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ABSTRACT OF DISSERTATION 
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by 
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Doctor of Philosophy in Management 
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Technology advancements in high-tech industries have been the drivers for global economic 

growth and value creation over the past several decades. In these fast-moving and competitive 

markets, the process of pricing is complicated and its impacts are multifold. In my dissertation, I 

study three pricing-related phenomena observed in the semiconductor industry: non-monotonic 

price-quantity relationship, delayed agreement in negotiation, and price-flexibility-dependent 

purchase pattern. For each topic, I first analyze a large sales data set obtained from a major 

microprocessor company to establish the phenomenon, and then I build a theoretical model to 

explore the underlying rationale and to generate prescriptive insights. 
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1 Higher Prices for Larger Quantities? Non-Monotonic

Price-Quantity Relations in B2B Markets

Abstract

We study a microprocessor company selling short-life-cycle products to a set of buyers that

includes large consumer electronic goods manufacturers. The seller has a limited capacity for

each product and negotiates with each buyer for the price. Although purchase quantity is a major

factor that influences negotiations, our analysis of their data reveals a non-monotonic price-

quantity relationship, namely, that larger purchases do not always result in bigger discounts.

While existing theories cannot explain this pattern, we provide a model that is based on practices

of this company, which shows that the non-monotonicity is rooted in how sellers value capacity.

Sellers have to consider the possibility of selling to other buyers while negotiating. In this

setting, expected profit from selling to subsequent buyers need not be concave in the remaining

capacity. The value of residual capacity may be initially convex and then concave. Such a value

function is sufficient to ensure a non-monotonic price-quantity relationship. We briefly discuss

how to determine capacity rationing and the posted price, which also influences negotiations,

and how to avoid errors that can stem from assuming an incorrect price-quantity relationship.

[Keywords: non-monotonicity; bargaining; B2B market; data-driven; OM-economics inter-

face]
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1.1 Introduction

Price and quantity are the most basic economic concepts and the relationship between price

and quantity at the market level has been well studied by economists. However, at a firm level,

it is still unclear how the price-quantity relation develops in many situations. While conventional

wisdom suggests that larger buyers get greater discounts, our empirical observations raise doubts.

This study is based on our interactions with managers of a large semiconductor company. In

addition to informing us about industry and firm practices, they provided us with a sales database

that spans a three-year period and offered us the opportunity to look into the price-quantity relation

at a firm level. We analyze the sales data from fixed-price contracts and observe that, although

total payment increases with total quantity in almost all cases, the discount received by a buyer is

statistically a non-monotonic function of the buyer’s demand share (or relative size) for a product.

Specifically, the discount increases with demand share for small quantities. However, as demand

share increases, the discount decreases and then increases again. In brief, we observe an N-shaped

discount curve.

Industry and Firm Practices

Market Structure. The microprocessor market is intensely competitive, with rapid technological

advancements, short product life cycles, and regular pricing activities. Many competing sellers

such as Intel, Nvidia, and Advanced Micro Devices (AMD), sell multiple product lines primarily to

original equipment manufacturers (OEMs or buyers), such as Hewlett-Packard (HP), Lenovo, and

Dell.

Capacity Inflexibility. For sellers to remain competitive, they need production capacity with up-

to-date process technology, which requires heavy capital investments. Some sellers like Intel (which

is known as an integrated device manufacturer) manufacture products in house, while others like

AMD (known as a fabless company) only focus on product design and outsource production to

third-party foundries. In both cases, because semiconductor manufacturing facilities are costly and

construction lead times are long, capacities are inflexible during a selling season. Sellers allocate

available capacity to product lines based on demand forecasts. These forecasts also represent

sales commitments from product line managers. Once a commitment is made, these allocations

are expensive to change for a number of technical reasons. First, while capacity configuration
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at a manufacturing facility can be altered, doing so disrupts flows in the manufacturing facility

and causes increased inventory and manufacturing cycle times (Karabuk and Wu 2003). Second,

semiconductor manufacturing entails significant learning and it takes time for yields to ramp up

and for quality to improve. As a result, when facing a supply shortage, it is not only costly but also

risky to seek an alternative source. Hence, it is important for sellers’ product managers to provide

accurate forecasts and to sell according to allocated capacities.

Price Negotiation. Although each product has a posted price, the final price for each buyer is

usually set through negotiations. Major buyers are sophisticated, drive hard bargains, and often

enjoy higher annual revenues than sellers (Cooper 2008). Buyers know that the marginal production

cost of microprocessors is low and sellers are eager to discount prices to fully utilize their capacities.

Moreover, buyers can allocate their business among competing sellers. Lacking full pricing power,

sellers are unable to use pricing strategies, such as take-it-or-leave-it price schedules or a menu of

contracts, and have to engage in negotiations. Once a price is settled, the duration of contract can

vary for different buyers and products; price renegotiations happen frequently but not in all cases.

In our data set, approximately 45% of the purchases did not involve any renegotiation.

Procurement Quantity. The purchase quantity, however, is normally not a term for negotiation.

To produce their products, buyers need other inputs from different suppliers, so it is costly to

manipulate purchase quantities from a seller once production plans have been made. In principle,

buyers can allocate their requirements among alternative semiconductor firms, but products offered

by different sellers are not perfect substitutes. Products differ in technical features and in some

cases, the seller’s brand image in the consumer market may matter. As a result, buyers’ procurement

managers prefer to stick to their internal production plans and procure the desired quantity at

the best possible price. In summary, buyers determine their purchase quantities based on their

production plans prior to negotiating with suppliers, and incur costs if they are unable to procure

these amounts and must switch to an alternative seller. Their contracts with sellers typically do

not include any commitment or requirement for minimum product purchases.

Technology Upgrades. Another aspect of this industry with a major impact on negotiations is

the risk of obsolescence. Sellers are aware that technological advancements from rivals can cause a

rapid decline in demand for existing products. Although they are aware of development cycles in

the industry and can anticipate when rivals will introduce products, they must constantly consider
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the likelihood of a demand shock and the possibility of having to salvage inventories (Karabuk and

Wu 2003).

In this chapter, we investigate the price-quantity relation in business-to-business (B2B) markets

where the product life cycle is short, capacity is inflexible, and prices are set through one-shot

negotiations. Existing literature provides no clear answers to how quantity affects price in such a

setting. Although a vast literature has been built on the Nash bargaining model, it is normally

assumed that the size of the pie and the outside options are fixed. This assumption is inappropriate

when a seller with a limited capacity sequentially negotiates with a group of buyers. In this dynamic

setting, a buyer’s purchase quantity influences the outcomes of bargains with subsequent buyers

due to changes in residual capacity and information about demand. Thus, the size of the pie and

outside options are functions of the buyer’s purchase quantity. The negotiated price, as a result,

can be a complicated function of purchase quantity.

The sales data we obtained from a major microprocessor firm reveals some compelling instances

in which larger-quantity buyers receive higher prices. Driven by this counterintuitive observation,

we used a set of linear and nonlinear regression models to control other possible influences on

price and still arrive at a non-monotonic relation between price and quantity. We then tested the

robustness of the empirical pattern. To gain a deeper understanding of the observed phenomenon

as well as provide a theoretical justification, we developed an analytical model that is largely based

on the practices of the firm we are studying. Our model suggests that the non-monotonic price-

quantity relation is rooted in how the seller values the remaining capacity. In particular, a value

function for the remaining capacity that is first convex and then concave is sufficient to lead to a

non-monotonic discount curve for a buyer. Further, we show that such a value function can arise

quite naturally in practice. Finally, using simulations, we show that the theoretical model can yield

the price-quantity curves found in the data set.

Knowledge gleaned on the price-quantity relation will be useful in B2B markets such as the

market studied here, where capacity is inflexible and prices are negotiated. Due to the impact of

one transaction on subsequent transactions, it is important for the seller to control the capacity

allocated to each buyer, if possible. To optimize the trade-off between the profit from the current

buyer and that from future buyers, a good understanding of the price-quantity relation is necessary.
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This knowledge will also help the seller optimize the posted price, which balances the profit between

buyers who choose to take the price and those who choose to bargain.

The rest of this chapter is organized in the following way. We present a brief literature review

in Section 1.2. In Section 1.3, we show our empirical observation through linear and nonlinear

regressions. We then build a model in Section 4 and analyze the problem in Section 1.5. We discuss

the managerial implications of our finding in Section 1.6 and conclude in Section 1.7. All the proofs

are in the Appendix.

1.2 Related Literature

Our work is related to B2B pricing, bargaining, and revenue management. In terms of the

price-quantity relation, different views exist within the literature. In the operations manangement

and marketing literature, quantity-discount pricing policy has been widely studied as a channel or

as a supply chain coordination tool (e.g., Kohli and Park 1989; Weng 1995). In these papers, it

is assumed that one party will offer the contract in a take-it-or-leave-it fashion and buyers with

greater demand receive lower prices. Assuming that one party has full bargaining power simplifies

the analysis, but it also ignores prevailing practices in which buyers negotiate. Our study assumes

that the seller does not have the power to dictate the price for every buyer.

In the economics literature, Snyder (1998) and Chipty and Snyder (1999) discussed the impact

of buyer demand size on price discount. Snyder (1998) showed that when many suppliers compete

to sell to one buyer at a time in a repeated game, the price offered to the seller in equilibrium

initially increases with buyer size and then decreases with buyer size. However, the result requires

that suppliers cooperate and buyers appear sequentially over an infinite horizon, which are both

very strong assumptions in supply chains. More importantly, our data exhibits a more complicated

price pattern that is not explained by their model. In a very different setting from ours, Chipty and

Snyder (1999) showed that a merger enhances (worsens) buyers’ bargaining position if the supplier’s

payoff function is concave (convex) in total transaction size.

Other studies on B2B bargaining have assumed that the size of the pie is given, and researchers

have explored how the pie is allocated among channel or supply chain members. While Dukes et

al. (2006) and Lovejoy (2010) focused on the impact of channel or chain structure, several scholars
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consider the impact of bargaining sequence and coalitions. In an assembly chain setting, Nagarajan

and Bassok (2008) considered suppliers who form multilateral bargaining coalitions and compete for

a position in the bargaining sequence. Nagarajan and Sosic (2008) studied the stability of coalition

in assembly models. We supplement this branch of the literature by considering a seller that

sequentially negotiates with a group of buyers, by investigating the impact of a buyer’s relative

quantity size both empirically and analytically, and by discussing the plausibility and possible

implications of the non-monotonic discount curve.

Our research is also related to revenue management. Kuo et al. (2011) was the first paper

to study revenue management for limited inventories when buyers negotiate. They considered a

dynamic setting with fixed compositions of price-takers and bargainers and assumed that each

buyer only buys one unit of the product and that the posted price is updated frequently. The

authors characterized the optimal posted price and the resulting negotiation outcome as a function

of inventory and time. They also showed that negotiation is an effective tool to achieve price

discrimination. In contrast, our study considers a dynamic, capacity-rationing problem in a B2B

market in which buyers request different quantities and quantities influence prices. Our work is also

related to research on dynamic and stochastic knapsack problems that study the optimal admission

or pricing policies with limited capacity. While early studies such as Gallego and van Ryzin (1994)

and Kleywegt and Papastavrou (1998) showed that the optimal expected revenue is concave in

capacity if all demands require the same amount of resources, Kleywegt and Papastavrou (2001)

showed that concavity does not hold in general when demands are heterogeneous, which provides

support for our analysis. However, Kleywegt and Papastavrou (2001) focused on characterizing the

conditions under which concavity holds, and we focus on characterizing the property of the value

function under which the price-quantity relation is non-monotonic.

To summarize, our study makes the following contributions. First, we provide an empirical

analysis that reveals the existence of a non-monotonic price-quantity relation in B2B markets.

Second, we construct an analytical framework to investigate this phenomenon and find a plausible

explanation. Third, we show a simple and sufficient condition for the price-quantity relation to be

non-monotonic.
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1.3 Empirical Observation and Analysis

The data provided by a major global semiconductor company for use in this study encompasses

3,826 products and 251 buyers over a three-year period. Each record in the data set consists

of customer ID, product ID, product category, product brand (subcategory), sales territory, bill

quantity, bill value in USD, unit price, and date of transaction. The products sold include central

processing units (CPUs), graphics processing units (GPUs), and embedded chips, among others.

1.3.1 Preliminary Observations

Because large orders normally provide economies of scale and are often placed by big buyers,

we generally expect buyers who buy large quantities to receive lower prices than those who buy

less. As we examined the data, though, we observed some larger-quantity buyers paying higher

prices. In particular, if we ranked buyers for a product according to their total purchase quantities,

we found that in about 26% of the cases, a buyer pays a higher average price than a neighboring,

smaller-quantity buyer. These pricing“anomalies”may lead to overall non-monotonic price patterns

for some products. We selected five evident examples and summarized them in Table 1.1.

For each product in Table 1.1, we sorted the buyers about equally into three groups—small,

medium, and large—according to the total amount of units they purchased. We then calculated

the average price each group received by summing the total purchase value and dividing it by

the total quantity. Two interesting observations immediately emerged. First, the average price

received by those purchasing a medium quantity is less than that obtained by the other two groups.

Table 1.1: Quantity-Weighted Average Price for Three Customer Segments

Product Category
Number of
Customers

Lifespan
(year)

Small Amt.
Avg. Price

Medium Amt.
Avg. Price

Large Amt.
Avg. Price

1
Desktop

CPU
40 2.77 $ 58.38 $ 55.32 $ 58.78

2
Desktop

CPU
5 0.98 $ 29.13 $ 27.45 $ 45.01

3
Desktop

CPU
6 0.90 $ 27.54 $ 25.33 $ 28.46

4
Desktop

CPU
11 0.86 $ 92.50 $ 91.06 $ 93.43

5 Memory 9 0.87 $ 2.59 $ 2.47 $ 2.51
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Second, the average price paid by large-quantity buyers was greater than that paid by either of

the other groups, with the exception of memory chips. These “anomalies” motivated us to conduct

a more systematic analysis of the marginal relationship between price and quantity to see if the

non-monotonicity generally exists when we control for most other factors.

1.3.2 Data Preparation

Fixed-Price Contracts

As a buyer normally purchases a product through multiple transactions over time, the price may

be renegotiated. In this chapter, we focus on purchases in which prices are fixed over the entire

product life cycle. We say that such a set of transactions are made under a fixed-price contract.

The analysis for fixed-price contracts or one-shot price bargaining is simpler than that for repeated

negotiations.

Let I and J be the indices of buyer and product, respectively. Let Tij be the set of dates at

which buyer i purchased product j. Let qijt and pijt denote the transaction quantity and price

for customer i and product j at time t ∈ Tij . We define an instance θij as the set of transactions

related to buyer i ∈ I and product j ∈ J ; i.e., θij := {(t, qijt, pijt) : t ∈ Tij}. As stated earlier, in

this industry it is a common practice for the buyer to determine the purchase quantity prior to

entering a negotiation. For fixed-price contracts, we have pijt = pij for all t ∈ Tij , and the life-

cycle purchase quantity is the target for the price bargaining. Hence, we focus on the relationship

between the total purchase quantity, TQij =
∑

t∈Tij qijt, and the fixed price pij for such instances.

Of course, transaction-level data may contain information about factors that impact negotiations,

such as when a purchase starts and how long it lasts. We therefore use the transaction-level data

to construct measures for these factors.

Normalization

Widely varying prices and market sizes for different products compel us to normalize the data

to the same scale. Prices of the 425 brands (or product subcategories) range from several dollars

to more than $100 per unit. Thus, an observed price that is the lowest for one product may be

higher than any observed price for another product. For that reason, in place of the price and total

quantity, we use two ratio metrics: (1) effective discount rate (ED) and (2) a power transformation
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of demand share (PTDS ). We define

EDij := 1− pij/ max
i′∈I,t∈T

pi′jt; (1.1)

PTDSij :=

(
TQij/

∑
i′∈I

TQi′j

)γ
, (1.2)

where T := ∪Tij and γ ∈ (0, 1). Both variables have the range [0, 1]. ED is a measure of price

level relative to the highest price ever paid for the product. Note that the posted prices of the

seller who offers this data set are very stable, usually lasting for more than a year, so for a fixed-

price contract the nominal discount rate is almost constant over time and ED is very close or

equal to the nominal discount rate. PTDS is a monotone transformation of demand share (DS ),

a measure of total quantity relative to the market size of the product. The advantage of DS is

that it simultaneously controls the mean and the variation across different products.1 However, the

demand shares in a large amount of instances are concentrated around zero (as shown in Fig. 1.1

on the left) due to the 20-80 rule: 80% of customers contribute only 20% of sales. Therefore, it is

difficult to examine how quantity affects price discount in the majority of instances if we use DS. To

avoid such a shortcoming, we take a power transformation of DS so that its empirical distribution

is more spread out (as shown in Fig. 1.1 on the right) and the range [0, 1] is preserved. Note that

maintaining the unit range makes it convenient to interpret the results. As shown in Table 1.2,

the distribution is the most spread out when γ takes a value from 0.25 to 0.35, but γ = 0.25 leads

to a distribution that is more normal. In this chapter, we focus on the fourth-root transformation

(i.e., γ = 0.25). Later, to check the robustness, we will also show the results for γ =0.15, 0.2, 0.3,

and 0.35. Thus, our objective reduces to identifying the relation between EDij and PTDSij while

controlling for other factors.

Data Filtering

The data set corresponds to a three-year time period from January 1, 2009 to March 25, 2012.

Instances that started prior to January 1, 2009, and those that lasted beyond March 25, 2012, have

missing data (or are truncated). This truncation effect may cause a negative correlation between

1Note that how the demand share of a customer evolves over time is irrelevant for our analysis. We only use the
ex-post demand share as a normalized quantity, which is constant over time.
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Figure 1.1: Histograms for the selected subset of fixed-price contracts.
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Table 1.2: Measuring the Distributions of Power-Transformed Demand Share

DS0.15 DS0.20 DS0.25 DS0.30 DS0.35 DS0.40 DS0.45

St.Dev. 0.1409 0.1556 0.1624 0.1642 0.1626 0.1589 0.1539
W 0.9873 0.9743 0.9572 0.9365 0.9131 0.8875 0.8604

Note. The Shapiro-Wilk W statistic measures the straightness of the normal

probability plot of a variable; larger values of W indicate better normality.

price and quantity. Prices in the microprocessor market are decreasing over time, so instances

that started early and were truncated will appear to have smaller total quantities with higher

prices than subsequent instances. To mitigate this truncation effect, we focus on instances with

an observed starting date at least one quarter later than January 1, 2009, and an observed ending

date at least one quarter earlier than March 25, 2012. There are 6,573 instances (about 53%) that

satisfy such criteria. Furthermore, to focus on regular purchases but not transactions for one-time

substitutions or downgrading, which are entailed by other purchases and are different in nature,

we drop another 312 instances that have only one purchase record. Finally, products that have

an extremely small number of buyers are often customized and likely to follow a different selling

process. In addition, such products tend to have extreme-demand-share buyers as well as narrow

price dispersions, which could create a false correlation that large buyers get small discounts. Hence,

to avoid this lack of reference, we drop another 1,551 instances and consider products that have

more than three buyers. In this way, we obtain a subset of the data with 2,346 fixed-price instances

and 2,364 price-renegotiated instances.
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Table 1.3: Summary Statistics for the Selected Instances

Fixed-Price Instances Price-Renegotiated Instances

Variables Mean S.D. Min Max Mean S.D. Min Max

ED .1126 .1781 0 .9986 .1956 .1735 4.1e-5 .9986

r3ds .2910 .1635 .0162 .9751 .3550 .1946 .0287 .9969

r4ds .3818 .1624 .0440 .9811 .4441 .1861 .0679 .9977

r5ds .4564 .1556 .0822 .9848 .5151 .1739 .1163 .9981

Cbase 19.66 13.43 4 48 21.73 14.80 4 48

TSQ 8.37e5 2.35e6 826 3.06e7 8.56e5 2.11e6 826 2.31e7

Herf .2593 .1787 .0561 .9815 .2269 .1579 .0561 .9936

lndod 3.9237 1.8581 0 6.9527 3.0569 1.8986 0 6.7286

lndrt 4.5246 1.3531 0 6.8977 5.6237 .7545 2.0794 6.8977

M3 .2928 .4552 0 1 .3054 .4607 0 1

CapL .4614 .3052 .1761 1.176 .6058 .3411 .1765 1.1765

Cshr .0516 .1038 2.24e-6 .7897 .0924 .1581 8.19e-6 .7897

Vrate .3112 .2506 0 .9375 .6823 .2291 .0541 1

N 2,346 2,364

1.3.3 Variables

Aside from the demand share, other variables may also influence a customer’s discount. Accord-

ing to the generalized Nash bargaining model (Nash 1950; Roth and Malouf 1979), these variables

fall into three broad categories: the seller’s outside options, the buyer’s outside options, and their

respective bargaining powers. As far as we can imagine, the seller’s outside options are affected

by production cost, salvage value, buyer-side competition, time of purchase, capacity or inventory

level, and demand uncertainty. The buyer’s outside options are affected by the value of adopting

a different product, seller-side competition, posted price, and time of purchase. Bargaining powers

are affected by the value of the business relationship, the bargaining skills of salespersons and pro-

curement managers, and the buyer’s reputation for committing to a forecast. In the following, we

explain the variables included in our regression. Table 1.3 provides the summary statistics for the

portion of data we use, and Table 1.4 shows the correlation among the variables.

Power transformation of Demand Share. We first focus on the relationship between ED and

the fourth root of demand share (r4ds). Later, we will consider other power transformations of

demand share (e.g., DS0.15, DS0.2, DS0.3, and DS0.35) to check the robustness.

Cbase. This variable counts the total number of buyers for a product, and is thus a measure of

a product’s popularity and the buyer-side competition.

11



TSQ. The total sales quantity of a product, which also implies the popularity of the product.

Herf. This is the Herfindahl Index for the demand structure of a product, which measures the

degree of demand concentration. It is calculated as the square root of the sum of the square of

demand shares across all the buyers (Weinstock 1982).

lndod. The discount received by a buyer for a product is related to the time when the buyer starts

to purchase, because effective prices (or price-performance ratio) in the semiconductor industry are

decreasing over time in general. The later a buyer arrives for a product, the greater discount

(relative to the highest price) he may obtain due to better outside options. Hence, to capture

such a time effect, we use the logarithm of days of delay, which is calculated as the difference in

number of days between the starting date of an instance and the first date that the product was

ever purchased. Note that, as relative measures, lndod and ED are compatible.2 In addition, lndod

is also a measure of demand uncertainty, because uncertainty is resolved over time.

lndrt. The discount may be also related to the rate of purchase given the same total quantity,

so we also control the logarithm of duration of an instance. It is calculated as the number of days

between the first date and the last date of an instance. We can see that the life span of an instance

in the data set is fairly short, with an average duration of 232 days.

M3. Another dimension of the time of purchase is related to the seller’s financial cycle. It is well

known that the end-of-quarter effect may bring buyers an edge in the bargaining. We introduce

M3 as a binary variable with a value equal to 1 if the date of the price negotiation is in the third

month of a quarter and 0 otherwise.

CapL. The remaining capacity level at the time of price negotiation is a consideration for

both the seller and the buyer. However, we do not have information about the capacity level. We

approximate the total capacity level using the total sales of a product divided by the semiconductor

industry capacity-utilization rate (about 85%),3 and the available capacity level for a buyer using

the difference between the total capacity level and the cumulative contracted sales prior to this

2Another candidate may be the days of delay relative to the introduction date of a product. Compare two scenarios.
In scenario I, the first customer of a product delays his purchase 0 days and receives the highest price among all the
customers. In scenario II, the first customer delays his purchase 100 days and also receives the highest price among
all the customers. Other customers delay their purchases one day after the first customer’s purchase, and all receive
the same effective discount. However, the absolute delay for other customers is one day in scenario I and 101 days in
scenario II, disproving the effectiveness of this alternative measure.

3http://www.semiconductors.org/industry statistics/industry statistics/, accessed March 2015. We obtain very
similar results if we use random utilization rates (e.g., a normally distributed random variable with mean 0.85 and
standard deviation 0.1, capped by 0 and 1).
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buyer. We then use CapL =(available capacity level)/(total sales) as a control variable.

Cshr. A buyer that contributes to a large portion of the seller’s overall sales can have significant

bargaining power. To capture the bargaining power of a buyer in this regard, we calculate Cshr

(i.e., customer share) as 100 times the total quantity purchased by a buyer over the observed period

divided by the seller’s total sales volume across all products and the observed period. This measures

the value of a buyer to the seller. Note that using the total purchase value as a control variable

may cause an issue of endogeneity as the value depends on the price discount.

Vrate. Since we use the highest price paid for a product as the approximation of the posted

price, the larger the price variation of a product, the greater the computed ED. Hence, we should

control the price variation of a product. However, prices depend on discounts received by buyers.

To avoid the endogeneity issue, we use the fraction of price-renegotiated instances to measure a

product’s price variation, given that buyers with renegotiable-price contracts are more likely to get

the posted price at the beginning and price variations are larger than with fixed-price contracts.

In addition, Vrate measures the uncertainty of the product’s value, because price renegotiations

normally happen when uncertainties are resolved. For fixed-price contracts, discounts are likely to

be larger when uncertainties are higher.

Product-line (or brand) fixed effect. To capture product-line-specific impacts such as the seller-

side competition, production cost and salvage value, we use binary variables for the major 16 brands

that have at least 100 observed instances in the original data set. It is important to note that the

seller’s salespeople are organized by product lines. Hence, negotiated prices of a product are all

subject to the same impact from the bargaining ability of a salesperson or a group of salespeople.

In other words, the impact of salesperson ability is product-line-specific and thus can be captured

by the product-line fixed effect.

Buyer fixed effect. Apart from purchasing value, a buyer’s bargaining power is also affected by

unobservable factors, such as the experience of the procurement manager and the reputation for

honoring a commitment. Hence, we use binary variables to control the buyer fixed effect for the 10

major buyers in terms of total purchase value with the seller and use others as the reference.

Quarter fixed effect. To capture the industry dynamics that are cyclical within a financial year,

we use the first quarter as the reference and binary variables for the other three quarters.

Location fixed effect. The degree of market competition on both the buyer and seller sides may

13



Table 1.4: Correlation Matrix for the Selected Fixed-Price Instances

ED r4ds Cbase TSQ Herf lndod lndrt M3 CapL Cshr Vrate

ED 1.00

r4ds 0.06 1.00

Cbase -0.22 -0.42 1.00

TSQ 0.02 -0.15 0.10 1.00

Herf 0.15 0.07 -0.63 -0.09 1.00

lndod 0.30 -0.13 -0.22 0.07 0.24 1.00

lndrt -0.16 0.14 -0.01 0.06 0.00 -0.11 1.00

M3 0.03 0.08 -0.13 -0.01 0.05 0.02 -0.09 1.00

CapL -0.16 0.38 -0.07 -0.07 -0.11 -0.65 0.12 -0.00 1.00

Cshr 0.22 0.29 -0.32 -0.01 0.20 -0.02 0.10 0.05 0.13 1.00

Vrate 0.36 -0.18 0.05 -0.02 -0.04 0.24 -0.13 0.01 -0.21 0.05 1.00

depend on the location. We use binary variables for nine of the ten recorded sales territories, such

as greater China and North America. Additionally, location may also be an indicator of cost level

and demand uncertainty.

Interaction effect. The impact of capacity level may interact with time elapsed. The likelihood

of a technology shock occurring increases over time after a product is introduced; once a shock

occurs, the seller may have to salvage the remaining capacity. Hence, the capacity has less and less

value as time elapses and we thus include the interaction between CapL and lndod.

Though we try to control for as many variables as possible, we still confront the “omitted

variable” problem due to a lack of information. Thus, consistent estimators can be obtained only

when the omitted variables are uncorrelated with our regressors. The factors we do not control for

here are the net cost of switching to an alternative product and contract terms other than price

and quantity for a buyer. Later, we will show that under certain mild assumptions, the estimated

coefficients are just the scaled true marginal effects when these two factors are relevant but missing.

Hence, the shape of the price-quantity relationship will be preserved. Last, note that we consider

only the instances with one-shot bargaining (or fixed-price contract) for new products, and thus it

is reasonable not to consider any reference effect from previous prices or discounts.

