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ABSTRACT OF THE DISSERTATION 

 

The Clinical Development of Prostate Magnetic Resonance Imaging-Only  

Simulation for Radiation Therapy 

 

by 

 

Kamal Singhrao 

Doctor of Philosophy in Physics and Biology in Medicine 
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Professor Dan Ruan, Co-Chair 

Professor Nzhde Agazaryan, Co-Chair 

 

Magnetic resonance imaging-only (MRI-only) simulation for external beam radiation therapy 

treatment planning of prostate cancer has seen increased clinical use. The use of a single 

imaging modality for simulation imaging brings benefits to radiation therapy workflows such 

as the elimination of systematic positional errors associated with multimodal image 

registration during treatment planning. However, several challenges remain for the 

widespread clinical adoption of MRI-only simulation imaging for radiation therapy such as 

the lack of robust pre-treatment alignment methods and dedicated quality assurance testing 

equipment.  

In the MRI-only simulation imaging workflow, synthetic computed tomography (CT) 

images are created for a variety of uses including providing tissue electron density information 

for dose calculations. Synthetic CT image generation algorithms are typically trained using 
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patient data and are highly sensitive to human tissue contrast and geometry. Most institutions 

that treat patients with MRI-only simulation images cannot use commercially available 

phantoms to quality assurance test processes such as synthetic CT image generation. This is 

because most commercially available phantoms do not mimic human tissue geometry and 

tissue imaging characteristics for both MRI/CT modalities. The absence of MRI/CT 

compatible end-to-end quality assurance testing instruments could potentially lead to 

systematic errors in treatments using MRI-only simulation imaging because of the lack of 

imaging and dosimetric benchmarking standards. 

Studies on the commissioning of MRI-only simulation imaging for radiation therapy 

of prostate cancers have recommended the use of intraprostatic fiducial markers for pre-

treatment patient positioning and alignment. However, fiducial markers appear as dark signal 

voids in MRI and are challenging to manually localize without the aid of CT imaging. Other 

intraprostatic objects such as calcifications produce similar signal voids to fiducial markers in 

MRI images. There is currently no consensus on the optimal fiducial marker or MRI sequence 

to detect fiducial markers with a high level of sensitivity and specificity in MRI-only 

simulation images. Additionally, there are no clinically available automatic marker detection 

workflows available to aid in the clinical transition to MRI-only simulation imaging.  

This thesis presents work undertaken to meet the challenges of the clinical 

development of MRI-only simulation imaging for radiation therapy of prostate cancers. In the 

presented work, the author describes the development of a novel system of multimodal tissue 

mimicking materials for MRI and CT imaging. The aforementioned system of materials was 

adapted into a novel 3D-printed anthropomorphic phantom for quality assurance testing of 

MRI-only simulation procedures. To address the issues with patient positioning and 

alignment, a human and phantom study was conducted to quantitatively evaluate the optimal 
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fiducial marker and MRI sequence for patients receiving MRI-only radiation therapy 

simulation imaging. Finally, an automatic deep-learning based fiducial marker detection 

algorithm is presented to aid with the clinical transition of CT-based to MRI-only radiation 

therapy simulation workflow.  
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CHAPTER 1 – Introduction to the Dissertation 
 

1.1. Motivation 

Prostate cancer is one of the most commonly diagnosed cancers with 191,930 new diagnoses and 

33,330 deaths predicted in the United States in 2020 1. Since the mid-1970s, 5-year survival rates 

for men with low risk prostate cancer have increased from 69% to over 95% today 2–4. This 

substantial improvement in survival rate was due to the development of improved surgical, 

radiation and hormone therapies 5. While there have been improvements in reducing disease 

morbidity, off target effects from these therapies can have deleterious effects on quality of life 6,7. 

For example, external beam radiation therapy (EBRT) is a common treatment option for men with 

localized prostate cancer but it can lead to urinary and gastrointestinal complications 6,7. These 

complications can occur because the prostate gland is located close to a number of radiosensitive 

structures including the bladder, urethra and rectum 8,9.  

The current standard of care for patients receiving radiation therapy involves creating 

radiation therapy treatment plans using computed tomography (CT) images for tumor delineation 

10. Interobserver studies have demonstrated that using only CT images for tumor delineation can 

lead to inadequate tumor volume delineation 11,12. Inadequate tumor delineation due to multimodal 

image registration in the treatment planning process can result in the propagation of dosimetric 

and positioning errors through the radiation therapy workflow 13. These errors can result in 

radiosensitive structures positioned in high radiation dose regions and potentially lead to treatment 

induced side effects 14–16. These errors can be reduced by using a single imaging modality for 

treatment planning. Magnetic resonance imaging (MRI) produces excellent soft tissue 

visualization and studies have shown that prostate organ delineations using MRI images have less 
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interobserver variability compared to delineations using CT images alone 11.  

Utilizing a dedicated MRI simulator for radiation therapy treatment planning (MRI-only 

treatment planning) can allow for the elimination of treatment errors due to multimodal image 

registration from the treatment planning stages 13,17. There are many challenges to the clinical 

implementation of MRI-only radiation therapy simulation imaging including the lack of 

specialized equipment to perform quality assurance (QA) testing for MRI-only simulation imaging 

processes or the lack of consensus-driven approaches for patient positioning and alignment at 

radiation therapy machines using MRI-only simulation images. 

 

1.2. Background 

This section will contain an overview of the radiation therapy workflow for patients diagnosed 

with localized prostate cancer and an introduction to the rationale of MRI-only radiation therapy 

planning. Prostate cancer diagnosis includes tests to evaluate disease stage and aggressiveness. 

The radiation therapy treatment workflow for prostate cancer consists of treatment preparation, 

simulation imaging and treatment planning, patient-specific QA measurements, and treatment 

delivery. Pretreatment procedures involve patient consultations with radiation oncologists and can 

include fiducial marker implantation. Simulation imaging and treatment planning involve 

acquiring images in treatment position and creating simulated radiation therapy plans. QA 

measurements can include phantom-based verification measurements to ensure that a delivered 

dose agrees with the planned dose. Treatment delivery consists of the delivery of radiation for 

therapeutic purposes.  

 

1.2.A. Prostate Cancer Diagnosis 



3 
 

Prostate cancer is a slow-growing disease and at early stages doesn’t typically produce apparent 

symptoms 18. The disease can manifest itself in similar form to benign prostatic hyperplasia, where 

the prostate organ appears enlarged or inflamed 19,20. Symptoms of prostate cancer can include 

increased urination frequency and dysuria (painful urination) 21,22. The exact cause of prostate 

cancer is currently unknown however risk factors include age, obesity and family history 23. If left 

untreated, prostate cancer can spread to nearby lymph nodes and metastasize 24,25. Metastasis 

occurs when prostate cancer cells break away from their primary tumor location and spread 

through the lymphatic system to other areas of the body 26. Metastasis from prostate cancer can 

occur in the bones, lymph nodes, lungs, liver and brain 27–29.  

Prostate cancer diagnosis involves disease detection and staging 30. Initial disease detection 

is done via a digital rectal examination (DRE) and/or a prostate specific antigen (PSA) test 31–34. 

PSA is an enzyme created by the prostate gland and is detectable in blood plasma 35. If 

abnormalities are detected from DRE examinations or elevated blood PSA levels are detected, 

further testing may be done for disease diagnosis and staging 36. Further testing can include a 

prostate biopsy examination 30,36. Disease spread is evaluated by diagnostic tests including 

prostate-specific membrane antigen (PSMA) level measurement to evaluate lymph node spread 

and imaging tests such as ultrasound, bone scans, CT, MRI and positron emission tomography 

(PET) imaging to evaluate distal spread 30. Disease severity is quantified using the TNM (tumor-

node-metastasis) scale 23,39. A metric to determine cell differentiation and by proxy disease 

aggressiveness is the Gleason score 37. The Gleason score is based on prostate biopsy results and 

most scores for cancer patients run between 6 to 10 38. Using the TNM score and Gleason scores 

the cancer can then be staged and the patient can be referred for the appropriate treatment 40. 
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1.2.B. Radiation Therapy for Prostate Cancer 

Radiation therapy is a common treatment for prostate cancer and can be delivered in the form of 

brachytherapy or EBRT. Brachytherapy treatments involve the placement of a radioactive source 

at or near the tumor location 41,42. There are two subtypes of brachytherapy treatment, low-dose-

rate and high-dose-rate brachytherapy. Low-dose-rate brachytherapy involves the implantation of 

permanent radioactive seeds into the tumor site so that radiation is delivered to the tumor for an 

extended period of time 42.  High-dose-rate brachytherapy involves the implantation of interstitial 

catheters in the tumor site 41,43. A high dose radioactive source is moved through the catheter and 

placed at one or more dwell positions within the catheter until the prescribed radiation dose is 

delivered. EBRT involves noninvasive delivery of radiation through the body 44. Radiation therapy 

plans are designed to deliver the prescribed dose to the tumor while minimizing dose to normal 

tissues. Most standard EBRT treatments for localized prostate cancers are X-ray photon-based 

treatments 46. 

Selection of treatment modality is dependent on multiple factors including disease severity 

and patient considerations. EBRT or brachytherapy can be used as monotherapies or in 

combination for localized low-to-medium risk prostate cancers. For high risk or metastatic prostate 

cancers, EBRT can be used in combination with other therapies such as hormone therapy or radical 

prostatectomy (surgical removal of the prostate) 43–45. This thesis will be focused on EBRT for 

prostate cancer and will not focus on EBRT treatments that involve radical prostatectomy.  

 

1.2.C. Simulation Imaging and Treatment Planning 

If a patient is selected to receive EBRT, a radiation therapy plan needs to be created and tested 

prior to treatment. At some clinical sites, such as the radiation oncology department at the 
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University of California Los Angeles (UCLA), patients have intraprostatic fiducial markers 

inserted directly into the prostate gland for pretreatment positioning 47,48. Fiducial markers are 

implanted for pretreatment patient positioning and alignment 47,48. Simulation imaging involves 

the acquisition of a 3D medical image, typically via CT imaging, of the patient in treatment 

position for radiation therapy planning. Patients are placed in treatment position and immobilized 

using vacuum immobilization cushions 49,50. Patients normally receive tattoos to allow for 

reproducible laser positioning 51,52.  

Radiation therapy plans are typically created by contouring the gross tumor volume (GTV), 

clinical target volume (CTV) and organs at risks (OARs) 10. The current standard of care involves 

treatment of the entire prostate gland as the CTV 53. CTV structures are contoured by expert 

radiation oncologists. OARs are contoured by medical dosimetrists. For localized prostate cancer, 

typical OAR structures include the bladder, rectum, seminal vesicles, penile bulb, femoral heads 

and bowels 54,55. The CTV is expanded by 2-10 mm to create a planning target volume (PTV) 56. 

The PTV expansion is an error margin designed to factor for treatment induced errors including 

(but not limited to) patient setup imperfections and radiation beam inhomogeneities 57.  

The treatment planning software that is commonly used for prostate cancer planning is 

Eclipse (Varian Medical Systems, Palo Alto, CA). Common treatment modalities for low risk 

prostate cancer include Intensity Modulated Radiation Therapy (IMRT) and Volumetric Arc 

Therapy (VMAT) 58. At the radiation oncology department at UCLA, a common treatment method 

that is employed is Stereotactic Body Radiation Therapy (SBRT). SBRT treatments are commonly 

prescribed for patients with stage I/II prostate cancer and are typically delivered in 5 fractions 

(treatment days) totaling 40Gy to the PTV 59,60. After beam arrangement, selection and multi-leaf 

collimator (MLC) positions are optimized followed by dose calculation. The Eclipse AAA 
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algorithm is typically used for dose calculation 61. Based on the calculated dose deposition, plan 

quality reports (PQRs) are generated to evaluate if OAR/PTV dose volume histogram (DVH) 

constraints are met 62. After an evaluation of the DVH values, plans are then reviewed by the 

attending radiation oncologist. 

 Phantom based QA measurements are a physical check to ensure that the planned doses 

are correctly delivered 63,64. Using a phantom such as ArcCheck (Sun Nuclear, Melbourne, FL), 

film and ionization chamber measurements can be taken to verify that the planned dose matches 

the delivered dose using the gamma index criteria 65,66. The gamma index is a tool for dose 

distribution comparison which combines planned vs delivered dose difference and distance to 

agreement  into a single quantity 66,67. If the plan passes these checks and other institution specific 

QA checks then it is ready for delivery.  

  

1.2.D. Radiation Therapy Treatments 

Prior to the delivery of radiation therapy, pretreatment steps are performed, which involve patient 

setup, pretreatment imaging and couch shifts for positioning correction. At the radiation oncology 

department in UCLA, vacuum sealed immobilization cushions are used for patient setup 68,69. 

Patients are aligned using in room lasers based on skin tattoos received prior to radiation therapy 

simulation imaging 51. Prior to treatment, alignment images are acquired in the form of a cone 

beam CT (CBCT) or anterior-posterior/left-right (AP/LR) X-ray projection images 70. If fiducial 

markers are implanted, they are used as a reference to calculate the shifts between simulation and 

pretreatment images 47,48. DRR images (generated at the treatment planning step) are used if AP 

and LR X-ray images were acquired 71. Treatment can begin after couch shifts are calculated and 

checked by an attending radiation oncologist. 
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Photon EBRT treatments are typically delivered using a clinical linear accelerator (linac). 

Clinical linacs typically deliver photon energies between 1 to 25 MeV 72. Figure 1.2.1 shows an 

image of a typical clinical linac. The major components of a linac consist of a power supply, 

modulator, electron gun, radiofrequency amplifier, waveguide, accelerator tube and a treatment 

head 10. The power supply and modulator are designed to produce a DC current to power the 

modulator and electron gun. The electron gun consists of a hot cathode where electrons are 

liberated via thermionic emission and are focused and accelerated towards an anode. The electron 

beam is then amplified by the modulator and waveguides. The function of the modulator is to 

provide a high voltage supply to the electron beam amplifier. Most linacs manufactured by Varian 

Medical Systems use klystrons as radiofrequency amplifiers. In a klystron an electron beam drifts 

between resonant microwave cavities, and is amplified in energy by absorbing the resonant 

microwave energy 10. The klystron outputs a high energy radiofrequency signal that is directed to 

the waveguides and used to accelerate the main electron beam. The main electron beam is directed 

using waveguides towards the treatment head. Electron beams interact with a target in clinical 

linac head to produce a photon beam via bremsstrahlung. After a photon beam is created, it is 

collimated by a set of tungsten jaws in the linac head and flattened using either flattening filters or 

flattening-filter free beams. Prior to reaching the patient skin surface additional beam collimation 

and shaping can be done by tungsten MLCs 10. The treatment head is typically contained inside 

the linac gantry which can rotate around the patient as shown in Figure 1.2.1. 

EBRT treatment involves directing radiation fields and depositing energy at the tumor site. 

Most clinical linac treatment deliveries involve photon energy transfer interactions such as the 

Compton effect 10. Radiation induced tumor cell death occurs by the induction of chromosomal 

abnormalities 73. This can result in preprogrammed cell death or interphase cell death by 
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mechanisms including apoptosis triggered by DNA damage, cell membrane damage and induction 

of G1/S phase cell cycle arrest 74–76.  

 

Figure 1.2.1. Image of the Varian Truebeam® clinical linac in the radiation oncology department 
at UCLA. 

 
1.2.E. Limitations to the Current Treatment Planning Workflow  

There are limitations to the standard EBRT treatment planning workflow including challenges to 

accurate CTV definition and the introduction of tumor positioning errors due to multimodal image 

registration. These challenges can cause systematic errors that propagate through the treatment 

planning workflow, and can potentially lead to treatment-induced side effects and compromised 

tumor control 13.   

Many institutions utilize MRI in addition to CT for tumor definition 77,78. Accurate tumor 
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definition is necessary for radiation therapy treatments because misidentification of the target 

boundary could potentially compromise tumor control and overdose nearby critical structures 79–

81. Each voxel in a CT image is assigned a CT number quantified by Hounsfield Units (HU). CT 

numbers describe the relative ability for electromagnetic radiation to pass through a material. The 

CT number is closely related to the relative number of electrons per unit volume (electron density) 

10. The prostate gland is surrounded by intrapelvic muscles that have similar electron densities 

which makes it challenging to define the prostate organ boundary 82,83. Several studies have 

reported a high degree of inter- and intra-observer variability in prostate CTV delineation 11,12. 

Additionally, several potentially-important OAR structures such as the penile bulb cannot be 

identified using only CT images because the organ does not produce sufficient contrast relative to 

its surroundings 11,84–88. Studies have shown that using both MRI and CT images for target 

delineation decreases variation in inter-observer organ definition and significantly reduced 

prostate CTVs 11,89,90. One study investigated the long-term side effects of prostate cancer 

treatments using CTV delineation on MRI (73 patients) compared to CTV delineation on CT-

images (72 patients) 90. This study demonstrated that statistically, prostate organ delineation using 

MRI led to lower urinary toxicity scores 36 months after treatment 90. 

Another source of treatment errors results from MRI/CT image registration, which can 

potentially lead to propagatable tumor definition errors 13. Diagnostic MRI images are typically 

fused to CT simulation images using rigid registration for GTV delineation 91. Image registration 

is typically performed by matching bone structures in both image modalities for prostate cancer 92. 

Organ positioning errors between CT simulation and diagnostic MRI images can occur due to 

differences in diagnostic MRI scanning conditions (curved couch, no laser positioning), MRI 

image acquisition differences (typically courser resolutions, image acquisitions in non-axial 
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planes) and patient considerations (empty bladder protocol for MRI imaging, organ motion and 

deformation) 93. Additional organ boundary definition errors can occur because the prostate organ 

appears systematically larger on CT than MRI 90. Uncertainties associated with CTV organ 

definition as a result of multimodal image registration can result in propagation of systematic 

positioning errors through the treatment workflow 13,17. Multimodal image registration errors can 

be eliminated by using only MRI images for radiation therapy simulation (MRI-only radiation 

therapy simulation).  

 

1.2.F. MRI-Only Radiation Therapy Simulation Imaging 

The clinical use of prostate MRI-only simulation imaging for radiation therapy has several 

advantages over the current simulation imaging standard. The primary advantage, as discussed in 

the previous section, is that MRI-only simulation images provide excellent soft tissue 

visualization, allowing improved CTV definition and eliminating multimodal image registration 

errors associated with MRI/CT image registration. Additional advantages include the ability of 

MRI to provide functional/multiparametric imaging and a reduction in delivered radiation dose by 

the removal of CT simulation imaging 13,17. MRI also allows for biologically-driven imaging such 

as spectroscopic imaging (imaging directed by the chemical and metabolic changes in tissues), 

diffusion weighted imaging (measurement of Brownian motion of water molecules in tissues), 

perfusion imaging (measurement of fluid passage through the tissues) and elastography imaging 

(measurement of tissue elastic properties) 94–100. This potentially allows MRI images to be utilized 

for pretreatment biological and functional tumor evaluation.  

