
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Spherical and Symmetric Supervarieties

Permalink
https://escholarship.org/uc/item/4c79j4h5

Author
Sherman, Alexander

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4c79j4h5
https://escholarship.org
http://www.cdlib.org/


Spherical and Symmetric Supervarieties

by

Alexander C Sherman

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vera Serganova, Chair
Professor Nicolai Reshetikhin

Professor Ori Ganor

Spring 2020



Spherical and Symmetric Supervarieties

Copyright 2020
by

Alexander C Sherman



1

Abstract

Spherical and Symmetric Supervarieties

by

Alexander C Sherman

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vera Serganova, Chair

We develop and study the notion of a spherical supervariety, which is a generalization
of the classical notion of a spherical variety in algebraic geometry. Spherical supervarieties
are supervarieties admitting an action of a quasi-reductive group with an open orbit of a
hyperborel subgroup. Three characterizations of spherical supervarieties are given: one which
generalizes the Vinberg-Kimelfeld characterization of affine spherical varieties, another that
extends the ideas of the affine case to the quasi-projective case, and finally one in terms of
invariant rational functions which applies to any supervariety. Our characterization of affine
spherical supervarieties leads to (non-constructive) existence theorems for finite-dimensional
highest weight representations admitting certain coinvariants under spherical quasireductive
subgroups.

Several interesting examples of spherical supervarieties are given. We present a classi-
fication of indecomposable spherical representations (for certain supergroups) and for each
the description of its algebra of functions. Adjoint orbits of odd self-commuting elements are
shown to be spherical in many cases, in particular for basic simple Lie superalgebras. We
study group-graded supergroups and their spherical homogeneous supervarieties, showing
in particular that the algebra of functions on an affine homogeneous supervariety is almost
never completely reducible for such supergroups.

Finally we study the case of symmetric supervarieties and show that, despite their not
always being spherical (in contrast to the classical case), we may under some circumstances
guarantee the existence of an Iwasawa decomposition, which implies sphericity. The fixed
points of automorphisms of generalized root systems coming from supersymmetric pairs are
studied along the way. We use the Iwasawa decomposition to gain partial understanding of
the structure of the space of functions as a representation. Finally, the case of a supergroup
as a symmetric supervariety is discussed in detail, culminating in a description of the socle
filtration and the Loewy layers of its space of functions.
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Chapter 1

Introduction

1.1 For a general audience

Symmetry plays a pervasive role in modern mathematics. A symmetry of an object is a
reversible transformation of the object that preserves its structure. For example, if the
object is a circle, then a rotation or reflection of the circle is a symmetry of it. The collection
of symmetries of an object form what is known as a group in abstract algebra. Early in the
development of group theory the mathematicians Evariste Galois, Felix Klein, and Sophus
Lie (to name a few) made significant progress in the fields of number theory, geometry,
and analysis in realizing that symmetry groups often reflect the full nature of, in each
case, solutions to polynomial equations, the structure of a geometric space, and solutions to
differential equations.

It has been observed over time that a fruitful approach to studying a particular collection
of mathematical objects is to organize them by the type of symmetries they have, i.e. by their
symmetry groups. The first famous instance of this occured in the early 1800s when Galois
proved the insolvability of the quintic equation (in contrast to the quadratic, cubic, and
quartic equations where we have a quadratic, cubic, and quartic formula) by studying the
possible group of symmetries of the set of solutions. Another famous example that relates to
the topic of this thesis is Klein’s Erlangen program where types of geometry (e.g. Euclidean,
affine, and projective) were paired with symmetry groups according to which quantities (e.g.
length, angles) and properties (e.g. parallelism, orientation) should remain invariant under
a transformation.

With this context we introduce spherical varieties. A variety is a geometric space that is
the solution set of a collection of polynomial equations. A spherical variety is a variety with
a particularly large amount of symmetry, meaning that its symmetry group is large enough
in a precise sense. Many spaces of interest (e.g. spheres!) are spherical, and they form a rich
and varied class of varieties which motivates their study. On the other hand the restrictive
nature of the definition and the large symmetry group has led to a deep understanding of
spherical varieties, and even a complete classification. The classification was the culmination
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of decades of work by many mathematicians and was only finished in the mid-2010s.
For many, the term supersymmetry brings up associations with esoteric theories in particle

physics. However from a mathematical standpoint, supersymmetry can be regarded as a
generalization of symmetry. The objects (or ‘superobjects’) considered have both ‘even’ and
‘odd’ components, and these components can mix with one another in specified ways. We
define supervarieties to be geometric spaces described by solution sets of superpolynomials,
and then we can consider supersymmetries of these spaces. Collections of supersymmetries
now form supergroups. (A terminology pattern should be emerging at this point.) Therefore
we can study supergeometry using supersymmetry.

In this work we develop an extension of the notion of spherical variety to that of spher-
ical supervariety. We characterize spherical supervarieties and provide a rich collection of
examples.

1.2 Spherical supervarieties

We begin with a brief discussion of spherical varieties before describing spherical supervari-
eties, and the results of this thesis.

1.2.1 Spherical varieties

We work over an algebraically closed field k of characteristic zero. Let G be a reductive
algebraic group over k, and X a G-variety. Then X is spherical if a Borel subgroup of G has
an open orbit on X. Spherical varieties are a rich and well-studied class which simultaneously
generalizes toric varieties (when G = T is a torus), flag varieties, and symmetric varieties.
They connect representation theory, combinatorics, and algebraic geometry.

A quest to classify spherical varieties was completed in the mid-2010s thanks to work
by Bravi, Brion, Cupit-Foutou, Knop, Losev, Luna, Pezzini, Vust, and others spanning
several decades. In some ways it began with the 1985 Luna-Vust classification of embeddings
of spherical homogeneous varieties via the combinatorics of colored fans, generalizing the
familiar theory of fans in toric geometry. It ended with the classification of homogeneous
spherical varieties via a combinatorial description proposed by Luna in the early 2000s and
completed a little more than a decade later.

The characterization of affine spherical varieties immediately demonstrates connections
of the subject to representation theory.

Theorem 1.2.1 (Vinberg-Kimelfeld). Let X be an affine G-variety. Then X is spherical if
and only if k[X] is a multiplicity-free representation.

If K ⊆ G is a closed reductive subgroup then G/K is affine, and thus theorem 1.2.1
and Frobenius reciprocity imply that an irreducible representation can have at most one K-
invariant if and only if G/K is spherical, i.e. the Lie algebra of K has a complementary Borel
subalgebra. For instance when G/K is spherical one obtains a collection of polynomials on
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G/K indexed by the irreducible representations that appear. This is useful for obtaining
a Harish-Chandra homomorphism from the algebra of invariant differential operators to
polynomials, e.g. in the case when G/K is a symmetric space.

Another illustration of the importance of theorem 1.2.1 is in multiplicity-free represen-
tations, i.e. G-modules V for which S•V is completely reducible. In [23], Roger Howe em-
phasizes such representations as being pervasive in the study of invariant theory. However
a multiplicity-free representation is nothing but a spherical variety. Irreducible multiplicity-
free representations were originally classified by Kac in [27], and the full classification was
later completed in [33], as communicated by F. Knop. Multiplicity-free properties of exte-
rior algebras and even of supersymmetric algebras are natural in this regard, and have been
studied by T. Pecher in [42] and [41].

1.2.2 Spherical supervarieties

Let G be an algebraic supergroup with G0 reductive, where G0 is the even underlying al-
gebraic group of G. We call such supergroups quasi-reductive. We would like to consider
supervarieties with actions of such supergroups which have an especially large amount of
symmetry; namely, we would like a hyperborel subgroup (see definition 4.3.3) to have an
open orbit. For those familiar with Lie superalgebras, the notion of hyperborel subalgebra
agrees with the usual notion of Borel subalgebra for many heavily studied cases, apart from
queer superalgebras (see remark 2.3.13). We call such supervarietes spherical, generalizing
the classical notion to the super world.

It is interesting to ask how the properties of spherical varieties generalize. For affine
supervarieties, an extension of the Vinberg-Kimelfeld theorem should be modified to take
into account the fact that quasi-reductive groups have non-semisimple representation theory.
The socle of the algebra of functions is a natural replacement, and we have:

Theorem 1.2.2 (Corollary 5.2.5). If X is an affine spherical supervariety, then the socle of
k[X] is multiplicity-free.

One might hope the converse holds, at least in the case when k[X] is completely reducible.
However this is not the case; there are situations in which a G-supervariety X is affine, k[X]
is completely reducible and multiplicity-free, but X is not spherical (see example 5.2.1). A
simple example is the standard representation of GL(0|n). Thus this connection does not
generalize nicely to the super world.

However, we do find a characterization of sphericity in terms of the subalgebra of k[X]
generated by B-highest weight functions, where B is a hyperborel subgroup.

Theorem 1.2.3 (Theorem 5.2.2). Let X be an affine spherical supervariety, B a hyperborel
subgroup of G. Write N for the maximal unipotent subgroup of B, and T for a maximal
torus of B. Then the following are equivalent:

� X is spherical;
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� Every nonzero B-eigenfunction in k[X] is non-nilpotent, and dim k[X]Nλ ≤ 1 for all
weights λ of T ;

� k[X]N is an even commutative algebra without nilpotents, and the natural T -action is
multiplicity-free.

This characterization, which first appeared in the author’s work [59], generalizes the
classical fact that an affine G-variety X is spherical if and only if X//N is a toric variety for
a maximal torus T of a Borel subgroup B, where N is the unipotent radical of B. We note
that a generalization of this theorem to the quasi-projective case is possible, and follows a
similar line of argument as in the affine case. We provide it in this thesis, with statement
and proof in theorem 5.3.1.

We say a supervariety is graded if it is the exterior algebra of a coherent sheaf on a
variety. (Note that the term graded is sometimes used instead of super, as in [31]. Also
the term split is sometimes used instead of graded, as in [62].) Remarkably, if a spherical
supervariety is graded (which holds for all smooth affine supervarieties) we obtain a non-
constructive existence theorem on highest weights. To be precise, let X be a graded affine
spherical supervariety with an open B-orbit and write Λ+

B(X) for the monoid of highest
weights of k[X]. Then we have Λ+

B(X) ⊆ Λ+
B0

(X0).

Theorem 1.2.4 (Corollary 5.2.7). A generic weight in Λ+
B0

(X0) is also contained in Λ+
B(X).

The term generic is made more precise in the proof. Since G/K is affine if and only if K
is also quasi-reductive, we obtain:

Corollary 1.2.5. If K is a quasi-reductive subgroup of G and G/K has an open B-orbit, then
for a generic weight λ in Λ+

B0
(G0/K0) there exists an indecomposable G-module V admitting

a B-eigenvector v of weight λ and a K-coinvariant ϕ such that ϕ(v) 6= 0.

The author began studying examples of spherical supervarieties in [58]. In that work,
we found indecomposable spherical representations for a large class of quasi-reductive super-
groups and computed the structure of the algebra of functions. We present the classification
here once again as examples of spherical supervarieties; see section 5.5.

The Duflo-Serganova functor has played an important role in the theory of Lie super-
algebras. It is therefore interesting to ask whether there is a relationship to the notion of
sphericity. We have been able to obtain the following result. Let G̃ be a quasi-reductive
supergroup such that its Lie superalgebra g̃ := LieG is gl(m|n), osp(m|2n), or exceptional

basic simple. Let x ∈ g̃1 be self-commuting, and write C(x) for its centralizer in G̃. Let M
be a closed normal subgroup of C(x) such that the Lie superalgebra of M is [x, g̃], and de-
fine G to be the supergroup C(x)/M . Then G will be quasi-reductive with Lie superalgebra
isomorphic to g̃x.

Now let K be a spherical subgroup of G, and consider the G̃-supervariety G̃/K̃. Then
we have:
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Theorem 1.2.6 (Theorem 5.8.1). G̃/K̃ is a spherical supervariety, and there is a precise de-
scription of the Borel subgroups that have an open orbit on it in terms of the Borel subgroups
that have an open orbit on G/K and the root vector x.

In particular we obtain the following intriguing result when G/K is a point:

Corollary 1.2.7. Let x ∈ g̃1 be self-commuting. Then G/C(x) is spherical.

For x ∈ g1, G/C(x) is the orbit of x ∈ Πg, so it is an ‘odd’ adjoint orbit. This says
in particular that the self-commuting cone, as defined in [15], is the even subvariety of a
spherical supervariety. Note that it was known to be spherical already, see [13].

Part of the motivation for the study of spherical supervarieties comes from the interest in
supersymmetric spaces, or symmetric supervarieties as we call them in this thesis. Several
authors have studied different aspects of these spaces. In physics, supersymmetric spaces
are studied as target spaces of non-linear SUSY σ-models; see for instance [64].

Mathematically they have also generated significant interest. In [44] and [45], the Capelli
eigenvalue problem was studied for supersymmetric pairs coming from simple Jordan su-
peralgebras. In [1] a generalization of the Harish-Chandra isomorphism theorem was given,
and in [2] certain facts about the socle of the space of functions was proven, among other
things. Further in [55] the combinatorics of root systems from supersymmetric pairs is used
to construct new integrable systems.

Classically, symmetric varieties are spherical by the Iwasawa decomposition. In the super
setting the Iwasawa decomposition need not hold, and in fact a symmetric supervariety need
not be spherical. We shed light on the existence of an Iwasawa decomposition in the case
of supersymmetric pairs (g, k) where g is a basic simple Lie superalgebra and k is the fixed
points of an involution θ preserving the invariant form on g. We study this situation by
passing to the root system which has the structure of a generalized root system (GRS) as
defined by Serganova in [48]. Using this framework we are able to prove a strong result
on the structure of centralizers of certain tori arising from semisimple automorphisms of g
(theorem 6.2.9). In particular it implies that:

Theorem 1.2.8 (Theorem 6.2.8). If g is a basic simple Lie superalgebra and θ is an invo-
lution of g preserving the invariant form, then either θ or δ ◦ θ admits an Iwasawa decom-
position, where δ(x) = (−1)xx is the canonical grading automorphism.

These results were originally shown by the author in [56]. The perspective of studying
involutions via root systems motivates studying the restricted root system. We explain its
structure in proposition 6.3.3. We further find (by observation) the following remarkable
fact:

Theorem 1.2.9 (Subsection 6.3.2). If a restricted root system has more than one real com-
ponent, then it has the natural structure of a deformed generalized root system, as defined by
Sergeev and Veselov in [54].
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This seems to have been known by Sergeev and Veselov in their original work, as well as
by other researchers in the field. We explicitly give the Sergeev-Veselov parameters for each
eligible supersymmetric pair in section 6.3.2.

Thus many supersymmetric pairs admit an Iwasawa decomposition and using it we can
gain some understanding of k[G/K] as a G-module. Let a be a Cartan subspace, i.e. a max-
imal toral subalgebra of the (−1)-eigenspace of θ. We may extend a to a Cartan subalgebra
of g. Then it is not difficult to show that Λ+(G/K) ⊆ a∗ as in the classical setting. Of more
interest is the following statement:

Theorem 1.2.10 (Theorem 6.4.4). For a generic weight λ ∈ Λ+(G/K), we have L(λ) ⊆
k[G/K].

This theorem says that generically (to be explained more carefully) a highest weight
submodule of k[G/K] generates an irreducible representation. This can be viewed as a
strengthening of corollary 1.2.5. Note that a more precise result in the analytic case is
proven in [2].

Finally, a case of significant interest is the diagonal supersymmetric pair (g×g, g), corre-
sponding to the symmetric supervariety G×G/G ∼= G. For a reductive group, the Peter-Weyl
theorem expresses the decomposition of the algebra of functions in simple terms, as matrix
coefficients over all the irreducible representations. Without semisimplicity we cannot hope
for such a full description. However, in theorem 6.5.11 we describe the socle (Loewy) filtra-
tion of k[G] as a G × G-module. This follows from a more general result on the coradical
filtration of a coalgebra, originally shown by the author in [57].

We believe that the understanding of spherical supervarieties can enrich both our under-
standing of the representation theory of supergroups and provide an interesting geometric
theory that is worthy of study in its own right.

1.3 Structure of thesis

The first chapter introduces linear superalgebra, defining the rigid symmetric monodial cat-
egory of super vector spaces and progressing to a discussion of Lie superalgebras. The
structure of quasi-reductive Lie superalgebras and their representation theory is discussed at
some length, as well as the notion of Borel and hyperborel subalgebras, which both make fre-
quent appearances. Certain distinguished quasi-reductive Lie superalgebras are introduced
and their root systems are described. Finally we describe a relationship between Schur
functors, the parity shift functor, and tensor representations of gl(m|n).

Chapter 2 discusses the rudimentary algebraic supergeometry that we will need. Prop-
erties of supercommutative algebras are introduced to define affine superschemes, followed
by superschemes in general. Supervarieties are defined as superschemes satisfying conditions
similar to varieties in the classical world; however subtle differences appear. The notion of
being graded as a supervariety is explained, followed by a section on quasi-coherent sheaves,
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line bundles, and vector bundles. Projective supergeometry is introduced, followed by stan-
dard definitions of the tangent space, the tangent sheaf, and the sheaf of relative differentials.
Finally, a definition and in-depth characterization of smoothness of supervarieties is given.

The third chapter defines algebraic supergroups and how they relate to Lie superalge-
bras. Super Harish-Chandra pairs and an associated category are defined, which allows one
to replace algebraic supergroups with the pair of an algebraic group and a Lie superalge-
bra. We show that this replacement can be performed for actions of supergroups as well,
simplifying some questions such as whether actions of supergroups restrict to open subsets.
Quasi-reductive supergroups, the global versions of quasi-reductive Lie superalgebras, are
introduced and a list of distinguished supergroups is given to complement our list of distin-
guished Lie superalgebras. Next, linearizations of sheaves are defined with a special focus on
the case of equivariant line bundles. The notion of orbits is discussed, and the connection
between open orbits, pullbacks of sections, and rational invariants is given. Finally, a useful
theorem on the existence of equivariant gradings is proven.

In the fourth chapter the definition of spherical supervariety is given and characterizations
in the affine and general case are explained. When the spherical supervariety is graded an
existence theorem on highest weight functions is proven, and the properties (or lack thereof)
of the monoid of highest weights are examined. After dealing with the affine case, we
explain the generalization to the quasi-projective case. Next, we delve into several important
examples of spherical supervarieties, starting with spherical indecomposable representations
of the distinguished Lie superalgebras. The symmetric superalgebras of these representations
are computed. Following that we explain the situation when the supergroup is group-graded,
and finish with a link between the Duflo-Serganova functor and sphericity. In particular we
show that adjoint orbits of odd self-commuting elements are spherical for basic distinguished
Lie superalgebras, as well as other cases.

Chapter 5 focuses on the case of symmetric supervarieties. They are defined, and the
Iwasawa decomposition is discussed at some length. Although the Iwasawa decomposition
need not always hold, we show it often does (in precise sense) for basic distinguished Lie
superalgebras. We explain restricted root systems arising from supersymmetric pairs and
which Borel subalgebras arise from the Iwasawa decomposition. Some general properties
of the representation on the space of functions is then proven, giving in particular that a
generic highest weight submodule in the space of functions is irreducible. Finally, the case of
the regular representation of a Cartan-even, quasi-reductive supergroup is studied in depth,
culminating in an explicit description of its socle filtration and the layers thereof.

The three appendices prove, in order, the classification of spherical indecomposable rep-
resentations for the distinguished Lie superalgebras (section 5.5), the existence of an Iwa-
sawa decomposition for certain supersymmetric pairs of basic distinguished Lie superalgebras
(theorem 6.2.8), and the facts concerning the socle filtration of the regular representation
of a Cartan-even quasi-reductive supergroup (proposition 6.5.9 and theorem 6.5.11). These
proofs can largely be read independently of the rest of the thesis.
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1.4 List of notation

Here we give a list of commonly used notation for the benefit of the reader.

� k an algebraically closed field of characteristic zero;

� Z2 = {0, 1};

� V = V0 ⊕ V1 the parity decomposition of a super vector space;

� δ the grading automorphism of a super vector space;

� ΠV the parity shift of V (see definition 2.1.4);

� Hom(V1, V2) the internal Hom in SVect (see definition 2.1.3);

� S•V the symmetric superalgebra of V ;

� g a Lie superalgebra;

� b a (hyper)Borel subalgebra;

� n ⊆ b the maximal nilpotent subalgebra;

� h0 a Cartan subalgebra of g0;

� α a root of g;

� gα the root space of α in g;

� ∆ the set of all roots of g;

� Q the root lattice of g;

� W the Weyl group of ∆;

� Σ ⊆ ∆ a simple root system;

� a a Cartan subspace;

� ∆ the restricted root system;

� α a restricted root;

� ∆0 the roots fixed by an automorphism of a root system;

� h the centralizer of h0 in g;

� λ a weight of h0;
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� L(λ) = Lb(λ) the irreducible representation of g of (even) dominant highest weight λ
with respect to b;

� L0(λ) the irreducible representation of g0 with respect to b0 of (even) dominant highest
weight λ with respect to b0;

� rα an odd reflection;

� rα(b) the Borel subalgebra obtained from b via rα;

� bσ the Borel subalgebra defined by the εδ-sequence σ (see section 2.3.4);

� gn V see example 2.3.2;

� g(χ) = {X ∈ g : χ(X) = 0} where χ : g→ k is a morphism of Lie superalgebras;

� A a supercommutative algebra;

� X, Y are supervarieties;

� |X| the underlying topological space of X;

� OX the structure sheaf of X;

� k[X] = Γ(X,OX);

� OX,x the stalk of OX at x ∈ |X|;

� mx the maximal ideal of OX,x;

� k(X) rational functions on X (see section 3.2.2);

� X(A) the SpecA-points of X (see section 3.2.4);

� X0 the even subvariey of X;

� NX the conormal sheaf of X0 in X;

� U an open subvariety of X;

� F a quasi-coherent sheaf;

� L a line bundle;

� Fx the stalk of F at x ∈ |X|;

� TxX the tangent space of X at x ∈ X(k);

� TX the tangent sheaf of X;
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� ΩX/k the sheaf of relative differentials;

� G,H,K algebraic supergroups;

� G0 the even algebraic subgroup of G;

� B a (hyper)Borel subgroup of a quasi-reductive supergroup;

� T a maximal torus of G0;

� N the maximal unipotent subgroup of B;

� Λ+
b (X) the weights of non-zero b-eigenfunctions on X;

� Λb(X) the weights of non-zero rational b-eigenfunctions on X.
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Chapter 2

Linear superalgebra

Here we develop the basic notions of linear superalgebra we will need. Throughout k
denotes an algebraically closed field of characteristic zero. Write Z2 = {0, 1}. We let
N = {0, 1, 2, · · · } ⊆ Z ⊆ Q ⊆ R ⊆ C.

2.1 Super vector spaces

Definition 2.1.1. Define the category SVect to have objects consisting of Z2-graded k-vector
spaces V = V0⊕V1, with morphisms Hom(V1, V2) all degree-preserving linear maps V1 → V2.
For a super vector space V we will always think of V0 and V1 individually as even vector
spaces. We write Svect for the full subcategory of SVect whose objects are finite-dimensional
super vector spaces. For a homogeneous element v ∈ V , we write v ∈ Z2 for its degree.

Example 2.1.2. For m,n ∈ Z≥0, define the super vector space km|n to have grading

(km|n)0 = km and (km|n)1 = kn.

Definition 2.1.3. Given super vector spaces V1, V2, define the super vector space Hom(V1, V2)
by Hom(V1, V2)0 := Hom(V1, V2) and

Hom(V1, V2)1 := Hom((V1)0, (V2)1)⊕ Hom((V1)1, (V2)0).

We write End(V ) := Hom(V, V ) and End(V ) := End(V )0 = Hom(V, V ).

2.1.1 Rigid symmetric monoidal structure

We give SVect the structure of a symmetric monoidal category as follows. For super vector
spaces V1, V2, define V1 ⊗ V2 to have Z2-grading

(V1 ⊗ V2)i =
⊕
j+k=i

(V1)j ⊗ (V2)k.
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We define the braiding isomorphism sV1,V2 : V1 ⊗ V2 → V2 ⊗ V1 by

sV1,V2(v1 ⊗ v2) = (−1)v1v2v2 ⊗ v1.

We see this braiding satisfies sV2,V1 ◦ sV1,V2 = idV1⊗V2 .
By abuse of notation we set k := k1|0. We have natural isomorphisms k⊗V ∼= V ⊗k ∼= V ,

so that k is a unit object in SVect. Given a super vector space V , it has a dual object given
by V ∗ = V ∗

0
⊕ V ∗

1
. The pairing ev : V ∗ ⊗ V → k is the natural one. For finite-dimensional

super vector spaces V1 and V2 we have a natural identification Hom(V1, V2) = V2 ⊗ (V1)∗

in the usual way, and the copairing coev : k → V ⊗ V ∗ = End(V ) sends 1 to the identity
morphism. With this structure, we define the superdimension sdimV of a finite-dimensional
super vector space V , to be the dimension of V in the rigid symmetric monoidal category
Svect. That is, we have a composition of natural maps

k
coev−−→ V ⊗ V ∗

sV,V ∗−−−→ V ∗ ⊗ V ev−→ k

and we let sdimV be the scalar that this map defines. With this definition, we have the
formula

sdimV = dimV0 − dimV1.