1.3.4 Regression Analysis

In this section, we try to identify the empirical relationship between the effective discount and

14



Table 1.5: Summary Statistics and Regression Results for Demand Share Segments

Model Segmt.
Range Summary Stats. Regression

of r4ds Mean S.D. Obs. Coef. Robust S.E. P value

(i)

1 0˜0.2 .1581 .0313 235 - - -

2 0.2˜0.35 .2772 .0423 916 .0141 .0097 0.149

3 0.35˜0.5 .4142 .0433 683 .0245 .0111 0.028

4 0.5˜0.65 .5669 .0406 335 .0428 .0153 0.005

5 0.65˜0.8 .7187 .0439 145 .0348 .0178 0.052

6 0.8˜1 .8625 .0459 32 .0933 .0312 0.003

(ii)

1 0˜0.15 .1226 .0199 85 - - -

2 0.15˜0.25 .2087 .0267 423 .0023 .0156 0.885

3 0.25˜0.35 .2993 .0289 643 .0031 .0159 0.843

4 0.35˜0.45 .3949 .0293 518 .0171 .0168 0.308

5 0.45˜0.55 .4965 .0286 291 .0145 .0183 0.429

6 0.55˜0.65 .5922 .0285 209 .0409 .0206 0.048

7 0.65˜0.75 .6977 .0303 106 .0194 .0230 0.398

8 0.75˜0.85 .7905 .0269 55 .0425 .0257 0.098

9 0.85˜1 .8987 .0374 16 .1223 .0476 0.010

demand share in two steps. The first step is to explore the underlying pattern by segmenting the

demand share and computing the average effective discount received by buyers in each segment.

Based on the observed pattern, if one exists, we obtain a reasonably well-fitted functional form

through piecewise polynomial (spline) regression in the second step. Our analyses in the two steps

are both necessary and complementary. The first step provides us with information about the shape

of the function, the possible location(s) of the knot(s), and the order of polynomial functions we

need. The second step allows us to test the statistical significance of the functional form.

Average Discounts by Segments

For robustness, we consider two different ways of segmentation, the details of which are given

in Table 1.5. In model (i), we divide the instances into six segments according to r4ds. We use

wider ranges for the first and last segments in order to include more instances in the “tails.” In

model (ii), we use nine segments.

Incorporating the aforementioned variables, we run a regression for each model and the results

are summarized in Table 1.5 and Table 1.7.4 We can see that in both models the marginal impact

4We use the regress command with the robust option in STATA. With the option, STATA estimates the standard
errors using the Huber-White sandwich estimators. The produced standard errors (called robust standard errors)
can effectively deal with minor problems regarding normality, heteroscedasticity, and some observations that exhibit
large residuals. The point estimates of the coefficients are exactly the same as those in ordinary OLS.
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Figure 1.2: Average marginal impact of demand share in model (i) and (ii).

Note. In both graphs, all other covariates take their mean values.

of demand share on discount displays a similar non-monotonic pattern. In model (i), the estimated

coefficient increases with demand share for the first four segments, then decreases in segment 5,

and increases again in segment 6. In model (ii), the coefficient increases until segment 6, then

decreases in segment 7, and increases again. These results indicate that the discount is likely to

be an N-shaped function of demand share. In Figure 1.2, we plot the average discount received

by each segment and the smooth line connecting them. In both graphs, all the other controlled

variables take their mean values.

Although the smooth lines look like an “N” in both graphs of Figure 1.2, it is still difficult to tell

how significantly the underlying shape is an N based solely on the results we have obtained so far.

Rather, what we can learn is that it may be inappropriate to use a simple monotone function or

a polynomial function to describe the shape given the irregular pattern; that is, the shape is more

likely to be a combination of a monotonically increasing curve and a V-shaped curve, which are

easier to fit by polynomial functions separately. In the next step, we propose a piecewise polynomial

function to fit the data and test the significance of the shape.

Piecewise Polynomial Regression

To reduce the number of parameters while maintaining adequate flexibility, we use a two-

segment, quadratic function with an unknown knot to fit the data in model (iii). Hence, we will

let the data decide whether the function is linear or quadratic in each segment and where the two
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Table 1.6: Results of the Piecewise Polynomial Regressions

Model (iii) Model (iv)

Coef. Robust S.E. P value Coef. Robust S.E. P value

a1 0.2325 0.1042 0.026 0.1030 0.0319 0.001

a2 0.2956 0.2365 0.212 - - -

a3 -0.4354 0.2093 0.038 -0.3422 0.2001 0.087

a4 2.0382 0.8610 0.018 1.9251 0.9564 0.044

B 0.5668 0.0309 0.000 0.5794 0.0449 0.000

Model (v) Model (vi)

Coef. Robust S.E. P value Coef. Robust S.E. P value

a1 0.1857 0.1101 0.092 0.1355 0.0973 0.164

a2 0.2477 0.2805 0.377 0.0861 0.1726 0.618

a3 -0.1252 0.1759 0.477 -0.3958 0.3127 0.206

a4 0.7575 0.5609 0.177 2.6182 1.4140 0.064

B 0.5050 - - 0.6286 - -

smooth lines are connected. We let r4ds0 = B denote the location of the knot to be estimated, and

we run a least-square regression with the following nonlinear model:

ED = a1 · (r4ds−B)− + a2 · (r4ds−B)2
− + a3 · (r4ds−B)+ + a4 · (r4ds−B)2

+ + b′X + ε, (1.3)

where x− = min {x, 0}, x+ = max {x, 0}, X is the vector of controlled covariates (including the

constant), and ε is the error term. We report the estimated parameters, cons., a1 to a4, and B, in

Table 1.6, and b in Table 1.7.

We can see from Table 1.6 that a1 is significant (at the 5% level) but a2 is not, meaning that

a linear relationship is significant in the first (left) segment. In addition, both a3 and a4 are

significant (at the 5% level), meaning that a quadratic relationship is significant in the second

(right) segment. Because B = 0.5668 is highly significant (at the 0.1% level), the relationship thus

cannot be described by a single linear or quadratic function. If we assume in advance in model

(iv) that the relationship is linear in the first (left) segment and quadratic in the second (right)

segment, we will get similar results for all the parameters. Note that the minimum of the quadratic

curve is achieved at r4ds = − a3
2a4

+ B ≈ 0.1 + B > B, meaning that discount first decreases with

demand share and then increases in the segment. Hence, we can now claim quite confidently that

the empirical relationship between discount and demand share is indeed N-shaped.

To check the sensitivity of the estimated shape to the location of the knot, we run two linear
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Figure 1.3: Average marginal impact of demand share: sensitivity to knot location.

Notes. The lines show the predicted marginal effect of r4ds on ED , with other covariates taking their mean values.

regressions based on model (iii) with B = 0.5668± 2× 0.0309. We call the two regressions model

(v) and (vi), respectively, and we plot the predicted average effective discount agains r4ds in Figure

1.3. Although setting a biased knot could smooth out the decreasing part of the curve, we still

observe N-shaped curves with both model (v) and (vi).

Finally, we find that the predicted discount decreases with the number of buyers for a product

(or product popularity), increases with a buyer’s business size with the seller,5 increases with

the number of delayed days (or time passed), and increases with the remaining capacity level.

Additionally, impacts from time that has elapsed and capacity level influence each other in a

negative way. In other words, the impact of capacity level deteriorates over time, and the impact

of time delay decreases with capacity level. It is interesting to find that the effective discount is not

significantly correlated with the end-of-quarter effect and the demand concentration rate for the

fixed-price contracts. The reasons may be that fixed-price contracts entail long-term considerations

and that demand concentration is not a good measure for product popularity for this type of

contract.

1.3.5 Further Discussions

Simultaneity. Regarding our regression models, one possible concern is that they suffer simul-

taneity between price and quantity; i.e., not only is discount affected by demand share but demand

5Cshr and customer fixed effect are colinear and Cshr will be significant if customer fixed effect is not included.
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Table 1.7: Summary of Regression Results

Variables
(i)
ED

(ii)
ED

(iii)
ED

(iv)
ED

(v)
ED

(vi)
ED

f(r4ds) Tab. 1.5 Tab. 1.5 Tab. 1.6 Tab. 1.6 Tab. 1.6 Tab. 1.6

Cbase -1.13e-3*** -1.21e-3*** -1.14e-3*** -1.15e-3*** -1.11e-3*** -1.16e-3***

(3.89e-4) (3.88e-4) (3.91e-4) (3.92e-4) (3.92e-4) (3.92e-4)

TSQ 8.41e-10 5.90e-10 6.42e-10 9.34e-10 7.33e-10 7.87e-10

(1.26e-9) (1.31e-9) (1.29e-9) (1.27e-9) (1.30e-9) (1.28e-09)

Herf -.0008 -.0059 -.0044 -.0053 .0005 -.0052

(.0271) (.0270) (.0271) (.0272) (.0272) (.0272)

lndod .0382*** .0382*** .0384*** .0385*** .0382*** .0384***

(.0047) (.0048) (.0047) (.0047) (.0047) (.0047)

lndrt -.0049 -.0049 -.0049 -.0051 -.0050 -.0051

(.0039) (.0040) (.0039) (.0039) (.0040) (.0040)

M3 -.0013 -.0007 -.0013 -.0014 -.0014 -.0014

(.0074) (.0074) (.0074) (.0074) (.0074) (.0074)

CapL .0873*** .0866*** .0855*** .0865*** .0846*** .0854***

(.0225) (.0225) (.0225) (.0224) (.0225) (.0225)

Cshr .2129 .2221 .1975 .2095 .2035 .2087

(.1718) (.1734) (.1726) (.1716) (.1720) (.1719)

Vrate .1931*** .1919*** .1936*** .1938*** .1942*** .1932***

(.0127) (.0127) (.0127) (.0127) (.0127) (.0127)

CapL*lndod -.0289*** -.0293*** -.0296*** -.0297*** -.0293*** -.0298***

(.0057) (.0058) (.0057) (.0057) (.0057) (.0057)

Constant -.1136*** -.0994*** -.0805*** -.0902*** -.0706** -.0588*

(.0329) (.0353) (.0346) (.0328) (.0323) (.0343)

Brand F.E. Yes Yes Yes Yes Yes Yes

Buyer F.E. Yes Yes Yes Yes Yes Yes

Quarter F.E. Yes Yes Yes Yes Yes Yes

Location F.E. Yes Yes Yes Yes Yes Yes

R2 0.3817 0.3824 0.3835 0.3830 0.3820 0.3829

Observations 2,346 2,346 2,346 2,346 2,346 2,346

Sample Fixed Price Fixed Price Fixed Price Fixed Price Fixed Price Fixed Price

Notes. Robust standard errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01. F.E.: Fixed Effect.
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Table 1.8: Test for Simultaneity with Instrumental Variable

γI,2 γI,3 γI,4 γII,2 γII,3 γII,4 γIII,2 γIII,3 γIII,4
Estimate -.0051 .0308 .0077 .0007 .0003 -.0053 .0004 .0025 -.0048

Robust S.E. .0091 .0091 .0094 .0084 .0082 .0087 .0084 .0082 .0087
P value 0.574 0.001 0.413 0.933 0.969 0.543 0.966 0.764 0.583

share may also be affected by discount. This is normally a valid concern, especially for the aggre-

gate market price and demand. However, this is not valid at such a micro level in our problem,

because each buyer’s production plan is determined in advance and the production needs inputs

other than microprocessors from different suppliers so that it can be costly for buyers to manip-

ulate their demand. To verify this industry practice with our data, we pick the Quarter from

which an instance started in a year as an instrumental variable (IV). Quarter is a categorical vari-

able used to control for time fixed effects in our previous regressions. Notice that Quarter can

directly influence ED given the cyclical nature of the semiconductor industry, but it can hardly

relate to demand share directly. It is very unlikely that buyers of a particular demand share prefer

to start a purchase from a particular quarter or are required to do so. By running regressions

ED = aI · r4ds+
∑4

t=2 γI,tZt + b′IX + εI and r4ds = aII ·ED+
∑4

t=2 γII,tZt + b′IIX + εII , wherein

Zt is the dummy for quarter t and X is the vector of all other covariates, we find that γI,3 is highly

significantly positive (as shown in Table 1.8) but none of γII,t is significant. Hence, the validity of

Quarter being an IV is supported. Next, we run regression r4ds =
∑4

t=2 γIII,tZt + b′IIIX + εIII

and we find that none of γIII,t is significant. Suppose that r4ds depends on ED at least linearly:

r4ds = aII · ED + b′IIX + εII = aII · aI · r4ds+ aII ·
∑4

t=2 γI,tZt + (aII · b′I + b′II)X + εIV , which

leads to r4ds = aII
1−aII ·aI ·

∑4
t=2 γI,tZt + b′IIIX + εIII . If aII 6= 0, we should have observed a reason-

ably significant γIII,3 given the highly significant γI,3. However, this is not supported by the data.

Therefore, the data suggests that price is not driving quantity .

Piecewise Polynomial vs. Ordinary Polynomial. We know that a polynomial of degree three

can also generate an N-shaped curve. However, a degree-three polynomial is concave on the left of

“N,”meaning that discount increases rapidly with demand share for very small buyers. According to

our empirical observation, the discount curve should be linear or convex first on the left of “N,” so it

is difficult to have a good fit with our data for a degree-three polynomial. Although polynomials of
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Table 1.9: Regressions with Alternative Transformations of Demand Share

(vii) (vii i) (ix ) (x )

a1 .2553** .2406** .2262* .2334*

(.1080) (.1050) (.1188) (.1275)

a2 .3591 .3178 .2764 .2935

(.2406) (.2272) (.2648) (.3061)

a3 -.6497* -.5111* -.3915* -.3474*

(.3605) (.2854) (.2246) (.2039)

a4 4.5500* 2.8018* 1.6499* 1.3247*

(2.4114) (1.4686) (.8594) (.6927)

B .7159*** .6352*** .5104*** .4517***

(.0265) (.0317) (.0388) (.0412)

Transformation DS0.15 DS0.2 DS0.3 DS0.35

Notes. Robust standard errors are in parentheses.

*p<0.1; **p<0.05; ***p<0.01.

high-enough degree can approximate any shape of curve, they have potential problems of overfitting

and multicollinearity. In contrast, piecewise polynomials of lower degrees are capable of offering

adequate flexibility, while having fewer parameters.

Alternative Transformations of Demand Share. To check the robustness of power transfor-

mations of demand share, we run four additional nonlinear-piecewise-polynomial regressions using

DS0.15, DS0.2, DS0.3, and DS0.35, respectively, in place of r4ds in (1.3). The results are sum-

marized in Table 1.9. In all four models, we can get similar non-monotonic curves composed of a

linear piece on the left and a quadratic piece on the right. Hence, power transformations of demand

share not only preserve the unit range, but also offer a robust way to study the price-quantity

relationship.

Omitted Variables. Note that we ran linear regressions in models (i), (ii), (v), and (vi). We

also find that the results of linear regressions are very similar to what we obtained from nonlinear

regressions, so here we focus on the discussion of linear regressions for simplicity. Let f(DS)

denote the vector of demand-share-related variables, X the vector of other covariates included in

our model, and Z = (Z1, Z2)′ the vector of those not included. As discussed earlier, Z1 is the

buyer’s net cost of switching to an alternative product, and Z2 is the value of other contract terms

for the buyer. We will show in Section 1.4.2 that the demand-share-dependent switching cost is not
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supported by the data, so it seems plausible to assume that Z1 is uncorrelated with f(DS). Hence,

Z1 = b′z1 ·X+εz1, wherein bz1 is a constant vector and εz1 is a random variable that is independent

of f(DS). Next, price discount and other contract terms, if any, are determined through the

same bargaining process, so Z2 = bz2 (γ′ds · f(DS) + γ′x ·X + γz1 · Z1) + εz2. Therefore, if ED is

determined by a linear model that ED = γ′ds · f(DS) +γ′x ·X +γ′z ·Z+ ε1, wherein γz = (γz1, γz2)′.

Defining γ0 = (1 + γz2bz2) · (γ′x + γz1b
′
z1) and plugging Z into ED, we get

ED = (1 + γz2bz2) · γ′ds · f(DS) + γ′0X + ε0. (1.4)

We can see that the true marginal effect of f(DS) is just scaled if we regress ED against f(DS)

and X, and thus the underlying non-monotonic pattern will not be affected.

Our observations from the regressions are particularly interesting in that they are somewhat

inconsistent with the conventional wisdom—and our intuition—which says that buyers with larger

quantities should receive lower prices. While our intuition is correct for small- and large-quantity

buyers, we are not aware of a discount valley for medium-sized buyers.

Why do we see such a discount curve? The literature offers no theory that can explain our

observation. Although existing theories can predict increasing or V-shaped discount curves, they

work under different premises and thus can never be combined to generate other discount curves.

If the seller is powerful and offers quantity discounts to coordinate the supply chain, we should

observe an increasing discount curve (e.g., Weng 1995). In a cooperative setting, we can obtain an

increasing discount curve if the buyer and the seller use Nash bargaining to set the price (e.g., Kohli

and Park 1989). According to Snyder (1998), when competing suppliers cooperate in a repeated

game, we should observe a discount curve that decreases first and increases later with buyer size.

Unfortunately, none of these models is general enough to explain our observation from the data

and thus we do not yet fully understand the mechanism of price negotiation in B2B markets.

Our empirical finding has important implications for both buyers and sellers. Because larger

quantities may not lead to lower prices, it may not be wise for a buyer to increase the purchase

size. However, there should not be an arbitrage opportunity for a buyer, because the total purchase

cost still increases with quantity.6 For the seller, it may be imperative to rethink posted pricing

6We find that in only 7% of instances across the entire data set, a buyer pays less in total than another buyer of
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and capacity rationing, given this non-monotonic relationship between price and quantity. We

will continue discussion in the following sections, in which we try to use an analytical model to

understand and explore the rationale behind our observation.

1.4 Modelling and Verification

In order to study the rationale behind the empirical observation, we build an analytical model

in this section. We then verify with the data that the non-monotonicity is rooted in how the seller

values capacity by comparing different models in terms of goodness-of-fit as well as the statistical

significance of non-monotonicity in each model.

1.4.1 The Model

Consider a seller A (she) that sells a new product to a group of OEMs. We assume that A has

a fixed capacity κ due to a long production lead time and a short product life cycle. The selling

starts at time 0 and ends when there are no more buyers or the capacity is sold out or salvaged.

There are M potential buyers who arrive stochastically. We consider a general non-homogeneous

Poisson arrival process wherein the arrival rate of the i-th buyer is λi <∞ for i = 1, 2, · · · ,M . For

simplicity, we assume that the arrival process is only determined by market characteristics and is

independent of buyer identities or the history of the arrival process.

As stated earlier, in the semiconductor industry, technological advancements of competing prod-

ucts will lead to obsolescence of the focal product. When such a technological shock happens, po-

tential buyers will change their adoption decisions. However, for buyers that have already adopted

the product and integrated it into their product designs, the switching cost will be high; thus, ex-

isting buyers will continue their purchase until they phase out products that use the focal product.

We assume that the arrival time of the technological shock is exponentially distributed with rate

λ0 < λi for any i, and that seller A salvages the remaining capacity at marginal value s when the

shock arrives. Let δi ∈ (0, 1) represents the probability of the shock arriving after the (i−1)-th and

prior to the i-th buyer. Using the memoryless property of exponential distribution, we can check

that δi = λ0
λ0+λi

.

the same product who buys less. This number is only 4% among fixed-price instances.
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Let Di denote the demand of the i-th buyer and Qi the capacity allocated to buyer i. We

assume that buyers accept partial fulfillment as long as Qi ∈ [ηDi, Di], where η ∈ (0, 1] is plausibly

an industry standard that is exogenous and identical for all the buyers. Hence, if η < 1, sellerA faces

a dynamic capacity management problem wherein she must decide the degree of fulfillment ρi for

buyer i in order to maximize the total expected revenue. Let Ki be the total available capacity when

buyer i arrives, so Ki/Di is the maximum level of fulfillment and ρi ∈ [η,min {1,max {η,Ki/Di}}].

Note that ρi is not relevant if Ki/Di < η.

Demand is unknown to the seller ex ante but is exogenously given because each buyer’s pro-

duction plan is determined in advance and the production needs inputs from different suppliers so

that it is costly for buyer i to manipulate Di. Although demand may not be exogenous from a

buyer’s point of view, that is not a concern of this study. From the seller’s point of view, demand

can be correlated and thus the distribution of each oncoming demand is history-dependent because

buyers may be subject to the same demand shock and (or) competition in the same market. We

define “history” as the set of information that is revealed to the seller. Let ψ(t) denote the history

up to time t, and ψi the history up to the arrival of buyer i. We assume that Di follows distribu-

tion function (cdf) F (·|ψi−1), where ψ0 = Ø. For the purpose of analysis, we make the following

technical assumptions: (1) that the expectation of the demand from a buyer is always finite, and

(2) that there exists a lower envelope for the possible forms of F .

Assumption 1.
´ +∞

0 DdF (D|ψ) < ∞ for any ψ ∈ H, where H stands for the set of all possible

histories.

Assumption 2. There exists an increasing and continuous function F0(·) on [0,+∞) such that

(i) F0(0) = 0, (ii) F0(+∞) = 1, and (iii) F0(x) ≤ F (x|ψ) for any x ∈ [0,+∞) and ψ ∈ H.

The sequence of events with the i-th buyer is modeled as follows. (1) Buyer i arrives at ti and

proposes an acceptable range [ηDi, Di] for quantity. (2) Seller A decides ρi. (3) Buyer i stays if

ρi ≥ η and leaves permenently if otherwise. (4) If buyer i stays, they settle the transaction price wi

for quantity Qi = ρiDi through Nash bargaining, in which information is assumed to be symmetric

for simplicity.

Let βi denote the exogenous, relative bargaining power of buyer i against seller A. It captures
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exogenous factors such as bargaining skills and net cost of keeping a long-term relationship. We

assume that βi is known given the identity of buyer i. Conditional on history ψ, the bargaining

power β of a potential buyer follows distribution B (·|ψ). The generalized Nash bargaining model

predicts that if player j’s payoff and outside option for the focal transaction are Πj(w) and dj

given the transaction price w, where j ∈ {A} ∪ {1, 2, 3, · · · }, then the bargaining results in price

w∗ = arg maxw (Πi(w)− di)βi · (ΠA(w)− dA)1−βi . In particular, if Πi(w) − di + ΠA(w) − dA is

independent of w, then w∗ splits the pie between the buyer and the seller in proportion to their

respective bargaining powers.

For buyer i, let ri and r′i denote the profit margins before subtracting the cost of the product

purchased from seller A and an alternative supplier, respectively, p the posted price for A’s prod-

uct, c̃i the marginal cost of buying from the alternative, and Q′i the quantity available from the

alternative. In addition, let li =
Q′i
Qi

. Accordingly, the total payoff is Πi(wi) = (ri − wi) ·Qi and the

outside option is

di = max {Qi · (ri − p) , Q′i · (r′i − c̃i)}

=Qi ·max {ri − p, li · (r′i − c̃i)}

=Qi · [ri −min {p, ri − li · r′i + li · c̃i}] . (1.5)

Let c̄i = ri − li · r′i + li · c̃i represent the net marginal cost of buying from the alternative supplier

in order to keep the same margin ri. If c̄i > p, it is not credible for buyer i to switch, so the

outside option is to buy from seller A at the posted price. This is possible because products are not

perfectly substitutable, and c̄i includes switching costs such as searching, redesigning, damage to

the brand image, and so on. We assume that c̄i is unknown to the seller ex ante but will be revealed

during the negotiation. For a potential customer who has not arrived, c̄ follows distribution G (·|ψ)

given history ψ.

For seller A, let V (K, p, ψ(t)) represent the expected revenue obtained after time t given re-

maining capacity K, posted price p, and history ψ(t). Therefore, when bargaining with buyer

i, seller A has expected payoff ΠA(wi) = wiQi + V (Ki −Qi, p, ψi) and outside option dA =

V (Ki, p, ψi) · I {c̄i ≤ p} + [pQi + V (Ki −Qi, p, ψi)] · I {c̄i > p}, where I {·} is an indicator func-

tion. In addition, we assume that c̄i ≥ cL > s for every i so that the bargaining always has a

solution (i.e., the highest price a customer would like to pay is higher than the marginal value for
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the seller). Hence, we have the following lemma, which determines whether buyer i pays the posted

price or engages in the price bargaining. Notice that βi and c̄i are known when the buyer arrives

and are thus taken as certain in the bargaining.

Lemma 1.1. If c̄i > p, buyer i pays the posted price; i.e., wi = p. If c̄i ≤ p, the Nash bargaining

results in

wi = βi ·
V (Ki, p, ψi)− V (Ki −Qi, p, ψi)

Qi
+ (1− βi) · c̄i. (1.6)

Lemma 1.1 simply says that the chance of a buyer engaging in a price negotiation increases with

the posted price p. Hence, the higher the posted price, the more bargainers. It also says that the

negotiated price is a function of the available capacity and transaction quantity. Based on Lemma

1.1, we know that as long as ∂V/∂K ≥ 0, our model satisfies the property that larger quantities

entail larger total payments.7 In order to understand how wi is affected by Ki and Qi, we need to

know more about value function V as well as other factors.

1.4.2 Source of Non-Monotonicity

In our model, we propose that buyer bargaining power β and net switching cost c̄ are not the

source of price-quantity non-monotonicity and thus assume for simplicity that they are independent

of purchase quantity Q. To verify our conjecture, we compare three different models by running

nonlinear regressions. To proceed, first note that from Lemma 1.1 we have

wij = I {c̄ij ≥ pj} · pj + I {c̄ij < pj} · [βij · M v̂ij + (1− βij) · ĉij ] · pj , (1.7)

where M v̂ij = [V (Kij , pj , ψij)− V (Kij −Qij , pj , ψij)] / (pjQij) and ĉij = c̄ij/pj . Accordingly, we

can derive the discount received by buyer i for product j:

1− wij
pj

= I {ĉij < 1} · [1− βij · M v̂ij − (1− βij) · ĉij ] . (1.8)

Now we can see that three factors can possibly contribute to the non-monotonicity we are after:

7It is easy to check that ∂ (wiQi) /∂Qi = βiV
′
K (Ki −Qi, p, ψi) + (1− βi) · c̄i.
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ĉij , βij , and M v̂ij . Hence, we consider three different models. In preparation, we define φ (x) =

a1·(x−B)−+a2·(x−B)2
−+a3·(x−B)++a4·(x−B)2

+, which is the piece-wise polynomial function

we used to capture the non-monotonicity in the empirical analysis. In model (I), we assumes that

the non-monotonicity is rooted in how the seller values capacity. In particular, ĉ = b′c·Xc, β = b′b·Xb,

and M v̂ = φ (r4ds) + b′v · Xv. In model (II), we assume that the non-monotonicity is originated

from the net switching cost. In particular, ĉ = φ (r4ds) + b′c ·Xc, β = b′b ·Xb, and M v̂ = b′v ·Xv. In

model (III), we assume that the non-monotonicity is due to quantity-dependent bargaining power.

In particular, ĉ = b′c ·Xc, β = φ (r4ds) + b′b ·Xb, and M v̂ = b′v ·Xv. Note that although the three

models have the same components, they are different in structures. Regarding other explanatory

variables, we use lndod and 10 major brand names for Xc, Cshr and V rate for Xb, and Cbase,

lndod, CapL, and three quarters for Xv. At last, we run three nonlinear regressions based on the

following equation:

EDij = I {ĉij < 1} · [1− βij · M v̂ij − (1− βij) · ĉij ] + ε̂ij . (1.9)

The results are summarized in Table 1.10. Notice that the non-monotonicity is statistically

significant only in model (I). In addition, given the same number of parameters or degree of freedom

(d.f.), model (I) has the highest R2 and the lowest sum of squared residuals (SS). If we can assume

that ε̂ is normally distributed, we can use Akaike’s Information Criterion (AIC) (Akaike 1981) to

compute the evidence ratio (i.e., how much more likely) of one model against another. We first

compute the corrected AIC value defined by

AICC = N · ln
(
SS

N

)
+

2 ·K ·N
N −K − 1

, (1.10)

where N is the number of observations and K is the number of parameters in the model plus one.

Next, we can obtain the evidence ratio defined by

Evidence Ratio =
Probability that model (I) is correct

Probability that model (II) is correct
= exp

(
AIC

(II)
C −AIC(I)

C

2

)
. (1.11)

Accordingly, we know that model (I) is 2.26×1015 times more likely against model (II) and 239 times

more likely against model (III) to be the correct one. In other words, the evidence is overwhelmingly

in favor of model (I). Therefore, combining all the results, we conclude that model (I) is the correct

model among the three.

