring around the leading

edge in a vorticity field at C = 0.125. Due to this vortex-core shift, the positive contribution to

lift is enhanced at the leading edge, as shown in the lift force element field of figure 7.12(3).

Hence, the positive lift generation here can contribute to suppressing the reduction of lift force by a

strong vortex gust. While the mechanism for controlling the flows would be di�erent depending on

vortex-gust parameters, these observations suggest the possibility of quick flow modification under

extreme aerodynamic conditions in real time.

The present approach can provide the optimal actuation based on phase and amplitude sensitivity

functions derived from a low-order dynamical model with undisturbed baseline flow data. Although

the current technique relies on the phase and amplitude information defined on a low-dimensional

manifold that may be common even for extreme aerodynamic cases to some extent as illustrated in

figure 7.7, the actuation pattern is provided in a feedforward manner. In other words, the process

does not account for any information on vortex gust parameters. Furthermore, the methods used in

the present study involve some linear assumptions, implying that there should exist cases in which

the present control is no longer valid. To clarify conditions that can/cannot be handled with the

current technique, let us lastly examine the controllability with the present method for extreme

aerodynamic flows.

The concept of phase-amplitude reduction could be leveraged for extreme aerodynamic cases

that are mapped in the vicinity of the baseline limit cycle (similar to a case in figure 7.7), while cases

whose latent vector largely deviates from the undisturbed dynamics may be out of the controllable
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as to a two-dimensional view in (0) as a third axis. (2) Lift coe�cient ⇠! , the latent vector /, and
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cloud in the parameter space. To quantify the deviation from the undisturbed dynamics, we consider

the averaged distance �'/ in a three-dimensional latent space,

�'/ = ( ['/,dist]C � ['/,base]C)/['/,base]C , (7.29)

where

'
2
/,base(C8) =

3’
9

(b 9 ,base(C8) � [b 9 ,base]C)
2
, '

2
/,dist(C8) =

3’
9

(b 9 ,dist(C8) � [b 9 ,base]C)
2
, (7.30)

with the time-averaging operation [·]
C
. Hence, '/ here can measure how much data deviates from

the baseline orbit in the latent space.

The relationship between the control e�ect [ and the distance �'/ is shown in figure 7.13(0).

The plots are colored by the size of the vortex disturbance !. Here, we set the ratio between the

natural and target frequencies to be � = 1.5. There is a clear trend — smaller �'/ , better control

performance (a negative [). As expected, the present control is valid for cases that reside near

the undisturbed baseline orbit in the latent space. Since the dynamical behavior of the extreme

aerodynamic trajectories on the manifold is generally a�ected by the vortex size more than the

gust ratio (FT23), cases with a smaller gust size can be relatively controlled well, as observed in

figures 7.13(0) and (1).

Since the e�ects from vortex size and gust ratio are nonlinearly correlated with each other,

there are also cases in which the lift fluctuation can be mitigated even with a large vortex gust.

We provide a lift curve, the latent vector, and vorticity fields for two extreme aerodynamic cases

with the parameters of (8) (⌧,⇡,. ) = (3.6, 1, 0.1) and (88) (�1.4, 1.5, 0) in figures 7.13(2) and

(3). While the flow fields and lift response of case (8) do not show significant di�erences after the

actuation due to large ⌧ and ⇡, case (88) with a larger gust size of ⇡ = 1.5 achieves 15% reduction

of the lift fluctuation. This is simply because the absolute gust ratio of case (88) is smaller than

that of case (8); however, we should note that the gust ratio of ⌧ = �1.4 here already belongs

to the condition traditionally thought of as unflyable. These observations suggest that the present

feedforward control strategy developed in a three-dimensional space becomes a significant step

toward flying under extreme aerodynamic conditions.
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7.5 Concluding remarks

We presented a data-driven control to mitigate the impact of vortex gusts for flows around an airfoil.