We also write dims(V ) := (dimV0| dimV1).

Definition 2.1.4. For a super vector space V define the parity shift of V to be

ΠV := k0|1 ⊗ V.

For n ∈ N set ΠnV := (k0|1)⊗n ⊗ V . This defines a functor on SVect, see section 2.4.2 for
more on this

2.1.2 Schur functors

Given a super vector space V we obtain, via the braiding, an action of Sn on V ⊗n. These
actions are natural in V , and hence for a partition λ we obtain definitions of the Schur
functors Sλ, giving a super vector space Sλ(V ). By complete reducibility of the Sn action,
we obtain a natural isomorphism

V ⊗n ∼=
⊕
λ`n

Sλ(V )⊗ Sλ,

where Sλ is the irreducible Sn-representation corresponding to the tableau λ.

Example 2.1.5. Given a super vector space V and n ∈ N, we have the symmetric powers

SnV := S(n)(V ) = V ⊗n/(σ · x− x).
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Then, considering V0 and V1 as even vector spaces (as always), we have a natural isomorphism
of super vector spaces

Sn(V ) ∼=
⊕
i+j=n

ΠjSi(V0)⊗ Λj(V1).

Similarly we have the exterior powers

ΛnV := S(1n)V = V ⊗n/(σ · x+ x).

Thus
ΛnV ∼=

⊕
i+j=n

ΠjΛi(V0)⊗ Sj(V1).

Notice that in contrast with vector spaces, there may be infinitely many non-zero exterior
powers of a super vector space. In fact, in section 2.4.2 we exhibit a natural isomorphism

ΛnΠV ∼= ΠnSnV.

2.2 Superalgebras

A superalgebra is an algebra object in SVect, or equivalently it is a Z2-graded associative
k-algebra. If A is a superalgebra then A0 is an algebra in the usual sense, and A1 is naturally
a bimodule over A0 equipped with a map A1 ⊗A0

A1 → A0 of A0-modules.
Given a superalgebra A, a subalgebra is a subspace B of A as a super vector space,

which is closed under the product morphism. When we discuss supercommutative algebras
we will also assume B contains the unit element. The term subsuperalgebra might be more
appropriate than subalgebra, but for ease of writing and speech we use subalgebra.

Example 2.2.1. If V is a super vector space, we may consider the superalgebra End(V ) =
Hom(V, V ) consisting of all k-linear endomorphisms of V . Notice that End(V )0 = End(V0)×
End(V1).

Example 2.2.2. If V is a super vector space, the tensor algebra T V is a Z-graded superalgebra.
If we let I be the ideal of T V generated by σ · x− x for x ∈ V ⊗2 and σ ∈ S2, the quotient
T V/I is the symmetric algebra S•V which is Z-graded with homogeneous components SnV .

2.2.1 Sign convention

The symmetric monoidal structure on SVect implies that whenever one tensor factor is moved
past an adjacent one we obtain a sign in formulas. Thus in the theory of superalgebras many
signs appear which depend on the parity of elements involved. We adopt the universally used
convention that in any formula where a sign appears we assume all elements are homogeneous
and that the formula extends multilinearly to nonhomogeneous elements as well.

For example, if a superalgebra A is supercommutative (definition 3.1.1) then ab =

(−1)abba. Thus for arbitrary elements a = a0 + a1, b = b0 + b1 we have

ab = (a0 + a1)(b0 + b1) = b0a+ b1(a0 − a1).
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2.2.2 Lie superalgebras

Definition 2.2.3. A Lie superalgebra is a Lie algebra in the category SVect. Explicitly, it
is a super vector space g with a map [−,−] : Λ2g→ g (the Lie bracket) such that

[x, [y, z]] = [[x, y], z] + (−1)xy[y, [x, z]].

A morphism of Lie superalgebras is a map of super vector spaces respecting the Lie bracket.

Remark 2.2.4. Given a Lie superalgebra g, the even part g0 is preserved under the Lie
bracket and thus is endowed with the structure of a Lie algebra. Further, g1 naturally
obtains the structure of a g0-module under the Lie bracket such that [−,−] : S2g1 → g0 is
a homomorphism of g0-modules. Conversely, the data of a Lie algebra k and a k-module V
with a k-module morphism [−,−] : S2V → k defines a Lie superalgebra structure on k ⊕ V
if and only if the equation [[x, x], x] = 0 holds for all x ∈ V .

Example 2.2.5. If V is a super vector space, we may define a Lie bracket on it by [v, w] = 0
for all v, w ∈ V . We say a Lie superalgebra is abelian if it is isomorphic to one of this form.

Example 2.2.6. Given a superalgebra A, we may naturally give it the structure of a Lie
superalgebra by setting the Lie bracket to be the supercommutator, i.e.

[a, b] = ab− (−1)abba.

Example 2.2.7. Given a super vector space V , we define gl(V ) to be the Lie superalgebra
obtained from the superalgebra End(V ) under supercommutator. It is finite-dimensional
whenever V is. Observe that gl(V )0 = gl(V0) × gl(V1) and that if V is finite-dimensional
then gl(V )1 = V0 ⊗ V ∗

1
⊕ V1 ⊗ V ∗

0
as a gl(V )0-module. When V is finite-dimensional, for

u ∈ gl(V ) we define the supertrace of u, str(u), to be the scalar in k = Endk(k) defining the
map

k
coev−−→ V ⊗ V ∗ u⊗1−−→ V ⊗ V ∗

sV,V ∗−−−→ V ∗ ⊗ V ev−→ k.

Explicitly we have that str(u) = tr(u|V0)− tr(u|V1). The supertrace map satisfies

str(uv) = (−1)uv str(vu),

and thus str : gl(V ) → k defines a surjective Lie superalgebra homomorphism, where k has
the trivial Lie superalgebra structure.

If V is finite-dimensional we define sl(V ) to be the kernel of str, a Lie superalgebra.
When sdim(V ) = 0 we have str(idV ) = 0, so idV ∈ sl(V ), and in this case we set

psl(V ) := sl(V )/k〈idV 〉.

Example 2.2.8. If A is a superalgebra, we define a derivation of A to be a k-linear map of
super vector spaces D : A → A such that D(ab) = D(a)b + (−1)aDaD(b) for all a, b ∈ A.
Write Der(A) for the super vector space of derivations of A viewed as a subspace of End(V ).
Then Der(A) is closed under supercommutator and thus is a Lie superalgebra.
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Example 2.2.9. Let V be a finite-dimensional super vector space with an even non-degenerate
supersymmetric bilinear form (−,−) : S2V → k. We define osp(V ) to be the Lie subalgebra
of gl(V ) given by those endomorphisms u ∈ gl(V ) such that (uv, w) + (−1)uv(v, uw) = 0
for all v, w ∈ V . Then we have osp(V )0 = o(V0) × sp(V1), and osp(V )1 = V0 ⊗ V1 as an
osp(V )0-module.

Definition 2.2.10. Given a Lie superalgebra g, its enveloping algebra Ug is the superalgebra
T g/I, where I is the ideal generated by elements of the form xy − (−1)xyyx− [x, y], where
x, y ∈ g. The superalgebra Ug has a natural N-filtration Ukg by degree of monomials in
T g such that U0g = k and U1g = k + g. By the PBW theorem for Lie superalgebras, the
natural map g→ Ug is injective, and the natural algebra homomorphism Sg→ grUg is an
isomorphism.

The universal enveloping algebra has the natural structure of a cocommutative Hopf
superalgebra with comultiplication given by x 7→ x⊗ 1 + 1⊗ x, counit x 7→ 0, and antipode
x 7→ −x for x ∈ g, each extended multilinearly.

Just as with Lie algebras we have a natural correspondence between Lie superalgebra
maps g→ A and superalgebra homomorphisms Ug→ A where A is an associative superal-
gebra.

2.2.3 Representations

Definition 2.2.11. A representation of a Lie superalgebra g on a super vector space V is a
map of Lie superalgebras g→ gl(V ). Equivalently, it is a map of superalgebras Ug→ gl(V ).
Given a representation g → gl(V ), we say that g acts on V , and we will refer to V as a
representation of g, or a g-module.

The representations of g form an abelian category. In addition we have constructions of
tensor product, dual, and parity shift representations described below.

� Given a super vector space V we define the trivial action of g on V by setting x · v = 0
for all x ∈ g, v ∈ V .

� Given two representations V1, V2 of g we obtain a tensor product representation V1⊗V2

defined by x · (v1 ⊗ v2) = x · v1 ⊗ v2 + (−1)xv1v1 ⊗ x · v2 where x ∈ g, vi ∈ Vi.

� Given a representation V of g, we define the representation ΠV as the tensor product
representation k0|1 ⊗ V , where k0|1 is given the trivial action of g.

� Given a representation V of g, we define the dual representation V ∗ by (x · ϕ)(v) =
−(−1)xϕϕ(xv) for x ∈ g, ϕ ∈ V ∗, and v ∈ V .
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2.3 Quasi-reductive Lie superalgebras

It is not clear what types of Lie superalgebras are the ‘correct’ generalizations of reductive
or semisimple Lie algebras. In [26], Kac classified all simple finite-dimensional Lie superalge-
bras. However for many purposes there is a wider class of Lie superalgebras that one wants to
consider. We will focus on Lie superalgebras with even reductive part (quasi-reductive) and
also, for the most part, have an even Cartan subalgebra (Cartan-even). We now give all the
necessary definitions along with a brief description of their finite-dimensional representation
categories. We refer to [51] for more on quasi-reductive Lie superalgebras.

Definition 2.3.1. A finite dimensional Lie superalgebra g is called quasi-reductive is g0 is
reductive and the adjoint action of g0 on g1 is semisimple.

Example 2.3.2. Let g be a Lie superalgebra and V a representation of g. Then we may define
a new Lie superalgebra gn V whose underlying super vector space is g⊕ V , such that g is
a subalgebra, V is an abelian ideal, and [(u, 0), (0, v)] = (0, u · v).

If g = g0 and V is a purely odd representation of g, we say that g is graded. If in addition
g = g0 is reductive then g will be quasi-reductive.

For the rest of this section we assume g is quasi-reductive.

Definition 2.3.3. Let h0 ⊆ g0 be a Cartan subalgebra of g0. Then a Cartan subalgebra of
g is a subalgebra of the form h = c(h0), i.e. it is the centralizer of a Cartan subalgebra of g0.

Since g1 is a semisimple g0-module, we can decompose it into h0-eigenspaces. We call
the nonzero weights of the adjoint h0-action on g with nonzero weight spaces the roots of g,
and let ∆ ⊆ h∗

0
be the set of roots. The root lattice is defined to be the free abelian group

Q = Z∆ ⊆ h∗
0
.

Write ∆0 = {α ∈ ∆ : (gα)0 6= 0} and ∆1 = ∆ \∆0. Then ∆0 is a reduced root system
in its span. Its Weyl group, W , acts on h∗

0
and preserves ∆1. We call W the Weyl group of

g. Because all Cartan subalgebras of g0 are conjugate, the combinatorial data of the roots
inside h∗

0
is well-defined up to isomorphism. Given a root α ∈ ∆, we write gα ⊆ g for the

corresponding root space.
By standard facts about the representation theory of reductive Lie algebras, we have:

Lemma 2.3.4. The following are equivalent if g0 6= 0:

� A Cartan subalgebra h0 ⊆ g0 is self-centralizing in g;

� the zero weight space g0 is of pure parity (and is even);

� all root spaces gα are of pure parity.

Definition 2.3.5. We say that g is Cartan-even if g0 6= 0 and the three equivalent conditions
in lemma 2.3.4 hold.
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Now fix a Cartan subalgebra h ⊆ g.

Definition 2.3.6. Given a group homomorphism γ : Q → R such that γ(α) 6= 0 for all
α ∈ ∆, we define a Borel subalgebra of g to be one of the form b =

⊕
γ(α)≥0

gα. We then write

∆± = {α ∈ ∆ : ±γ(α) > 0}, and we call elements of ∆+ positive roots and elements of
∆− negative roots. We refer to such a partition of ∆ into positive and negative roots as a
positive system. We set n± =

⊕
α∈∆±

gα, write n = n+, and call n the nilpotent radical of b.

Remark 2.3.7. � If b is a Borel of g then b0 is a Borel of g0. Further, if b′
0

is a Borel of
g0, then b is conjugate to a Borel b′ whose even part if b′

0
.

� Because all Cartan subalgebras of g0 are conjugate, it is easy to see there are only
finitely many conjugacy classes of Borel subalgebras. However, unlike for Lie algebras,
there is often more than one conjugacy class of Borels, e.g. for gl(V ) or osp(V ) (see
section 2.3.4).

2.3.1 Representations of g

Fix a choice of Borel subalgebra b of g. Then we obtain a triangular decomposition g =
n− ⊕ h⊕ n+. We also obtain the monoids Q± = N∆±. Define a partial ordering on h∗

0
by

µ ≤ λ ⇐⇒ λ− µ ∈ Q+.

Consider the category F(g) of finite-dimensional g-representations which are semisimple
over g0. For the remainder of this section all g-modules will be in F(g). Then each V ∈ F(g)
is h0-semisimple and thus admits a weight space decomposition

V =
⊕
λ∈h∗

0

Vλ.

We set P(V ) = {λ ∈ h∗
0

: Vλ 6= 0}. Using the triangular decomposition we have the following
standard result:

Theorem 2.3.8. Let L be a simple g-module. Then there exists a unique weight λ ∈ P (L),
called the highest weight of L (with respect to b), such that µ ≤ λ for all µ ∈ P (L). Further,
Lλ is a simple h-module. If two simple g-modules have the same highest weight, then they
are isomorphic up to parity shift.

Corollary 2.3.9. If L,L′ are irreducible g-modules, then either L ∼= L′ or L ∼= ΠL′ if and
only if P(L) = P(L′).

Corollary 2.3.10. If h = h0 and L is a simple g-module of highest weight λ, there exists a
unique (up to nonzero scalar) nonzero vector vλ ∈ Lλ, which we call a highest weight vector
of L.
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Definition 2.3.11. We say a weight λ ∈ h∗
0

is dominant with respect to b if there is a
finite-dimensional irreducible representation L of g of highest weight λ with respect to b.
We write Λ+

b (g) ⊆ h∗
0

(or simply Λ+(g)) for the set of b-dominant weights. Observe that
Λ+

b (g) ⊆ Λ+
b0

(g0).

Notation:

� If h = h0 and λ is dominant we define Lb(λ) (or simply L(λ) when no confusion arises)
to be a simple module of highest weight λ with respect to b such that the highest
weight vector is even.

� Because of subtleties surrounding parity, if h 6= h0 we write Lb(λ) (or L(λ)) for a fixed
choice of irreducible representation of highest weight λ. This case will only arise for us
when g = q(n), and this subtlety will be largely unimportant.

� In any case, we write L0(λ) for the even irreducible representation of g0 of highest
weight λ.

2.3.2 Distinguished quasi-reductive Lie superalgebras

We now discuss the most important families of Lie superalgebras we consider in this thesis.
We will refer to them as the distinguished Lie superalgebras for the remainder of this thesis.

Over time representation theorists have found these superalgebras have representation
theory that exhibits especially interesting behavior and provides for a rich theory, while also
avoiding some of the technical deficiencies of certain simple Lie superalgebras that appear
in Kac’s list in [26]. Further all the simple Lie superalgebras appearing in Kac’s list which
are quasi-reductive either appear in the following list (i.e. osp(m|2n), d(2|1; t), g(1|2), or
ab(1|3)) or can be gotten from one in the following list by taking a codimension one derived
subalgebra and/or taking the quotient by a one-dimensional center.

Each distinguished Lie superalgebra is quasi-reductive. For each we give an explicit
description of its root system. Some are also basic Lie superalgebras, meaning that they
admit a non-degenerate invariant even supersymmetric form (these are the superalgebras
gl(m|n), osp(m|2n), d(2|1; t), g(1|2), and ab(1|3)). For these cases we also describe the in-
duced form on the root system.

� gl(m|n) = End(km|n): we have h = h0 and a natural basis ε1, . . . , εm, δ1, . . . , δn of h∗

such that ∆0 = {εi − εj, δi − δj : i 6= j} and ∆1 = {±(εi − δj)}. The inner product is
given by (εi, εj) = −(δi, δj) = δij and (εi, δj) = 0.

� osp(2m + 1|2n): we have h = h0 and a natural basis ε1, . . . , εm, δ1, . . . , δn of h∗
0

such
that ∆0 = {±εi± εj,±δi± δj : i 6= j} t {±εi,±2δi} and ∆1 = {±εi± δj} t {±δi}. The
inner product is given by (εi, εj) = −(δi, δj) = δij and (εi, δj) = 0.
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� osp(2m|2n): we have h = h0 and a natural basis ε1, . . . , εm, δ1, . . . , δn of h∗ such that
∆0 = {±εi ± εj,±δi ± δj : i 6= j} t {±2δi} and ∆1 = {±εi ± δj}. The inner product is
given by (εi, εj) = −(δi, δj) = δij and (εi, δj) = 0.

� d(2|1; t): we have h = h0 and a natural basis ε1, ε2, ε3 of h∗ such that ∆0 = {±2εi} and
∆1 = {±ε1±ε2±ε3}. The inner product is given by (ε1, ε1) = 1

t
(ε2, ε2) = − 1

1+t
(ε3, ε3) =

1.

� g(1|2): we have h = h0 and a spanning set δ, ε1, ε2, ε3 of h∗
0

with the relation ε1+ε2+ε3 =
0 such that ∆0 = {±εi, εi− εj : i 6= j}t {±2δ} and ∆1 = {±δ}t {±δ± εj}. The inner
product is given by (εi, εi) = −2(εi, εj) = −(δ, δ) = 2, where i 6= j.

� ab(1|3): we have h = h0 and a natural basis ε1, ε2, ε3, δ of h∗ such that ∆0 = {±εi± εj :
i 6= j}t {±εi}t {±δ} and ∆1 = {1

2
(±ε1± ε2± ε3± δ)}. The inner product is given by

(εi, εj) = δij and (δ, δ) = −3.

� p(n): we have h = h0 and a natural basis ε1, . . . , εn of h∗ such that ∆0 = {εi−εj : i 6= j}
and ∆1 = {εi + εj} t {−εi − εj : i 6= j}.

� q(n): we have h = h0 ⊕ k0|n such that h0 has a basis e1, . . . , en and k0|n has a basis
f1, . . . , fn with [fi, fj] = δijei. Write ε1, . . . , εn ∈ h∗

0
for the dual basis to e1, . . . , en.

Then we have ∆ = ∆0 = {εi − εj : i 6= j}, and dim gα = (1|1) for all α ∈ ∆0.

Note that all distinguished Lie superalgebras are Cartan-even except for q(n). We will refer
to the Lie superalgebras d(2|1; t), g(1|2), and ab(1|3) as the exceptional basic simple Lie
superalgebras.

2.3.3 Odd reflections in basic Lie superalgebras

Let g be one of the basic distinguished Lie superalgebras in our list above, that is one of
gl(m|n), osp(m|2n), g(1|2), ab(1|3), or d(2|1;α). As previously stated, basic superalgebras
admit an even invariant non-degenerate supersymmetric form which induces a symmetric
non-degenerate form on h∗ for a Cartan subalgebra h and is described in section 2.3.2. Basic
superalgebras have extra structure on their representation categories, and conjugacy classes
of Borel subalgebras are well-understood. We state what we will need for this thesis.

Let g be a basic distinguished Lie superalgebra and choose a Cartan subalgebra h ⊆ g.
The choices of positive systems, and thus of Borel subalgebras containing h, are in natural
bijection with choices of simple roots in ∆ just like in the case of semisimple Lie algebras.
Recall that a subset Σ = {α1, . . . , αn} ⊆ ∆ is called a base for ∆ if every root α ∈ ∆ can be
uniquely represented as a linear combination

α =
∑
i

kiαi
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where either all ki ∈ Z≥0 or all ki ∈ Z≤0. In this case the elements of Σ are called simple roots.
Note that for all distinguished basic Lie superalgebras a base Σ will be linearly independent.

If Σ ⊆ ∆ is a set of simple roots, and α ∈ Σ is isotropic (i.e. (α, α) = 0), then we denote
by rα the odd reflection with respect to α, which takes Σ to a new simple root system rα(Σ).
See section 1.4 of [10] or the axiomatic approach in section 1 of [48] for more on how odd
reflections change the simple root system.

The main result we will be using regarding simple reflections is the following: let b be the
Borel corresponding to Σ, and rα(b) the Borel corresponding to rα(Σ). Further let λ ∈ h∗

be dominant with respect to b. Then we have:

Lb(λ) ∼= Lrα(b)(λ) if (λ, α) = 0, and Lb(λ) ∼= ΠLrα(b)(λ− α) if (λ, α) 6= 0.

See [10], lemma 1.40 for a proof and sections 1.4 and 1.5 for more on odd reflections in
highest weight theory.

2.3.4 Borel subalgebras for gl(m|n) and osp(m|2n)

Here we describe the conjugacy classes of Borel subalgebras for gl(m|n) and osp(m|2n)
and make a particular choice of Borel subalgebra for each conjugacy class. The notation
developed will be heavily used in appendix A.

Let g be either gl(m|n), osp(2m|2n), or osp(2m + 1|2n) and let h0 ⊆ g be a Cartan
subalgebra. Write (−,−) for the restriction of a fixed invariant form to h0. Then as described
in section 2.3.2 there is basis of h∗

0
given by ε1, . . . , εm, δ1, · · · , δn, where

(εi, εj) = −(δi, δj) = δij, (εi, δj) = 0.

Let W denote the Weyl group of the even part of each root system above. Then the
conjugacy classes of Borel subalgebras of g are in bijection with a choice of simple roots up
to the W -action. For each superalgebra, there is a well-known classification of such conjugacy
classes in terms of εδ-sequences (see for instance [10], section 1.3).

For example, for gl(1|2) there are three conjugacy classes of Borels, corresponding to the
sets of simple roots {ε1 − δ1, δ1 − δ2}, {δ1 − ε1, ε1 − δ2}, and {δ1 − δ2, δ2 − ε1}. To each of
these we associate, in order, the εδ-sequence εδδ, δεδ, and δδε. We occasionally write, for
example, δ2ε for the sequence δδε.

Now for each Lie superalgebra g that we consider, we would like to define a map:

{εδ-sequences} → {Borels b ⊆ g}, σ 7→ bσ

such that the conjugacy class of bσ corresponds to the positive system defined by σ.
Since we have already chosen a Cartan subalgebra, and an εδ-sequence specifies a conju-

gacy class of Borel, to define bσ it suffices to rigidify the W -symmetry by making a choice
of even Borel subalgebra, or equivalently a choice of simple roots for the even root system.
We now do this for each Lie superalgebra g.
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For gl(m|n), we choose the even simple roots

{εi − εi+1}1≤i≤m−1 ∪ {δj − δj+1}1≤j≤n−1.

For osp(2m|2n), we choose the even simple roots

{εi − εi+1, εm−1 + εm}1≤i≤m−1 ∪ {δj − δj+1, 2δn}1≤j≤n−1.

Finally for osp(2m+ 1|2n), we choose the even simple roots

{εi − εi+1, εm}1≤i≤m−1 ∪ {δj − δj+1, 2δn}1≤j≤n−1.

For example, if g = gl(m|n), then bε···εδ···δ = bε
mδn has simple root system

{ε1 − ε2, . . . , εm − δ1, δ1 − δ2, · · · δn−1 − δn}.

Then if h is the Cartan subalgebra of diagonal matrices, bε
mδn will be the subalgebra of

upper-triangular matrices in gl(m|n).
Or, if g = osp(4|4), then bε(−ε)δδ = bε(−ε)δ

2
has simple root system

{ε1 + ε2,−ε2 − δ1, δ1 − δ2, 2δ2}.

2.3.5 Hyperborel subalgebras

We introduce another natural generalization of Borel subalgebras for quasi-reductive Lie
superalgebras, which we call hyperborel subalgebras. We then give a brief discussion of the
definition.

Definition 2.3.12. A hyperborel subalgebra b of g is a subalgebra that is maximal amongst
subalgebras with the following two properties:

� b0 is a Borel of g0 in the usual sense; and

� [b1, b1] ⊆ [b0, b0].

Remark 2.3.13.

� Given a hyperborel subalgebra b and a choice of Cartan subalgebra h0 ⊆ b0, we have
b = h0 n n where n is a nilpotent ideal. We call n the unipotent radical of b.

� We may always conjugate a hyperborel b by an inner automorphism of g so that b0 is
a chosen Borel subalgebra of g0.