Regarding other possible models, the most plausible is the combination of model (II) and (III).

However, there will be a serious collinearity problem when we let β depend on r4ds in (II) or let
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Table 1.10: Selected Regression Results for the Three Alternative Models

(I) (II) (III)

a1 -0.6508*** -0.2475* 1.0113**
(0.2148) (0.1354) (0.4718)

a2 -1.0167** -0.3875 1.1682
(0.4417) (0.3095) (0.9095)

a3 1.8758*** 0.4899 -1.5467
(0.5942) (0.3113) (1.5779)

a4 -8.7269*** -2.0765 5.0896
(2.7016) (1.2606) (6.7346)

B 0.5865*** 0.5795*** 0.6297***
(0.0196) (0.0397) (0.0474)

R2 0.5140 0.4991 0.5117
d.f. 27 27 27
SS 50.6148 52.1636 50.8517

AICC -8945 -8874 -8934

Notes. Standard errors are in parentheses. SS: sum of

squared errors. *p<0.1; **p<0.05; ***p<0.01.

ĉ depend on r4ds in (III). Hence, more complicated models cannot provide better explanations.

Lastly, if we add r4ds as a linear part of ĉ in model (I), the estimated coefficient is not significant,

so it is reasonable to assume that ĉ is not correlated with r4ds. Note that although li =
Q′i
Qi

, it is the

industry standard to fill at least 90% by any seller according to our interaction with practitioners,

so Q′i ≈ Qi in most cases.

1.5 Theoretical Analysis

In this section, we first derive a sufficient condition on the value function for the price-quantity

curve to be non-monotonic. We then analyze the seller’s problem, formulate the value function,

and investigate its property. Finally, we try to simulate the price curve given a certain form of the

value function.

1.5.1 A Sufficient Condition for Non-Monotonicity

We assume V is a non-decreasing and twice-differentiable function of capacity K. To simplify

the notation, we write V (K, p, ψi) = Vi (K). We know that how the price wi changes with quantity
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Figure 1.4: The intuition behind proposition 1.1.

Qi depends on the sign of the first-order derivative of wi in (1.6) with respect to Qi:

∂wi
∂Qi

= βi ·
Qi · V ′i (K −Qi)− [Vi(K)− Vi (K −Qi)]

Q2
i

=
βi
Qi

[
V ′i (K −Qi)−

Vi(K)− Vi (K −Qi)
Qi

]
. (1.12)

Given that βi
Qi

> 0, the sign of ∂wi
∂Qi

depends on that of V ′i (K −Qi) − Vi(K)−Vi(K−Qi)
Qi

. A simple

examination leads us to the following proposition.

Proposition 1.1. If Vi (x) is concave for any x ∈ [0,K], then wi increases with Qi. If Vi (x) is

convex for any x ∈ [0,K], then wi decreases with Qi.

Although the above results are simple, they are surprising. Our initial intuition is that the

value function should be concave and the price should decrease with quantity. However, in order

to have the quantity discount, our simple model requires the value function to be convex. Figure

1.4 illustrates the intuition behind Proposition 1.1. Note that given buyer i’s outside option and

the bargaining power, wi depends on the seller’s average opportunity cost of selling Qi units. We

can see that as Qi increases, the average opportunity cost increases if the value function is concave

and decreases if the value function is convex. Based on this observation, we suspect that the value

function may not be simply convex or concave, which may be the reason for a non-monotonic price-

quantity relation. In fact, we can show that a simple combination of convexity and concavity for

the value function will generate a non-monotonic price-quantity curve.

29



Proposition 1.2. If there exists x′ ∈ (0,K) such that Vi (x) is strictly convex for x ∈ [0, x′], strictly

concave for x ∈ [x′,K], and V ′i (0) < Vi(K)/K, then there exists x′′ ∈ (0,K) such that wi increases

with Qi for Qi ∈ [0,K − x′′] and decreases with Qi for Qi ∈ [K − x′′,K].

Proposition 1.2 provides us with a sufficient condition for the price-quantity relation to be non-

monotonic. We call such a property convex-concave. Actually, it is reasonable to expect the value

function to be convex-concave or S-shaped. When the capacity is very low, the seller is unlikely to

fulfill any buyer’s need and will have to salvage the capacity. As the capacity increases, it becomes

more and more likely that the capacity is sufficient to satisfy more buyers’ needs. When the capacity

is very high, it may exceed demand and the seller may have to salvage a portion. We can infer from

Figure 1.4 that when the value function is convex-concave and the capacity level is high enough,

the average cost of selling Q units for the seller first increases and then decreases with Q, which

leads to a non-monotonic price-quantity relation.

However, this result alone is not satisfactory, because it cannot explain the pricing pattern we

observe in the data. The discussion in the previous paragraph is based on perturbing the purchase

quantity of a single buyer with a fixed-value function. Notice that the seller may update the

estimation of future demand based on the demand of the current buyer. Thus, the shape of the

value function may be different for buyers with different purchase quantities, which may explain the

empirical pattern. In the following, we try to verify our conjecture by formulating and analyzing

the value function.

1.5.2 Formulating the Value Function

Assume that K units of capacity is available after the (i − 1)-th buyer leaves. Let us consider

the value of this remaining capacity in four cases that constitute the sample space. First, the

leftover capacity will be salvaged with probability δi. Second, if buyer i arrives, the buyer walks

away immediately if the capacity is insufficient. Hence, if K < ηDi, the seller’s expected revenue

at ti is Vi (K). Third, if K ≥ ηDi and c̄i > p, the expected revenue is pQi +Vi (K −Qi). Fourth, if

K ≥ ηDi and c̄i ≤ p, the expected revenue is (1− βi) c̄iQi+βi [Vi (K)− Vi (K −Qi)]+Vi (K −Qi).
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Note that Qi = ρ∗ (K,Di, c̄i, βi, ψi) ·Di can differ for different parameter values. As a result,

Vi−1 (K) = δi · s ·K + (1− δi) ·

{ˆ +∞

K/η

Vi (K) dF (D|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[pρ∗D + Vi (K − ρ∗D)] dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

[βVi (K) + (1− β)Vi (K − ρ∗D)] dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}
. (1.13)

Apparently, this is a complicated function and it is not obvious how Vi−1 (K) is affected by

various parameters. Hence, we try to derive approximations for the value function in two cases:

one with a finite buyer group and the other with a very large buyer group (i.e., M →∞).

1.5.3 An Approximation with Finite M

For this approximation, we begin with the last (i.e., the M -th) buyer. Given that no more

selling opportunities will exist after the last buyer, we have VM (K) = sK. From Lemma 1.1, we

know that the price for the M -th buyer is wM = p or wM = βM · s+ (1− βM ) · c̄M . Thus, we have

wM > s and the seller should sell as much to the last buyer as possible; i.e., ρ∗M = min {1,K/DM}.

Plugging VM (K) = sK and QM = K ∧DM into (1.13), we can obtain

VM−1 (K) = sK + (1− δM ) · ν(p, ψM−1) ·

[ˆ K

0

DdF (D|ψM−1) +

ˆ K/η

K

KdF (D|ψM−1)

]
, (1.14)

where

ν(p, ψM−1) = p− s−
ˆ 1

0

ˆ p

cL

(p− (1− β) c̄− βs) dG (c̄|ψM−1) dB (β|ψM−1)

= p− s−Eβ,c̄ [(p− (1− β)c̄− βs) · I {c̄ ≤ p} |ψM−1] . (1.15)

Although in general Vi−1 (K) in (1.13) is not a separable function for the three random variables,

β, c̄, and D, we find in (1.14) that D can be multiplicatively separated from β and c̄. Basically,

ν(p, ψM−1) is only related to β and c̄, and it measures the expected margin obtained from a buyer

above the salvage value. Note that ν(p, ψM−1) is finite because β ∈ [0, 1] and c̄ ∈ [cL, p]. Fur-

thermore, under the assumption of finite demand expectation, we have that
´K/η
K KdF (D|ψM−1)
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approaches zero as K increases, so this term can be ignored when K → +∞.

Lemma 1.2. limK→+∞
´K/η
K KdF (D|ψ) = 0 given that

´ +∞
0 DdF (D|ψ) < +∞.

Therefore, based on (1.14), for any scalar λ ∈ (0, 1), we can easily have a lower bound

V̂M−1 (K,λ) for VM−1 (K):

VM−1 (K) ≥ sK + (1− δM ) · ν(p, ψM−1) ·
ˆ λK

0

DdF (D|ψM−1) = V̂M−1 (K,λ) . (1.16)

We can see that the shape of V̂M−1 (K,λ) (i.e., how V̂M−1 (K) changes with K) depends on the

shape of distribution F (·|ψM−1). If F (·|ψM−1) is exponential, then V̂M−1 (K,λ) is increasing and

concave in K. If F (·|ψM−1) is normal, then V̂M−1 (K,λ) is S-shaped. Using the result for the last

buyer, we move on and consider Vi−1 (K) in general. We derive an upper and a lower bound for

Vi−1 (K) and we present the results in Theorem 1.1.

Here is the key idea of the proof for the lower bound. First, setting ρ = 1 in (1.13) leads to a

lower bound of Vi−1 (K). We then utilize the fact that the lower bound is a separable function for D

and we iteratively plug the lower bound into (1.13). We complete the proof by induction. The proof

for the upper bound is similar. An essential tool we use is the law of iterative expectation, based

on which we have Eβ,c̄ [ν(p, ψi−1)|ψi−2] = ν(p, ψi−2) and
´ +∞

0

´ λK
0 DdF (D|ψi−1) dF (D′|ψi−2) =

E [E [D · I {D ≤ λK} |ψi−1] |ψi−2] =
´ λK

0 DdF (D|ψi−2).

Theorem 1.1. For any 1 ≤ i ≤M and K ≥ 0,

Vi−1 (K) ≥sK +
(

1− δli
)
· ν(p, ψi−1) ·

ˆ K·λM+1−i

0
DdF (D|ψi−1) , (1.17)

Vi−1 (K) ≤sK + (1− δui ) · ν(p, ψi−1) ·
ˆ K/η

0
DdF (D|ψi−1) , (1.18)

where δli = δi − (1− δi)
(
1− δli+1

)
F0 (K − λK), δui = δi − (1− δi)

(
1− δui+1

)
, and δuM = δlM = δM .

Because limK→+∞ F0 (K − λK) = 1, we have limK→+∞ δ
l
i = δui . Therefore, the upper and

lower bounds converge as K goes to infinity. Both the upper and lower bounds take a functional
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form similar to V̂M−1 (K,λ), and it is reasonable to expect that Vi−1 (K) is similar to the bounds

as long as they are close enough. We may also conclude that the shape of the value function is

largely dependent on the demand distribution of the next buyer. However, the gap between the

upper and lower bounds increases with M . Hence, the bounds will perform well when M is not

extremely large. Otherwise, it may be useful to get bounds that are independent of M .

1.5.4 An Approximation with Infinite M

In this case, we assume that the buyer arrival rate is constantly λb. Hence, the probability

of ending the selling process is constantly δ = λ0
λ0+λb

. Before we analyze Vi−1 (K), note that we

can write it as E [R (K, {Dn, βn, c̄n, tn − tn−1}∞n=i) |ψi−1], where R is the total revenue, which is

a function of the future demand, buyer bargaining power, net marginal cost of buying outside,

and arrival times. Similarly, Vi (K) = E
[
R
(
K, {Dn, βn, c̄n, tn − tn−1}∞n=i+1

)
|ψi
]
. Based on our

assumptions, {Dn, βn, c̄n, tn − tn−1}∞n=i and {Dn, βn, c̄n, tn − tn−1}∞n=i+1 are statistically equivalent

given information ψi−1. Thus, using this condition and the law of iterative expectation, we get

E [Vi (K) |ψi−1] = E
[
R
(
K, {Dn, βn, c̄n, tn − tn−1}∞n=i+1

)
|ψi−1

]
= Vi−1 (K) . (1.19)

Leveraging this property of the value function, we obtain an upper bound and a lower bound for

Vi−1 (K). In preparation, let

Hi (K) =

[
p (1−G (p|ψi−1)) + (1−E [β|ψi−1])

ˆ p

cL

c̄dG (c̄|ψi−1)

]
·
ˆ K/η

0

DdF (D|ψi−1) , (1.20)

which is an approximate measure for the expected revenue obtained from the i-th buyer. Let

hi(K) = E
[
Vi

(
[K −Di]

+
)
|ψi−1

]
/Vi−1 (K) . (1.21)

It is easy to see that hi(K) ∈ [0, 1]. Now we can introduce the following theorem.

Theorem 1.2. For any i ≥ 1 and K ≥ 0, we have

s ·K + 1−δ
δ ·Hi (K)

1 + 1−δ
δ · [1− hi(K)] · (1−E [β|ψi−1] ·G(p|ψi−1))

≤ Vi−1 (K) ≤ s ·K +
1− δ
δ
·Hi (K) . (1.22)
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If ∂
∂KVi (K) ≥ s for any i ≥ 1, K ≥ 0, and ψi, then limK→∞ hi(K) = 1.

Let Ui−1 and Li−1 be the upper and lower bounds in (1.22), respectively. We have that Li−1 =

Ui−1/ (1 + Zi), where Zi = 1−δ
δ · [1− hi(K)] · (1−E [β|ψi−1] ·G(p|ψi−1)). We can see that the

percentage gap, Ui−1−Li−1

Ui−1
= Zi

1+Zi
, goes to zero as K → ∞. The absolute gap, Ui−1 − Li−1 =

Zi
1+Zi

·Ui−1, also goes to zero if s = 0. When s > 0, the size of the absolute gap depends on Zi ·K.

The condition ∂
∂KVi (K) ≥ s should be satisfied by definition, because we assume that the seller

can always salvage the capacity at marginal value s, and thus s should be the lowest marginal value

for Vi (K). This means that the bounds will perform particularly well at the beginning of the selling

season, when the capacity is relatively large compared with the average buying quantity. The gap

is also decreasing in δ, E [β|ψi−1], and G(p|ψi−1). In other words, the bounds are closer to the true

value function when the leftover capacity is more likely to be salvaged, buyers are more powerful

on average, and buyers are more likely to engage in price bargaining.

1.5.5 Discussion

Note that Hi (K) can be written in the form of a′ ·
´K·a′′

0 DdF (D|ψi−1), where a′ and a′′ are

parameters independent of K. Hence, the upper and lower bounds given by Theorem 1.1 and 1.2

can all be written in the form of a ·S+a′ ·
´K·a′′

0 DdF (D|ψi−1), where a, a′, and a′′ are parameters

independent of K. Moreover, we learn from Eq. (1.14) that the value function of a single-period

problem takes a similar form. Therefore, we are basically approximating the value function by a

single-period problem in which the seller treats the next buyer as the last one. This is very likely

to be the mental heuristic used by a salesperson. More importantly, the approximations in both

cases suggest that the shape of the value function depends much on the demand distribution of the

next buyer, which supports our conjecture in Section 1.5.1. We find that if the demand is normally

distributed, we then have a convex-concave value function as described in Proposition 1.2.

Proposition 1.3. If the demand is normally distributed, then the bounds are all convex-concave.
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Other distributions—for example, any unimodal distribution—may also generate an S-shaped

value function, and it is quite natural to expect a unimodal demand distribution.

1.5.6 Plotting the Price Curve

From (1.6) we know that the negotiated transaction price wi is a linear combination of both

parties’ outside options. The seller’s outside option is the average opportunity cost of selling Qi,

which depends on Qi, capacity Ki, and the value function. In this section, we first investigate the

performance and the shape of the bounds given a normal demand distribution and then try to plot

the price curve using different parameter settings.

Without loss of generality, we consider negotiating with buyer i for quantity Qi at time ti. As

in the regression models, we control for capacity level, bargaining power, posted price, demand

uncertainty, as well as all the other buyer-, product-, and market-related factors. In the base case,

we set K = 10, βi = 0.8, E [β|ψi] = βi, p = 8, s = 1, cL = 6, c̄i = 7, G (c̄|ψi) = 1−exp (cL − c̄), and

η = 0.9. We assume that arrival rates satisfy λi
λ0

= M−i
i2
, which means that buyer arrival rate is linear

in the number of potential buyers and the technology-shock arrival rate increases quadratically in

the number of buyers that have arrived. In addition, we assume that the demand of the next buyer is

normally distributed with mean µ and standard deviation σ = µ·CV , where CV = 0.25 is a constant.

When observing Qi, the seller updates belief and set µ = min {12, 16− sm ×Qi} where sm captures

the market structure—larger sm means more concentrated demand. This way of updating means

that if buyer i is very large, the rest of the buyers are likely to be small, especially when the seller

knows in advance the market structure and the identities of the buyers. F0 is normal distribution

with mean 12 and standard deviation 12 ·CV . Finally, we set hi(K) ≈ 1− s ·E [Di|ψi−1] /Vi−1 (K).

See the proof of Theorem 1.2 for justifications.

In Figure 1.5, we present three numerical examples of the bounds for both finite and infinite

M . We can see that the bounds for finite M perform better with smaller M ; the performance of

the bounds for infinite M depends on the assumption of δ, and they work better with larger δ. In

both cases, the bounds are S-shaped given the normal demand distribution.

In Figure 1.6, we use the upper bounds in each case (of finite vs. infinite M) as the approxima-
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Figure 1.5: Illustrations of bounds for the value function.

Note. The three sets of lines illustrate the upper and lower bounds of Vi for different M and δ. In the case

of finite M : “+” for M − i = 3; “–” for M − i = 4; “•” for M − i = 5. In the case of infinite M : “+” for

δ = 0.2; “–” for δ = 0.3; “•” for δ = 0.4.

tion of the value function and generate the negotiated price for three different scenarios. With an

S-shaped value function, we obtain a price-quantity curve in all scenarios that is reversed-N-shaped,

which is consistent with our empirical observation.

1.6 Managerial Implications

So far, we have found the existence of a non-monotonic price-quantity relation in the micropro-

cessor market and have established its plausibility by building a theoretic model and generating a

pattern that is consistent with our empirical observation. In addition, we compared our model with

other possible models in terms of goodness-of-fit to the data and found that our model is much

more likely to to be the correct one. According to our model, the reason some buyers are receiving

lower discounts than who buy less is simple: large buyers accelerate the selling process and small

buyers are helpful in finishing the residual capacity. However, satisfying mid-sized buyers is costly

because after doing so, it would be unlikely to satisfy the next buyer and profit from the remaining

capacity.

In this section, we discuss the managerial implications for the seller to allocate the capacity given

such a non-monotonic price-quantity relation. Basically, it is in the seller’s best interest to avoid

mid-sized transactions by increasing or decreasing the capacity allocated to these buyers. Also,
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Figure 1.6: Model-generated price-quantity relation.

Note. Case F-I: βi = 0.8; M = 3; sm = 0.9; CV = 0.2. Case I-I: βi = 0.8; δ = 0.4; sm = 0.9; CV = 0.2.

Case F-II: βi = 0.5; M = 3; sm = 1; CV = 0.25. Case I-II: βi = 0.5; δ = 0.4; sm = 1; CV = 0.25.

Case F-III: βi = 0.5; M = 5; sm = 1.1; CV = 0.3. Case I-III: βi = 0.5; δ = 0.6; sm = 1.1; CV = 0.3.

when decisions such as posted prices are made ex ante—especially those that are not determined

by salespeople but are related to the price-quantity relation—the seller should be aware of the

non-monotonicity and should not underestimate the price paid by these buyers.

1.6.1 Dynamic Capacity Rationing

The first implication suggests that the seller should control the capacity that is allocated to each

buyer when the flexibility exists. Given the complexity of the value function and the price-quantity

relation, it is not immediately clear whether the seller should increase or decrease the transaction

quantity. Based on our model, we derive a simple rule for deciding the quantity in the following

proposition.

Proposition 1.4. The seller should increase Qi if c̄i > V ′i (K −Qi) and decrease if c̄i < V ′i (K −Qi).

The above result suggests that the rationing decision depends on inventory level, quantity,

demand distribution, and the buyer’s effective procurement cost of an alternative product. If we

hold c̄i constant, then quantity reduction is most likely to happen if K −Qi is close to the mean of

the demand from the next buyer; otherwise, the seller should sell as much as possible. The logic is
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straightforward: to avoid losing the next major buyer due to insufficient capacity. Mathematically,

due to the shape of the value function, it is more likely to have high V ′i (K −Qi) when K −Qi is

neither too high nor too low. On the other hand, if we hold V ′i (K −Qi) constant, then quantity

reduction is more likely to happen when the buyer has a higher outside option (and thus lower c̄i).

The logic is clear: reserve the capacity for buyers who pay higher margins. Overall, the lesson is

that a decision cannot be solely based on the capacity level or a buyer’s quantity and that incorrect

assumptions on the value function lead to suboptimal decisions.

1.6.2 Posted-Price Optimization

We learn from Lemma 1.1 that the posted price determines not only the price a buyer pays but

also the number of price-takers. A price that is too low undercuts the seller’s profitability; a price

that is too high encourages more buyers to engage in bargaining. Hence, the posted price is an

important trade-off. Our model can be used by sellers to optimize the posted price while considering

such a trade-off and a potentially non-monotonic price-quantity relationship. The optimal price is

p∗ = arg maxp V0 (κ, p).

1.6.3 Implications for Other Industries

There are other industries that resemble the semiconductor industry in terms of the key features.

For example, in the travel industry, airline companies and hotels have limited capacities for a

particular flight or date and these capacities should be sold within a limited period. Customers

often include bulk buyers such as travel agencies and resellers who may purchase different quantities

and prices are also normally negotiated. Hence, the implications of our study may carry over to

such businesses. Other examples may include movie theaters, art performances, and sports events

among others, if capacities are sold to agencies or resellers. The main differences between the

semiconductor industry and others are that the obsolescence date is stochastic for the former and

deterministic for the latter and that purchase quantities may be subject to negotiations in other

industries. However, other industries have equivalent stochastic obsolescence dates as long as the
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inter-arrival time of bulk buyers is stochastic (i.e., the seller is not sure if another buyer will come

along before the capacity is salvage). In addition, even if the quantity is subject to negotiation,

we may still observe a non-monotonic price-quantity relationship in other industries, because given

a fixed capacity, selling mid-sized quantities is still the most costly for the seller. Theoretically,

Lemma 1.1 and Eq. (6) still hold even if both price and quantity are determined in Nash bargaining.

Therefore, the formulation of the value function is unchanged, with the exception of the quantity

Qi = ρ∗iDi, which is determined by the negotiation and does not affect subsequent analysis for the

bounds and shape of the value function.

1.7 Concluding Remarks

In this data-driven research, we study the price-quantity relation in B2B markets where the

product life cycle is short and prices are set through one-shot negotiations. Using data from the

microprocessor market, we found that, statistically, the transaction price can be a non-monotonic

function of the transaction quantity. Contrary to our intuition, larger quantities—in a certain

range—can actually lead to higher prices through negotiations. We showed the robustness of this

statistical result with multiple linear regression models. While existing theories cannot explain

our observation, we built an analytical model that allows us to dig into this phenomenon and

understand the rationale behind it.

Our analysis reveals that it is fairly plausible for the price-quantity relation to be non-monotonic.

One sufficient condition for a non-monotonic price-quantity curve is the value function of the seller

being first convex and then concave in capacity. Although we normally assume that the value

function is increasing and concave in capacity, our model shows that this need not be true in

B2B markets. Instead, if the demand is normally distributed—which is often the case—the value

function is likely to be convex-concave. More importantly, we found that a convex-concave value

function is enough to explain our empirical observation: an N-shaped discount curve. We confirmed

this finding by generating a price-quantity curve that is reversed N-shaped, using our model and

the assumption of normally distributed demand.

Such a non-monotonic price-quantity relation has useful implications for a seller regarding dy-

namic capacity rationing (or revenue management) and posted pricing. The model can be extended
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in many ways to further study these issues. Ultimately, this study provides a new theory of non-

monotonic price-quantity relations in B2B markets of short life-cycle products. Though price bar-

gaining is complicated in practice, our model shows that the shape of the value function could be a

sufficient explanation for the non-monotonic relation. We leave it to future researchers to explore

other perspectives on this issue.

Appendix

Proof of Lemma 1.1

If c̄i > p, then Πi(wi)−di = (p− wi)Qi and ΠA(wi)−dA = (wi − p)Qi. Hence, it must be that wi =

p. If c̄i ≤ p, Πi(wi)−di = (c̄i − wi)Qi and ΠA(wi)−dA = wiQi+Vi (Ki −Qi, p)−Vi (Ki, p). Hence,

Πi(wi)−di = (c̄i − wi)Qi = βi (Πi(wi)− di + ΠA(wi)− dA) = βi (c̄iQi + Vi (Ki −Qi, p)− Vi (Ki, p)),

which results in (1.6). �

Proof of Proposition 1.1

Suppose Vi (x) is concave for any x ∈ [0,K]. Thus, we have V ′i (x) < V ′i (K −Qi) for any x ∈

[K −Qi,K]. As a result, we have

Vi(K)− Vi (K −Qi)
Qi

=
1

Qi

ˆ K

K−Qi

V ′i (x)dx <
1

Qi

ˆ K

K−Qi

V ′i (K −Qi) dx = V ′i (K −Qi) .

Similarly, we can get the result for Vi (x) being convex for any x ∈ [0,K]. �

Proof of Proposition 1.2

Let L(x) = Vi(K)−Vi(x)
K−x and we have L(0) > V ′i (0) and limx→K L(x) = V ′i (K). By continuity, there

exist x′′ ∈ (0,K) such that L(x) > V ′i (x) for ∀x ∈ [0, x′′). We claim that x′′ < K and L(x) ≤ V ′i (x)

for some x ∈ [x′′,K]. Suppose this claim is not true. We have L′(x) = 1
K−x [L(x)− V ′i (x)] > 0 for

∀x ∈ [0,K] and thus L(x) is strictly increasing on [0,K]. In addition, because Vi (x) is concave on

[x′,K], we have V ′i (x) > V ′i (K) > L(x) on [x′,K), which is a contradiction.

Now let x′′ = min {x ∈ [0,K) : L(x) ≤ V ′i (x)}. By continuity, we must have L(x′′) = V ′i (x′′),

which indicates L′(x′′) = 0. Suppose x′ < x′′. Concavity requires that V ′i (x) > V ′i (x′′) = L(x′′) >

L(x) on (x′, x′′), which is a contradiction. Hence, x′ ≥ x′′. Now, suppose ∃x0 ∈ (x′′,K) such that

L(x0) > V ′i (x0). We consider two cases: (I) x′ ≤ x0 and (II) x′ > x0. In case (I), V ′i (x) decreases
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for all x > x0 by concavity. However, L(x) increases as long as L(x) > V ′i (x). In order to have

limx→K L(x) = V ′i (K), we need that L(x) decreases while L(x) > V ′i (x), which is a contradiction.

In case (II), we have that x′′ < x0 < x′ and V ′i (x) increases for all x ≤ x0 by convexity. However,

L′(x′′) = 0 < V ′′i (x′′), so by continuity there exist ε > 0 such that

L(x′′ + ε)− L(x′′)

ε
<
V ′i (x′′ + ε)− V ′i (x′′)

ε
.

Therefore, in order to have L(x0) > V ′i (x0), we need that L(x) increases while L(x) < V ′i (x), which

is a contradiction. As a result, L(x) ≤ V ′i (x) for all x ∈ [x′,K). Suppose L(x) = V ′i (x) for all

x ∈ [x′,K). We then have L(x) = limx→K L(x) = V ′i (K) for all x ∈ [x′,K), but V ′i (x) > V ′i (K) for

some x ∈ [x′,K) by concavity, which is a contradiction. The result follows. �

Proof of Lemma 1.2

First, ˆ +∞

0

DdF (D|ψ) =

ˆ K

0

DdF (D|ψ) +

ˆ K/η

K

DdF (D|ψ) +

ˆ +∞

K/η

DdF (D|ψ) <∞

for any K > 0. Second,
´ +∞

0 DdF (D|ψ) = limK→∞
´K

0 DdF (D|ψ). Thus,

lim
K→∞

ˆ K/η

K

DdF (D|ψ) = lim
K→∞

ˆ +∞

K/η

DdF (D|ψ) = 0.