 

1.2.G. Clinical Implementation Challenges of MRI-Only Simulation Imaging 
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Most modern treatment planning workflows were designed for CT images to have a variety of 

functionalities including providing anatomical information for tumor and critical structure 

delineation and tissue electron density information for dose calculations 87,101. Patient positioning 

and alignment methods such as DRR generation and fiducial marker implantation were developed 

or optimized for the CT-based simulation workflow 87,101. Additionally, most clinically used 

treatment QA steps are designed to be used with CT images for radiation therapy planning. MRI-

only simulation images do not provide tissue electron densities, require clinical solutions for 

patient positioning and alignment and require specialized QA steps 102. 

Clinically available solutions have been developed to provide electron density information 

for prostate MRI-only simulation images. Synthetic CT (sCT) images are used to provide MRI 

images with tissue electron densities 103. Correct assignment of tissue electron densities is 

necessary because errors can cause inaccuracies in the treatment planning dose calculation steps 

103. A variety of sCT generation methods have been developed including voxel-based assignment 

methods and atlas-based methods. Voxel-based assignment methods involve converting voxels 

containing MRI intensities into CT numbers 104,105. Atlas-based assignment methods involve 

deforming or matching the tissue morphology of MRI images to an atlas of aligned MRI and CT 

images 104,105. Electron density assignment can be done using atlas-based methods by assigning a 

single CT number to tissue groups (such as bone, musculature and adipose tissue) or by deforming 

and smoothing an atlas CT image 13,106–108. An example of two commercially-available sCT 

generators for prostate MRI simulation are the Phillips MR-CAT and Spectronics MRIPlanner 

107,108,109. The MR-CAT software uses a 3D Dixon-method fast field echo sequence to generate 

sCT images using bulk density assignment for air, adipose, water, trabecular bone and cortical 

bone 110. MRIPlanner converts T2-weighted MRI images to sCTs using a statistical decomposition 
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algorithm (SDA) 111. The SDA method uses a multimodal patient atlas to assign CT numbers to a 

deformed T2-weighted MRI image 111. Unlike MR-CAT, the MRIplanner method can be used with 

images acquired from MRI scanners from a variety of manufacturers. The mean absolute error 

(MAE) between generated sCT images and reference deformed CT images were 47 ± 5 HU and 

36 ± 4 HU for the MR-CAT and MRIplanner methods 109,112. sCT images generated using both 

methods have been used to create dosimetrically similar treatment plans to those using CT images 

with gamma pass rates of over 99% with a 2%/2-mm global gamma criteria 109,112. Using both 

methods, DRR images can be generated and allow alignment accuracy to pre-treatment X-ray 

images to within 1.5mm 111,113.  

 Procedures for fiducial marker-based pretreatment patient positioning using MRI-only 

simulation images still require development. Fiducial markers provide a high contrast surrogate 

for prostate organ location in the CT-based treatment planning workflow for pretreatment 

positioning and alignment 47,48. Fiducial markers are used in the MRI-only treatment planning 

workflow because the differences in the organ visibility in MRI and CBCT images and the high 

degree of interobserver variability of the prostate in CBCT images may cause challenges in 

pretreatment patient positioning 114,115. Many commercially available fiducial markers for 

treatment planning are manufactured from high atomic number, Z, metals because they provide a 

distinct and easily identifiable artifact on CT. However, many commercially available fiducial 

markers appear as small signal voids in MRI. Intraprostatic calcifications occur in ~40% of 

prostate cancer patients and appear as small signal voids not unlike implanted fiducial markers 116. 

Use of fiducial markers manufactured using materials such as polymers or gold doped with iron 

may allow for improved detectability of fiducial markers in MRI-only radiation therapy simulation 

images 117,118. Additionally, a variety of clinical MRI sequences including gradient echo (GRE) 
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have been suggested for fiducial marker detection using MRI-only simulation images 119. A 

quantitative comparison of the optimal commercially available fiducial marker and the optimal 

clinical MRI sequence for prostate MRI-only simulation images has yet to be conducted. 

 Approaches for the automatic detection of fiducial markers in prostate MRI-only radiation 

therapy images could potentially aid clinical transition to MRI-only workflows. Deep-learning 

based approaches have shown tremendous promise in small object detection in MRI images 120,121. 

2D and 3D deep learning architectures such as conditional generative adversarial networks 

(GANs) and DeepMedic have been used to classify small hypointense multiple sclerosis lesions in 

T1-weighted MRI images 122–124. Deep learning model-based classification approaches have 

substantially improved the detection and classification of objects in medical images such as lung 

nodules for diagnostic CT imaging 125–127. Utilizing such tools for the automatic detection of 

fiducial markers can potentially aid radiation oncology clinics adopting MRI-only simulation 

imaging for the first time 128.  

Another challenge to the clinical implementation of MRI-only radiation therapy simulation 

is the development of QA testing tools. MRI has a number of modality-specific steps that are not 

present in the conventional QA workflow including quantification of magnetic field 

inhomogeneities and validation of sCT images 102. Commercially available phantoms do exist for 

magnetic inhomogeneity characterization and several MRI-only studies have used these phantoms 

to quantify scanner-specific magnetic field inhomogeneities 129–131. Studies have also been done to 

quantify patient-induced susceptibility artifacts in the male pelvis, and have shown <1mm 

distortion 132,133. Software methods have been developed for sCT QA and conversion accuracy 

including using statistical approaches to evaluate the significance of errors when using sCT images 

in the planning workflow compared to CT and evaluating sCT dose accuracy by recalculating sCT-



14 
 

based plans using kV-CBCT images 134,135. The American Association of Physicists in Medicine 

(AAPM) practice guidelines on treatment planning using EBRT (along with other AAPM task 

groups) and have recommended the use of physical phantoms for treatment plan QA and end-to-

end testing of new workflows 136(p158),137,138,139(p101). 

Development of physical phantoms for MRI-only simulation QA is challenging because it 

requires adaptations of phantoms that were developed and optimized for the CT-based treatment 

planning workflow or requires the development of novel phantoms for the MRI-only workflow. 

The AAPM Medical Physics Practice Guidelines on the commissioning and QA of treatment 

planning dose calculations for megavoltage photon and electron beams recommends the use of 

water-equivalent phantoms with radiation measurement tools such as ionization chambers and 

radiochromic film for end-to-end testing 140. Phantom-based QA testing for MRI-based radiation 

therapy processes is challenging because it requires phantoms to produce similar MRI contrast and 

morphology to human pelvic tissues for sCT QA and similar electron densities to human pelvic 

tissues for dose calculation and DRR validation 141. Commercially available phantoms for CT-

based workflows cannot be utilized to validate or check sCT results because they are not designed 

to produce tissue-like contrast on MRI 130,141,142. To create phantoms that can be utilized for end-

to-end testing of MRI-only radiation therapy processes, a novel system of materials will need to 

be developed that quantitatively produces MRI contrast and electron densities for a range of pelvic 

tissues including trabecular bone, muscle and adipose tissue 142. This novel system of materials 

will need to be adapted in a structure that conforms to AAPM medical physics practice guidelines 

and can be used to test MRI-only processes such as sCT generation.   

 

1.3. Specific Aims 



15 
 

There are major challenges to the clinical development of prostate MRI-only simulation imaging 

including the lack of dedicated end-to-end testing equipment for MRI-only simulation imaging 

and consensus-driven approaches for fiducial marker identification and verification in MRI 

images. The goal of this dissertation is to address these challenges with the following specific aims 

(SAs): 

Specific Aim 1: Develop instrumentation to perform end-to-end testing of treatments using MRI-

only simulation images for radiation therapy.  

SA 1.1. Develop a novel system of bone and soft tissue surrogate materials for MRI and CT 

suitable for use in a physical phantom. 

SA 1.2. Develop a physical anthropomorphic phantom using bone and soft tissue surrogate 

materials to generate and test sCT image quality. 

SA 1.3. Use the physical anthropomorphic phantom to perform end-to-end testing of prostate MRI-

only simulation workflows with X-ray-based photon-based treatments. 

Specific Aim 2: Quantify the visibility, distinguishability and alignment accuracy of clinically 

used and commercially available fiducial markers in a set of clinically available MRI sequences. 

SA 2.1. Quantify the visibility of a variety of commercially available fiducial markers in phantom.  

SA 2.2. Quantify the visibility, distinguishability and alignment accuracy of clinically used gold 

fiducial markers in a set of clinically used MRI sequences. 

SA 2.3. Compare the quantitative visibility and distinguishability metrics of clinically used gold 

fiducial markers in a set of clinically used MRI sequences to expert human ratings. 

Specific Aim 3: Develop an automatic gold fiducial marker detection workflow and compare its 

classification accuracy to human raters.  

SA 3.1. Develop a deep learning-based workflow to automatically classify gold fiducial markers. 
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SA 3.2. Quantify the registration error from alignment of MRI-only simulation images to CBCT 

images using automatically classified fiducial markers. 

SA 3.3. Compare the classification and alignment accuracy of the automatically detected markers 

to those defined by expert human raters. 

  

Broader Implications: The specific aims addressed in this dissertation include the development 

of clinical solutions to improve QA processes for MRI-only radiation therapy simulation imaging 

and aid the positioning and alignment of cancer patients receiving EBRT treatments with MRI-

only simulation images by optimizing fiducial marker detection techniques.  

 

1.4. Dissertation Chapter Summary 

The following chapters are written to address these aims. The work presented in Chapter 2 

describes the development of a generalizable system of tissue mimicking materials for MRI and 

CT imaging. Chapter 3 presents the development of a multimodality anthropomorphic phantom 

for MRI-based QA measurements using the tissue surrogate materials described in Chapter 2. 

Chapter 4 presents a quantitative evaluation of the visibility and distinguishability of fiducial 

markers tested across a variety of clinically used MRI-sequences. Marker visibility is quantified 

in phantom and in patients. Using the presented quantitative metrics, a recommendation is made 

on the optimal fiducial marker for MRI-only simulation and MRI-sequence for clinically used 

fiducial markers. Chapter 5 describes the development of an automatic deep-learning-based 

fiducial marker detection workflow using the optimal MRI sequence identified from Chapter 4. 

Chapter 6 contains a summary of the major findings from each chapter and an outline for future 

studies that can be conducted based on this work.  
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CHAPTER 2 - A Generalized System of Tissue-
Mimicking Materials for CT and MRI  

 
2.1. Abstract 

Purpose: The advent of technologies such as MRI-guided radiation therapy has led to the need for 

phantom materials that are capable of producing tissue-like contrast on both MRI and CT imaging 

modalities. The purpose of this work is to develop a system of easily made and formed materials 

with adjustable T1 and T2 relaxation times, and X-ray attenuation properties, for mimicking soft 

tissue and bone with both MRI and CT imaging modalities.  

Methods and Materials: The effects on T1/T2 relaxation times and CT numbers were quantified 

for a range of gadolinium (Gd) contrast (0–25 μmol/g), agarose (0–8% w/w), glass microspheres 

(GMs) (0–10% w/w) and CaCO3 (0–50% w/w) concentrations in a carrageenan-based gel. 105 gel 

samples were prepared with the additives, carrageenan and water. Samples were imaged in a 3D-

printed holding structure to find the attainable range of T1/T2 relaxation time and CT number 

combinations. T1 and T2 relaxation time maps were generated using voxel-wise inversion-recovery 

and spin-echo techniques, respectively. A multivariate linear regression model was generated to 

allow the materials system to be generalized to semi-arbitrary T1/T2 relaxation times and CT 

numbers. Nine diverse tissue types were mimicked for fit model validation.  

Results: The achievable T1/T2 relaxation times and CT numbers for the additive concentrations 

tested in this study spanned from 82 to 2180 ms, 12 to 475 ms, and -117 to +914 Hounsfield Units 

(HU) respectively. The MAE between the fit model predicted and measured T1/T2 relaxation times 

and CT numbers for the nine tested tissue types was 113 ± 64 ms, 16 ± 26 ms and 11 ± 14 HU 

respectively.  
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Conclusions: We have created a system of materials capable of producing tissue-like contrast for 

3.0T MRI and CT imaging modalities.  
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2.2. Introduction 

MRI and CT are two of the most commonly used medical imaging modalities 1–5. Many groups of 

patients typically receive both MRI and CT imaging for diagnostic and radiation treatment 

planning purposes 6–8. Typically, MRI and CT machines are calibrated and QA-tested separately 

for their respective applications using specialized phantoms 9–12. The advent of applications such 

as MRI-guided radiation therapy has led to the need for materials and phantoms that are capable 

of producing bone and soft tissue-like contrast on both MRI and CT imaging modalities 13,14. The 

development of diverse tissue-mimicking materials for both MRI and CT is challenging because 

it requires matching both the X-ray attenuation and local magnetic properties of human tissue.  

Previous studies have been done on the development of tissue surrogate materials for both 

MRI and CT imaging. D’Souza et al. developed a tissue-mimicking prostate phantom for 

multimodal imaging 15. Prostate and muscle tissue contrast was developed using water, agarose, 

lipid particles, condensed milk, copper (II) sulfate (CuSO4), EDTA and glass beads, with 

thermiserol as a preservative. Adipose tissue was mimicked using safflower oil in a polyurethane 

mesh. T1 and T2 relaxometry was performed on a 0.94T 40MHz Minispec relaxometer. These 

phantom materials were able to mimic soft tissue behavior well for prostate, skeletal muscle, and 

adipose tissue at 0.94T. This system of materials has limitations including the lack of MRI 

relaxometry measurements at higher magnetic fields and reproducibility issues associated with the 

use of animal-derived proteins. Niebuhr et al. created non-fat soft tissue surrogate materials using 

agarose gels, Gd  and sodium fluoride (NaF) and olive oil to mimic adipose tissue 16. MRI 

relaxometry was performed on 1.5T clinical MRI scanner and CT images were acquired on a dual 

source CT scanner. This approach allowed for the development of generalized fits to mimic a range 

of soft tissues. However, the use of large amounts of NaF salts resulted in severe artifacts in T2-
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weighted MRI images. Polyvinyl chloride (PVC)-based tissue surrogate materials have been 

developed for MRI and CT imaging 17,18. Tissue surrogate materials were created by varying the 

PVC-softener ratios and the mass fractions of mineral oil and GMs in PVC. The CT numbers for 

this system of PVC-based materials varied from −10 to 110 HU. The measured T1 and T2 relaxation 

times were 206.81 ± 17.50 and 20.22 ± 5.74 ms, respectively. However, the PVC-based system of 

materials cannot mimic the T1/T2 relaxation times and CT numbers of adipose tissue and bone. 

 Carrageenan-based materials have been developed to mimic a diverse array of soft tissues. 

Hattori et al. developed the Carrageenan-Agarose-Gadolinium-NaCl (CAGN) phantom for 3.0T 

MRI 19,20. The CAGN phantom used carrageenan as a gelatinizer, and Gd and agarose to control 

T1 and T2 relaxometry. The CAGN phantom was able to mimic T1 and T2 relaxometry for most 

soft tissues such as muscle, gray matter and cervix at 3.0T fields. This method uses base material 

with long T1 and T2 relaxation times, which allows the MRI characteristics to be easily tuned using 

T1 and T2 relaxation time modifying additives. CT functionality can potentially be added using 

electron density modifying additives. Singhrao et al used GMs to decrease, and CaCO3 powder to 

increase the CT number of a cast polyurethane mold 21. We hypothesized that combining this 

method with the approach developed by Hattori et al. could allow the for the production of 

materials that could mimic a diverse range of tissues for both MRI and CT.  

In this work, a system of carrageenan-based tissue-mimicking materials for MRI and CT 

was developed. We tested the achievable T1/T2 relaxation times and CT numbers of this system of 

materials and created a generalizable fit model to mimic nine diverse tissue types including human 

pelvic bone marrow, adipose tissue and skeletal muscle. 
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2.3.  Methods and Materials 

The development of a system of multimodal carrageenan-based tissue surrogate materials involved 

testing the ranges of achievable T1/T2 relaxation times and CT numbers, and creating a multivariate 

linear fit model to predict the required additive concentrations to create specific tissue surrogate 

materials. Testing the ranges of achievable T1/T2 relaxation times and CT numbers involved 

creating carrageenan-based gels with varying concentrations of four additives and performing 

T1/T2 relaxometry and CT number measurements. A multivariate linear fit model was developed 

to attain the required additive concentrations to formulate a tissue-mimicking material. The model 

was validated by mimicking the T1/T2 relaxation times and CT numbers of nine diverse tissue 

types.  

2.3.A. Sample Preparation 

The range of achievable MRI relaxometry values and CT numbers was quantified by creating 50g 

gel samples contained in syringes. Samples were prepared using carrageenan (Food Grade Kappa 

Carrageenan: Modernist Pantry, Eliot, ME, USA) as a gelatinizer; gadofosveset trisodium, 

(Lantheus Medical Imaging, Inc, North Billlerica, MA, USA) as a T1 modifier; A1700 Agarose 

LE powder (Benchmark Scientific, Sayreville, NJ, USA) as a T2 modifier; CaCO3 (LD Carlson 

Co., Kent, OH, USA) and GMs (Alumilite, Kalamazoo, MI, USA) as CT number modifiers, and 

deionized water. Carrageenan was selected as a gelatinizer because of its insignificant effects on 

T1/T2 relaxation times 19. Each sample was prepared to weigh 50g and have a fixed concentration 

of carrageenan at 3% w/w. 105 samples were made with different combinations of T1/T2 relaxation 

time, and CT number modifying additives. Concentrations of Gd contrast were tested at 0, 0.25, 

2.5 12.5 and 25 μmol/g increments. Agarose concentrations were tested at 0, 2, 5 and 8% w/w 
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increments. CaCO3 concentrations at 0, 5, 10, 20, 30 and 50% w/w increments. GMs 

concentrations were tested at 0, 5 and 10% w/w increments. The range of Gd contrast and 

carrageenan concentrations were fixed based on the observations from prior studies 19,21,22. The 

working range of additive concentrations were established based on prior literature and exploratory 

tests 19,21,22. The exploratory tests involved selecting additive concentrations that did not cause the 

carrageenan gel to prematurely congeal. For samples containing CaCO3 concentrations at 20, 30 

and 50% w/w increments, the agarose concentration was tested at 0% w/w. For samples containing 

GMs concentrations at 5 and 10% w/w, the agarose concentration was tested at 0, 2 and 5% w/w 

increments. These constraints were placed because exploratory tests demonstrated that samples 

containing high agarose concentrations and high CaCO3/GMs concentrations congealed before 

they could be funneled into the sample syringes.  

