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EPIGRAPH 

 

 

It shouldn’t be the aim of education to make the pupil a perfect learner in all the sciences, or 

indeed in any one of them, but to give his mind the freedom, disposition, and habits that can 

enable him to acquire any knowledge that he wants or needs in the future course of his life  

 

John Locke 

 

 

The impartiality which, in contemplation, is the unalloyed desire for truth, is the very same 

quality of mind which, in action, is justice, and in emotion is that universal love which can be 

given to all, and not only to those who are judged useful or admirable. Thus contemplation 

enlarges not only the objects of our thoughts, but also the objects of our actions and our 

affections: it makes us citizens of the universe, not only of one walled city at war with all the 

rest. In this citizenship of the universe consists man’s true freedom, and his liberation from the 

thralldom of narrow hopes and fears. 

 

Bertrand Russell 
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ABSTRACT OF THE DISSERTATION 

 

 

 

Assessing the Extent and Impact of Mutations in Human Induced Pluripotent Stem Cells 

and Young vs Aged Single Mouse Neurons 

 

 

By 

 

 

 

Michael A. Duran 

 

 

Doctor of Philosophy in Biology 

 

 

University of California San Diego, 2019 

 

 

Professor Kristin Baldwin, Chair 

 

 

 Genomic mutations pose a serious risk to the health of individuals both in terms of 

somatic cells and in stem cells used for clinical and research applications. Here we outline novel 

approaches for studying genome mutations in the context of human induced pluripotent stem 

cells and neurons. To definitively establish the extent of reprogramming-associated mutations, 

we  utilize the fact that a single fibroblast can give rise to two iPSC colonies separated by at most 
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two divisions. Comparison of the two colonies allows us to distinguish mutations present in the 

original cell (those found in both colonies) from mutations arising during the reprogramming 

process. We find on average 150-450 single nucleotide variants per iPSC line, with iPSCs 

derived by episomal method being significantly more mutated than iPSCs derived with 

lentivirus. Further, we find that the mutations from episomal reprogramming show unique 

signatures compared to lentiviral and somatic reprogramming methods. We also find that 

reprogramming does not contribute significant number of structural variant or mobile element 

insertion classes of mutation. In the context of neurons, we utilize somatic cell nuclear transfer to 

reprogram rod photoreceptors from young and aged mice , allowing us to amplify single 

neuronal genomes without error-prone PCR methods. We show that these neurons accumulate 

20-40 SNVs per year, and that these mutations are enriched in nucleotiode contexts that 

implicate APOBEC deaminase, as well as potential regions of somatic hypermutation
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Chapter 1: 

Introduction and Background 

1.1 Introduction 

Though it is often said that cells are the building blocks of life, this is at best a half truth, 

for whether one is composed of a single cell or a billion, we are all circumscribed by a living 

code written in DNA. This code is unique to each organism and defines the capacities of the cell, 

providing the blueprints which enable complex organisms to flourish. Evolutionary forces 

converged on DNA due to its remarkable balance of stability and flexibility; it can persist for 

eons yet is mutable enough to allow for the breathtaking diversity that epitomizes life on Earth. 

Despite these extraordinary properties, DNA is not without its faults; its mutability, so critical for 

diverse mechanisms of survival, is a double-edged sword that can hinder as easily as it can help. 

Changes to DNA can occur through a wide variety of mechanisms, which we broadly call 

mutagens, and the spectra of mutations arising from these mutagenic forces can have a 

devastating impact on the cell or, more rarely, on the organism as a whole.  

1.1.1 Mutation types and sources 

DNA is comprised of 4 nucleotide bases, cytosine (C), adenine (A), thymine (T), and 

guanine (G). Guanine and adenine are referred to as purines, while cytosine and thymine are 

pyrimidines. The double helix structure of DNA pairs purines (G,A) with pyrimidines (C,T), 

such that G is always linked to C, and A is always linked to T. Any single base pair can be 

erroneously altered to another base by a variety of processes, and this error can be made 

permanent by replication or by faulty repair machinery. A mutation of this type is called a single 

nucleotide variant (SNV), and is by far the most common type of mutation observed in cells. 

SNVs are categorized according to the nature of the bases that were changed. A purine to 
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pyrimidine swap is called a transversion, while a change from one purine to another purine (or 

pyrimidine to pyrimidine) is called a transition. SNVs arise from a wide variety of processes, as 

will be seen below, and are often benign, though they can occasionally pose serious problems for 

the functionality of the cell. 

 

Insertions or deletions of one to fifty base pairs are called indels, and are generally caused 

by errors in DNA repair. Indels are difficult to call bioinformatically, which makes the 

prevalence of this class of mutation difficult to assess (1). The best available data indicates these 

events are an order of magnitude more rare than SNVs, but are still relatively common in 

comparison to larger genome rearrangements. A thorough study of indels in 179 human genomes 

by Montgomery et. al. (2013) found indel events at a frequency of 4.2 X 10-5 per base in non-

repetitive regions compared to an SNV frequency of 6.9 X 10-4 (2). Large insertions or deletions 

are called copy number variants (CNVs) or structural variants (SVs). These types of mutations 

have been extensively studied and can have a dramatic effect on cell function. A meta analysis of 

23 studies including 2,647 subjects found that CNVs were unevenly distributed in the genome, 

with subtelomeric and perichromatic regions being the most susceptible to CNVs (3). This same 

study found that roughly 5-10% of the human genome is responsible for most observed CNVs, 

and that these regions were enriched for paralogous genes (3). 

 

A final class of mutation involves the activation of transposable elements to generate 

mobile element insertions (MEIs). Roughly 44% of the human genome is comprised of 

transposable elements, however 99.95% of these bases are remnants of ancient retroviral events 

and are incapable of being transposed in modern humans (4). The potentially active 0.05% of 
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transposable elements are divided into 4 classes based on their sequence, with additional 

variations seen within each class. L1 elements are roughly 6 kb long and are transcribed into 

RNA via an internal L1 promoter. The RNA is translated into an RNA binding protein and a 

reverse transcriptase/endonuclease, which form a complex with L1 transcripts that catalyzes the 

reverse transcription and integration of L1 back into the genome (5). Alu elements are roughly 

300 bp long and are usually found in 3’ UTRs, promoters, and intergenic regions, and are the 

most common MEI seen in the human genome (6), with a preference for gene-rich regions (7). It 

is transcribed by RNA polymerase III along with whatever is downstream (Alu elements lack a 

termination signal), and requires an L1-derived endonuclease to integrate into the genome (8). 

SVA elements are 300-fold rarer than Alu elements and, like Alu elements, require L1 activity 

for integration, though they do possess an internal reverse transcriptase. They are capable of 

truncation and inversion during integration, resulting in variable insertion lengths (9, 10). 

Finally, HERV-K elements code a glycosylated envelope protein as well as a homolog of HIV-1 

Rev, though this does not yield infectious particles, and its disease relevance is poorly 

understood (11, 12).            

 

These classes of mutation, SNV, indel, CNV, and MEI, are caused by a diverse array of 

cell processes and external stimuli. One common source of SNVs in humans is oxidative stress, 

which can cause G → T transversions by creating 8-oxoguanine, a guanine derivative that pairs 

with A (13). Additionally, the deamination of methyl-cytosine (5mC) by AID/APOBEC 

enzymes can convert cytosine to uracil (U), which is then converted to thymine by base excision 

repair (BER) and mismatch repair (MMR) machinery (14-16). UV radiation can cause damage 

via the creation of 6-4 photoproducts (which are pyrimidine adducts) or cyclobutane pyrimidine 
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dimers (CPDs) (17). 6-4 Photoproducts are enriched at transcription factor binding sites where 

DNA is naturally bent, such as the TATA-box, while CPDs act to inhibit the progress of DNA 

polymerase, which can lead to widespread genome damage (18). Finally, alkylating agents such 

as endogenous methylation machinery or bifunctional alkylating agents and chloroethylating 

agents found in medical treatments are all sources of DNA damage. Endogenous methylation 

machinery such as S-adenosyl methionine can alkylate oxygen and nitrogen atoms of DNA (19), 

resulting in adducts which have varying degrees of cytotoxicity and mutagenicity. If BER and 

MMR fail to remove these adduct, it can result in an SNV, most commonly a G → A transition 

as O6MeG mispairs with T during replication (20, 21). Alkyl adducts remaining in template can 

also lead to double stranded breaks (DSBs), which can cause indels and CNVs (20).        

1.1.2 Sequencing and calling mutations  

The prevalence and impact of mutations is determined by combining whole genome 

sequencing (WGS), a bioinformatics pipeline, and validation by PCR. Modern approaches to 

WGS typically proceed as follows (with variations depending on the approach): DNA is sheared 

into short (100bp-1kb) fragments, after which adapters are ligated to both ends of the DNA. 

These adapters anneal to oligos on the surface of a flow cell, and the DNA is amplified in local 

clusters, with each cluster possessing a unique index identifier based on the original piece of 

DNA that bound the flow cell. Fluorescent nucleotides are then added and each base is recorded 

in a manner similar to Sanger Sequencing. Each cluster produces a single read, which is a short 

sequence of DNA representing the sequence of the original fragment. See (22) for review.  

 

Each base pair in the genome will be present in a certain number of reads in the subsequent data 

set. Because DNA is subject to mutation during the library preparation and amplification steps 
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(23), multiple reads per base pair are necessary to ensure accurate data. Genomic DNA is also 

unevenly amplified and sequenced, with certain regions prone to being over or underrepresented 

(24). Because of this, more total reads are necessary to “see” underrepresented regions. In 

sequencing, researchers often speak of “targeted average read depth,” which refers to the number 

of desired reads, on average, per base in the genome. So a sample sequenced to 30x read depth 

has an average of 30 reads per base pair with a bell curve distribution. Typical read depths range 

from 30x to 60x; higher read depths are used to find subclonal mutations within the starting 

population, and lower read depths are used when only commonly occurring mutations are 

required (budget limitations can also play a role, as sequencing becomes more expensive at 

higher depths). Targeted deep sequencing can achieve a read depth in the thousands by using 

specific DNA, such as a PCR product of a specific genomic region, as a template instead of the 

whole genome. Once the reads have been obtained from the sequencer, they must be aligned to a 

reference genome before mutations can be called (25).       

 

There are a wide variety of tools available for alignment and variant calling, depending 

on the needs of the specific study (26, 27). The vast majority of initial variants called, however, 

will be false positives that must be filtered out before arriving at a dataset of high confidence 

mutations. Filtering can be done initially by metrics of read depth; variant calls with very few 

(<2) supporting reads can generally be discarded, and further filtering by read depth can be 

accomplished by considering variant allele frequency (VAF). VAF measures how frequently a 

variant call is observed compared to a wild type (# variant reads at base pair/ # total reads at base 

pair). A heterozygous mutation found in every cell of the sequenced population would be 

expected to show up in 50% of all reads, giving it a VAF of 0.5. A heterozygous mutation in half 
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the starting population of cells would show up in 25% of reads, with a VAF 0.25, and so on… 

VAF filters can be set based on what type of mutations are of interest in the study. Sequencing 

data also provides quality metrics which indicate the degree of confidence in a variant call, most 

commonly a phred score where quality (Q) is directly related to the probability (P) of an 

erroneous call according to the following equation (28): 

P = 10 (-Q/10) 

 

Most pipelines will apply additional criterion to arrive at a final quality score based on phred and 

various other metrics, therefore it is not advisable to compare quality scores across different 

variant calling pipelines.  

1.1.3 Mutations in human iPSCs 

One of the goals of modern biology is the regeneration of tissue damaged by age or 

disease. To that end, Takahashi et. al. (2007) reported on a protocol to create induced pluripotent 

stem cells (iPSCs) using a combination of four transcription factors, sox2, oct4, C-myc, and klf4 

(OSKM) (29). iPSCs can be derived from commonly available cell types and have the capacity 

to differentiate into valuable post-mitotic populations of cells such as neurons and 

cardiomyocytes, opening up a wide range of possibilities in the clinic and academic research. 

Subsequent work in the field has described many variations on the original protocol for 

establishing iPSCs using different factors or small molecule compounds to enhance 

reprogramming of somatic cells (30).    

 

Efforts to establish the mutational burden of iPSCs began when Kun Zhang’s and 

Lawrence Goldstein’s groups at UCSD (Gore and Li et. al. 2011) examined several 
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reprogramming methods and found 3 exome mutations on average that they associated with 

reprogramming (31). Ji et. al. (2012) found an average of 9 coding mutations in iPSCs derived 

by OSKM, though the authors made no attempt to assess false positive rates, likely overstating 

their results (32). Cheng et. al. (2012) found between 1058-1808 SNVs in three iPSC lines 

derived by episome, but this study did not distinguish reprogramming-associated mutations from 

mutations in the original donor cell (33). A study comparing iPSCs to ESCs derived by SCNT in 

mouse found about 9 exome SNVs per line (34). More recently Bhutani et. al. (2016) examined 

nine iPSC lines derived by three different methods (sendai, integrating retrovirus, and mRNA), 

all using Pou5f1, Sox2, Klf4, and C-Myc. Bhutani found on average 605 SNVs per iPSC, but 

crucially this study ignored any SNVs falling below a VAF of 0.4, ruling out mutations arising 

after the first division during reprogramming which could still contribute to phenotype. This 

study also did not distinguish mutations arising as a result of reprogramming from rare mutations 

present in the donor population (which was only sequenced to 40x average depth) (35). Lo Sardo 

et. al. (2017) did not examine reprogramming-associated mutations but did find that exome 

mutations in iPSCs increase linearly with the age of the donor (roughly 5-30 exome SNVs per 

line), to a plateau at around 90 years of age (36). In perhaps the most thorough study to date, 

Kwon et. al. (2017) found on average four exome mutations associated with reprogramming by 

OSKM; here all putative mutations were validated by targeted deep sequencing in the donor 

population, and they convincingly show that most of their initial calls are actually rare mutations 

in the parent cell population (37).  