Furthermore,
´K/η
K KdF (D|ψ) ≤

´K/η
K DdF (D|ψ), so limK→∞

´K/η
K KdF (D|ψ) = 0. �

Proof of Theorem 1.1

Part I. Let’s start with the proof of the lower bound. To prove by induction, we suppose for i < M

that

Vi (K) ≥ sK +
(
1− δli+1

)
· ν(p, ψi) ·

ˆ K·λM−i

0

DdF (D|ψi−1) .
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Now, using (1.13), we have

Vi−1 (K) ≥sK + (1− δi) ·{(
1− δli+1

)
·Eβ,c̄ [ν(p, ψi)|ψi−1] ·

ˆ +∞

K/η

ˆ K·λM−i

0

DdF (D|ψi) dF
(
D′|ψi−1

)
+
(

1− δli+1

)
·Eβ,c̄ [ν(p, ψi)|ψi−1] ·

ˆ K/η

0

ˆ (K−D′)+·λM−i

0

DdF (D|ψi) dF
(
D′|ψi−1

)
+ ν(p, ψi−1) ·

ˆ K/η

0

D′dF
(
D′|ψi−1

)}

=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ +∞

0

ˆ K·λM−i

0

DdF (D|ψi) dF
(
D′|ψi−1

)
−
(

1− δli+1

)
·
ˆ K/η

0

ˆ K·λM−i

0

DdF (D|ψi) dF
(
D′|ψi−1

)
+
(

1− δli+1

)
·
ˆ K/η

0

ˆ (K−D′)+·λM−i

0

DdF (D|ψi) dF
(
D′|ψi−1

)
+

ˆ K/η

0

D′dF
(
D′|ψi−1

)}

=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ K·λM−i

0

DdF (D|ψi−1)

−
(

1− δli+1

)
·
ˆ K/η

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
+

ˆ K/η

0

D′dF
(
D′|ψi−1

)}
.

Here for the first equality, we add and subtract
(
1− δli+1

)
·
´K/η

0

´K·λM−i
0 DdF (D|ψi) dF (D′|ψi−1)

in the curly braces. Further, we have

ˆ K/η

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
≤
ˆ +∞

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
= E

[
E
[
D · I

{
(K −D′)+ · λM−i ≤ D ≤ K · λM−i

}
|ψi
]
|ψi−1

]
= E

[
D · I

{
(K −D′)+ · λM−i ≤ D ≤ K · λM−i

}
|ψi−1

]
=

ˆ +∞

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi−1) dF
(
D′|ψi−1

)

42



=

ˆ K·λM−i

0

ˆ +∞

K−D/λM−i

DdF
(
D′|ψi−1

)
dF (D|ψi−1)

=

ˆ K·λM−i

0

D ·
[
1− F

(
K −D/λM−i|ψi−1

)]
dF (D|ψi−1)

≤
ˆ K·λM−i+1

0

D ·
[
1− F

(
K −D/λM−i|ψi−1

)]
dF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

≤ [1− F (K − λK|ψi−1)] ·
ˆ K·λM−i+1

0

DdF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

≤ [1− F0 (K − λK)] ·
ˆ K·λM−i+1

0

DdF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1) .

Here, we first extend the range of integral for D′ to [0,+∞) given that D and F are both positive.

Next, we rewrite the double integral as iterated expectations. Third, we apply the law of iterated

expectations. Fourth, we write the expectation as a double integral again. Fifth, we change the

sequence of integral and then simplify the expression in the next step. Seventh, we split the integral

into two parts and apply F
(
K −D/λM−i|ψi−1

)
≤ 1 for the part from K · λM−i+1 to K · λM−i.

Eighth, given 0 ≤ D ≤ K · λM−i+1, we have F (K − λK|ψi−1) ≤ F
(
K −D/λM−i|ψi−1

)
. Finally,

by assumption, we have F0 (K − λK) ≤ F (K − λK|ψi−1). Now we can write

Vi−1 (K) ≥sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ K·λM−i

0

DdF (D|ψi−1)

−
(

1− δli+1

)
·
ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

−
(

1− δli+1

)
· [1− F0 (K − λK)] ·

ˆ K·λM−i+1

0

DdF (D|ψi−1)

+

ˆ K/η

0

DdF (D|ψi−1)

}

=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
· F0 (K − λK) ·

ˆ K·λM−i+1

0

DdF (D|ψi−1)

+

ˆ K/η

0

DdF (D|ψi−1)

}

≥sK +
[
1− δi + (1− δi) ·

(
1− δli+1

)
· F0 (K − λK)

]
· ν(p, ψi−1) ·

ˆ K·λM−i+1

0

DdF (D|ψi−1)

=sK +
(

1− δli
)
· ν(p, ψi−1) ·

ˆ K·λM+1−i

0

DdF (D|ψi−1) .

Part II. Let’s now check the proof of the upper bound. First, for i = M , we easily have

VM−1 (K) ≤ sK + (1− δM ) · ν(p, ψM−1) ·
ˆ K/η

0

DdF (D|ψM−1)

according to (1.14). Then suppose we have the upper bound for Vi (K): sK + V̄i (K). Accordingly,
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we can use this in (1.13) to get

Vi−1 (K) ≤ δisK + (1− δi) ·{ˆ 1

0

ˆ +∞

K/η

ˆ +∞

cL

[
sK + V̄i (K)

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[
pρ∗D + s (K − ρ∗D) + V̄i (K)

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

[
sK + V̄i (K)− (1− β) sρ∗D

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}

= sK + (1− δi) ·
{
Ec̄,D,β

[
V̄i (K) |ψi−1

]
+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

(p− s)ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) (c̄− s)ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}

≤ sK + (1− δi) ·

{
Ec̄,D,β

[
V̄i (K) |ψi−1

]
+ ν(p, ψi−1) ·

ˆ K/η

0

DdF (D|ψi−1)

}

= sK + (1− δi + (1− δi) (1− δui+1)) · ν(p, ψi−1) ·
ˆ K/η

0

DdF (D|ψi−1) .

Note that we use the fact that
´ (K−ρ∗D)/η

0 DdF (D|ψi) ≤
´K/η

0 DdF (D|ψi) for the first inequality.

We use that ρ∗ ≤ 1 for the second inequality given that p > s and c̄ > s.�

Proof of Theorem 1.2

Let Gi−1(c̄) = G (c̄|ψi−1), Fi−1(D) = F (D|ψi−1), and Bi−1(β) = B (β|ψi−1). We first divide both

sides of Eq. (1.13) by 1− δ and add to the right side

ˆ K/η

0

Vi (K) dFi−1(D)−
ˆ 1

0

ˆ K/η

0

ˆ +∞

p

Vi (K) dGi−1 (c̄) dFi−1(D)dBi−1(β)

−
ˆ 1

0

ˆ K/η

0

ˆ p

cL

Vi (K) dGi−1 (c̄) dFi−1(D)dBi−1(β) = 0.
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We obtain

Vi−1 (K)

1− δ =
δ

1− δ · s ·K + E [Vi (K) |ψi−1]

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[Vi (K − ρ∗D)− Vi (K)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) [Vi (K − ρ∗D)− Vi (K)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

+ p

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

ρ∗DdGi−1 (c̄) dFi−1(D)dBi−1(β)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdGi−1 (c̄) dFi−1(D)dBi−1(β). (1.23)

Because E [Vi (K) |ψi−1] = Vi−1 (K), Vi (K − ρ∗D) ≤ Vi (K), and ρ∗ ≤ 1, we have δ
1−δ ·[Vi−1 (K)− s ·K] ≤

0 + 0 +Hi (K), which results in Vi−1 (K) ≤ s ·K + 1−δ
δ ·Hi (K).

To derive the lower bound, we start from (1.23) and use the optimality of ρ∗. We have

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[pρ∗D + Vi (K − ρ∗D)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

≥
ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[
pD + Vi

(
[K −D]

+
)]
dGi−1 (c̄) dFi−1(D)dBi−1(β).

Similarly, we apply this logic to the case of c̄i ≤ p. As a result, we get

δ

1− δ
· [Vi−1 (K)− s ·K] ≥ (1−E [β|ψi−1] ·Gi−1(p)) ·

ˆ K/η

0

[
Vi

(
[K −D]

+
)
− Vi (K)

]
dFi−1(D)

+Hi (K)

≥ Hi (K)− (1−E [β|ψi−1] ·Gi−1(p)) · [1− hi (K)]Vi−1 (K) .

For the last inequality above, we use the fact that Vi
(
[K −Di]

+) ≤ Vi (K) and

ˆ +∞

0

[
Vi−1 (K)− Vi

(
[K −D]

+
)]
dFi−1(D)

≥
ˆ K/η

0

[
Vi−1 (K)− Vi

(
[K −D]

+
)]
dFi−1(D).

Hence, we have Vi−1 (K) ≥
(
sK + 1−δ

δ ·Hi (K)
)
/
(
1 + 1−δ

δ · (1−E [β|ψi−1] ·Gi−1(p)) · [1− hi (K)]
)
.

To show limK→∞ hi(K) = 1, we need to check two cases: s = 0 and s 6= 0. If s = 0, then we

know from the upper bound that Vi (K) is bounded by Hi+1 (K), which is bounded as K →∞. In

this case, we can show that from the ψi−1 point of view, Vi
(
[K −Di]

+) converges in probability

to Vi (K) as K → ∞. To this end, note that given any ψi both Vi
(
[K −Di]

+) and Vi (K) are

increasing in K but are bounded. Hence, they converge to the same limit C̄ (ψi), and for any ε > 0,
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there exist K (ψi) < ∞ such that |Vi (K) − Vi
(
[K −Di]

+) | < ε. Because K (ψi) is finite, there

exist K∗ε,ξ <∞ for any ξ > 0 such that Pr
{
K∗ε,ξ < K (ψi) |ψi−1

}
< ξ. In other words, for any ε > 0

and ξ > 0, there exist K∗ε,ξ <∞ such that for K ≥ K∗ε,ξ we have

Pr
{
Vi (K)− Vi

(
[K −Di]

+
)
> ε|ψi−1

}
< ξ.

Therefore, Vi
(
[K −Di]

+) converges in probability to Vi (K) and thus

E
[
Vi

(
[K −Di]

+
)
|ψi−1

]
→ E [Vi (K) |ψi−1] .

If s 6= 0, then Vi (K) is unbounded. However, we know from the upper bound that Vi (K)− sK

is bounded by Hi+1 (K). Because ∂
∂KVi (K) ≥ s, we have that Vi (K)−sK is increasing in K. As a

result, Ṽi(K) = Vi (K)− sK converges to a limit. Applying the same logic as for the case of s = 0,

we know that E
[
Ṽi
(
[K −Di]

+) |ψi−1

]
→ E

[
Ṽi (K) |ψi−1

]
. Accordingly, we have

E
[
Vi (K)− sK − Vi

(
[K −Di]

+
)

+ s [K −Di]
+ |ψi−1

]
→ 0.

Since E
[
sK − s [K −Di]

+ |ψi−1

]
= E [s ·min {K,Di} |ψi−1] → E [sDi|ψi−1] < ∞, we know that

E
[
Vi (K)− Vi

(
[K −Di]

+) |ψi−1

]
→ E [sDi|ψi−1]. Therefore,

hi(K) =
E
[
Vi

(
[K −Di]

+
)
|ψi−1

]
E [Vi (K) |ψi−1]

= 1−
E
[
Vi (K)− Vi

(
[K −Di]

+
)
|ψi−1

]
E [Vi (K) |ψi−1]

→ 1. �

Proof of Proposition 1.3

Let the probability density function be f(x) = a · exp
(
− (x−b)2

2c

)
. Note that the critical component

in all the bounds is
´K/η

0 DidF (Di|ψi−1) and
´K

0 DidF (Di|ψi−1). Without loss of generality, we

focus on A(K) =
´K

0 xdF (x). The second-order condition gives ∂2A
∂K2 = f(K)+K ·f ′(K). It is easy

to check that f ′(x) = −x−b
c ·f(x). Hence, we have ∂2A

∂K2 = f(K)·
[
1− K(K−b)

c

]
, which has zero points

K∗1,2 = b±
√
b2+4c
2 . It is clear that only one non-negative zero point exists because c > 0. Therefore,

A(K) is convex-concave. Given sK is linear, we know that the bounds are all convex-concave. �
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Proof of Proposition 1.4

Note that ΠA(wi) = wi (Qi) · Qi + Vi (K −Qi), where wi (Qi) is given by (1.6). The first-order

condition gives ΠA(wi)
′ = (1− βi) · [c̄i − V ′i (K −Qi)]. The result follows. �
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2 Now or Later? Selling to Strategic Bargainers with

Limited Capacity in Business-to-Business Markets

Abstract

In this study we offer a new theory for the common observation of delay of agreements in

business-to-business (B2B) markets by studying a strategic bargaining model wherein the seller

and buyers negotiate over the price of a new product, possess symmetric information, and use

different bargaining tactics. When proposing a counter-offer, a buyer threatens to wait and come

back later before a deadline if the seller rejects. As a countermeasure, the seller threatens to

sell part of the limited capacity to price-takers who may arrive later as a stochastic shock. We

characterize the subgame perfect equilibrium, and we find that (1) it is credible for the buyer

to wait until the last minute when the gain from trade is not high and that (2) it is optimal

for the seller to reject any counter-offer and encourage the buyer to wait when switching is

credible for the buyer (i.e., the buyer is willing to pay a low price) and when the capacity

level is not sufficiently high. If the seller does not know when to encourage the buyer to wait

and always settle the price at the beginning, our numerical study shows that the seller can

lose more than 10% of its revenue. We also study how to optimize the posted price given the

anticipated equilibrium of bargaining and show that incorrect anticipations regarding the timing

of agreement lead to ineffective prices, which can be 8% lower than the optimal price.

[Keywords: business-to-business; price bargaining; dynamic game]
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2.1 Introduction

In many business-to-business (B2B) markets, such as the markets for airplanes (Garvin 1991),

medical devices (Grennan 2013), and microprocessors (Zhang et al. 2015), prices are normally

determined by negotiations. In order to obtain a good price, firms use various bargaining tactics

such as waiting and threatening to walk away. However, while there have been numerous efforts

in the academic literature that study how various market structures, business strategies, and prior

decisions affect bargaining position and profit allocation, fewer efforts have been taken to study

how to make tactical decisions such as when to propose, reject, and accept counter-offers in the

process of strategic bargaining.

Although traditional strategic bargaining models that build on Robinstein (1982) predict im-

mediate agreement, a common tactic used by buyers to force the seller to accept lower prices is

strategic waiting. It is useful for buyers when they believe that waiting or delaying the negotiation,

although might be costly for themselves, can bring more benefits by resolving uncertainties. In some

situations wherein information is asymmetric, buyers can carry out waiting and signal their low

willingness to pay or “patience” (e.g., Admati and Perry 1987 and Cramton 1992). In many other

situations wherein information is symmetric, the intuition is that actual waiting is not necessary

because the consequence can be rationally expected and buyers just need to give out the threat of

waiting if it is credible. However, waiting and delay of agreement are frequently observed in many

practical situations where information should be symmetric (Friedenberg 2014). In the following,

we present the evidences we obtained from the semiconductor industry.

In the microprocessor market, there are multiple competing sellers, such as Intel, Nvidia, and

Advanced Micro Devices (AMD), selling multiple product lines primarily to large original equipment

manufacturers (OEMs or buyers), such as Hewlett-Packard (HP), Lenovo, and Dell. Major buyers

have significant bargaining power and they interact with the major sellers repetitively for multiple

generations of products. The market structure is stable in a reasonably-long time frame, so they

know each other’s outside option quite well except for the uncertainties.

The seller often has to commit and reserve certain levels of capacity for each of the major buyers,

but the purchase quantities proposed by the buyers later on can be different. Once the quantity is

given, it is plausible to assume that information is symmetric between a buyer and a seller in the
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Table 2.1: Summary Statistics for the 130 Observations

Mean Median S.D. Min Max

Qty. of Free Sample 8.18 2 18.77 1 163
Total Purchase Qty. 3.01E6 1.22E5 9.45E6 155 8.84E7
Highest Price (US$) 143.25 84 216.42 7 1469
Waiting Time (days) 69.05 7 154.14 7 892

price bargaining. Other than the major buyers, some small buyers may arrive occationally and pay

a high price due to weak bargaining power. The occasional demand serves as an outside option for

the seller and thus strengthens the seller’s bargaining position. However, it is unknown to both the

buyers and the seller when the occasional demand will occur, and the likelihood of occurrence is

learnt over time. Hence, waiting can be risky for the buyers, because the seller will have a better

position if the occasional demand occurs and worse if otherwise, but there shouldn’t be any extra

cost for buyers to wait unless productions have to begin.

For this research, we interacted with managers of a major semiconductor company and obtained

a data set that encompasses sales record of this company over a three-year period from early 2009

to early 2012. During this period, we have 130 observations that a customer arrived and received a

few free samples before the price was finally settled and large quantities were purchased. In other

words, in such an observation, the first sales record consists of a zero price and a small quantity, and

starting from the second record the customer paid a positive price. This means that the customer

arrived but did not settle the price immediately. Normally, the price negotiation starts when the

free samples are offered and we define the waiting time or delay of pricing as the time interval

between the first and the second sales records. In Table 2.1 we show some summary statistics for

these observations, and in Figure 2.1 we show the distribution of waiting time. We can see that

the average and the median waiting time before the price is settled are 69 and 7 days, respectively.

Given that the major customers had already seen the prototypes in the design stage, the waiting

indicates that the agreement is delayed. Note that such delays of pricing are not observed in other

purchases.

Why waiting and delay exist for negotiations with symmetric information and how decisions

should be made by firms in these situations? To answer these questions, we study in this chapter a

strategic bargaining model with symmetric information in a market environment that is motivated

51



Figure 2.1: Histogram of waiting time.

by the semiconductor industry. While considering that buyers use the tactic of waiting, we study a

particular countermeasure for the seller: when a buyer threatens to wait, the seller threatens to sell

a portion of the capacity if the occasional demand occurs. We focus on situations wherein buyers

and the seller negotiate over the price only once. Using this model, we learn that waiting benefits

the buyer when the product is not very profitable such that switching to an alternative product

will lead to a loss for the buyer. Hence, waiting is credible in those cases, because obtaining a

lower price is very important. Interestingly, buyers’ waiting can sometimes benefit the seller as

well, becaues their waiting awards the seller the opportunity to gain higher profit and thus better

utilize the capacity. When the seller prefers to settle the price later and waiting is credible for a

buyer, the seller will reject any counter-offer and encourage the buyer to wait and thus waiting will

actually happen.

Our results are important not only because they tell the seller how to negotiate with buyers in

different situations, but also because they show the seller what to expect ex ante. When launching

the new product, the seller often needs to set a posted price for the price-takers. We find that the

optimal posted price depends on the timing of negotiation with the major buyers and thus failing

to anticipate the right outcome leads to ineffective pricing. In addition, our model is able to predict

a non-monotonic price-quantity relationship which is empirically identified by Zhang et al. (2014).

The rest of this chapter is organized in the following way. We present a brief literature review

in Section 2.2. In Section 2.3 we construct a dynamic model of B2B price bargaining, and we
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analyzed this model and obtain the main results in Section 2.4. We then explore the property

of the negotiated price in equilibrium in Section 2.5, and we show that our theory can offer an

explanation for the empirical observation of non-monotonic price-quantity relationship documented

in the recent literature. Later in Section 2.6, we discuss how to optimize the posted price for the

seller and the consequences of failing to anticipate the result of price negotiation. In Section 2.7,

we study a modified model wherein the seller allocates her capacity on the go to multiple major

customers. Lastly, we conclude the chapter in Section 2.8. All the proofs are in the Appendix.

2.2 Related Literature

This study is mainly related to three streams of research in the literature. The first stream is

about bargaining with delay of agreement, the second is multilateral bargaining in supply chains,

and the third is posted pricing with the presence of both price-takers and bargainers.

Delays in reaching agreement are frequently observed in practice and studied in the literature.

Cramton (1984) is among the earliest to study the phenomenon that trade often occurs after

costly delay, and it is suggested that the need for learning each other’s valuation under incomplete

information results in rejections and thus the delay. Later, Admati and Perry (1987) and Cramton

(1992) proposed slightly different models in which it is assumed that bargainers can signal the

strength of their bargaining positions by delaying prior to making an offer. In the latest paper

of this stream, Feng et al. (2014) predict delay in price-quantity contract settlement in supply

chains where the demand information is known only to the buyer. In all these papers, there is

an infinite horizon, and the delay of agreement is driven by information asymmetry. Roth et al.

(1988) considered bargaining with deadlines and they documented some experimental evidences

of last-minute agreements, which initiated further theoretical work. Based on this observation,

Ma and Manove (1993) proposed a model of continuous-time, alternating-offer with a deadline and

symmetric information. They assume that players can decide when to make an offer or counter-offer,

but only after an exogenous, random delay due to information transmission and processing. Their

model has a symmetric Markov-perfect equilibrium, unique at almost all nodes, in which players

adopt strategic delay early in the game, make and reject offers later on, and reach agreements late

in the game if at all. Notice that the player who makes an offer closer to the deadline is less likely
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to be rejected, so the delay in their model is driven by the desire to obtain a stronger bargaining

power. We also consider a continuous-time, alternating-offer game with a deadline and symmetric

information. However, our model has a different game structure, in which the bargainer can make

a counter-offer immediately and threaten to wait if the seller rejects. As a countermeasure, the

seller can threaten to sell part of the capacity to price-takers whose arrival is random and shapes

the value of the capacity in a way. We show that sometimes it is credible for the bargainers to wait

and it is also better for the seller to reject the bargainers and encourage them to wait till the last

minute. Hence, our theory adds to the literature that explains the last-minute agreements.

Although our base model focuses on one-on-one bargaining in the B2B market, we also consider

bargaining with multiple bargainers in a modified model. The literature of multilateral bargaining

in B2B markets or supply chains is emerging in recent years and this stream of research normally

study how the profit is allocated among supply chain members. While Dukes et al. (2006) and

Lovejoy (2010) focus on the impact of channel or chain structure, several scholars consider the

impact of bargaining sequence and coalitions. In an assembly chain setting, Nagarajan and Bassok

(2008) consider suppliers who form multilateral bargaining coalitions and compete for a position in

the bargaining sequence. Nagarajan and Sosic (2008) study the stability of coalition in assembly

models. In a retail setting, Aydin and Heese (2014) study an assortment problem of a retailer

that engages in simultaneous bilateral negotiations with all manufacturers for a given assortment.

Different from the sequential models, in which bargaining power is manifested in the position in

the sequence, simultaneous bilateral negotiation models focus on the static equilibrium in which

the contribution of a bargainer to the entire system determines the profit allocation. Zhang et al.

(2014) consider a sequential, bilateral negotiation model in a B2B setting where a seller allocates a

limited capacity to a group of buyers sequentially and settles the price by Nash bargaining. In their

model, firms do not bargain over a single pie, but the size of their respective pies is influenced by

other firms through capacity allocation. In this study, we adopt a simultaneous bilateral bargaining

model, and we supplement this branch of the literature by investigating the impact of the relative

size of a customer’s purchase quantity and offering an explain to the non-monotonic price-quantity

relationships empirically identified in Zhang et al. (2014).

Price-takers and bargainers coexist in many B2B and retail markets, and it is important for

sellers to take both types into consideration when optimizing the posted price. Gill and Thanassoulis
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(2009) study a static model wherein they find that an increase in the proportion of bargainers can

lower the consumer surplus overall. In contrast, Kuo et al. (2011) study a dynamic model wherein

they focus on the dynamic pricing problem and the role of limited inventory when a firm sells to

both price-taking and haggle-prone customers. Our study focuses on selling to a major business

customer and the role of the price-takers is to serve as the outside option for the seller, shape

the value of the limited capacity, and help the seller carry out the threat. Although our model is

dynamic, we consider a static pricing problem.

2.3 A Dynamic Model of B2B Price Bargaining

In our base model, we consider the simplest case of bargaining with a single buyer with a reserved

capacity. In Section 2.7, we will extend the model to consider bargaining with multiple buyers who

share the seller’s capacity. We devised the model to capture the process of price bargaining in

supply chains with the following features: capacity is limited; the seller and buyers learn over time

the value of the capacity; buyers can threaten to wait if their counter-offers are rejected; and the

seller can threaten to reduce the reserved capacity for a buyer by selling to other buyers. Hence, the

seller and buyers use different tactics in the bargaining. Using this framework, we try to understand

the dynamics of the bargaining process and the time it takes to settle the price in supply chains.

We consider a one-shot bargaining event because multiple transactions and repeated bargaining will

unnecessarily complicate the analysis. In fact, one-shot price bargaining is common in practice; for

example, when fixed-price contracts are used.

Seller A (she) introduces the new product to a group of OEM buyers and sets the posted price

pA. Based on forecasts provided by different customers, A builds up a finite capacity. In this base

model, the seller reserves K units of the capacity for C (he), a major customer, who agrees to adopt

this product. At time 0, customer C approaches seller A and asks for Q units of this new product.

For simplicity, we assume C accepts partial fulfillment of his order and A tries to fulfill the order

as much as possible with the reserved capacity.

We denote r as C’s marginal payoff before subtracting the procurement cost. As an outside

option, C could also adopt an alternative product from a different seller. Let c̄ represent the net

marginal cost of buying from the alternative supplier in order to keep the same margin r. However,
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we assume that C could only adopt one product. In other words, if C accepts partial fulfillment of

his order, C could not purchase alternative products from other sellers to fill the gap.

For simplicity, we assume that only the price is negotiated and that the only uncertainty in the

price negotiation is the value of A’s capacity. In addition, we assume that all information between

A and C is symmetric, which is reasonable if they deal with each other repetitively. The negotiation

starts with C proposing a counter-offer w. As a common tactic, C threatens to walk away from

the negotiation and wait if the counter-offer is rejected by A. We assume that C’s production

schedule requires him to finalize the purchase quantity by time T > 0, so he has some flexibility to

manipulate regarding when to close the deal and thus his threat is possible. However, his threat is

credible only when he has the best incentive to carry it out. For example, the customer expects to

get a lower price later. With the counter-offer w, seller A then chooses to accept or reject. As a

countermeasure, A threatens to sell up to s units of the reserved capacity to price-taking customers

if C waits. Notice that this threat is always credible because A could always obtain higher revenue

from price-taking customers.

However, selling the reserved capacity to price-takers is not always possible. For simplicity, we

assume that it happens only when a demand shock occurs. The demand shock is realized at time

ts, following a general probability density function λ(t) with support [0,∞). Let Λ(t) :=
´ t

0 λ(x)dx

be the cumulative distribution function and Λ̄(t) := 1 − Λ(t) be the complement. Accordingly,

Λ(t) = Pr{ts ≤ t} represents the probability of having the demand shock by time t. The existence

of demand shock, of course, should depend on pA. However, rather than scaling λ(t), we model

the dependence of demand on price by scaling the time horizon. Denoting the original time to, we

define T (pA) := To · (1− αpA) and t(pA) = T (pA) · toTo for any pA. Notice that, T is defined once

the posted price is known at time 0, so the model is well specified. By doing so, we maintain the

basic logic: as pA increases, Λ(t) decreases. In other words, the time at which the demand shock is

realized is stochastically decreasing in pA. Also, we avoid assuming an explicit functional form for

λ, which allows us the flexibility to extend the model to bargaining with multiple customers. For

convenience, we will write Λ(t) as Λt.

Figure 2.2 lays out the sequence of events. Before C bargains with A for the price, they agree on

the transaction quantity, which is Q∧K if the demand shock has not occurred and is Q∧ (K − s)

otherwise. Note that x ∧ y = min{x, y} and s ≤ K by definition. At any particular time t, if C’s
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Figure 2.2: Sequence of events.

counter-offer is rejected and he does not wait, we assume that the two parties will be engaged in

a Nash bargaining (Nash 1950) and the bargaining solution will be given by p̄t = arg maxp(d
C
t −

p)γ(p − dAt )1−γ where γ ∈ [0, 1] is C’s relative bargaining power and dit denote the disagreement

price for i ∈ {A, C} at time t. Actually, the assumption of a Nash bargaining solution is plausible,

even in our strategic setting. According to Binmore et al. (1986), a Nash solution can approximate

the equilibria of strategic models when the interval between consecutive counteroffers approaches

zero, which—because we use a continuous time model—is the case here. However, if pA ≤ c̄, it is

not credible for C to switch (i.e., dCt = dAt = pA) and thus he has to pay the posted price.