� If b is a Borel subalgebra of g and g is Cartan-even, then [b1, b1] ⊆ [b0, b0], and so b is
contained in a hyperborel subalgebra of g.
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� If l ⊆ g1 is an odd abelian ideal of g, then l is contained in every hyperborel subalgebra
of g.

Example 2.3.14. Unlike for Borel subalgebras, in general there may be infinitely many non-
conjugate hyperborel subalgebras. For example, one can take a central extension of an odd
abelian Lie superalgebra to get an odd Heisenberg superalgebra g where g0 = k〈c〉 is central,
g1 = V , and [−,−] : S2V → k〈c〉 is a non-degenerate symmetric bilinear form. Then
hyperborel subalgebras for g are in bijection with maximal isotropic subspaces of V , and
none are conjugate to another.

To obtain an example which is Cartan-even, if we assume V = V+⊕V− where dimV± = n
then one may take our Heisenberg superalgebra above and add a grading element d which
has that [d, v] = ±v if v ∈ V±. Here the inner automorphism group is a one-dimensional
torus, so if n is large enough there will be infinitely many hyperborel subalgebras.

However for both of the examples above, there are still only finitely many hyperborel
subalgebras up to automorphism. The author does not know if this is always the case.

Remark 2.3.15. By definition, hyperborel subalgebras are solvable and their irreducible rep-
resentations are all one-dimensional (see lemma 1.37 of [10]). This property is the primary
way in which hyperborel subalgebras generalize Borel subalgebras for reductive Lie algebras.

With this in mind, another natural candidate definition for hyperborel subalgebra is a
subalgebra b which is solvable, has [b1, b1] ⊆ [b0, b0], and is maximal with these properties.
A hyperborel subalgebra as we have defined it satisfies this definition. However the notions
are not equivalent.

A counterexample is given by the Lie superalgebra g with g0 = k〈s, t1, t2〉 abelian and
g1 = k〈v1, v2, w1, w2〉. Here s is central and

[ti, vj] = δijvj, [ti, wj] = −δijwj, [vi, wj] = δijs, [vi, vj] = [wi, wj] = 0.

Then g is quasi-reductive (and Cartan-even), and if we let b = 〈s, t1 + t2, v1 + v2, w1 − w2〉
then b is solvable, and since

[v1 + v2, w1 − w2] = 0,

we have [b1, b1] ⊆ [b0, b0]. However if t1 is added to form a larger subalgebra b′ then v1

and w1 would also need to be added to b′ and thus s ∈ [b′
1
, b′

1
]. So b is maximal with the

properties that it is solvable and [b1, b1] ⊆ [b0, b0] even though b0 is not a Borel subalgebra
of g0.

We prefer our definition of hyperborel subalgebra due to the importance of having its
even part be a Borel subalgebra.

The notion of hyperborel is most natural for quasi-reductive superalgebras which are
Cartan-even. If g is Cartan-even then the notion of hyperborel agrees with the definition of
Borel subalgebra given in chapter 3 of [39]. Further, the notion of hyperborel subalgebra and
Borel subalgebra coincide if g is gl(m|n), sl(m|n) for m 6= n and (m,n) 6= (1, 1), psl(n|n) or
sl(n|n) for n ≥ 3, p(n), osp(m|2n), or is one of the exceptional basic simple Lie superalgebras.
This is proven in Proposition 4.6.1 of [39]. The case of p(n) is not considered there, but one
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can show the notions agree for this superalgebra as well (although they do not agree for the
derived subalgebra of p(n)).

However if g is not Cartan-even, for instance g is the queer Lie superalgebra q(n), then
hyperborels greatly differ from Borels as they may not contain a Cartan subalgebra.

Remark 2.3.16. If g is quasi-reductive and b is a hyperborel subalgebra of g, then for a finite
dimensional irreducible representation V of g, dimV (b) ≥ 1 by remark 2.3.15. However, it is
possible that dimV (b) > 1, and thus we no longer have a bijective correspondence between
certain characters of the Borel and finite dimensional irreducible representations of g.

Indeed even when g is Cartan-even this phenomenon can occur; in [52], a nontrivial
central extension of the derived subalgebra of p(4) is considered, along with an irreducible
representation Vt deforming the standard representation of p(4). If t 6= 0 it is shown that
Λ2Vt is irreducible. However there is a hyperborel subalgebra given by (in the notation of
the paper) b = g−2 ⊕ b0 ⊕ g1, where b0 is a Borel subalgebra of g0. One can check that

Λ2V
(b)
t is two-dimensional for any t.
Nevertheless, if a hyperborel subalgebra b contains a Borel subalgebra then dimV (b) = 1

for an irreducible representation V of g, by highest weight theory.

2.4 Schur-Weyl duality and the parity shift functor

2.4.1 Schur-Weyl duality

Let V be a finite-dimension super vector space. Then it has a natural action of the Lie
superalgebra gl(V ), inducing a natural action of gl(V ) on V ⊗`. This action commutes with
the action of S` on V ⊗`. Just as in the classical case, these actions are double-centralizing;
see theorem 3.10 in [10] for a proof of the following result.

Proposition 2.4.1. Let EndS`(V
⊗`) denote the super vector space endomorphisms of V ⊗`

which commute with S`, and EndUgl(V )(V
⊗`) the super vector space endomorphisms which

commute with gl(V ). Then we have the double centralizer property for these two actions: the
natural maps

k[S`]→ EndUgl(V )(V
⊗`), Ugl(V )→ EndS`(V

⊗`)

are surjective.

Recall from section 2.1.2 that for a partition λ of ` we write Sλ for the corresponding
irreducible representation of S` and Sλ(V ) for the Schur functor, which now gives a gl(V )-
representation. Let dims(V ) = (m|n), and writeH(m,n) for the set of (m,n) hook partitions
λ, i.e. partitions that satisfy λm+1 ≤ n. Theorem 3.11 of [10] proves the following:

Corollary 2.4.2. For λ ∈ H(m,n), Sλ(V ) is an irreducible gl(V ) representation. Further
we have a natural isomorphism of gl(V )× S` modules

V ⊗` ∼=
⊕
λ``

Sλ(V )⊗ Sλ
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2.4.2 Parity shift functor

We now give a brief discussion of the parity shift functor on Svect and its relationship to the
gl(V )-representations Sλ(V ).

Definition 2.4.3. For a super vector space V , recall that we define its parity shift ΠV to
be the super vector space k0|1 ⊗ V . We also define Π−1V := (k0|1)∗ ⊗ V . For n ∈ Z, write
ΠnV := (k0|1)⊗n ⊗ V , where for n < 0 we set (k0|1)⊗n := ((k0|1)∗)⊗−n.

Remark 2.4.4. We have that Πn is an endofunctor of SVect and Π ◦Π−1 ∼= Π−1 ◦Π ∼= idSVect

via the coevaluation morphism. From this we obtain a natural isomorphism of functors
Πn ◦ Πm ∼= Πm+n for all m,n ∈ Z.

We will, throughout, write ε for a chosen basis element of k0|1, and ε−1 for a dual basis
element of (k0|1)∗. In this way we write elements of ΠnV as εnV , where v ∈ V .

Remark 2.4.5. The functor Πn admits, via the braiding, an S|n|-action by natural automor-
phisms. For a super vector space V , σ ∈ S|n|, v ∈ ΠnV , this natural automorphism is given
by

σ · v = sgn(σ)v.

This natural action prevents the existence of a natural isomorphism idSVect → Π2 which
respects the symmetric structure on the category.

For n ∈ Z and super vector spaces V1, V2, we have natural isomorphisms

(ΠnV1)⊗ V2
∼= Πn(V1 ⊗ V2) ∼= V1 ⊗ (ΠnV2)

via the braiding isomorphism. Explicitly,

(εnv1)⊗ v2 7→ εn(v1 ⊗ v2) 7→ (−1)vnv1 ⊗ (εnv2)

We have a natural action of gl(V ) on ΠV given explicitly by

u(εv) = (−1)uε(uv)

Consider (ΠV )⊗n. The braiding gives a natural isomorphism

Φ : (ΠV )⊗n → ΠnV ⊗n

which explicitly sends

(εv1)⊗ (εv2)⊗ · · · ⊗ (εvn) 7→ (−1)vn−1+vn−3+···εnv1 ⊗ v2 ⊗ · · · ⊗ vn
Let u ∈ gl(V ). Then,

u((εv1)⊗ · · · ⊗ (εvn)) =
n∑
i=1

(−1)u(i+v1+···+vi−1)(εv1)⊗ · · · ⊗ εuvi ⊗ · · · ⊗ (εvn)

7→ (−1)vn−1+vn−3+···
n∑
i=1

(−1)u(n+v1+···+vi−1)εnv1 ⊗ · · · ⊗ uvi ⊗ · · · ⊗ vn

= u((−1)vn−1+vn−3+···εnv1 ⊗ · · · ⊗ vn)
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so Φ is gl(V )-equivariant. We have a natural Sn action on (ΠV )⊗n; the transposition σi =
(i, i+ 1) acts as

σi · · · ⊗ (εvi)⊗ (εvi+1)⊗ · · · = (−1)(vi+1)(vi+1+1) · · · ⊗ (εvi+1)⊗ (εvi)⊗ · · ·

However on ΠnV ⊗n, we have a natural Sn × Sn action; the map Φ is Sn-equivariant with
respect to the diagonal Sn action on ΠnV ⊗n. The diagonal action is isomorphic to the action
of Sn on V ⊗n tensor the sign representation. Therefore, if we write pλ for the projector onto
the isotypic component of Sλ, we find that

Φ(pλ(ΠV )⊗n) = pλ(Π
nV ⊗n) = Πnpλ′V

⊗n

where λ′ denotes the transposed partition. Since this is an isomorphism of gl(V )-modules,
we obtain the following:

Proposition 2.4.6. We have a natural isomorphism of gl(V )-modules

Sλ(ΠV ) ∼= Π|λ|Sλ′(V ).
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Chapter 3

Supergeometry

Here we develop the algebraic supergeometry that we will need. The treatment almost
entirely parallels the development of algebraic geometry via schemes as in [21], where we
replace commutative rings with supercommutative rings. However the necessary introduction
of nilpotents, even for smooth spaces, leads to differences.

3.1 Supercommutative algebra

Definition 3.1.1. A superalgebra A over k is supercommutative if A is unital and ab =
(−1)abba for all a, b ∈ A. In this case we call A a supercommutative algebra.

Unless otherwise stated, all superalgebras in the rest of this section are assumed to be
supercommutative.

Example 3.1.2. Given a super vector space V , we have defined S•V to be the polynomial
superalgebra on V . It is a supercommutative algebra explicitly given by

S•V = S•V0 ⊗k Λ•V1.

Given a homogeneous basis x1, . . . , xm, ξ1, . . . , ξn of V , where the xi are even, ξi odd, we have
S•V = k[x1, . . . , xm, ξ1, . . . , ξn], the superalgebra of polynomials in these elements.

3.1.1 Ideals

Given a supercommutative algebra A the notions of left, right, and two-sided ideals all
coincide. We always assume the ideals are Z2-graded. A prime ideal p ⊆ A is one such that
if ab ∈ p then either a ∈ p or b ∈ p; equivalently A/p is an integral domain. (In particular
it is a commutative ring.) A maximal ideal is an ideal that is maximal amongst all proper
ideals, or equivalently has the property that A/m is a field.

Given a homogeneous subset I ⊆ A, we define (I) ⊆ A to be the ideal generated by I,
that is the smallest ideal of A containing I. The ideal (A1) is particularly distinguished in A.
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We observe that every element of A1 squares to 0, so that every element of (A1) is nilpotent,
and thus every prime ideal contains (A1).

Define A := A/(A1), a commutative algebra. Then by the lattice isomorphism theorem
there is an inclusion-preserving bijection between the prime ideals of A and the prime ideals
of A. On the other hand, if p is a prime ideal of A, then p0 is a prime ideal of A0, and
conversely if q is a prime ideal of A0 then q + A1 is a prime ideal of A. Thus we obtain:

Lemma 3.1.3. There are natural inclusion-preserving bijections between the prime ideals of
A,A0, and A.

3.1.2 Modules

A left (resp. right) A-module is a super vector space M with a morphism of super vector
spaces A ⊗k M → M (resp. M ⊗k A → M) satisfying the usual axioms. Note that a left
A-module M has a natural right A-module structure given by

m · a = (−1)amam.

In this way all A-modules are naturally A-bimodules. It follows in particular that the tensor
product of A-modules over A is once again an A-module.

Given an A-module M , we may define an A-module structure on its parity shift ΠM by

a(εm) = (−1)aεam.

In this way, the map M → Π2M , m 7→ ε2m becomes an isomorphism of A-modules.
Given A-modules M,N , a morphism of A-modules f : M → N is a map of super vector

spaces such that f(am) = af(m) for a ∈ A, m ∈M . We denote by HomA(M,N) the vector
space of A-module morphisms. We have a natural map A0 → HomA(M,M) given by left
multiplication. On the other hand we have a natural map A1 → HomA(M,ΠM) given by

a 7→ (m 7→ aεm).

(See section 2.4.2 for an explanation of the notation.) Therefore, we define the A-module
HomA(M,N) by HomA(M,N)0 = HomA(M,N) and HomA(M,N)1 = HomA(M,ΠN).

Given an A-module homomorphism f : M → ΠN we may define a map f ′ : M → N
given by f ′(m) = ε−1f(m). Then f ′(Mi) ⊆ Ni+1 for i ∈ Z2, and f ′(am) = (−1)aaf ′(m).
This correspondence defines a natural isomorphism of vector spaces

HomA(M,ΠN) ∼= {f : M → N : f(Mi) ⊆ Ni+1, f(am) = (−1)af(m)}.

Thus we may also define the homogeneous components of HomA(M,N) by

HomA(M,N)j = {f : M → N : f(Mi) ⊆ Ni+j, f(am) = (−1)ajf(m)}.

Definition 3.1.4. We say that an A-module is free if it is isomorphic to A⊗k V for a super
vector space V . We write Am|n for A⊗k km|n.

Definition 3.1.5. Given an A-module M , we say it is finitely generated if there exists a
surjective map of A-modules Am|n →M for some m,n ∈ N.
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3.1.3 Localization and local superalgebras

Given a multiplicatively closed subset S ⊆ A0 containing 1, we define S−1A as the usual
localization of A at the set S with the natural Z2-grading. If M is an A-module then we
may similarly localize M to obtain S−1M , an S−1A-module. We will employ the following
standard shorthands: given f ∈ A0, we define Af = S−1A, where S = {1, f, f 2, . . . }. Given
a prime ideal p of A, we write Ap = S−1A, where S = A0 \ p0.

Just as with commutative rings there is a natural inclusion-preserving bijection between
the prime ideals of S−1A and the ideals of A not intersecting S. Further, if A is Noetherian
then any localization of it is Noetherian as well.

If p is a prime ideal then Ap will have a unique maximal ideal given by the localization
of p, and thus every element of Ap not in the unique maximal ideal will be a unit. We call
a supercommutative algebra with a unique maximal ideal a local superalgebra.

Remark 3.1.6. Nakayama’s lemma and the Krull intersection theorem both hold for Noethe-
rian local superalgebras using the same proofs as in ordinary commutative algebra. We will
use both of these facts throughout the thesis.

3.1.4 Integral superdomains

We make a definition of the notion of an integral domain in the super setting. Clearly it is
not reasonable to demand there be no zero divisors as then the superalgebra would be purely
even.

Definition 3.1.7. We say a superalgebra A is an integral superdomain if (A1) is a prime
ideal and the localization map A→ A(A1) is injective. Equivalently A\ (A1) contains no zero
divisors.

Observe that if A is an intergral superdomain then A is an integral domain.

3.1.5 Noetherian and finitely generated superalgebras

A Noetherian superalgebra is one satisfying the usual ascending chain condition on ideals.
It is a standard exercise to show that the Noetherian property is preserved under arbitrary
localization and quotients.

Definition 3.1.8. We say a superalgebra A is finitely-generated if there exists a finite
dimensional super vector subspace V ⊆ A such that the induced map S•V → A is surjective.
In this case A is a Noetherian algebra, i.e. all of its ideals are finitely-generated.

3.1.6 Graded superalgebras

Let R be a commutative k-algebra and M an R-module. Then the R-linear exterior algebra
A = Λ•M has the natural structure of a supercommutative algebra such that A = R.
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Definition 3.1.9. A graded supercommutative algebra is one of the form Λ•M for some
commutative ring R and R-module M .

If A is a graded supercommutative algebra, we observe that A ∼= Λ•(A1)/(A1)2, where
the exterior algebra is A-linear. We say a superalgebra A is locally graded if there exist
f1, . . . , fn ∈ A0 with (f1, . . . , fn) = A such that Afi is graded for all i. Using the ideas in
[63] we have the following:

Proposition 3.1.10. A superalgebra is graded if and only if it is locally graded.

Remark 3.1.11 (Caution). The term graded is sometimes used instead of super, meaning
that the terms graded manifold or graded group might be used instead of supermanifold and
supergorup (see for instance [31]). Another term that has been used to mean graded is split,
as in [62]. However others (e.g. [63]) have used split to mean there is an algebra splitting
of the surjective morphism A→ A. We will use the term graded in this thesis and hope no
confusion will arise.

For finitely-generated integral superdomains the property of being graded is strong, as
we now see.

Proposition 3.1.12. If A is a finitely-generated graded integral superdomain, then A ∼= Λ•M
where M is a projective A-module.

First we prove a lemma.

Lemma 3.1.13. Let R be a finitely generated integral domain and M a finitely generated
R-module such that ΛiM is a torsion-free R-module for all i. Then M is projective.

Proof. If p is a prime ideal of R it suffices to show that Mp is a projective, equivalently
free, Rp-module. Let m1, . . . ,mn be a minimal generating set for Mp so that in the quo-
tient Mp/mpMp these elements map to a basis. Then since base change to the residue field
commutes with taking exterior powers, we must have that m1 ∧ · · · ∧mn maps to a nonzero
element of ΛnMp. Suppose we have a relation a1m1 + · · · + anmn = 0, where necessarily
a1, . . . , an ∈ mp, and mp is the maximal ideal of Rp. Then in ΛnM we have the relation
a1(m1 ∧ · · · ∧mn) = 0, so by our torsion-free assumption we must have m1 ∧ · · · ∧mn = 0,
a contradiction. It follows that Mp must be free on m1, . . . ,mn and we are done.

Proof of proposition 3.1.12. Since A is finitely generated and graded, there exists an A-
module M such that A ∼= Λ•M . Since A is an integral superdomain, for f ∈ A0 \ (A1)0

the localization map A → Af is injective and thus the localization maps of A-modules
ΛiM → ΛiMf for nonzero f ∈ A are injective for all i. This is equivalent to ΛiM being a
torsion-free A-module for all i. Now we apply lemma 3.1.13.

This proposition says that the spectrum of a graded integral superdomain is smooth in
the odd directions. In particular, its spectrum will be smooth if and only if the spectrum of
A is smooth. See section 3.7 for more on smoothness.
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3.1.7 Module of relative differentials

Definition 3.1.14. Given a morphism of superalgebras B → A, the module of relative
differentials is the A-module Ω1

A/B defined as follows. It has generators da of parity a for all

homogeneous a ∈ A, with relations d(ba) = bda for b ∈ B, d(a1 + a2) = da1 + da2, and

d(a1a2) = a1da2 + (−1)a1a2a2da1

for a1, a2 ∈ A. In particular, db = 0 for all b ∈ B.

With the above definition, we obtain that for any A-module M , HomA(Ω1
A/B,M) =

DerB(A,M), where

DerB(A,M) = {D : A→M |D is B-linear and

D(a1a2) = (Da1)a2 + (−1)a1Da1(Da2)}

We call the elements of DerB(A,M) the B-derivations from A to M . Note that they need
not preserve parity of elements.

3.2 Superschemes

For a locally ringed space X, we write |X| for its underlying topological space and OX for its
structure sheaf. For an open subset |U | ⊆ |X| we write U ⊆ X for the locally ringed space
gotten by restricting OX to |U |. For a sheaf F on |X| we write either Γ(U,F) or Γ(|U |,F)
for its sections over an open subset |U | ⊆ |X|. For a point x ∈ |X| we write Fx for the stalk
of the sheaf at x.

3.2.1 Affine superschemes

Let A be a supercommutative algebra. Let SpecA denote the topological space of all prime
ideals of A, equipped with the usual Zariski topology. By lemma 3.1.3 we may also naturally
identify this topological space with SpecA and SpecA0. Further SpecA has a basis of open
sets given by D(f) = {p ∈ SpecA : f /∈ p}, where f ∈ A0.

We define a locally ringed space (SpecA,OA) as having underlying topological space
SpecA, and structure sheaf OA defined by Γ(D(f),OA) = Af . The restriction map

Γ((D(f),OA)→ Γ(D(g),OX)

for D(g) ⊆ D(f) is the natural one coming from localization. Since the open sets D(f) form
a base of the topology, this defines a sheaf on SpecA. Note that given p ∈ SpecA we have
OA,p = Ap.

By abuse of language we will refer to this locally ringed space as SpecA, and call it the
spectrum of A. We say a locally ringed space is an affine superscheme if it is isomorphic to
SpecA for some supercommutative algebra A.
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3.2.2 Superschemes

We define a superscheme to be a locally ringed space X = (|X|,OX) which is locally isomor-
phic to an affine superscheme. Write OX = (OX)0 ⊕ (OX)1 for the parity decomposition of
this sheaf. For a point x ∈ |X|, we write OX,x for the stalk of the sheaf OX at x, which will be
a local superalgebra, and mx for its unique maximal ideal. A morphism of superschemes is a
map of locally ringed spaces such that the pullback morphism defines maps of superalgebras
on each open set. For an open subset |U | ⊆ |X|, we write U for the superscheme obtained
by restriction of X = (|X|,OX) to |U |, and we call U an open subscheme of X (instead of
‘subsuperscheme’).

We define closed embeddings (or closed immersions) and closed subschemes with the
same definition as in section 2.3 of [21]. Note that just as with schemes, there is a one-to-one
correspondence between the closed subschemes of a superscheme X and ideal sheaves of OX .

We write X0 for the even subscheme of a superscheme X, that is the closed subscheme
determined by the ideal sheaf JX generated by (OX)1. Observe that for affine superschemes,
(SpecA)0 = SpecA. The correspondence X 7→ X0 is functorial. Write iX : X0 ↪→ X for
the corresponding closed embedding, or simply i if the space is clear from context. Let
NX := JX/J 2

X be the conormal sheaf, which is a quasi-coherent sheaf on X0.
For a superscheme X such that |X| is Noetherian and irreducible as a topological space,

write k(X) for the stalk of OX at the generic point of |X|. Then for any open subscheme U
of X we have a natural map Γ(U,OX)→ k(X). This map may not be injective, but if f is a
section over |U | we will sometimes speak of it as an element of k(X) with the understanding
that we are talking about its image under this restriction map.

3.2.3 Maps to affine superschemes

Following the same ideas as in [21] we have:

Proposition 3.2.1. For a supercommutative algebra A and a superscheme X we have a
canonical isomorphism Hom(X, SpecA) ∼= Hom(A,Γ(X,OX)), where the first Hom is in
the category of locally ringed spaces and the second is in the category of supercommutative
algebras. In particular the category of affine superschemes is anti-equivalent to the category
of supercommutative algebras.

We obtain the following corollary which highlights a difference with the classical setting.

Corollary 3.2.2. For a superscheme X we have a canonical identification:

Γ(X,OX) ∼= Hom(X,A1|1).

Proof. We write x and ξ for an even and odd coordinate on A1|1 so that k[A1|1] = k[x, ξ].
Then by proposition 3.2.1,

Hom(X,A1|1) ∼= Hom(k[x, ξ],Γ(X,OX)) ∼= Γ(X,OX)0 ⊕ Γ(X,OX)1 = Γ(X,OX).



CHAPTER 3. SUPERGEOMETRY 32

3.2.4 Functor of points

Given two superschemes X, Y we write X(Y ) for the set of morphisms of superschemes from
Y to X. For a superalgebra A, we write X(A) for X(SpecA). In particular, X(k) is the set
of k-points of X, which for most of the spaces we consider will be exactly the closed points
of the underlying topological space.

If we fix the superscheme X and let Y vary, we obtain the fully faithful contravariant
Yoneda embedding from the category of superschemes to sets.

Remark 3.2.3. If we restrict the functor X(−) : Y 7→ X(Y ) to the category of schemes, then
the functor we obtain represents the scheme X0.

3.3 Supervarieties

Definition 3.3.1. We define a supervariety to be an irreducible superscheme X over k such
that the following conditions are satisfied:

1. X admits a finite cover by affine open subschemes of the form SpecA, where A is a
finitely-generated superalgebra over k;

2. For any open subscheme U ⊆ X, the map Γ(U,OX)→ k(X) is injective;

3. The superalgebra k(X) is an integral superdomain;

4. X is separated over k, that is the the diagonal morphism X → X × X is a closed
embedding.

Definition 3.3.2. An affine supervariety is an affine superscheme satisfying the conditions
of a supervariety. Note that if X is a supervariety then X is affine if and only if X0 is affine
(see [65]).