 

Studies have investigated CNVs and MEIs in iPSCs as well; Wissing et. al. (2012) used 

northern blots to show that an abundant type of MEI, L1 mRNA, was overexpressed in iPSCs 
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relative to human dermal fibroblasts (HDF), and further showed that L1 promoters were 

hypomethylated (38). A follow up study on 8 iPSC lines used retrotransposon capture 

sequencing (RC-seq) and found 11 MEIs, which were subsequently validated by PCR. This 

study also sequenced the donor population, but can’t rule out the possibility that the MEIs 

existed at a very low frequency in the starting population of cells (39).  Studies on CNVs have 

indicated as many as 57 per iPSC line (40), and that CNVs appear more often in iPSCs than 

fibroblasts, though the study in question made no effort to validate false positives (41). The same 

study indicated that regions including pluripotency genes such as Nanog were more likely to be 

duplicated in iPSCs, ostensibly due to selective pressure (41). A rigorous study on mouse iPSCs 

by Quinlan and Boland et. al. (2011) found little evidence of MEIs and SVs from reprogramming 

(42). Similarly Bhutani et. al. (2016) found almost no evidence of SVs arising from 

reprogramming (35). 

 

The difficulty in assaying reprogramming-associated mutations stems from the fact that 

there is no way to recover the original genome once a somatic cell has been reprogrammed, and 

targeted deep sequencing of all putative SNVs is prohibitively expensive for any large study. The 

current literature on mutations in iPSCs thus leaves several key questions unanswered; no study 

to date has attempted whole genome sequencing of iPSCs with a mechanism to distinguish 

reprogramming-associated mutations from somatic ones, and no study has examined indels in 

non-exome sequencing. Furthermore, studies on MEIs and SVs have been contradictory, 

necessitating a more rigorous approach to determine the contribution of reprogramming to these 

classes of mutation. A more thorough understanding of how different reprogramming methods 
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contribute to the full spectrum of mutations in iPSCs will help clinicians and researchers choose 

reprogramming methods that are minimally mutagenic.    

1.1.4 Mutations in neurons 

Neurons pose a unique set of challenges for studying their genomic diversity at a single 

cell level. As post-mitotic cells, neurons do not divide, and efforts to force a mitotic program in 

neurons triggers an apoptotic response (43, 44). Despite these challenges, understanding how 

neuronal genomes change over time could shed light on age-associated cognitive decline and 

neurodegenerative disorders. The importance of genome integrity in neural function can be seen 

in the variety of disorders arising from mutations in DNA repair pathways. One of the earliest 

indicators of this relationship was a study by Barnes et. al. (1998), which showed that mutations 

in Ligase IV (crucial for DNA strand break repair) lead to embryonic lethality in mice that was 

associated with widespread neuronal death (45). Mutations in Xrcc2, involved in DNA repair by 

homologous recombination, were shown to be necessary for post-mitotic neuron development in 

mice (46). In humans, diseases such as Cockayne Syndrome and Xenoderma Pigmentosum are 

associated with neurological phenotypes and are caused by mutations that disrupt genome 

stability (47). Genome stability is also important for the daily functioning of neurons; a report by 

Suberbielle et. al. (2013) found evidence of widespread double strand breaks (DSBs) resulting 

from neuronal activity, a finding which was exacerbated in human amyloid precursor protein 

(hAPP) mouse models (48). A later study by Madabhushi et. al. (2015) found that neurons use 

DSBs to regulate rapid expression of neuronal early-response genes by eliminating topological 

barriers to their expression (49).  
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Given the importance of genome stability to neuronal function, researchers have 

endeavored to study neuronal genomes even absent a reliable means to capture single cell data. 

Early studies of aneuploidy showed that as many as 3% of mature neurons were missing a 

chromosome, indicating aneuploidy as a relatively common condition for neurons (50). 

Furthermore, neurons in mouse olfactory bulb (OB) and motor cortex stained positive for 

markers of neuronal activity even when aneuploidy, indicating they remain alive and may 

continue to contribute to brain function in some capacity (51). Studies on human cortex found 

rates of aneuploidy around 10%, with different chromosomes displaying different propensities 

for aneuploidy. The same study found an increase in aneuploidy among patients afflicted with 

Alzheimer’s and Ataxia Telangectasia (AT) (52). McConnell et. al. (2013) analyzed 40 single 

neurons from human cortex and found 13 with CNVs not seen in bulk donor DNA, including a 

subset of hypermutated neurons (53). Early studies of MEIs in neurons indicated that L1 

retroelement activity might play an important role in neural activity and diversity; a host of 

studies claimed rates as high as 80 MEIs per neuron (54-57). Recently however, several rigorous 

studies have called these results into question, showing insertions in the range of 0-1 per neuron 

(58-61). A particularly well-done study by Evrony et. al. (2016) showed that earlier studies 

incorrectly analyzed MEI calls, leading them to overstate the amount of MEIs present by a factor 

of 50 (60). Most recently Bedrosian et. al. (2018) show increased L1 activity in mice that receive 

less maternal care, possibly due to depletion of methylation in the L1 promoter in low care mice 

(62). Though intriguing, the paper does not find functional significance; it remains possible that 

the L1 activity is a mere byproduct of lower global methylation under different conditions of 

development. Furthermore, in arguing for a functional role of L1 MEIs it cites the earlier 

literature while ignoring the more recent studies arguing against it (62).   
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Initial attempts to elucidate the SNV burden in neurons relied on multiple displacement 

amplification (MDA) based single cell sequencing. Work by Lodato et. al. (2015) sequenced 36 

cortical human neurons from three individuals to 40x average depth. They estimate each neuron 

possesses between 1458-1580 SNVs, with an enrichment in C → T transitions, however this 

study suffers from the typical challenges of SNV calling from single cell genomes; they cannot 

rule out mutations resulting from amplification of the initial genome, and amplification by MDA 

is known to introduce a C → T bias (63). A study by Hazen and Faust et. al. (2016) used somatic 

cell nuclear transfer (SCNT) to reprogram mature mouse mitral and tufted (MT)  neurons of the 

olfactory bulb, generating embryonic stem cell lines (ESCs) and allowing them to amplify the 

genomic DNA without error-prone PCR methods. Sequencing 6 MT neurons (3 weeks to 6 

months), they found roughly 69 SNVs, 17 indels, 1.5 SVs, and 0.7 MEIs per genome on average 

(59). Further, this study found significant enrichment of C → T transitions in agreement with the 

work by Lodato et. al. (2015), and found that the trinucleotide context was consistent with 

mutation by the cytosine deaminase Apobec 1 (59). This study also found that these mutations 

were enriched in expressed genes, indicating a potential functional significance. Most recently, a 

large study from the Walsh lab (Lodato, Rodin, Bohrson, Coulter, Barton, and Kwon et. al., 

2017) used a novel method, single-cell linked-read analysis (LiRA), to overcome the issues of 

uneven amplification and mutation associated with single cell amplification by MDA. LiRA 

utilizes the fact that false positive from amplification or sequencing SNVs will be specific to 

reads associated with a single strand, while true SNVs will appear on both strands of a single 

chromosome. Thus, true SNVs will have reads supporting SNV calls on reads for both strands, 

while a false positive will have both alternate and reference allele support on reads associated 
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with a particular allele, using nearby germline SNPs to confirm which allele the mutation should 

have come from (64). Using this approach, the Walsh lab performed single cell sequencing of 93 

cortical and 20 dentate gyrus (DG) neurons aged 4 months to 82 years. They found an increase in 

SNVs associated with age, with DG neurons accumulating roughly 40 SNVs/year and cortex 

accumulating roughly 23 SNVs/year (65). Further, they found that the fraction of C → T 

mutations decreased with age. Finally, they found the SNVs to be enriched in exons and 

neuronal genes, and they displayed a transcriptional strand bias (65).   
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Chapter 2: 

Impact of Different Reprogramming Methods on iPSC Genomes 

2.1 Introduction 

The use of patient-derived induced pluripotent stem cells (iPSCs) is a promising approach 

for cell replacement therapies owing to the ease with which somatic cells can be collected and 

the efficiency of reprogramming methods. Patient-derived iPSCs can be differentiated into an 

array of somatic cell types while avoiding the immune system complications observed in classic 

stem cell replacement therapies. In 2014, Masayo Takahashi’s team in Japan launched a clinical 

trial to treat macular degeneration using iPSC-derived retinal pigment epithelial cells (RPE), 

however this trial was halted after deleterious mutations were discovered in the iPSCs of the 

second patient, raising questions about the safety of iPSCs in a clinical context (66, 67).       

  

To address these questions, previous studies have assessed mutations in iPSC colonies 

using several approaches. Bhutani et. al. (2016) reported that reprogramming adds to mutational 

burden. However this and earlier studies lack the means to distinguish reprogramming associated 

mutations from somatic mutations present at low frequencies in the donor fibroblast population 

(35). More recently Kwon et. al. (2017) used targeted deep sequencing to address this 

shortcoming and found that indeed many of their called mutants were somatic rather than 

reprogramming-associated. However their study was restricted to the exome of three iPSC lines 

derived with a single method (37). Thus the following questions remain: precisely how many 

mutations arise as a result of reprogramming, and do the number and character of these 

mutations vary based on the reprogramming method used (Table 2.1). To definitively establish 

the complete spectrum of mutations associated with different reprogramming processes we 

devised a novel approach, establishing iPSC colonies derived from the same progenitor 
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fibroblast separated by at most two divisions, which we called sister pairs. We performed WGS 

and comprehensive mutation discovery and validation on these sister iPSC colonies and 

compared the genomes with the assumption that any shared mutations must have existed in the 

original parent fibroblast, while any unique mutations must have arisen during the 

reprogramming process (Figure 2.1). We show for the first time that reprogramming contributes 

hundreds of SNVs to the mutational burden of the iPSC, and that the choice of reprogramming 

method can significantly impact SNV burden, but not the burden of other classes of mutation. 

These results represent the first whole genome analysis with the ability to distinguish somatic 

mutations from those arising during reprogramming.  
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Table 2.1: A list of studies which have examined mutations in human iPSCs. Our study aims 

to provide definitive answers to these classes of mutation for the entire genome, in addition to 

assessing MEIs and SVs.  
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Figure 2.1: An overview of our sister iPSC paradigm. Fibroblasts were transfected with 

reprogramming factors using lentiviral or episomal delivery. Cells were simultaneously 

infected with fluorescent lentivirus. A small subset of cells would divide 1-2 times before 

forming proximal iPSC colonies from two fibroblasts that derived from the same progenitor 

cell.  
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2.3 Results 

2.3.1 Developing a paradigm to assess reprogramming and somatic mutations in hiPSCs 

We reprogrammed early post-natal human dermal fibroblasts (HDF) with one of two 

methods. (a) HDFs were infected with four dox inducible lentiviral constructs containing Oct4, 

Sox2, Klf4, and C-Myc, along with fluorescently labeled lentivirus with GFP, CFP, and YFP. (b) 

Alternatively, HDFs were transfected with episomal plasmids containing Oct4, Sox2, Klf4, 

Lin28, L-myc, and p53 shRNA, along with fluorescent lentivirus as mentioned above. Optimal 

conditions for obtaining sister iPSC colonies were determined by Dr. Valentina Lo Sardo (Fig. 

2.2). Applying this approach we obtained 6 sister pairs derived from lentivirus and 2 pairs 

derived from episome, as well as 4 pairs of colonies which were found near one another but did 

not derive from the same original fibroblast (Fig. 2.3). Sister status was validated by Dr. 

Valentina Lo Sardo using Southern blot to check for the integration pattern of fluorescent 

lentivirus in iPSC colonies that shared a color and were found in close proximity. Pluripotency 

was validated by staining for pluripotency markers and confirming that the iPSCs could give rise 

to different cell types  (Fig. 2.4).  

 

Samples were sequenced to an average of 35x depth (Fig. 2.5). SNVs and Indels were 

filtered by depth and sequence quality. We defined candidate reprogramming mutations as those 

found in a single sister of an iPSC pair and in no other sample, while somatic mutations were 

those found in both sisters of a sister pair but in no other sample. In this way we are looking for 

(a) the mutations associated with reprogramming, and (b) rare mutations present in the original 

fibroblast that are missed by bulk sequencing the donor cell population. The rationale for 

screening mutants of one sister against all 23 other iPSC lines was that there are genomic regions 

which are known to be error-prone in sequencing, and this would help eliminate such mutations, 
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which are extremely unlikely to have arisen independently in two iPSC colonies by natural 

processes.  
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Figure 2.2: (a) Dox inducible OSKM casettes were integrated into the genome with lentivirus 

and were induced 3 days after plating on feeders and one day after switching to iPSC media. 