In particular, our consideration lies in the conditions of gust ratio ⌧ > 1 that are challenging to

sustain stable flights, referred to as extreme aerodynamics. The present control strategy was

developed in a low-dimensional manifold discovered by a nonlinear autoencoder. Once a collection

of extreme aerodynamic data is compressed into a three-dimensional latent variable, we modeled

the dynamics of the latent variables using a sparsity-promoting regression. The identified dynamics

as a form of ODE was applied to phase-amplitude reduction, providing the phase and amplitude

sensitivity functions. These functions tell us how the system is sensitive with respect to the phase

shift and amplitude modulation against a given forcing. To quickly suppress the lift fluctuation of

extreme vortex gust-airfoil interaction, the control actuation was derived through the amplitude-

constrained optimal waveform analysis with the derived phase and amplitude sensitivity functions.

We found that the present control technique can suppress the lift fluctuation occurring due to a strong

vortex disturbance within a very short time duration for a wide variety of scenarios. Furthermore,

the successful impact mitigation with a localized forcing implies the possibility of gust control

without necessitating drastic pitching motion of the wing.

The present observations suggest the importance of physically-tractable data compression and

preparation of appropriate coordinates to represent complex aerodynamic fluid flow data. The

significant data compression into a three-dimensional latent vector can call for a variety of math-

ematical tools in understanding and controlling fluid flows. In fact, this compression allows

us to use the SINDy to model the high-dimensional dynamics in a low-order manner. As the

present coherent low-order expression provides a connection between extreme aerodynamic flows

and phase-amplitude reduction, preparing a handleable low-dimensional form of high-dimensional

data would be a key for analyzing seemingly complex fluid flow data sets.

There are some conceivable extensions of the present study. One can consider the use of

feedback formulation in designing the optimal control actuation in either the SINDy-based model
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space (BN15; NBT18) or waveform construction (TKN21). This could extend the control bound of

the present formulation for high gust ratio and large vortex gusts. In addition, the present formulation

can be combined with data-driven sparse reconstruction techniques as demonstrated with decoder-

type neural-network-based e�orts (EMY20; FMR21; FFT23). Estimating low-dimensional extreme

aerodynamic latent vectors from pressure sensors allows for performing the proposed analysis from

sensor-based information in a real-time manner. Since the proposed control can be performed in

a three-dimensional latent space with minimal costs, the present idea of preparing optimal control

actuation in a low-order space can support real-time stable flight operation of modern small-scale

aircraft under extreme aerodynamic conditions.
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CHAPTER 8

Concluding Remarks

In this thesis, we developed data-driven methods to reconstruct, model, and control unsteady fluid

flows based on sparse sensor measurements. The approach is based on super-resolution analysis

for flow field reconstruction which estimates high-resolution flow fields from low-resolution data.

As sparse reconstruction can be seen as a generalized super resolution idea, we first covered

a range of machine-learning-based super-resolution reconstructions in fluid mechanics though a

survey study. We also performed supervised machine-learning-based reconstruction of turbulent

vortical flows in an industrial setting. Furthermore, a Voronoi tessellation-assisted convolutional

neural network was proposed to address scenarios with moving sparse sensor data. Moreover, we

supplemented the critical distinction between interpolatory and extrapolatory conditions in turbulent

flows, performing the Buckingham Pi theorem-assisted nonlinear scaling. This can facilitate the

identification of scale-invariant structures, enabling the quantitative assessment of seen and unseen

turbulent physics across available data sets.

Considering flow control based on knowledge gained through the present data-driven techniques,

we performed nonlinear autoencoder-based compression, identifying a low-dimensional manifold

space. The present autoencoder referred to as observable-augmented autoencoder can translate

fluid flow data into a compact, low-dimensional representation while preserving essential dynamic

information. For vortex-gust airfoil interactions, we also showed that a physically-explainable latent

expression discovered by the present autoencoder can be leveraged for devising control strategies

in tandem with phase-amplitude reduction. The developed control strategies in a low-order space

achieved swift modification to reduce the impact of vortex gusts.
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Figure 8.1: Three-dimensional turbulent extreme vortex-airfoil interactions. Flow fields with

⌧ = (±1, 3, 5) are visualized using& criteria (isosurface of& = 5) colored by spanwise vorticitylI.