Example 3.3.3 (Affine superspace). Let V be a super vector space. Then we will think of V as
the affine superscheme SpecS•V ∗, and we call an affine superscheme of this form affine super-
space. If V is finite-dimensional then it will be an affine supervariety. In particular we define
Am|n to be the affine superscheme km|n, whose coordinate ring is k[x1, . . . , xm, ξ1, . . . , ξn],
where x1, . . . , xm, ξ1, . . . , ξn is a homogeneous basis of (km|n)∗.

A morphism of affine superspaces V → W is said to be linear if it is induced by a linear
map V → W (see section 3.2.3). We will use later that there is a linear isomorphism of affine
superspaces V → Π2V given by v 7→ ε2v.

For an affine superspace V we have natural maps of affine superschemes

aev : A1|0 × V → V and aodd : A0|1 × V → ΠV,

defined as follows. Writing x for the coordinate of A1|0 and ξ for the coordinate of A0|1,
we set a∗ev(ϕ) = x ⊗ ϕ and a∗odd(ε

−1ϕ) = ξ ⊗ ϕ, where ϕ ∈ V ∗. (See section 2.4.2 for an
explanation of the notation.)
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Remark 3.3.4. � If X is a supervariety, then for all open subschemes U,U ′ ⊆ X with
U ′ ⊆ U , the restriction map Γ(U,OX) → Γ(U ′,OX) is injective. This follows from
functoriality of restriction.

� If A is a finitely generated k-algebra such that SpecA is a supervariety, condition (2)
implies that the zero divisors of A0 are all nilpotent.

3.3.1 Integrality of supervarieties

We now discuss condition (3) of being a supervariety. First we give an equivalent formulation
which is straightforward to prove.

Lemma 3.3.5. Let X be an irreducible superscheme over k satisfying conditions (1),(2),
and (4). Then condition (3) is equivalent to:

(3’) For each open subscheme U ⊆ X, if f ∈ Γ(U,OX) is a zero divisor then f ∈ (k(X)1).

If X is just a scheme, then conditions (2) and (3) imply it is an integral scheme. However
it is not true that Γ(X,OX) need be an integral superdomain if X is a supervariety:

Example 3.3.6. Consider the affine superscheme X given by the spectrum of

k[x, y, ξ, η]/(xy − ξη, y2, yξ, yη).

Here y defines a global section of OX which is nilpotent but is not an element of (Γ(X,OX)1).
However on the open subscheme where x 6= 0 we have y = x−1ξη, so y ∈ (k(X)1).

We can still define integral supervarieties in the following natural way.

Definition 3.3.7. We say a supervariety X is integral if condition (3) is replaced by

(3+) For an open subscheme U ⊆ X, Γ(U,OX) is an integral superdomain.

If X is an integral supervariety, then X0 is a variety in the usual sense. But for superva-
rieties this need not be true, as again example 3.3.6 demonstrates.

Lemma 3.3.8. If X is a supervariety, then there exists a dense open subscheme U ⊆ X
such that U is an integral supervariety.

Proof. It suffices to prove this in the case that X = SpecA is affine, where A is a finitely
generated k-superalgebra. Write n for its nilradical, which contains (A1), and consider
n/(A1). This must be a finitely generated module, and is purely even, so choose f1, . . . , fn ∈
n0 which generate it. Then since f1, . . . , fn are zero divisors, condition (3) implies that there
exists g ∈ A0, not a zero divisor, such that f1, . . . , fn ∈ ((Ag)1), i.e. such that for some
large enough m we have gmfi ∈ (A1) for all i. Thus the open subscheme D(g) is an integral
supervariety.



CHAPTER 3. SUPERGEOMETRY 34

The main reason we consider superschemes that are not integral is that orbit closures of
supergroup actions are often not integral (see example 4.5.2). However orbit closures will be
supervarieties by the following lemma:

Lemma 3.3.9. Suppose that X is a superscheme which satisfies conditions (1), (2), and
(4) of definition 3.3.1. Then X satisfies condition (3) if and only if it has a dense open
subscheme U ⊆ X such that U is integral.

Proof. Since k(X) = k(U) this is immediate.

Now let X be a supervariety, U an open subscheme of X with inclusion morphism j :
U → X, and Y ⊆ U a closed subvariety. Then we define the closure of Y in X, written Y ,
to be the closed subscheme of X determined by the ideal sheaf ker(OX → j∗OY ).

Proposition 3.3.10. The subscheme Y is a supervariety.

Proof. The properties (1) and (4) follow from being a closed subscheme of a supervariety.
We now check property (2), from which property (3) will follow by lemma 3.3.9 since Y ⊆ Y
will be an open subscheme.

Choose an affine open covering Ui = SpecAi of X, and let Ii ⊆ Ai be the ideal of
functions vanishing on Y ∩ Ui ⊆ Ui. Then by definition Ii is exactly the kernel of the
morphism Ai → Γ(Ui, j∗OY ), or equivalently since Y is a supervariety it is the kernel of
Ai → k(Y ). Thus Ai/Ii → k(Y ) is injective by construction. However Ai/Ii = Γ(Ui∩Y ,OY )
and this morphism coincides with restriction to the generic point. Since the open subschemes
SpecAi/Ii of Y form an affine open covering, and property (2) is affine local, we are done.

3.3.2 Dimension

Let X be a supervariety. Then because k is characteristic zero, there is a dense open
subscheme U ⊆ X such that U0 is a smooth variety. The sheaf NU is coherent and thus
a vector bundle over a dense open subscheme of U ′0 ⊆ U0, of rank r say. We define the
dimension of X to be dimsmx/m

2
x for any x ∈ U ′0. Then dimsX = (n|r) where n = dimU0.

We call n the even dimension and r the odd dimension of X.

3.3.3 Gradings of supervarieties

We will often be interested in supervarieties that are (locally) graded. If X0 is a scheme and
N is a coherent OX-module, then we may construct the sheaf of supercommutative algebras
on X0 given by Λ•N . Then (|X0|,Λ•N ) is naturally a superscheme.

Definition 3.3.11. We say that a supervariety X is graded if there exists a coherent sheafN
on X0 and an isomorphism X ∼= (|X|,Λ•N ). We call an isomorphism of X with (|X|,Λ•N )
a grading of X. We say X is locally graded if X has a covering by open subschemes that
are themselves graded.
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Remark 3.3.12. Observe that if X is graded then X ∼= (|X|,Λ•NX).

When X is graded, a choice of grading endows its structure sheaf with a Z-grading
according to the exterior powers of the conormal sheaf, namely (Λ•NX)i = ΛiNX . However a
graded supervariety X has, in general, many isomorphisms with (|X|,Λ•N ) (see for instance
[30]).

Remark 3.3.13. � If X is a supervariety, then by remark 3.3.4 there is a dense open
subscheme U ⊆ X where U is an integral supervariety. If X is locally graded, then
by proposition 3.1.12 we have that NU is locally free. Since U0 is a variety and our
field is of characteristic zero, there exists a dense open subscheme U ′ ⊆ U such that
U ′0 is a smooth variety, and NU ′ remains locally free. It follows that U ′ is a smooth
supervariety (see definition 3.7.1), and so a locally graded supervariety is smooth on a
dense open subset.

� The property of being locally graded is affine local; that is, ifX is an affine superscheme,
X is locally graded if and only if it is graded. This is proposition 3.1.10, and follows
from the same cohomology argument given in [63] that Stein supermanifolds are graded.

3.4 Quasi-coherent sheaves

Let X = SpecA be an affine superscheme, and let M be an A-module. We may construct
a sheaf M̃ on X defined by Γ(D(f), M̃) = Mf for each f ∈ A0. Then M̃ is a sheaf of
OX-modules; we call a sheaf of OX-modules constructed in this way a quasi-coherent sheaf.
If A is finitely generated, then we call M̃ a coherent sheaf if the corresponding module M is
finitely generated over A.

Definition 3.4.1. Let X be a supervariety. A quasi-coherent sheaf F on X is a sheaf of
OX-modules which is quasi-coherent on each affine open subscheme of X. We say F is
coherent if in addition it is coherent on each affine open subscheme.

Remark 3.4.2. We observe that the category of (quasi-)coherent sheaves on a supervariety is
abelian and admits the usual bifunctors (−)⊗OX (−) and H omOX (−,−), along with pullback
and pushforward functors along morphisms of supervarieties. If V is a super vector space
and F is a quasi-coherent sheaf, we sometimes consider F ⊗ V , which is the tensor product
of F with the constant sheaf associated to V over the constant sheaf of rings associated to
k, and is again a quasi-coherent sheaf.

Let F be a coherent sheaf on X. Then for x ∈ |X| we define the fiber of F at x to be
the super vector space Fx/mxFx. For an open subscheme U of X containing x, we have a
restriction morphism Γ(U,F) → Fx/mxFx. Let s be a section of F over U . Then we say
s is non-vanishing at x if s restricts to a nonzero element of the fiber. In this case, s is
non-vanishing in an open subset containing x.



CHAPTER 3. SUPERGEOMETRY 36

Definition 3.4.3. We say a coherent sheaf F on X is globally generated (or generated by
global sections) if the the natural morphism

OX ⊗ Γ(X,F)→ F

is surjective. If V ⊆ Γ(X,F) is a subspace such that

OX ⊗ V → F

is surjective then we say that V generates F .

Definition 3.4.4. Let X be a supervariety. A vector bundle on X is a coherent sheaf E
which is locally isomorphic to Om|nX := OX ⊗ km|n as an OX-module. A line bundle L on X

is a coherent sheaf which is locally isomorphic to OX = O1|0
X as an OX-module.

Remark 3.4.5. As usual, we may form the abelian group Pic(X) which is the isomorphism
classes of line bundles on X under tensor product. Just as in the classical setting there is
an identification Pic(X) ∼= H1(X,O×X).

Lemma 3.4.6. If E is a vector bundle on a supervariety X, and U,U ′ are open subschemes
of X such that U ′ ⊆ U , then Γ(U, E)→ Γ(U ′, E) is injective.

Proof. By assumption, the statement is true when E = Om|nX . Covering X by open sub-
schemes on which E is trivial, the result follows.

Remark 3.4.7. There is an equivalent geometric definition of vector bundles which is as
follows. Let E and X be supervarieties with a map π : E → X, along with the data of a
covering {Ui} of X by open subschemes and isomorphisms

ψi : π−1(Ui)→ Am|n × Ui.

These morphisms ψi are required to respect the projections to Ui, and on overlaps Ui ∩ Uj
the morphisms ψj ◦ ψ−1

i must be linear on the fibers Am|n.
To obtain a sheaf E from this geometric definition, for an open subscheme U of X we set

Γ(U, E)0 to be sections of the morphism π over U . To obtain the odd sections of E , let ΠE
denote the supervariety obtained by gluing together the supervarieties ΠAm|n×Ui along the
isomorphisms

Π(ψj ◦ ψ−1
i ) : ΠAm|n × Ui ∩ Uj → ΠAm|n × Ui ∩ Uj.

Then we have a natural projection π′ : ΠE → X making ΠE into a geometric vector bundle
over X such that the fibers of ΠE are obtain by parity shift from the fibers of E. One may
call ΠE the parity shift of E. We now set Γ(U, E)1 to be the sections of π′ over U .

To show that E is an OX-module, we use the description of sections of OX given in
corollary 3.2.2, the maps aev and aodd in example 3.3.3, and with the linear isomorphism
Am|n → Π2Am|n described in example 3.3.3.

On the other hand, given a vector bundle E as a sheaf, we may construct a geometric
vector bundle as the relative spectrum of the symmetric algebra of E as an OX-module.
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3.4.1 Rational functions from line bundles

Let L be a line bundle on X, and let s1, s2 be homogeneous sections of L over an open
subscheme U . Assume that s2 is even and non-vanishing at some point of |U |. Then we may
choose an open subscheme U ′ of U on which s2 is non-vanishing and with the property that
L|U ′ ∼= OU ′ . Let s1/s2 be the section of OU ′ determined by any isomorphism L|U ′ ∼= OU ′ , and
define s1/s2 ∈ k(X) to be the rational function determined in this way. As in the classical
case this is well-defined.

3.5 Projective supervarieties

Let S =
⊕
n≥0

Sn be an N-graded supercommuative algebra, where Sn is a super vector space

for all n, and write S+ =
⊕
n≥1

Sn. We always assume that S is generated by S0 and S1. Then

we may define the superscheme ProjS in the usual way, as follows.
The underlying topological space of ProjS consists of all homogeneous prime ideals

p of S which do not contain S+. This space has a basis of open sets given by D+(f),
where f is an even homogeneous element of S+, and D+(f) is the set of prime homoge-
neous ideals not containing either S+ or f . We define the structure sheaf by declaring that
Γ(D+(f),OProjS) = S(f), where S(f) is the collection of degree zero elements of Sf . In
particular we have D+(f) ∼= SpecS(f) as an open subscheme of ProjS.

Definition 3.5.1. We say a supervariety is projective if it is isomorphic to ProjS for a N-
graded superalgebra S such that S0 = k and S1 is a finite-dimensional super vector space. We
call a supervariety quasi-projective if it is isomorphic to an open subscheme of a projective
supervariety.

Note that for a given projective supervariety X there may be different N-graded super-
algebras S such that ProjS ∼= X.

Example 3.5.2. Let S = k[x0, . . . , xm, ξ1, . . . , ξn] be the free polynomial superalgebra, and
make S into an N-graded superalgebra by declaring that deg xi = deg ξj = 1 for all i, j.
Then projective superspace Pm|n is defined be ProjS. We observe that D+(xi) ∼= Am|n in a
natural way, and thus Am|n is quasi-projective.

As in the classical setting, we have the following (functorial) description of Pm|n: mor-
phisms X → Pm|n from a supervariety X are in bijective correspondence with (isomorphism
classes of) a choice of line bundle L on X and homogeneous sections s0, . . . , sm, σ1, . . . , σn
which globally generate L (see [8]).

Remark 3.5.3. Following the same ideas as in Corollary 2.5.16 of [21], we have that a su-
pervariety X is projective if and only if there exists a m,n ≥ 0 and a homogeneous ideal
I ⊆ k[x0, . . . , xm, ξ1, . . . , ξn] such that X ∼= Proj k[x0, . . . , xm, ξ1, . . . , ξn]/I. Further this
realizes X as a closed subvariety of Pm|n, and every closed subvariety of Pm|n is of this form.
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Given a projective supervariety X presented as ProjS where S0 = k and S1 is finite-
dimensional, we obtain a correspondence between Z-graded S-modules and quasi-coherent
sheaves on X. Namely, given a Z-graded S-module we may define the sheaf M̃ which has
that Γ(D+(f), M̃) = M(f) for all f ∈ (S+)0. Further, M̃ is coherent whenever M is finitely
generated over S.

Write S(n) for the Z-graded S-module given by S(n)m = Sm+n. Then we write OX(1) :=

S̃(1) for the Serre twisting sheaf on X, a line bundle. If X is quasi-projective and given as

an open subscheme of ProjS, we write OX(1) for the restriction of S̃(1) to X.

Definition 3.5.4. If X is quasi-projective we say a line bundle L is very ample if it is
isomorphic to OX(1) for some embedding of X as an open subscheme of a projective super-
variety.

Example 3.5.5. By definition, the restriction of a very ample line bundle to an open sub-
scheme is very ample. The same is true for a closed subscheme using proposition 3.3.10.
Since OPm|n(1)|Am|n ∼= OAm|n , it follows that OX is very ample whenever a supervariety X
is (an open subscheme of) an affine supervariety. In fact, any line bundle on (an open
subscheme of) an affine supervariety is very ample.

As in the classical case, we have the following results.

Lemma 3.5.6. Let X be a quasi-projective supervariety and L a very ample line bundle on
X. Then for every homogeneous f ∈ k(X), there exists n ≥ 0 and homogeneous sections
s1, s2 ∈ Γ(X,L⊗n) such that f = s1/s2.

Proposition 3.5.7. Let X be a quasi-projective supervariety, L a very ample line bundle on
X, and F a coherent sheaf on X. Then for some n ≥ 0, F ⊗OX L⊗n is globally generated.

Remark 3.5.8. Quasi-projective supervarieties are not as pervasive as quasi-projective va-
rieties in the category of varieties. Indeed, there are many linear algebraic supervarieties
of importance which are not projective, including ‘most’ super Grassmanians. (See [35] for
a discussion in the analytic setting, or [8] for the algebraic setting.) This is a nontrivial
hindrance in understanding such spaces and how supergroups act on them.

3.6 Relative differentials and the tangent sheaf

Definition 3.6.1. Given a morphism of supervarieties X → Y , define the sheaf of relative
differentials ΩX/Y to be the sheaf on X given by ∆∗(I/I2) where ∆ : X → X ×Y X is the
diagonal morphism and I the sheaf of ideals given by the kernel of the pullback morphism
OX×YX → ∆∗OX . If X = SpecA and Y = SpecB then the global sections f orm the module
of relative differentials ΩA/B (see section 3.1.7).
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If X is a supervariety over k, then we write ΩX/k for the sheaf of relative differentials of
the canonical map X → Spec k. Then if x ∈ X(k) we have, by the universal property of the
module of relative differentials, (ΩX/k)x/mx(ΩX/k)x ∼= mx/m

2
x.

Definition 3.6.2. For a supervariety X, we define the tangent sheaf TX as the unique sheaf
defined on an affine open subscheme U = SpecA of X by Γ(U, TX) = Der(A), that is all (not
necessarily even) k-linear superalgebra derivations of A (see example 2.2.8). Restriction of
sections is given by the extension of the corresponding derivation to the localization. In this
way TX is a coherent sheaf of Lie superalgebras on X, and Γ(U, TX) acts by super derivations
on Γ(U,OX).

Definition 3.6.3. For a supervariety X, we define the sheaf DX of differential operators on
X to be the subsheaf of E nd(OX) constructed inductively as follows. Let D0

X = OX (acting
on OX by multiplication), D1

X = OX +TX , and for an open subscheme U of X we inductively
set

Γ(U,DnX) = {D ∈ Γ(U,E nd(OX)) : [D, f ] ∈ Γ(U,Dn−1
X ) for all f ∈ Γ(U,OX)}.

Then DX =
⋃
n≥0

DnX defines a filtered sheaf of algebras.

3.6.1 Tangent spaces

Definition 3.6.4. Given x ∈ X(k), we define the tangent space at x to be the super vector
space TxX given by point derivations δ : OX,x → k, i.e. maps of vector spaces such that

δ(fg) = δ(f)g(x) + (−1)δff(x)δ(g). Note that the minus sign is not strictly necessary since
if f = 1 then f(x) = 0.

Remark 3.6.5. We have a natural identification TxX ∼= (mx/m
2
x)
∗.

3.7 Smoothness of supervarieties

Definition 3.7.1. Let X be a supervariety and x ∈ X(k). Then there is a natural map of
super vector spaces

TX,x → TxX

given by D 7→ (f 7→ D(f)(x)). We say that X is smooth at x if this map is surjective.

We seek to give a list of conditions that are equivalent to smoothness at a point. To
state our characterization of smoothness, we need to introduce a few notions, most of which
should be familiar.
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� For x ∈ X(k) we may view TxX as the affine superspace SpecS•(mx/m
2
x). Define the

tangent cone at x, TCxX, to be the closed conical subvariety of TxX given by

TCxX = Spec

(⊕
n≥0

mn
x/m

n+1
x

)

The derivations in TX,x act on both k[TxX] and k[TCx] by derivations of degree -1,
and the action is equivariant with respect to the above closed embedding.

� For a local supercommutative algebra A with unique maximal ideal m, we write Â for
the completion of A with respect to the m-adic topology.

� Following [46], given a superalgebra A we say that an even element t ∈ A0 is A-regular
if the multiplication map by t is injective. We say an odd element ξ ∈ A1 is A-regular
if the cohomology of the multiplication map by ξ is trivial. Finally, if (r1, . . . , rk) is
a sequence of homogeneous elements of A, we say the sequence is A-regular if ri is
regular in A/(r1, . . . , ri−1).

Definition 3.7.2. A local supercommutative algebra A is regular if the unique maximal
ideal m is generated by an A-regular sequence.

Lemma 3.7.3. Let F be a finitely generated field over k of transcendence degree m, and let
F = F [ξ1, . . . , ξn] for odd variables ξ1, . . . , ξn. Then ΩF/k is a free F -module of rank (m|n).

Proof. We have the short exact sequence

F ⊗F ΩF/k → ΩF/k → ΩF/F → 0.

Since ΩF/F is a free F -module of rank (0|n) with generators dξ1, . . . , dξn, the last map splits
which implies that dξ1, . . . , dξn generate a free summand of ΩF/k of rank (0|n). We know that
ΩF/k is a free F -module of rank (m|0) with generators dt1, . . . , dtm, where t1, . . . , tm form a

transcendence basis of F over k. Hence ΩF/k is generated by dt1, . . . , dtm, dξ1, . . . , dξn, and
it suffices to show that dt1, . . . , dtm are F -linearly independent.

However if we compute HomF (ΩF/k, F ) we get the module of k-linear derivations of F ,
which contains a free submodule of rank (m|0) generated by ∂t1 , . . . , ∂tm . These may be used
to show that dt1, . . . , dtm are F -linearly independent, and we are done.

Proposition 3.7.4. For a supervariety X and closed point x ∈ X(k), let A := OX,x with
maximal ideal m = mx. Let t1, . . . , tm, ξ1, . . . , ξn ∈ m project to a homogeneous basis of m/m2,
where ti = 0 and ξi = 1. Then the following are equivalent.

1. Â ∼= kJt1, . . . , tm, ξ1, . . . , ξnK;
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2. GrmA :=
⊕
n≥0

mn/mn+1 ∼= k[t1, . . . , tm, ξ1, . . . , ξn], where (·) : m → m/m2 is the natural

projection;

3. ΩX,x = ΩA/k is free over A;

4. SpecA→ k is a formally smooth morphism;

5. A = A/(A1) is a regular local ring, and A ∼= A[ξ1, . . . , ξn];

6. there exists an affine neighborhood U = SpecB of x such that B = B/(B1) is regular

and B ∼= Λ•B
⊕n

;

7. TxX = TCxX;

8. the natural map TX,x → TxX is surjective;

9. A is a regular local superalgebra;

10. A is a graded integral superdomain such that A is a regular local ring;

Proof. The equivalence (1) ⇐⇒ (2) is proven in [18], (2) ⇐⇒ (7) is clear, (3) ⇐⇒ (4)
is proven in [28], and (5) ⇐⇒ (9) is proven in [46]. The equivalence (5) ⇐⇒ (10) follows
from proposition 3.1.12.

For (1) =⇒ (3), we have that m/m2 ∼= m̂/m̂2 is (m|n)-dimensional, so by Nakayama’s
lemma ΩA/k is generated by (m|n) elements. Localizing A at the generic point, we obtain
a superalgebra F which by our assumptions and the Cohen structure theorem is isomorphic
to F [ξ1, . . . , ξn], where F is the fraction field of A. Hence by lemma 3.7.3 ΩF/k, which is the
localization of ΩA/k at the generic point, is free of rank (m|n). It follows that ΩA/k must
itself be free of rank (m|n).

For (3) =⇒ (8), dt1, . . . , dtm, dξ1, . . . , dξn form a basis of ΩA/k. Then

TX,x = HomA(ΩA/k, A)

will be free with basis ∂t1 , . . . , ∂tm , ∂ξ1 , . . . , ∂ξn and these derivations map to a basis of TxX,
namely the dual basis of t1, . . . , tm, ξ1, . . . , ξn ∈ m/m2.

(8) =⇒ (7): If TCxX 6= TxX, then the vanishing ideal of TCxX must be preserved
by all derivations from TX,x. By our assumption, we get all coordinate derivations from the
derivations of TX,x, so no such non-trivial ideals exist.

For (5) ⇐⇒ (6), the backward direction follows from localizing. For the forward
direction, the isomorphism OX,x → A[ξ1, . . . , ξn] may be extended to a morphism of sheaves
OX → grX on a small enough affine open of x. This morphism will be an isomorphism of
stalks at x, and so using Noetherian and coherent properties, we get an isomorphism in an
open neighborhood of x.

The implication (5) =⇒ (1) is clear.
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Now we assume (1), and use (3) (which we have so far shown is equivalent to (1)) to
prove (5). First, (1) implies that A is regular. As noted previously, by (3) we know that

A has derivations ∂t1 , . . . , ∂tm , ∂ξ1 , . . . , ∂ξn . These derivations extend canonically to Â as the
usual coordinate derivations, and these derivations preserve A as a subalgebra. We have the
following diagram:

A //

π
��

kJt1, . . . , tm, ξ1, . . . , ξnK

π̂
��

A // kJt1, . . . , tmK

where π is the natural quotient map. To construct a splitting A→ A, we observe that π̂ has
a natural splitting ŝ sending ti to ti. We would like to show that ŝ(A) lies in the image of A
in the completion.