Colonies were picked approximately 28-30 days after induction (b) Fibroblasts were 

transfected with constitutively active episomal vectors and plated on feeders 3 days after 

transfection. iPSC colonies were picked approximately 20 days after initial transfection. 
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Figure 2.3: Summary of all iPSC lines collected and sequenced for further analysis. We 

derived 12 iPSCs via our lentiviral method, 3 pairs each with or without VPA. Two sister 

pairs were derived with the episomal method and, and 8 false sister pairs (proximal iPSCs that 

did not come from the same donor fibroblast) were collected as controls.      
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Figure 2.4: (a) Putative sister colonies were picked by proximity and shared fluorescent 

color. (b) Sister status was confirmed by southern blot examining the integration pattern of 

fluorescent lentiviral label; colonies with a shared pattern were deemed sister pairs. (c) 

Pluripotency was assessed by staining for pluripotency markers Tra 1-81 and Nanog, and by 

differentiating the iPSC colonies and staining for differentiation markers β-III tubulin, 

EndoA, and α-SMA. Data in this fig. generated by Dr. Valentina Lo Sardo 
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Figure 2.5: (a) The % of the genome covered at each read depth with targeted 35x average 

coverage. (b) The fraction of the genome covered at each read depth. Most of the genome was 

covered on average to between 30-40x read depth.  
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2.3.2 iPSCs contain hundreds of mutations from the parent cell not captured in bulk 

sequencing  

To determine how many rare pre-existing mutations were present in our original 

fibroblasts we looked at mutations shared between two sister lines and missed in the bulk HDF 

sequencing and identified 779 predicted somatic SNVs and 39 indels on average per iPSC line 

(Fig. 2.6a,b). We see very few mutations in our fake sister controls, which is expected if the two 

colonies came from different starting fibroblasts. We found that the somatic calls have a VAF 

distribution centered at 0.5, as expected of heterozygous mutations present in every cell of the 

iPSC colony (Fig. 2.6c). Because we found a greater degree of noise in somatic indels vs SNVs 

in our fake sister controls, we assessed the quality score of each class of mutation and found that 

our somatic indel calls were, on average, called with lower confidence than our SNV calls (fig. 

2.6d).  These data indicate that simply sequencing the donor cells will miss a significant number 

of SNVs and indels, arguing for the need to also sequence the iPSC colony before proceeding in 

the lab or the clinic.  
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Figure 2.6 (a) All SNVs present in both iPSCs of a sister pair were called somatic mutants. 

The average is given below the graph for each condition with the standard deviation. (b) 

Somatic indels were using the same criteria. (c) VAF of somatic SNVs among each 

individual line. (d) The relative frequency of indels and SNVs at different quality score 

thresholds, totaled with all real sister lines. 
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2.3.3 Episomal reprogramming results in more SNVs than lentiviral reprogramming 

 

Examining mutations present in only a single sister colony we initially found 250-1500 

reprogramming-associated SNVs and around 250 indel candidate mutations per iPSC line (Fig. 

2.7a,b). To refine our candidate mutation list, we assessed false positive rate by separating calls 

into 4-5 bins based on the quality score given by our pipeline. We then used PCR and sanger 

sequencing to validate a subset of our SNV calls at each quality threshold (Fig. 2.8a). To ensure 

that our approach was sufficiently sensitive to validate calls with a low variant allele frequency 

(VAF), we performed targeted deep sequencing on an additional subset of SNV calls to an 

average depth of 8000 reads/base. Indels were validated entirely through targeted deep 

sequencing. We attempted to validate 100 SNV calls and found that calls above quality score 200 

were validated at 100% frequency, while calls between 100-200 quality score validated at 61%, 

calls between 10-100 validated at 18% frequency, and calls with a score below 10 failed to 

validate at all (Fig. 2.8b,c). We found that indels validated at much lower frequencies, even at 

high quality scores, reflecting the difficulties in calling this type of mutation (Fig. 2.8d).  

 

We examined the percent of calls in each line at each quality bin to assess whether any 

samples showed uniformly low quality sequencing reads and found that 2 samples, G9.3B and 

I9.1A, do show a low percent of high quality calls (Fig. 2.7c). We also assessed whether 

differences in average read depth might result in some lines having more high quality calls than 

others. We did see a significant correlation between lines with lower average depth having more 

low quality calls, but did not see the concomitant correlation of lines with higher depth having 

more high quality calls (Fig. 2.7d). 

 



26 
 

For each line we multiplied the number of reprogramming-associated calls in each quality 

bin by the corresponding false positive rate to arrive at a corrected value for reprogramming-

associated SNVs and indels. We predict 158 reprogramming-associated SNVs and 9 indels on 

average among iPSCs derived from lentivirus. For iPSCs from episomal vectors, we find 484 

reprogramming-associated SNVs and 9 indels on average per line (Fig. 2.9a,b). We found that 

the variant allele frequency (VAF) for high confidence reprogramming-associated mutations 

showed a peak around 0.25 and 0.5, consistent with mutations arising in the first couple of 

divisions (Fig. 2.9c,d). These data imply an early-burst of reprogramming associated mutations 

within the first two divisions of the initial cell. It is important to note, however, that our 

sequencing depth precludes us from reliably calling low VAF SNVs, and we cannot say how 

many mutations arise in later divisions.  

 

We filtered our VAF data by total number of reads and found that mutations at bases with 

a higher read depth showed a more pronounced peak at lower VAFs (Fig. 2.9e,f), supporting the 

conclusion that higher depth sequencing would reveal more early mutations. Importantly, the 

episomal condition shows significantly more reprogramming SNVs than the lentiviral condition 

(p<0.001 by t test), and the fact that this difference is not observed among indels argues that this 

is a biological phenomenon and not an experimental artifact (Fig. 2.10a,b). To our knowledge 

this represents the first evidence that the choice of reprogramming method can have a significant 

impact on the mutational burden of iPSCs across the whole genome. Taken together, these data 

show that iPSCs have a substantial mutational burden arising both from somatic mutations in the 

donor cell and from reprogramming-associated processes. (Fig. 2.10c,d)  
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Figure 2.7: (a) Our initial assessment of candidate reprogramming-associated SNVs per line, 

without taking our false positive rate into account. (b) Candidate indels calculated without 

false positive rate for each line. (c) We examined the % of total SNV calls in each of our 

quality score bins per line. Our fake sisters appear to have higher average quality because 

they include somatic mutations. (d) Average depth vs the number of SNVs called for each 

line in each of our 4 quality bins.  
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Figure 2.8: (a) We performed PCR on a subset of SNV calls and used Sanger sequencing to 

validate heterozygous mutants from our dataset. (b) Cumulative positive graph of false 

positives shows that the SNV call quality improves at the thresholds of QS 100 and then at 

200. (c) The false positive rate for each of several quality score bins was calculated from 

validation experiments, and this rate was multiplied by the number of mutants in each bin per 

line to arrive at our final SNV estimates. (d) The same approach was applied to assess indel 

false positive rate, using targeted deep sequencing and Sanger sequencing.   
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Figure 2.9: (a) Predicted reprogramming mutations per line, adjusted for false positive rate. 

(b) Reprogramming-associated indels corrected for false positive rate. (c) The average of all 

reprogramming, somatic, and fake sister SNVs with QS > 10, plotted by the relative 

frequency of VAFs. (d) Same analysis as in e using a QS cutoff of 100. (e) Assessment of 

VAF of reprogramming mutations above QS 10 filtering for different minimum read depths 

(DP) to determine whether calls were being biased by the total number of reads at the locus. 

(f) Assessment of VAF frequency distribution using a QS 100 cutoff at different DP 

thresholds.  
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Figure 2.10: We summarized the averages for each condition and compared lentivirus to 

episomal using a  t test (significance calculated by Holm-Sidak method). We found that 

episomal lines had significantly more SNVs than lines derived by lentivirus. (b) Analyzing 

the average indels in each condition did not reveal any statistically significant differences. (c) 

We generated a stacked graph to assess the total SNV burden, from reprogramming and 

somatic sources, in each iPSC line. (d) We examined the average indel burden for each line. 

NB fake sisters appear to have fewer mutations because their somatic calls fell into the 

reprogramming bin and many were thus removed by our false positive filters despite being 

true mutations. 

C 

Figure 2.10: We summarized the averages for each condition and compared lentivirus to 

episomal using a  T test (significance calculated by Holm-Sidak method). (b) Analyzing the 

average indels in each condition did not reveal any statistically significant differences. (c) 

Stacked graph assessing the total SNV burden, from reprogramming and somatic sources, in 

each iPSC line. (d) Stacked graph examining the average indel burden for each line. NB fake 

sisters appear to have fewer mutations because their somatic calls fell into the reprogramming 

bin and many were thus removed by our false positive filters despite being true mutations. 

A 

D 

B 



32 
 

2.3.4 The nuclear context of SNVs in iPSC lines 

To determine whether reprogramming-associated SNVs differed from somatic SNVs, we 

examined the nucleotide context of each mutation and found no significant differences between 

the nucleotide context of reprogramming-associated vs somatic SNVs (Fig. 2.11a). However, 

when we separated reprogramming-associated SNVs into episomal vs lentiviral-derived lines, we 

found that episomal reprogramming SNVs were significantly enriched in C → A mutations 

compared to somatic and lentiviral reprogramming mutations (Fig. 2.11b). To further explore 

this observation, we examined the trinucleotide contexts of lentiviral vs episomal SNVs and 

found episomal reprogramming SNVs were particularly enriched at TCN and GCN sites, and 

were relatively depleted in C → T SNVs (Fig. 2.11c,d).  

 

One concern is that we only have four episomal iPSC lines based on two reprogramming 

events. We noted that our fake sister controls (proximal iPSC colonies that derived from separate 

fibroblasts) were derived by episomal method, and decided to assess nucleotide context in these 

cells despite not having the sister iPSC paradigm for these samples. To remove somatic SNVs 

from our analysis, we looked at the VAF of our real sister iPSCs and noted that most somatic 

mutations were found above VAF 0.35. We therefore analyzed all high confidence SNVs below 

VAF 0.35 for all lentiviral and episomal derived iPSC lines, ignorant of sister status, giving us an 

n of 12 for each condition. We found that we could still clearly see an enrichment of C → A 

mutations at specific trinucleotide contexts in episomal vs lentiviral derived iPSCs (Fig. 2.12a-c). 

This strongly indicates that reprogramming with episomal factors triggers different mechanisms 

of mutation than reprogramming with lentiviral OSKM. 
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To gain insight into the mechanisms of mutation operating during reprogramming, we 

utilized the mutational signatures first reported by Alexandrov et. al. (2013). They analyzed 

SNVs from over 7,000 cancer cell lines and found recurrent patterns of trinucleotide mutations 

termed mutational signatures. They were able to map many of these mutational signatures to 

specific cell processes in an effort to elucidate mechanisms responsible for specific types of 

cancer (68, 69). We used DeconstructSigs to map our SNVs to the mutational signature database 

maintained by COSMIC (70)  and made several interesting observations. Processes underlying 

signature 18 and 24 made much larger contributions to episomal SNVs than lentiviral or somatic 

SNVs (Fig. 2.12d). While the mechanisms underlying signature 18 are unknown, this signature is 

most commonly observed in neuroblastoma. Signature 24 is associated with a transcriptional-

strand bias for C → A mutations that are targeted by transcription-coupled nucleotide excision 

repair (tcNER). Interestingly, although the nucleotide contexts of lentiviral SNVs appear broadly 

similar to somatic SNVs, they show a unique enrichment for signature 5, associated with 

transcription-strand biased T → C mutations at ATN contexts, and signature 29, associated with 

CC → AA dinucleotide substitutions (Fig. 2.12e) (68). The mutational signatures indicate that 

transcription coupled nucleotide excision repair (tcNER) may play an outsized role in 

mutagenesis of episomal, but not lentiviral, reprogramming SNVs. Ultimately these data tell us 

that different methods of reprogramming cause mutations via mechanisms of action that are 

distinct from somatic processes and from each other.   

 

Because we found a unique nuclear signature of episomal reprogramming SNVs, we 

reasoned that these SNVs might be found in different regions of the genome. We looked for 

enrichment of SNVs in different genomic features and saw that reprogramming SNVs appear 
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depleted in 3’UTR and enriched in 5’UTR relative to somatic SNVs, but these results were not 

statistically significant, possibly due to insufficient sample size. (Fig. 2.13a). We next looked for 

enrichment in various histone contexts using ENCODE data on human embryonic stem cells 

(hESCs). However we did not observe any differences between reprogramming-associated and 

somatic SNVs (Fig. 2.13b). Because the epigenome of very early reprogramming might more 

closely mirror their original cell type, we gathered histone data from human dermal fibroblasts 

(HDFs), but we were again unable to discern any statistically significant differences in 

enrichment between somatic and reprogramming mutations (Fig. 2.13c). Because episomal 

SNVs are enriched in C → A SNVs, which are associated with oxidative stress, we wondered if 

mutations might be enriched in lamin-associated domains (LADS) which are known to be 

susceptible to oxidative damage. We looked for enrichment in LADs using a dataset from human 

embryonic stem cells (hESCs) as well as from fibrosarcoma (HT1080) but in both cases 

episomal reprogramming SNVs were not significantly more enriched than lentiviral or somatic 

SNVs (Fig. 2.13d)  

 

Finally, we looked for regions of localized hypermutation, called katageis, which indicate 

particularly mutable regions of the genome. We found several katageis associated with lentiviral 

reprogramming but not with episomal reprogramming. Upon closer inspection, however, we 

realized that these katageis were largely due to a single line, L92B, which had several 

hypermutated regions, some falling in genes and some in intergenic regions (Fig. 2.14a). The 

mutations in genes were all silent, which at first made it appear as though lentiviral 

reprogramming was enriched in silent mutations relative to episomal reprogramming (Fig. 

2.15a). We were concerned that L92B was an outlier that may have impacted our earlier results. 
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To investigate this potential source of error, we re-ran our previous analysis without L92B and 

confirmed that our prior observations on the total number of mutations and nucleotide context 

were still valid (Fig. 2.15c,d,e). Removing L92B eliminated the statistically significant 

enrichment in silent mutations as well (Fig. 2.15b). Our data indicates that some iPSC colonies 

can become hyper-mutated, though the reason for this is unknown.      
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Figure 2.11: (a) We considered all somatic and high confidence (QS > 100) reprogramming-

associated SNVs and plotted the relative distribution of each nucleotide context. (b) The same 

analysis separating episomal derived and lentiviral derived sister iPSC lines. Statistically 

significant differences between the episomal sisters and other conditions calculated by T test. 