If the capacity reserved for C has not been sold out by time T , seller A has a number of salvage

options. She could sell the capacity to customers who arrive afterwards, or she could downgrade

the product to supplement her supply of lower grade products.1 Let π (x) denote the salvage value

of A’s residual capacity x after time T . In general, we assume that π (x) is increasing in x. To

make sure there exists a Nash bargaining solution, we assume π (K) ≤ pA ·K.

2.4 Model Analysis

The objective of our analysis is to characterize the conditions for C’s threat to be credible,

obtain the best response of A to C’s counter-offer, and derive the negotiated price in equilibrium.

We assume that both A and C aim to maximize their respective expected payoffs.

1This is normal in semiconductor and high-tech supply chains.
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2.4.1 The Bargaining Process

Given that customer C could walk away and wait during the bargaining process, he may return

with a counter-offer at any time. Thus, suppose C starts or resumes the bargaining process at

time t. First of all, if the demand shock has already occurred (ts ≤ t), then it is automatically

credible for C to wait from t to T , because A’s reserved capacity will no longer change. Since time

discounting is negligible and both parties’ outside options are fixed in this case, it is equivalent

to bargaining at time T . Without loss of generality, we assume that C will buy at time T . Let

ph := p̄t|ts≤t denote the Nash bargaining solution, or NB price, at time t given that ts ≤ t. Note

that ph = pA if pA ≤ c̄, and ph = γdAt |ts≤T + (1 − γ)c̄ if pA > c̄, where dAt |ts≤T stands for the

disagreement price for A at time t given ts ≤ T .

Next, we consider the case in which demand shock has yet to occur (ts > t). Suppose there

exists a subgame perfect equilibrium (SPE) such that at any time t ∈ [0, T ], C pays ω(t) if ts > t,

and C can credibly wait from t to τ(t) in case of rejection. Given W := {ω(t) : t ∈ [0, T ]}, the price

trajectory in SPE, let J tz (W ) denote C’s expected payoff of buying at time z ≥ t when he is at time

t and ts > t. Thus, we have

τ(t) = sup

{
arg max

z∈[t,T ]
J tz (W )

}
, (2.1)

which is a mapping from [0, T ] to [0, T ]. Given Γ := {τ(t) : t ∈ [0, T ]}, we can compute W accord-

ingly. Hence, an SPE exists if there exists a fixed “point” for Γ(W ) or W (Γ). In the following, we

derive W (Γ) and then J tz (W ).

At any time t, if τ(t) = t, then it is not credible for C to wait and we have that ω(t) equals

the NB price given ts > t: p̄t|ts>t. However, if τ(t) > t, then C would offer the lowest price that is

acceptable for A. Recursively and compactly, we have (see the appendix for the derivation)

ω(t) =


p̄t|ts>t, τ(t) = t;(

1− Λtτ(t)

)
ω (τ(t)) + Λtτ(t) [ph + (pA − ph) θ(K)] , τ(t) > t,

(2.2)

where Λtτ := Pr {ts ≤ τ |ts > t} = Λτ−Λt
1−Λt

is the Bayesian updated distribution of the demand shock

given ts > t, and θ(K) := 1−Q∧(K−s)
Q∧K ∈ [0, 1] represents the percentage of C’s procurement quantity

that is threatened by the demand shock.
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Now, we show how to compute p̄t|ts>t. If pA ≤ c̄, we have p̄t|ts>t = pA; if pA > c̄, the

Nash bargaining leads to p̄t|ts>t = γdAt |ts>t + (1 − γ)c̄. To obtain dAt |ts>t, we first derive that

dAT |ts>T =
π(K)−π((K−Q)+)

K∧Q and dAT |ts≤T =
π(K−s)−π((K−s−Q)+)

(K−s)∧Q . Note that x+ := max {0, x}.

Second, if customer C walks away at any time t, the seller will do the following: sell up to s units

of the reserved capacity if the demand shock occurs and salvage the residual capacity at time T .

As shown in the appendix, the lowest price the seller would accept is

dAt |ts>t = ΛtT
[
θ(K)pA + (1− θ(K)) dAT |ts≤T

]
+
(
1− ΛtT

)
dAT |ts>T . (2.3)

Next, we define pl := p̄T |ts>T . After obtaining W (Γ), we proceed to get

J tz (W ) =Λtz (r − ph) (Q ∧ (K − s)) + (1− Λtz) [r − ω(z)] (Q ∧K) . (2.4)

It is the weighted sum of two possible outcomes, which depend on whether demand shock oc-

curs while C waits. By definition, the threat to wait at t is credible if and only if τ(t) =

sup
{

arg maxz∈[t,T ] J
t
z (W )

}
> t. Before we solve C’s optimal timing problem and the SPE in

the next section, we offer a preliminary observation.

Proposition 2.1. NB price p̄t|ts>t is decreasing in t if θ(K)pA + (1− θ(K)) dAT |ts≤T > dAT |ts>T ,

increasing in t if θ(K)pA + (1− θ(K)) dAT |ts≤T < dAT |ts>T , and time-invariant if otherwise.

Intuitively, it is not credible for C to wait if p̄t|ts>t is increasing or invariant in t, considering

the possibility of a demand shock that depletes A’s capacity. It can be checked that θ(K) = 0 if

K > s+Q. Hence, if A has sufficient capacity and dAT |ts≤T > dAT |ts>T , then p̄t|ts>t is decreasing in

t and it may be credible for C to wait. Otherwise, pA will play a role in determining the dynamics

of p̄t|ts>t. If capacity is moderate but pA is high, it may also be credible for C to wait.
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2.4.2 The Customer’s Problem

Since we assume C’s purchase quantity is fixed, his objective is to maximize his expected payoff,

J tτ (W ), given P and W by optimizing τ . Assuming ω(t) is differentiable, we have the first order

derivative

d

dτ
J tτ (W ) =

λτ · (Q ∧K)

1− Λt

[
ω(τ)− ω′(τ) · 1− Λτ

λτ
− [1− θ(K)] · ph − θ(K) · r

]
. (2.5)

If the maximum of J tτ (W ) occurs at τ∗ ∈ (t, T ), then we must have d
dτ J

t
τ (W ) |τ=τ∗ = 0. If

multiple maximizers are present in (t, T ), then by definition the supremum of the set of solutions,

τ∗, is the waiting destination. Since λτ ·(Q∧K)
1−Λt

> 0, the first order condition can be reduced to

ω(τ) − ω′(τ) · 1−Λτ
λτ

= [1− θ(K)] · ph + θ(K) · r, which indicates that τ∗ is irrelevant of t. If the

maximizer is not in (t, T ), then it is either τ(t) = t or τ(t) = T . In any case, as long as it is not

optimal to buy now, τ∗ is irrelevant of t. In other words, d
dtτ
∗ ≡ 0. Thus, if any offer is rejected

at any time t < τ∗, C would wait until τ∗. Although it is possible that for certain t′ > τ∗ we

have τ(t′) > t′ when J tτ (W ) is not monotone in τ , it is not relevant when we stand at t ≤ τ∗.

Incorporating the above observations, we obtain the following important result.

Theorem 2.1. In any SPE, ∂ω(t)
∂τ∗ = 0 and thus ω(t) ≡ p̄t|ts>t.

The theorem says that C always pays the NB price no matter when he buys and he cannot gain

advantage by waiting. Based on this theorem, we obtain W := {ω(t) : t ∈ [0, T ]}, and can solve for

τ∗ by plugging W into (2.5). In particular, we have d
dτ J

t
τ (W ) = λτ

1−Λt
· (Q∧K) · θ(K) · (pA ∧ c̄− r)

when we plug ω′(τ) into (2.5). Accordingly, we characterize SPEs as follows.

Corollary 2.1. If K ≥ Q+ s, then d
dτ J

t
τ (W ) = 0 and thus τ(t) = T ; if K < Q+ s and pA ∧ c̄ < r,

then τ(t) = t; if K < Q+ s and pA ∧ c̄ ≥ r, then τ(t) = T .

The result shows that if A’s capacity is absolutely sufficient (i.e., K ≥ Q + s), then C can

credibly wait at any time. It is because the capacity that is needed by C is not under any threat.
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Mathematically, when K ≥ Q + s we have d
dτ J

t
τ (W ) = 0 and C’s expected purchase cost is a

constant ex ante. Otherwise, the credibility of C’s threat largely depends on the relative values of

the posted price pA, the marginal cost of the alternative product c̄, and the marginal revenue r.

If the end product is very profitable for the customer, then the threat of waiting is never credible

because the customer would have huge loss if the capacity is reduced. If the product is not very

profitable such that the profit would be negative when paying the posted price or when switching

to the alternative product, then getting a greater discount is so important that waiting till the last

minute is credible. In short, the SPE depends greatly on the capacity level and the level of the

customer’s profitability.

2.4.3 The Seller’s Problem

Given the SPE, seller A then posts pA at t = 0 and decides on how to react to C’s initial

counter-offer in order to maximize her expected revenue in equilibrium, ΠA. In this section, we

analyze the best reaction to C’s counter-offer. Let Π0
A and ΠT

A denote A’s expected revenue when

C decides to buy at time 0 and T , respectively, given {K,Q, s}. We have

Π0
A = p̄0 ·K ∧Q+ ΛT ·

[
pA · s ∧ (K −Q)+ + π

(
(K − s−Q)+

)]
+ΛT · π

(
(K −Q)+

)
, and (2.6)

ΠT
A = ΛT

[
pA · s ∧K + ph ·Q ∧ (K − s) + π

(
(K − s−Q)+

)]
+ΛT

[
pl ·K ∧Q+ π

(
(K −Q)+

)]
. (2.7)

Through algebraic manipulations, we find the following important result:

Π0
A −ΠT

A =


0 if pA ≤ c̄;

(c̄− pA) · (1− γ) · ΛT · (K ∧Q) · θ(K) if pA > c̄.

(2.8)

Therefore, we always have Π0
A ≤ ΠT

A, which is surprising. In other words, within our modelling

framework, A should never strictly prefer that they close the deal at time 0. The intuition is that
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Table 2.2: The Time Preference versus the Credibility of Waiting

Scenarios pA ≤ c̄ or K ≥ s+Q pA > c̄ and K < s+Q

pA ∧ c̄ < r

Π0
A −ΠT

A = 0 and τ(0) = 0

Best action for A :
Negotiating at t = 0

Π0
A −ΠT

A < 0 and τ(0) = 0

Best action for A :
Negotiating at t = 0

pA ∧ c̄ ≥ r

Π0
A −ΠT

A = 0 and τ(0) = T

Best action for A :
Accepting ω(0) or

negotiating at t = T

Π0
A −ΠT

A < 0 and τ(0) = T

Best action for A :
Rejecting any counteroffer
and negotiating at t = T

splitting the entire pie (i.e., the total expected payoff generated by the full capacity) at time 0 is

worse for A than splitting the residual pie (i.e., the total expected payoff generated by the residual

capacity) at time T . In particular, A would prefer that C waits until T if Π0
A < ΠT

A, which is

possible when pA > c̄ and θ(K) > 0. This is because C would not pay more than c̄, and C’s waiting

awards A the opportunity to gain higher profit and thus better utilize the capacity. Furthermore,

it is possible to let C wait when his threat is credible. Therefore, when Π0
A < ΠT

A and τ(0) = T , the

best reaction for seller A is to reject C’s initial counteroffer and encourage him to wait. We restate

this result in the following Corollary and summarize all the results in Table 2.2.

Corollary 2.2. When pA > c̄ ≥ r and K < s + Q, the best reaction for seller A is to reject C’s

initial counteroffer and encourage him to wait.

Now we know that the credibility of customers’ threat to wait can actually sometimes benefit

the seller. To help the seller exploit this result, we explicitly provide the bargaining tactics in Table

2.2, which points out the best actions for the seller to take in different situations.

• When the end product is very profitable for C (i.e., pA ∧ c̄ < r), it is not credible for him to
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wait and thus it is not possible for A to ask him to wait. As a result, the seller should engage

in the price bargaining immediately.

• When the end product is not very profitable and switching is costly for C (i.e., r ≤ pA ≤ c̄),

it is credible for him to wait and A can either accept ω(0) as the initial counteroffer or wait

till the last minute.

• When the reserved capacity is not absolutely sufficient (i.e., K < s + Q), the end product

is not very profitable, and switching is not costly (i.e., r ≤ c̄ < pA), it is credible for C to

wait and A should reject any counteroffer and wait till the last minute. In this case, if the

seller does not encourage the buyer to wait but settle the price at the beginning, we show

by numerical studies that the seller can lose more than 10% of its revenue. The results are

summarized in Figure 2.3. We can see that the loss decreases with c̄ because the larger c̄ the

higher price C pays at the beginning. The loss also decreases with γ because the larger γ

the more the revenue depends on A’s own outside options but not the negotiated price. In

addition, the loss increases with To and s, because the larger the values the higher expected

revenue A can obtain from the price-takers.

Notice that the results presented here are important not only because they tell the seller how to

negotiate with the customer in different situations, but also because they show the seller what to

expect ex ante. As we will see later, the optimal posted price depends on the timing of negotiation

and thus failing to anticipate the right outcome leads to ineffective pricing.

2.5 Non-Monotonic Price-Quantity Relation

In this section, we explore the property of the negotiated price in equilibrium. Zhang et al.

(2015) point out that the negotiated price can be a non-monotonic function of the purchase quantity

in B2B markets. They find some empirical evidences in the semiconductor industry and they offer

a model to explain that phenomenon. They consider the case wherein the seller’s capacity is not

reserved for any specific customer and the seller negotiate with customers sequentially. Here, we
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Figure 2.3: Revenue loss for suboptimal bargaining strategy.
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show that our model can predict a similar price-quantity relation, but we consider the case wherein

there are reserved capacities for the major customers and the negotiations are thus independent of

each other. In fact, both situations exist in the semiconductor industry.

2.5.1 Decomposition of the Negotiated Price

According to Theorem 2.1 and Corollary 2.1, customer C would either buy at t = 0 or t = T

in equilibrium. Hence, there could be three possible outcomes for the negotiated price: p̄0|ts>0,

p̄T |ts>T , and p̄T |ts≤T . In the following, we check how each of them changes with Q. For simplicity,

we assume that the value of the residual capacity π(·) is increasing concave. However, notice that

concavity is not required to obtain any of the previous results.

We use the following parameter setting. The reserved capacity level K is fixed. To make sure

that the seller’s threat is effective, we assume she picks an s such that K < Q+ s. (Note that we

assume the total size of the demand shock is large enough.) We set Q + s = 100. In addition, we

set pA > c̄ and π (x) = maxp p ·min {x, a− bp}. In preparation, we define

R1 = ΛT · pA · θ(K) = ΛT · pA ·
K ∧Q− (K − s) ∧Q

K ∧Q
; (2.9)

R2 = ΛT · dAT |ts≤T · [1− θ(K)] = ΛT ·
π (K − s)− π((K − s−Q)+)

K ∧Q
; (2.10)

R3 = (1− ΛT ) · dAT |ts>T = (1− ΛT ) · π (K)− π((K −Q)+)

K ∧Q
. (2.11)

According to (2.3), dA0 |ts>0 can be expressed as the sum of R1, R2, and R3. Intuitively, if the

bargaining breaks down and customer C walks away, there could be three possible outcomes for the

amount of capacity K ∧Q that could be sold to customer C. First, if the demand shock occurs, a

fraction θ(K) of it will be sold to the price takers. Second, if the demand shock occurs, a fraction

1 − θ(K) of it will be salvaged at time T . Third, if the demand shock does not occur, all of it

will be salvaged at time T . The expected revenue obtained from each outcome is R1, R2, and R3,

respectively. As a result, we can write

p̄0|ts>0 = (1− γ) · c̄+ γ · (R1 +R2 +R3) . (2.12)
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Figure 2.4: The impact of purchase quantity Q.

Therefore, how p̄0|ts>0 is influenced by Q depends on how R1, R2, and R3 change with Q. In

Figure 2.4, we plot dA0 |ts>0, R1, R2, and R3 against Q. We can see that R1 is decreasing in Q. This

is intuitive because as Q increases, the seller can use a smaller s to create a sense of “scarcity” for

her threat and the revenue from the price takers will be lower. Next, according to Figure 2.4, R2

and R3 are not decreasing in Q, which causes the non-monotonicity of the negotiated price. The

reason is that π is increasing and concave: as the residual capacity increases, the seller has more and

more flexibility to optimize the salvage value, but only up to a certain scale. Hence, as Q increases,

the marginal salvage value diminishes and the seller’s opportunity cost in this dimension increases.

Figure 2.5 illustrates the effect of Q on π (K − s) − π((K − s − Q)+) and π (K) − π((K − Q)+)

while holding Q+ s = 100 constant.

Now let’s consider the negotiated price at time T . Under the assumption of K < s + Q, we

have p̄T |ts>T = (1 − γ) · c̄ + γ · R3/ (1− ΛT ) and p̄T |ts≤T = (1 − γ) · c̄ + γ · π (K − s) /(K − s).

Hence, we know immediately that p̄T |ts>T is increasing (because R3 is increasing) in Q and p̄T |ts≤T

is decreasing in Q. They can actually be viewed as special cases of p̄0|ts>0. This also suggests that

only transactions for which the prices are negotiated at the beginning can display a non-monotonic
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Figure 2.5: Illustration of increments in salvage value.

price-quantity relation.

2.5.2 Explorations

If our model is correct, we can use it to explore possible price-quantity relations by setting

different values for {ΛT ,K, pA, a, b, γ}. After extensive numerical experiments, we show in Figure

2.4 that six patterns describe the price curve: (1) decreasing, (2) increasing, (3) V-shaped, (4)

Λ-shaped, (5) v-shaped, and (6) M-shape.

The six curves are all linear combinations of R1, R2 and R3. Key factors determining the final

shape of the curves are K (capacity level), ΛT (probability of the demand shock occuring prior to T )

and π (salvage value determined by a and b). Specifically, K determines the location of the “kinked”

points on R1, R2 and R3, while ΛT and π determine the relative weight of each component. The

irregularities complicate the bargaining process and make the bargaining outcome hard to predict

without an analytic model.

Considering the intuition behind these patterns, we notice that ΛT literally represents the

probability of the demand shock. It is actually a measure of the number of potential customers

for the product; the greater number of potential customers, the greater the probability of demand

shock during the selling season. As illustrated by the first graph in Figure 2.4, when ΛT is high

(= 0.7) and π is small, responding to demand shock is the major outside option for the seller. In

the second graph, ΛT is low (= 0.2) but π is large, so R3, the value of selling to the salvage market

after T , dominates. In the third graph, both ΛT and π are small, so that neither of the two sources

of revenue dominates, and the mixed effect generates a non-monotonic curve. The explanations for
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the other three patterns are similar but more complex because the effect of K is involved.

2.6 Posted Price Optimization

Given that the output of the negotiation could be complicated, it should be difficult to make

decisions that would influence the negotiated price. In this section, we first solve for the optimal

posted price in the base model, in which the capacity is reserved for the major customer. Later, we

will modify the model to consider the case of pricing and bargaining without capacity reservation

in which negotiations with different customers will be interconnected.

Consider that there are n major customers who would like to adopt this product. Certain level

of capacity is reserved for each of them by seller A. We assume that the product is introduced to

the customers at the same time, but they have different deadlines. Let Ti (pA) denote the deadline

of customer i ∈ N , where N stands for the set of customers. Define T (pA) = min {Tj (pA) : j ∈ N}

and βi = Ti (pA) /T (pA). We assume that α, the price sensitivity of the price-takers, is identical for

all the customers so that βi is independent of pA. In addition, let To = T (pA) / (1− αpA), which

means the earliest actual deadline.

We focus on the case wherein the cost of the alternative product is low enough for the major

customers so that they never take the posted price. We know from our analysis that each customer

would settle the price at either the beginning or the deadline in equilibrium. In this case, the

seller’s expected revenue from a customer i can be written as CIi +CIIi ·ΛTi +CIIIi · pA ·ΛTi , where

CIi , CIIi , and CIIIi are constants that are independent of pA. Particularly, it is easy to check that

CIIi < 0 and CIIIi > 0 for any i ∈ N . Then, by restricting Λ and the deadlines, we can produce the

following result.

Proposition 2.2. If Λ(t) is log-concavae in t and βi ≈ 1 for any i, then p∗A closely approximates

the optimal price and it uniquely solves

pA =
Λ (T (pA))

λ (T (pA))
· 1

αTo
−
∑
CIIi∑
CIIIi

. (2.13)
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The condition of Λ(t) being log-concave in t is actually not very restrictive. Many common

distributions such as normal, logistic, uniform, and exponential distributions satisfy this condition.

Although different customers may have different production plan and deadlines for price bargaining,

the above result is useful for us to generate managerial insights.

What can we learn from this model? How could things go wrong if managers mistakenly es-

timated the negotiated prices? How would the posted price be affected? Here we numerically

explore how the optimal posted price should be when customers settle their prices at different time

points. For simplicity, we assume that there are two major customers with symmetric character-

istics, and we consider three cases for the timing of negotiation: (I) both prices are negotiated

at t = 0; (II) one price is negotiated at t = 0 and the other is negotiated at t = T ; (III) both

prices are negotiated at t = T . We also consider four different cases for the residual value function

π(x) = 1
b ·
(
a− x ∧ a

2

)
·
(
x ∧ a

2

)
by setting four different values for a which measures the size of

the residual market. In addition, we assume that Q is known when setting the price, we can view

the optimal price as “hindsight-optimal”. We assume that the capacity level relative to the total

potential demand is fixed; i.e., K/(Q+s) = 0.8. The results of our numerical study are summarized

in Figure 2.6. We have the following observations.

First of all, the optimal posted price should depend on the purchase quantity of the bargainer

and the timing of agreement. In particular, the quantity can impact the optimal posted price in

different ways, depending on when the agreements are reached. If any of the major buyers wait,

the optimal posted price increases with the quantity; otherwise, the price should decrease with

the quantity in general, although sometimes the relation could be non-monotonic. As price-takers

become less and less important, the seller should focus more on the price bargaining. Recall that the

seller splits the entire pie with the bargainer if they bargain at time 0. If the bargainer doesn’t wait,

the seller should reduce the price as s shrinks in order to maximize the pie. If the bargainer waits,

the seller should increase the price in order to maximize the expected revenue from price-takers. In

addition, note that only the residual capacity will be sold to the price-takers if the bargainer makes

the purchase at the beginning; otherwise, more capacity will be sold to the price-takers. Hence, the

optimal price for case (II) or (III) should be higher than in case (I), although the chance of demand

shock will be reduced. From the results, we can learn that failing to anticipate the right timing of

negotiation will lead to ineffective pricing. In particular, if the seller doesn’t notice that she can
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Figure 2.6: The optimal posted price versus purchase quantity.

(1) (2)

(3) (4)
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benefit from customers’ waiting and always anticipates settling the price at time 0, then she may

underprice the product.

2.7 Selling to Multiple Bargainers

The base model is reasonable when there is only one major customer or when the seller reserves

capacity for each major customer prior to the negotiations. Now, we will consider a scenario in

which the seller allocates her capacity on the go to multiple major customers. In this case, we

assume that the seller does not rely on the price-takers to implement her threat; instead, she can

utilize the competition for the limited capacity among the major customers. Hence, customers

have to take into account other customers’ strategies when bargaining with the seller. We will

characterize a Nash equilibrium in this scenario.

We know from the base model that credibility of a customer’s waiting threat depends on K,

Q + s, pA, c̄, and r. In this modified model, s represents the total demand from other customers.

Therefore, the credibility of threat only depends on the total demand TD but not individual demand

Q. Hence, it is natural to focus on an equilibrium wherein all customers buy at the same time. Now

suppose all other customers buy at time τ . It is equivalent to setting λ(t) = 0 for ∀t ∈ [0, τ)∪ (τ, T ]

in the base model. Then according to Corollary 2.1, customer i is indifferent to ∀t ∈ [0, T ] if

K ≥ TD. Or, if K < TD and pA∧ c̄ < r, then customer i can buy at any t ∈ [0, τ ], because λ(t) = 0

for ∀t ∈ [0, τ); thus, d
dtJ

0
t = λt(Q∧K)θ(K)(pA ∧ c̄− r) = 0. If pA ≥ pB, similar arguments suggest

that customer i can buy at any t ∈ [τ, T ]. Consequently, we have the following result.

Lemma 2.1. If all other customers buy at τ , buying at τ is weakly dominant for i in any case.

Since time discounting is ignored in our problem, the result is identical for any τ ∈ [0, T ].

Without loss of generality, we focus on the equilibrium that all strategic customers buy at time

τ = 0, and such a Nash equilibrium exists.
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Lemma 2.2. All customers buying at time 0 constitutes a Nash equilibrium.

In this scenario, the dependence of T on pA is meaningless because the demand shock is no

longer relevant. As a result, we model the dependence of demand on pA in the following way:

the distribution of TD under p′A first order stochastically dominates the distribution under p′′A if

p′A < p′′A. Additionally, we assume π (x) = maxp p · (x ∧ [TD · (a− bp)]). Then, the seller’s pricing

problem can be described as follows:

max
pA

E
[
(K ∧ TD) · p̄+ π

(
(K − TD)+

)]
(2.14)

s.t. fi = Qi/TD, (2.15)

p̄ =
∑

fi · pi, (2.16)

pi = (1− γi) · c̄+ γi · wA−i ∀i ∈ IC , (2.17)

wA−i = p̄−i

1−

[
K −

∑
j 6=iQj

]+
∧Qi

K ∧Qi

+

π

([
K −

∑
j 6=iQj

]+
)
− π

(
[K − TD]+

)
K ∧Qi

∀i ∈ IC , (2.18)

p̄−i =
∑
j 6=i

Qj · pj/
∑
j 6=i

Qj ∀i ∈ IC . (2.19)

The expectation in (14) is with regard to TD. Parameter p̄ is the average price received by

all customers, as defined in (16). Next, (17) describes the Nash bargaining price for customer i,

which depends on the bargaining outcomes for all other customers. The seller’s disagreement price

(wA−i) in (18) is based on (3), in which ΛT = 1 and pA is replaced by p̄−i, the average price received

by all other customers. An implicit assumption is that every customer receives the same service

level when capacity is insufficient. Together, constraints (16) through (19) determine the Nash

equilibrium given pA. Apparently, there is no closed form solution for this problem, though the

optimal price, p∗A, can be determined using simulations.

In search of managerial insights, we consider a special case concerning two customers. To rule

out the effect of exgonenous bargaining power but focus on the impact of demand share, we consider

two customers with equal exgonenous bargaining power, γ, but different demand shares, f1 and
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f2, which are known in advance. Furthermore, we introduce ∆ ∈ [0, 0.5) to measure the demand-

share asymmetry between the two customers and, without loss of generality, let f1 = 0.5 + ∆ and

f2 = 0.5−∆. Therefore, we can write p̄ = f1p1 + f2p2, and we proceed to see how p̄ is affected by

∆ and κ = K/TD, the measure of capacity level. Based on our formulation, the space of capacity

level can be divided into three segments given f1 and f2:

• High level is defined as κ ≥ 1, which means the capacity is sufficient to satisfy both customers.

• Medium level is defined as max {f1, f2} ≤ κ < 1, which means the capacity is sufficient to

satisfy the larger customer.

• Low level is defined as κ < max {f1, f2}, which means the capacity can not satisfy the larger

customer.

As we show, the impact of ∆ on p̄ is closely related to κ.

Proposition 2.3. If κ ≥ 1, then p̄ is decreasing in ∆ ≥ 0.

This result says that, when the manufacturer’s capacity level is high, she can benefit from customer

demand share symmetry. This is because the salvage value function is increasing concave, and any

increase in asymmetry in customer demand shares will drag down the value of the manufacturer’s

outside option.