Let f ∈ A, thought of as a power series. Then we may lift f to f̃ ∈ A0. The power series

expansion of f̃ will then be

f̃ = f +
∑
I 6=∅

fIξI ∈ A

where ξI = ξi1 · · · ξik if I = {i1, . . . , ik}, and fI ∈ kJt1, . . . , tmK. Using the derivations ∂ξi for
varying I, we may show that each function fI lies in A, and so f itself lies in A. Therefore
we have our splitting, and now it follows that A ∼= A[ξ1, . . . , ξn].

3.8 Derivative map; immersions and submersions

Let X, Y be supervarieties and φ : X → Y a morphism. Then for x ∈ X(k), y ∈ Y (k) such
that φ(x) = y, the morphism of local rings OY,y → OX,x coming from pullback of functions
induces a map of super vector spaces my/m

2
y → mx/m

2
x. Dualizing this we obtain a map of

tangent spaces dφx : TxX → TyY , the differential of φ at x.

Definition 3.8.1. We say that φ is an immersion at x if dφx is injective, and a submersion
at x if dφx is surjective.

An alternative perspective is to consider the natural morphism φ∗ΩY,y → ΩX,x. The
fiber of this morphism is exactly the map on cotangent spaces my/m

2
y → mx/m

2
x. Using this

perspective it is easy to show that:

Lemma 3.8.2. The property of being an immersion or submersion at a point is open on the
source.

3.8.1 Immersions

Proposition 3.8.3. If φ is an immersion at x, then OY,φ(x) → OX,x is surjective. In
particular, if φ is an immersion at every point and |φ| is a homeomorphism of |X| onto a
closed subspace of |Y |, then φ is a closed embedding.
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Proof. Since φ is an immersion at x, the hypotheses of lemma 7.4 in [21] are satisfied, and
thus the desired morphism is surjective.

Definition 3.8.4. We say that φ : X → Y is an immersion if φ factors as X
ψ−→ U

j−→ Y
where ψ is a closed immersion and j the inclusion of an open subscheme.

Corollary 3.8.5. A morphism φ is an immersion if and only if φ is an immersion at every
point and |φ| is homeomorphism of |X| onto the closed subspace of an open subspace of |Y |.

3.8.2 Submersions

Lemma 3.8.6. Let φ : X → Y be a submersion at x ∈ X(k), and suppose that X is smooth
at x. Then φ∗x : OY,y → OX,x is an injective morphism.

Proof. Let M ⊆ OY,y be the kernel of this morphism of local rings. Then choose n > 0
such that M ⊆ mn

x but M 6⊆ mn+1
x , and choose f ∈ M such that f ∈ mn

x \ mn+1
x . Let

x1, . . . , xm, ξ1, . . . , ξn ∈
my be homogeneous such that they project to a basis of my/m

2
y. Then by assumption,

φx(x1), . . . , φx(xm), φx(ξ1), . . . , φx(ξn) project to a linearly independent set in mx/m
2
x. Thus

there exists a nonzero homogeneous polynomial p of degree n such that

f − p(x1, . . . , xm, ξ1, . . . , ξn) ∈ mn+1
y .

Therefore

φx(p(x1, . . . , xm, ξ1, . . . , ξn)− f) = p(φx(x1), . . . , φx(xm), φx(ξ1), . . . , φx(ξn)) ∈ mn+1
x .

But since X is smooth at x and dφx is injective, we must have

p(φx(x1), . . . , φx(xm), φx(ξ1), . . . , φx(ξn)) ∈ mn
x \mn+1

x .

This is a contradiction, and therefore M = 0.
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Chapter 4

Supergroups and their actions

In this chapter we introduce algebraic supergroups, which are the global versions of Lie
superalgebras. Quasi-reductive algebraic supergroups will be of particular importance to
us. Actions of algebraic supergroups on supervarieties will be discussed, detailing some
important properties.

4.1 Supergroups

See sections 8, 9, and 11 of [8] for more on the foundations of (algebraic) supergroups and
their actions.

Definition 4.1.1. An algebraic supergroup over k is a supervariety G over k equipped with
morphisms m = mG : G×G→ G, s = sG : G→ G, and e = eG : Spec k → G satisfying the
usual constraints:

m ◦ (m× id) = m ◦ (id×m),

m ◦ (e× id) = m ◦ (id×e) = idG,

and
m ◦ (idG×s) ◦∆G = m ◦ (s× id) ◦∆G = e.

where ∆G : G→ G×G is the diagonal embedding. In addition, we assume throughout that
G is affine. We will use the term Lie supergroup synonymously with algebraic supergroup.

Remark 4.1.2. Because we assume our supergroups are affine, we may equivalently define an
algebraic supergroup as the spectrum of a finitely generated supercommutative Hopf algebra
A over k.

By the usual functor of points perspective, we may equivalently think of a supergroup as
an affine supervariety whose functor of points admits a factorization through the category
of groups.
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Definition 4.1.3. For ue ∈ TeG, construct a right-invariant vector field uL on G via left
infinitesimal translation by the equation

uL(f) = −(ue ⊗ 1)(m∗(f)).

Then the value of uL at e as a tangent vector is −ue. Write g = LieG for the Lie superalgebra
of right-invariant vector fields on G. The restriction map g → TeG is an isomorphism of
super vector spaces, so we will freely identify g with TeG when convenient. Given ue ∈ TeG,
we may also construct a left-invariant vector field on G via right infinitesimal translation
given by

uR(f) = (1⊗ ue)(m∗(f)).

The value of uR at e is ue. The Lie superalgebra of left-invariant vector fields is canonically
isomorphic to the Lie superalgebra of right-invariant vector fields via uL ↔ uR.

Remark 4.1.4. If G is an algebraic supergroup, then G0 is an algebraic group in the usual
sense, and we have a canonical isomorphism g0

∼= Lie(G0).

If H ⊆ G is a closed subvariety of G which contains the unit element and is preserved
under the multiplication and inversion morphisms, we say that H is a subgroup of G. The
term subsupergroup might be more appropriate, but like with subsuperalgebra we find it
cumbersome to use.

4.1.1 Morphisms of supergroups and subgroups

Given two supergroups G,H, a morphism of supergroups φ : G → H is a morphism of
supervarieties which respects the supergroup structure morphisms on G and H. This induces
a morphism of algebraic groups φ0 : G0 → H0. In particular φ(eG) = eH , and thus we obtain
a morphism dφe : TeG→ TeH inducing a morphism of Lie superalgebras Lie(G)→ Lie(H).

Let K denote the affine scheme given by the fiber of φ over the identity element of H.
Then K has the structure of an algebraic supergroup and we call it the kernel of φ. Further
we have that Lie(K) = ker(dφe) and K0 = ker(φ0). If K is the trivial group then φ is an
immersion. If φ is a closed embedding, we say that G is a closed subgroup of H, and G0 will
be a closed subgroup of H0 in the usual sense. On the level of Lie superalgebras, Lie(G) will
be a Lie subalgebra of Lie(H).

4.1.2 Examples of supergroups

Let V be a finite-dimensional super vector space.

Example 4.1.5. (General linear supergroup) Let GL(V ) be the supergroup with coordinate
superalgebra k[End(V ), det±1

0
, det±1

1
] where deti is the determinant polynomial on End(Vi) ⊆

End(V )0. In particular we write GL(m|n) := GL(km|n). Then we have Lie(GL(V )) = gl(V )
and GL(V )0 = GL(V0)×GL(V1). For a superalgebra A the functor of points gives

GL(V )(A) = AutA(A⊗k V ),
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where AutA(A⊗kV ) denotes the set of A-linear automorphisms of the free A-module A⊗kV .
There is a surjective morphism of algebraic groups Ber : GL(V ) → Gm, the Berezinian

(see [8]), and we write SL(V ) for the kernel of this morphism, the special linear super-
group. Then dBere : gl(V ) → k1|0 is exactly the supertrace morphism on matrices, and so
Lie(SL(V )) = sl(V ).

Example 4.1.6. Suppose that (−,−) is a non-degenerate supersymmetric even bilinear form
on V . We define OSP (V ) to be the closed subgroup of GL(V ) with functor of points given
by, for a superalgebra A,

OSP (V )(A) = {φ ∈ AutA(A⊗k V ) : (φ(v), φ(w)) = (v, w) for all v, w ∈ V }.

Then Lie(OSP (V )) = osp(V ) and OSP (V )0 = O(V0)×SP (V1). If we restrict the Berezinian
to OSP (V ) we obtain a morphism OSP (V )→ Gm, and we let SOSP (V ) denote the kernel,
which will be the connected component of the identity of OSP (V ).

4.1.3 Super Harish-Chandra pairs

Definition 4.1.7. A super Harish-Chandra pair (SHCP) (G, g) is the following data:

� an even algebraic group G;

� a finite-dimensional Lie superalgebra g;

� an action of G on g; and

� an isomorphism LieG ∼= g0 such that the adjoint action of G on LieG is the restriction
of the action of G on g to g0.

A homomorphism of SHCPs (G, g) → (H, h) is the data of homomorphisms Φ : G → H
of algebraic groups and φ : g → h of Lie superalgebras, such that dΦ = φ|g0 under the

identifications Lie(G) = g0 and Lie(H) = h0. In this way we obtain the category of SHCPs.

There is a natural functor from the category of algebraic supergroups to the category of
SHCPs by taking G to (G0,Lie(G)). The following is well-known and originally proven in
[31].

Theorem 4.1.8. The functor G 7→ (G0, Lie(G)) is an equivalence of categories. An inverse
functor is given by constructing from the SHCP (G, g) the Hopf superalgebra Homg0

(Ug, k[G])
and taking its spectrum to obtain an algebraic supergroup. In particular, for an algebraic
supergroup G we have a natural identification k[G] ∼= Homg0

(Ug, k[G0]).

Let us describe more explicitly the Hopf algebra structure on Homg0
(Ug, k[G0]) for future

purposes. Multiplication is given by, for ϕ, ψ ∈ k[G], u ∈ Ug,

(ϕψ)(u) = ∆∗G0
(ϕ⊗ ψ)∆(u),
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where ∆G0 is the diagonal morphism G0 → G0×kG0, so ∆∗G0
is multiplication on k[G0]. The

counit morphism is ε : ϕ 7→ ε0(ϕ(1)), where ε0 is the counit for k[G0]. Comultiplication is
given by

m∗(ϕ)(u⊗ v)(g, h) = ϕ((h−1.u)v)(gh);

and the antipode map is
(s∗(ϕ)(u))(g) = ϕ(g−1.ũ)(g),

where ũ is the antipode of u in Ug (see section 2.2.2).
For an open subscheme U ⊆ G, we have

Γ(U,OG) = Homg0
(Ug, k[U0]).

Under this correspondence, we find that left-invariant and right-invariant vector fields act
as follows: for u ∈ g,

uR(f)(v) = (−1)u(f+v)f(vu)

and
uL(f)(v)(g) = (−1)uff((g−1.u)v)(g).

(See lemma 7.4.11 of [8]. Note that we use the subscripts L and R to refer to left or right
infinitesimal translation, while there the authors used it to refer to left or right invariance.)

4.2 Actions of supergroups

Definition 4.2.1. Let X be a supervariety and G an algebraic supergroup. An action of G
on X is a morphism a : G×X → X such that

a ◦ (mG × idX) = a ◦ (idG×a)

and
a ◦ (e× idX) = idX .

Given an action of G on X we obtain a natural morphism of functors G→ Aut(X).

Definition 4.2.2. Let X be a supervariety and g a Lie superalgebra. An action of g on
X is a Lie superalgebra homomorphism g → Γ(X, TX). This homomorphism induces a
superalgebra homomorphism Ug→ Γ(X,DX).

If G (resp. g) acts on a supervariety X, we will say that X is a G-supervariety (resp.
g-supervariety).

Remark 4.2.3. An action of a Lie superalgebra g on a supervariety X induces an action of g
on every open subvariety of X by restriction.
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Given an action of G on X, we obtain a homomorphism ρa : g → Γ(X, TX) inducing
an action of g on X, as follows. For an open set U ⊆ X, choose an open subset U ′ ⊆ G
containing the identity such that a sends U ′×U into U . Let f ∈ Γ(U,OX) and u ∈ g. Then
define the action of u on f by

u(f) = −(ue ⊗ 1)(a∗(f)).

We claim this defines a vector field on X, and we set ρa(u) to be the corresponding element
of Γ(X, TX).

Remark 4.2.4. If a Lie supergroup G acts on a supervariety X, then G0 acts on X and X0,
such that the following diagram commutes:

G×X // X

G0 ×X

OO

// X

OO

G0 ×X0

OO

// X0

OO

4.2.1 Representations of G and k[G]-comodules

Definition 4.2.5. A representation of a supergroup G on a finite-dimensional super vector
space V is a morphism of supergroups G→ GL(V ). In general if V is infinite-dimensional,
a representation of G on V is an action a : G × V → V such that for every superalgebra
A the induced morphism G(A) → Aut(V )(A) = Aut(A ⊗k V ) maps elements of G(A) into
A-linear automorphisms of A⊗k V .

We will sometimes call V a G-representation or G-module. We may also say V is a
rational G-module or a rational G-representation if we want to clarify that it is not simply
a representation of the group of closed points G(k).

Definition 4.2.6. A (left) k[G]-comodule V , where V is a super vector space, is the data
of a morphism aV : V → k[G]⊗ V such that (1⊗ aV ) ◦ aV = (m∗G ⊗ 1) ◦ aV .

We may form separately the categories of G-modules and k[G]-comodules in the natural
way from the above definitions. Each category is abelian and admits natural tensor product
and dual constructions. As usual there is an equivalence of categories between theses two
categories (see [24]). Thus we will often think of G-modules as k[G]-comodules.

Remark 4.2.7. By a standard argument, a G-module V is a union of finite-dimensional
submodules.

Remark 4.2.8. Let V be a G-module. Then V is naturally a g = Lie(G)-module via u · v =
−(ue ⊗ 1) ◦ aV .
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4.2.2 Actions of SHCPs

Just as supergroups act on supervarieties, we can define the action of a SHCP on a super-
variety as follows.

Definition 4.2.9. An action of a SHCP (G, g) on a supervariety X is a pair of actions
a : G×X → X and ρ : g→ Γ(X, TX) such that

� the map Lie(G)→ Γ(X, TX) determined by a agrees with ρ|g0 in the natural sense;

� we have ρ(Ad(g)u) = (ag
−1

)∗ ◦ ρ(u) ◦ (ag)∗ for all g ∈ G(k) and u ∈ g, where ag =
a ◦ (ig × idX).

There is a natural definition of a morphism of supervarieties with an action of (G, g) which
we leave to the reader.

We observe that the action of an algebraic supergroup G on a supervariety X determines
an action of the corresponding SHCP (G0, g) on X. This is gives a functor from the category
of G-supervarieties to the category of varieties with an action of (G0, g). We prove this
functor is an equivalence. The fact is stated for supermanifolds without proof in [14] and a
full proof for supermanifolds is given in section 4.5 of [6].

Theorem 4.2.10. Let G be a Lie supergroup with g = Lie(G), and suppose that X is
a supervariety. Suppose that G0 acts on X via a0 : G0 × X → X, and that we have a
homomorphism of Lie superalgebras ρ : g→ Γ(X, TX) such that

1. ρ|g0(u) = −(u⊗ 1) ◦ a∗0 for all u ∈ g0;

2. ρ(Ad(g)(u)) = (ag
−1

0 )∗ ◦ ρ(u) ◦ (ag0)∗ for all g ∈ G0(k) and u ∈ g, where ag0 = a0 ◦ (ig ×
idX), where ig : {g} → G0 is the natural inclusion.

Then there exists a unique action a : G×X → X of G on X such that a|G0 = a0 and ρa = ρ.

Before we explain how to define an action of G on X given an action of its SHCP on X,
we observe the following.

Lemma 4.2.11. Suppose that a supergroup G acts on a supervariety X via a : G×X → X.
Then on open subschemes U1, U2 ⊆ X and U ′ ⊆ G such that a takes U ′ × U2 into U1, the
pullback morphism

a∗ : k[U1]→ Homg0
(Ug, k[U ′0])⊗ k[U2] ∼= Homg0

(Ug, k[U ′0]⊗ k[U2])

(where k[U2] is given the trivial g0-action) is given by, for u ∈ Ug,

a∗(f)(u) = (−1)uf (1⊗ ρa(u))a∗0(f)
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Proof. The statement is clear for u = 1. Now suppose it is true for v, and we would like to
show it holds for u = vw, where w ∈ g. We have

a∗(f)(vw) = (−1)w(v+f)(wR ⊗ 1 ◦ a∗(f))(v)

= (−1)w(v+f)(1⊗ w ⊗ 1 ◦m∗ ⊗ 1 ◦ a∗(f))(v)

= (−1)w(v+f)(1⊗ w ⊗ 1 ◦ 1⊗ a∗ ◦ a∗(f))(v)

= (−1)w(v+f)(1⊗ ρa(w) ◦ a∗(f))(v)

= (−1)w(v+f)(1⊗ ρa(w))(a∗(f)(v))

= (−1)w(v+f)+vf (1⊗ ρa(w)ρa(v))(a∗0(f))

= (−1)(w+v)f (1⊗ ρa(vw))(a∗0(f)).

Now we see how to take an action (a0, ρ) of the SHCP (G0, g) on a supervariety X and
use it to define an action of G on X. For open subsets U1, U2, U

′ described above, we define

a∗(f)(u) := (−1)uf (1⊗ ρ(u))a∗0(f).

This map is natural, hence gives a global map on sheaves. Let us check it is g0-linear: for
v ∈ g0, we have

a∗(f)(vu) = (−1)uf (1⊗ ρ(vu))a∗0(f)

= (−1)uf (1⊗ ρ(u))(1⊗ ρ(v))a∗0(f)

= (−1)uf (1⊗ ρ(u))(1⊗ v ⊗ 1) ◦ (1⊗ a∗0) ◦ a∗0(f)

= (−1)uf (1⊗ ρ(u))(1⊗ v ⊗ 1) ◦ (m∗ ⊗ 1) ◦ a∗0(f)

= (−1)uf (1⊗ v ⊗ 1) ◦ (m∗ ⊗ 1) ◦ (1⊗ ρa(u)) ◦ a∗0(f)

= (−1)uf (vR ⊗ 1)((1⊗ ρ(u)) ◦ a∗0(f))

= (vL ⊗ 1)(a∗0(f)(u)).

Next we check a∗ respects multiplication. For f1, f2 ∈ k[U1], we have

a∗(f1f2)(u) = (−1)u(f1+f2)(1⊗ ρ(u))a∗0(f1f2)

= (−1)u(f1+f2)(1⊗ ρ(u))a∗0(f1)a∗0(f2)

= (−1)u(f1+f2)+u(2)f1(1⊗ ρ(u(1))a∗0(f1))(1⊗ ρ(u(2))a∗0(f2))

= (−1)u
(1)f2f1a

∗(f1)(u(1))a∗(f2)(u(2))

= (a∗(f1)a∗(f2))(u).
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It now remains to check that the associative property holds—assume we restrict to appro-
priate open sets, and let f be a section. Then we have

((m∗ ⊗ 1) ◦ a∗(f))(u, v)(g, h) = a∗(f)(h−1.uv)(gh)

= (−1)uv+f(u+v)ρ(v)(ah)∗ρ(u)(ah
−1

)∗a∗0(f)(gh)

= (−1)uv+f(u+v)ρ(v)(ah)∗ρ(u)(ah
−1

)∗(agh)∗(f)

= (−1)uv+f(u+v)ρ(v)(ah)∗ρ(u)(ag)∗(f)

= (−1)uv+f(u+v)ρ(v)(ah)∗ρ(u)a∗0(f)(g)

= (−1)uv+fvρ(v)(ah)∗(a∗(f)(u))(g)

= (−1)uv+fvρ(v)(1⊗ a∗0)a∗(f)(u)(g, h)

= ((1⊗ a∗)(a∗(f))(u, v))(g, h).

It follows we indeed get an action. Finally, observe that this action is the unique one that
agrees with the action of the corresponding SHCP—indeed this follows from lemma 4.2.11.

In particular, we get the following useful corollary:

Corollary 4.2.12. Suppose that a Lie supergroup G acts on a supervariety X, and that for
an open subscheme U ⊆ X, U0 is stable under the action of G0. Then the open subvariety U
is stable under the action of G, i.e. the action of G on X restricts to an action of G on U .

Further, we have the following description of the representations of G.

Corollary 4.2.13. The data of a representation ρ : G → GL(V ) is equivalent to the data
of compatible representations G0 → GL(V0) × GL(V1) and g = Lie(G) → gl(V ). Thus a
representation V of g comes from a representation of G if and only if it integrates to G0.

4.3 Quasi-reductive supergroups and hyperborels

Definition 4.3.1. A supergroup G is quasi-reductive if G0 is reductive.

By definition, if G is quasi-reductive then Lie(G) is quasi-reductive. Of course the con-
verse may not hold.

Definition 4.3.2. If G is quasi-reductive, we say G is Cartan-even if LieG is.

Definition 4.3.3. If G is quasi-reductive, we call a subgroup B a Borel (resp. hyperborel)
subgroup if B is connected and Lie(B) is a Borel (resp. hyperborel) subalgebra of Lie(G).

If n is the unipotent radical of b, we write N for the connected subgroup of B it integrates
to in G and call it the maximal unipotent subgroup of B. Finally, we write T for the
connected subgroup of G that a chosen Cartan subalgebra h0 ⊆ b integrates to, which will
be a maximal torus of G0; we call T a maximal torus of B, and of G as well.
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Supergroup SHCP
GL(m|n) (GL(m)×GL(n), gl(m|n))

(S)OSP (m|2n) ((S)O(m)× Sp(2n), osp(m|2n))
D(2|1; t) (SL(2)× SL(2)× SL(2), d(2|1; t))
G(1|2) (SL(2)×G2, sl(2)× g2)
AB(1|3) (SL(2)× Spin(7), ab(1|3))
P (n) (GL(n), p(n))
Q(n) (GL(n), q(n))

Table 4.1: Distinguished supergroups

If B is a hyperborel subgroup, or more generally if G is Cartan-even, there is a canonical
identification of weights of T with characters of B via the composition of maps T → B →
B/N . If X is a G-supervariety, the algebra k[X]N has a natural T -action, and Λ+

B(X) is the
collection of weights of this action under this identification. Also observe that neither Λ+

B(X)
nor ΛB(X) is a monoid or group in general, due to the presence of nilpotent functions. For
example, consider the action of an even torus on a purely odd super vector space.

4.3.1 Representation theory

Consider the category of finite-dimensional representations of a supergroup G. By the for-
malism of SHCPs already explained, there is a natural equivalence between this category and
the category of finite-dimensional representations of g = Lie(G) which admit a consistent
action of the algebraic group G0.

Thus the category of representations of a quasi-reductive supergroup G is equivalent
to the category of representations of g which are semisimple over g0 and for which the
irreducible g0-representations appearing are all integrable to representations of G0. Therefore
the statements in section 2.3.1 carry over almost entirely to the category ofG-representations.

4.3.2 Distinguished quasi-reductive supergroups

Just as we had a list of distinguished Lie superalgebras which were of special importance,
there are certain supergroups that we will call distinguished. We list them in the table,
giving for each the SHCP associated to them.

As we did with their Lie superalgebras, we will call GL(m|n), (S)OSP (m|2n), D(2|1; t),
G(1|2), and AB(1|3) basic.



CHAPTER 4. SUPERGROUPS AND THEIR ACTIONS 53

4.4 Homogeneous supervarieties and Frobenius

reciprocity

4.4.1 Homogeneous supervarieties

Suppose that G is a supergroup and K is a closed subgroup of G. Then we may construct
a supervariety G/K which represents the quotient of G by right translation by K. For the
technical aspects and properties of G/K in arbitrary characteristic (not equal to 2), see [38]
and more recently [37]. We give a description of what we need about G/K.

The underlying topological space of the quotient is |G/K| = |G0/K0|. We have a natural
projection map π0 : G0 → G0/K0. For an open set |U | ⊆ |G0/K0| the open set π−1

0 (|U |) isK0-
stable under right translation, and thus the corresponding open subscheme of G is K-stable
by corollary 4.2.12. Therefore we set the structure sheaf on G/K to be OG/K = ((π0)∗OG)K .
Explicitly,

Γ(|U |, (π∗OG)K) = Γ(π−1(|U |),OG)K ,

where (−)K takes the K-invariants of a module, and the action is by right translation. Thus
in particular (G/K)0 = G0/K0.