There are a range of conceivable future avenues from the present data-driven studies. From

the aspect of global field reconstruction, it is important to find optimal sensor placements to gain

situational awareness with minimal costs (MBK18; MOV23). Since the present Voronoi-based

model can handle various numbers of sensors and placements at once, a combination with such

optimal sensing methods can improve the reconstruction accuracy. In addition, the reconstruction

technique proposed in this thesis does not incorporate dynamical information such as time series

of sensor measurements. Taking advantage of either sensor dynamics (ZFA23) or some advanced

machine-learning techniques that can consider history e�ects such as recurrent networks (SGA19)
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can be considered in the future.

Regarding the identification of low-dimensional manifold, the present thesis considered an

example of extreme vortex airfoil interactions of two-dimensional laminar separated wakes. It can

be anticipated that we may observe a similar manifold expression even with a three-dimensional

flow at a higher Reynolds number to some extent due to the commonality of wake shedding and

the primary interaction between large vortex gusts and a wing. However, the validation at a

three-dimensional high Reynolds number flow is needed.

We have recently started to investigate this aspect with a three-dimensional (spanwise periodic)

turbulent separated flow around a NACA0012 airfoil at '42 = 5000 with U = 14�, as depicted in

figures 8.1 and 8.2. Here, large-eddy simulations are performed with a vortex gust of 0 < |⌧ | < 5.

Extremely fine scales appear due to the impingement of strong vortex gusts once the gust ratio

exceeds |⌧ | ⇡ 4, which is not observed in the laminar case. The e�ect of these complex interactions

can also be seen from the lift dynamics in figure 8.2. Before the vortex impinges the airfoil, the

increase or decrease of the lift force with the gust ratio is monotonic. Once the vortex gust interacts

with turbulent separated wake, the lift trajectories of positive and negative gusts are no longer

symmetric. How we can leverage data-driven techniques for such extremely complex aerodynamic
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situations would be of interest.

We also perform data-driven analysis using an observable-augmented autoencoder with multi-

scale convolutional filters (FT23; HFM20b) to compress turbulent wake data into three latent

variables. We consider spanwise vorticity field lI with two di�erent data setups; namely, 1.

spanwise-averaged data and 2. three-dimensional field. Two- and three-dimensional convolutional

models are employed for each case, respectively. The gust ratio for this preliminary analysis is

set to be 0 < |⌧ | < 2. As presented in figure 8.3, the flow fields are qualitatively reconstructed,

capturing the dominant interaction between vortex cores and a wing although finer scales appearing

in the spanwise direction are filtered. As well as the laminar case, the lift force can be accurately

estimated from the compressed three variables.

Furthermore, the extreme aerodynamic trajectories shown in figure 8.4 appear around the

undisturbed one. In other words, the e�ect of extreme vortex gusts can be expressed about the

baseline dynamics in a low-order manner, similar to the extreme aerodynamic manifold in the

laminar case. Although these are ongoing studies, these results suggest the applicability of the

present work to more challenging, unsteady aerodynamic conditions.

In this thesis, we performed a feedforward control on the identified manifold with the assistance
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of phase-amplitude reduction. While the present method can provide the optimal actuation pattern

from the aspect of synchronization, one can consider deriving control strategies in a low-order

space with other techniques such as model predictive control (BN15; DBN17), reinforcement

learning (KLM96; LZG23), and contraction theory (TCS21). We note that preparing appropriate

low-order coordinates that capture the essential dynamics of unsteady flows in a tractable manner

is a key to combine with such advanced techniques.

Based on the findings in the present thesis, it is important to keep a couple of key considerations

in mind. The reliability of given fluid flow data from both computational fluid dynamics (CFD)

and experiments should always be ensured. For this reason, checking robustness and uncertainties

of machine-learning models against noise is always critical.

Successful performance of data-driven techniques in fluid mechanics suggests that the intrinsic

physics within fluid flow data can be extracted with appropriate nonlinear techniques. Such

nonlinear machine learning methods often catch coherent and inherent physics of fluid flows, beyond

what has been possible with conventional techniques. To correctly understand what nonlinear

data-driven techniques extract from fluid flow data, it is essential to carefully design models

while incorporating knowledge of fluid mechanics. Furthermore, the preparation of an appropriate

optimization setup aligning with the inherent nature of fluid flows is also required. With appropriate

data curation, model design, and optimization setup following our engineering knowledge, data-

driven techniques can support a range of studies in fluid mechanics.
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