Next, we check the impact of ∆ on p̄ in the cases of medium and low capacity levels; closed-

form solutions for the equilibrium prices (pe1 and pe2) are provided in the appendix. Since it is

difficult to see analytically how p̄ changes with ∆ when the capacity level is medium or low, we use

computational study to explore the relationships among p̄, ∆, and κ. In Figure 2.7, the 45 degree

line corresponds to κ = f1. It can be seen that p̄ strictly decreases with ∆ when κ < f1 but increases

with ∆ when κ ≥ f1. In other words, demand-share asymmetry benefits the manufacturer when

her capacity level is medium, while symmetry benefits her when her capacity level is low. Changes
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Figure 2.7: Relationship among p̄, ∆, and κ.

in (18), which describes the manufacturer’s outside option, cause the directional changes in the

impact of ∆. The reason for this is that there generally is a kinked point on the price curve at

f1 = κ, and the price received by customer 1 (pe1) decreases faster with f1 when the capacity level

is low than when the capacity level is medium. Meanwhile, the price received by customer 2 (pe2)

generally increases as f2 decreases. Consequently, the increase of pe2 has larger impact on p̄ when

κ ≥ f1, while the decrease of pe1 has larger impact on p̄ when κ < f1.

Knowing that customer demand-share asymmetry can benefit or harm the seller under different

capacity levels, we discuss the effect of asymmetry on the seller’s optimal price, p∗A (∆). We know

that in this modified model, pA only affects the total demand and thus equivalently the level of

capacity. According to Figure 2.7, we know that p̄ in general decreases in the capacity level,

regardless of ∆. Hence, the optimal posted price does not depend on demand-share asymmetry.

2.8 Summary and Insights

In this study, we construct a model to study the dynamics of price negotiation in B2B markets

where the seller and buyers use different bargaining tactics. In particular, buyers can make coun-

teroffers and threaten to wait if their prices are rejected by the seller; as a countermeasure, the seller

can threaten to sell the capacity to other buyers. We consider two different versions of the model
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with the key difference being whether the seller reserves the capacity for each major customer. We

solve the subgame perfect Nash equilibrium for the dynamic game and characterize the credibility of

buyers’ threat of waiting as well as the negotiated price in different situations. Further, we analyze

the seller’s payoff in various situations and obtain the optimal bargaining strategy for the seller.

In addition, we use the model to show that both the negotiated price and the optimal posted price

can be a non-monotonic function of the customer’s purchase quantity. By extending the model to

the case of selling to only two customers that are both bargainers, we showed that asymmetry in

customer size could either benefit or harm the seller, depending on her capacity level.

Theoretic Contribution

Our model is different from the traditional cooperative bargaining models and strategic bar-

gaining models. Cooperative models are static and unable to capture the process of negotiation.

Traditional strategic models incorporate the process of negotiation, but they normally predict im-

mediate agreements given symmetric information; furthermore, they normally do not incorporate

strategic threats commonly used in practical negotiations. In contrast, our bargaining model allows

us to capture the asymmetric threats used by different parties in a dynamic bargaining process. The

model predicts delay of agreements without assuming information asymmetry or exogenous delay

of counteroffers. In the traditional alternating-offer models, a player has to wait till the next period

to propose a counteroffer. Exogenous delay of counteroffers can lead to trivial delay of agreements

because the player who proposes the counteroffer at the last moment has full bargaining power.

However, we assume that it takes no time to propose a counteroffer unless the buyer decides to wait

purposely, so the delay of agreements in our model is purely due to customers’ threats to wait.

Implications for Bargaining Strategy

We learn from our model that the credibility of customers’ threat to wait can actually sometimes

benefit the seller. This is true when (1) the reserved capacity is not absolutely sufficient (i.e., not

sufficient to satisfy both the focal buyer and the occasional demand), (2) the end product is not

very profitable for the customer, and (3) switching is not costly. In this case, it is credible for the

customer to wait and the seller should reject the counteroffer and encourage the customer to wait

till the last minute. In this way, the seller can obtain higher expected payoff. Although the result

75



is surprising, it is reasonable in that the three conditions indicate that it is a “mismatch” for the

seller and the customer: the product is not profitable for the customer and the customer does not

rely heavily on the seller. Knowing such results can make a huge difference for sales managers. In

particular, if the seller does not know when to encourage the buyer to wait and always settle the

price at the beginning, we show that the seller can lose more than 10% of its revenue.

Implications for Posted Pricing

We show that the optimal posted price depends on the timing of negotiation and thus failing to

anticipate the right outcome leads to ineffective pricing. In particular, if the seller doesn’t notice

that she can benefit from customers’ waiting and always anticipates settling the price at time 0,

she may underprice the product. As shown by our numerical examples, the price can be set at

8% lower than the optimal level. In addition, given that the price-quantity relationship can be

non-monotonic, assuming a simple structure can cause serious problems for the seller when making

important decisions ex ante.

Future Research

In future research, it might be interesting to model customers’ cost of switching as a stochastic

process, which is a common consideration when competing sellers may drop prices and new tech-

nology may be frequently launched. Another interesting problem is that whether the seller should

set the posted price and let buyers offer the first price that sets the anchor for the negotiation.

There have been different opinions in practice regarding this issue, it might be a fruitful area for

research.

Appendix

Derivation of ω(t) Given τ(t) > t

If A accepts C’s offer w at t, then

Πaccept
A = (K ∧Q)w + V̂

[
(K −Q)+

]
,

wherein V̂ [(K −Q)+] = Λtτ [s ∧ (K −Q)+pA + π ((K − s−Q)+)] +
(
1− Λtτ

)
· vτ ((K −Q)+). If A
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rejects, then C would wait until τ and a deal is made in equilibrium. At t,

Πreject
A = Λtτ

[
(s ∧K) · pA +Q ∧ (K − s)+ph + π

(
(K − s−Q)+

)]
+
(
1− Λtτ

) [
Q ∧K · ω(τ) + vτ

(
(K −Q)+

)]
.

We get ω(t) by solving out w from Πaccept
A = Πreject

A . �

Derivation of dAt |ts>t

If A accepts C’s offer w at t, then Πaccept
A = (K ∧ Q)w + V̄ [(K −Q)+], wherein V̄ [(K −Q)+] =

ΛtT [s ∧ (K −Q)+pA + π ((K − s−Q)+)] +
(
1− ΛtT

)
π ((K −Q)+). If A rejects, then the bargain-

ing breaks down and Πreject
A = ΛtT [s ∧K · pA + π ((K − s)+)] +

(
1− ΛtT

)
π(K). We get dAt |ts>t by

solving out w from Πaccept
A = Πreject

A . �

Proof of Proposition 2.1

p̄t|ts>t is linear in dAt |ts>t, and how dAt |ts>t is related to t can be easily obtained by looking at (2.3)

and noticing that ΛtT is decreasing in t. �

Proof of Theorem 2.1

By (2.2) and τ(t) = τ∗ = τ(τ∗), we have ω (t) =
(
1− Λtτ∗

)
p̄τ∗ |ts>τ∗ + Λtτ∗

[
pA − pδA (1− θ(K))

]
.

Taking the first order derivative of ω (t) with respect to τ∗, we have

∂ω (t)

∂τ∗
= − λτ∗

1− Λt
p̄τ∗ |ts>τ∗ + (1− Λtτ∗)

∂p̄τ∗ |ts>τ∗
∂τ∗

+
λτ∗

1− Λt

[
pA − pδA (1− θ(K))

]
.

We know that p̄t|ts>t = (1− γ) · pA + γ · dAt |ts>t. Taking the first order derivative of p̄t|ts>t, we get

dp̄t|ts>t
dt

= γ
λt(ΛT − 1)

(1− Λt)2

[
θ(K)pA + (1− θ(K)) dAT |ts≤T − dAT |ts>T

]
=

λt
1− Λt

[
γ(ΛtT − 1)

(
θ(K)pA + (1− θ(K)) dAT |ts≤T

)
+ γ(1− ΛtT )dAT |ts>T

]
=

λt
1− Λt

[
γdAt |ts>t − γ

(
θ(K)pA + (1− θ(K)) dAT |ts≤T

)
+ (1− γ)pA − (1− γ)pA

]
=

λt
1− Λt

[
p̄t|ts>t − γdAT |ts≤T − θ(K)

(
γpA − γdAT |ts≤T

)
− (1− γ)pA

]
=

λt
1− Λt

[
p̄t|ts>t − ph − θ(K)

(
pA − (1− γ)pA − γdAT |ts≤T

)]
.

77



Therefore, ∂ω(t)
∂τ∗ = λτ∗

1−Λt
θ(K)

[
(1− γ)pA + γdAT |ts≤T − ph

]
= 0. Then ω (t) = limτ∗↘t ω (t) =

p̄t|ts>t. �

Proof of Corollary 2.1

According to (2.2), we have ω′(t) = λt
1−Λt

[ω(t)− (1− θ(K)) ph − pAθ(K)], and thus

d

dτ
J tτ (W ) =

λτ
1− Λt

(Q ∧K)θ(K)(pA −Rs).

The results follow immediately. �

Proof of Proposition 2.2

Given βi ≈ 1, A’s total expected revenue can be approximated by

ΠA =
∑

CIi +
∑

CIIi · Λ (T (pA)) +
∑

CIIIi · pA · Λ (T (pA)) .

Then we take the first order derivative with respect to pA and get

∂ΠA

∂pA
= −

∑
CIIi · λ (T (pA)) · αTo +

∑
CIIIi · Λ (T (pA))

−
∑

CIIIi · pA · λ (T (pA)) · αTo

= λ (T (pA)) ·
[

Λ (T (pA))

λ (T (pA))
·
∑

CIIIi −
∑

CIIi · αTo −
∑

CIIIi · pA · αTo
]
.

= λ (T (pA)) ·G (pA)

Suppose there exists p∗A that solves G (pA) = 0. Because Λ is log-concave, we know Λ(T (pA))
λ(T (pA)) is

decreasing in pA. As a result, G (pA) > 0 when pA < p∗A and G (pA) < 0 when pA > p∗A. Therefore,

p∗A is unique and thus ΠA is quasi-concave given that λ (T (pA)) > 0. The result follows. �

Proof of Lemma 2.1

As stated in the text, if K < TD and pA < pB, then d
dtJ

0
t = 0 for ∀t ∈ [0, τ), so by continuity of

J0
t we have J0

t = constant for ∀t ∈ [0, τ ]. If K < TD and pA ≥ pB, then d
dtJ

0
t = 0 for ∀t ∈ (τ, T ].

Again, by continuity of J0
t we have J0

t = constant for ∀t ∈ [τ, T ]. The result follows. �

Proof of Lemma 2.2

According to Lemma 2.1, customer i has no incentive to deviate given all other customers buy at
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τ = 0. This is irrelevant to customer’s demand size, so the argument applies to all customers. �

Proof of Proposition 2.3

Notice that we can write π (X) = TD ·C (x), for which C is an increasing concave function with con-

stant parameters and x = X/TD. Given κ ≥ 1, we have wA−i = [C (κ− f−i)− C (κ− 1)] /fi. Hence,

pi = (1− γ)·pA∧pB+γ ·[C (κ− f−i)− C (κ− 1)] /fi. Because f1+f2 = 1, we have p̄ = f1p1+f2p2 =

(1− γ)·pA∧pB+γ ·[C (κ− f1) + C (κ− f2)]−2γ ·C (κ− 1). Due to the concavity of C, for ∆ > 0, we

have C′ (κ− 0.5−∆) > C′ (κ− 0.5 + ∆), so ∂p̄/∂∆ = γ · [−C′ (κ− 0.5−∆) + C′ (κ− 0.5 + ∆)] <

0. �

2-Bargainer Equilibrium Prices for Medium and Low Capacity levels

According to (17) and (18), if f1 ≤ κ < 1, then we can solve for the equilibrium prices,

pei =
f−i · (1− γ) · pA ∧ pB + f−i

1−κ · C (κ− f−i) + γ · C (κ− fi)
fi·f−i
γ·(1−κ) − γ · (1− κ)

, i = 1, 2;

if 0 < κ < f1, then we have


pe1 =

(1+γ·(κ∧f2)/κ)·(1−γ)·pA∧pB+γ·C([κ−f2]+)/κ
1−γ2·(κ∧f2)/κ

, and

pe2 =
(1+γ)·(1−γ)·pA∧pB+γ2·C([κ−f2]+)/κ

1−γ2·(κ∧f2)/κ
.�
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3 Influencing Purchase Patterns in High-Tech Supply

Chains: the Effect of Price Flexibility

Abstract

Influencing the pace of adoption is important for a seller that introduces a new, short-life-

cycle technology in B2B markets. If buyers adopt too early, they face great demand uncertainty

in B2C markets; if they adopt too late, they miss early sales. In either situation, buyers will

pass on some of the costs through negotiations, resulting in less-than-optimal benefits to the

seller. However, influencing the pace of adoption is difficult for a seller because buyer decisions

are correlated by externalities such as seller’s cost learning and network effect among the buyers,

which cause adoption rush or delay. Besides, in many B2B markets sellers cannot dictate the

price over time to control adoption. We propose that sellers can influence and optimize buyer

behavior through the structure of contract—i.e., fixed- or renegotiable-price—and we support

this by conducting both a causal analysis using data from the semiconductor industry and a

theoretical analysis using a game-theoretic model. We find that fixed-price contracts lead to

faster adoption in the microprocessor market. However, price flexibility in general can affect the

pace of adoption in different ways, and the optimal contract choice depends on the strength of

externality, strength of competition, bargaining power, and the number of buyers.

[Keywords: product adoption; price flexibility; causal identification; externality; high-tech

supply chain]
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3.1 Introduction

When it comes to adopting a new technology or component product from a seller that supplies

multiple buyers (as illustrated by Figure 3.1), a buyer’s decision may bring various externalities

to the system, affecting the payoffs and decisions of other buyers. According to previous research,

there are at least three types of externality that are related to new product adoption. The first is

known as the learning curve effect (Adler and Clark 1991; Irwin and Klenow 1994). For example,

the unit production cost of semiconductor microchips significantly decreases with the cumulative

output. This suggests that buyers could indirectly benefit each other as their adoptions lower

seller cost and enable them to bargain for lower prices (Balachander and Srinivasan 1998). Second,

the more widely a new component or technology is adopted, the more providers for compatible

software, hardware, or services, thus forming a network effect (Katz and Shapiro 1985 and 1986),

which benefits all the buyers. For example, the more widely a microcontroller is adopted, the

more likely other manufacturers are to produce compatible components such as memories and

sensors that augment the capabilities of the controller (Yadav and Singh 2004). In addition, many

controllers must be programmed after purchase and more application-programming interfaces will

support a controller if it is more widely adopted. Third, buyers may be unsure about the benefits

and (design, production, and testing) costs associated with adopting a new product and one buyer’s

decision may influence the beliefs and decisions of others, resulting in an informational externality

(Bikhchandani et al. 1992; Debo and Veeraraghavan 2009).

When such externalities exist, a buyer’s incentive to purchase the focal product over time

increases with the cumulative amount purchased by others, thus purchase quantities of different

buyers in a given time period will be positively correlated. Although externalities may benefit the

Figure 3.1: The system structure.
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seller and buyers, positive correlation of buyers’ adoptions for a product can be harmful, as it can

lead to adoption rush or delay in equilibrium among the buyers, which results in demand-supply

mismatches in the business-to-consumer (B2C) market. In particular, demands for high-tech, short

life-cycle consumer electronics products are highly uncertain, so OEMs (the buyers) will face great

risk if they ramp up productions too early, and the expected mismatch costs may be passed on to

the supplier (the seller) through price negotiations. Conversely, if they ramp up productions too

late, both the OEMs and the supplier will miss early sales opportunities. In addition, a delay in

adoptions potentially undermines sellers’ cash flows and their ability to reinvest in R&D. Therefore,

sellers should carefully influence buyer behavior when introducing a new product.

It is well known that in consumer/B2C markets, sellers frequently use intertemporal pricing

strategies such as limited-time discounts or free trials (Xiong and Chen 2014) to spark adoption in

early stages and control the process over time with price. However, in many business-to-business

(B2B) markets, such intertemporal pricing strategies may not be effective because buyers buy large

quantities and sellers normally do not have absolute pricing power. Instead of dictating prices

over time, sellers in industries such as semiconductor chips (Zhang et al. 2014), medical devices

(Grennan 2013), airplanes (Garvin 1991), raw materials (Elyakime 2000), and services (Bajari et

al. 2006) have to negotiate with buyers to settle prices. Hence, how sellers can control the pace of

adoption in these cases is an open question and we try to answer it in two steps.

In the first step, we interact with a major semiconductor chip company and we analyze the sales

data provided by this company. We find that the company is using different types of contracts in

terms of price flexibility when selling to downstream OEM buyers. The price flexibility is manifested

in contract specifications about how frequently and to what extent the prices can be renegotiated.

In Figure 3.2, we show two typical price patterns for semiconductor chips sold to major buyers.1

We can see that prices for product A were updated one or multiple times across its life cycle, and

we refer to these contracts as renegotiable-price contracts; for product B, prices for all five buyers

were constant across the product life cycle, and we call these contracts fixed-price contracts.

Although the company has the conjecture that the price flexibility may influence buyer adoption

decisions, the influence has not been verified and it is unclear how the adoption would be affected.

To answer these questions, we construct empirical measures for the price flexibility and adoption

1Note that buyers possessed different bargaining powers, so they received different prices through price bargaining.
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Figure 3.2: Recorded transaction prices for two different products.

Note: Data is obtained from a major microchip vendor.

pattern and we show a correlation. Furthermore, we devise an instrumental variable (IV) and

perform a causal analysis to show that price flexibility influenced buyer behavior (i.e., pace of

adoption). Based on our observations, we propose that sellers can influence buyers’ adoption

decisions through the structure of contract; i.e., a fixed- or renegotiable-price contract.

In the second step, given that the price flexibility is a lever, we then study how the seller should

best employ it. Using a two-period, game-theoretic model, we analyze the impact of contract choice

on buyer behavior as well as on the pace of product adoption in a B2B market with the existence of

positive externalities. In this model, we consider the following factors: (i) demand uncertainty and

demand learning; (ii) adoption-independent demand potential; (iii) adoption-dependent valuation

for the buyers; (iv) adoption-dependent cost learning for the seller; and (v) price bargaining between

the seller and the buyers. Our model helps us understand the incentives associated with different

structures of contracts, and our analysis reveals the following interesting but unintuitive results.

• Compared to a renegotiable price, a fixed-price contract can lead to faster adoption in some

cases but slower adoption in others.

• The choice between a fixed and renegotiable price depends on the strength of externality,

the strength of competition from alternative technologies or products, the relative bargaining

power of the buyer, and the number of buyers (i.e., the scale of the “network”).
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Our work is related to the stream of literature that studies product / technology diffusion-process

management. However, the topic of our study, product diffusion-process management in high-

tech supply chains through the choice of contract structure, has not been well investigated. Most

research on product diffusion is based on the Bass model (Bass 1969). Robinson and Lakhani (1975)

conducted the first study of a dynamic pricing problem of a seller who faces a price-dependent

demand process that is represented by an extended Bass model. Under a similar framework, Kalish

and Lilien (1983) studied optimal government subsidy policies for promoting the adoption of a new

energy source. Krishnan et al. (1999) then proposed the generalized Bass model and developed an

optimal pricing path that is consistent with empirical data. More recently, Ho et al. (2002), and

Kumar and Swaminathan (2003) studied the management of demand and sales dynamics in the

new product diffusion process under supply constraint: in their models, a seller can turn down the

request of a customer who then either waits or exits the market.

Our study is distinct from this stream of research in the following ways. First, customer behavior

is different. While most of the previous research focuses on product adoption in consumer markets

and assumes buyers are non-strategic, we focus on business-to-business markets and empirically

find that buyer behavior is significantly dependent on the price mechanism and other buyers’

decisions. Second, the management lever is different. Previous research normally assumes that the

seller has the pricing power and thus could employ intertemporal pricing strategies to influence

buyer behavior; in contrast, we consider markets in which prices are subject to negotiations, and

we propose contract choice in terms of price flexibility as a lever. Third, the problem focus is

different. Previous research uses the Bass model for the demand process and assumes that the

market potential is known and fixed; the focus is on problems such as optimal pricing strategy and

supply constraints. However, we assume that the demand potential in the end market is unknown

and can be learned over time and we focus on how to minimize the cost of demand-supply mismatch

in a two-echelon supply chain system, where positive externalities of adoption exist. Finally, we

use real data to show that the choice of contract-price flexibility can serve as an effective lever for

managing product adoption in high-tech supply chains.

Papers that explicitly consider positive externalities in the product-adoption process normally

do not use the Bass model but assume that buyers are strategic. Katz and Shapiro (1986) study the

network effect in the product-diffusion process and focus on competitive equilibrium in the market.
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Balachander and Srinivasan (1998) study the learning curve effect in new product introduction and

focus on the optimal introductory pricing strategy. Our research is different because we consider

demand uncertainty and price negotiation and we focus on contract choice. In addition, while the

network effect studied in previous research benefits end consumers, we consider network externalities

that only impact the buyers (e.g., OEMs), which we call intermediary good network externality. Our

interactions with sales and procurement managers in high-tech supply chains suggest that thousands

of products are introduced into B2B supply chains each year that experience intermediary good

network externalities of the kind assumed here.

3.2 Empirical Investigation

In this section, we employ empirical analysis to show that, in an industry where both fixed- and

renegotiable-price contracts are frequently used, buyers’ product adoption decisions are influenced

by contract structure chosen by sellers. To do so, we propose measures that represent contract

structure and adoption pattern respectively, and explore the correlation between the measures.

Next, we use an instrumental variable to establish the causal relation between contract structure

and adoption pattern. In addition, we show that adoption patterns are positively correlated among

buyers, which supports the fact that product adoption generates positive externalities.

3.2.1 Data Description

For this study, a major global microprocessor maker supplied sales data encompassing 3,826

products and 251 customers over a three-year period. Each entry of this dataset consisted of a

customer ID, product ID, product category, subcategory, sales territory, bill quantity, unit price,

and date of transaction. Let IC and IP be the indices of customer and product, respectively. We

define an instance θij as the set of purchase (price-quantity) records related to a customer i and

a product j, where i ∈ IC and j ∈ IP . Let Tij be the set of dates at which customer i purchased

product j. Then let qijt and pijt denote the transaction quantity and price for customer i and
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Table 3.1: Instance-Level Summary Statistics

Mean S.D. Min Max

Initial Price ($) 126 200 0.01 2,625

Total Quantity 59× 103 266× 103 101 8.2× 106

Total Value ($) 1.8× 106 5.8× 106 30 132× 106

Duration (days) 306 266 7 1,179

ACVP† 0.53 16 0 1,284

TDPS‡ 0.61 0.26 0.01 1.00

Dist. of ACVP ≤ 0 ≤ 0.05 ≤ 0.5 Total

# of Instances 4452 6353 9603 9,773

†ACVP is a measure of price flexibility. The median is 7.48× 10−4.

‡TDPS is a measure of adoption pattern.

product j at time t ∈ Tij . Hence, an instance is defined as

θij := {(t, qijt, pijt) : t ∈ Tij} .

Notice that the influence of contract structure extends across the entire life span of an instance, and

that any single transaction offers little relevant information. Hence, we examine data aggregated at

instance level. In addition, let ωi be the vector of characteristics that are exogenous for customer

i ∈ IC , and let πj be the vector of characteristics that are exogenous for product j ∈ IP . For

customers, exogenous characteristics ω include the total purchase value with the seller over the

three years (the “size”) and the geographic location. For products, exogenous characteristics π

may include the number of customers buying the product and the product category. Define Ω :=

{ωi : i ∈ IC}, Π := {πj : j ∈ IP }, and Θ := {θij : i ∈ IC , j ∈ IP }. In this way, the dataset can be

summarized as D := {Ω,Π,Θ}.

The instance-level summary statistics are shown in Table 3.1, where ACVP and TDPS are

defined later as measures for price flexibility and adoption pattern, respectively. In particular, we

have ACVP > 0 if a price change is recorded for an instance; otherwise, we view an instance with

ACVP = 0 as being under a fixed-price contract. As shown in Table 3.1, nearly half of the instances

are with fixed-price contracts. This means that both fixed- and renegotiable-price contracts were

frequently used, and provides us with an opportunity to test the impact of contract structure.
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3.2.2 Measures

In the following, we propose measures for contract structure and adoption pattern, respectively.

Contract Structure. The dataset does not give information about the underlying contract struc-

ture ϕ for each instance. Thus, we have to uncover ϕ from the data. However, it is important

to note that in practice, contract choice for price flexibility is hardly a binary one. For example,

sellers may allow price renegotiations, but restrict the range of price variations or degree of price

flexibility by properly designing the contract. Buyers’ adoption patterns may depend on the degree

of price flexibility. Therefore, we propose a continuous measure for the degree of price flexibility

in this study: the adjusted coefficient of variation (CV) of price (ACVP), which is defined as the

standard deviation of price divided by the initial price of an instance. Mathematically,

ACVPij :=

√
1

|Tij |−1

∑
t∈Tij

(
pijt − 1

|Tij |
∑

k∈Tij pijk

)2

pij(min Tij)
. (3.1)

Other possible candidates to measure ϕ include: (i) the average duration of a price, (ii) the variance

of price, and (iii) the CV of price. However, in the Appendix, we point out the problems with these

measures, and thus we adopt the ACVP. Note that instances having only one transaction contain

no information about the underlying price mechanism, so those instances are deleted from D.

Adoption Pattern. The adoption pattern is basically the pace of adoption, which is manifested

in how purchases are made over time. If a buyer decides to slow down the adoption process, the

effects are mainly twofold. First, the duration of an instance may be prolonged, given the same total

amount of purchase. Second, the intertemporal distribution of purchase quantity of an instance will

be right-skewed along the time axis (skewed towards the future). To measure the pace of adoption,

we introduce the time-discounted percentage sales (TDPS) of an instance, using the first date of

the instance as the time reference. Mathematically, we have

TDPSij :=
∑
t∈Tij

qijt · er(min Tij−t)/
∑
t∈Tij

qijt, (3.2)
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where r controls the time weights of this measure.2 Notice that the TDPS is equivalent to the

Laplace transform of the purchase-quantity distribution over time, so comparing it means ranking

quantity distribution in the Laplace transform order. Figure 3.3 illustrates the TDPS meaning.

Figure 3.3: Fictitious instances with different adoption patterns.

In Figure 3.3, the pattern of instance 1 serves as a benchmark. Compared with instance 1,

instance 2 has the same total amount of purchase but have large orders placed at a later stage so

that the pattern is right-skewed. In instance 3, for the same amount in each purchase as in instance

2, the buyer deferred all the purchases so that the pattern is scaled up along the time axis compared

with the second one. Hence, the TDPSs for these three instances are in decreasing order.

3.2.3 Correlation and Causal Analysis

Our goal is to uncover the relation between the unobservable variables—price flexibility and

adoption pattern—by investigating the relation between the ACVP and TDPS. We start with four

preliminary regressions and the results are summarized in Table 3.2. The variables we control in

the regressions include an indicator for fixed-price contracts, the logarithm of the total purchasing

value of a customer over the three years (i.e., Cust-Size), the lag of starting date relative to the

starting date of the first customer (i.e., Time-Lag), the total purchase quantity of the instance, the

average price of the instance, and the number of customers for the product (i.e., Cust-Base).

We can learn from the preliminary regressions that a significant negative correlation exists

2In this research, we carefully set r = 2 per year to ensure that the TDPS is an effective measure.
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Table 3.2: Results of Preliminary Regressions

(i) (ii) (iii) (iv)
Variables TDPS TDPS ACVP ACVP

TDPS - -
-0.035***
(0.010)

-0.032***
(0.010)

ACVP
-0.049***
(0.015)

-0.046***
(0.015)

- -

Fixed-Price
0.150***
(0.006)

0.152***
(0.006)

-0.129***
(0.005)

-0.128***
(0.005)

Cust-Size
-0.011***
(0.001)

-0.012***
(0.001)

0.003***
(0.001)

0.005***
(0.001)

Time-Lag
1.3E-4***
(2.2E-5)

1.6E-4***
(2.1E-5)

5.6E-5***
(1.8E-5)

7.6E-5***
(1.8E-5)

Total-Qty
-8.1E-8***
(1.2E-8)

-
0.4E-9
(1E-9)

-

Avg-Price
-1.6E-4***
(1.4E-5)

-
1.6E-5

(1.2E-5)
-

Cust-Base
-3.8E-4*
(2.15E-5)

-
-0.001***
(1.7E-4)

-

Constant
0.779***
(0.028)

0.770***
(0.026)

0.109***
(0.025)

0.041***
(0.023)

Adj. R sq. 0.17 0.15 0.12 0.12
Obs. 6487 6487 6487 6487

Note: Standard errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01.

between the TDPS and the ACVP. The results also imply that if the TDPS of an instance is

around 0.61 (the average), then the change of contract structure from fixed-price to renegotiable-

price will be associated with a delay of nearly two month for each purchase, which is meaningful

for semiconductor chips.