(c) The trinucleotide context of the episomal reprogramming SNVs, where the middle 

nucleotide is the SNV. (d) The same analysis as c on our lentiviral SNVs.  
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Figure 2.12: (a) Trinucleotide context for VAF < 0.35 SNVs of all episomal derived iPSCs 

ignorant of somatic vs reprogramming origin. It should be read from the bottom nucleotide to 

the top, with the nucleotide in red representing the mutated base. (b) Same analysis as above 

looking at all lentiviral SNVs of VAF < 0.35, ignorant of reprogramming vs somatic origin. 

(c) Trinucleotide analysis of all somatic SNVs. (d) A pie chart representing the % 

contribution of each mutational signature to the total mutational burden for the same SNVs 

assessed in 3a. (e) Mutational signatures associated with the data in 3b. (f) Mutational 

signatures associated with the data in 3c. 
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Figure 2.13: (a) Enrichment of SNVs in various genomic features of interest. The log(2) fold 

enrichment, where the n is the total number of SNVs considered, and the number next to each 

bar represents the total number of SNVs which overlapped with a particular feature. 

Significance was calculated by Fisher’s exact (two-tailed) in bedtools to test the odds of the 

observed overlap given a random distribution of mutations. This analysis was run without 

L92B, an outlier which was strongly biasing the results. (b) The same analysis was run to find 

overlaps with an hESC histone ChIP assay. (c) Enrichment analysis using histone data from 

HDFs. (d) The same analysis for lamin-associated domains for hESCs as well as a 

fibrosarcoma line (HT1080)  
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Figure 2.14: (a) Katagei (regions of localized hypermutation) were examined with 

MutationSigs. Each high confidence lentiviral SNV was plotted according to its location in 

the genome (x axis) and the distance between it and the previous mutation (y axis). Circled 

regions are katagei found in sample L92B (b) Locations of SNVs were plotted for high 

confidence episomal SNVs.  
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Figure 2.15: (a) High confidence SNVs were run against the COSMIC cancer database and 

plotted those that overlap an oncogene along with the predicted impact. (b) A rerun of the 

COSMIC analysis without sample L92B. (c) Assessment of the average number of SNVs per 

line without L92B, significance calculated by T test. (d) Assessment of the average number of 

indels per line without L92B. (e) Assessment of nucleotide context as previously described 

while omitting L92B from the analysis.  
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2.3.5 Physiological impact of mutations in iPSCs 

Although we showed that reprogramming contributes several hundred SNVs and around 

9 indels to our iPSC lines, we wanted to know whether these and somatic mutations would 

impact expressed genes. To assess the impact of mutational burden on physiology we used a 

panel of tools to predict functional impact of mutation. We first used two algorithms, SIFT and 

PolyPhen, which predict deleterious impact based on how evolutionarily conserved a base pair is 

(71-73). Looking at somatic SNVs, we found that 7/8 original fibroblasts contained at least one 

somatic SNV predicted to have a deleterious impact on a gene by one or both algorithms (Table 

2.2). We ran this set of variants against the Online Mendelian Inheritance in Man (OMIM) 

database, which links genes to human disorders (74), and found 8 somatic mutations associated 

with a disease. We also ran these variants through ClinVar, which collates data on individual 

nucleotides of note (75). Of the somatic SNVs with an entry registered in NCBI (rsXXXX) none 

were directly linked with disease by ClinVar (Table 2.2). We performed the same analysis on our 

reprogramming-associated SNVs and found that 7/16 lines had at least one reprogramming-

associated SNV predicted to have a deleterious impact on gene function. Several of these genes 

were associated with disease, though none of the specific base pairs were implicated by ClinVar 

(Table 2.3).    
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Table 2.2: Variant Effect Predictor (VEP) was used to assess somatic predicted deleterious 

SNVs by SIFT or PolyPhen in somatic SNVs. OMIM column represents where mutations 

overlapped genes with known diseases in the OMIM database or with a variant ID registered 

with NCBI. Rows in bold are SNV sites predicted to be deleterious by both algorithms. We 

also noted SNVs which result in a stop codon gained, which are not called by SIFT/PolyPhen 

but are generally deleterious.  
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Table 2.3: An assessment of reprogramming-associated SNVs for potential impact using the 

same approach as Table 2.2. A little under half of all sister iPSC lines showed at least one 

deleterious SNV.  
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2.3.6 Structural Variants and Mobile Element Insertions in iPSCs 

SVs were called with LUMPY, a best in class SV caller which incorporates multiple 

methods of calling SVs from read pairs (76).  High confidence somatic SVs were validated by 

PCR using primers that would only yield product in the presence of the SV (Fig. 2.16a). We 

called somatic SVs in 5 of 8 donor fibroblasts, all but one of which were validated by PCR (Fig. 

2.16d). We did not call any high confidence reprogramming-associated SVs, but we attempted to 

validate low confidence reprogramming SVs and found that all were false positives (Fig. 2.16d). 

MEIs were called by MELT (77), and we performed PCR validation on a subset of MEIs from 

two lines, H92A and L92A, by designing primers that spanned the insertion. This should give 

two products, a wild type band and a higher weight MEI band. We ran PCRs for 20 putative 

MEIs but found a 100% false positive rate (Fig. 2.16b). To show that our approach was capable 

of validating MEIs we validated 6 germline MEI calls and found that these gave the expected 

product using our PCR approach (Fig. 2.16c). Because we didn’t call any valid reprogramming-

associated MEIs, we assessed our false negative rate by crossing our dataset with MEIs from the 

1000 genomes project and determining how many of these MEIs were found in our fibroblast 

donors but were missed in one or more sister iPSC colonies (see methods A.1.4). From this we 

calculated a false negative rate of 1.6%. Together these data show that reprogramming does not 

significantly contribute to SV and MEI class mutations in iPSCs.  
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Figure 2.16: (a) High confidence structural variants were validated by PCR. Valid somatic 

SVs were found in both sisters (A,B) but not the fibroblast (F). Reprogramming SVs should 

be found only in one sister. (b) Mobile element insertions (MEI) called by MELT were 

validated with PCR primers spanning the insert. A valid MEI will show two bands; a wildtype 

and an insert product shifted up 250-350bp. This is a representative gel of a few validation 

reactions. (c) We validated several germline MEIs and saw the expected two products. (d) All 

but one somatic SV was validated by PCR, however none of the 4 called reprogramming SVs 

were validated.  

A 

B 
B C 

Line

Somatic SV 

Validated

Reprogramming SV 

Validated (either sister)

I92 (lenti) 2/3 0/0

G93 (lenti) 1/1 0/1

F92 (lenti) 2/2 0/0

L92 (lenti) 1/1 0/0

H91 (lenti) 0/0 0/1

C4 (epi) 2/2 0/1

A1 (epi) 0/0 0/1

D 
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2.3.7 Application of sister cell paradigm data to other approaches 

Although the sister iPSC paradigm presents a powerful approach for assessing somatic 

and reprogramming-associated mutations, it is technically challenging and requires considerable 

labor to obtain and validate sister iPSC pairs. We thus sought to use our data to create a general 

framework to quickly determine the contribution of reprogramming vs somatic mutations to an 

iPSC line. To accomplish this, we combined all high confidence SNVs for all real sister lines 

(somatic and reprogramming-associated), and sorted this dataset into VAF bins of 0.02 (VAF 

0.200 - 0.219, 0.220 - 0.239, etc…). We then assessed the relative contribution of somatic and 

reprogramming-associated mutations to the total number of called mutations in each of these 

bins (Fig. 2.17a). This gave us a “reprogramming coefficient” and a “somatic coefficient” for 

each VAF bin (Fig. 2.17b). Any dataset can be divided into VAF bins, and the number of 

somatic or reprogramming-associated mutations can be estimated by multiplying the total 

number of SNVs in each bin by the associated somatic or the reprogramming coefficient for that 

bin. To test the accuracy of this approach, we ran our own data through this pipeline ignorant of 

sister status. We found that our pipeline was able to predict somatic and reprogramming-

associated SNVs to a reasonable degree of accuracy (Fig. 2.17c). Importantly, our pipeline 

showed that episomal reprogramming resulted in significantly more reprogramming-associated 

mutations, even without a priori knowledge of which mutations come from reprogramming and 

which from the original fibroblast (Fig. 2.17c). This dataset will allow researchers to quickly 

assess the mutagenicity of novel reprogramming methods by separating reprogramming-

associated mutations from somatic ones, allowing them to rule out somatic background noise.     
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B 

Figure 2.17: (a) The total number of high confidence somatic and reprogramming SNVs 

for all sister lines were plotted along VAF bins of 0.2. (b) At each VAF bin, we calculated 

the % contribution for somatic and reprogramming processes to generate a constant 

coefficient for each process at any given VAF. (c) We analyzed our data using these 

coefficients to predict average reprogramming and somatic mutations per line ignorant of 

sister status, then compared these data to the averages observed using our sister paradigm.  
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2.4 Discussion 

Our sister iPSC paradigm provides a rigorous system for definitively establishing the 

mutagenicity of reprogramming, and for determining the mutational burden of the original 

somatic cell. Understanding the number of mutations caused by different reprogramming 

methods can inform clinicians and researchers as they pursue iPSCs as a tool for disease 

modeling or regenerative medicine. In the disease modeling field, it isn’t uncommon for studies 

to be published with results based on one or two iPSC lines, which are often characterized by 

sequencing the donor fibroblast population, if whole genome sequencing is conducted at all (see 

Ebert, Liang, and Wu, 2013, Table 1 for a collection of many such studies)(78). Our data show 

that this approach is insufficient; reprogramming can induce hundreds of mutations, and the 

initial cell can itself possess hundreds of mutations which are not captured in the donor sequence. 

 

In considering our observation that episomal reprogramming resulted in more SNVs than 

lentiviral reprogramming, there are several points that should be emphasized. Most importantly, 

our episomal condition used a different set of transcription factors (Oct4, Klf4, Sox2, L-Myc, 

lin28, p53 shRNA) than our lentiviral condition (Oct4, Sox2, Klf4, and C-Myc). We cannot 

distinguish between the effects of different delivery methods and different transcription factors. 

Bhutani et. al. (2016) compared retrovirus, Sendai virus, and mRNA all using Pou5F1, Sox2, 

Klf4, and C-Myc, and found no differences in total number of mutations in the iPSCs (35), 

though it is possible that the differences were obscured by somatic noise as this study didn’t 

distinguish reprogramming mutations from more numerous somatic variants. Bhoutani’s study 

indicates that our results might be due to different transcription factors rather than different 

methods of delivery. However, Kwon et. al. (2017) reprogrammed fibroblasts with episomal 

vectors using the same combination of factors we use in our lentiviral condition and found an 
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enrichment of C → A in exome (37). This is in agreement with our episomal data, and indicates 

that it is the episomal delivery method itself which is the source of additional mutations over the 

lentiviral method. Because neither of the above studies (and no study to date) performed whole 

genome sequencing with a means to distinguish reprogramming from somatic mutations, it is at 

present impossible to resolve these conflicting possibilities. Adding to the complexity is the fact 

that the lentiviral factors were inducible by Dox while the episomal vectors were constitutively 

expressed. Because cells were not switched to iPSC culture media until 3 days post transfection, 

this means the episomal lines were initially reprogrammed under conditions of fibroblast culture, 

while the lentiviral lines were reprogrammed under iPSC culture conditions (see Fig. 2.2). 

Although this design was necessary given the difficulties we encountered in establishing sister 

iPSC colonies, it precludes us from knowing which aspect of reprogramming contributed to the 

differences observed between episomal and lentiviral conditions. What we can say with some 

confidence is that different reprogramming conditions can lead to different degrees of mutational 

burden in the final iPSC line, and novel methods of reprogramming should be assayed for 

mutagenicity before being adopted for widespread use.  

 

Not only does the reprogramming condition impact mutation in iPSCs, but out second 

key observation is that the choice of donor cell also impacts mutational burden. Early studies on 

iPSCs made assumptions that donor cells had no or very few mutations that were not accounted 

for by sequencing the donor individual. While Kwon et. al. (2017) showed by targeted deep 

sequencing that many iPSC exome mutations derived from the donor cells (37), we show here 

for the first time the full contribution of somatic mutations to the whole genome of iPSCs. Our 

findings of 250-1500 somatic SNVs are broadly in-line with a study assessing SNVs in single 
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human fibroblasts (79), and the high variance emphasizes the degree of genetic mosaicism found 

in cell populations, as well as the difficulty in assessing reprogramming mutagenicity with 

somatic background noise. Researchers and clinicians should be cognizant of how many sources 

of mutation their initial samples may have been exposed to. Lo Sardo et. al. (2016) showed that 

exome mutations in iPSCs increase with the age of the donor (36), while a study of iPSCs from 

human cord blood showed roughly 2 exomic SNVs per line, far less than reported in most iPSCs 

derived from fibroblasts (80). Selecting younger and less mutagenized samples, wherever 

possible, will limit the impact of somatic mutations on downstream applications of iPSCs.    