There is a natural left translation action of G on G/K, and a natural projection morphism
π : G → G/K which is equivariant with respect to the left translation actions. We write
eK ∈ (G/K)(k) for the image of the identity element in G under this projection. Then the
action of g on G/K by infinitesimal translation induces a surjective map g→ Te(G/K) with
kernel k, and we obtain an identification of K-modules TeK(G/K) ∼= g/k. In particular G/K
is a smooth supervariety by proposition 3.7.4.

Here G/K is affine if and only if G0/K0 is, and in this case we have k[G/K] = Spec k[G]K ,
where K acts on k[G] by pullback under right translation on G. In general we always have
k[G/K] = k[G]K .

4.4.2 Frobenius reciprocity

Suppose that V is a G-module, and K is a closed subgroup of G. The following isomorphism
of vector spaces is referred to as Frobenius reciprocity.

Proposition 4.4.1. We have a canonical isomorphism of vector spaces

HomG(V, k[G/K]) ∼= HomK(V, k)

where on the RHS V is considered as an K-module.

Proof. Given a G-module morphism V → k[G/K] we with the evaluation map at the identity
coset eK to obtain an K-coinvariant V → k.

Conversely, let aV : V → k[G]⊗ V denote the structure morphism as a comodule. Given
a K-coinvariant ϕ : V → k we obtain φ := (1 ⊗ ϕ) ◦ aV : V → k[G]. One may check that
the image of φ lands in k[G]K , and further that it is a morphism of G-modules.

The proof that the correspondences above are inverse to one another is standard.
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4.5 Orbits and stabilizers

Let G be a supergroup and X a G-supervariety. For x ∈ X(k), we have the orbit map at x,
ax : G→ X, given by a ◦ (idG×ix), where ix : {x} → X is the natural inclusion. We refer to
a−1
x (x), the fiber of this morphism over x, as the stabilizer StabG(x) of x, a closed subgroup

of G (see section 11.8 of [8]). The following lemma is well-known (see for instance Lemma 4
of [62]).

Lemma 4.5.1. For x ∈ X(k), the differential of the orbit map ax at the identity of G,
(dax)e : TeG→ TxX, coincides with the natural evaluation map ρa(g)→ TxX.

The Lie superalgebra of StabG(x), which we write as stabg(x), is then exactly the kernel
of the restriction morphism ρa(g)→ TxX. In this way TxX is naturally a representation of
the supergroup StabG(x), and thus also of stabg(x).

4.5.1 Orbits as homogeneous supervarieties

Suppose that G acts on a supervariety X and x ∈ X(k). Then there is a factorization of the
orbit map at x given by

G
ax //

π

%%

X

G/ StabG(x)

bx

99

Further bx : G/ StabG(x) → X is an immersion of supervarieties, and the image of its
underlying topological space is locally closed in X. Let I ⊆ OX be the sheaf of ideals given
by the kernel of the pullback map OX → (ax)∗OG. We define the orbit closure of x to be the
closed subscheme determined by I, and we write this as G · x. A dense open subscheme of
G · x is isomorphic to G/ StabG(x) and thus is smooth. Therefore G · x is a supervariety by
proposition 3.3.10. However it need not be an integral supervariety, as the following example
shows.

Example 4.5.2. The supergroup GL(1|2) naturally acts on k1|2 with basis e, f1, f2 by its
tautological representation, and thus we obtain a representation of GL(1|2) on S2(k1|2)∗.
Write k[S2(k1|2)∗] = S•(S2k1|2) = k[x, y, ξ, η], where x is e2, y is f1f2, ξ is ef1, and η is ef2.
For a superalgebra A the map GL(1|2)(A)→ GL(S2(k1|2))(A) is given by:

h α β
γ a b
δ c d

 7→

h2 αβ hα hβ

2δγ ad− bc cγ + aδ dγ + bδ
2hγ bα− aβ ha+ αγ hb+ βγ
2hδ dα− cβ hc+ αδ hd+ βδ


where h, a, b, c, d ∈ A0 and α, β, γ, δ ∈ A1, and we also use these letters for the corresponding
coordinate functions on GL(1|2). Let us consider the orbit of the point x = 1, y = 0. The
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orbit morphism a∗(1,0) : k[X]→ k[G] sends

x 7→ h2, y 7→ αβ, ξ 7→ hα, η 7→ hβ

The orbit closure is the vanishing set of the ideal generated by this morphism. The gener-
ators of this ideal are y2, xy − ξη, yξ, yη, so we see that the supervariety is not integral by
example 3.3.6.

4.6 Linearization of quasi-coherent sheaves

Definition 4.6.1. Let G be a supergroup, X a G-supervariety, and F a quasi-coherent
sheaf on X. Write a : G × X → X for the action morphism and p : G × X → X for
the natural projection. A G-linearization of F is a choice of isomorphism of OG×X-modules
ϕF : a∗F ∼= p∗F such that the following cocycle condition is satisfied:

(mG × idX)∗ϕF = p∗23ϕF ◦ (idG×a)∗ϕF ,

where p23 : G × G × X → G × X is the projection onto the second and third factor. This
equality is a slight abuse of notation, as it requires using canonical identifications of the
functors (φ1 ◦ φ2)∗ and φ∗2 ◦ φ∗1 for composable morphisms of supervarieties φ1 and φ2.

We will also refer to a linearized quasi-coherent sheaf as an equivariant quasi-coherent
sheaf. A morphism of G-equivariant quasi-coherent sheaves is a morphism of quasi-coherent
sheaves that respects their equivariant structure.

Remark 4.6.2. If we think in terms of geometric vector bundles, a linearization of a vector
bundle π : E → X is an action of G on E as a supervariety, such that π is a G-equivariant
morphism and the induced morphism on fibers is linear.

We briefly recall the representation-theoretic constructions we obtain from a linearization,
which work in the same way as they do classically. Given a G-equivariant quasi-coherent
sheaf F on X, we obtain the structure of a G-representation on Γ(X,F) with comodule
morphism

Γ(X,F)
a∗−→ Γ(G×X, a∗F)

ϕF−→ Γ(G×X, p∗F) = k[G]⊗ Γ(X,F).

The axioms of a comodule are satisfied exactly due to the cocycle conditions on ϕ.
We also obtain an action of g = LieG on sections of F as follows. Let U be an open

subscheme of X. Then there exists an open subscheme U ′ of G containing eG such that a
maps U ′ × U into U , so that in particular U ′ × U ⊆ a−1(U). For ue ∈ TeG define the action
by u on Γ(U,F) by

Γ(U,F)
a∗−→ Γ(a−1(U), a∗F)

ϕF−→ Γ(a−1(U), p∗F)→ Γ(U ′ × U, p∗F)
−ue⊗1−−−−→ Γ(U,F).

This action satisfies the following Liebniz property: for u ∈ g, s a section of F , and f a
section of OX , we have

u(fs) = u(f)s+ (−1)fufu(s).
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Definition 4.6.3. Let g be a Lie superalgebra and X a g-supervariety. Then a g-equivariant
structure on a quasi-coherent sheaf F on X is a morphism g→ End(F) such that for u ∈ g,
s a section of F , and f a section of OX , we have

u(fs) = u(f)s+ (−1)fufu(s).

Clearly a G-equivariant structure induces a LieG-equivariant structure.

Example 4.6.4. The structure sheaf OX always has a natural equivariant structure such that
the actions of G and g on sections agrees with the natural action coming from pullback of
functions. Given a section f of OX and u ∈ g, we will write u(f) for the corresponding
action of u on f if no other G-linearization of OX is present.

4.6.1 Action on line bundles

Let L be a G-equivariant line bundle on X. Everything we state will also work for g-
equivariant line bundles. Let U be an open subscheme on which L|U is trivial under an
isomorphism ψ : L|U → OU . Then let s = ψ−1(1), so that every other sections is an
OU -multiple of s. For a section f of OU and u ∈ g we have

u(fs) = u(f)s+ (−1)uffu(s).

Thus the action restricted to U is determined by the sections u(s) for u ∈ g. Using the
isomorphism ψ, we may transport the action of g on L|U to an action of g on OU , and for
a section f of OU and u ∈ g write uψ(f) for this transported action. Then we obtain the
formula

uψ(f) = u(f) + (−1)uffuψ(1). (4.6.1)

Suppose that s1, s2 are homogeneous sections of L over U such that s2 is even and non-
vanishing. Write f = s1/s2 ∈ k(X) for the corresponding rational function on X. Then for
u ∈ g we have

u · f =
(u · s1)s2 − (−1)us1s1(u · s2)

s2
2

,

where the action on the LHS comes from the natural action of g on rational functions, and
the action on the RHS comes from the described action of g on rational section of L. Further,
on the RHS we take the quotient of the sections

(u · s1)s2 − (−1)us1s1(u · s2), s2
2

of L⊗2. This formula is most easily shown by passing to a trivialization and using eq. (4.6.1).
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4.6.2 Functorial constructions

Note that the following constructions may also be performed for g-equivariant sheaves.
Let X be a G-supervariety, and suppose that F ,G are G-equivariant quasi-coherent

sheaves on X. Then their tensor product F ⊗OX G admits a natural equivariant structure
as the tensor product of the isomorphisms ϕF and ϕG.

Now suppose Y is another G-supervariety and that φ : X → Y is a G-equivariant
morphism. Let F be a G-equivariant quasi-coherent sheaf on Y . Then the quasi-coherent
sheaf φ∗F has a natural G-equivariant structure given by

a∗Y φ
∗F ∼= (1× φ)∗a∗XF

(1×φ)∗ϕF−−−−−−→ (1× φ)∗p∗XF ∼= p∗Y φ
∗F .

Assume that G is a G-equivariant quasi-coherent sheaf on X. By flat base change, we
have natural isomorphisms a∗Y φ∗G ∼= (1×φ)∗a∗XG, and p∗Y φ∗G ∼= (1×φ)∗p∗XG. Thus φ∗G has
a natural G-equivariant structure given by

a∗Y φ∗G ∼= (1× φ)∗a
∗
XG

(1×φ)∗ϕG−−−−−→ (1× φ)∗p
∗
XG ∼= p∗Y φ∗G.

Further, these equivariant structures are such that for a G-equivariant quasi-coherent sheaf
F on Y , the natural morphism

F → φ∗φ
∗F

is a morphism of G-equivariant sheaves.

4.6.3 Equivariant vector bundles on homogeneous supervarieties

Let G be an algebraic supergroup, K a closed subgroup, and consider the homogeneous space
G/K. Then we have:

Lemma 4.6.5. The category of G-equivariant vector bundles on G/K is equivalent to the
category of finite-dimensional K-modules.

Proof. We think in terms of geometric vector bundles. Given a G-equivariant vector bundle
π : E → G/K, we obtain an action of K on π−1(eK), defining a K-module.

Conversely, given K-module V we may construct a vector bundle π : G ×K V := (G ×
V )/K → G/K, where the action of K on G×V is diagonal, and the morphism is the natural
one coming from the universal property of the quotient. This construction is formally carried
out in a book in progress on supergeometry by Musson and Serganova.

The fact that this correspondence respects morphisms is straightforward from the setup.

Remark 4.6.6. Let X0 be a normal variety with an action of an algebraic group G0. Then
there is a well-known theorem (see for instance [29]) which states that for any line bundle L
on X0 there exists n > 0 such that L⊗n admits a G0-linearization. This implies, in particular,
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that if X0 is quasi-projective it admits a very ample G0-linearized line bundle, and thus X0

has a G0-equivariant embedding in PV for some G0-module V .
Unfortunately this need not be true even for smooth supervarieties. Consider the pro-

jective superspace Pm|n. Then there is a natural linear action of G = GL(m + 1|n) on it
which realizes Pm|n as the homogeneous supervariety G/P for a parabolic subgroup P . This
parabolic subgroup has character group Z, and thus by lemma 4.6.5 these characters index
the G-equivariant line bundles on Pm|n. On the other hand, in [7] it was shown that for
n ≥ 2 we have

Pic(P1|n) = Z⊕ C2n−2(n−2)+1.

Thus for P1|n there are many line bundles for which no tensor power is G-linearizable. In
particular, given a quasi-projective G-supervariety X, a priori one may not be able to find a
very ample linearizable line bundle on X; however the author has not yet found an example
where this occurs.

4.7 Open orbits and invariants

4.7.1 Open orbits

Definition 4.7.1. Suppose that G acts on X. We say that the action is a submersion at
a point x ∈ X(k) if the map ax : G → X is a submersion at eG ∈ G(k) (or equivalently at
every k-point of G). In this case, the locus of points where the action is a submersion will be
an open subset of |X|, and we refer to the open subvariety defined by this locus as an open
orbit of G. If all of X is an open orbit of G, we say that X is a homogeneous G-supervariety,
and in this case we indeed have a G-equivariant isomorphism X ∼= G/K for some closed
subgroup K of G.

Remark 4.7.2. Note that an action is a submersion at x if and only if the evaluation map
g→ Γ(|X|, TX)→ TxX is surjective, by lemma 4.5.1. Further, by proposition 3.7.4, an open
orbit of G must be smooth.

Proposition 4.7.3. Let X be a supervariety, and let a : G × X → X be an action of an
algebraic supergroup G on X. Then for x ∈ X(k) the following are equivalent:

1. ax is a submersion;

2. the pullback morphism of sheaves a∗x : OX → (ax)∗OG is injective;

3. there exists a line bundle L such that the pullback morphism a∗x : L → (ax)∗a
∗
xL is

injective.

4. for all line bundles L on X, the pullback morphism a∗x : L → (ax)∗a
∗
xL is injective.
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Proof. We first prove the equivalence (1) ⇐⇒ (2). Let K be the stabilizer of x, and write
π : G→ G/K for the natural projection. Then the natural map of sheaves OG/K → π∗OG is
injective. There is an induced G-equivariant immersion bx : G/K → X and this map factors
the orbit map ax. Therefore if ax is a submersion, G/K → X is too, and hence it induces
an isomorphism of G/K onto an open subset of X. By our assumption that restriction of
functions is injective on supervarieties, the map

OX → b∗OG/K → b∗π∗OG = (ax)∗OG

is injective.
If ax is not a submersion, first suppose that the underlying image of G/K in X is not

open. Then we may choose a non-nilpotent function on X which vanishes on the underlying
closed subscheme defined by its image, so that some power of this function will vanish under
pullback, and thus a∗x is not injective. Therefore assume G/K has an underlying open image,
say |U | ⊆ |X|. Then we may restrict to the open subscheme U of X, and there the morphism
G/K → U will be an isomorphism on closed points and an immersion, but not a submersion.
One may then show that this map is a closed embedding, by considering the map on local
rings and using Nakayama’s lemma. Hence the map on stalks is surjective, and so if it were
also injective the map would be an isomorphism on this open set U , contradicting the fact
that ax is not submersive.

Now we show that (2) ⇐⇒ (3) ⇐⇒ (4). For any line bundle L on X, we may cover
X with open sets Ui for which L|Ui ∼= OUi . Then by functoriality, over Ui the pullback
morphism L → (ax)∗(ax)

∗L is identified with OUi → (ax)∗(ax)
∗OUi ∼= (ax)∗OUi , and one is

injective if and only if the other is. Since injectivity of a morphism of sheaves is a local
property, we are done.

Proposition 4.7.4. Let X be a G-supervariety. If X is homogeneous then for any G-
equivariant line bundle L, a non-zero G-submodule V of Γ(X,L) generates L in the sense of
definition 3.4.3. Conversely, if X is quasi-projective and admits a very ample G-equivariant
line bundle L, then the converse also holds.

Proof. Let L be a G-equivariant line bundle on X, and let V ⊆ Γ(X,L) be a nonzero G-
submodule. Then if V does not generate L, there must exist a point x ∈ X(k) such that
when we pass to the stalk of L at x we find that V ⊆ mxLx. Therefore there exists a maximal
positive integer n such that V ⊆ mn

xLx.
Let s ∈ V be in mn

xLx \mn+1
x Lx. Choose a trivialization ψ : Lx ∼= Ox and write f = ψ(s)

so that f ∈ mn
x \ mn+1

x . Then because X is homogeneous there exists u ∈ g such that
u(f) ∈ mn−1

x \mn
x. Therefore

uψ(f) = u(f) + (−1)fufuψ(1) ∈ mn−1
x \mn

x,

so in particular u(s) ∈ mn−1
x Lx \ mn

xLx and u(s) ∈ V , a contradiction. Therefore instead V
must generate L.
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Now let X be quasi-projective admitting a very ample G-equivariant line bundle L, and
suppose that X is not homogeneous. Then there exists x ∈ X(k) such that ax is not a
submersion. By proposition 4.7.3, the pullback morphism OX → (ax)∗OX is not injective.
Write K for its kernel, so that we obtain an exact sequence of G-equivariant sheaves

0→ K → OX → (ax)∗OX .

Since L is G-equivariant and flat as an OX-module, we may twist by it and obtain for each
n ∈ N an exact sequence of G-equivariant sheaves

0→ K(n)→ L⊗n → (ax)∗OX ⊗ L⊗n,

where we write K(n) := K ⊗ L⊗n. Since L is very ample, by proposition 3.5.7 there exists
n > 0 such that K(n) is globally generated, and so in particular Γ(X,K(n)) 6= 0. However
by left exactness of global sections, Γ(X,K(n)) ⊆ Γ(X,L⊗n) is a non-zero G-submodule.
Since the morphism OX → (ax)∗Ox is not zero, necessarily Γ(X,K(n)) cannot generate L⊗n,
a contradiction, and we are done.

Remark 4.7.5. Let g be a Lie superalgebra and suppose it acts homogeneously on a super-
variety X (see definition 5.4.1 for the meaning of this). Then the proof of proposition 4.7.4
shows that if L is a g-equivariant line bundle and V is a non-zero g-stable submodule of
Γ(X,L) then V generates L.

Corollary 4.7.6. If X is an affine G-supervariety and L is a G-equivariant line bundle
on X, then Γ(X,L) admits a non-zero G-stable Γ(X,OX)-submodule if and only if X is
not homogeneous. In particular, k[X] has no nontrivial G-stable ideals if and only if X is
homogeneous.

Proof. We apply proposition 4.7.4, using that if X is affine the global sections functor is
exact.

4.7.2 Rational invariants

In the classical world, if an algebraic group G0 acts on a normal variety X0, then it admits
an open orbit if and only if k(X0)LieG0 = k. In the super world, this general principle no
longer holds.

Example 4.7.7. Consider the action of G = GL(0|n) on X = k0|n by the standard represen-
tation of GL(0|n). This supervariety has one point, and the orbit of that point is not open,
so G does not have an open orbit on X. However we have k(X) = Λ•(kn)∗, and this is a
multiplicity-free representation of g = gl(n), so in particular k(X)g = k.

We do have the forward direction:

Proposition 4.7.8. If a Lie supergroup G acts on a supervariety X with an open orbit, we
have k(X)g = k.



CHAPTER 4. SUPERGROUPS AND THEIR ACTIONS 61

Proof. Let f ∈ k(X)g be non-zero, and choose an affine open subvariety SpecA of X con-
tained in the open orbit of G on which f is regular. Then A has no non-trivial g-stable ideals
by corollary 4.7.6 and the remark following it. Therefore (f) = A, so f is non-vanishing on
A. However, if x ∈ SpecA(k), then f−f(x) is g-fixed and vanishes at x, i.e. is not invertible,
so (f − f(x)) is a g-stable ideal not equal to A. Thus it must be trivial, i.e. f = f(x), so f
is a constant function.

We may state a converse for certain algebraic subgroups. Suppose that b is a solvable
Lie superalgebra such that [b1, b1] ⊆ [b0, b0]. Then by lemma 1.37 of [10], every finite-
dimensional irreducible representation of b is one-dimensional.

If V is a representation of b, we write V (b) for the span of the b-eigenvectors of V , which
will be a semisimple representation of b. Write Λb(V ) for the collection of characters λ of b
such that there is a b-eigenvector of weight λ in V . Finally, if b acts on a supervariety X,
set

Λ+
b (X) := Λb(k[X]), Λb(X) := Λb(k(X)).

Observe that if A is a superalgebra on which b acts by derivations, then A(b) is a subalgebra
of A.

Definition 4.7.9. If G is quasi-reductive, X a G-supervariety, and B a hyperborel of G, we
set Λ+

B(X) := Λ+
b (X) and ΛB(X) := Λb(X) (or simply Λ+(X), resp. Λ(X) when there is no

confusion).

Proposition 4.7.10. Let B be a solvable connected algebraic supergroup such that [b1, b1] ⊆
[b0, b0] where b = Lie(B). Let X be a B-supervariety. If k(X)(b) is a multiplicity-free b-
representation such that every non-zero f ∈ k(X)(b) is non-nilpotent, then X has an open
B-orbit. Equivalently, k(X)b = k and k(X)(b) is an integral domain.

Proof. Write Λ for the character lattice of B, a finitely generated free abelian group. By our
assumptions, k(X)(b) is isomorphic to the group algebra of a subgroup Λ(X) of Λ, and hence
Λ(X) is free of some rank, say n ∈ N. Choose rational B-eigenfunctions f1, . . . , fn ∈ k(X)(b)

that such that their weights form a Z-basis of Λ(X). Then by removing the divisors of zeroes
and poles of f1, . . . , fn, there exists a B-stable open subvariety U of X where f1, . . . , fn are
regular and non-vanishing, and hence k(X)(b) ⊆ k[U ]. We may shrink U further to assume
that U0 is normal, and we still may assume U is B-stable. Now apply Sumihiro’s theorem
(see for instance [29]) using normality of U0 and corollary 4.2.12 to find a B-stable affine
open subvariety U ′ of U .

Now we claim that U ′ is a homogeneousB-supervariety. Indeed, if I ⊆ k[U ′] is a nontrivial
B-stable ideal, then it admits a B-eigenfunction f ∈ I. Then f ∈ k(X)(b), so by assumption
f is invertible on U , and k[U ′] = (f) = I. We conclude by corollary 4.7.6.
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4.8 G0-equivariant gradings of supervarieties

Definition 4.8.1. Let G0 be an algebraic group. If X is a G0-supervariety, then we say it has
a G0-equivariant grading if there exists a G0-equivariant sheafM on X0 and a G0-equivariant
isomorphism X ∼= (X0,Λ

•M).

We seek to prove:

Theorem 4.8.2. Let G0 be a reductive group and X a G0-supervariety. If X is graded,
then X admits a G0-equivariant grading. In particular, if G is quasi-reductive and X is a
G-supervariety which is graded, then X admits a G0-equivariant grading.

This question was considered by Rothstein in [43], in the analytic setting. We adapt the
ideas of his proof to the algebraic setting.

Proof. SinceX is graded, we assume that X = (X0,Λ
•M) whereM is a rank n vector bundle

on X0. Then the structure sheaf OX admits a natural Z-grading by degree of exterior power.
First we study the group Aut(X). We write Aut(M) for the vector bundle automorphisms

ofM, which for us will mean the data of a pair (φ, ψ) where φ is an automorphism the scheme
X0 and ψ : φ∗M → M is an isomorphism of coherent sheaves. Then given Φ = (φ, ψ) ∈
Aut(M) we obtain an automorphism of X by Λ•Φ, which acts by φ on the underlying
scheme X0 and by Λ•ψ on the sheaf of algebras, where Λ0ψ = φ∗. This isomorphism
preserves the Z-grading on the sheaf of algebras OX . Hence we have defined an inclusion
Aut(M)→ Aut(X).

On the other hand, given an automorphism φ of X, φ preserves (OX,1), and thus every

power of it as well, so it induces an automorphism φ̃ of the vector bundle NX = M. The
map φ 7→ φ̃ splits the inclusion Aut(M)→ Aut(X). Given φ ∈ Aut(X), we denote by abuse

of notation φ̃ ∈ Aut(X) to be the map gotten by applying these two morphisms.
Now let T +

X ⊆ TX be the subsheaf of TX consisting of those derivations which increase
the Z-grading of a section of OX . This is a subsheaf of Lie superalgebras. Note we have a
decomposition T +

X =
⊕
T iX , where a section u of T iX sends degree one elements into degree

i+ 1. In particular only even degrees can show up. Then given u ∈ Γ(X, T +
X ) we obtain an

automorphism eu := exp(u) ∈ Aut(X) defined in the natural way. Let N be the subgroup
of Aut(X) generated by these exponentials, which is precisely the exponentials themselves
since the group is unipotent.

Lemma 4.8.3. We have a short exact sequence of groups

1→ N → Aut(X)→ Aut(M)→ 1.

Proof. Clearly the first map is injective and the last map is surjective, and their composition
is trivial. So it suffices to show that if φ ∈ Aut(X) such that φ̃ is the identity automorphism
of M, then φ ∈ N . But in this case, φ∗ − id : φ∗OX → OX is nilpotent, hence log(φ) =
log(1− (1− φ)) ∈ Γ(X, T +

X ). Taking the exponential gives φ, and we are done.
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Using the splitting Aut(M)→ Aut(X) we obtain:

Corollary 4.8.4. We have a decomposition Aut(X) = N n Aut(M).