 Sample preparation involved creating a base mix for each batch followed by the addition 

of Gd contrast and agarose. A 500 ml initial base mix batch containing water, CaCO3 (when 

required), and GMs (when required) was created. The base mix was then poured into 100 ml 

beakers where Gd contrast was added if required. The final mixing step involved adding the gelling 

agents, carrageenan and (if necessary) agarose. The gelling agents were added last to prevent 

premature solidification. Each sample mixture was maintained at 120°C to prevent solidification 

during construction. Samples were completed by funneling 50g of the hot base mix into a 60 cc 

Leur Lock syringe and capped. Completed samples were cooled to 21.5°C and stored at that 

temperature.    

Sample syringes were ordered by concentration and placed in a 3D-printed case as shown 

in Figure 2.3.1. The case structure was designed in Inventor (Autodesk, San Rafael, CA, USA) to 
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hold 20 samples in a 4 x 5 grid. The case structure was 3D-printed on a MakerGear M3 3D-printer 

(MakerGear, Beachwood, OH, USA).  

 

Figure 2.3.1. Graphic of samples contained in holding structure (a). Diagram of sample 
positioning in holding structure (b). Each phantom was based on a phantom containing 20 
samples with a range of Gd contrast and agarose concentrations. Additional sets of phantoms 
were created with the same concentration variation of Ag and Gd as the base phantom but with 
increasing concentrations of CaCO3 (Phantom set B) or GMs concentrations (Phantom set A).  

 

2.3.B. Quantification of Imaging Properties  

The imaging properties of each sample were quantified using T1/T2 relaxometry and CT 

number measurements (Figure 2.3.2). A 3μmol/g NiCl2 hexahydrate solution (Sigma Chemical 

Corp., St. Louis, MO) was used as a control. CT images were acquired with scanner settings at 

120 kVp and 400 mAs. CT number was used as a surrogate for X-ray attenuation. T1/T2 

relaxometry measurements were performed on a 3.0T MRI scanner (MAGNETOM Skyra, 

Siemens, Erlangen, Germany). CT images were acquired on a 20-slice single source CT (Sensation 

Open, Siemens, Erlangen, Germany). All measurements were performed between 20°C to 22°C.  

T1/T2 relaxation times and CT numbers for each sample were calculated within a 20 mm 

diameter region of interest (ROI) inside each sample. T1 measurements were acquired using an 

inversion-recovery turbo spin-echo (TSE) sequence with 180-degree refocusing pulses. The echo 
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time (TE) and repetition time (TR) were fixed at 12 ms and 15,000 ms respectively, and the 

inversion time (TI) was varied from 25 ms to 2000 ms in 50 ms steps. Images were acquired with 

an echo-train-length of 22, no signal averaging, and without parallel imaging. A 128 x 128 matrix, 

single 8-mm slice with a readout bandwidth of 130 Hz/px was acquired. A T1 map was generated 

by performing a voxel-wise fit to the observed signal intensity according to the equation 𝑀!,#$! =

	𝑀%)1 − 2𝑒&#$ #"⁄ . in MATLAB (MathWorks, Natick, MA) where 𝑀% is the initial magnetization 

vector magnitude. T2 measurements were acquired using spin-echo images using a TSE sequence 

with a constant TR at 4000 ms and TE values at 25, 50, 62, 75, 87, 107, 167, and 262 ms. Images 

were acquired with an echo-train-length of 25, 2 signal averages and without parallel imaging. T2 

maps were generated by performing a voxel-wise fit according to the equation 𝑀#(! =

𝑀% /𝑒
&
#$!
#% 0 + 𝑐 where 𝑐 is a noise offset variable.  
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Figure 2.3.2. T1 and T2 maps and CT images of the phantom samples containing 0% and 10% 
CaCO3 by weight. For reference, the concentration axes of Gd contrast (0, 0.25, 2.5 12.5 and 25 
μmol/g) and agarose (0, 2, 5 and 8 w/w%) are indicted where the Gd concentration increases from 
left to right and the agarose concentration increases from top to bottom.  

2.3.C. Multivariate Fit Model Development 

Multivariate linear models between 1/T1, 1/T2 and CT number with respect to the four additives 

were developed using the Python-based Bayesian Ridge regression model package in the sklearn 

package 23. A single predictive model for T1/T2 relaxation times and CT numbers (𝐶𝑇𝑛) was 

developed by combining each multivariate linear regression: 

5
1 𝑇)⁄
1 𝑇*⁄
𝐶𝑇𝑛

7 = 8
𝛼% 𝛼+, 𝛼-. 𝛼/0/1& 𝛼+2
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where (𝛼, 𝛽, 𝛾)% are fit intercepts, (𝛼, 𝛽, 𝛾)+,,-.,/0/1&,+2 are the fit parameters for Gd contrast, 

agarose, CaCO3 or GMs respectively, and 𝑐+,,-.,/0/1&,+2 are the input concentrations of each 

additive. The fit parameters in equation (1) were established using the T1/T2 relaxometry and CT 

number measurements for all samples. The linear programming package CVX was used to select 

additive concentrations to produce a desired set of T1/T2 relaxation times and CT numbers, 24,25. 

The fit model accuracy was tested by creating nine target tissue-surrogate materials: 

muscle, white matter, gray matter, liver, prostate, glandular breast, adipose tissue, pelvic bone 

marrow, adipose tissue and cortical bone. Target T1/T2 relaxation times and CT numbers were 

selected based on in vivo literature reports 26–48. Samples representing each tissue type were created 

using the fit-specified concentrations and imaged under the same conditions described above. 

Measured T1/T2 relaxation times and CT numbers were compared to their corresponding target 

values for each tissue type. Each tissue-mimicking sample was produced three times. 

2.4. Results 

2.4.A. Quantification of Imaging Properties 

Figure 2.4.1. shows all measured T1/T2 relaxation times and CT numbers for each sample. Plots 

of T1 relaxation times vs. T2 relaxation times, T1 relaxation times vs. CT numbers, and CT numbers 

vs. T2 relaxation times are included. Shaded regions in each plot represents the expected T1/T2 

relaxation times, and CT number values for a variety of human tissues.  

 The T1 vs T2 relaxation time results (Figure 2.4.1a) show that the concentrations tested for 

this system of materials can span a range of T1 relaxation times from 82 ms to 2180 ms and T2 

relaxation times from 12 ms to 475 ms. The T1 relaxation time vs CT number and T2 relaxation 

time vs CT number (Figure 2.4.1b, c) results also show that the range of achievable CT numbers 
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is -117 HU to 914 HU by the range of concentrations that we tested. Plots showing all T1/T2 

relaxation time, and CT number measurements as a function of additive concentrations are 

provided in the Appendix I-III. 

 

Figure 2.4.1 Scatter plots of T1 vs T2 relaxation times (a), T1 relaxation times vs CT numbers (b) 
and T2 relaxation times vs CT numbers (c) for carrageenan-based samples containing different 
combinations of Gd contrast, agarose, GMs, and CaCO3. Estimated expected ranges for a variety 
of tissue types are shown in the shaded regions. The shaded T1 and T2 relaxation time regions were 
selected based on reported measurements from a review of in vivo 3.0T MRI T1 and T2 maps by 
Bojorquez et al36. The shaded CT number regions were derived from a review of multiple 
publications 28,31,35,39,40,43,44.  

2.4.B. Multivariate Fit Model Parameter Estimation 

The multivariate fit coefficients 𝛼%,+,,-.,/0/1&,+2, calculated using sample measurements were: 
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𝛼% = 6.1E − 05
𝛼+, = 1.3E − 02
𝛼-. = 3.2E − 04
𝛼/0/1& = 1.4E − 04
𝛼+2 = 1.7E − 04

. 

Sample measurements and corresponding fits of 1/T1 vs Gd contrast concentrations are shown in 

Appendix I.  

The multivariate fit coefficients 𝛽%,+,,-.,/0/1&,+2, calculated using sample measurements were: 

𝛽% = 3.4E − 03
𝛽+, = 1.1E − 02
𝛽-. = 2.9E − 03
𝛽/0/1& = 1.6E − 03
𝛽+2 = 1.4E − 02

. 

Sample measurements and corresponding fits of 1/T2 vs agarose concentrations are shown in 

Appendix II.  

The multivariate fit coefficients 𝛾%,+,,-.,/0/1&,+2, calculated using sample measurements were: 

𝛾% = 6.4E + 00
𝛾+, = 1.0E + 01
𝛾-. = 6.7E + 00
𝛾/0/1& = 2.7E + 01
𝛾+2 = 3.3E + 01

. 

Sample measurements and corresponding fits of CT number vs CaCO3 and GMs concentrations 

are shown in Appendix III. 

2.4.C. Multivariate Fit Model Validation 

The fit model predicted additive concentrations are shown in Table 2.4.I. Table 2.4.II shows the 

measured T1/T2 relaxation times and CT numbers for samples generated with fit-predicted additive 
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concentrations, along with the target values for each of the nine tissue types tested. The standard 

deviations for the tissue-mimicking materials are based on the standard deviation of the mean ROI 

measurements from three repeated samples. 

 

Tissue type Gd contrast 
(μmol/g) 

Agarose 
(% w/w) 

CaCO3 
(% w/w) 

GMs 
(% 

w/w) 

Carrageenan 
(% w/w) 

Water 
(% w/w) 

Muscle 0.6 0.7 4.7 2.1 3.0 89.5 

White 
Matter 1.8 0.9 3.3 1.2 3.0 91.6 

Gray 
Matter 1.4 0.7 3.3 0.8 3.0 92.2 

Liver 2.1 1.2 4.5 2.9 3.0 88.4 

Prostate 1.0 0.6 3.5 0.9 3.0 92 

Glandular 
breast 0.8 0.6 2.6 1.9 3.0 91.9 

Adipose 
tissue 11.0 0.0 0.0 5.0 3.0 92 

Pelvic Bone 
Marrow 7.5 1.3 6.1 1.1 3.0 88.6 

Cortical 
Bone 2.0 1.8 22 0.0 3.0 73.2 

Table 2.4.I.  Fit model predicted concentrations of Gd contrast, agarose, CaCO3, and GMs 
required to create 100g of each tissue surrogate. 
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2.5. Discussion 

The goal of this work was to create a generalizable model using carrageenan-based tissue-surrogate 

materials for MRI and CT imaging. The ranges of attainable T1/T2 relaxation times and CT 

numbers were quantified and demonstrated to span a range of T1 relaxation times between 82 to 

2180 ms, T2 relaxation times between 12 to 475 ms and CT numbers between -117 to 914 HU. A 

generalizable fit model was developed and the T1/T2 relaxation times and CT numbers of nine 

diverse tissue types were mimicked. For the nine tested tissue types, the multivariate fit model 

yielded a MAE between the fit model predicted and measured T1/T2 relaxation times, and CT 

numbers were 113 ± 64 ms,16 ± 26 ms and 10 ± 14 HU respectively.  

The temporal stability and physical characteristics of this system of materials were not 

directly investigated in this study. The materials were tested for a period of 12 weeks without 

exhibiting visible physical degradation. Previous studies have investigated the stability of 

carrageenan-based materials over time. In et al. quantified the mechanical stability and T1/T2 

relaxation time stability of carrageenan-based materials with agar and Gd contrast additives 49. The 

density and compressive strength changes over 6 weeks were relatively stable for samples with 

3% carrageenan as used in our study. The 3.0T T1 relaxation times of 8 tested samples generally 

increased by 1.25 times compared to baseline after 5 weeks. The 3.0T T2 relaxation times of eight 

tested samples generally decreased 0.75 to 0.95 times compared to baseline after 5 weeks 49. 

Hattori et al. reported that the T1 values of carrageenan gels containing Gd contrast and agarose 

additives did not change over the course of a 4‐month period 19. They reported that T2 values of 

carrageenan gels showed increases in T2 values of as much as 15%. Previous studies have utilized 

preservatives such as sodium azide or thimerosal to preserve carrageenan-based or agarose gel-
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based materials 15,19. In future studies, these preservatives could be incorporated into our material 

formulation by adding them during the mixing steps.  

The development of the fit model was based on the assumption that the additives can quasi-

linearly control the imaging properties within the range of concentrations studied. Gd contrast and 

agarose additives were selected because they have been observed to control the T1 and T2 

relaxation times of carrageenan-based gels 16,22. Gd contrast agents are paramagnetic and improve 

the efficiency of T1 and T2 relaxation 50. Typically, the T2 shortening effect of Gd contrast is not 

as pronounced as the T1 shortening effects. Agarose has been shown to shorten T1 relaxation times 

of carrageenan gels however its shortening effect are more pronounced on the T2 relaxation times 

19. Niebuhr et al. demonstrated that the concentration of agarose in gel form has a quasi-linear 

relationship with electron density 16. Hollow GMs have been used in previous studies to decrease 

the apparent CT number of agarose and polyurethane materials 15,21. The apparent decrease in CT 

number due to the presence of hollow GMs may be due to voxel averaging between the X-ray 

attenuation behavior of the hollow GMs and the surrounding carrageenan-based gel. CaCO3 has 

been used in several previous studies to increase the apparent electron density of phantom molding 

materials 21,51,52. All of these previous studies showed no explicit relationship between the 

concentration of CaCO3 and its effect on electron density. In this study, we established a linear 

relationship between the CaCO3 concentration and the CT number (which served as a proxy for 

electron density). Since CaCO3 is insoluble in water, we conjecture that the increase in CT number 

is due to voxel averaging of CaCO3 particulates and the surrounding carrageenan gel. However, 

further microscopy studies may elucidate the microscopic effects of CaCO3 on carrageenan gels.  

The assumption of linearity in the fit model is a potential source of error because of the 

observed deviations between the fit-specified concentrations and the measured T1/T2 relaxation 
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times and CT numbers. The fit model underestimated the T1 relaxation times for tissue-mimicking 

materials greater than 1200 ms by up to -14%. This could be attributed to higher T1 relaxation 

target times being subject to a higher fit error because the T1 relaxation time error is proportional 

to T12. In this study we observed that the addition of GMs severely degraded the T2 relaxation 

times of carrageenan-based gels. This made development of adipose tissue mimicking materials 

challenging because it required relatively high concentrations of GMs to match the low CT 

numbers of in vivo tissues. Developing a model-based approach for these types of tissue required 

a tradeoff between selecting an optimal CT number and T2 relaxation time. This could explain why 

the fit model could not perfectly mimic the CT numbers of glandular breast and adipose tissue 

because those tissue types required the addition of a high concentration of GMs. To create 

materials with CT numbers above 200 HU, such as bone surrogate material, more CaCO3 is 

required. However, the addition of large amounts of CaCO3 also results in suppression of T2 

relaxation times of bone tissue-surrogates, possibly because of the decrease in water volume in the 

bone surrogate gels. 

This system of materials could potentially be adapted in physical phantoms for MRI-based 

radiation therapy treatment QA testing. We plan to adapt this system of materials to be used in a 

3D printed structure for the end-to-end testing for MRI-guided QA. Other potential applications 

include using this system of materials to mimic different types of adipose tissue such as brown 

adipose tissue and tumors. Further experiments will involve testing a larger range of additive 

concentrations and testing this system of materials. This experiment was conducted at 3.0T 

because that is currently the practical upper limit for most MRI simulators for radiation therapy 

however, future experiments will involve testing these materials at lower magnetic field strengths. 
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Testing at different field strengths may allow this system of materials to be used in QA 

instrumentation for a wider range of MRI-only and onboard-MRI-guided treatments.  

2.6. Conclusions 

We have created a system of tissue-mimicking carrageenan-based materials for both MRI and CT 

imaging. The tissue-surrogates produced using this system of materials have good T1/T2 relaxation 

time and CT number agreement compared with published in vivo measurements. This system of 

materials can mimic MRI and CT characteristics for bone and a wide range of soft tissues such as 

adipose tissue and skeletal muscle. 
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2.7. Appendix I 

 

Appendix I. 1/T1 measurements for increasing Gd contrast concentrations (black dots), and the 
corresponding multivariate linear regression fits. Each point represents data generated from a 50g 
gel sample. Each plot in (a) represents a different combination of agarose and CaCO3 
concentrations. Each plot in figure (b) represents a different combination of agarose and GM 
concentrations. Each point represents data generated from a 50g gel sample.  
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2.8. Appendix II 

 

Appendix II. 1/T2 measurements for increasing agarose concentrations (black dots), and the 
corresponding multivariate linear regression fits. Each point represents data generated from a 50g 
gel sample. Each plot in (a) represents a different combination of Gd contrast and CaCO3 
concentrations. Each plot in figure (b) represents a different combination of Gd contrast and GM 
concentrations. 
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2.9. Appendix III 

 

Appendix III. (a) CT number measurements for increasing CaCO3 concentrations (black dots), and 
the corresponding multivariate linear regression fits. Each point represents data generated from a 
50g gel sample. Each plot in (a) represents a different combination of Gd contrast and agarose 
concentrations. (b) CT number measurements for increasing GM concentrations (black dots), and 
the corresponding multivariate linear regression fits. Each plot in (b) represents a different 
combination of Gd contrast and agarose concentrations.   
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CHAPTER 3 - A Novel Anthropomorphic 
Multimodality Phantom for MRI-Based Radiation 
Therapy QA Testing 
 

3.1. Abstract 

Purpose: Increased utilization of MRI in radiation therapy has caused a growing need for 

phantoms that provide tissue-like contrast in both CT and MRI images. Such phantoms can be 

used to compare MRI-based processes with CT-based clinical standards. Here, we develop and 

demonstrate the clinical utility of a 3D-printed anthropomorphic pelvis phantom containing 

materials capable of T1, T2 and electron density matching for a clinically relevant set of soft tissues 

and bone. 

Methods and Materials: The phantom design was based on a male pelvic anatomy template with 

thin boundaries separating tissue types. Slots were included to allow insertion of various 

dosimeters. The phantom structure was created using a 3D-printer. The tissue compartments were 

filled with carrageenan-based materials designed to match the T1 and T2 relaxation times and 

electron densities of the corresponding tissues. CT and MRI images of the phantom were acquired 

and used to compare phantom T1 and T2 relaxation times and electron densities to literature-

reported values for human tissue. To demonstrate clinical utility, the phantom was used for end-

to-end testing of an MRI-only treatment simulation and planning workflow. Based on a T2-

weighted MRI image, sCTs were created using a statistical decomposition algorithm (MRIPlanner, 

Spectronic Research AB, Sweden) and used for dose calculation during treatment planning of 

VMAT and 7-field IMRT prostate plans. The plans were delivered on a Truebeam STX (Varian 
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Medical Systems, Palo Alto, CA), with film and a 0.3 cc ion chamber used to measure the delivered 

dose. Doses calculated on the CT and sCTs were compared using common DVH metrics. 