Although we try to control as many variables as possible, there are unobservable variables

that can influence TDPS and ACVP, such as demand uncertainty, market competition, and buyer

preferences. Also the ACVP and TDPS are approximations for the price flexibility and purchase

pattern. These factors contribute to low R2. The focus of our analysis is on uncovering a relation

between the price flexibility and purchase patterns but not on developing a prediction model. The

low P values establish that the relation is statistically significant.3

The following lists alternative casual hypotheses for the correlation between the ACVP and

3Note that high R2 is normally not required for causal analysis (e.g., Ichino and Winter-Ebmer 1999; Glaeser et
al. 2004).
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TDPS.4 Notice that the preliminary regressions suggest that the total purchase quantity and the

average price of an instance are not correlated with the ACVP, so we do not consider them here.

Hypothesis (I). The contract structure causes adoption pattern; i.e., buyers respond strate-

gically to the degree of price flexibility. For example, it is likely that buyers tend to delay their

purchases when prices are renegotiable. If this is the case, contract choice should be a useful lever

for sellers to control product-adoption processes.

Hypothesis (II). The purchase pattern of each instance is exogenous, and the seller or the

buyer designed the contract structure based on this pattern. For example, the seller may offer a

discount to a buyer if product adoption was slow at early stage, or, if a buyer knew that larger

quantities would be purchased at later stage, she might prefer a contract with a flexible price so that

a lower price could later be negotiated. Another scenario may be that buyers have been strategically

controlling their adoption patterns to influence the price regardless of the initial contract choice.

Whichever is the case, the degree of price flexibility is caused by the adoption pattern, and ex-ante

contract choice is not useful.

Hypothesis (III). Price flexibility and adoption pattern are commonly caused by a set of

unobservable variables ε (e.g., price flexibility and adoption pattern are jointly determined by

buyers, by product-specific market norm, or by a general trend over time).

Hypothesis (IV). The measures ACVP and TDPS are commonly influenced by the duration of

an instance. The TDPS is by definition dependent on the duration, which is a part of the adoption

pattern. However, there is no guarantee that the ACVP is directly affected by the duration of an

instance. In addition, it is important to note that the ACVP could be correlated with duration

even if there is not a direct link between the two; e.g., they could be commonly caused by the

adoption pattern given (II) is true.

Hypothesis (V). The measures ACVP and TDPS are commonly influenced by a set of unob-

4Following Reiss (2005), we assume that: Any two variables X and Y are correlated if and only if either (i) X
causes Y , (ii) Y cause X, (iii) a common cause Z causes both X and Y , or (iv) any combination of (i)–(iii). Because
the ACVP and TDPS are just measures, (i) and (ii) do not apply. Also, we assume the transitivity of causal relations
holds: For any three variables X, Y , and Z, if X causes Y and Y causes Z, then X causes Z.
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servable variables ε′, which may include buyer-specific, product-specific, or time-related factors.

Figure 3.4: Possible causal relations.

Note: A circle represents an unobservable variable, a solid dot represents an observable variable, and a

directed edge represents a causal relation with the edge pointing from the cause to the result.

All of the possible causal relations are summarized and illustrated on the left of Figure 3.4.

Here, we propose an IV that can be used to test the possible causal relations. Thanks to the seller’s

learning-by-doing and the existence of other possible externalities, buyers may respond directly to

adoption decisions of other buyers, especially those who adopt earlier. Even if purchase information

is privy to each buyer, it is still very likely that purchase decisions are highly correlated among

buyers due to some common causes. As a result, we separate the first buyer of a product from the

rest and use the TDPS of the first buyer to generate an instrumental variable to test the relation

between the ACVP and TDPS for other buyers of this product. The possible causal relations are

shown on the right of Figure 3.4.

3.2.4 Test of Hypotheses

In preparation, we delete data for products with only one buyer and 13 instances with an ACVP

greater than 10 (abnormally large). In addition, to avoid the truncation effect in this dataset, we

only include instances with an observed starting date at least one month later than the starting

date of the dataset and an observed ending date at least one month earlier than the ending date of
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the dataset. We then run regressions (a), (b), and (c), controlling a set of variables C = {Cust-Size,

Time-Lag}. The results are summarized in Table 3.3.

Table 3.3: Tests of Correlations With the Instrumental Variable

Regression γ̂ P-value

(a) Y = γa ·X + µ′a · C + εa 0.3944 4.9E-232

(b) Y = γb · Z + λb · I {Z = 0}+ µ′b · C + εb -0.0486 0.0029

(c) X = γc · Z + λc · I {Z = 0}+ µ′c · C + εc 0.0442 0.9935

Note: There are 5,652 observations. The P-value for (c) is based on the one-sided test.

X: TDPS for the first buyer of a product.

Y : TDPS for a buyer who is not the first buyer of a product.

Z: ACVP for a buyer who is not the first buyer of a product.

Regression (a). We regress the TDPS of a buyer who is not the first buyer against the

TDPS of the first buyer. We have a positive correlation with a significant P-value. This means

that adoption patterns among the buyers are positively correlated, possibly due to the positive

externalities.

Regression (b). We regress the TDPS against the ACVP for a buyer who is not the first

one, with the contract type and the total purchase quantity of the instance controlled. We have a

negative correlation with a significant P-value. This regression is similar to the one with the full

dataset, and it suggests the existence of causal relations.

Regression (c). We regress the TDPS of the first buyer against the ACVP of a buyer who is

not the first one for that product, with the contract type and the total purchase quantity controlled.

We have no significant negative correlation. However, if hypothesis (I) is not true, we would have

obtained a negative correlation as discussed in the following.

First, suppose (II) or (IV) or both are true. In other words, the TDPS and the ACVP are

commonly influenced by the adoption pattern. In this case, the TDPS of the first buyer (X), the

TDPS (Y ) and the ACVP (Z) for a buyer who is not the first should be commonly influenced by

the adoption pattern of the first buyer or by some factor ε′′. Regressions (a) and (b) suggest X

and Z should be negatively correlated. However, (c) shows that this is not supported by the data.

Second, suppose (III) or (V) or both are true. As broadly as we can imagine, the unobservable
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factors ε and ε′ can only come from three sources: product-specific factors, buyer-specific factors,

or some market- or technology-related trends. We test them in sequence.

• If ε and ε′ are product-specific characteristics, such as supply-side or demand-side competition,

life-span, grade, or usage among others, then all the buyers buying a product are subject to

the same impact; i.e., ε and ε′ should influence all the buyers of a product. As a result, X, Y ,

and Z should be commonly influenced and thus correlated. However, this is not supported

by regression (c).

• If ε and ε′ are time-related factors, then all the buyers buying in the same period are subject

to the same impact. We learn from the data that the average time lag between a buyer’s

first purchase of a product and the first-ever purchase of that product is less than a quarter.

Thus, the first buyer of a product should be viewed as being in the same period as subsequent

buyers. As a result, X, Y , and Z should be commonly caused and thus correlated. However,

this is not supported by (c).

• Given our previous arguments, ε and ε′ can only be buyer-specific characteristics. If this is

the case and (I) is not true, then the correlation between the ACVP and the TDPS with total

quantity controlled should not exist conditioning on a specific buyer. However, we show that

this is not true (in the Appendix). The correlation suggests that contracts were not offered

by buyers; otherwise, buyers would have selected contracts to fit their situations, rendering

contract structure and adoption pattern commonly caused by buyer type.5

Finally, to close the loop and confirm hypothesis (I), we can use the correlation between the ACVPs

of the first and a subsequent buyer, which is due to the seller’s contract preference, and apply a

similar IV method: regress the TDPS of the buyer who is not the first one against the ACVP of

the first buyer for that product with the contract type and the total purchase quantity controlled.

We obtain a coefficient -0.044 with P-value 0.0735, implying a negative correlation. As a result,

5Let qi denote the purchase profile of buyer i, and ui (qi, ϕ) the payoff. If the contract is offered by buyers, then
buyer i would choose contract ϕi = arg maxqi,ϕ ui (qi, ϕ), which suggests that ϕ should be a function of buyer type.
Although we cannot directly prove that contracts were indeed offered by the seller, it is very likely the case given
that there was no third parties who offered the contract.
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we claim that contract structure influences adoption pattern; i.e., buyers respond to the contract

structure by intertemporally shifting their purchase quantities.

3.2.5 Discussions

To arrive at the above causal relation, we have employed an approach that is different from

traditional methods such as direct regression of buyer behavior against contract structure. Due to

the nature of the problem we are examining, direct regression is not effective. First, direct regression

cannot identify causal directions. Second, to estimate causal effects through direct regression, all

the possible common causes have to be controlled simultaneously, many of which are unobservable,

and we cannot reject the existence of the possible common causes. In addition, it is hard to find

an instrumental variable that is independent of all of the unobservable variables. In contrast, our

approach is immune to all these concerns. In particular, our approach is to rule out one alternative

hypothesis at a time, and thus we do not need to simultaneously test all the alternative hypotheses.

The causal relation we just observed suggests that the contract structure is an effective lever

to influence buyer behavior in the product-adoption process, at least for a major seller in the

semiconductor industry. Several questions immediately emerge: Does renegotiable price always lead

to late adoption? Is faster adoption always preferable? How should the seller pick the contract? To

gain a deeper understanding, we develop a model to explore how the price flexibility and contract

structure would affect buyer behavior in different situations.

3.3 The Model

Now we build a stylized model and make the following key assumptions. (i) The seller makes the

choice between fixed- and renegotiable-price contracts. (ii) Buyers make quantity decisions after

the contract type is determined. (iii) Buyers face uncertain demand and they learn about demand

over time. (iv) The demand potential in the B2C market is independent of product adoption. (v)

The unit production cost for the seller is decreasing with the cumulative production quantity. (vi)

Product adoption influences buyers’ valuation for the focal product. (vii) Prices are negotiated.
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Market Characteristics

Consider a seller (he) that produces a (component) product X and sells it to n buyers in two

periods.6 Let N = {1, 2, ..., n} be the set of the indices for the buyers, and “0” index the seller. The

buyers use product X to produce similar but differentiated (or at least branded) final products.

Each unit of final product consumes one unit of product X. To make the seller’s problem tractable,

we abstract from direct competition among the buyers and their pricing problems in the end market.

We assume that the total demand potential Di for buyer i is exogenously given. D̃ := (D1, . . . , Dn)

is unknow ex ante, but follows prior joint distribution F , which is common knowledge. The marginal

distribution Fi has a compact support [0,Mi]. Demand Di will be realized over two periods: αiDi

in period 1 and (1 − αi)Di in period 2, where αi ∈ (0, 1) for any i is publicly known, plausibly

due to known product-diffusion patterns. We model demand learning by assuming that Di will

be observed by buyer i during period 1. Note that brand-choice-based product substitution in the

end market is captured by the joint distribution F . However, for the sake of tractability, we ignore

stockout-based substitution among the final products. In case of stockout in period 1, a fraction

b ∈ [0, 1] of the unsatisfied demand will be backlogged and satisfied by priority in period 2; the rest

will exit the market.

Adoption Decisions

Buyers can purchase product X in both periods. Holding cost for excess purchases is ignored.

Let qi and fqi denote purchase quantity of buyer i in period 1 and period 2, respectively. Moreover,

let dit and sit denote the demand and sales of buyer i in period t, respectively. Then we have

si1 = min {qi, di1} = min {qi, αiDi} and si2 = di2, because demand is known to i in period 2.

In particular, the total demand in period 2 is the sum of backlogged demand and newly realized

demand—i.e., di2 = b [αiDi − qi]++(1−αi)Di, where x+ := max {0, x}—and the purchase quantity

fqi =
[
di2 − [qi − αiDi]

+]+ just fills the gap between demand and existing capacity for a rational

buyer. The following lemma transforms fqi from a complicated function to the difference of two

simple convex functions, and it provides an expression for the amount of excess capacity that is

carried over and used in period 2. Note that x ∧ y := min {x, y}.
6A two-period model sufficiently captures the dynamics of our problem, and the finite horizon reflects that the

product has a limited market window, possibly because of advances in technology or changes in consumer tastes.
Such a setting is consistent with papers that study product adoption with positive externalities and strategic buyers,
e.g., Katz and Shapiro (1986) and Balachander and Srinivasan (1998).
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Figure 3.5: Sequence of events.

Lemma 3.1. fqi = [Di − qi]+ − (1− b) · [αiDi − qi]+ and si2 − fqi = Di ∧ qi − αiDi ∧ qi.

Externalities

Define St as the sum of purchase quantities across all buyers up to period t = 1, 2. Hence, we

have S1 =
∑
qi and S2 =

∑
(qi + fqi). The purchases result in two types of externalities. First,

the seller’s marginal production cost c is a decreasing convex function of the cumulative production

quantity, which is an increasing function of the total purchase quantity; i.e., unit production cost

is c (St) in period t, for which c′ ≤ 0 and c′′ ≥ 0. Second, the value of product X for buyer i in

period 1 is vi (S1), for which v′ ≥ 0 and v′′ ≤ 0,7 and the value in period 2 is ρ · vi (S2), where

ρ > 0. The value is realized after a final product is sold, and it captures the value of product X

in the end market net of the associated production and selling costs. Thus, leftover products will

have zero value after period 2. In the base model, we assume ρ = 1, and time-dependent value

with general ρ will be discussed in Section 3.7.1. For simplicity, we assume S2 is large enough so

that c (S2) ≈ c(∞) = c∗ and vi (S2) ≈ vi(∞) = v∗i . Lastly, we assume that demand potential is

independent of St. This is true when the network effect is restricted to the buyers,8 and is also the

convention in the literature (e.g., Bass 1969; Ho et al. 2002).

The Bargaining Game

The game proceeds as illustrated in Figure 3.5. At time zero, the seller chooses whether or not

7This assumptions about vi(·) is consistent with the model proposed by Katz and Shapiro (1985), the seminal
work on general network effect.

8This is particularly true in the semiconductor industry, where the costs of software, hardware, and (manufacturing
or testing) services that are compatible with a microchip are usually not the concerns of consumers.
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Figure 3.6: Bargaining game in period 1.

to use a fixed-price contract for the product; the type of contract will be applied to all the buyers.9

In period 1, buyer i decides her quantity qi and enters a Nash bargaining (NB) with the seller

for the price. We assume that the purchase quantity and the bargaining outcome is privy to each

buyer (at least for a short period of time), so the multilateral bargaining process can be treated as

a simultaneous move game (Cournot-Nash game) among all the buyers. In other words, the seller

bargains simultaneously with all buyers who take other buyers’ decisions and bargaining results

into consideration. This is commonly assumed for bargaining with externalities (e.g., Horn and

Wolinsky 1988). However, this game structure is not compatible with informational externality,

which typically entails sequential moves. Thus, in our model, the externality with vi(·) is due to

the network effect only.

Once the adoption decisions are made in period 1, product X is integrated into the design of

the final products; although it is possible for buyers to switch to alternative components, it will

be costly to do so and thus we assume that buyers do not switch unless their negotiations with

the seller break down. Let w′i and w′′i be the transaction prices for buyer i obtained through Nash

bargaining in periods 1 and 2, respectively. If a fixed-price contract is used, then w′i = w′′i ; if the

price is renegotiable, then w′′i will be determined by another round of Nash bargaining for each

buyer i. Since externalities no longer exist in period 2, buyers do not consider others in period-2

bargaining. The bargaining game in period 1 is illustrated in Figure 3.6.

Let βi be the relative bargaining power of buyer i ∈ N when bargaining with the seller. The

generalized Nash bargaining model predicts that, if firm i’s payoff and outside option for the focal

9Mixed contract choices will be discussed in the Appendix.
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transaction are Vi(w) and θi given transaction price w, then the bargaining outcome is a price

w∗ that maximizes (Vi(w)− θi)βi · (V0(w)− θ0)1−βi . In particular, if Vi(w) − θi + V0(w) − θ0 is

independent of w, then w∗ splits the fixed pie between the buyer and the seller in proportion to

their respective bargaining powers. In addition, if a renegotiable-price contract is used and the

bargaining breaks down in period 2, the buyer has to acquire a substitutable product of value

vo from the outside market at cost co (including procurement cost and switching cost such as

reconfiguration of production line). For ease of exposition, let δo := vo − co, which is a measure for

the strength of competition from alternative technologies or products. Note that δo can be negative

when the switching cost is high.

Payoff Functions

Based on the assumptions laid out so far, buyer i’s ex-post payoff can thus be formulated as

ui =vi (S1) · si1 − w′i · qi + ρ · v∗i · si2 − w′′i · fqi

=
(
vi (S1)− w′i

)
qi − [qi − αiDi]

+ vi (S1) +

(Di ∧ qi − (αiDi) ∧ qi) ρv∗i +
(
ρv∗i − w′′i

)
fqi. (3.3)

In the second expression of ui, the first three components are the payoff generated by the first

purchase and the last component is the payoff generated by the second purchase. Given the set of

contracts C := {Ci := (qi, w
′
i, w
′′
i ) : i ∈ N}, the seller’s ex-post payoff can be formulated as

u0 =
∑
i∈N

(
w′i − c (S1)

)
qi +

∑
i∈N

(
w′′i − c∗

)
fqi, (3.4)

which is the sum of total profits in period 1 and period 2. Let Ui := E [ui|C ] denote firm i’s

(i ∈ {0} ∪N ) expected payoff at time 0 given C . Note that for buyer i, Ui is not only affected by

her own quantity decision qi but by also other buyers’ decisions q−i := (q1, . . . , qi−1, qi+1, . . . , qn).

To pin down the optimal quantity decisions, we focus on a pure strategy Nash equilibrium among

the buyers in this study.
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3.4 Model Analysis

3.4.1 Centralized System (CS)

The system payoff is uCS = u0 +
∑

i∈N ui. Note that in our model the contract that generates

a higher system payoff also brings a higher payoff for the seller. This is because the buyers and the

seller always share the net system payoff proportionally to their bargaining power, given that their

outside options are independent of the contract choice and they are risk-neutral. Hence, in this

study we consider a seller that aims to maximize the system payoff, and the payoff in a centralized

system can serve as a benchmark for her to make the contract choice.

In a centralized system, we assume that the firms optimize the expected system payoff UCS =

E (uCS(q)) over their own quantities, where q := (q1, . . . , qn) is the action profile. Bargaining is

not necessary given that UCS is independent of the transaction prices. To simplify our notation,

we introduce:

∆i (qi|q−i) :=Cui (qi|q−i)− Coi (qi|q−i) ; (3.5)

Cui (qi|q−i) :=vi (S1) ·
[
1− Fi

(
qi
αi

)]
+

c∗ ·
[
b

(
1− Fi

(
qi
αi

))
+ Fi

(
qi
αi

)
− Fi (qi)

]
;

Coi (qi|q−i) :=c (S1) + bρv∗i ·
[
1− Fi

(
qi
αi

)]
.

We call ∆i (qi|q−i) the net mismatch cost, and it is the marginal impact of qi on the system payoff

when its impact on the externalities is ignored. Cui and Coi are the expected underage and overage

costs for buying one additional unit, respectively. The details for the underage and overage costs in

different scenarios are illustrated in the Appendix. After careful algebraic operations on ∂UCS/∂qi,

we get the result in Proposition 3.1.

Proposition 3.1. In a centralized system, the incentive for adoption in period 1 for any buyer

i ∈ N is composed of three parts: the net mismatch cost ∆i (qi|q−i), the seller-based externality
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−c (S1)′ ·
∑
qj, and the buyer-based externality

∑
vj (S1)′ ·E [qj ∧ αDj ]. In particular,

∂UCS
∂qi

=∆i (qi|q−i)− c (S1)′ ·
∑
j∈N

qj +
∑
j∈N

vj (S1)′ ·E [qj ∧ αiDj ] . (3.6)

Several observations can be obtained from (3.6). Particularly, we are interested in whether

S1 = 0 (called adoption inertia; see Jing 2011) or S1 > 0 is obtained in the equilibrium. First, if

c (S1)′ = vi (S1)′ = 0, we have c(0) = c∗ and vi(0) = v∗i ; thus, ∆i (S1 = 0) = (1−bρ)v∗i −(1−b)c∗ ≥ 0

(assuming vi(0) > c(0)). Hence, when externalities do not exist, it is always optimal for the system

to purchase in the first period, and thus S1 > 0 is obtained. However, if externalities do exist (i.e.,

c (0)′ < 0 or vi (0)′ > 0 or both), the outcome is not obvious. If b = 1, then ∆i (S1 = 0) < 0; if

b = 0, then ∆i (S1 = 0) > 0. Therefore, externalities and demand “backlogability” (or customer

patience) play major roles. Since this is also true for decentralized cases, we have Corollary 3.1

below.

Corollary 3.1. Suppose δo = 0. If externalities do not exist or end customers have zero patience,

adoption inertia can never be obtained in equilibrium; if externalities do exist and end customers

are perfectly patient, then adoption inertia can be obtained.

3.4.2 Fixed-Price Contract

Now we look at the situation wherein fixed-price (FXP) contracts are used with all buyers. With

an FXP contract, buyers purchase from the seller in both periods once their adoption decisions are

made, and there is no more price bargaining in period 2, so we use wi := w′i = w′′i to denote the

price paid by buyer i. Since the bargaining outcome will determine each firm’s payoffs in both

periods, the total expected payoff Ui will be the target under negotiation. Thus, for buyer i, the

Nash-bargaining-generated price is w∗i = arg maxwi (Ui − θi)βi · (U0 − θ0,i)
1−βi given qi and C−i.
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Assume θi is constant for all i ∈ N . Note that θi represents the highest payoff buyer i could achieve

through other ways than buying from the seller in both periods at price w∗i . Hence, θi represents

the payoff from the outside market and is a fixed value, which is only a function of the type of

buyer i. On the other hand, the seller will have businesses with other buyers in case of breakdown

with buyer i, so his outside payoff when bargaining with buyer i is

θ0,i (C−i) =
∑
j 6=i

wj − c
∑
j 6=i

qj

 · qj +
∑
j 6=i

(wj − c∗) ·E [fqj ] . (3.7)

Next, it is important to observe from (3.3) and (3.4) that the sum Ui + U0 is independent of wi.

As a result, the Nash bargaining price w∗i leads to

Ui (qi,C−i) = θi + βi [Ui (qi,C−i)− θi + U0 (qi,C−i)− θ0,i (C−i)] , (3.8)

for any qi and C−i. Now with (3.8), we can optimize qi for buyer i without knowing the explicit

functional form of w∗i (qi,C−i) and have the following result.

Proposition 3.2. With FXP contracts, the incentive for adoption in period 1 for any buyer i ∈ N

is weaker than in a centralized system. In particular,

∂Ui (qi,C−i)

∂qi
· 1

βi
=∆i (qi|q−i)− c (S1)′ ·

∑
qj + vi (S1)′ ·E [qi ∧ αiDi] . (3.9)

The right-hand side of (3.9) looks very similar to (3.6). The only difference is that the

buyer-based externality is reduced under an FXP (i.e., from vi (S1)′ ·
∑

j E [qj ∧ αiDj ] to vi (S1)′ ·

E [qi ∧ αiDi]) so the buyer has less incentive to purchase in period 1. The intuition is that the

seller and buyer i would not benefit from the gain (the increase of product valuation) of other

buyers generated by a larger qi, given the fixed-price contracts with all other buyers. Although the

overall incentive—i.e., the first order derivative—is scaled down everywhere by factor βi with FXP

contracts, it has no impact on the optimal qi.
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3.4.3 Renegotiable-Price Contract

With renegotiable-price (RNP) contracts, buyers bargain for the price in both periods. We will

refer to this scenario as “RNP.” Since the prices determined in period 1 will not affect bargaining in

period 2, the bargaining in the first period just focuses on the impact of the first-period purchase.

Now we proceed backwards to analyze the two-period bargaining process.

Given the quantity qi in period 1 and the assumption that Di is known in period 2, we know

that buyer i’s purchase quantity in period 2 is fqi = [Di − qi]+ − (1 − b) · [αiDi − qi]+. If she

buys from the seller, buyer i can obtain payoff (v∗i − w′′i ) · fqi; otherwise, her outside payoff is

δo · fqi. Note that it will be costly for buyer i to produce nothing in period 2 given that she has

introduced the product in period 1. For the seller, the payoff obtained with buyer i is (w′′i − c∗)·fqi,

and we assume that the outside payoff for him is zero given C−i. Hence, the generated pie is

(v∗i − w′′i − δo) · fqi + (w′′i − c∗) · fqi = (v∗i − c∗ − δo) · fqi, which is independent of w′′i , and thus the

Nash bargaining price w′′i splits the pie in proportion to their respective bargaining powers. As a

result, we have w′′i = βic
∗ + (1− βi) · (v∗i − δo), which is independent of w′i.

We then look at the first-period bargaining problem. In case of a breakdown, the outside payoff

of buyer i is θ1
i , which is a function of her type and is fixed. Given others’ quantities q−i, if buyer i

purchases qi units, she obtains value vi (S1)·si1+v∗i ·min {di2, qi − si1} with cost w′i·qi. Let Ui,t denote

firm i’s expected payoff that is generated by the period-t transaction. We already know Ui,2 (qi). If

we know w′i (qi,C−i), we then have Ui,1 (qi,C−i) = vi (S1)·Esi1+v∗i ·E min {di2, qi − si1}−w′i·qi for i ∈

N . For the seller, we have U0,1 (C ) =
∑

i (w′i − c (S1))·qi and θ1
0,i (C−i) =

∑
j 6=i

(
w′j − c

(∑
j 6=i qj

))
·

qj . Thus, we can see that Ui,1 (qi,C−i)− θ1
i +U0,1 (C )− θ1

0,i (C−i), the size of the generated pie for

the seller and buyer i in period 1, is also irrelevant to w′i. As a result, the NB leads to

Ui,1 (qi,C−i) = θ1
i + βi

[
Ui,1 (qi,C−i)− θ1

i + U0,1 (C )− θ1
0,i (C−i)

]
(3.10)

for any qi and C−i. Buyer i then decides on qi based on its impact on the expected total payoff over

the two periods; i.e., qi should maximize Ui,1 (qi,C−i) +Ui,2 (qi). Now with (3.10), we can optimize

qi without knowing the explicit functional form of w′i (qi,C−i) and have the following result.
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Proposition 3.3. With RNP contracts, the incentive for adoption in period 1 for any buyer i ∈ N

is weaker than with FXP contracts if δo > 0; otherwise, the incentive is stronger than with FXP

contracts. In particular,

∂Ui (qi,C−i)

∂qi
· 1

βi
=∆i (qi|q−i)− c (S1)′ ·

∑
qj + vi (S1)′ ·E [qi ∧ αiDi]

−1− βi
βi

· δo ·
[
Fi

(
qi
αi

)
− Fi (qi) + b ·

(
1− Fi

(
qi
αi

))]
. (3.11)

The difference between (3.9) and (3.11) is the second line in (3.11). It is an extra incentive

generated by the possible change of price in the second period. Note that Fi

(
qi
αi

)
− Fi (qi) + b ·(

1− Fi
(
qi
αi

))
≥ 0. Hence, the greater δo is, the less a buyer wants to buy in the first period, driven

by a lower second-period price. In contrast, a buyer wants to buy more in the first period, if δo is

negative, which could be caused by a high switching cost or low valuation for the outside substitute.

Note that δo could be a function of S1 and we will discuss this situation in the extension.

Proposition 3.3 provides an important insight that complements our observation from the data.

The data suggests that RNP contracts are associated with significantly slower adoption than FXP

contracts; however, our model suggests that this is not always the case. Therefore, the optimal

contract choice is not obvious and depends on various factors as discussed in the next section.

3.5 Contract Comparison and Choice

When is a fixed-price contract better than a renegotiable-price contract? We discuss this ques-

tion based on our analytic model. Denote as qCS the optimal action profile in the centralized system.