Now let G0 be an algebraic group, and suppose it acts on a supervariety X, inducing a
map of groups T : G0(k)→ Aut(X). Then composing with Aut(X)→ Aut(M)→ Aut(X),

we get a new action, written T̃ , of G0 on X, which is still algebraic. Further, the action of
elements under T̃ preserves the Z-grading on X. Hence it suffices to show that T is conjugate
to T̃ by an element of Aut(X). We will in fact show that under our assumption that G0 is

reductive, T is conjugate to T̃ by an element of N due to the following proposition.

Proposition 4.8.5. If Ext1
G0

(k,Γ(X, T +
X )) = 0, i.e. if there are no nontrivial extensions of

Γ(X, T +
X ) by the trivial module in the category of rational representations of G0, then T is

conjugate to T̃ by an element of N .

Note that Γ(X, T +
X ) is a rational G0-module, being a G0-submodule of the global sections

of the tangent sheaf, which is a G0-equivariant vector bundle.

Proof. Recall that for a rational G0-module V there is an identification between Ext1
G0

(k, V )
and algebraic cocycles modulo coboundaries. An algebraic cocycle for us means a morphism
of varieties ψ : G0 → V that satisfies ψ(gh) = ψ(g) + g · ψ(h) for g, h ∈ G0(k), and a
coboundary is such a morphism given by ψ(g) = g · v − v for g ∈ G0(k) and for some
v ∈ V (k).

Before constructing a cocyle, we make a definition. Given g ∈ G0(k) and an N -conjugate

T ′ of T , write T ′(g) = eu(g)T̃ (g), using our splitting, for a unique element u(g) ∈ Γ(X, T +
X ).

Define the order of T ′(g) to be the largest ` such that uj(g) = 0 for j ≤ `. Then define the
order of T ′ the minimal order of T ′(g) for g ∈ G0(k). Define the order of the N -conjugacy
class of T to be the supremum of the orders over all N -conjugates of T . Then T is conjugate
to T̃ by an element of N if and only if the order of T is infinite.

Therefore suppose the order of T is finite, and let T ′ be a chosen N -conjugate of maximal
order `. Then for this conjugate we obtain a well-defined function u`+1 : g 7→ u`+1(g) ∈
Γ(X, T `+1

X ), which does not vanish by definition. This defines a morphism of varieties G0 →
Γ(X, T `+1

X ), as u`+1(g) is obtained as a projection of T ′(g)T̃ ′(g)−1 onto a subspace of End(V ).
We notice that

T ′(gh) = eu(g)T̃ (g)eu(h)T̃ (h) = eu(g)T̃ (g)eu(h)T̃ (g)−1T̃ (g)T̃ (h),

so
u`+1(gh) = u`+1(g) + T̃ (g)u`+1(h)T̃ (g)−1,

hence u`+1 is a an algebraic cocycle of G0 with values in Γ(X, T `+1
X ).

Now suppose that v`+1 ∈ Γ(X, T `+1
X ). Then conjugating T ′ by ev`+1 , we get

ev`+1eu(g)T̃ (g)e−v`+1 = (ev`+1eu(g)T̃ (g)e−v`+1T̃ (g)−1)T̃ (g).
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It is not hard to check that the order of ev`+1T ′e−v`+1 cannot be less than `, so by definition
of ` the order must remain `. Hence we find that the cocycle defined by this conjugate of T
is given by g 7→ u`+1(g) + v`+1 − T̃ (g)v`+1T̃ (g)−1, i.e. it differs from the cocycle determined
by T ′ by the coboundary determined by v`+1.

Now we may finish the proof of the proposition. We have seen that u`+1 is an algebraic
one-cocyle of G0 with values in Γ(X, T `+1

X ). By our assumption that Ext1
G0

(k,Γ(X, T +
X )) = 0,

we also have Ext1
G0

(k,Γ(X, T `+1
X )) = 0 since it is a direct summand. Therefore there exists

v`+1 ∈ Γ(X, T `+1
X ) such that ev`+1T ′e−v`+1 has order larger than `. This contradicts the

definition of `, so we must have instead that ` = n, i.e. T ′ = T̃ , and we are done.

Now we finish the proof of the theorem. If G0 is reductive, then its category of rational
representations is semisimple, so Ext1

G0
(k,Γ(X, T +

X )) = 0. We may now apply proposi-
tion 4.8.5, and we are done.
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Chapter 5

Spherical supervarieties

In this chapter we define the notion of a spherical supervariety. Three characterizations are
given, one in the general case, one in the affine case, and one in the quasi-projective case.
Several important examples are then discussed.

5.1 Spherical supervarieties

Let G be a quasi-reductive supergroup.

Definition 5.1.1. We say a G-supervariety X is spherical if there exists a hyperborel sub-
group B of G with an open orbit on X. If a hyperborel subgroup B has an open orbit on
X, we say that X is B-spherical.

Remark 5.1.2. � If a G-supervariety X is spherical, then the G0-variety X0 is also spher-
ical.

� Note that a spherical supervariety need not be spherical with respect to every hyper-
borel; in fact if G is basic and distinguished this occurrence would be a degeneracy.

Definition 5.1.3. If K is a closed subgroup of G such that G/K is spherical, then we say
that K is a spherical subgroup of G. Similarly, if k is a Lie subalgebra of LieG such that
there exists a hyperborel subalgebra b with b+ k = g, then we say k is a spherical subalgebra
of g.

Theorem 5.1.4. Let G be quasi-reductive, B a hyperborel of G, and X a G-supervariety.
Then X is B-spherical if and only if k(X)(b) is a multiplicity-free b-module whose nonzero
elements are non-nilpotent, where b = LieB. Equivalently, k(X)b = k and k(X)(b) is an
integral domain.

Proof. This follows immediately from proposition 4.7.10.
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5.2 Affine spherical supervarieties

In the classical case we have a characterization of affine spherical varieties which states that
X is spherical if and only if k[X] is a multiplicity-free representation (theorem 1.2.1). One
might hope that this generalizes to the super case. Of course there is a first issue that
for supergroups complete reducibility is a rare phenomenon to begin with. But one might
hope that perhaps k[X]N being multiplicity-free as a T -module is sufficient, where N is the
unipotent radical of a hyperborel subgroup B and T is a maximal torus of B. This turns
out to not be the case as the next examples demonstrate.

Example 5.2.1. � Consider the action of GL(0|n) on k0|n by the standard representation.
The algebra of functions is Λ•(kn)∗, which is completely reducible and multiplicity-free.
However, there is only one closed point and the orbit of it under the whole group is
itself, so this space is not spherical.

� An example which has a nontrivial even part is given by considering G = OSP (1|2)
and letting X = OSP (1|2)/T , where T is a maximal torus of G0. By the representation
theory of OSP (1|2) and Frobenius reciprocity, k[X] ∼=

⊕
n≥0

ΠnL(n), where L(n) is the

irreducible representation of highest weight n with even highest weight vector. Hence
k[X] is completely reducible and multiplicity-free. However, no hyperborel admits an
open orbit since the odd dimension of X is 2 while the odd dimension of any hyperborel
subgroup is 1.

The next theorem demonstrates that the issue with the above two spaces is that some of
the highest weight functions are nilpotent.

Theorem 5.2.2. Let X be an affine G-supervariety, B a hyperborel of G with maximal
unipotent subgroup N and maximal torus T . Then the following are equivalent:

1. X is spherical for B.

2. X0 is spherical for B0, and every nonzero B-highest weight function in k[X] is non-
nilpotent.

3. Every nonzero B-highest weight function in k[X] is non-nilpotent, and dim k[X]Nλ ≤ 1
for all weights λ of T .

4. k[X]N is an even commutative algebra without nilpotents, and the natural T -action is
multiplicity-free.

Proof. (1) =⇒ (2): Let x ∈ X(k) be such that ax : B → X is a submersion, so that a∗x is
injective. In k[B], all B-highest weight functions are non-nilpotent, and therefore the same
must be true of the functions on X.

(2) =⇒ (3): Since X0 is spherical for B0, we have dim k[X0]
(b0)

λ ≤ 1 for all λ. Since
the B-highest weight functions are non-nilpotent, the restriction map k[X](b) → k[X0](b0) is
injective, and we are done.
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(3) =⇒ (4): We see that k[X]N is the subalgebra generated by the B-highest weight
functions, so this is clear.

(4) =⇒ (1): Let S be the submonoid of the character lattice of T determined by the
weights of k[X]N . Then because the group generated by S is finitely generated, of rank say m,
there exists weights λ1, . . . , λm ∈ S such that the monoid generated by S and −λ1, . . . ,−λm
is a group. Then if we let U = D(fλ1 · · · fλm), all B-eigenfunctions in k[U ] will be invertible.
Further, this open subscheme U will be B-stable. Choose a point x ∈ U(k), and consider the
orbit map ax : B → X. Since all fλ become units on U , they must not be in the kernel of a∗x.
But if a∗x is not injective, the kernel will contain a B-highest weight function, a contradiction.
Therefore ax must be a submersion by proposition 4.7.3, and so X is spherical.

Definition 5.2.3. If a G-supervariety X is B-spherical, define the rank of X to be the rank
of the lattice ΛB(X).

A corollary of the proof of the above proposition is the following.

Corollary 5.2.4. If X is B-spherical of rank m, there exists m B-highest weight functions
fλ1 , . . . , fλm ∈ k[X] such that their common non-vanishing set is the open B-orbit.

Corollary 5.2.5. If X is spherical, the socle of k[X] is multiplicity-free.

Proof. Suppose that an irreducible representation L shows up with multiplicity greater than
1. If B is a hyperborel for which X is B-spherical, there will be two B-eigenfunctions of the
same weight in k[X]. This contradicts (3) of theorem 5.2.2.

Now suppose that X is an affine B-spherical supervariety and U is the open B-orbit.
By the reasoning given in the proof of proposition 4.7.10, we know that all rational b-
eigenfunctions will be regular (and in fact non-vanishing) on U . Hence k[U ]N = k(X)(b),
and because these functions are all non-nilpotent we have

k(X)(b) = k[U ]N ∼= k[U0]N0 = k(X0)b0

by restriction of functions. Further, these algebras are all isomorphic to group algebras on
ΛB(X), a finitely generated free abelian subgroup of the character lattice of T .

Now on all of X, restriction induces an injective map k[X]N → k[X0]N0 , and hence an
inclusion Λ+

B(X) ⊆ Λ+
B0

(X0), and thus Λ+
B(X) will be a submonoid of Λ+

B0
(X0). Note that

k[X]N is the monoid algebra on Λ+
B(X) and k[X0]N0 is the monoid algebra on Λ+

B0
(X0).

It is a classical fact about spherical varieties that k[X0]N0 is finitely generated, so choose
generators g1, . . . , gn which are b0-eigenfunctions. Note that U0 is precisely the non-vanishing
locus of these functions. We may uniquely lift these to b-eigenfunctions f1, . . . , fn on U .

Let us now assume in addition that X is graded (equivalently locally graded since X is
affine). By theorem 4.8.2 we may choose a G0-equivariant grading of X. Thus we may write
k[X] = Λ•M , where M is a finitely generated G0-equivariant k[X0]-module. Let us assume
the largest non-zero exterior power of M is q. Then we may write

fi = gi +mi1 + · · ·+miq where mij ∈ ΛjMg1···gn .
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Here Mg1···gn is the localization of M to the non-vanishing locus of g1, . . . , gn. We may do
this because since fi is a b-eigenvector, each mij must be a b0-eigenvector and it must be
regular on the open B0-orbit. Now the obstruction to regularity of fi is the poles of mij

along g1 · · · gn = 0. For each mij, there exists qij ∈ N such that (g1 · · · gk)qijmij ∈ ΛjM . By
choosing an integer p larger than q + max

i,j
qij, we now have:

Proposition 5.2.6. If X is graded then there exists an integer p > 0 such that f r11 · · · f rnn is
regular whenever r1, . . . , rn ≥ p.

Proof. Expanding out the product, one sees that for any integer p chosen as described in the
paragraph before the proposition, the poles will be resolved.

Corollary 5.2.7. If X is graded then the set Λ+
B(X), which is a submonoid of Λ+

B0
(X0),

generates ΛB(X) = ΛB0(X0) as a group. Further it is Zariski dense in the vector space
spanned by its weights.

Proof. By proposition 5.2.6, Λ+
B(X) contains the lattice points of a translated orthant of

R⊗Z ΛB(X), and so the results follow.

Write X//N := Spec k[X]N . Then by (4) of theorem 5.2.2, X//N is an even variety and
admits a natural T -action such that k[X//N ] is a multiplicity-free T -module. In particular,
X//N has an open T -orbit, hence is essentially a toric variety but that it need not be normal
or Noetherian. Indeed, we observe it is isomorphic to the group algebra of Λ+

B(X), so being
normal is equivalent to this monoid being saturated, and being Noetherian is equivalent to
the monoid being finitely generated. We now present examples showing how these properties
can fail.

Example 5.2.8. Consider the action of G = GL(1|2) on X = S2k1|2 as the second symmetric
power of the standard representation. This is a spherical supervariety as one can check (see
appendix A), and is spherical exactly with respect to the hyperborels B+ and B− of upper
and lower triangular matrices, respectively. The coordinate ring k[X] is a supersymmetric
polynomial algebra given by S•(S2(k1|2)∗) as both an algebra and a G-module.

As a G0 = GL(1)×GL(2)-representation X0 is a sum of two one-dimensional representa-
tions of distinct weights. Therefore the B0-highest weight functions of X0 are the monomials
in two G0-eigenfunctions x, y, where we let x have weight λ and y have weight µ. Let
ξ, η ∈ (S2k1|2)∗

1
be odd weight vectors of weights α, β. Then k[X] = k[x, y, ξ, η]. We have

that ξη is a G0-eigenvector of weight λ+ µ, and so one can show that for any hyperborel B
the rational B-eigenfunctions on X are, up to scalar, all of the form:

fij = xiyj + cijx
iyj

ξη

xy

where i, j ∈ Z and cij ∈ k is a coefficient in k to be determined depending on the choice of
hyperborel. For the hyperborel B+, we find that cij = i and for B− we find that cij = −j.
These values for cij tell us which rational B-eigenfunctions are regular on all of X, or
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equivalently tell us what Λ+
B±(X) are. We draw the two monoids below to visualize the

result:

Λ+
B+(X)

µ

λ

Λ+
B−(X)

µ

λ

Figure 5.1: Weight monoids for two different hyperborels

For comparison, the monoid Λ+
B0

(X) for any Borel subgroup B0 of G consists of all
the lattice points that are a nonnegative linear combination of λ and µ. This example
demonstrates that Λ+

B(X) need not be finitely generated as neither of the above monoids are
finitely generated.

Example 5.2.9. Consider the action of G = OSP (3|4)×OSP (3|4) on X = OSP (3|4) by left
and right multiplication. The notion of Borel and hyperborel coincide for both OSP (3|4)
and OSP (3|4)×OSP (3|4). If B is a Borel of OSP (3|4), then X is B ×B−-spherical where
B− is the opposite Borel of B. By lemma 6.5.7, Λ+

B×B−(X) will be naturally isomorphic to
the monoid of B-dominant weights of OSP (3|4). Now if we choose the Borel determined by
the simple roots δ1− δ2, δ2− ε1, ε1 as described in section 1.3.3 of [10], then by theorem 2.11
of [10] the weight λ = ε1 + ε2 + δ1 + δ2 is not dominant while kλ is dominant for k ≥ 2. Thus
Λ+(X) is will not be saturated in this case.

5.3 Spherical quasi-projective supervarieties

We now state a more general characterization of spherical supervarieties in the quasi-projective
setting. However in the rest of this thesis we will mostly use the affine characterization.

Let G be quasi-reductive, X a quasi-projective G-supervariety, and B a hyperborel sub-
group. As observed in remark 4.6.6, there may exist line bundles on X for which no power is
B-linearizable. Thus in order to obtain a representation-theoretic characterization for such
spaces, it is necessary to assume the existence of a very ample B-linearizable line bundle on
X.

Theorem 5.3.1. Let X be a quasi-projective G-supervariety, B a hyperborel subgroup of
G with unipotent radical N and maximal torus T . Assume that there exists a very ample
B-equivariant line bundle on X. Then the following are equivalent:

1. X is spherical for B.
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2. X0 is spherical for B0, and for every B-equivariant line bundle L the non-zero elements
of Γ(X,L)N are non-vanishing at some point.

3. For every B-equivariant line bundle L, the non-zero elements of Γ(X,L)N are non-
vanishing at some point, and dim Γ(X,L)Nλ ≤ 1 for all weights λ of T .

Proof. (1) =⇒ (2) Let L be a B-equivariant line bundle on X. Write U for the open B-
orbit on X. Then if σ ∈ Γ(X,L) is a B-eigenvector, restricting to U it spans a nonzero
B-submodule of Γ(U,L). Since U is a homogeneous B-supervariety, by proposition 4.7.4 σ
must generate L|U , and thus must be non-vanishing on U .

(2) =⇒ (3) It suffices to check that for a B-equivariant line bundle L, dim Γ(X,L)Nλ ≤ 1
for all weights λ of T . But since X0 is spherical for B0 and i : X0 → X is G0-equivariant,
i∗L is a B0-equivariant line bundle and the pullback morphism Γ(X,L) → Γ(X0, i

∗L) is
B0-equivariant. By assumption, Γ(X,L)N → Γ(X0, i

∗L)N0 must be injective, and since X0

is spherical we have dim Γ(X0, i
∗L)N0

λ ≤ 1 for all weights λ.
(3) =⇒ (1) Let L be a B-equivariant very ample line bundle on X. Then if X does not

have an open B-orbit, it must follow that k(X)(b) either has a nilpotent function or is not
multiplicity-free. If f ∈ k(X)(b) is homogeneous, there exists n > 0 and a homogeneous global
section s ∈ Γ(X,L⊗n) such that fs ∈ Γ(X,L⊗n) is also a global section. Let V ⊆ Γ(X,L⊗n)
be the subspace of sections s such that fs ∈ Γ(X,L⊗n). Then V is a B-submodule of
Γ(X,L⊗n) and thus admits a non-zero B-eigenvector s2. Let s1 := fs2. Then by construction
s1 is also a B-eigenvector. In particular, s1 and s2 both are non-vanishing at some point by
assumption, and thus f = s1/s2 is also non-vanishing at some point and therefore cannot be
nilpotent.

If f, g ∈ k(X)(b) are b-eigenvectors with the same weight for the action of b, then f/g
will be b-invariant. Thus by our construction there exists an n > 0 and s1, s2 ∈ Γ(X,L⊗n)(b)

such that f = s1/s2, and thus s1 and s2 have the same weight for b. But by assumption
Γ(X,L⊗n)N is a multiplicity-free T -module, so we obtain a contradiction. This completes
the proof.

5.4 Spherical supervarieties for Lie superalgebra

actions

Let g be an arbitrary Lie superalgebra and X a supervariety.

Definition 5.4.1. If g acts on X, then we say g has an open orbit on X if there exists a
point x ∈ X(k) such that the natural restriction map g→ TxX is a surjection. In this case,
the locus of points where g → TxX is surjective is open, and we call this open set an open
orbit of g. We say X is a homogeneous g-supervariety if all of X is an open orbit.

An open orbit of g will be smooth by proposition 3.7.4. Also observe that an open
subvariety of a homogeneous supervariety is still homogeneous for the natural restricted
action.
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Proposition 5.4.2. Suppose that X is a homogeneous g-supervariety. If L is a g-equivariant
line bundle on X, then a g-submodule of Γ(X,L) generates L. In particular, if X is affine,
k[X] has no non-trivial g-invariant ideals.

Proof. See remark 4.7.5.

Now assume that g is quasi-reductive.

Definition 5.4.3. A g-supervariety X is said to be spherical if there exists a hyperborel
subalgebra b in g such that b has an open orbit on X. In this case we say that X is
b-spherical.

Remark 5.4.4. If G is quasi-reductive and acts on a supervariety X, and B is a hyperborel
subgroup of G, then X is B-spherical if and only if X is b-spherical for the induced action
of g on X.

Theorem 5.4.5. Let X be a g-supervariety, b a hyperborel subalgebra of g and h0 ⊆ b
a Cartan subalgebra of g0. If X is b-spherical then for a b-equivariant line bundle L on
X, Γ(X,L)(b) is a multiplicity-free h0-module and if s ∈ Γ(X,L)(b) is non-zero then it is
non-vanishing.

Proof. Suppose that s ∈ Γ(X,L)(b) is a non-zero weight vector of b. If we restrict s to the
open orbit U of b, by proposition 5.4.2 it must generate L|U since it cannot restrict to zero
(since restriction of sections is injective by lemma 3.4.6). This implies the restriction of s to
U must be non-vanishing.

Now if s1, s2 ∈ Γ(X,L)(b) are non-zero weight vectors for b of the same weight, then
f = s1/s2 is a rational b-invariant function. Since s2 is non-vanishing on U , f is regular on
U . We may assume by further restriction that U affine. Then since it is b-homogeneous, k[U ]
has no nontrivial b-invariant ideals by proposition 5.4.2. However for x ∈ U(k), (f − f(x))
will be an invariant ideal which is not equal to k[U ] since it is contained in mx. Therefore
f − f(x) = 0, so f is constant, and thus s1 and s2 are proportional. This completes the
proof.

5.4.1 Contragredient case

Let g be a contragredient Lie superalgebra (as in 2.5 of [26]– in particular this includes the
basic distinguished Lie superalgebras) and V a b-highest weight module for a Borel b of
highest weight λ. Let α be a simple isotropic root with e−α a root vector of weight −α.
Then if (λ, α) = 0 and v ∈ V is the highest weight vector then either e−αv = 0 or e−αv is a
b-highest weight vector of opposite parity of v.

Proposition 5.4.6. Let X be a supervariety and g a contragredient Lie superalgebra acting
on X. Let X be b-spherical for a Borel b of g, and fλ ∈ k[X] a b-highest weight vector of
weight λ. Then if α is a simple isotropic root vector of b with (λ, α) = 0 then e−αfλ = 0.
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Proof. This follows from the fact that e−αfλ is an odd b-highest weight function and theo-
rem 5.4.5.

Of course one may generalize proposition 5.4.6 to equivariant line bundles as well, which
we do not state here.

5.5 Spherical representations

Irreducible spherical representations of reductive algebraic groups were originally classified by
Kac in [27]. We seek to classify all indecomposable spherical representations of the Cartan-
even distinguished quasi-reductive groups. The case of Q(n) is also looked at, however the
more interesting question in that case is to find representations with open orbits under a
Borel subgroup.

We state the problem studied more precisely. For greater generality, representations
of the underlying Lie superalgebra were looked at instead. Therefore let g be one of the
distinguished Lie superalgebras. Recall that for all cases except q(n) the notions of Borel
and hyperborel coincide. We would like to find all indecomposable g-representations V , up
to equivalence, such that the action of g × k〈E〉 on V as a supervariety is spherical, where
E is the Euler vector field on V , i.e. the infinitesimal generator of scaling on V . This extra
scaling action is added for greater generality. This is equivalent to asking if there exists a
vector v ∈ V0 and a Borel subalgebra b ⊆ g such that b · v + k〈v〉 = V . Thus we obtain a
triple (V, g, ρ), where ρ : g→ gl(V ) defines the representation.

We now state precisely the notion of equivalence we work with. We say that two spherical
representations (V, g, ρ) and (V ′, g′, ρ′) are equivalent if there exists an isomorphism of super
vector spaces ψ : V → V ′ such that if Ψ : gl(V ) → gl(V ′) is the induced map, then
ρ′(g′) + k idV ′ = Ψ(ρ(g)) + k idV ′ .

5.5.1 Explanation of classification proof

The classification of spherical indecomposables for the Lie superalgebras we considered is
written out fully in appendix A. The proof goes case by case, and we briefly describe how
the proof works. For each superalgebra g we fix a Cartan subalgebra and a Borel subalgebra
b containing it, and thus a correspondence between simple g-modules up to parity and b-
dominant weights.

If V is a spherical g-module then V0 is spherical for g0. Further, if V is spherical we clearly
must have dimV1 ≤ dim b1 (for p(n) we should take the maximum over all Borel subalgebras
on the RHS). If V ′ is a subquotient of a spherical representation V , then we must have
V ′

0
is spherical and again we have dimV ′

1
≤ dim b1. Using this as motivation, we define a

representation V of g to be numerically spherical if V0 is g0-spherical and dimV1 ≤ b1.
The proof then goes by determining, for each Lie superalgebra g, the simple numerically

spherical modules. Then any indecomposable spherical representation must have all its
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V dimsV S•V ∗ Completely Reducible?

GLm|n (m|n) Yes

S2GLm|n (n(n−1)
2

+ m(m+1)
2
|mn) Yes

ΠS2GLn|n (n2|n2) Yes

ΠS2GLn|n+1 (n(n+ 1)|n(n+ 1)) Yes

OSPm|2n, m ≥ 2 (m|2n)
Iff m is odd
or m > 2n

ΠOSPm|2n (2n|m) Yes

ΠPn|n (n|n) No

Qn|n (n|n) Yes

Table 5.1: Infinite families of spherical representations

composition factors numerically spherical, and thus all possible candidates are produced and
studied individually.