Results: T1 and T2 relaxation time and electron density measurements for muscle, prostate and 

bone agreed well with literature-reported in vivo measurements. Film analysis resulted in a 99.7% 

gamma-pass-rate (3.0%, 3.0mm) for both plans. The ion chamber-measured dose discrepancies at 

the isocenter were 0.36% and 1.67% for the IMRT and VMAT plans respectively. The differences 

in PTV D98% and D95% between plans calculated on the CT and 1.5T/3.0T-derived sCT images 

were under 3%. 

Conclusions: The developed phantom provides tissue-like contrast on MRI and CT and can be 

used to validate MRI-based processes through comparison with standard CT-based processes. 
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3.2. Introduction 

The use of Magnetic Resonance Imaging (MRI) is becoming increasingly prevalent in radiation 

therapy because it provides excellent soft tissue visualization 1–7. Examples of the utilization of 

MRI in clinical practice include registration of planning CT and MRI for target delineation, 

treatments using MRI-guided treatment units, and MRI-only simulation/treatment planning 8–13.  

 Phantoms play a critical role in acceptance, commissioning, and periodic QA of linacs and 

imaging systems, and standardizing multisite clinical trial design 14-17 . Phantoms such as the 

American College of Radiology (ACR) large phantom are used for contrast, resolution and 

geometry tests of MRI-based treatments 13,14. However, most commercially available phantoms do 

not mimic both MRI/CT tissue imaging characteristics for different human organs making it 

challenging to comprehensively test MRI-based processes such as sCT image generation 15–18. 

 Non-commercial multimodal MRI/CT phantoms have been developed to test MRI-based 

radiation therapy workflows. Niebuhr et al developed tissue surrogate materials for MRI and CT 

imaging and used them in an anthropomorphic phantom to test aspects of MRI-based workflows 

19–21. This phantom used agarose gels in combination with Gd-based contrast agents and NaF to 

simulate non-fat soft tissues. Vegetable oils were used to mimic adipose tissue. Pelvis bone was 

mimicked with petroleum jelly, K2HPO4, gypsum bandages, and a photopolymer-based 3D-

printed structure. These materials were contained in a silicone-based deformable hollow organ 

structure. The organ structures were encased in a cylindrical PMMA case. However, the presence 

of NaF caused shadowing artifacts in T2-weighted MRI images, and the phantom’s design did not 

include features to facilitate ion chamber- or film-based dosimetry measurements. Sun et al 

developed a dedicated end-to-end QA phantom for MRI-only simulation22. The phantom contained 

two components, one for quantifying internal distortion and the second for dosimetry and 
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alignment evaluation. The dosimetry and alignment component consisted of a mineral oil-filled 

pelvic-shaped structure with simulated pelvic organs. Dosimetric and DRR-based alignment 

differences were compared between MRI-only and CT-based plans. This phantom used mineral 

oil to represent all soft tissues and could not mimic the different imaging characteristics of various 

pelvic tissue types such as adipose tissue and pelvic bone. Cunningham et al developed a pelvic 

end-to-end phantom for MRI-based radiation therapy applications 23. Soft tissue organ structures 

were mimicked with silicone balloons filled with an MnCl2 solution, and pelvic bone was 

mimicked with cast polyurethane structures. This phantom structure allowed for ion chamber and 

film measurements. This phantom did not use materials with T2 relaxation times representative of 

human pelvic tissues.  

 This work reports on the development of an anthropomorphic phantom to test and validate 

MRI-based workflows. Descriptions of the design, fabrication and an example application of the 

phantom are included. The phantom was a 3D-printed structure imitating male pelvic geometry 

containing slots for isocentric dosimetry measurements. The phantom was designed to contain 

materials that produce tissue-like contrast for CT and 1.5T/3.0T MRI using a novel system of 

carrageenan-based materials to mimic soft tissues and bone. The MRI and CT tissue imaging 

characteristics were quantified using T1 and T2 mapping and CT number measurements. As an 

example application, the phantom was used for end-to-end testing of an MRI-only simulation 

workflow including evaluation of phantom-based sCT images, dosimetric accuracy, and alignment 

accuracy of SBRT VMAT and 7-field IMRT prostate plans. 

 

3.3. Methods and Materials 

3.3.A. Phantom Design and Fabrication 
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Phantom construction involved the creation of a 3D-printed structure imitating male pelvic 

geometry. The structure contained MRI/CT human tissue-mimicking materials (Figure 3.3.1). The 

system of tissue-surrogate materials was based on a common carrageenan-based solution. The 

materials are solid at room temperature and liquify when heated above 45°C, allowing them to be 

formed into shapes. The phantom structure was 3D-printed using a computer-aided-design (CAD) 

model based on human pelvic anatomy. The structure contained rigidly separated compartments 

conforming to pelvic anatomy, allowing the tissue-mimicking materials to be poured in. The 

materials were poured into the phantom in 2cm layers allowing the previous layer to solidify. 

 The phantom structure design was based on human pelvic anatomy and modified into a 

3D-printable CAD model with radiation therapy features. A typical prostate cancer patient CT 

image was used as a template for phantom design. The gross musculature, prostate, rectum, 

bladder, penile bulb, pelvic bones and adipose tissues were contoured on the patient image and 

used to define rigid tissue compartments in the phantom structure. Tissue segmentation was 

performed in MIM (MIM Software Inc., Beachwood, Ohio). The resultant contours were expanded 

to create 2mm thick walls creating the rigid tissue compartments separating tissue types in the 3D-

printed structure (Figure 3.3.1). The rigid tissue compartment contours were imported as a mesh 

into Fusion360 CAD software (Autodesk, Inc, San Rafael, CA) in stereolithography (.stl) file 

format. The rigid tissue compartment mesh was smoothed using Laplacian smoothing without 

surface modification to remove self-intersecting vertices and simplify generation of the structure-

defining triangular mesh24. The smoothed rigid tissue compartment mesh was imported into 

AutoCAD (Autodesk, Inc, San Rafael, CA) and converted into a solid structure. A slot was added 

to allow insertion of dosimeters. Two adapters were designed to allow for placement of a 0.3cc 

PTW Farmer ion chamber (PTW Freiburg GmbH, Germany), and radio-chromic film. Alignment 
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crosshair indentations and a flat base were added to facilitate reproducible phantom positioning 

(Figure 3.3.1).  The phantom structure was 3D-printed on a Raise3D Pro2 (Raise3D, Irvine, CA) 

using Polylactic Acid (PLA) filament. The dimensions of the printed phantom were 29 cm in the 

LR x 17cm in the AP x 6cm in the superior-inferior (SI) directions. The phantom was 3D-printed 

as a single piece. A closure lid was designed and 3D-printed to protect the internal components of 

the phantom. The phantom design was rescaled by a factor of 0.73 in the AP, LR and SI directions 

to accommodate the printer bed area of 31cm x 31cm.  

 A novel system of carrageenan-based tissue-mimicking materials for MRI and CT imaging 

was used in constructing the phantom 25. Carrageenan was selected as a gelatinizer because it 

produces a solid-at-room-temperature gel and because of its minimal effects on T1 and T2 values 

26,27. Gd-contrast (gadofosveset trisodium, Lantheus Medical Imaging, Inc, North Billlerica, MA) 

and agarose (A1700 Agarose LE powder, Benchmark Scientific, Sayreville, NJ) were used as T1 

and T2 relaxation time modifiers. CaCO3 (LD Carlson Co., Kent, OH) and GMs (Alumilite, 

Kalamazoo, MI) were used as CT number modifiers 28. Surrogate materials were used to mimic 

muscle, prostate, pelvic bone and adipose tissue (Table 3.3.I). A carrageenan-based water 

surrogate material was developed for urinary bladder. The gross musculature and penile bulb 

structures were filled with the muscle-mimicking material. The prostate and rectum structures were 

filled with the prostate-mimicking material.  
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Figure 3.3.1. Major anatomical structures such as the gross musculature (M), adipose tissue (F), 
prostate (P), rectum (R) and pelvic bone (B) were segmented on a reference patient CT image (a). 
The front and midsection of the phantom CAD design are depicted in (b) and (c). The phantom 
design structure was filled with either adipose tissue, muscle, bone or prostate tissue-mimicking 
materials for MRI and CT imaging (d,e). The front and back of the completed 3D-printed phantom 
structure are shown in (f) and (g). The 3D-printed phantom structure partially filled with tissue-
mimicking materials is shown in (h). The urinary bladder structure is labelled for reference. The 
completed phantom on a Truebeam STX couch with an ionization chamber inserted is shown in 
(i).  

 

3.3.B. Validation of Phantom Imaging Characteristics  

CT images were acquired on a 20-slice single source CT (Sensation Open, Siemens, Erlangen, 

Germany) with 120 kVp and 400 mA. T1- and T2-weighted TSE MRI images were acquired on 

1.5T and 3.0T MRI systems (MAGNETOM Avanto and Skyra, Siemens, Erlangen, Germany). All 
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measurements were performed at 20 - 22° C. A 3D balanced steady-state free precession (bSSFP) 

MRI image was acquired on a real-time 0.35T MRI-guided radiation therapy system (MRIdian, 

Viewray Inc, Mountain View, CA, USA). 

T1 mapping measurements were done using an inversion-recovery TSE sequence with 180-

degree refocusing pulses. The TEs and TRs were fixed at 12 ms and 15,000 ms respectively, and 

the TI was varied from 25 ms to 2,000 ms in 50 ms steps. Images were acquired with an echo-

train-length of 5, no signal averaging, and no parallel imaging. A T1 map was generated by 

performing a voxel-wise fit to the observed signal intensity according to the equation 𝑀!,#$! =

	𝑀%)1 − 2𝑒&#$ #"⁄ . where 𝑀% is the initial magnetization vector magnitude 29. T2 mapping 

measurements were acquired using a TSE sequence with a constant TR at 4,000 ms and effective 

TE values of 25, 50, 62, 75, 87 and 107 ms. Images were acquired with an echo-train-length of 5, 

no signal averaging, and no parallel imaging. T2 maps were generated by performing a voxel-wise 

fit according to the equation 𝑀#(! = 𝑀% /𝑒
&
#$!
#% 0 + 𝑐 where 𝑐 is a noise offset parameter 29. A 

0.35T True Fast Imaging with Steady State Precession (TRUFI) image was acquired. The TRUFI 

sequence is a type of bSSFP sequence that yields images with T2/T1-weighted contrast. TRUFI 

images were acquired with a 60˚ flip angle, TR = 3.37 ms, TE = 1.45 ms, an echo train length of 

1 and no signal averaging.   

MRI/CT tissue imaging characteristics were quantified by measuring the T1 and T2 

relaxation times and CT numbers of prostate, skeletal muscle, pelvic bone and adipose tissue 

mimics in the phantom via ROI analysis and compared to in vivo literature measurements. A 1.5 

cm diameter circular ROI was used in the analysis. ROIs were placed in homogenous regions of 
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the urinary bladder, pelvic bone, adipose tissue, prostate and muscle mimicking materials. The 

same ROIs were used across all image sets. 

3.3.C. Phantom Application: MRI-Only Simulation and Treatment Planning QA  

End-to-end testing was performed for MRI-only simulation and treatment planning to demonstrate 

the utility of the phantom. MRI-only plans were created using phantom-generated sCT images. 

End-to-end tests were performed by comparing the planned and delivered dose differences 

between MRI-only and CT-based plans. Alignment differences between MRI-only and CT images 

were quantified and sCT image quality tests were performed. 1.5T and 3.0T-derived sCT images 

were generated from corresponding T2 TSE MRI images. sCT images were generated using a well-

validated statistical decomposition algorithm developed 30. The mean-absolute-error (MAE) and 

the bone Dice Similarity Coefficient (DSC) were compared between the 1.5T/3.0T sCT and CT 

images.  

sCT and CT plan dose differences were evaluated for a 6MV, 180 cGy, 7-field IMRT and 

800 cGy SBRT VMAT plan. Plans were created in Eclipse version 15.6.05 (Varian Medical 

Systems, Palo Alto, CA). For treatment planning the femoral heads, rectum, and bladder were 

contoured as OARs, and the prostate was contoured as a target on the CT image. The PTV was 

defined by applying a 3 mm margin to the prostate. One IMRT and one VMAT plan was created 

using the CT image as a reference. The plans for both treatment types were normalized for 98% 

PTV coverage. The plans for both treatment types were copied and calculated on the 1.5T and 

3.0T-derived sCT images. The MLC positions, monitor units (MU) and beam angles were 

preserved when the IMRT and VMAT plans were copied to the sCT images. The dose metric 

differences for plans calculated on the sCT and CT images are reported for both treatment types.  
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 Alignment differences were quantified using sCT/CT-to-CBCT and DRR-to-X-ray pair 

alignments. Alignments were performed using translational bone-based shifts. The alignment 

difference, ∆𝑃3,4,!
5/#,/#, between sCT/CT-to-CBCT registrations was evaluated using, ∆𝑃3,4,!

5/#,/# =

|𝑃3,4,!
5/#,/6/# −	𝑃3,4,!

/#,/6/#|	, where	𝑃3,4,!
/#,/6/#  is the alignment resulting from registration between the 

CT and CBCT images and 𝑃3,4,!
5/#,/6/# is the alignment resulting from registration between the sCT 

and CBCT images. The alignment difference, ∆𝑄3,4,!
5/#,/#	899, between DRR-to-X-ray pair 

alignments was evaluated using ∆𝑄3,4,!
5/#	,/#	899 = |𝑄3,4,!

5/#	899,:&;04 − 𝑄3.4.!
/#	899,:&;04|	, 

where	𝑄3,4,!
5/#	899,:&;04 and 𝑄3,4,!

/#	899,:&;04 are the alignments resulting from registration of the 

orthogonal X-ray image pairs to sCT DRRs and CT DRRs respectively. The phantom was setup 

four times on the treatment couch. CBCT and X-ray image pairs were acquired for each setup.  

 IMRT and VMAT plans were delivered on a TrueBeam STX (Varian Medical Systems, 

Palo Alto, CA). During treatment delivery a 0.3 cc ionization chamber and radio-chromic film 

were placed in the phantom dosimeter slot and used to evaluate the absolute dose and spatial dose 

distribution, respectively. Gamma analysis was performed using the film measurements at 3%/3 

mm and the corresponding pass rates (at a 30% dose threshold) are reported.  

3.4. Results 

3.4.A. Validation of Phantom Imaging Characteristics 

Axial and sagittal CT, CBCT, 1.5T/3.0T TSE MRI and 1.5T/3.0T sCT images are presented in 

Figure 3.4.1 A comparison between phantom and in vivo literature reported CT numbers for pelvic 

bone, adipose tissue, muscle and prostate tissues are reported in Table 3.4.Ia 31–34. A comparison 

between the phantom and in vivo literature reported T1 and T2 relaxation times for pelvic bone, 
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adipose tissue, muscle and prostate tissues for measurements at 1.5T and 3.0T are reported in Table 

3.4.Ib and Table 3.4.Ic 29,35–41. The measured CT number for the urinary bladder-mimicking 

material was 11 ± 8.5 HU. The T1 and T2 relaxation times, measured at 1.5T, for the urinary 

bladder-mimicking material were 1888 ± 30 ms and 377 ± 43 ms, respectively. The T1 and T2 

relaxation times, measured at 3.0T, for the urinary bladder mimicking material were 2114 ± 18 ms 

and 371 ± 39 ms, respectively. The maximum absolute differences in CT number between in vivo 

tissues and phantom tissue-mimicking materials was less than 2.8% for prostate, pelvic bone and 

muscle. The mean and maximum absolute differences in T1- and T2- relaxation times at 1.5T 

between in vivo tissues and phantom tissue-mimicking materials was 3.0% and 9.3%, respectively. 

The mean and maximum absolute differences in T1- and T2- relaxation times at 3.0T between in 

vivo tissues and phantom tissue-mimicking materials was 3.7% and 8.7%, respectively. Due to 3D-

printing considerations, the phantom structure was truncated in the SI direction causing part of the 

bladder and rectum to be cut off. Therefore, contoured structures derived for these organs do not 

strictly conform to contouring guidelines 42. 

ROI analysis was performed to assess MRI and CT contrast uniformity within the phantom. 

ROIs were drawn in the first and final slices in the phantom for skeletal muscle, trabecular bone 

and adipose tissues. The mean signal change for skeletal muscle, trabecular bone and adipose 

tissue was less than 1.9%, 2.2% and 0.5% in 3.0T T1/T2 TSE MRI images. The mean CT number 

difference for skeletal muscle, trabecular bone and adipose tissue was 0.1%, 0.1% and 1.0% 

respectively. To examine the reproducibility of the phantom materials, the phantom was built twice 

to evaluate the changes in T1/T2-relaxation times and CT numbers. The mean T1- and T2- relaxation 

times and CT number differences across all simulated tissue types was 46 ms, 12 ms and 11 HU 

respectively. 
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Figure 3.4.1. (a) CT, (b) CBCT, (c) 3.0T T1w TSE MRI, (d) 3.0T T2w TSE MRI, (g) 0.35T TRUFI 
MRI images of the phantom and an example patient in axial and sagittal planes. 1.5T and 3.0T-
derived sCT images in the sagittal planes are presented in (e) and (f) with an example patient image 
for reference. The AP, LR and SI directions are labelled for reference.   
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3.4.B. Phantom Application: MRI-Only Simulation and Treatment Planning QA 

The MAEs between the 1.5T/3.0T sCTs and corresponding CTs were 30 and 32 HU respectively. 

The bone DSC scores between the 1.5T/3.0T sCTs and corresponding CTs were 0.83 and 0.81 

respectively. The sample OAR and PTV dose differences for the VMAT and IMRT doses 

calculated on the 1.5T/3.0T sCT, and CT images are reported in Table 3.4.II. The largest PTV 

D95% difference between plans calculated on the sCT and CT images was 2.9%. Figure 3.4.2 

shows dose distributions for the IMRT and VMAT plans overlaid on the reference CT image.  