 

The third key observation of our study is that the increased mutations evident in episomal 

reprogramming are not randomly distributed, but are biased toward C → A and specific 

trinucleotide contexts which implicate specific cellular processes. There are several possible 

explanations for this, though we stress that further research is required to definitively assess 

mechanisms of reprogramming-associated mutation. C → A transversions are a hallmark of 

oxidative stress, associated with high metabolic function (81). It is noteworthy that the 

reprogramming process is known to induce a switch in metabolic profile from oxidative 

phosphorylation via the Krebs cycle to oxidative glycolysis (82). This is thought to be a genome 

protective measure, synthesizing the large number of metabolic intermediates required in 

pluripotent cells while minimizing oxidative stress (83). It is also noteworthy that C-Myc is a key 

promoter of glycolysis (84, 85), and one of the differences in our episomal condition was the 

absence of c-Myc. We instead used L-Myc, which is known to promote proliferation similar to 

the other Myc members, but has not been shown to play any role in promoting glycolysis. Thus it 

is possible that different kinetics in metabolic switching between our reprogramming methods 
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could result in an increase in DNA damage enriched in C → A, though this is speculative. Our 

trinucleotide and mutational signatures analysis gave additional insight into potential 

mechanisms of mutagenesis. Episomal reprogramming SNVs are enriched for signatures 18 and 

24, while lentiviral reprogramming SNVs are enriched for signatures 5 and 29. Though little is 

known about signature 18 beyond its prevalence in neuroblastoma, signature 24 is listed in the 

COSMIC database as: “Exhibits a very strong transcriptional strand bias for C>A mutations 

indicating guanine damage that is being repaired by transcription-coupled nucleotide excision 

repair (tcNER).” Despite the proposed role for transcription-coupled NER in episomal mutations, 

we found no evidence of enrichment in introns or coding exons, and found that mutations were 

significantly depleted in regions with histone marks associated with active transcription. One 

possibility is that our histone mark database does not accurately reflect early reprogramming 

iPSCs. Performing RNAseq on our iPSCs for both episome and lentiviral conditions, and then 

testing for enrichment of SNVs in actively transcribed genes, could resolve this discrepancy. 

Ultimately, it seems that different methods of reprogramming introduce mutations via 

mechanisms that are distinct from one another, though what these mechanisms are remains an 

unresolved question.     

 

We found that 7/8 sister pairs had at least one SNV predicted to be deleterious by SIFT or 

PolyPhen, stemming from the original fibroblast but not caught by bulk sequencing of the donor 

cell population. The impact of these mutations depends on the downstream application of the 

iPSC line; C4A/B have a deleterious mutation in NRL, a transcription factor involved in 

differentiation of rod photoreceptors (86). This makes C4A and C4B poor choices for 

applications involving the rods, however these lines would be acceptable for use in cardiac 
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research, as they seem to have no mutations in genes associated with cardiomyocytes. 

Reprogramming contributes to potentially deleterious mutations in 7/16 lines, several of which 

are also associated with human disease. These data show the importance of thoroughly 

characterizing an iPSC line before using it in the clinic or the lab, rather than relying on available 

sequencing data for the donor or the initial cell culture.       

 

A careful assessment of SVs and MEIs found no evidence that reprogramming 

contributed to these classes of mutation, providing a valuable data point amidst a sea of 

contradictory literature (see section 1.1.3). These conflicting studies are a result of the fact that 

both SVs and MEIs pose unique challenges for variant callers. Because SVs are by definition 

greater than the read length of the sequence, SV mapping algorithms are unable to accurately 

map reads within an inversion, as they cannot distinguish wild type from inverted sequence 

without a breakpoint. They also struggle to determine the origin of duplicated sequence reads 

(did the read come from the original or duplicated sequence?), and can become confused by 

multiple types of reads supporting an SV. Our approach utilizes a highly sensitive algorithm that 

incorporates multiple sources of SV detection, as opposed to earlier studies which generally 

relied on a single detection method (76). Similarly, while MEIs are traditionally difficult to call 

and validate for a variety of reasons (60), we have made every effort to observe best practices. 

The recently reported MELT tool, developed for the final phase of the 1000 genomes project, has 

been shown to be a best in class MEI caller (77), and indeed we find a false negative rate of only 

1.6% using MELT’s pipeline. We hand validated a subset of MEI calls with PCRs that span both 

junctions of the putative insertion, and found a 100% false positive rate. Importantly, as a 

positive control we were able to validate all tested germline MEIs with this method. Taken 
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together, we are confident in concluding that our reprogramming methods do not appreciably 

contribute MEIs or SVs to the iPSC genome.   

 

The total mutational burden of an iPSC colony can have major implications in both 

clinical and research contexts. We show that the early stages of reprogramming is significantly 

more mutagenic than would be expected by traditional mitotic processes, and that these 

mutations arise from mechanisms that differ from those present in the parent cell. While these 

mutations are depleted in exons, several of them are predicted to have a deleterious impact on 

gene function, and mutations in non-coding regulatory regions can significantly impact 

physiology. Even so, we find little evidence of large deleterious variants arising from 

reprogramming, nor do we find predicted deleterious mutations in notable oncogenes. Taken 

together, our study provides several points of best practice which should be considered when 

working with iPSCs. Namely, care should be taken in selecting the reprogramming method and 

the donor cell population, and resulting colonies should be thoroughly characterized prior to use 

in downstream applications. Accounting for genomic integrity will allow researchers and 

clinicians to safely use iPSCs to their full potential.  

 

Data from Chapter 2 have been prepared for submission. The material as it may appear in 

print is: Duran M.A., Lo Sardo V., Hazen J.L., Nair R.V., Kanchi K., Lala S., Tu N., Hall I.M., 

Baldwin K.K. “The Impact of Different Reprogramming Methods on Human Induced 

Pluripotent Stem Cell Genomes.” Cell Stem Cell. The dissertation author was the primary author 

of this paper. Dr. Valentina Lo Sardo and the dissertation author contributed equally as the 

primary investigators of this project. 
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Chapter 3: 

Single Cell Mutational Burden in Young and Old Rod Photoreceptors  

3.1 Introduction 

Of all the cells in the body, perhaps none are as valuable and unique as neurons. 

Intimately linked with the attributes we most clearly associated with sentient life, most neurons 

are derived early in an organism’s life and persist for many years. A neuron’s ability to survive a 

century or more is made all the more remarkable when one considers the relentless onslaught of 

mutagens that assail a neuron’s genome even in the absence of DNA replication. As was 

discussed in Chapter 1, neurons suffer double stranded breaks (DSBs) in response to neural 

activity, probably as a means of allowing quick activation of early response genes (48, 49). DSBs 

are particularly harmful for postmitotic cells because they lack the ability to repair them through 

homologous recombination (HR), which requires a duplicated genome in S phase (87). This 

forces neurons and other postmitotic cells to rely on nonhomologous end-joining (NHEJ), which 

is versatile but error-prone (87, 88). In addition, it has long been known that neurons have a 

highly active metabolism, producing a steady stream of oxidative stress (89). The impact of these 

factors is evident in aged human neurons, which have well over a thousand somatic SNVs, more 

SNVs than are found in our dividing fibroblasts from Chapter 2 or in most other normal single 

cell datasets (65). The most thorough human study to-date, however, found a two-fold difference 

in mutation rates between cortical neurons and neurons from the dentate gyrus ((65) see Chapter 

1.1.4). Several questions remain unanswered in this important field, among them are; (1) do 

other populations of neurons possess significantly different rates of mutation, and if so why? (2) 

To what extent do mutations impact cognition in aged individuals? (3) Are aged mouse neurons 

comparable to aged human neurons in terms of mutational burden, and how might this impact 

mouse models of cognitive age-related disease? To begin to address these and other questions, 
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we expanded on an innovative approach pioneered by our lab and first published by Hazen and 

Faust et. al. (2016)(59). Here, we utilize somatic cell nuclear transfer (SCNT) to study the 

complete spectra of mutations in young, middle aged, and old rod photoreceptors from mouse 

retina.    
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3.2 Results 

3.2.1 Establishing the extent of SNVs in rod neurons of different ages 

To obtain a pure population of rod photoreceptors, we bred mice with GFP tagged neural 

retina-specific leucine zipper protein (NRL), which is a specific marker for rods (90). To amplify 

these post-mitotic genomes without PCR, we initially utilized somatic cell nuclear transfer 

(SCNT) with the aim of collecting two cell embryos or establishing an embryonic stem cell line 

(NT-ESC). This approach was previously used to establish NT-ESC lines from mitral and tufted 

neurons of young mice (Hazen and Faust et. al., 2016, (59)). Retinae were dissected from mice 

of various ages and a single neuron suspension was prepared for injection (Fig. 3.1a,b). We 

performed over a thousand neuron nucleus injections via SCNT (Fig. 3.1c), and initially 

established 3 NT-ESC lines from p6 mice. As we began experiments on older mice, however, we 

observed a decrease in reprogramming efficiency of aged neurons, with fewer of these embryos 

developing morula/blastocysts (Fig. 3.1d). We further noted that even in the case where aged 

neurons generated blastocysts they generally appeared less healthy than their young counterparts. 

It has been reported that excessive epigenetic marks can impair reprogramming efficiency (91), 

and that aged brains show hypermethylation (92). Therefore we attempted to enhance our 

efficiency by cloning Kdm4d, a histone demethylase that was reported to enhance 

reprogramming of SCNT in fibroblasts and cumulus cells by direct mRNA injection (93). 

Despite numerous attempts at optimization, however, we did not observe enhanced 

reprogramming efficiency via this method. We attempted to collect the embryo at the 2 cell 

stage, reasoning that we could use single cell amplification on each cell of a 2 cell pair, calling 

only mutations that are found in both samples (and thus came from the original neuron), an 

approach similar to our sister iPSC strategy outlined in Chapter 2. We developed a method for 

dissociating the 2 cell embryo which involved removing the zona pellucida via Tyrode’s solution 
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followed by vigorous trituration in trypsin by mouth pipette, and we collected a number of sister 

pairs with this approach (Fig. 3.2a). However the single cell amplification technology at the time 

was not optimized for SNV detection, and the uneven genome coverage made variant calling 

extremely difficult (Fig. 3.2b). To examine whether our collection method was leaving residual 

reagents that might interfere with amplification, we tested our collection method on a control 

blastocyst and saw even coverage after amplification (Fig. 3.2c).   

 

In reconsidering our approach, we noticed that we were able to develop blastocysts even 

when reprogramming aged neurons (albeit at a lower efficiency), and we reasoned that the 

number of cells in a blastocyst (150-250) would be sufficient for high quality whole genome 

sequencing, although unlike with an NT-ESC line we would not have an unlimited source of 

DNA. We collected blastocysts and split them prior to amplification by multiple displacement 

amplification (MDA), allowing us to rule out any mutations arising from amplification and 

library prep by only calling mutations found in both halves of the blastocyst (Fig. 3.3). We 

sequenced an initial set of blastocysts in this way and noticed that the data varied greatly in 

quality (Fig. 3.4a), likely due to the differences in health of the original blastocysts. To screen 

out poor quality blastocysts prior to WGS, we developed a PCR based quality control panel 

which tested the capacity of the amplified DNA to PCR amplify various loci across the genome 

(Fig. 3.4b). We assigned each blastocyst a quality score based on this PCR, with samples 

receiving 0, 1, or 2 points for no band, a faint band, or a strong band at each QC loci. We 

sequenced only those blastocysts which showed a quality comparable to that of our high quality 

blastocysts from our initial sequencing. Altogether we sequenced 3 NT-ESC lines from p6 rods 

and 10 blastocyst pairs from rods aged p20 to 2.5 years (Fig. 3.4c). 
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This dataset was processed as described in chapter 2. We included only SNVs called by 

both halves of a blastocyst but not found in the bulk control for that mouse. To reduce common 

sequencing artifacts, we further filtered out any SNVs found in more than one sample. We 

included a VAF cutoff of 0.3 based on our prior findings that most somatic mutations are found 

above that VAF. The three ES lines required a slightly different approach because of their high 

depth compared to our blastocysts samples (60x vs 30x average depth), which resulted in false 

positives even at high quality scores (which are in part based on the number of reads supporting 

a call). These samples were analyzed by our collaborators in the Hall lab using the approach 

reported by Hazen and Faust et. al. (59). We estimate roughly 109 (78-116) SNVs in p6 rods, 

151 (113-224) SNVs in p21, and on average 226 (164-273) SNVs amongst older rods (Fig. 