Denote as qFXP and qRNP the action profiles in the pure strategy Nash equilibrium (PSNE) for

the two decentralized scenarios. The existence and uniqueness of the PSNEs may not be guaran-

teed. In the following, we characterize a sufficient condition for the existence of a PSNE in both
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decentralized scenarios. Define

Λ (qi, Q−i) := −2c′ (qi +Q−i)− (qi +Q−i) · c′′ (qi +Q−i) and (3.12)

Γi (qi, Q−i) := F̄i

(
qi
αi

)
· v′i (qi +Q−i) + E [qi ∧ αiDi] · v′′i (qi +Q−i) , (3.13)

where Q−i :=
∑

j 6=i qj . It is easy to check that ∂2Ui
∂qi∂Q−i

· 1
βi

= Λ (qi, Q−i) + Γi (qi, Q−i) for any i ∈ N

in both decentralized scenarios. Thus, we have the following result.

Theorem 3.1. If Λ + Γi ≥ 0 for ∀i ∈ N , then a PSNE exists in both decentralized scenarios.

The proof of Theorem 3.1 uses the property of a supermodular game. The condition is in general

easy to be satisfied. Note that c′(0) ≤ 0 and v′i(0) ≥ 0. First, let’s focus on Λ, the component

related to cost externality. The condition that Λ ≥ 0 is simply that the learning effect satisfies

x · c′′(x) + 2c′(x) ≤ 0 for any x ≥ 0. Without loss of generality, if we assume that c(x) = c∗+ A2
x+A1

,

where A1, A2 > 0, then it is easy to check that x · c′′(x) + 2c′(x) = − 2A1A2

(x+A1)3 < 0 for any x ≥ 0.

Second, for Γi, we can have a similar result if we assume a similar functional form for vi and if

S1 · F̄i
(
qi
αi

)
≥ 2 ·E [qi ∧ αiDi], which is true if buyer i does not take a major share of the demand.

Lastly, the condition holds if Λ ≥ |Γi|, which indicates that the learning curve effect dominates. If

∂2Ui
∂qi∂Q−i

≥ 0 holds for ∀i ∈ N , then it is a supermodular game, in which a PSNE exists.

Although we are unable to analytically show that the equilibria are unique, we conduct extensive

numerical tests. We find that the action profile in either a centralized or decentralized case, with

any starting point, will converge to the same equilibrium point through best-response iterations.

This strongly indicates that the equilibria are unique given the game structure of our model.

Now we assume that the condition Λ + Γi ≥ 0 for ∀i ∈ N is satisfied and that qCS , qFXP , and

qRNP are unique. Given these assumptions, the scenario in which the action profile is “closer” to

the centralized one is the better one for the system. By comparing (3.6), (3.9), and (3.11), we get

the following results for a seller to make a choice between an FXP and an RNP contract.
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3.5.1 Strength of Seller Competition

Recall that δo, the marginal payoff of the alternative product in period 2, measures the strength

of competition from other sellers in the B2B market: the higher the δo, the stronger the competition.

It turns out to be an important factor that determines the difference between an FXP and an RNP

in terms of early-adoption incentive. Given that it is a supermodular game, we can show that

a stronger incentive for every buyer always leads to faster adopton for every buyer, making qCS ,

qFXP , and qRNP comparable. To proceed, note that for vectors q̂ and q̃, we say q̂ < q̃ if and only

if q̂i < q̃i for every i. A similar definition applies to “>”, “≤”, and “≥” when used for vectors.

Proposition 3.4. If qCS, qFXP , and qRNP are unique, then (i) qFXP ≤ qCS; (ii) if δo > 0, then

qRNP ≤ qFXP ; (iii) if δo < 0, then qRNP ≥ qFXP ; (iv) and if δo = 0, then qRNP = qFXP .

Now we can compare the system payoff in each situation given different δo. For example, an

FXP is better than an RNP if qRNP < qFXP ≤ qCS ; this is the case if δo > 0 (i.e., it is profitable to

acquire a substitute in the outside market in period 2). However, this does not means that an RNP

is better if δo < 0. For instance, when δo < 0—which possible if it is hard to obtain a substitute

and costly to exit the market in period 2—we may have qFXP = qCS < qRNP , which means an

FXP contract is better. In other words, faster product adoption may not always benefit the seller

as well as the buyers. In sum, an RNP contract is better than an FXP contract only when δo < 0,

but not too low.

3.5.2 Buyer Bargaining Power

If, in certain cases, the difference between FXP and RNP contracts is small—i.e., the two

types of contract lead to similar results—then we need not spend too much time making a choice.

Proposition 3.5 tells us that the absolute difference between qFXP and qRNP is decreasing in the

bargaining power of every buyer. Hence, a wise contract choice is worthwhile only when buyers are

not powerful. The intuition behind this finding is that when buyers are powerful, they can bargain
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to get a low enough price anyway and thus tactical decisions such as the intertemporal distribution

of their purchase quantity does not have much impact.

Proposition 3.5.
∥∥qFXP − qRNP∥∥ is decreasing in βi for any i ∈ N .

As buyers become weaker and βi gets closer to zero,
∥∥qFXP − qRNP∥∥ increases even faster (due

to the 1−βi
βi

factor in (3.11)). When βi becomes small enough so that we have either qRNP � qFXP

or qRNP � qFXP , then it is very likely that that
∥∥qCS − qRNP∥∥ > ∥∥qCS − qFXP∥∥ and an RNP

contract is less efficient than an FXP contract. Therefore, as βi decreases for any i ∈ N , it becomes

more and more likely that an FXP is the optimal choice. This is actually not intuitive, because

as the seller becomes more and more powerful, he has more incentive to renegotiate and raise the

price in period 2. If an RNP contract is used, however, the anticipated price increase would drive

weak buyers to buy more in the first period, at the cost of supply-demand mismatch.

3.5.3 Size of Buyer Group

Another interesting factor is n, the size of the buyer group, which is essentially the scale of the

“network.” To simplify the analysis and to focus on the intuition, we assume for this subsection that

the buyers are homogeneous. Let ZFPX(q) := 1
β ·

∂UFXP (q)
∂q − ∂UCS(q)

∂q and ZRNP (q) := 1
β ·

∂URNP (q)
∂q −

∂UCS(q)
∂q , where UFXP (q) and URNP (q) represent the expected payoffs of a buyer with FXP and RNP

contracts, respectively. ZFPX or ZRNP measures the difference between a decentralized system and

the centralized one in terms of incentive to buy in period 1.

We can obtain that ∂
∂nZFPX(q) = ∂

∂nZRNP (q) = −E [q ∧ αiD] · [v′ (nq) + (n− 1) · q · v′′ (nq)].

Given n is large and v(x) = v∗−e−x+A or v∗− 1
x+A , we have v′ (nq)+(n−1) · q ·v′′ (nq) < 0. Thus,

1

β
· ∂

2UFXP (q)

∂q∂n
=

1

β
· ∂

2URNP (q)

∂q∂n
>
∂2UCS(q)

∂q∂n
,

which means that, as n increases, the changes to qFXP and qRNP are more positive than changes

to qCS . We know that qFXP is bounded from above by qCS , but qRNP is not. Hence, as the size of
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the buyer group increases, qFXP will approach qCS but the chance of an RNP contract being the

optimal choice decreases. (Note that the RNP contract is optimal only when qRNP > qFXP but

qRNP is not too high.) The intuition behind this finding is that v is close to its limit in period 1

when n is large, so the extra incentive from an increase of v—which is the main difference between

an FXP and a CS—is small.

3.5.4 Strengths of Externalities

Similarly, we assume for this subsection that the buyers are homogeneous. We have two types

of externalities in our model, and the strengths of the externalities are captured by c′(·) and v′(·).

If we take c′(nq) and v′(nq) as two variables, then we have

∂ZFXP (q)

∂c′(nq)
=
∂ZRNP (q)

∂c′(nq)
= 0, and

∂ZFXP (q)

∂v′(nq)
=
∂ZRNP (q)

∂v′(nq)
= −(n− 1) ·E [q ∧ αiD] < 0.

Therefore, we have the following two observations. First, the strength of seller-based externality

will have the same impact in all three cases, and we cannot tell how the optimal contract choice

is affected. Second, as the strength of buyer-based externality v′(·) increases, the changes to qFXP

and qRNP are more negative than changes to qCS ; i.e., the sizes of qFXP and qRNP relative to

qCS decrease. Given that the RNP is better than the FXP only if qRNP > qFXP , this finding

means that the chance of the RNP contract being the optimal choice increases with the strength of

buyer-based externality. The reason is that the increase of v′(·) amplifies the extra incentive from

an increase of v, which is the main difference between an FXP and a CS.

3.5.5 Computational Study

In this subsection, we generate numerical examples to explore the optimal contract choice for

the system. We use c(x) = c∗ + A2
x+A1

and vi(x) = v∗i −
B2

x+B1
, and make them satisfy the condition

in Theorem 3.1. In particular, we set αi = 0.5, b = 0.8, c∗ = 1, v∗i = 6, and let the demand follow

uniform distribution. As shown in Figure 3.7, the optimal choice of contracting regime depends on

(i) δo, buyers’ marginal payoff in the outside-market, (ii) βi, buyer bargaining power, (iii) n, the
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Figure 3.7: The optimal choice of contract structure.

Note: Each dot (“o”, “×”, or “+”) represents a problem instance with the corresponding parameters. The

optimal contract choice for an instance is indicated by the symbol.

size of the buyer group, and (iv) B2, the slope of value function vi(·). The results are consistent

with the previous discussions.

3.5.6 Discussions

Therefore, if we want to suggest a type of contract for a seller, we shall consider the four

dimensions of market characteristics. Note that the marginal payoff δo in the outside market is

an indirect measure of degree of competition from rivalries within the industry. The other three

dimensions (i.e., v′i(·), β, and n) describe the structure of the downstream market. Moreover, these

four metrics also provide us with a framework to predict the contract choice in many different

supply chains or industries. Based on our model, we can make the following conjectures. Readers

110



who have related datasets may be able to test them.

• We shall see more RNP contracts in markets where competition is more balanced; i.e., it is

not too hard or too easy for buyers to switch to an alternative source. For example, we expect

FXPs to be used by AMD when it offers a product that is highly comparable to one of Intel’s

(i.e., δo > 0), or when a unique product is offered (i.e., δo � 0).

• We shall see more FXPs in markets where buyers are less powerful. For example, if we

compare the supply chain of Intel and that of AMD, we expect Intel to use more FXPs.

• We shall see less RNPs in supply chains where a cost-learning effect exists and the buyer

group is larger. In other words, if a product is a niche product that is purchased only by a

few customers, then it would be very likely that we would observe an RNP.

• We shall see more diversified choices in industries where the role of buyer-based externalities

is more significant. For example, the choices of contracting regimes should be more consistent

for more basic component products such as memories and hard discs.

3.6 Model Extensions

3.6.1 Time-Dependent Valuation or Cost

Sometimes buyers’ valuation for the (component) product is a function of time, regardless of the

externalities. This type of valuation occurs because the component product will become obsolete,

or because the final product will be obsolete, or the use of the component should be complemented

by another critical part, the cost of which is changing over time. We can model this relation by

setting a general ρ > 0 for period-2 valuation. With such a modification to the model, the incentive

for buyers to adopt the product is affected by this time factor. According to (3.5), (3.6), (3.9), and
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(3.11), it is easy to obtain that

∂2UCS
∂qi∂ρ

=
∂2UFXPi

∂qi∂ρ
· 1

βi
=
∂2URNPi

∂qi∂ρ
· 1

βi
=
∂∆i

∂ρ
= −b ·

[
1− Fi

(
qi
αi

)]
. (3.14)

Hence, the incentive to adopt early decreases with ρ, which is intuitive. In particular, the sensitivity

of buyer i’s decision to ρ increases with b, αi, and mean demand (
´
xdFi(x)). The flexibility for a

buyer to manipulate the purchase intertemporally is captured by b and αi. Since the impact of ρ

is the same for both contracts, such a modification does not lead to qualitatively different results.

3.6.2 Lock-in Effect

The adoption of a product may not only affect the valuation and cost of this focal product, but

also the cost and valuation for the substitute. This is the case when the purchase of the substitute

also generates externalities, or the switching cost depends on the adoption of the focal product.

In this subsection, we assume that, if the buyer turns to the outside market in period t, then the

payoff is a function of q−i in period t = 1 and is a function of q in period t = 2.

First, it is easy to see that an FXP is not affected by such a modificaiton. This is because there

is no negotiation in period 2 and buyer i’s quantity decision qi does not depend on her period-1

outside option θi. Note that θi represents the highest payoff buyer i could achieve through other

ways than buying from seller 0 in both periods. Hence, θi could be a function of q−i, but not qi.

As a result, θi does not present in
∂UFXPi
∂qi

.

On the other hand, when an RNP is used, the buyer’s outside option in period 2, δo = vo − co,

could be a function of q, and we have Ui,2 = [βi · (v∗ − c∗) + (1− βi) · δo (q)] ·E [fqi]. Hence,

∂URNPi

∂qi
· 1

βi
= ∆i (qi|q−i)− c (S1)′ ·

∑
qj + vi (S1)′ ·E [qi ∧ αiDi]

− 1− βi
βi

· δo (q) ·
[
Fi

(
qi
αi

)
− Fi (qi) + b ·

(
1− Fi

(
qi
αi

))]
+ (1− βi) ·E [fqi] ·

∂δo (q)

∂qi
. (3.15)
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Figure 3.8: The impact of stronger externality associated with outside options.

If we further assume that δo = a0 − a∗ · S1, then

∂2URNPi

∂qi∂a∗
· 1

1− βi
= S1 ·

[
Fi

(
qi
αi

)
− Fi (qi) + b ·

(
1− Fi

(
qi
αi

))]
− βi ·E [fqi] , (3.16)

which indicates that the degree of externality may encourage or discourage early adoption. It is

easy to see that for weak (i.e., βi is small) and small-quantity (i.e., E [fqi] is small) buyers,
∂2URNPi
∂qi∂a∗

is likely to be positive, and negative for strong and large-quantity buyers. Hence, with an RNP,

stronger externality associated with outside options may encourage weak and small buyers to adopt

early and discourage large buyers to do so. (See illustration in Figure 3.8.) We support this result

by regressing the TDPS against the ACVP, the ln (Size) of the buyer, and the total quantity of an

instance for RNP contracts (i.e., ACVP> 0). We find negative coefficients (with P-values < 0.01)

for both the ln (Size) and total quantity. The reasons are that (i) weak buyers should buy more in

period 1 and less in period 2 so that they can avoid paying high price in period 2; and that (ii) for

small-quantity buyers the increase of δo has relatively small impact on their payoffs, so they suffer

less from buying in period 1 than larger-quantity buyers do. Last but not least, as the intensity

(a∗) of externality on the outside option increases, δo may go from positive to negative, and thus

the optimal contract choice may switch.

3.7 Conclusions

In this chapter, we study the product-adoption process management in high-tech supply chains
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and the contract choice for sellers selling to business buyers. In the B2B market, product adoption

generates positive externalities among the business buyers, and the price for a product is subject to

negotiations. In the B2C market, the demand is uncertain, is learned by the buyers over time, and

is independent of the product adoption in the B2B market. The task of the seller is to manage the

adoption of a product in the B2B market at a favorable pace that maximizes the expected payoff.

Given that intertemporal pricing schemes are not viable in the B2B market, we suggest that the

seller consider choosing whether to allow the price with a buyer to be renegotiable over time, or to

sign a long-term, fixed-price contract with the buyer. Using a dataset supplied by a major global

microchip vendor and an approach based on an instrumental variable, we observe a causal relation

between price variability and buyer behavior. This suggests that price flexibility is an effective lever

to control the product-adoption process, although the optimal choice is not obvious. To understand

how the price mechanism affects buyer behavior, we build a simple dynamic game-theoretic model.

Our model shows that the optimal choice of contract depends on (i) the source and degree of

externality, (ii) the strength of sell-side competition, (iii) buyer’s bargaining power, and (iv) the

number of the buyers. First, our model predicts more diversified uses of contracts in industries

where the role of buyer-based externalities (i.e., network externalities) is stronger. For commodity

products such as memories, the contract choices should be more consistent. Second, it indicates less

use of fixed-price contracts where the market competition is more balanced (i.e., neither too hard

nor too easy to buy from an alternative source). Third, we should use more fixed-price contracts

in markets where buyers are less powerful because weak buyers are very sensitive to price changes

over time and tend to adopt the product too early or too late. Last but not least, in markets where

a learning effect exists and the buyer group is larger, renegotiable-price contracts are less likely to

outperform fixed-price contracts because the price will go down significantly and thus buyers do

not have an incentive to buy early.

We then extend the model to incorporate time-dependent valuation and externality on outside

options. We find that time dependence does not change our results. Also, we find that stronger

externality on outside options may encourage weak and small buyers to adopt early and discourage

large buyers to do so; as the degree of externality on the outside option increases, the optimal

contract choice may switch from a fixed-price to a renegotiable-price contract. Admittedly, there

are still limitations for our analyses. In particular, our data is from a single company and it may
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have limited statistical power. In addition, we only consider intermediary-good externalities that

do not benefit end consumers directly. Hence, extending our model to incorporate these limitations

could be a fruitful area for future research.

Appendix

The Measure of Contract Type

Here we discuss why we do not choose the three alternative measures. (i) There are three

problems with the average duration of a price. Firstly, the flexibility measured by the duration of

a price is relative to the duration of the instance.10 Even if we normalize the duration of price

and divide it by the duration of instance, there is still a problem. Some instances have a fixed

price most of the time, but they have a couple of single transactions where the price has jumped or

dropped. Those exceptions only account for a negligible proportion of the duration of an instance

but can greatly drag down the average duration of price. Lastly, an average duration of price cannot

capture the extent of price changes that is allowed by a contract.

(ii) In comparison, the variance of price is more robust to exceptional price deviations and can

also capture the extent of price change. The price variance ex ante is an increasing function of the

flexibility of contract. However, different products have different price levels, so the variance has

to be normalized.

(iii) The coefficient of variation (CV) of price is defined as the quotient of standard deviation

of price over the mean. Similar to the problem of price duration, the mean of price is sensitive to

some exceptional price jumps or drops that typically occur at the end of the life cycle. In sum, the

variance of price is better than the average duration of price; the CV of price is better than the

variance of price; and the ACVP improves the CV of price. The ACVP is the best among all these

measures.

Test of Buyer-Specific Common Causes

Here we show a contradiction if we suppose that hypothesis (I) is not true and that ε and ε′

10For example, instance θ has average duration of price equal to 1 month and instance θ′ has an average duration of
price equal to 2 months; however, the duration of θ is only 1 month and the duration of θ′ is 1 year. In this example,
ϕ of θ′ has higher flexibility.
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Table 3.4: Test for Major Customers

Customer ln(size) Instances Coefficient t Stat P-value

#1 22.31 159 -0.0175 -0.85 0.4

#2 20.91 203 -0.4277*** -3.73 0.0002

#3 19.52 150 -0.0001 -0.0235 0.9813

#4 21.25 120 -0.0871** -2.12 0.0357

#5 21.50 386 -0.0008* -1.8865 0.0600

#6 20.22 161 -0.3643** -2.0970 0.0376

#7 20.97 149 -0.6560*** -3.7604 0.0003

#8 20.25 146 -0.0804* -1.9061 0.0586

#9 21.27 163 -0.2508* -1.8144 0.0715

#10 20.44 214 -0.3522*** -2.7387 0.0067

Note: *p<0.1; **p<0.05; ***p<0.01.

are buyer-specific factors. Ideally, we should test the correlation between the ACVP and TDPS for

each individual buyer. However, for medium- to small-sized buyers, we do not have a large enough

sample size. Hence, we first focus on the top ten major buyers that have close to or more than

150 instances recorded in our dataset. The results are summarized in Table 3.4. We see that for

most (8/10) of these major buyers, the correlation between ACVP and TDPS is still significant

with total quantity controlled, which is a strong evidence of these buyers responding strategically

to the contract type.

Table 3.5: Test for 10 Customer Groups

Group ln(size) Coefficient t Stat P-value

#1 [8.57, 14.62] 0.0656 0.5972 0.5516

#2 [14.62, 16.12] -0.5975*** -4.8786 0.0000

#3 [16.12, 17.27] -0.4234** -2.1792 0.0314

#4 [17.27, 17.64] -0.5470*** -4.3592 0.0000

#5 [17.64, 18.28] -0.8911*** -3.8355 0.0002

#6 [18.28, 18.79] -0.6192*** -3.4272 0.0009

#7 [18.79, 19.32] -0.5244*** -3.0807 0.0028

#8 [19.32, 19.38] -0.0007 -0.3124 0.7554

#9 [19.38, 19.58] -0.5719*** -3.3443 0.0011

#10 [19.58, 20.49] -0.6373*** -4.9492 0.0000

Note: *p<0.1; **p<0.05; ***p<0.01.
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Figure 3.9: Customer distributions on two characteristics.

To test the correlation for other buyers, we control the two buyer-specific characteristics: size

and location. We believe that these two characteristics capture some inherent attributes that might

lead to the correlation; otherwise, it is hard to imagine that customers would act differently due to

some other factors even if they were offered the same contract.11 As shown on the left in Figure

3.9, we get a distribution that is very close to normal if we plot the distribution of buyers according

to the logrithmic function of their total purchasing values (i.e., ln (size)). For location, there are 6

major geographic zones according to the data, and the buyer distribution across the zones is shown

on the right in Figure 3.9. We then pick the zone that has the most customers, and equally divide

buyers into 10 subgroups according to their sizes so that we have roughly 113 instances in each

subgroup. The test results are summarized in Table 3.5. We see that for 8 out of the 10 buyer

groups, the correlation between ACVP and TDPS is still significant with total quantity controlled,

which further supports our claim that buyers are responding to the contract type.

Proof of Lemma 3.1

First, fqi cannot take values other than
[
di2 − [qi − αiDi]

+]+ given that Di is known and the

purchase price is positive. Suppose the following scenario. If buyer i reduces fqi, she looses profit;

if she increases fqi, then her cost increases but revenue is unaffected. Hence, the second period

11Buyers from different micromarkets might have different behaviors and contract practices, but buyers in the same
micromarket tend to purchase similar products. Hence, a micromarket-related characteristic is almost equivalent
to a product-specific characteristic. Moreover, we believe that the difference between new and old buyers is not a
major concern, because there is no reason for a new buyer to behave differently from an old one in a consistent way
regardless of the form of the contract.
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purchase quantity should equal period-2 total demand, and thus

fqi =
[
b [αiDi − qi]+ + (1− αi)Di − [qi − αiDi]

+]+

=


Di − qi − (1− b) (αiDi − qi) if Di > qi/αi

Di − qi if qi < Di ≤ qi/αi

0 if Di ≤ qi

= [Di − qi]+ − (1− b) [αiDi − qi]+ ;

si2 − fqi =b [αiDi − qi]+ + (1− αi)Di − [Di − qi]+ + (1− b) [αiDi − qi]+

=Di ∧ qi − αiDi ∧ qi. �

Details for the Underage and Overage Costs in Different Scenarios

See Table 3.6 below.

Proof of Proposition 3.1

UCS =
∑
i∈N

vi (S1) ·E [qi ∧ αiDi]− c (S1) · S1 +
∑
i∈N

ρ · v∗i ·E [si2]− c∗ ·
∑
i∈N

E [fqi]

It is easy to check that vi (S1) ∂E [qi ∧ αiDi] /∂qi−c (S1)+∂ [ρv∗iE [si2]− c∗E [fqi]] /∂qi = ∆i, where

∆i is defined in (3.5). Then Eq. (3.6) is obtained. �

Proof of Proposition 3.2

Table 3.6: System-Wide Underage and Overage Cost for Producing One More Unit in Period 1

Demand Period 1 Period 2

Scenarios Underage Overage Underage Overage

Di ≤ qi 0 c (S1) 0 0

qi < Di ≤ qi
αi

0 c (S1) c∗ 0

αiDi > qi; Exit vi (S1) c (S1) 0 0

αiDi > qi; Wait vi (S1) c (S1) c∗ ρv∗i

118



Ui (qi,C−i) =θi + βi [Ui (qi,C−i)− θi + U0 (qi,C−i)− θ0,i (C−i)]

=θi + βi [vi (S1) ·E [qi ∧ αiDi]− c (S1) · S1+

c (Q−i) ·Q−i + v∗i ·E [si2]− c∗ ·E [fqi]− θi] .

Similarly, vi (S1)·∂E [qi ∧ αiDi] /∂qi−c (S1)+∂ [v∗i ·E [si2]− c∗ ·E [fqi]] /∂qi = ∆i. Then Eq. (3.9)

is obtained. �

Proof of Proposition 3.3

Firstly, Ui,2 (qi) = [βi (v∗i − c∗) + (1− βi) δo] ·E [fqi]. Hence,

Ui (qi,C−i) =θ1
i + βi

[
Ui,1 (qi,C−i)− θ1

i + U0,1 (C )− θ1
0,i (C−i)

]
+ Ui,2 (qi)

=θ1
i + βi [vi (S1) ·E [qi ∧ αiDi]− c (S1) · S1+

c (Q−i) ·Q−i + v∗i ·E [si2]− c∗ ·E [fqi]− θ1
i

]
+

(1− βi) · δo ·E [fqi] .

We have vi (S1) · ∂E [qi ∧ αiDi] /∂qi − c (S1) + ∂ [v∗i ·E [si2]− c∗ ·E [fqi]] /∂qi = ∆i. In addition,

∂E [fqi] /∂qi = Fi (qi)− Fi
(
qi
αi

)
− b

[
1− Fi

(
qi
αi

)]
. Then Eq. (3.11) is obtained. �

Proof of Theorem 3.1

If ∂2Ui
∂qi∂Q−i

= βi (Λ + Γi) ≥ 0 for ∀i ∈ N , it is a supermodular game. A PSNE exists for any

supermodular game. �

Proof of Proposition 3.4

(i) According to (3.6) and (3.9), 1
βi
·∂U

FXP
i
∂qi

|q=qCS = ∂UCS
∂qi
|q=qCS−

∑
j 6=i vi

(∑
qCSi

)′·E [qCSj ∧ αiDj

]
≤

∂UCS
∂qi
|q=qCS for ∀i ∈ N . Hence, it is not possible that qFXP ≥ qCS . Given that it is a supermod-

ular game, it must be that qFXP ≤ qCS . (ii) According to (3.9) and (3.11),
∂URNPi
∂qi

|q=qFXP =

∂UFXPi
∂qi

|q=qFXP + (1− βi) · δo · ∂E[fqi]
∂qi

≤ ∂UFXPi
∂qi

|q=qFXP for ∀i ∈ N if δo > 0. Hence, qRNP ≥ qFXP

is not possible; it must be that qRNP ≤ qFXP . Similar arguments apply to (iii) and (iv). �
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Proof of Proposition 3.5

First, suppose δo > 0. According to Proposition 3.4, qRNP ≤ qFXP for any 0 < β < 1. Because

∂qFXPi
∂βi

= 0 and
∂qRNPi
∂βi

≥ 0, we know
∣∣qFXPi − qRNPi

∣∣ is decreasing in βi. Because it is a super-

modular game, we have that
∣∣∣qFXPj − qRNPj

∣∣∣ is decreasing in βi for all j 6= i. The result follows.

�

Mixed Contract Choices

Here we consider the case wherein the seller can use different types of contracts with different

buyers. Propositions 3.2 and 3.3 suggest that the quantity decision of a buyer does not directly

rely on the type of contract used for other buyers; instead, it only depends on the sum of other

buyers’ purchase quantities in period 1 (Q−i). Hence, it is still a supermodular game if Λ + Γi ≥ 0

for ∀i ∈ N . Given this assumption, we know from Theorem 3.1 that a PSNE exists no matter what

contracts are used. The seller’s problem can thus be formulated as follows:

max UCS(q)

s.t. qi ∈
{
qFXPi (q−i) , q

RNP
i (q−i)

}
, ∀i ∈ N

where qFXPi (q−i) solves Eq. (3.9) and qRNPi (q−i) solves Eq. (3.11). This is a highly non-linear

problem with hardly any structural properties. Hence, it is an extremely difficult problem if n is

large. However, n is usually a small number in reality, so it is possible to test 2n possible solutions

and find the optimal one. More importantly, mixed contract choices are not always desirable; in

many cases, it is easy to tell that a dominant contracting regime exists. First, an FXP is a dominant

choice if qRNP < qFXP , as suggested by Proposition 3.4. Second, an RNP is a dominant choice

when qFXP ≤ qRNP ≤ qCS . Lastly, mixed choices may be desirable only when qFXP < qCS and

there exists i such that qRNPi > qCSi .
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