DRR images derived from CT and sCT and, projection X-ray images are shown in Figure 

3.4.3. Alignment discrepancies between the 1.5T/3.0T sCT to CT and 1.5T/3.0T sCT DRRs to 

kV/kV orthogonal pair images are reported in Table 3.4.III. AP DRR and X-ray projections of the 

phantom are shown in Figure 3.4.3.  The gamma pass rates and measured point dose differences 

were computed using the planned doses on the CT image as a reference. The measured percent 

point dose differences and 3%/3mm gamma pass rates for the delivered IMRT plan were 0.36% 

and 99.7% ± 0.5% respectively. The measured percent point dose differences and 3%/3mm gamma 

pass rates for the delivered VMAT plan were 1.67% and 99.7% ± 0.6% respectively.  
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Figure 3.4.2. Dose color washes showing planned doses for the (a) IMRT and (b) VMAT plans on 
the reference CT image. Doses from 50% to 100% of the prescription dose are shown. The 
phantom bladder and rectum structures are shown. The AP, LR and SI directions are labelled for 
reference. 
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Figure 3.4.3. AP DRRs derived using phantom CT image (a), 1.5T sCT (b) and 3.0T sCT images 
(c). AP X-ray projection image of phantom taken on treatment unit (d). The LR and SI directions 
are labelled for reference. 

 

3.5. Discussion 

In this study a realistic anthropomorphic pelvis phantom was developed for QA testing MRI-based 

radiation therapy techniques. The tissue imaging characteristics of the phantom for 1.5T/3.0T MRI 

and CT were validated by physical measurements and tested by creating sCT images using the 

phantom. The CT numbers for bone, muscle and prostate tissues agreed well with in vivo literature 

measurements. The maximum absolute percent difference between the 1.5T and 3.0T T1 values 

and T2 values was 8.7% and 8.3% respectively. As an example application, the phantom was used 

for end-to-end testing of an MRI-only simulation and treatment planning workflow. The results 

demonstrated that the maximum CT-sCT MAE difference was 32HU and DSC score was 0.81. 

This is consistent with 36.5 ± 4.1 MAE values reported by the developers of the tested sCT method 

30. All observed planned dose metric variations between sCT and CT plans were under 3%. The 

alignment differences between MRI and CT-based images was less than 2 mm in each plane. The 

point dose differences were under 1.7% and the gamma-pass-rate was 99.7% at 3% / 3 mm for 

both delivered plans. These differences are small enough for clinical acceptability.  

The main novelties of this phantom are that it is simpler to fabricate compared to previously 

published methods, produces realistic anthropomorphic CT and, T1- and T2-weighted MRI images, 

and can produce realistic sCT images using a commercially available sCT generation method. The 

phantom fabrication process of previously published phantoms have typically used deformable 

silicone balloons to encase the tissue-mimicking materials and professionally machined rigid 

structures 20–23. Creation of the encasing structure of the phantom in this study only requires the 
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use of a 3D-printer. The tissue-mimicking materials used in previously published phantoms require 

a diverse range of materials to mimic different organs such as agarose gels doped with Gd-based 

contrast agents and NaF to simulate non-fat soft tissues, vegetable oils to mimic adipose tissue and 

petroleum jelly, K2HPO4, gypsum bandages, and a photopolymer-based 3D-printed structure to 

mimic pelvic bone 20,21. The system of tissue mimicking materials presented in this work uses a 

single carrageenan-based material with additives to control CT number, T1- and T2-relaxation 

times. Additionally, the system of tissue-mimicking materials presented in this work does not 

exhibit shadowing artifacts allowing the generation of a relatively artifact free T1- or T2-weighted 

MRI images.  

 The stability of the phantoms imaging and physical characteristics over time were not 

directly investigated in this study. The phantom was tested for a period of 12 weeks without 

discernably exhibiting physical degradation. Previous studies have investigated the stability of 

carrageenan-based materials over time such as In et al who quantified the mechanical stability and 

T1/T2 relaxation time stability of carrageenan-based materials with agar and Gd contrast additives 

43. The density and compressive strength changes over 6 weeks were relatively stable for samples 

with 3% carrageenan as used in this study. The 3.0T T1 relaxation times of 8 tested samples 

generally increased by 1.25 times compared to baseline after 5 weeks. The 3.0T T2 relaxation times 

of eight tested samples generally decreased 0.75 to 0.95 times compared to baseline after 5 weeks 

43.  

 There are limitations to the materials used in the phantom presented in this work. The 

adipose tissue surrogate CT number had the largest mean difference compared to in vivo 

measurements. Further work needs to be done to improve CT number matching of the adipose 

tissue surrogate material, possibly by using a mixture of oil and GMs with the carrageenan-based 
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materials. Another limitation is that the pelvic bone was treated as a single homogenous material, 

whereas human bone can be very heterogenous. The marrow cavity was excluded because it was 

challenging to 3D-print a small fillable cavity within the pelvic bone. 

 There are limitations to the phantom design. The phantom structure was designed to be 3D-

printed as a single piece. This meant that the phantom structure needed to be rescaled to fit on the 

3D-printer bed. For the purposes of this study, we do not think there are any major negative 

consequences to using a phantom that is smaller than typical adult male anatomy. If this phantom 

sees wider clinical use, industrial 3D-printers with larger print beds could be used to print 

phantoms true to the size of human anatomy without the need for design rescaling. Another 

drawback to the phantom design was that the phantom rectum and bladder structures do not allow 

for exact conformance to RTOG contouring guidelines due to the limited SI extent 42. The SI extent 

was reduced because it reduced 3D-printing time and simplified the phantom design. This 

limitation can be remedied in future phantoms by using industrial 3D-printers which could allow 

rapid manufacturing of phantoms with larger craniocaudal extents or printing the phantom 

structure as interlocking modules.  

The phantom could be used to objectively compare sCT image generation methods that 

require T1- or T2-weighted MRI image inputs. There are sCT algorithms that have been developed 

for the male pelvis site that use atlas-based, statistical decomposition algorithmic and, voxel-based 

deep- and machine-learning methods 16,30,44,46–48. In this study we tested a single commercially 

available statistical decomposition algorithm-based sCT generator that takes a T2-weighted MRI 

input image. Further testing is required to evaluate the phantoms performance with other sCT 

methods. The phantom was designed to match only the CT numbers, T1- and T2-relaxation times 

of human pelvic anatomy. The phantom materials were not designed to mimic the T2* relaxation 



76 
 

times of pelvic bone or the chemical shift behaviors of adipose tissue and water. It is not expected 

that the phantom will be able to produce clinically realistic sCT images with methods that use 

multi-point Dixon (mDixon) or ultrashort echo-time (UTE) images as inputs 49,50. 

3.6. Conclusions 

The developed anthropomorphic pelvis phantom provides tissue-like contrast on T1- and T2-

weighted MRI and CT and can be used to validate MRI-based radiation therapy processes through 

comparison with standard CT-based radiation therapy processes. 
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CHAPTER 4 - Quantification of Fiducial Marker 
Visibility for MRI-Only Prostate Radiation Therapy 
Simulation 
 

4.1. Abstract 

Purpose: To objectively compare the suitability of MRI pulse sequences and commercially 

available fiducial markers (FMs) for MRI-only prostate radiation therapy simulation. Most FMs 

appear as small signal voids in MRI images making them difficult to differentiate from tissue 

heterogeneities such as calcifications. In this study we use quantitative metrics to objectively 

evaluate the visibility of FMs in 27 patients and an anthropomorphic phantom with a variety of 

standard clinical MRI pulse sequences and commercially available FMs.  

Methods and Materials: FM visibility was quantified using the local contrast-to-noise-ratio 

lCNR, the difference between the 80th and 20th percentile iso-intensity FM volumes (Vfall) and the 

largest iso-intensity volume that can be distinguished from background: apparent-marker-volume 

(AMV). A larger lCNR and AMV, and smaller Vfall represents a more easily identifiable FM. The 

number of non-marker objects visualized by each pulse sequence was calculated using FM-derived 

template-matching. The FM-based Target Registration Error (TRE) between each MRI and the 

planning-CT image was calculated. Fiducial marker visibility was rated by two medical physicists 

with over three years of experience examining MRI-only prostate simulation images. The rater’s 

classification accuracy was quantified using the F1 score, which is the harmonic mean of the rater’s 

precision and recall. These quantitative metrics and human observer ratings were used to evaluate 

FM identifiability in images from nine subtypes of T1-weighted, T2-weighted and GRE pulse 

sequences in a 27-patient study. A phantom study was conducted to quantify the visibility of 8 
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commercially available FMs.   

Results:  In the patient study, the largest mean lCNR and AMV and, smallest normalized Vfall 

were produced by the 3.0T multiple echo GRE (MEGRE) pulse sequence (T1-VIBE, 2° flip angle, 

1.23 ms and 2.45 ms TEs). This pulse sequence produced no false marker detections and TREs 

less than 2mm in the LR, AP and SI directions, respectively. Human observers rated the 1.23 ms 

TE GRE images with the best average marker visibility score of 100% and an F1 score of 1. In the 

phantom study, the Gold-Anchor GA-200X-20-B (deployed in a folded configuration) produced 

the largest sequence averaged lCNR and AMV measurements at 16.1 and 16.7 mm3 respectively. 

Conclusions: Using quantitative visibility and distinguishability metrics and human observer 

ratings, the patient study demonstrated that MEGRE images produced the best gold FM visibility 

and distinguishability. The phantom study demonstrated that markers manufactured from platinum 

or iron-doped gold quantitatively produced superior visibility compared to their pure gold 

counterparts. 
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4.2. Introduction 

Magnetic Resonance Imaging (MRI) has been adopted in many radiation therapy clinics because 

the modality provides excellent visualization of soft tissues compared to CT imaging 1–7. Some 

radiation therapy centers have adopted MRI-only radiation therapy simulation imaging due to the 

benefits of removing CT from the radiation therapy planning workflow 8–13. These benefits include 

eliminating uncertainties associated with multimodal image registration, reducing the number of 

imaging appointments a patient must attend and decreasing radiation exposure from imaging 

procedures.   

 Fiducial markers are used by some clinics performing MRI-only prostate simulation for 

patient positioning and alignment 12,14–17. Fiducial marker-based prostate cancer patient alignment 

for MRI-only radiation therapy simulation imaging can be challenging because fiducial markers, 

calcifications and tissue heterogeneities all appear as signal voids on conventional MRI 18–21. This 

can make it challenging to accurately distinguish fiducial markers from other signal voids. This is 

a significant problem since calcifications appear in over 40% of prostate cancer patients 22. 

Incorrect fiducial marker identification could potentially result in patient misalignment. To 

mitigate this, it is important to identify fiducial markers and MRI pulse sequences that allow 

distinct visualization of fiducial markers for manual or automatic identification. Correct marker 

identification requires a clearly visible fiducial marker-induced signal void. Additionally, markers 

need to be distinguishable from other intraprostatic objects that produce a similar signal voids such 

as calcifications. 

 Previous work on the identification of optimal fiducial markers and MRI pulse sequences 

used human observers to rate the visibility of fiducial markers in MRI images. The visibility of 

gold fiducial markers for image-guided radiation therapy of rectal cancer was evaluated by Ende 
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et al 23. Four different commercial fiducial markers were inserted into 5 patients. Four human 

observers scored marker visibility in images acquired using axial and sagittal T2-weighted TSE 

and T1-weighted 3D Gradient-Echo (GRE) pulse sequences. The 0.75 mm diameter Visicoil and 

Gold Anchor fiducial markers were determined to be the most visible on MRI. The use of T1-

weighted GRE MRI pulse sequences was recommended for fiducial marker identification and 

localization. No platinum fiducials were included in this study. Gurney-Champion et al tested the 

visibility of fiducials with a range of different diameters (0.28 – 0.6 mm) and iron doping 

percentages from 0 - 0.5% 24. These tests were performed with using T1-weighted Fast Free Echo 

with Dixon reconstruction and Steady State Free Precession (SSFP) pulse sequences. The visibility 

of fiducial markers was scored by human observers (radiologists). The highest ranked marker was 

a folded marker with a 0.5% iron content. While the iron-doped markers were more visible to 

observers, their appearance was not compared to intraprostatic calcifications or other tissue 

heterogeneities. Chan et al evaluated the visibility of two solid gold markers, four gold coils and 

one polymer marker from three vendors using 1.5T and 3.0T scanners. The markers were 

implanted in a bolus phantom and visibility was scored based on a qualitative assessment of the 

fiducial marker images. A limitation of this study was the use of a bolus that did not resemble 

human tissue on MRI. Depending on the specific material, bolus can appear hyperintense 

compared to human tissue because of the long T1 and T2 relaxation properties of these materials 

21. Studies of brachytherapy seed-induced signal void visibility in MRI have been done. 

Wachowicz et al characterized the susceptibility artifacts produced by a typical brachytherapy seed 

in a clinical 1.5T MRI scanner 25. They found that the distortion patterns varied with the seed 

orientation relative to the main magnetic field and the read-encode direction. Some brachytherapy 

clinics use T1-weighted fast-spoiled-gradient-echo (FSPGR) imaging for seed localization 26.  



86 
 

However, it is yet to be seen if these findings can directly translate to the prostate MRI-only 

simulation imaging workflow.  

 In this study we quantitatively assess the visibility and distinguishability of gold fiducial 

markers in prostate cancer patients with a range of common clinical MRI-only pulse sequences 

and, assess the visibility of eight different commercial fiducial markers in a phantom. 

 

4.3. Methods and Materials 

4.3.A. Patient Image Acquisition 

Twenty-seven prostate cancer patients were retrospectively selected for this study. Patients 

underwent CT and MRI imaging for radiation therapy planning and simulation at the UCLA 

between June 2013 to July 2019. Patients received transperineal implantation of three (diameter = 

1.2 mm, length = 3 mm) cylindrical gold fiducial markers (Civco Medical Solutions, Coralville, 

IA, USA) by a physician using template-guided 17-gauge needles. Only patients who received 

fiducial marker implantation prior to simulation imaging were included in this study. Patients were 

not included in the study if they had hip prosthesis (due to prostate-obscuring artifacts) or if less 

than three markers appeared in their MRI or CT images, as may be the case if a marker has 

migrated out of the prostate. To determine if a marker was missing, prostate contour-guided rigid 

registration of each MRI and CT image was performed, and the images were manually inspected 

to check if matching marker-like structures were present in both images. The study was conducted 

with Institutional Review Board (IRB) approval (IRB# 19-001731). 

 CT scans were acquired on a Sensation Open with an 82 cm bore (Siemens, Erlangen, 

Germany). CT scans were acquired with the following image parameters: 120kVp, exposure time 

= 500 mAs, tube current = 400mA, in-plane matrix = 512 x 512 pixels and a 1.5mm slice thickness. 



87 
 

The median in-plane resolution was 1.2 mm x 1.2 mm. Patients were in treatment position prior to 

imaging with a flat table, knee wedges and Vac-Lok immobilization cushioning. 

 MRI scans were acquired on the same day as the CT scans. Three types of pulse sequence 

were tested: T1-weighted spin-echo, T2-weighed spin-echo and T1-weighted gradient-echo pulse 

sequences (Figure 4.3.1). The subtypes of T1-weighted and T2-weighted spin echo pulse sequences 

tested were T1-weighted and T2-weighted TSE, and T1-weighted and T2-weighted Fast Spin Echo 

(FSE). The subtypes of GRE  pulse sequences included T1-weighted GRE, T1-weighted Volume 

Interpolated Breath-hold Exam (VIBE), T1-weighted VIBE with Controlled Aliasing in Parallel 

Imaging Results in Higher Acceleration (CAIPIRINHA) 27. The T1-weighted LAVA-Flex pulse 

sequence was included as a FSPGR pulse sequence. A MEGRE pulse sequence was included with 

a pre contrast T1-weighted VIBE image acquired at two separate TEs. A summary of the MRI 

pulse sequences, MRI scanner manufacturers, field strengths that were included in this study are 

shown in Table 4.3.I. The shorthand names for the pulse sequences used in this study are included 

in Table 4.3.I. MRI image acquisition parameters are included in Appendix IV. These pulse 

sequences were selected because they have either been included in previous MRI-only fiducial 

marker localization studies or are used in MRI-only prostate simulations 15,28–30. Patient setup at 

the MRI was performed using a knee wedge on a curved couch and without laser-aided positioning. 

Patients who had images acquired on Siemens scanners were scanned using the 18-channel anterior 

phased array coils (18-Channel Body coil). Patients who had images acquired on GE scanners 

were scanned using an 8-channel anterior phased array coils (8-Channel body coil, GE Healthcare, 

Chicago, Il, USA).  
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4.3.B. Marker Visibility and Distinguishability Metrics  

Fiducial marker visibility was quantified using the lCNR, the signal void intensity falloff volume, 

Vfall, and AMV. The visibility metrics were selected because they have been shown to be related 

to human or machine-based object detectability 31–33. Marker identification was performed in the 

Eclipse treatment planning system (Eclipse version 15.6.05, Varian Medical Systems inc, Palo 

Alto, CA). The visibility metrics are initialized with a 0.5 x 0.5 x 0.5 cm3 ROI around the estimated 

marker position. This ROI is manually defined using the aid of the marker locations and relative 

positions in each patient’s corresponding CT image. Inside this ROI the location of the voxel with 

minimum value was located. A bounding box was created consisting of all voxels wholly or 

partially within a 1 x 1 x 1 cm3 region surrounding this location.  The lCNR was computed by 

| )𝑣 −	𝜇@. 𝜎@T | where 𝜈 is the minimum voxel value, 𝜇p and 𝜎p are the mean and standard 

deviation of the voxels inside the bounded region (Figure 4.3.2a). The MRI marker iso-contour 

was defined as the voxels contained within the 20% iso-intensity volume relative to the minimum 

marker signal. The iso-intensity volume is defined as the voxels the fulfill the threshold criteria: 

𝜇@ − 𝑡 × )𝜇@ − 𝜈., where 𝑡 is the threshold value. The AMV is defined as the volume of all the 

voxels enclosed by the MRI marker iso-contour.  

The Vfall describes how sharply the marker signal changes from its peak minimum value to 

background.  This allows differentiation between markers with clearly defined borders and 

markers with diffuse boundaries (Figure 4.3.2b). The Vfall is defined by Vfall  = 𝑉(𝑡A) − 	𝑉)𝑡B., 

where 𝑉)𝑡A,B. is the marker volume at a certain threshold. In this study, the 80% and 20% iso-

intensity volumes were used for defining Vfall.  
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Figure 4.3.2. (a) A graphic showing the 2D and 3D representations of a fiducial marker-induced 
signal void. The lCNR is computed using the difference between the lowest and mean signal inside 
a region surrounding the marker. The AMV region encompasses the voxels that fall within the 
20% iso-intensity region relative to the minimum signal voxel. In the above example the AMV 
would be computed using the voxels encompassed by the pink dashed line. (b) A graphic of two 
fiducial markers with different values of Vfall. Vfall is calculated by subtracting the volumes 
encompassed by the 20% and 80% iso-intensity lines.  