3.4d). Very old rod photoreceptors thus seem to have significantly more SNVs than found in p6 

rods as assessed by T test and one-way ANOVA (Fig. 3.4e).  
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Cone Arrestin 

Rods 
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Figure 3.1: (a) To confirm accurate labeling, retinae were sectioned and stained for markers 

of cones, glia, and proliferative cells. No overlap was observed with GFP marking rod 

photoreceptors. Shown above is a zoomed out image of retina from an NRL-GFP mouse co-

stained with cone arrestin (labels cones) and DAPI. (b) Neuronal quality was examined under 

fluorescent dissecting scope prior to injection to confirm cells were not lysing (such cells 

appear swollen, while the healthiest cells sometimes have processes attached, though this was 

less commonly observed in rods than other neuron types.) (c) Observation of the fraction of 

embryos surviving the injection process for all NT experiments, separated into different age 

groups. (d) Observation of efficiency of development as a function of age. N is the number of 

individual mice used per condition.    
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Figure 3.2: (a) An outline of our approach for dissociating 2c embryos into single cells. Cells 

were transferred between droplets by mouth pipette, with a 3x wash in M2 media between 

each step. The # collected refers to the number of embryo pairs dissociated and collected. (b) 

The diploid copy number is shown on the y axis for each region of the genome along the x 

axis, where a standard diploid genome would center around 2. This analysis is traditionally 

used to assess copy number variants, which will appear as 3x copy number (duplication) or 

1x (deletion) on the y axis. Here it is used as a rough assessment for the evenness of 

amplification. The upper graph is the data from single cell amplification, compared to the 

lower graph of bulk control DNA. The yellow line denotes the average along the genome. An 

evenly covered sequencing dataset will show a straight yellow line except at regions of mono 

or polyploidy, as shown in the thymus female control. (c) Our control blastocyst halves 

showed an evenness that was sufficient for thorough analysis.   
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Neuron Age Range # Collected

NRL (Rod) <p21 7

NRL (Rod) >p21-1m 61

NRL (Rod) 2 year 31Tyrode’
s 

Trypsin PBS 

C             Blast half 1         Blast half 2 

(MDFFFrozen) 
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Figure 3.3: (a) Rod photoreceptors were collected from mice of various ages and their 

nuclei were injected into enucleated oocytes. Some of the fertilized eggs developed to 

blastocysts and were collected and carefully split into two tubes before being subjected 

to MDA based whole genome amplification. Amplified DNA was then tested for 

genomic integrity by PCR. (b) High quality DNA from the previous step was whole 

genome sequenced to 35x average depth, and mutations present in both halves of the 

original blastocyst, but not present in spleen control, were called candidate neural 

mutations. (c) A subset of candidate mutations were hand validated by PCR to assess the 

false positive rate of our variant calling pipeline.   
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Figure 3.4: (a) Genotype concordance, called for a preliminary set of amplified blastocysts. A set 

of germline mutations in the bulk control DNA (0/1 for heterozygous SNV) were called, and the 

percent those control SNVs found in each of our amplified blastocysts was plotted. A high quality 

dataset will make a heterozygous SNV call at > 80% of the control loci. 0/0 means no mutant 

SNVs were called, while 1/1 means a homozygous mutant call, and DP < 10 means the read 

depth threshold was below our filter cutoff. (b) We designed PCRs for 24 genomic loci and 

assayed how effectively our DNA samples were able to amplify them by PCR. We found a strong 

correlation between this quality control assay and our sequencing results for our preliminary 

blastocysts, so we used this assay on all future blastocysts prior to sequencing to select for 

samples which were likely to give good sequencing results. (c) A summary of the ages and 

sample names of our sequenced blastocysts. (d) The number of predicted SNVs for each sample 

by age, providing the average per age group at the bottom. (e) Average predicted SNV burden 

across three age ranges, significant differences calculated by ANOVA.  
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C Sample ID Mouse Age

ES1 p6

ES2 p6

ES3 p6

NY1-1 p21

NY1-2 p21

NY6-1 p21

NO11-21 1y 6m

NO11-22 1y 6m

NO1-1 2y

NO1-2 2y

NO4-8 2y

NO4-9 2y

NO8-17 2y 6m

A 

       B4-1 

B        B1-1 

D E 

* p < 0.05 
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3.2.2 Nucleotide Context of SNVs in rod neurons 

To determine possible sources of mutation in these neurons, we assessed the trinucleotide 

context of our highest confidence SNVs using DeconstructSigs and plotted the signatures of all 

neuronal SNVs vs the combined SNVs of our bulk spleen samples (Fig. 3.5a,b). We looked at 

the mutational spectra in each individual neuron and found that p6 SNVs had a greater 

proportion of A > G and A > C mutations compared to SNVs from older neurons, indicating 

mechanisms which could be active in development but not in mature, post-mitotic cells (Fig. 

3.5c). 

 

We assessed each context for differences between our neuronal and germline SNVs (Fig. 

3.6). Upon close inspection, we found a handful of contexts which significantly differed; in C > 

T, neuronal SNVs were enriched in GTG mutations and TTG, while in T > C, neuronal SNVs 

were enriched in ACA and CGC contexts. Importantly, we previously reported enrichment in 

TTG contexts in mouse mitral and tufted cells (59), putatively linked to the activity of the 

deaminase APOBEC. Our findings here indicate that this might be a general mechanism of 

mutagenesis in neurons, though we can find significance in only one of the 4 common APOBEC 

contexts and further studies are required to definitively link APOBEC as the source of these 

mutations.   
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Figure 3.5: (a) High confidence SNVs from our rod sequences (all ages) were combined and 

their trinucleotide sequence context analyzed by DeconstructSigs. The nucleotide sequence is 

5’ > 3’ from bottom to top, with the mutated nucleotide in red in the middle. (b) The same 

analysis on high confidence germline mutations using bulk spleen DNA. (c) The proportion 

of transitions and transversions for each individual sample.  
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Figure 3.6: (a-f) Analysis of each class of trinucleotide context mutation for all samples as 

well as bulk spleen control (control spleen from all samples were analyzed together). 

Statistical significance was assessed by T test to find putative differences between neuron and 

bulk spleen contexts for each mutation category.  
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3.2.3 Functional assessment of rod SNVs 

We wanted to know whether certain genes or regions were particularly susceptible to 

SNV mutation in our neurons, so we generated a waterfall plot to examine all genes with 

mutations in multiple neuronal samples (Fig. 3.6a). We found a predicted long non-coding RNA 

(lncRNA), GM26624, which was mutated in over half of our neuronal samples. Although 

GM26624 is long (320kb), these SNVs are not always randomly distributed, and accounted for 

22 total SNVs across all neuronal samples (Table 3.1). In contrast we find only 12 randomly 

distributed SNVs in this region among all germline mutations, despite this dataset having an 

order of magnitude more SNVs than our neuron calls. Mutations in Skint6, Skint5, Tenm2, and 

Nrg1 did not differ significantly in total number from the bulk control.  

 

Intrigued by the mutational hotspot observed in GM26624, we asked whether any 

samples showed other localized hypermutations and found that sample NO4_8 possessed 10 

SNVs in Hsp90ab1, a heat shock protein highly expressed in rod photoreceptors. We plotted 

these mutations in the context of the protein and found that they all clustered in the C-terminal 

domain and were mostly missense mutations, though one introduces a stop codon (Fig. 3.6b).  

 

To determine how many of our observed SNVs might functionally impair our neurons, 

we utilized an RNAseq dataset generated by Kim. et. al. (2016) to find genes with high 

expression in rods ((94), GSE74660). We took the top 50% expressed genes by normalized fpkm 

across three replicate RNAseq experiments of p6 rods and crossed it with our SNV list. We 

annotated the resulting dataset using variant effect predictor (VEP) and noted that 8/12 neurons 

have at least one potentially damaging mutation in a highly expressed gene (for the sake of 

simplicity we plotted only the most damaging mutation for Hsp90ab1) (Table 3.2).          

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74660
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Figure 3.7: (a) Waterfall plot showing genes with mutations in multiple samples. Each filled 

box represents a mutation of the labeled type corresponding to the gene on the y axis and the 

sample on the x axis. The translational effect is the number of mutations per MB of the 

sample genome for both synonymous and non-synonymous SNVs. (b) Lolliplot of Hsp90ab1 

SNVs in sample NO4_8, which showed a large number of mutations in this one gene. The 

mutations cluster in the C terminal domain.   
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Genes Mutated in Multiple Neurons 
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B 

Hsp90ab1 Hypermutation in 

            Sample NO4_8 
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Sample Coordinate Ref Alt Distance from Prior Context

NO1_1 147198706 G A GGGGGGAAAAA

NO4_8 147267020 T G 68314 AATTGTAGGCC

NO4_8 147267022 G A 2 TTGTAGGCCAC

NO4_9 147267037 G A 15 AGTTAGTATCT

NO1_1 147272236 G A 5199 TTGCCGCAGAA

NO1_2 147331917 A G 59681 TACAAATGCAG

NO1_1 147336351 T C 4434 TGTTGTCTGGA

NO1_2 147339535 G A 3184 GAATGGTGGCT

NO1_2 147339539 C T 4 GGTGGCTCACA

NO1_2 147339767 A G 228 GCTGGAGGGTT

NO1_2 147339825 T A 58 AACTCTCTGCA

NO1_2 147343184 T G 3359 TTGTGTACAGT

NO1_2 147343204 T G 20 GGCCTTCGTAC

NY3_6 147403855 G C 60651 TGTCTGTCTCT

NO4_9 147405630 T A 1775 TTTTTTAAGAT

NO1_1 147417529 C T 11899 AATTACAATTT

NO1_2 147420400 C T 2871 AGATGCTGTAA

NO1_1 147429091 C T 8691 TCTCACGGTTG

NO11_22 147434719 G T 5628 TGTCTGTATGG

NO11_22 147434744 C T 25 ACATGTGTGTC

ES2 147448062 C G 13318 TTTCTCTCTCT

ES2 147448068 C T 6 TCTCTCTCTCT

Table 3.1: (a) We manually inspected each neuronal SNV falling in GM26624 and sorted 

them by genomic coordinate, taking the distance between SNVs to assess whether they were 

evenly distributed or not.Context was taken for 5bp upstream and downstream of each 

mutation.      
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Table 3.2: (a) Ensemble’s variant effect predictor was used to assess SNVs in highly 

expressed genes. All missense and nonsense mutations were recorded, as well as mutations of 

unknown impact.  
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3.3 Discussion  

In this study we looked at SNVs in young and old mouse rod photoreceptors at a single 

cell level. We first showed that we could derive blastocysts from single rod neurons as old as 2.5 

years by SCNT, something not attempted in any neuronal subtype previously. We were able to 

derive ES lines from p6 rods with an efficiency of 0.2%, below the efficiency of mitral and 

tufted neurons (1-2%) and comparable to attempts on p6 cortical neurons (0.5%). Neurons in 

general exhibit lower reprogramming efficiency in our hands than for control cumulus (8%) and 

sertoli (7%) cells. Unfortunately, attempting to derive ESCs precludes the collection of 

blastocysts, and we were unable to derive any ES lines from mature rod neurons. This was 

possibly due to their inverted nuclear architecture, which places open chromatin on the periphery 

and condensed chromatin in the nuclear center, an evolutionary adaptation to allow light to more 

easily pass the retina in nocturnal mammals (95). This inversion takes place around p12, and 

indeed we observe a sharp decrease in development to blastocyst between p6 (10%) and p21 

(4.7%), concomitant with a decrease in ESC development from 0.2% to 0. However the low 

efficiency even in p6 rods, before the inversion occurs, indicates that these neurons are 

particularly resistant to forming ES lines, despite the fact that they develop to blastocysts at a 

higher rate than MT neurons (10% vs 7%). Ultimately we collected data from 12 single rod 

neurons spanning ages p6 to 2.5 years, developing a set of QC metrics to limit amplification 

artifacts and ensure quality sequencing data. 

 

We find between 78-265 SNVs per neuron, a wider range than reported in our previous 

work on MT neurons (50-112 SNVs). However our MT neuron dataset didn’t look at any 

neurons older than 7 months, and our data indicates that these neurons are accumulating 

mutations as they age. Taking our data on p6 vs 2 year old neurons, we estimate these neurons 
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accumulate mutations at a rate of 30-50 SNVs/year, broadly consistent with a study of human 

cortical and hippocampal neurons which found annual rates of 23-40 SNVs/year (65). It is not 

surprising that our neurons should have a marginally higher rate of mutation; a recent study 

comparing mouse and human mutation rates found a higher somatic mutation rate in mice (79), 

though the study was not examining post-mitotic mutations. Because we examined a neuronal 

subtype never before sequenced at the single cell level in any species, however, we cannot 

distinguish subtype specific processes from species-level differences in genome maintenance.  

 

Our data allowed us to assess putative sources of mutation in rod neurons. It is possible 

that APOBEC plays some role in neuronal mutations, as we found an enrichment of SNVs at 

TCG contexts compared to germline, consistent with APOBEC deaminase activity. APOBEC 

family enzymes normally converts C → U on mRNAs, but can erroneously act on DNA at 

TpCpN trinucleotides, resulting in a C → T transition (see chapter 1.1.1). Importantly, we found 

this signature in our previously published study on MT neurons (59). We also find C → T 

mutations in GCG contexts, though we could find no clear mechanistic explanation for this. 

While C → T mutations are a known artifact of MDA (96), the fact that we observe these 

transitions only in two specific trinucleotide contexts argues that it is a biological phenomena 

and not an artifact of amplification. In addition, we observe two signatures of T → C mutations 

at GTG and ATA trinucleotide contexts, which implicates fatty acid metabolism as its most 

likely source (97), though as with APOBEC we cannot definitively conclude that it is a causative 

mechanism. Similar to our previous mouse study, we did not observe an enrichment of C → A 

transversions associated with oxidative phosphorylation. A C → A signature was observed in 

aged human neurons however (65), which indicates that oxidative stress can play a role in 



79 
 

neuronal mutations, but the rate may low enough not to be evident after 2 years, or may not be 

operative in mouse neurons.  

 

Our functional assessment indicated that our neurons acquire deleterious mutations in 

highly expressed genes, however we did not observe a significant difference in the number of 

functional mutations between young and old neurons. Intriguingly, we observed that a long non-

coding RNA, Gm26624, was heavily mutated across multiple neurons compared to somatic 

controls. We also observed that these mutations tended to cluster non-randomly. Gm26624 is 

predicted to have 3 exons, generating a 3,769bp transcript of unknown function. Several whole-

brain RNAseq studies have shown Gm26624 expression in neurons, however while an RNAseq 

study of p6 rods finds evidence for transcripts from this region, these do not appear to be highly 

expressed (86), indicating it may play a role at a different point in time. There is virtually no 

literature focusing on this genomic region, in neurons or otherwise, making it difficult to 

attribute a cause or effect to our observation. Further work in this region could reveal some 

functional role in the development or maintenance of photoreceptors, and reinforces the idea of 

using mutations as a tool to discover genomic regions of interest. 