Distinguishability metrics were calculated using marker-derived template-matching to 

evaluate the number of intraprostatic objects that appear similar to fiducial marker-induced signal 

voids. Patient- and pulse sequence-specific templates were created. Three 3D marker templates 

were created for each MRI image. Templates were created by using the same 1 x 1 x 1 cm3 region 

bounding region for the visibility metric calculations. A patient- and image-specific normalized 

cross-correlation (NCC) map for each template. NCC method as used because it is a fairly standard 

means of quantifying similarity between images 34–36. For each image a final NCC map was 

generated by taking the voxel-wise maximum of the NCC maps generated from the three marker 

templates. Suspect markers were identified by applying an 85% threshold to the final NCC map 
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and counting the number of distinct high NCC regions. A region was considered distinct if it shared 

no common edges with other high-NCC voxels. Voxels with a connectivity of 18 (voxels which 

have a shared face or edge) were clustered using the bwconncomp tool in Matlab. Suspect markers 

were classified as real markers, calcifications or tissue heterogeneities. Suspect markers were 

defined as fiducial markers if there was at least a single voxel overlap between the thresholded and 

clustered NCC map and the semi-automatically defined AMV. Calcifications were defined on MRI 

images using assistance from planning CT images. Calcifications were contoured on CT images 

in MIM. Calcifications were identified on MRI images by selecting signal voids which appeared 

in similar anatomical regions to calcifications in CT images. If one of the remaining high NCC 

regions had at least a single voxel overlap with a calcification contour, then it was counted as such. 

The remaining unaccounted high NCC regions were counted as tissue heterogeneities. 

The TRE for each pulse sequence was calculated to establish the registration accuracy for 

fiducial marker contours generated using only MRI images. The TRE is a spatial accuracy test that 

depends on both the fiducial marker-induced signal void visibility and distinguishability. The TRE 

calculation framework used in this study was based on Fitzpatrick et al 37,38. To calculate the TRE, 

an MRI fiducial marker was defined using the voxels enclosed within the semi-automatically 

defined AMV. The MRI images were rigidly registered to the patients planning CT image based 

on the centroid point locations of the MRI and CT fiducial markers in MIM (MIM Software Inc., 

Cleveland, OH). The CT marker centroids were defined based on a 1000 HU threshold applied to 

a 1 x 1 x 1 cm3 bounding box around each marker. The images were then registered based on the 

marker centroids using point-based rigid registration. The target was based on the physician-drawn 

CT prostate contour. The TREs are reported in the LR, AP and SI directions.   

Fiducial marker visibility was rated for each MRI pulse sequence by two medical physicists 
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with 3+ years of experience examining MRI-only prostate simulation images. Raters were given 

an instructional session about how fiducial markers may appear in different MRI pulse sequences.  

Raters were then shown masked prostate images (the same input as the visibility metrics 

calculations) in MIM and were instructed to mark signal voids that may resemble markers. Raters 

were allowed to view images in axial, sagittal or coronal planes, control the window/level and 

zoom to aid marker detection. Raters were requested to place a single point contour in the signal 

voids believed to be markers. No limit was set to the number of suspect markers that the raters 

could select. Raters were asked to rank their marker selection confidence on a scale of 1 (not very 

confident) to 3 (very confident) as outlined by Ende et al 38. Raters were asked to rank marker 

visibility on a scale of 1 (markers not visible) to 5 (markers clearly visible). The classification 

accuracy was quantified using the F1 score for each rater. The F1 score is a measure of the accuracy 

of binary classification test 39. The F1 score defined by, 𝐹) = 2 ∙ @	×	;
@	∙	;

 , where 𝑝 is classification 

precision and 𝑟 recall. The classification precision is defined by, 𝑝 = 	 E@
E@FG@

, and recall is defined 

by, 𝑟 = 	 E@
E@FGH

, where 𝑡𝑝, 𝑓𝑛 and	𝑓𝑝 are the number of true positive (TP), false negative (FN) and 

false positive (FP) counts. An F1 score of 1 denotes perfect precision and recall. 

4.3.C. Commercial Marker Comparison 

A comparison of commercially available markers was performed in a physical anthropomorphic 

phantom (Figure 4.3.3). The phantom was designed based on a patient’s anatomy and 3D-printed 

using a MakerGear M2 3D printer (MakerGear LLC, Beachwood, OH). The phantom was printed 

with 3 cm thickness based on a 2D axial slice of a patient’s anatomy. Muscle and prostate materials 

were a GdCl3, agarose and carrageenan solution developed by Hattori et al 40. Porcine fat was used 

to mimic fat and a gelatin-CaCO3 mix was used to mimic bone. Eight fiducial markers from three 
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different manufacturers were compared. The marker name and corresponding manufacturers are 

shown in Table 4.3.II. A sample 0.91 mm diameter calcification, consisting of CaCO3, was also 

implanted using a 19G needle. MRI images were acquired on a Siemens Skyra 3T and CT images 

were acquired on a Siemens Somatom. T1-TSE, T2-TSE, T1-GRE and T1-VIBE MRI images were 

acquired. The lCNR and AMV for each marker was calculated. Since Vfall is sensitive to marker 

orientation and size, it is not reported for commercial marker comparison.  

 

Figure 4.3.3. (a) T1-weighted GRE MRI image that served as the template for the phantom design. 
(b) Fat (F), other soft tissues (M) and bone (B) were segmented. The surrounding structure was 
3D-printed leaving open gaps for filler tissue material. (c) The final phantom was filled with 
materials for prostate, muscle, fat and bone. 

 
 
 
 

Manufacturer Marker Type Needle Gauge 
(AWG) 

Marker diameter 
(mm) 

Marker length 
(mm) 

Civco Gold soft tissue 18 1.2 3 

Civco PointCoil 20 0.6 5 
Civco Polymark 18 1 3 

Naslund Gold Anchor 
GA-200X-20-B 

20 0.40 20 

Naslund Gold Anchor 
GA-150-20 

25 0.28 20 

IBA Visicoil 
Platinum 1 

22 0.35 10 

IBA Visicoil 
Platinum 2 

21 0.5 10 

IBA Visicoil Gold 21 0.5 10 
Table 4.3.II. A list of tested markers, needle gauges and dimensions. Precision as reported by 
manufacturers. 
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4.4. Results 

4.4.A. Retrospective Patient Study 

Images were grouped according to MRI pulse sequence. Box plots and a summary table of the 

visibility metrics are shown in Figure 4.4.1 and Table 4.4.I. The reported Vfall results were 

normalized by the AMV of each fiducial marker. The minimum mean and maximum number of 

intraprostatic marker-like objects are reported in Table 4.4.II. No incorrect markers were identified 

on the 1.5T T1-TSE, 1.5T T2-TSE and 1.5T T1-GRE pulse sequences. No incorrect markers were 

identified on 3.0T T1-VIBEcaipi and 3.0T T1-GRE images. No FN counts were counted in the 

object distinguishability search.  The TRE results for all tested pulse sequences are reported in 

Table 4.4.III. The human observer ratings are presented in Table 4.4.IV. 
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Figure 4.4.1. (a) Box plots of mean absolute marker lCNR for each pulse sequence in the patient 
study. Higher absolute lCNRs indicate markers with increased visibility. (b) Box plots of mean 
Vfall for each pulse sequence in the patient study. Lower Vfall values indicate markers with sharp 
edges. (c) Box plots of mean AMV for each pulse sequence in the patient study. A higher AMV 
indicates a larger marker size. A larger marker size indicates a marker with a larger apparent size. 
The x denotes the sample mean. The lines on each box represent (from top to bottom) the 
maximum, third quartile, median, first quartile and minimum values of each sample. The number 
of patients from each group are denoted in parenthesis.  
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4.4.B. MRI Visibility of Commercial Fiducial Markers  

Figure 4.4.2 shows the markers implanted in the phantom for CT and each tested MRI pulse 

sequence. The Naslund Gold Anchor markers were able to be deployed as a line or a bundle. For 

this study we deployed the Naslund markers as a folded bundle. Table 4.4.V shows the lCNR and 

AMV for each fiducial marker and each MRI pulse sequence.   

 

Figure 4.4.2. (a) a photo of the anthropomorphic male pelvis phantom, (b) CT, (c) T1-TSE, (d) T2-
TSE, (e) T1-GRE and (f) T1-VIBE images of phantom. 
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4.5. Discussion  

This study used quantitative metrics to evaluate the visibility of fiducial marker-induced signal 

voids in MRI images. The patient study involved testing the visibility and distinguishability of 

gold fiducial markers across a variety of commonly used sequences in MRI-only radiation therapy 

simulation. The quantitative metrics used to determine visibility and distinguishability were lCNR, 

Vfall, AMV and TRE. Human observers also rated the visibility of the markers in images from each 

pulse sequence. The phantom study sought to determine which commercially available fiducial 

marker-induced signal void displayed the best visibility across a variety of commonly used MRI 

pulse sequences in phantom.  

 The T1-weighted GRE and VIBE pulse sequences (with the exception of the FSPGR T1-

LAVA sequence) produced the best visibility and distinguishability scores. Specifically, the 3.0T 

multiple-echo T1-VIBEe1 and T1-VIBEe2 sequences produced the highest mean lCNR and AMV 

scores and the smallest Vfall scores compared to the other tested MRI pulse sequences. No FPs 

were detected with this pulse sequence. The TREs for this pulse sequence were less than 2 mm in 

each plane. A 2 mm setup uncertainty is a commonly accepted error for fiducial marker-based 

prostate alignment 41. The 3.0T multiple-echo T1-VIBEe1 and T1-VIBEe2 were the only pulse 

sequences which had a fiducial marker-induced signal void F1-classification score greater than 

0.96 and a mean marker visibility score greater than 95% for both human observers. These results 

are consistent with findings from other publications about the visibility of fiducial marker-induced 

signal voids. Ende et al qualitatively assessed the MRI visibility of gold fiducial markers for image-

guided radiation therapy of rectal cancer 23. They reported that a 3.0T T1-weighted 3D GRE images 

produced superior marker visualization compared to sagittal and axially acquired T2-weighted 

Spin-Echo images. The findings by Ende et al are consistent with this study where the human-
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observer and quantitative visibility and distinguishability metrics of multiple-echo VIBE images 

produced superior marker visualization compared to GRE images acquired with longer TEs. This 

is also consistent with observations by Schieda et al who reported that the use of MEGRE images 

provides better detection of implanted seeds and fiducial markers when compared with both FSE 

and single-echo GRE 42. MEGRE sequences are used for fiducial marker identification at some 

sites performing MRI-only radiation therapy simulation and the quantitative and qualitative results 

of this study support the use of this sequence for fiducial marker identification 15,17,28.  

 The phantom study demonstrated that the Gold Anchor GA-200X-20-B produced the 

largest lCNR and AMV with the GRE and T1 VIBE sequences at 20 and 32 mm3 respectively. The 

markers manufactured from platinum or iron-doped gold such as the platinum IBA Visicoil and 

Gold Anchors generally produced greater lCNR and AMV measurements than their pure gold 

counterparts. This is consistent with the findings by Gurney-Champion et al who reported that iron 

doped markers appeared more visible to human observers 24. Ende et al tested the qualitative 

visibility an array of fiducial markers including a 0.5 mm diameter Visicoil, 0.75 mm Visicoil and 

Gold Anchor 23. They reported that the Gold Anchor (deployed in its folded configuration) and 

0.75 mm diameter Visicoil produced the best visibility. They attributed the visibility of the Gold 

Anchor to the iron-doping. They also attributed to the higher visibility scores of the 0.75 mm 

diameter over the 0.5 mm diameter Visicoil markers to the larger diameter of the marker producing 

a more pronounced signal void. Our study only tested the 0.25 mm and 0.5 mm diameter Visicoil 

fiducial markers. We also observed that for the 3D T1-GRE and T1-VIBE sequences that the larger 

diameter markers produced higher lCNR and AMV values. This study did not test the difference 

in visibility of the configuration of the various configurations of Gold Anchor fiducial markers 

and the Gold Anchors were deployed in a folded configuration.  
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There are pulse sequence and image acquisition factors that can affect the distinguishability 

of fiducial marker-induced signal voids. The distinguishability of signal voids and susceptibility 

artifacts will vary depending if GRE or spin-echo sequences are used. GRE imaging relies on the 

use of dephasing-rephasing gradient reversals resulting in image contrast being determined by T2* 

relaxation 43. This results in susceptibility artifacts being more pronounced in GRE images 

compared to spin-echo images 44. Additionally, the size of fiducial marker-induced signal voids is 

dependent on factors including pulse sequence TE, the number of frequency encoding steps and 

slice thickness 42,45. It is important to select the correct TE settings to allow differentiation between 

signal voids created by fiducial markers and background tissue (e.g. calcifications) 28,42.  

Platinum has been proposed as a fiducial marker material. It has a higher magnetic 

susceptibility than gold and may create a larger artifact that is easier to identify. In this study two 

IBA Visicoil markers with identical dimensions, one manufactured from platinum and the other 

from gold, were compared. The platinum Visicoil marker had a larger AMV for T2 TSE, GRE, 

and T1 VIBE images. The gold marker had a larger AMV in the T1 TSE images. The largest AMV 

increase between platinum and gold occurred in the T1 VIBE images, where the AMV increased 

by 21.1 mm3. However, the platinum marker exhibited a lower lCNR for all tested sequences.  

Local distortions caused by implanted fiducials could potentially compromise localization 

accuracy. Fiducial markers do produce local distortions and the size of distortions depend on a 

number of factors including marker materials and sequence type. Fernandes et al observed that 

larger pulse sequence bandwidths decreased that magnitude of local distortions 30. Markers 

manufactured from platinum or doped with iron also affect the extent of local distortions because 

of the effects that these elements have on changing the markers magnetic susceptibility. Nair et al 

observed that platinum markers appeared to produce more contrast than gold because of its high 
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magnetic susceptibility 46. However, the effect on registration from susceptibility effects from 

fiducial markers has been shown to be small. Jonsson et al evaluated the susceptibility effects of 

gold fiducial markers in different geometries for prostate MRI-only simulations for 2D and 3D 

spin echo sequences. They found that the susceptibility effects resulted in sub mm fiducial marker 

positional differences 47.   

There are limitations to this study. The patient study was retrospective, and the imaging 

parameters varied some between subjects (Supplemental Materials). The number of patients in 

each MRI sequence group varied from 1 (1.5T T1-TSE, T2-TSE and GRE) to 11 (3.0T T1-TSE, 

T2-TSE). While there is agreement between the human observer and quantitative visibility metrics, 

further studies with larger cohorts of patients are needed to validate the results in this study. Marker 

migration between MRI and CT simulation exams can potentially misidentification of the MRI 

signal voids. Studies have shown that the effect of marker migration is typically small such as 

Arpacı et al who evaluated marker migration between implantation and CT simulation for 39 

patients 48. The mean distance of migration was 1.0 ± 0.4 mm and the maximum distance was 1.4 

± 0.6 mm. The phantom study could be improved by testing these fiducial markers in patients. It 

is impractical to implant many markers inside patients; however, this study could help guide which 

markers warrant further patient testing. While only objects inside the prostate boundary were 

counted, the 1 cm3 template size means that for locations near the prostate boundary, some tissue 

outside of the prostate was included in the NCC calculation.  

 

4.6. Conclusions 

This study used quantitative visibility metrics (lCNR, AMV, Vfall), distinguishability metrics 

(calculated using marker-derived template matching), TRE measurements and human observer 
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ratings to determine which fiducial marker and MRI sequence produced the best visibility of 

fiducial marker-included signal voids. The patient study demonstrated that multiple-echo T1-VIBE 

sequences produced the best visibility of clinically used gold fiducial markers. The phantom study 

demonstrated that markers manufactured from platinum or iron-doped gold quantitatively 

produced superior visibility compared to their pure gold counterparts.  
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CHAPTER 5 - A Generative Adversarial Network-
Based (GAN-Based) Architecture for Automatic 
Fiducial Marker Detection in Prostate MRI-Only 
Radiation Therapy Images 
 

5.1. Abstract 

Purpose: Clinical sites utilizing MRI-only simulation imaging for prostate radiotherapy planning 

typically use fiducial markers for pretreatment patient positioning and alignment. Fiducial markers 

appear as small signal voids in MRI images and are often difficult to discern. Existing clinical 

methods for fiducial marker localization require multiple MRI sequences and/or manual 

interaction and specialized expertise. In this study, we develop a robust method for automatic 

fiducial marker detection in MRI simulation images of the prostate and quantify the prostate organ 

localization accuracy using automatically detected fiducial markers in MRI for pretreatment 

alignment using cone beam CT (CBCT) images. 

 

Methods and Materials: In this study, a deep learning-based algorithm was used to convert MRI 

images into labelled fiducial marker volumes. 77 prostate cancer patients who received marker 

implantation prior to MRI and CT simulation imaging were selected for this study. Multiple-Echo 

T1-VIBE MRI images were acquired, and images were stratified (at the patient level) based on the 

presence of intraprostatic calcifications. Ground truth (GT) contours were defined by an expert on 

MRI using CT images. Training was done using the pix2pix Generative Adversarial Network 

(GAN) image-to-image translation package and model testing was performed with five-fold cross 

validation. For performance comparison, an experienced medical dosimetrist and a medical 

physicist each manually contoured fiducial markers in MRI images. The percent of correct 
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detections and F1 classification scores are reported for markers detected using the automatic 

detection algorithm and human observers. The patient positioning errors were quantified by 

calculating the target registration errors (TREs) from fiducial marker driven rigid registration 

between MRI and CBCT images. TREs were quantified for fiducial marker contours defined on 

MRI by the automatic detection algorithm and the two expert human observers.  

 

Results: 96% of implanted fiducial markers were correctly identified using the automatic detection 

algorithm. Two expert raters correctly identified 97% and 96% of fiducial markers, respectively. 

The F1 classification score was 0.68, 0.75 and 0.72 for the automatic detection algorithm and two 

human raters, respectively. The main source of false discoveries was intraprostatic calcifications. 

The mean TRE differences between alignments from automatic detection algorithm and human 

detected markers and GT were less than 1 mm.  

 

Conclusions: We have developed a deep learning-based approach to automatically detect fiducial 

markers in MRI-only simulation images in a clinically representative patient cohort. The automatic 

detection algorithm-predicted markers can allow for patient setup with similar accuracy to 

independent human observers.   
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5.2. Introduction 

Many institutions have begun implementing MRI-only simulation imaging for radiation therapy 

treatment planning of prostate cancer. MRI-only simulation imaging allows for excellent 

visualization of soft-tissue anatomy, the elimination of co-registration errors due multimodal 

image registration, reduction of radiation dose from simulation imaging and fewer imaging 

examinations for patients 1–6. Clinics implementing MRI-only simulation imaging for prostate 

cancer typically use fiducial markers for pre-treatment organ localization either as a primary 

alignment technique or as a secondary check for soft-tissue-based alignment 7.  

Using fiducial markers in prostate MRI-only simulation images can be challenging because 

fiducial markers, as well as calcifications and tissue heterogeneities, appear as signal voids in MRI. 

Calcifications occur in over 40% of prostate cancer patients and are a common source of fiducial 

marker misidentification 8. Incorrect fiducial marker identification could potentially result in 

misalignment during treatment 7. Multiple-echo gradient echo (MEGRE) MRI images have been 

shown to be useful for differentiating fiducial markers and intraprostatic objects such as 

calcifications and tissue heterogeneities in prostate MRI 9.  

Institutions implementing MRI-only simulation imaging of the prostate have 

recommended for the development of quality assurance methods to validate fiducial marker 

positions and to aid time-consuming manual fiducial marker detection methods 7,10. In the MR-

PROTECT trial, two MEGRE sequence image sets were acquired to accurately localize marker 

positions during the relatively long MRI simulation sessions. Manual fiducial marker identification 

using MEGRE images can be time consuming because it requires identification of markers in 

multiple image sets 10. Creating an automatic fiducial marker detection framework could decrease 

the time spent identifying markers, potentially increase marker detection accuracy, and aid in the 
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clinical transition of CT-based to MRI-only simulation workflows 8.  

There have been implementations of semi-automatic and automatic fiducial marker 

detection approaches using MRI-only simulation images. Gustafsson et al presented a model-based 

semi-automatic fiducial marker identification workflow that selects suspect fiducial markers in 

MEGRE MRI sequences based on signal void volume and appearance changes 8. Ghose et al used 

manifold learning and spectral clustering for fiducial marker localization in T1 and T2* gradient 

echo images 11. Both methods resulted in lower fiducial marker sensitivity than manual detection 

by human observers. Ghose et al reported that expert radiation therapist observers were able to 

correctly identify all three implanted seeds in 11/15 patients included in that study. Maspero et al 

used template matching to detect and segment fiducial markers from a 3D analytical fiducial 

marker model with a uniform background 12. This method was able to correctly detect implanted 

markers in 15/17 patients included in that study. Incorrect marker detections using this technique 

were due to intraprostatic calcifications. For these studies, the testing groups were not stratified 

according to the presence of intraprostatic calcifications.  

Generative adversarial networks (GANs) have been used for several label-to-segmentation 

detection tasks of small objects in medical images 13,14. GANs have been used to accurately detect 

objects that produce hypointense signals in MRI images. Zhang et al presented a conditional GAN-

based semantic segmentation-based approach to detect multiple sclerosis lesions. These lesions 

appear hypointense in T1-weighted brain MRI images 15. The GAN-based architecture was 

compared to commonly used segmentation frameworks including UNet: a fully convolutional 

neural network (CNN), Global Convolutional Network (GCN): a deep encoder-decoder network 

with global convolution blocks and DeepMedic: a patch-based model with a customized 3D CNN 

architecture for brain lesion segmentation16–18. The Sørensen-Dice coefficients comparing 
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predicted and ground truth labels were 0.67, 0.41, 0.49 and 0.62 for the cGAN, UNet, GCN and 

DeepMedic models respectively. This GAN-based technique was used to automatically detect 

small objects that appear hypointense in MRI. Consequently, this method may be suitable to detect 

fiducial marker-induced signal voids in MRI.  

In this work, we develop a conditional GAN-based approach to automatically detect 

fiducial markers in multiple-echo T1-weighted prostate MRI images. Using automatically detected 

fiducial markers, we quantitatively compared the alignment errors from fiducial marker-guided 

rigid registration of fiducial markers detected on MRI to those in CBCT images. The alignment 

errors were quantified for fiducial marker segmentations defined by the automatic GAN-based 

detection algorithm and two independent human observers.  

 

5.3. Methods and Materials 

In this study, we develop a GAN-based algorithm for automatic detection of fiducial markers in 

MRI radiotherapy images and evaluate the patient setup accuracy using automatically detected 

fiducial markers. The development of an automatic GAN-based detection algorithm included 

training and testing data set creation, model hyperparameter tuning, model evaluation and 

alignment accuracy evaluation (Figure 5.3.1). Training and testing data were pre-processed by 

selecting suitable patients for study inclusion, structure contouring on CT, MRI and CBCT image 

sets and image augmentation for model training. Fiducial marker detection was done using 2D 

paired MRI/labeled images. Model hyperparameter tuning consisted of optimal model 

hyperparameter selection using 5-fold cross validation. Model evaluation included comparing 

markers detected using the automatic GAN-based detection algorithm with the optimal 

hyperparameters and human observers. The model predicted 2D labelled image slices were resized 
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back into their original 3D image volumes. The alignment accuracy for fiducial marker-based rigid 

registration of MRI simulation images and pre-treatment cone beam CT (CBCT) images was 

quantified. A comparison of alignment accuracies of fiducial markers defined by two independent 

human observers and the automatic GAN-based detection algorithm is presented. 

 

5.3.A. Patient information and image acquisition settings  

77 low-to-intermediate risk prostate cancer patients were retrospectively selected for this study. 

The median patient age was 71 years old. Patients underwent MRI and CT imaging for 

radiotherapy simulation and planning between Feb 2018 to Feb 2020. Patients received 

transperineal implantation of three cylindrical (diameter = 1.2 mm, length = 3 mm) gold fiducial 

markers (Civco Medical Solutions, Coralville, IA, USA) by a physician using template-guided 17-

gauge needles with transrectal ultrasonography (TRUS) guidance. Patients received fiducial 

marker implantation prior to MRI and CT simulation imaging. 47 patients received MRI and CT 

imaging on the same day and 30 patients received MRI and CT imaging within a four-day window. 

50 patients had a rectum-prostate separation gel implanted prior to CT simulation and MRI 

examinations (SpaceOAR® Hydrogel, Boston Scientific, MA, USA). Two patients had hip 

protheses. The study was conducted with Institutional Review Board (IRB) approval (IRB# 19-

001731). 
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CT scans were acquired on a Sensation Open with an 82 cm bore (Siemens, Erlangen, Germany). 

CT scans were acquired with the following image parameters: 120kVp, exposure time = 500 mAs, 

tube current = 400mA, in-plane matrix = 512 x 512 pixels and a 1.5mm slice thickness. The median 

in-plane resolution was 1.2 mm x 1.2 mm. Patients were in treatment position prior to imaging 

with a flat table, knee wedges and Vac-Lok immobilization cushioning. 

 MRI images were acquired on a 3.0T Siemens (Siemens, Erlangen, Germany) Magnetom 

Vida (38 patients), 3.0T Siemens Skyra (3.0T) or a 1.5T Avanto Fit (2 patients). Multiple-echo 3D 

T1-weighted Volumetric Breath-hold Exam (VIBE) MRI images were acquired for this study. Two 

echoes were acquired at 1.23 ms and 2.46 ms echo times and 4.17 ms repetition times. Images 

were acquired without contrast administration. This sequence was used in this study because it 

quantitatively produces good gold fiducial marker visibility and has been used in previous MRI-

only detection workflows 12,19  . Patient setup at the MRI was performed using a knee wedge on a 

curved couch. Patients were scanned using 18-channel anterior phased array coils (18-channel 

body coil, Siemens, Erlangen, Germany).  

 56 patients were treated on a Varian Trilogy Novalis Tx linear accelerator (linac) and 21 

patients were treated on a Varian TrueBeam linac (Varian Medical Systems, Palo Alto, California, 

USA). Pre-treatment CBCT images were acquired for all patients. The setup CBCT from each 

patient’s first radiotherapy fraction was used in this study.  

 

5.3.B. Data preprocessing 

Fiducial markers and prostate organs were contoured on CT simulation, MRI and CBCT image 

sets. The prostate organ was delineated on CT simulation and MRI images by a board-certified 

radiation oncologist. Fiducial markers were delineated on CT simulation images by a board-
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certified medical dosimetrist. Ground truth fiducial markers were defined on MRI images by a 

board-certified medical physicist. Ground truth fiducial markers were defined on MRI with 

assistance from prostate contour-guided rigid registration of each MRI and CT simulation image. 

Ground truth fiducial markers were identified by locating signal voids that appeared in the vicinity 

of the distinct positive contrast artifacts produced by fiducial markers in CT. Intraprostatic 

calcifications were identified and contoured on MRI images using the same method except the 

positive contrast artifacts produced by calcifications on CT were used for guidance. Intraprostatic 

calcifications that were greater than 2 mm in each axial plane were contoured. 48% of all patients 

had at least 1 intraprostatic calcification greater than 2 mm. An expert radiation oncologist 

contoured the prostate in CBCT images. Contouring was performed using MIM (version: 6.6.13, 

MIM Software Inc, Beachwood, OH, USA). Fiducial markers as visible on MRI, CT and CBCT 

images along with other delineated features such as calcifications are shown in Figure 5.3.2.  

Segmentation labels, 𝐼I0JKI, were created using the MRI fiducial marker and prostate 

contours. Multi-level masked volumes were created by setting the voxels inside the prostate 

contour to a value of 1, fiducial markers to a value of 2 and the background to 0. To be suitable 

for model training, images from each echo time were bias corrected, normalized based on intensity, 

resized and concatenated. N4 bias correction was applied to each MRI image in MIM 20. Consensus 

histograms for images acquired at each echo time were created by counting the voxel intensities 

inside the prostate contours. A histogram-normalized image was created transforming each T1-

VIBE echo time image so that the histogram of the output images approximately matched the 

consensus histograms for each echo time. Each image set was resized to 256 x 256 x Nslices pixels 

using a box shaped kernel where Nslices is the number of image slices. The resized and normalized 

image sets were concatenated with the segmentation labels. Image preparation was completed by 
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concatenating each labelled image with each normalized echo time image.  

  

5.3.C. Model training and evaluation 

Training and testing data were created by stratifying patients according to calcification presence 

into 5 folds for hyperparameter tuning. Patients were initially stratified into two groups, those with 

detected intraprostatic calcifications,	𝛼, and those without, 𝛽. Both groups were split into 5 

subgroups, 𝛼),	𝛼*,…,	𝛼L and 𝛽),	𝛽*,…,	𝛽L. Testing folds were created by combining [𝛼) 𝛽)] and 

training folds were created by combining the exclusive disjunction of the testing group set i.e. 

[𝛼*,…,	𝛼L 𝛽),	𝛽*,…,	𝛽L]. Image stratification was done at the patient level. Each fold was stratified 

so that about 40-45% of patients in the testing and training folds had intraprostatic calcifications, 

 
 
Figure 5.3.2. MRI (a,b,c) and CT (d,e,f) images of an axial section of prostate anatomy. MRI 
images acquired using the T1-VIBE sequence at 1.23ms and 2.46ms echo times are shown in 
(a) and (c) respectively. Radiotherapy planning CT and pre-treatment CBCT images are shown 
in (d) and (f) respectively. Annotated 1.23ms echo time T1-VIBE and CT images are shown in 
(b) and (e) respectively. Fiducial markers (FM), calcifications (Calc), hydrogel spacer (HG) and 
hydrogel spacer injection sites (HGIS) structures are annotated. 
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which is a similar proportion to the general prostate cancer population 21,22. 

In this study the pix2pix conditional GAN was used with a Pytorch backend on a computer 

containing a NVIDIA GeForce GTX 1070 GPU 23. An overview of the pix2pix implementation 

used in this study is shown in Figure 5.3.3. Paired 2D MRI and labelled images were used for 

training and validation. The pix2pix input requires two co-registered paired images with voxel-

wise correspondence. The GAN consists of a discriminator, 𝐷, and generator, 𝐺, that compete to 

minimize an objective loss function. The objective of 𝐺 is to learn a distribution over data 𝑞 from 

sampling input variables from a Gaussian distribution 𝑝,0E0(𝑞). 𝐷 is a binary classifier that 

attempts to determine if a sample is from the training data or if it was generated by 𝐺. The generator 

network used in this study was a U-Net generator optimized for 256x256 pixel image inputs and 

the discriminator consisted of a three-layer convolutional network 16. In addition to the adversarial 

generator and discriminator GAN losses, the model includes an additional least squares loss GAN 

(LSGAN). LSGAN is based on L2 norm loss 24,25. The LSGAN objective functions, 𝑉=?+-M, for 

the discriminator and generator are described by: 

𝑚𝑖𝑛
8
	𝑉=?+-M(𝐷) =

)
*
𝔼3~@'()((3)[(𝐷(𝑥) − 1)

*] + )
*
𝔼!~@*(!)[(𝐷(𝐺(𝑧)))

*]  (1) 

and 

𝑚𝑖𝑛
+
	𝑉=?+-M(𝐺) =

)
*
𝔼!~@*(!) i)𝐷)𝐺(𝑧). − 1.

*j  (2) 

where, 𝔼Q~@'()((Q)is the expectation value that a probability distribution 𝑞 matches the real data 

distribution 𝑝,0E0(𝑞). In this study 𝑥 is labelled image 𝐼I0JKI, 𝑧 is MRI image 𝐼29$  and 𝐺(𝑧) is the 

generated image from z.  

Model training data was loaded in serial batches and on a slice by slice basis. Each model 

was trained for 200 epochs. The learning rate, 𝑙𝑟, and adaptive learning (Adam) optimizer 

momentum terms, 𝛽), were optimized as part of hyperparameter tuning 26. The Adam optimizer 
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was used with a batch size of 1. Hyperparameter tuning was done by training each fold with 

different hyperparameter values and selecting hyperparameters that produced the smallest least 

squares loss across each group. The results from each testing fold were used to evaluate model 

performance using the optimal hyperparameters. 

The 2D to 3D labelled image resorting and postprocessing steps are summarized in Figure 

5.3.4. The detected fiducial marker outputs were segmented to evaluate model performance. The 

outputs from the automatic GAN-based detection algorithm were resized back to their original 

sizes using box-kernel interpolation. A threshold of 2 was applied to the model output to get a 

binary mask volume containing model-predicted fiducial marker segments (MPFM). The ground 

truth fiducial marker contours were converted to binary mask volumes containing ground truth 

fiducial markers (GTFM). Fiducial marker detection statistics were quantified by computing the 

F1 scores using MPFM and GTFM volumes. The F1 score is the harmonic mean of the precision 

and recall. The F1 score reaches its best value at 1, representing perfect precision and recall, and 

worst at 0. Fiducial marker counting statistics were quantified by comparing the relative volume 

overlap between MPFM to ground truth fiducial markers. Using the ground truth calcification 

contours, a binary mask containing calcifications (GTCalc) was created to identify markers 

misidentified as calcifications. True positive (TP) counts were defined if the Sørensen–Dice 

coefficients between each MPFM and each GTFM was greater than 30%. False positive (FP) 

marker counts were quantified by counting the markers that had Sørensen–Dice coefficient >30% 

between MPFMs and objects in GTCalc or by 0% Sørensen–Dice coefficient between markers 

flagged in MPFM and GTFM. False negative (FN) marker counts were quantified by 0% 

Sørensen–Dice coefficient between markers flagged in GTFM and not in MPFM. The marker 

counting statistics were quantified by percent correct marker counts, marker count-based false 
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detection rate (FDR) and false negative rate (FNR).  

Alignment accuracy was quantified by calculating the target registration error (TRE) from 

fiducial marker-based rigid registration using MRI and CBCT image sets. MRI fiducial marker 

contours were used from segmentations created using MPFM, GTFM and two independent human 

observers. For reference, an additional set of registrations was done using fiducial markers defined 

in the planning CT and CBCT images. To calculate the TRE, fiducial markers were defined in 

CBCT images by creating a spherical ROI with a 1cm radius encapsulating each fiducial marker 

and applying a 1000 HU threshold within the ROI. The largest continuous thresholded region was 

defined as a fiducial marker. The same method was employed to define fiducial markers in CT. 

The MRI defined fiducial marker contours were rigidly registered to the CBCT fiducial markers 

with the physician defined contours in CBCT images were used as the target volumes. 

Translational registrations without rotations were used to mimic the translations performed by a 

non-robotic linac treatment bed. TRE calculations were computed using the formulism presented 

by Fitzpatrick et al 27–29. A board-certified medical physicist with 10 years of experience and a 

board-certified medical dosimetrist with over 6 years of experience were selected as independent 

raters. Raters were given an instructional session about how fiducial markers may appear in T1-

VIBE MRI images. Raters were blinded to the CT images. Raters were shown images from each 

acquired T1-VIBE echo time and were allowed to view images in axial, sagittal or coronal planes, 

control the window/level and zoom to aid marker detection. Raters were requested to contour the 

signal voids considered to be fiducial markers. No limit was set to the number of suspect markers 

that the raters could select.  
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Figure 5.3.3. Summary workflow of the implementation of pix2pix for automatic fiducial 
marker detection. This study used co-registered MRI images and labelled fiducial marker 
images as inputs. The generator transforms the input MRI image into a labelled volume. The 
discriminator measures the similarity of the input image (which could be the target image from 
the dataset or the generator output) and tries to determine if it was produced by the generator. 
The weights of the discriminator are then adjusted based on the classification of the input/output 
image pairs and the input/target image pairs. The generator’s weights are then adjusted based 
on the output of the discriminator and the output and target image differences. The weights are 
updated until the objective function is minimized. 
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5.4. Results 

The percent marker count accuracy, F1 scores, FDR and FNR results for the GAN-based detection 

algorithm and human raters are presented in Table 5.4.I. A 𝑙𝑟 of 0.0003 and 𝛽) of 0.05 were 

identified as optimal hyperparameters for the final training and testing steps. Each fold was trained 

for 200 epochs.  

 A total of 228 fiducial markers were included in this study. The GAN-based detection 

algorithm, human rater-1 and human rater-2 correctly identified 220, 221 and 219 fiducial markers, 

respectively. The GAN-based detection algorithm, human rater-1 and human rater-2 produced 25, 

10 and 6 false positive counts, respectively. The GAN-based workflow, human rater-1 and human 

rater-2 produced 1, 1 and 3 false negative counts, respectively. Calcifications accounted for 84%, 

60% and 67% of the false discoveries for the GAN-based detection algorithm, human rater-1 and 

human rater-2 respectively. There was one instance of a signal void in the vicinity of the hydrogel 

injection site resulting in a false marker count for human rater 1.  