 

Less enigmatic is our observation of localized hypermutation in the heat shock protein 

Hsp90ab1. The phenomenon of multi-nucleotide hotspots has been previously reported to 

comprise up to 3% of de novo human SNVs (98, 99). These are regions of higher mutagenic 

activity than would be predicted by chance, (mean distance = 538bp, many within 20bp). These 

studies, however, have focused on germline mutations; to our knowledge our current data 

represents the first evidence that similar mechanisms are at work in a subset of neurons. 
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Hsp90ab1 is highly expressed in rod neurons at least up to p12 (86), and plays an important role 

in protein folding and signal transduction. Because the mutations observed are predominately 

deleterious, it is highly likely that Hsp90ab1 was nonfunctional in this aged neuron, which likely 

had a negative impact on the cell’s ability to carry out its functions. Analysis of larger datasets 

could reveal the prevalence of these functional mutation hotspots in other neuronal populations. 

 

Our observations of Hsp90ab1 dysfunction bring us to a broader question; what precisely 

is the impact of these mutations in the context of whole brain function? It is tempting to 

speculate that one aspect of age-associated cognitive decline involves the gradual abeyance of 

neural function as deleterious mutations accumulate in individual neurons, indeed recent work in 

humans has found that the SNV burden in 82 year old neurons of the prefrontal cortex is in the 

thousands, and though they did not characterize functional impact, simple chance dictates that at 

least some will be deleterious (65). On the other hand, a recent study showed that even early 

neural precursors possess an unexpectedly high mutational burden, in line with the Walsh lab’s 

findings that even young neurons harbor hundreds of developmental mutations (100). No study 

to-date has definitively linked mutational burden of single neurons to age-associated cognitive 

decline, likely because of the immense challenges associated with such a study. Our data indicate 

that similar mechanisms of post-mitotic mutation are at work in mice, though given the lifespan 

of even the oldest mouse neurons, it is unsurprising that the total mutational burden is an order of 

magnitude lower than is observed in humans.  

 

In favor of a functional impact of SNVs, young progeroid neurons have been shown to 

have a similar level of mutational burden as aged normal neurons (65), but testing causation is 
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challenging. There is evidence that mouse visual acuity declines with age (101, 102), and our 

data provide potential mechanisms for intervention in addition to bolstering global DNA repair 

pathways. It would be interesting to see whether shielding rods from mutational burden rescued 

some degree of visual function in old age, though even this would not be conclusive given the 

large differences we find in total mutational burden between aged mouse and human neurons. 

Ultimately our data show that post-mitotic mutations are not unique to humans, are caused by 

unique mechanisms of action, and can functionally impact neurons. Future studies should seek to 

address the cumulative impact of these mutations on organism function, possibly by using ours 

and others data to design intervention strategies aimed at limiting the most common sources of 

DNA damage in neurons.   

Data from Chapter 3 include unpublished material that was coauthored with Rodriguez 

R.A., Kanchi K., Hall I.M., and Baldwin K.K. The dissertation author was the primary 

investigator for the work shown in Chapter 3  
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Chapter 4: Conclusions 

Though the importance of mutations in cancer and inherited disease have long been 

understood, it is only recently that the scope of genetic mosaicism among single somatic cells 

has been grasped. Studies of disease modeling using iPSCs have often relied on available 

sequences of donor individuals, ignoring mutations accumulated by the individual fibroblast that 

gave rise to their projects. These same studies often rely on a single iPSC line, promulgating 

results which could be influenced by undetected mutations lurking in the genome. Even if a 

group were cognizant of the potential impact of somatic mutations, choosing best practices to 

avoid them is challenging. Differences in mutagenicity between different reprogramming 

methods can be easily obscured by the more numerous somatic mutations. Determining the 

sources of mutation in iPSCs requires a method for disentangling mutations present in the 

original cell from mutations arising during the reprogramming process. Here we reported on a 

unique paradigm which allows us to directly test the mutagenicity of reprogramming and the 

contribution of the donor fibroblast to the total mutational load of the iPSC. 

 

By isolating pairs of iPSC colonies derived from the same donor fibroblast, we 

definitively show that reprogramming by OSKM with lentivirus induces approximately 158 

SNVs and 9 indels per iPSC line on average. Similarly, we show that reprogramming by 

episomal vectors using a different set of factors induces 484 SNVs and 9 indels per iPSC line on 

average. By analyzing the variant allele frequency of these mutations we predict that they arise 

within the first 2 divisions after reprogramming. These data indicate that reprogramming is 

responsible for far more mutations than would be expected by mitotic processes, and that the 

choice of reprogramming method can have a significant impact on the mutational burden of the 

final iPSC line. The presence of 800 SNVs from the original fibroblast, missed in bulk 
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sequencing, is unsurprising given the literature on single fibroblast SNVs. Even so, studies 

continue to be published with little regard for the source of donor cells contributing to the iPSC 

lines under study. Researchers often select samples and methods based on ease of acquisition and 

their efficiency of reprogramming. While these are important considerations, researchers should 

also weigh mutagenicity in the balance. In cases where primary cells from an elderly patient are 

necessary, every effort should be made to secure the least mutagenized cells possible. The fact 

that we find unique mutagenic mechanisms at work in different reprogramming methods is 

evidence that the method of reprogramming can impact both the number and the character of 

mutations in the iPSC line. Researchers and clinicians should utilize a method of reprogramming 

limits exposure to mutations. 

 

Although recent studies of human cortical and hippocampal neurons indicate that neurons 

accumulate post-mitotic mutations with age, it remains unanswered whether this is a general 

property of other neurons or species. We assess rod photoreceptor neurons in young and old mice 

and find evidence of post-mitotic mutations in these neurons, indicating that mice undergo a 

similar age-dependent accumulation of mutations. We find that several of these mutations are 

predicted to be deleterious and in highly expressed genes, including one aged neuron exhibiting 

localized hypermutation in a heat shock protein with a variety of important roles. Our finding 

that neurons accumulate functional mutations poses an intriguing question about their role in the 

gradual cognitive decline that is associated with aging. Although our data are not sufficient to 

provide a definitive answer, the findings here suggest that mice might be viable, if imperfect, 

model to begin addressing these questions. Future studies will need to adopt large-scale 

approaches to examine differences in mutation rates of different neuronal populations, and to 
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map these mutational burdens to functional impact on the cell and ultimately the cognition of the 

animal.   
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Appendix A 

A.1 Methods for Chapter 2 

 

A.1.1 Deriving iPSC sister lines 

NB: Section A.1.1 was written and performed by Dr. Valentina Lo Sardo. It is being included 

here with her permission.  

  

iPSCs were generated from human dermal fibroblast (Cat. #2300 ScienCell Research 

Laboratories) via Yamanaka episomal-based and lentiviral-based reprogramming.  

 

For episomal-derived iPSC: fibroblasts were cultured in DMEM supplemented with 10% FBS, 

glutamax, Pen/Strep, NEAA. 5x105 cells were transfected (Amaxa Nucleofector Technology) 

with plasmids containing the reprogramming transcription factors (pCXLE-hOCT3/4-shp53; 

pCXLE-hSK; pCXLE-hUL), 1ug each plasmid. Human Embryonic Stem Cell kit 1 (Cat#VPH-

5012) was used with program P-022 on an Amaxa Nucleofector II device. 24h after transfection 

cells were infected with lentiviral vectors containing fluorescent proteins, media was changed the 

day after to remove viral particles. 24h after cells were plated on MEF feeders at density 3x104 in 

10 cm dishes in fibroblast media (day 0). At day3 media was switched to mTeSR1 (StemCell 

Technology) for iPSC cultures and fed everyday for about 17-20 more days. At day 7 media was 

supplemented with VPA 0.5mM for VPA condition. 

 

For lentiviral-derived iPSC: fibroblast were seeded at 1x105 cells per well of a 6 well plate. The 

day after, cells were infected with lentiviruses encoding reprogramming factors (hSOX2, hKLF4, 

hOCT4, hMYC). After 24h cells were infected with lentiviruses encoding fluorescent proteins. 

The following day cells were plated on MEF feeders at density 3x104 in 10 cm dishes in 

fibroblast media (day 0). At day 2 media was switched to mTeSR1. At day 3 doxycycline 1ug/ml 

was added to the culture until day 12, when concentration was reduced to 0.5ug/ml until day 22. 

At day 7 VPA 0.5mM was added for VPA condition. Colonies were picked around day 30-32. 

All iPSC colonies were picked and expanded in mTeSR medium in matrigel coated dishes. 

 

A.1.2 Calling SNVs/indels/CVs/MEIs 

 

Samples were sequenced to 35x on an Illumina hiSeq. Reads were aligned to CRh37 and intial 

variants were called using the SpeedSeq pipeline. From the initial variants list, SNVs and indels 

were separated using VCFtools. We then removed any calls with multiple variant alleles at the 

same site. We split HDF and sister iPSC calls into two separate files, then removed any calls 
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with a read depth < 10 or > 250 in either the HDF or sister lines (meaning a variant in a sister 

line required a read depth of at least 11 at that position in both sisters and HDF datasets). We 

used bedtools to produce datasets of (1) mutations present in only one sister iPSC and no other 

sample and (2) mutations present in both sisters of a sister iPSC pair, but not present in any other 

sample. VAF for each call was made by extracting the read depth and alternate observations 

(variant reads) in VCFtools, then dividing the # variant reads by the total # reads.  

 

//vcftools --vcf/file/location/name.vcf --extract-FORMAT-info AO 

//vcftools --vcf/file/location/name.vcf --extract-FORMAT-info DP 

 

We removed any calls which had a variant allele count > 0 in the HDF callset (a position can 

have a few variant calls and not be called a variant by our earlier pipeline). And removed any 

calls with fewer than 2 reads supporting reference or alternate calls.  

 

A.1.3 False positive assessment for variant calls 

We selected several lines from our episomal and lentiviral conditions that showed average 

sequencing depth and genome coverage, and sorted the SNV or indel calls from highest to lowest 

quality score. We designed PCRs to be evenly spaced along the spectrum of quality scores, 

giving us an even coverage for validation. We further considered the VAF of each of these, to 

make sure we weren’t biasing our validations in any way. We designed PCRs to span 300bp 

upstream and downstream of the SNVs using NCBI primerblast to select unique primers. We 

performed PCRs for each site using the HDF DNA and the DNA of both sisters of the associated 

sister pair. We selected for sequencing PCRs that gave a clear product, using gel extraction if 

multiple products were detected. These samples were sent for Sanger sequencing with the 

forward primer, and the traces of both sisters and HDF were compared. Validated SNVs were 

those that showed a heterozygous mutant peak at the location of the SNV in the called sister but 

not the HDF or other sister. We did not validate somatic calls, as it is extremely unlikely that the 

same mutant called in two sisters but in no other sample is an artifact of sequencing. We 

subsequently performed validation on  

 

To ensure that we weren’t missing low VAF mutants due to the sensitivity of our Sanger method, 

we submitted a set of SNVs and indels to be validated by targeted deep sequencing. We pulled a 

group of SNVs from C4A and a group of indels from L92A and I92A as described above. 

Because many indel calls are in repetitive regions we performed nested PCR to obtain 100bp 

products spanning the mutant site. We submitted our samples to The Scripps Research Institute 

Genetics Core for targeted deep sequencing, who sequenced our samples to an average depth of 

several thousand reads per mutant. Files were aligned to GRCh19 with bowtie and processed 

with samtools, and variants were called using the mpileup function 
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  $bowtie2 -x /ref/hg19 -U /sample/name.fastq -S DSeq_A.sam 

  $samtools view -S -b -h /location/DSeq_A.sam > OutA.bam 

  $samtools sort /locationt/OutA.bam A_Sort.bam 

  $samtools mpileup -uf /location/human_g1k_v37.fasta /location/A_Sort.bam | bcftools 

view -vcg - > A_SNV.vcf 

 

To assess false positives in MEIs, we took a subset of our calls from two lines, A1A and I92A, 

and designed PCRs to span the insertion site. We then ran a 2% gel at 100v to resolve the wild-

type product from the product with the insertion (300-800bp depending on the MEI). We 

validated this approach by selecting several germline MEIs called in our HDF dataset and 

overlapping with the 1000 genomes list of population MEIs. We performed PCR on these as 

described above and confirmed the presence of a wild type and mutant allele, showing that our 

PCR is sufficiently able to amplify through MEI regions.  

 

For large SV deletions we designed PCRs to span the insertion site, with the assumption that 

only samples with an SV would be able to give product. For duplications we designed PCRs on 

spanning the duplication break point, which gave product only in the presence of the duplication 

(for tandem duplications). We validated all high confidence calls in all lines using this method.  

 

A.1.4 Assessing false negative rate 

Because we did not find evidence of reprogramming-associated MEIs, we used bedtools to 

intersect our MEI calls with the 1000 genomes MEI data set. We then pulled all overlapping 

MEIs (which are known to be real) and asked how many of these were called in all but one 

sample, which would mean a false negative rate of 1 in 25 alleles (one allele for each sample 

plus the bulk HDF). We repeated this process for samples called in all but two samples, and so 

on for all germline MEIs. We estimated false negative rate by taking the total number of missed 

alleles over the total number of possible alleles.   

 

A.1.5 Assessing nucleotide context and signatures 

Nucleotide context was done by hand for each line by taking all SNVs with QS > 100 and 

sorting them into reference A, C, T, or G, and then further sorting them by mutant base. These 

were totaled and the standard deviation was assessed in PRISM for significance by t test. 