Box plots of the TREs using ground truth-, human observer-, GAN-based detection 

algorithm and CT-defined fiducial marker contours are shown in Figure 5.4.1. In eight patients, a 

single fiducial marker that was visible on the MRI/CT simulation images was not visible in CBCT 

images. In one patient, two fiducial markers that were visible on MRI/CT simulation images was 

not visible in CBCT images. We suspect that the markers may have dislodged between simulation 

and treatment imaging.  
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Figure 5.4.1. Box plots showing the TRE distributions from marker contours generated from CT, 
MRI Ground Truth (GT), GAN and human raters to markers in CBCT images. TRE calculations 
were based on fiducial marker-based rigid registrations. CBCT prostate contours were drawn by 
an experienced radiation oncologist. The mean TRE values are indicated by 𝜇#9( . 

 
5.5. Discussion 

The purpose of this study was to develop a deep learning-based algorithm for automatic detection 

of fiducial markers for MRI-only simulation imaging, and to compare the detection accuracy and 

fiducial marker-based patient setup accuracy of automatically detected fiducial markers to trained 

human observers. A GAN-based detection algorithm was used to detect fiducial markers in 

MEGRE images acquired for 77 prostate cancer patients. The GAN-based detection algorithm 

correctly identified 96% of 220 implanted fiducial markers. Two human raters correctly identified 
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97% and 95% of implanted fiducial markers respectively. TRE calculations were based on fiducial 

marker based rigid registrations using fiducial markers defined in CBCT images and segmented 

fiducial markers on MRI images. The mean TRE differences between ground truth, GAN-based 

detection algorithm, and human rater-defined fiducial markers on MRI and CT were less than 2.5 

mm.  

 Intraprostatic calcifications were a major source of incorrect marker counts for both the 

GAN-based detection algorithm and human observers. The use of MEGRE MRI sequences was 

intended to minimize the number of false marker detections due to calcifications. However, 

previously published studies have demonstrated that intraprostatic calcifications can still be a 

source of false fiducial marker detections for automatic fiducial marker detection frameworks 

8,11,12. As part of an extension of this study we tested if calcifications detected using the GAN-

based detection algorithm had a detrimental effect on registration. The detected suspect fiducial 

markers in MRI images were registered to fiducial markers in CBCT images. For example, if a 

suspect marker was seen to be a calcification in the CBCT image it was treated as an additional 

fiducial marker. T-tests with a 95% confidence interval demonstrated that there was no statistical 

difference between TREs (with targets defined in CBCT images) calculated using the 

automatically detected markers with calcifications and the MRI ground truth defined markers. 

Calcifications typically do not dislodge in the time between simulation and treatment imaging and 

could possibly be used as natural fiducial markers 30,31.  

 This study provides insight into optimal fiducial marker implantation procedures for 

prostate MRI-only simulation. Current fiducial marker implantation guidelines recommend that 

three intraprostatic markers are implanted, with one marker positioned in the right base, one in the 

left mid-gland, and one in the right apex of the gland to ensure that the implant configuration is a 
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triangle with at least 1-cm spacing 32,33. In this study, most of the markers that displaced between 

simulation and treatment day imaging were implanted at the prostate apex. Marker injection 

location was also a factor in marker-induced signal void discernibility by both the GAN-based 

detection algorithm and human observers. Sources of false negative fiducial marker counts 

included markers implanted in or near signal voids created by hydrogel injections sites and markers 

on the prostate/rectum interface. Therefore, markers implanted in the contralateral midzone and 

base of the prostate organ may be unreliable for automatic marker detection because of their 

potential to dislodge. Additionally, markers implanted near the prostate/rectum interface and inside 

hydrogels may have obscured visibility in MRI images.  

 There are improvements that could be made to the automatic GAN-based detection 

algorithm. The current version of the GAN-based detection algorithm uses a greater than 0% DICE 

overlap condition for marker counting. The rationale behind setting a low DICE limit was to be 

able to detect smaller markers that might have small overlap with ground truth. A potential source 

of error from using this condition could be if an incorrect fiducial marker is identified close to the 

boundary of a real fiducial marker. This could lead to an incorrect marker being identified as a real 

fiducial marker. Further studies could be conducted to evaluate and establish the optimal criterions 

for fiducial marker definition.  

 There are limitations to using a retrospective dataset for model training and evaluation. The 

clinical use of the automatic GAN-based detection algorithm would require compatibility with 

prospectively acquired data. Prospectively acquired data may contain feature variations not present 

in a retrospectively trained model. Acquisition of prospective data could potentially have data 

variations such as acquisition setting errors, institution specific image acquisition variations or 

patient specific anatomical variations. The purpose of this study was to provide a proof of concept 
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of the automatic GAN-based detection algorithm. Studies with prospectively acquired data 

accounting for simulated acquisition setting differences and a larger cohort of patients could help 

make the automatic GAN-based algorithm more robust. 

 A deep learning-based marker detection algorithm could potentially be incorporated in a 

prostate MRI-only simulation workflow to assist marker localization and definition. Clinics that 

have commissioned MRI-only prostate radiotherapy treatments have recommended acquiring CT 

images for fiducial marker position verification 7. However, the acquisition of CT scans is contrary 

to the purpose of MRI-only simulation imaging. This GAN-based marker detection algorithm can 

potentially be used in a marker detection and automatic contouring framework with fiducial 

markers verified and checked by a dosimetrist or medical physicist.  

 Additional studies can be conducted with the automatic GAN-based detection algorithm. 

The ability of the model to improve discrimination between fiducial markers and calcifications can 

be tested by creating models with images acquired at finer slice thicknesses and with additional 

echoes. The clinical utility of the automatic workflow can be further tested with a larger cohort of 

prostate cancer patients receiving MRI-only simulation examinations. The generalization of this 

algorithm to other anatomical sites such as the rectum and pancreas may also be worth 

investigating 34,35. 

 

5.6. Conclusions 

We have developed a deep learning-based marker detection algorithm to automatically detect gold 

fiducial markers in MRI images with a clinically representative cohort of prostate cancer patients. 

Fiducial marker-based pretreatment setup using automatically detected fiducial markers can be 

done with similar accuracy to fiducial markers identified on MRI by independent human observers. 
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CHAPTER 6  - Conclusions and Future Work 
 

6.1. Conclusions 

The goals of this thesis were to develop clinical solutions to improve QA processes for prostate 

MRI-only radiation therapy simulation imaging and optimize fiducial marker detection methods 

to aid pretreatment patient positioning using MRI-only simulation images. Chapters 2 and 3 of this 

thesis involved the development of technologies to improve QA testing processes of EBRT 

treatments utilizing MRI-only simulation imaging. Chapter 4 was focused on using quantitative 

criteria to identify the optimal clinical MRI sequences for use with clinically used gold fiducial 

markers and identify an optimal commercially available fiducial marker for MRI-only simulation 

imaging. Chapter 5 summarized work on the development of an automatic fiducial marker 

detection algorithm which could potentially aid in the clinical transition of CT-based to MRI-only 

simulation imaging workflows. This concluding chapter will summarize the major conclusions 

from each chapter and discuss future studies  

The goal of Chapter 2 was to create a generalizable model using carrageenan-based tissue-

surrogate materials for MRI and CT imaging. Using carrageenan, water, Gd-contrast, agarose, 

GMs and CaCO3, a generalizable fit model was developed that covered a range of T1 /T2 relaxation 

times and CT numbers from 82 to 2180 ms, 12 to 475 ms and -117 to 914 HU, respectively. Using 

this generalizable fit model, nine diverse tissue surrogates were created with good T1/T2 relaxation 

time and CT number agreement compared with published in vivo measurements. Therefore, this 

system of materials can mimic MRI and CT characteristics for bone and a wide range of soft tissues 

such as adipose tissue and skeletal muscle.  

There are additional experiments that can be performed using the system of materials 
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developed in Chapter 2 including testing additional additives, testing the T2* relaxation times of 

this system of materials and quantifying the longevity of the system of materials. Testing additional 

additives such as superparamagnetic iron oxide-based contrast agents may provide additional 

modes of T1/T2 relaxation. Quantifying the T2* relaxation properties this system of materials may 

also provide insights about how to improve the bone-tissue surrogate materials. Finally, further 

experiments can be done to characterize the stability of the imaging characteristics of this system 

of materials over time. 

In Chapter 3, a realistic anthropomorphic pelvis phantom was developed for QA testing 

MRI-based radiation therapy techniques. The phantoms imaging utility at 1.5T and 3.0T was 

quantified in addition to its ability to produce realistic sCT images using commercially available 

software. Dosimetry was also characterized by delivery of two types of commonly used prostate 

radiation therapy plans. This study demonstrated that the developed anthropomorphic pelvis 

phantom provided tissue-like contrast on T1 and T2 weighted MRI and CT images and can be used 

to validate MRI-based radiation therapy processes through comparison with standard CT-based 

radiation therapy processes. 

 Further studies using the work demonstrated in Chapter 3 can be done. The phantom can 

be adapted for several therapeutic and imaging QA applications. The generalizability of the 

phantom fabrication method could aid in the development of multimodal phantoms for 

benchmarking multisite MRI-based radiation therapy clinical trials. Additionally, the phantom 

could be printed with deformable interfaces, which could increase its utility for MRI-guided 

radiation therapy applications. This could be done using dual extruder 3D-printers containing a 

deformable filament (such as thermoplastic polyurethane) and a solid-at-room temperature 

filament (such as PLA). Using a dual extruder 3D-printer a tissue-mimicking MRI/CT phantom 
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with a mixture of solid and deformable walls could be fabricated and filled with the deformable 

carrageenan-based materials presented in this work. Additionally, the framework outlined in this 

work could allow for modular MRI/CT phantoms to be developed potentially incorporating many 

deformable organs.  

 In Chapter 4, the visibility of fiducial marker-induced signal voids in MRI images was 

quantitatively characterized in a patient and phantom study. The patient study involved testing the 

visibility and distinguishability of gold fiducial markers across a variety of commonly used 

sequences for MRI-only simulation imaging for radiation therapy. The quantitative metrics used 

to determine visibility and distinguishability were lCNR, Vfall, AMV and TRE. Human observers 

also rated the visibility of the markers in images from each pulse sequence. The phantom study 

sought to determine which commercially available fiducial marker-induced signal void displayed 

the best visibility across a variety of commonly used MRI pulse sequences in phantom. The major 

conclusions from the patient study were that non-contrast-enhanced T1-weighted MEGRE MRI 

sequences produced the best visibility of clinically used gold fiducial markers. The phantom study 

demonstrated that markers manufactured from gold doped with iron quantitatively produced 

superior visibility compared to their pure gold counterparts. 

 The work presented in Chapter 4 can be expanded by investigating the rate of marker 

displacements in prospective patient studies. In this study gold doped with iron markers were 

deployed in phantom as an aggregate cluster (as opposed to a line). Most commercially used 

fiducial markers are deployed as a single solid cylindrical entity and can easily be dislodged.  

Marker dislocation is a common failure mode of fiducial marker-based positioning and alignment. 

Prospective studies may help elucidate if fiducial markers deployed as aggregate clusters dislodge 

at a higher rate than conventional cylindrical fiducial markers.  
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In Chapter 5, a deep learning-based framework for automatic detection of fiducial markers 

for MRI-only simulation imaging was developed. Using the automatically detected markers, the 

framework’s detection accuracy and alignment quality was compared to human observers. A 

GAN-based deep learning architecture was used to classify fiducial markers in MEGRE images 

acquired for 77 prostate cancer patients. In conclusion, a deep learning-based marker detection 

framework to automatically detect and classify gold fiducial markers in a clinically representative 

cohort of prostate cancer patients was developed. Using fiducial markers detected using the 

automatic GAN-algorithm, pre-treatment prostate organ alignment can be done with similar 

accuracy to independent human observers. 

 Additional experiments to expand the work presented in Chapter 5 can be conducted 

including comparing the detection accuracy of 2D vs 3D deep-learning algorithms and prospective 

clinical implementation experiences of using automatic fiducial marker detection workflows can 

be evaluated. In the study presented in Chapter 4, a 2D GAN was utilized because insufficient data 

was available to train a 3D GAN. However, with sufficient data both 2D and 3D models could be 

developed, and their classification accuracy could be compared.  

 

6.2. Closing Remarks 

The clinical implementation of MRI-only simulation imaging for radiation therapy has scientific, 

technological, clinical and economic challenges to its widespread use. However, the technology 

can bring immediate benefits to radiation therapy clinics such as improvements in imaging for 

treatment response. This thesis was focused on developing scientific and technological approaches 

for prostate MRI-only simulation imaging. There still remain scientific, technological and clinical 

challenges to MRI-only simulation imaging such as adaptation of the technology for other clinical 
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sites. Evaluations of the cost/benefit analyses have yet to be done on the economic impact of the 

adoption of MRI-only simulation and cogitation of this topic is warranted. This closing section 

will include a brief discussion of these topics because they have important ramifications for 

radiation therapy clinics planning to invest in an expensive MRI scanner.  

There are scientific and technological challenges to the clinical implementation of MRI-

only simulation imaging. Radiation therapy is used to treat diseases located in anatomical regions 

such as the head and neck, thorax, abdomen, pelvis and extremities. This thesis was focused on a 

subtype of pelvic cancers that affects men. More work needs to be done to allow for robust MRI-

only simulation imaging for radiation therapy of other treatment sites. Some of the tools and 

methods developed in this thesis are applicable to other cancer sites. The methods used in the 

development of generalizable tissue mimicking materials and the development of 

anthropomorphic phantoms can potentially be adapted for other radiation therapy treatment sites 

1. Additionally, methods used in identification and automatic detection of fiducial markers can be 

utilized for treatment sites such as the abdomen where fiducial markers are used for pre-treatment 

patient positioning and alignment 2,3. However, more methods need to be developed to allow MRI-

only simulation imaging of multiple treatment sites. Motion management strategies such as 

4DMRI have yet to see widespread application for MRI-only simulation of thoracic and abdominal 

cancers which may be subject to respiratory and cardiac motion 4,5.  

The clinical justification of MRI-only simulation does require additional investigation. A 

major argument for the implementation of MRI-only simulation is improved tumor definition 

resulting from the elimination of multimodal image registration errors from traditional treatment 

planning workflows. However, errors can be introduced in parts of the treatment workflow that 

may overwhelm the reduction in systematic errors from treatment planning such as incorrect pre-
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treatment patient setup 6. Multisite clinical trials and normal tissue toxicity studies are warranted 

to show the therapeutic benefits of using MRI-only simulation imaging over the current treatment 

standard  6,7. 

There are economic considerations that may dissuade clinics adopting dedicated MRI 

scanners for radiation therapy simulation. A typical MRI simulator can cost in excess of $1 million 

compared to a CT simulator which can cost between $500,000 to $750,000 8–10. MRI scanners also 

have additional costs associated with hiring specialized staff such as operators, engineers and 

safety personnel as well as costs associated with MRI specific shielding requirements 11. The 

increased operation cost may be passed on to patients. This may incentivize clinics to only invest 

in a CT scanner for radiation therapy simulation purposes. However, there are several ways that 

the patient and institution costs can be reduced from the use of MRI-only simulation imaging for 

radiation therapy. Insurance companies typically reimburse for a single simulation scan per 

radiation therapy plan11. Patients receiving MRI-only simulation could thereby have lower out-of-

pocket costs because they would not be receiving an additional CT simulation scan. Additionally, 

the amount billed for MRI-only simulation scans may decrease over time because insurance 

companies may adapt to the presence of new technologies for radiation therapy treatments. This is 

especially demonstrated by the changes in radiation therapy technologies and treatment techniques 

over the past 20 years 12. Additionally, clinics can save on the cost of adopting MRI-only 

simulation and gauge patient throughput by retrofitting diagnostic MRI scanners with flat couches 

and in room lasers for patient positioning. This type of resource sharing may allow clinics to gain 

the benefits of MRI-only radiation therapy simulation without directly investing in a new MRI 

scanner and may help provide economic justification for buying a new scanner if the patient 

throughput becomes sufficiently high.  
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Finally, the clinical use of MRI-only simulation imaging has the potential to improve 

treatment response assessment. An advantage of MRI-only simulation imaging is that patient 

images can be acquired in treatment position which can allow improvements to the quality of 

treatment response. Studies have shown that using MRI images acquired in treatment position 

decreases bladder and rectal toxicity for patients who had CTV contours derived from MRI 

simulation images 13. Acquisition of multimodal images in treatment position may allow for more 

consistent organ positioning because of the reduction in anatomical deformations between 

simulation and pre-treatment imaging. For example, acquisition of immobilized MRI images for 

treatment planning of head and neck cancers may reduce GTV definition uncertainties. For some 

head and neck cancer patients treated at UCLA, GTVs are defined using both planning CT and a 

diagnostic PET/CT images. Diagnostic PET/CT images are acquired on a curved couch with the 

patient in supine position and an anterior head tilt. Immobilized head and neck images for radiation 

therapy simulation are acquired on a flat couch with minimal head tilt. The biomechanically 

different anatomical positions of head anatomy make GTV definition challenging without the use 

of deformable image registration. Therefore, acquisition of multimodality images in treatment 

position for tumor definition for treatment planning may result in reduced radiation therapy 

margins (and possibly normal tissue toxicity) 14–16. Additionally, the acquisition of immobilized 

MRI images may improve the ease of acquiring longitudinal imaging for treatment response. 

Longitudinal imaging can involve acquisition of pre-, intra- and post-treatment images to assess 

therapeutic tumor response. A number of novel functional MRI-based tools have been utilized in 

radiology departments including pH imaging for brain tumor and diffusion weighted MRI for 

prostate cancer post-treatment response 17–20. Radiology departments that acquire images for 

treatment response typically do so without immobilization. This makes it difficult to assess if 
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changes in post-treatment tumor volume or appearance is due to differences in patient position 

and/or differences in interdepartmental scanning protocols. Acquisition of treatment response and 

longitudinal images in treatment position could allow for radiation therapy clinics to more 

accurately assess if locoregional tumor failures are due to errors in treatment delivery or to evaluate 

tumor response to radiation during fractionation.  

There are numerous challenges to the clinical implementation of MRI-only simulation 

imaging. Some of these challenges include the need for scientific and technological developments 

for multisite MRI-only simulation imaging, the need for clinical trials to evaluate the long-term 

benefits of using this technology and cost/benefit analyses of this technology in radiation therapy 

clinics. This work was designed to address some scientific and technological challenges to clinical 

development of MRI-only simulation imaging for radiation therapy of the male pelvis. The 

development of solutions to the multisite clinical implementation challenges will allow for the full 

potential of MRI-only simulation imaging for radiation therapy to be achieved such as a potential 

reduction in treatment margins, reduction in treatment induced toxicities and improvements in 

locoregional tumor control. The completion of this work represents a stride toward the 

achievement of that goal.  
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