Trinucleotide context was assessed using DeconstructSigs (70). To call mutational signatures we 

used the following argument: 

Sample = whichSignatures(tumor.ref = sigs.input, signatures.ref = signatures.cosmic, 

contexts.needed = TRUE, tri.counts.method = 'genome', signature.cutoff = .01) 
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This normalized the trinucleotide counts to the number of times that trinucleotide appears in the 

reference genome, and it draws mutation signatures from the COSMIC database. Data were 

plotted in R. Statistical significance for nucleotide contexts was calculated by taking the contexts 

for each line individually and examining the standard deviation for episomal, lentiviral, and 

somatic conditions. We used a t test to compare each condition to each other for each context 

(lentivirus to episomal, lentivirus to somatic, somatic to episomal).   

 

A.1.6 Assessing enrichment in genomic regions 

We sourced the literature for databases of genomic regions of interest; a collection of these can 

be found at https://data.mendeley.com/datasets/ghrt3ngzrm/1, based on the work of Yoshihara et. 

al. (2017)(REF HERE). We ran all variants of QS > 100 against several of these databases using 

bedtools, and we noted the total number of overlapping nucleotides for each analysis. Relative 

enrichment was calculated as follows: 

 

 (Overlapping SNVs / length of database regions) 

          _________________________________________ 

 (All called SNVs / length of the reference genome)  

 

Where overlapping SNVs is the # of SNVs from the sample that overlap the reference database, 

length of database is the total number of base pairs in the reference database, and all called SNVs 

is the total number of SNVs in the sample. The numerator denotes how often an SNV is called in 

a genomic feature, normalized to how common that feature is, while the denominator denotes 

how many mutations there were in total, normalized to the number of bases in the genome. We 

took the Log(2) of this value and plotted it as relative enrichment. Significance was calculated 

using bedtools fisher tool.  

 

A.1.7. Assessing genomic impact 

High confidence (QS > 100) SNVs and indels were run through Ensemble’s variant effect 

predictor (VEP)(https://uswest.ensembl.org/info/docs/tools/vep/index.html). For SNVs, we 

selected any calls predicted by SIFT of PolyPhen to be deleterious. We also ran our calls through 

the Broad Institute’s Oncotator tool (https://portals.broadinstitute.org/oncotator/help/) to 

determine status in COSMIC and the OMIM databases. Information on ClinVar was obtained by 

manually checking each SNV predicted to be deleterious with NCBI’s variation viewer 

(https://www.ncbi.nlm.nih.gov/variation/view/) and checking for entries. 

 

https://data.mendeley.com/datasets/ghrt3ngzrm/1
https://uswest.ensembl.org/info/docs/tools/vep/index.html
https://portals.broadinstitute.org/oncotator/help/
https://www.ncbi.nlm.nih.gov/variation/view/
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A.1.8. Developing a general approach for other datasets 

We took all calls of QS > 100 and sorted them by VAF. We established bins every 0.02 for VAF 

0.2 to 0.7 and queried how many of the calls in each bin were somatic vs reprogramming. We 

assessed what % of the total calls in the bin this represented, and noted that number as a 

“reprogramming coefficient” or a “somatic coefficient.” We then removed somatic or 

reprogramming identifiers from our data and sorted it into VAF bins, multiplying the total in 

each bin by the reprogramming or somatic coefficient to get an estimate of the contribution of 

somatic or reprogramming mutations in each bin. We then summed the SNVs in each bin to 

estimate the total burden of somatic vs reprogramming-associated mutations.   
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A.2 Methods for Chapter 3 

A.2.1 Preparation of primary rods from mouse retina 

We prepared 40ml solutions of hibernate-A from gibco with 800ul of B27 without vitamin A and 

100ul glutamax, (HAGB), these solutions were kept on ice. A solution of papain was prepared by 

dissolving one vial of Pap2 from Worthington in 20ml of Hibernate-A with 50ml glutamax. This 

solution was heat activated at 37℃ for 30 minutes then placed on ice. Mice were anesthetized 

with isoflurane and killed by decapitation. Retina were extracted from both eyes and treated with 

2ml of the papain solution for 10 minutes in a 37℃ water bath, shaking gently to prevent the 

retina from sinking to the bottom. We replaced the papain with 2ml HAGB and triturated the 

retina 10 times using fire-polished glass pipettes, using a moderate speed. We then waited 1 min 

for the chunks to settle, and pipetted the supernatant through a 40um nylon cell strainer. We 

added 2ml HAGB to the tube with tissue chunks and triturated as before. In total we repeated this 

step three times, triturating for a total of 30x. After, we added 2ul of 2U/ul DNAse and incubate 

on ice for 5 mins, to remove any DNA in solution which makes micromanipulation more 

challenging. The solution was centrifuged at 200x G for 5 mins and resuspended in 50ul HAGB.  

 

A.2.2 Performing SCNT and collecting 2c embryos or blastocysts 

SCNT was performed as reported in Hazen and Faust et. al. (2016) (59). Briefly; Females were 

superovulated and oocytes collected and enucleated by micromanipulation with an 8u injection 

pipette. Nuclei from green fluorescent neurons were extracted and injected into enucleated 

oocytes. We activated the resultant embryos with strontium chloride and 5nM Trichostatin A. 

Trichostatin A was used both during 6h activation and additionally for 10h overnight. To derive 

ESCs, the zona pellucida of blastocysts were removed via a piezo-actuated drill needle before 

being transferred to a MEF feeder plate in ESC derivation medium containing: 500 mls 

Knockout DMEM (Gibco 10829-018), 80 mlsKnockout Serum Replacement (Gibco 10828-028), 

6 mls MEM non-essential amino acids (Gibco11140-050), 6 mls Glutamax (Gibco 35050-079), 6 

mls Pen/Step (Gibco 15140-122), 6ul B-Mercaptoethanol (Sigma M7522), 50 μm final 

concentration MEK1 Inhibitor PD98059 (Cell Signaling Technology 9900) and 2000 Units/ml 

LIF (Chemicon ESG1107). 

 

To collect blastocysts and single cells from 2c embryo, we used a 37℃ heated microscope stage. 

Blastocysts were collected in PBS droplets by mouth pipette after a 3x PBS wash from their 

incubation media and were immediately spun down and placed on dry ice. To dissociate 2c 

embryos, zona pellucida was removed by a brief wash in a drop of Tyrode’s Solution, watching 

carefully to remove the embryo as soon as the zona was eliminated. Embryos were then washed 

3x in M2 media before being dropped in 0.05% trypsin. Embryos were vigorously triturated by 

mouth pipette until the two cells became dissociated. Each cell was then washed 3x in PBS 

before being collected in a PCR tube, spun down, and immediately placed on dry ice. In some 

cases cells were collected quickly with TE. Single cells were amplified by SigmaPlex 

amplification kit. Blastocysts were amplified by GenomiPhi (GE) low input amplification 
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(MDA-based). After lysis, PBS was added to make a total volume of 4ul, and 2ul was carefully 

transferred to a second tube before both halves were amplified separately.     

 

A.2.3 Assessing quality of amplified DNA 

After amplification, samples were purified by phenol chloroform extraction with RNAse and 

were quantified by nanodrop. We assayed the evenness of amplification by designing PCRs for 

22 genes across various chromosomes and 2 intergenic regions. The genes and associated 

primers were: 

 
We used 15ng DNA per reaction and ran PCRs for 30 cycles using Q5 HF polymerase at 20s 

extension and 60℃ annealing in a 30ul reaction volume. 20ul of the results were run on a 2% 

agarose gel, 150v. We assigned 0 points for an absent band, 1 point for a faint band, and 2 points 

for a clear, strong band.  

 

QC of ESCs and single cells was conducted by the Hall lab and involved examining the 

estimated copy number along the genome, looking for samples which showed the roughly 

expected 2n copy number along the length of the genome.   

 

 

Sfi1 GAAAGCAGCACTGGCGATTC CCGCTACGAGGACAGCTATG

Cenbp ACCAAAGACCTGGTTGGGTG GCCCTCGGACATAGCAACTT

Spry1 ACTGCACCAAGACCCGAAAA GTCCACGATCCCACAGTACC

Bag1 AGAAGTCACCTGCTGGATGC TCAGGAAGAGTGTTGCCGTC

Steap1 AACACAGCCCTAGTGAACCG TGAGGTGACTTGATTGGGGC

Exoc4 CCAGAGGTGTCGTCGTGAAA GGTTTCGCTTTGGAGGGGTA

Mesp2 GGGCCTTCACTAGCTGGAAA TTTATCTGCCCCAGACACCG

Vac14 CCACTCAGCGTCACAGAAGT AGCTCCCGGAATAAAACGCA

Casp1 AAACATGCGCACACAGCAAT CTGGAGCTGAAGGTGAGTGG

Stx11 AAGGGAAGGAGTTCACGCAG ACCAGGCCGAGATGAAACAG

Drg1 GCATCCAGCAAACTGCAGAC CCGTAGTCTAAACCTGCGCT

Dnmt3a AAACGTCTGCTGAGCATCCA CCAGTGATGGGTGCAGTTCT

Smad5 TGAGGGGGATATGCTGGTGT GAGCTAAGGAGGCATCGCAA

Parp2 GAGCCTCGGGAAGAATCAGG ACACTCATGTTCTGTGGCGT

Lynx1 TTTGTGTCCCGAGCTCTCAC GTCTGCTAGAGGTGAGGGGA

Mkl2 TGAGTTGCCTATGGGAAGCG CCAGGGCTGGCAAAGAAGTA

Park2 CACGGTGAAAGTAGCCGAGT AAAGCTTCCTCCGGATTGGG

Bambi CCTGTGACAAAATGCGGCAA TCGTTGCAGAGAAAGCGGAT

Men1 CACTCGCACTAAGGGTTGGT TTGATGGCGCTCGAGTTGAT

GAS5 GGAGGTTGGTTCTGCGTGTA GCCCTGACTTCAGACTTCCC

HotAir TGCATAGACCTGCCTCCTCT AAGGCTGAAATGGAGGACCG

Nespas AGGAACGCGCATTTTGCTTT CACCGTTGTCTCTGCTCAGT
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A.2.4 Calling variants in single rod photoreceptors 

Samples were sequenced to an average depth of 30x on an Illumina HiSeq. Sequences were 

aligned to GRCm38 and variants were initially called with GATK. We removed all calls with 

more than one variant allele, as well as any calls with <10 or >250 read depth. We compared 

both halves of each blast and kept only mutations called in both. We then screened this dataset 

against the bulk control DNA and removed all calls found in bulk DNA. We removed all calls 

with VAF < 0.3 and with variant or reference read support <2. Based on our work in Chapter 2, 

we ruled out all mutations with a quality score less than 30, and assessed false positive rate as 

described previously.    

 

A.2.5 Nucleotide context and transvesion/transition ratio 

Nucleotide context was assessed as describe in A.1.5 with the following changes. Because 

DeconstructSigs was not designed to work with mice, we downloaded the source from github 

(https://github.com/raerose01/deconstructSigs) and found a bsg reference which we changed 

from NULL to BSgenome.Mmusculus.UCSC.mm10 (this is not standard install from 

Bioconductor but can be installed as described here:  

https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Mmusculus.UCSC.m

m10.html). We confirmed that this approach worked by creating a test set of 20 trinucleotide 

contexts that we confirmed by hand with the UCSC genome browser. The specific argument 

made to generate the final data was as follows: 

 

sigs.input <- mut.to.sigs.input(bsg = mouseGenome, mut.ref = 

"~/R/InputFiles/QS100_Somatic.txt", sample.id = "Sample", chr = "chr", pos = "pos", ref 

= "ref", alt = "alt"   

 

To assess each individual set of trinucleotides as shown in fig. 3.6, we imported the raw data 

from DeconstructSigs into PRISM. Importantly, to generate a full trinucleotide plot of all data 

we removed sample ID and set the tag to simple “p6”, “p21,” etc… However to generate error 

bars in PRISM it is necessary to run the analysis for each individual sample, maintaining the 

sample ID and then gathering each individual output file into a single tab delimited txt document, 

which we did in excel.  

 

The Tv/Ti ratio plots seen in fig. 3.5 was done with GenVisR after generating a tab delimited txt 

file with 3 columns; sample, reference, and variant, referring to the sample id, reference 

nucleotide, and variant nucleotide. The samples can be plotted by reading the txt file into R and 

using the TvTi function in the GenVisR package (we used supplementary arguments 

lab_txtAngle = 75, fileType = "MGI")  

 

https://github.com/raerose01/deconstructSigs
https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Mmusculus.UCSC.mm10.html
https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Mmusculus.UCSC.mm10.html
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A.2.6 Functional assessment of Rods 

We downloaded an RNAseq dataset for mouse rods (GSE74660) and sorted by normalized fpkm, 

taking the top 50% expressed genes as described in Hazen and Faust et. al. (2016). We took the 

genomic loci of these genes and crossed our SNVs against them with Bedtools. We processed the 

resulting hits with ensemble’s variant effect predictor (VEP) tool, which can be cloned from 

Github here https://github.com/Ensembl/ensembl-vep and recorded all hits of interest. The 

specific arguments used were  

 

./vep --appris --biotype --check_existing --distance 1 --domains --pick --plugin miRNA --

regulatory --sift b --species mus_musculus --symbol --tsl --cache --input_file [input_data]  

 

We assessed SNVs in the same gene across multiple samples with GenVisR’s waterfall function 

(https://bioconductor.org/packages/release/bioc/html/GenVisR.html). Important: this requires the 

VEP output, but as is the VEP mutation type output labels do not match the expected arguments 

for the waterfall function. These must be changed by hand (trv_type) to match the annotation 

outlined in the documentation for GenVisR (so, missense_mutation must be changed to 

missense, for example).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74660
https://github.com/Ensembl/ensembl-vep
https://bioconductor.org/packages/release/bioc/html/GenVisR.html
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