5.5.2 Classification

We found there are a few infinite families of irreducible spherical representations, along with
certain small exceptional cases, some of which are not irreducible. First we give a table of
the infinite families. We write GLm|n, OSPm|2n, Pn|n, and Qn|n respectively for the standard
representations of GL(m|n), OSP (m|2n), P (n), and Q(n) respectively. We also state the
dimension of the representation and whether the algebra of functions on it is completely
reducible (see section 5.6 for the full description of these symmetric algebras as g-modules).
Note also that in appendix A we describe exactly which Borel subalgebras each representation
is spherical with respect to.

In addition to the above infinite families, we have some small cases of spherical indecom-
posable representations. They are given in the table shown. We give an explicit description
of these modules in the following list.

� If we consider the nontrivial (1|1)-dimensional representation of q(1) which is anni-

hilated by the center and takes the odd operator to

[
0 0
1 0

]
we obtain a spherical

representation which we call Q1|1. It may also be described as the restriction of the
standard representation of P (1|1) to its derived subalgebra.

� For the Lie superalgebra gl(1|2), the Kac modules K1|2(tε1) are spherical for all t, and
their parity shifts ΠK1|2(tε1) are spherical for t 6= 0.
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V dimsV S•V ∗ Completely Reducible?

Q1|1 = Res[p(1),p(1)] P1|1 (1|1) No

K1|2(tε1) (2|2) Iff t /∈ Q ∩ [0, 1]

ΠK1|2(tε1), t 6= 0 (2|2) Iff t 6= 1

Lbεδδ(δ1 + δ2 − ε1) (6|4) Yes

∇(ω) (4|4) No

rad∇(ω) (3|4) No

∇(ω)/ soc∇(ω) (4|3) No

(Q2|2)t, t 6= −1/2 (2|2) Always

Π(Q2|2)t, t 6= −1/2 (2|2) Always

Res[p(2),p(2)]P2|2 (2|2) No

Table 5.2: Exceptional indecomposable spherical representations

� For osp(2|4) consider the Borel bεδδ with simple roots ε1−δ1, δ1−δ2, 2δ2. Then Lbεδδ(δ1+
δ2− ε1), the irreducible module of highest weight δ1 +δ2− ε1 with respect to this Borel,
is spherical.

� For p(3), let ω = ε1 + ε2 + ε3. Let ∇(ω) denote the thin Kac module of highest weight
ω (see [5] for a definition). Then this module, along with its radical (rad∇(ω)) and
quotient by its socle (∇(ω)/ soc∇(ω)) are all spherical.

� Finally, for q(2), we may take Q2|2 = L(ε1) with respect to the standard Borel, and
twist the highest weight by multiples of ε1 + ε2, and we will still have a dominant
weight. So we consider (Q2|2)t = L(ε1 + t(ε1 + ε2)) for t ∈ k. If t 6= −1/2, then (Q2|2)t
and Π(Q2|2)t are both spherical.

When t = −1/2, (Q2|2)−1/2 is the representation obtained via the isomorphism

q(2)/kI2|2 → [p(2), p(2)]

and is the restriction of the standard representation of p(2). We will therefore write
this representation as Res[p(2),p(2)]P2|2.

Note that there is some redundancy in the above list, in that some of the Kac modules
for gl(1|2) are equivalent and also some of the modules for q(2) showing up are equivalent.

Remark 5.5.1. Some observations about the above classification:



CHAPTER 5. SPHERICAL SUPERVARIETIES 75

� All cases with quasi-reductive stabilizer appear in [45]. These are exactly the cases in
which the open G-orbit is affine.

� The number of irreducible g0-components of any spherical irreducible representation
is always less than or equal to 3; in an indecomposable spherical representation, there
may be up to 4 g0-components.

� No exceptional basic lie superalgebras admit any non-trivial spherical representations.

Recall from section 4.7.2, for an supervariety X, the definition of Λ+
b (X),. It is the

monoid of b-highest weights in k[X], where X is spherical with respect to b. In the case
when X = V is representation, we have k[X] = S•V ∗. Below we present a table with these
monoids for almost all of the spherical modules found, with the choice of Borel specified.

We introduce some notation. We give the name ζ for the character of the action of E .
Then E acts on SdV ∗ by the weight dζ so that multiple of ζ in a weight records which
symmetric power it appears in.

We also define certain ‘fundamental’ weights:

ωi = ε1 + · · ·+ εi for i ≤ m, ηi = δ1 + · · ·+ δi for 1 ≤ i ≤ n

γi = ωi + ηi

We now present the table of monoids below in terms of a generating set. For a subset
S ⊆ Λ+

b , we write 〈S〉 to mean the submonoid generated by S (here Λ+
b is the set of all

dominant weights of g with respect to b).

5.6 Computations of symmetric powers

It is interesting to study the structure of k[X] as a G-module when X is spherical. Thus we
compute the structure of k[V ] = S•V ∗ for each spherical representation in our list above,
proving complete reducibility in the cases we have claimed it and giving a more thorough
description of the structure in the other cases. We will go through the different symmetric
algebras one by one.

We begin by stating:

Proposition 5.6.1. Let Q1|1 be the representation of the one-dimensional odd abelian algebra
as described in the introduction. Then Sd(Q1|1)∗ ∼= ΠQ1|1 for all d.

Proof. Omitted.

5.6.1 gl(m|n):

The computations of Sd(V ∗) for a spherical irreducible of gl(m|n) from proposition A.3.2
use Schur-Weyl duality as in [23]. Most computations were also discussed in [45]. We do not
rewrite them here.
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Rep Borel Λ+(Rep)

GLm|n bδ
nεm 〈−δn + ζ〉

S2GLm|n (bδ
nεm)op 〈−2ωi − iζ,−2jωm − ηj +m(j + 1)ζ〉1≤i≤m,1≤j≤bn

2
c

ΠS2GLn|n (bδεδε···δε)op 〈−(γ1 + · · ·+ γi) + iζ〉1≤i≤n
ΠS2GLn|n+1 (bδεδε···εδ)op 〈−(γ1 + · · ·+ γi) + iζ〉1≤i≤n

OSPm|2n, m ≥ 2 bε···εδ···δ 〈ε1 + ζ, 2ζ〉

ΠOSPm|2n bδ···δε···ε 〈δ1 + ζ〉

K(λ) bεδδ 〈(2− (j + 1)t)ε1 − (δ1 + δ2) + (j + 1)ζ〉j∈Z≥0

ΠK(λ) bδεδ 〈(1− t)ε1 − δ2 + ζ〉

L(δ1 + δ2 − ε1) b(−ε)δδ 〈ε1 + δ1 + δ2 + ζ, 2ε1 + 2ζ, (3s− 4)ε1 + sζ〉s∈Z≥2

Qn|n bst 〈−εm + ζ〉

ΠPn|n
εi + εj > 0
for all i, j

〈ε1 + ζ〉

∇(ω)
2ε2, ε1 + ε3,
−ε2 − ε3 > 0

〈ε1 + ζ,−ω + ζ〉

(Q2|2)t, t 6= −1/2 (bst)op 〈−(t+ 1)ε1 − tε2 + ζ〉

Π(Q2|2)t, t 6= −1/2 (bst)op 〈−(t+ 1)ε1 − tε2 + ζ〉

Table 5.3: Weight monoid of spherical representations

5.6.2 gl(1|2):

First we compute Sd(K(tε1)∗) for d ≥ 1 as a gl(1|2)-module. We have that K(tε1)∗ ∼=
K((2−t)ε1−δ1−δ2). Then with respect to bδδε, the highest weights functions in Sd(K(tε1)∗)
have weight

λi,j = (2i− (i+ j)t)ε1 − i(δ1 + δ2)

where i+ j = d, i ≥ 0, and j > 0. The weight λi,j is then atypical if and only if

t =
i

i+ j
=
i

d
or t =

i+ 1

i+ j
=
i+ 1

d

This can only happen if t ∈ Q ∩ [0, 1]. Therefore, if t /∈ Q ∩ [0, 1], we have

Sd(K(tε1)∗) =
⊕

i+ j = d
i ≥ 0, j > 0

Lbδδε(λi,j) (5.6.1)
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Now suppose that t = m
n

with m,n ∈ Z, 0 ≤ m ≤ n, and (m,n) = 1. Then if n does not
divide d, we get the decomposition as in 5.6.1.

If n divides d, we may write d = nk, where k > 0. If i + j = d, then λi,j is atypical if
and only if i = mk or i = mk − 1. If t 6= 0, 1 then Sd((K(m

n
ε1)∗) is projective, since it is a

summand of the projective module (K(m
n
ε1)∗)⊗d. Therefore in this case we find that

Snk(K(
m

n
ε1)∗) = P (mkBer)⊕

⊕
i+ j = nk

0 ≤ i < nk, i 6= mk,mk + 1

K(λi,j)

where P (mkBer) is the projective cover of the one-dimensional even module of weight
mkBer.

If t = 0 then m = 0 and n = 1. The weight λi,j = 2iε1 − i(δ1 + δ2) is atypical only when
i = 0, j = k. Therefore we get

Sk(K(0)∗) = K1|2(0)∗ ⊕
⊕

i+ j = k
0 < i < k

Lbδδε(λi,j)

The first summand is obtained by using that that K(0)∗ has an even g-invariant vector, so
multiplication by powers of it define injective homomorphisms K(0)∗ → Sk(K(0)∗) for all k.

Finally, if t = 1 then m = n = 1. The weight λi,j = (i − j)ε1 − i(δ1 + δ2) is atypical if
and only if j = 1, i = k − 1. Therefore we get

Sk(K(ε1)∗) = (K1|2(ε1)∗)(k−1)Ber ⊕
⊕

i+ j = k
0 ≤ i < k − 1

Lbδδε(λi,j)

The first summand can be obtained by observing we have an even g semi-invariant derivation
on functions coming from the even semi-invariant element of K(ε1). Powers of it define
surjective g semi-equivariant homomorphisms Sk(K(ε1)∗)→ K(ε1)∗ for all k.

5.6.3 Sd(ΠK(tε1)
∗), t 6= 0 and d > 0

Here, with respect to the δεδ-Borel, the highest weight is (1− t)ε1 − δ2, and the dth power
of the highest weight vector will be a highest weight vector of weight

µd = d(1− t)ε1 − dδ2

When t 6= 1, these weight are typical. It follows that

Sd(ΠK(tε1)∗) ∼= Lbδεδ(µd)
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When t = 1, ΠK(tε1) has socle Πk−Ber. Therefore, there is an odd g semi-invariant derivation
on functions, which defines non-zero g semi-equivariant homomorphisms Sd(ΠK(tε1)∗) →
Sd−1(ΠK(tε1)∗) such that the composition of two is zero. Since Sd(ΠK(tε1)∗) also contains
a unique highest weight vector, of weight µd = −dδ2, the socle must be Lbδεδ(−dδ2), and the
derivation must vanish on the socle. By the structure of projectives for an atypical block of
gl(1|2)-modules, it follows we must have

Sd(ΠK(tε1)∗) ∼= K1|2(ε1 − δ1 − dδ2)

5.6.4 osp(m|2n)

� The representation Λd(OSPm|2n) is irreducible for all d as a osp(m|2n)-module (see the
remarks at the end of chapter 2 in [10]). Since

Sd(ΠOSPm|2n) ∼= ΠdΛd(OSPm|2n),

all symmetric powers of ΠOSPm|2n are irreducible.

� The computation of SdL(δ1 + δ2 − ε1)∗ is given in [45].

5.6.5 Computation of S•(OSPm|2n)

Write V = OSPm|2n for the standard representation of g = osp(m|2n). For each d ≥ 0 we find
the structure of SdV as a g-module. This is related to the notion of skew-symmetric harmonic
polynomials, and the proof uses ideas from the classical theory of harmonic polynomials
as functions on the sphere. For more on the classical story of harmonic polynomials, see
Chapter III of [22]. See also [12] for more on supersymmetric harmonic polynomials and
their representation theory.

5.6.6 Setup

Let (−,−) ∈ S2V ∗ be a non-degenerate g-invariant supersymmetric form on V . Then we
have an induced isomorphism of g-modules V ∼= V ∗ and a corresponding dual element to the
form, ω ∈ S2V . The form (−,−) gives rise to a non-degenerate, supersymmetric g-invariant
form on each symmetric power SdV , which we also denote by (−,−). Let Ω ∈ End(S•V ) be
the adjoint to left multiplication by ω, i.e.

(Ωx, y) = (x, ωy)

for all x, y ∈ S•V . This is the Laplacian operator on functions. Let H = [Ω,−ω]. Then for
each d we have g-module endomorphisms

H : SdV → SdV, Ω : SdV → Sd−2V, Lω : SdV → Sd+2V
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where we denote left multiplication by ω as Lω. Further, these three endomorphisms form
an sl2-triple:

[H,Ω] = 2Ω, [H,−Lω] = 2Lω.

Therefore we have an action of sl2 × g on S•V . The operator H takes the specific form

H = (n− r)− E

where r := m/2 and E is the Euler vector field, i.e. the operator which acts as scalar
multiplication by d on SdV .

5.6.7 sl2 × g0 structure:

By the theory of harmonic polynomials on V0 = km, we have as an sl2 × o(m)-module

S•V0 =
⊕
`≥0

M0(−r − `) �Hev
` ,

where Hev
` is the irreducible so(m)-module of harmonic polynomials of degree `, and we

write M0(s) for the sl2 Verma module of highest weight s. Here, we have

M0(−r − `)−r−` ⊗Hev
` ⊆ S`V0.

By the theory of skew-symmetric harmonic polynomials on k2n, we have as an sl2 × sp(2n)-
module

Λ•V1 =
⊕

0≤j≤n

L0(n− j) � Ej

where Ej is the jth fundamental representation of sp(2n) for j ≥ 1 and E0 is the trivial
representation, and we write L0(s) for the irreducible sl2-module of highest weight s. Here,
we have

L0(n− j)n−j ⊗ Ej ⊆ ΛjV1

Hence we have, as an sl2 × so(m)× sp(2n)-module,

S•V = S•V0 ⊗ Λ•V1 =
⊕
` ≥ 0

0 ≤ j ≤ n

(M0(−r − `)⊗ L0(n− j)) �Hev
` � Ej.

Lemma 5.6.2. As a g0-module, SdV/LωS
d−2V is multiplicity-free, self-dual, and every ir-

reducible summand is isomorphic to a module of the form Hev
i � Ej, where 0 ≤ j ≤ n.

Proof. The irreducible factors of SdV are all isomorphic to a module of the form Hev
i �Ej for

some 0 ≤ j ≤ n, and these are all self-dual g0-modules. So it remains to prove SdV/LωS
d−2V

is multiplicity-free.



CHAPTER 5. SPHERICAL SUPERVARIETIES 80

By our decomposition as an sl2 × g0-module, we can write

SdV =
⊕
i+j=d

 ⊕
0≤`≤b i

2
c

r`0H
ev
i−2`

⊗
 ⊕

max(0,j−n)≤k≤b j
2
c

ωk0Ej−2k


where ω = r0 + ω0, r0 ∈ S2V0, ω0 ∈ Λ2V1. The extra lower bound condition on k comes
from the finite-dimensional structure of the corresponding sl2-module. It follows that each
summand can be written uniquely as r`0H

ev
s ⊗ ωk0Et, with 2`+ s+ 2k + t = d.

Suppose another summand isomorphic to this one shows up, e.g. rp0H
ev
s ⊗ ωq0Et, with

2p + s + 2q + t = d. Then we must have q 6= k. Without loss of generality suppose q < k.
Then r`0H

ev
s ⊗ ωk−1

0 Et will be a g0 summand of Sd−2V . Multiplying it by ω = r0 + ω0, we
learn that modulo LωS

d−2V , r`0H
ev
s ⊗ ωk0Et is identified with r`+1

0 Hev
s ⊗ ωk−1

0 Et.
By induction on |k−q|, we can identify r`0H

ev
s ⊗ωk0Et with rp0H

ev
s ⊗ω

q
0Et modulo LωS

d−2V .
This proves the quotient is multiplicity-free.

Corollary 5.6.3. As a g-module, SdV/LωS
d−2V is multiplicity-free and each composition

factor is self-dual.

5.6.8 Frobenius reciprocity

If we consider the action of the supergroup G = OSP (m|2n) on V as a supervariety, the
stabilizer of an even vector of length 1 will be K = OSP (m − 1|2n), which gives rise to a
closed embedding of G/K into V . In fact we obtain an identification

G/K ∼= Spec S•V/(1− ω)

Frobenius reciprocity tells us, in this case, that for an integrable g-module W we have

HomG(W,k[G/K]) ∼= HomK(W,k) = (W ∗)K (5.6.2)

This will be heavily used in what follows. In particular, we observe that for any d ∈ Z≥0,
we have a natural injective map:

SdV ↪→ S•V/(1− ω) = k[G/K],

and because Lω is injective, we have an isomorphism of g-modules

k[G/K] ∼= lim
−→

S2dV ⊕ lim
−→

S2d+1V (5.6.3)
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5.6.9 sl2-module structure:

Let I = {n− j, n− j − 2, . . . , j − n}. By Prop. 3.12 of [16], we have:

M0(−r − `)⊗ L0(n− j) = M0 ⊕
⊕
t∈I

−(r+`)+t∈Z≥0

(r+`−t)−2+r+`∈I

P0(−(r + `) + t) (5.6.4)

where for k ≥ 0 we denote by P0(k) the big projective in the block of category O for sl2
containing L0(k), and M0 is a direct sum of Verma modules. The structure of P0(k) is such
that the highest weight is k, and the endomorphism

ΩLω : P0(k)j → P0(k)j

is an isomorphism if j 6= −k, and is the zero map when j = −k.

Corollary 5.6.4. The map Ω : SdV → Sd−2V is surjective for all d.

Proof. Follows from the surjectivity of the weight raising operator on P0(k) and all Verma
modules. Or more simply because it is adjoint to an injective linear map.

Corollary 5.6.5. If r is a half integer or r > n, then as an sl2-module S•V is a direct sum
of irreducible Verma modules. In particular, it is semisimple.

Proof. Our conditions imply that −(r + `) + t /∈ Z≥0 for any integer t ≤ n. By 5.6.4, this
implies M0(−r − `) ⊗ L0(n − j) is a direct sum of Verma modules of either negative or
half-integer highest weight.

Notation: Write Hd := ker(Ω : SdV → Sd−2V ) for the space of ‘harmonic superpolyno-
mials’. Note that since Ω is never injective, Hd 6= 0 for all d ≥ 0.

Corollary 5.6.6. If n− r ∈ Z≥0, we have

S•V = M0 ⊕
⊕
d≤n−r

P0(n− r − d)⊗Hd

where M0 is a direct sum of Verma modules of negative highest weight.

Proof. By 5.6.4, it suffices to prove that if −(r + `) + t ≥ 0 for t ∈ I = {n − j, n − j −
2, . . . , j − n}, then

(r + `− t)− 2 + r + ` ∈ I
or, equivalently

−(n− j) ≤ 2(r + `)− 2− t ≤ n− j.
These inequalities follow from the following two inequalities:

−(n− j) ≤ (r + `)− t− 1 < 0, 0 ≤ r + `− 1 ≤ n− j

where we are using that r ≥ 1.



CHAPTER 5. SPHERICAL SUPERVARIETIES 82

We now break down our analysis of S•V into two cases: that when it is a semisimple
sl2-module, i.e. n− r /∈ Z≥0, and that when it is not, i.e. n− r ∈ Z≥0.

5.6.10 Semisimple case

We now suppose that either r is a half integer or r > n. Then by corollary 5.6.5, we get that
ΩLω : SdV → SdV is an isomorphism for all d, and therefore we have

SdV = Hd ⊕ LωHd−2 ⊕ L2
ωHd−4 ⊕ · · · .

Claim: Hd is irreducible for all d ≥ 0.
To see this, first observe that

SdV = Hd ⊕ LωSd−2V

and therefore by lemma 5.6.2, all composition factors of Hd have multiplicity one and are
self-dual. But we also observe by sl2-semisimplicity that the form on SdV is non-degenerate
when restricted to LωS

d−2V , and therefore the form must also be non-degenerate when
restricted to the complement Hd. Therefore Hd itself is self-dual as a g-module. Because it
is also multiplicity-free, by a standard argument this implies Hd is completely reducible.

To show that Hd is actually irreducible, observe that we have shown

k[G/K] = S•V/(1− ω) ∼=
⊕
d≥0

Hd,

and that Hd is completely reducible. By (5.6.2) Hd is irreducible if and only if

(H∗d)K ∼= HK
d = 1

As a K-module, we have V = V ′ ⊕ k, where V ′ is the standard K-module, and k is the
one-dimensional even trivial module. Therefore, we get the K-module decomposition

Sd(V ) = SdV ′ ⊕ Sd−1V ′ ⊕ · · ·

By Cor 5.3 of [34], the dimension of the space of K-invariants in SaV ′ is 1 if a is even, 0 if
a is odd (where we use here that necessarily m > 2), and hence dimSd(V )K = bd

2
c+ 1. On

the other hand,
Sd(V ) ∼= Hd ⊕Hd−2 ⊕ · · ·

Since we must have dimHK
j ≥ 1 for each j ≥ 0, we obtain that dimHd = 1. Hence Hd is

irreducible.
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5.6.11 Non-semisimple case: n− r ∈ Z≥0

Lemma 5.6.7. The map
ΩLω : SdV → SdV

is an isomorphism if and only if d < n− r or d > 2(n− r).
If n− r + 2 ≤ d ≤ 2(n− r) + 2, write s = d− (n− r)− 1. Then

ker(ΩLω : Sd−2V → Sd−2V ) = Ls−1
ω Hd−2s

In particular LsωHd−2s ⊆ Hd.

Proof. This follows from corollary 5.6.6 and the structure of the sl2-modules P (k) for k ≥
0.

It follows that we have, for 0 ≤ d ≤ n− r + 1,

SdV = Hd ⊕ LωHd−2 ⊕ · · · .

Further, by following the same proof as in the semisimple case we can again show that each
such Hd for 0 ≤ d ≤ n− r + 1 is a simple g-module.

Now suppose n− r + 2 ≤ d ≤ 2(n− r) + 2. Using the sl2 structure, we may write

Sd−2V = Ls−1
ω Hd−2s ⊕Wd−2

for some complementary g-submodule Wd−2 with ΩLω : Wd−2 → Wd−2 an isomorphism.
Hence we may write

SdV = Ad ⊕ LωWd−2

where Ad is a g-module complement to LωWd−2. In particular, Hd ⊆ Ad.

For d > 2(n − r) + 2, ΩLω : Sd−2V → Sd−2V is an isomorphism, so Hd splits off from
SdV , and we get a decomposition

SdV =
t⊕
i=0

LiωHd−2i ⊕
b d−(n−r)−1

2
c⊕

j=t+1

LjωAd−2j

where

t =

⌊
d− 2(n− r)− 3

2

⌋
, An−r+1 := Hn−r+1

Again using Cor. 5.3 of [34] and arguments as before, one can show that Hd is irreducible
for d > 2(n−r)+2 when r ≥ 2, while Hd is the sum of two irreducibles with highest weights
dε1 and (2n − d)ε1 with respect to bst for r = 1. It therefore remains to understand the
structure of Ad.
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5.6.12 Structure of Ad

We now assume (n− r) + 2 ≤ d ≤ 2(n− r) + 2. Recall our decomposition

SdV = Ad ⊕ LωWd−2

Since the form will be non-degenerate when restricted to LωWd−2, it will also be non-
degenerate on Ad, and therefore Ad is self-dual. Further, we observe that ImLω ∩ Ad =
LsωHd−2s, and in fact we have

SdV/LωS
d−2V ∼= Ad/L

s
ωHd−2s,

so Ad/L
s
ωHd−2s is multiplicity-free.

By construction, LsωHd−2s ⊆ Hd ⊆ Ad. We get short exact sequences

0→ Hd → Ad
Ω−→ Ls−1

ω Hd−2s → 0

0→ LsωHd−2s → Hd → Qd → 0

where we have defined Qd as the quotient Hd/L
s
ωHd−2s.

Using self-duality of Ad we find that Qd is self-dual, and since Qd is a submodule of
Ad/L

s
ωHd−2s we get that it is multiplicity-free and each composition factor is self-dual. There-

fore it must be completely reducible.
Again, by Cor 5.3 of [34], we learn that the (Ad)

K is two-dimensional (even for the case
r = 1), and since Ad is self-dual we have by 5.6.2

dim Hom(Ad, k[G/K]) = 2.

Two such linearly independent maps are

φ : Ad ⊆ SdV ↪→ S•V/(1− ω) and ψ : Ad
Ω−→ Ls−1

ω Hd−2s ⊆ Sd−2V ↪→ S•V/(1− ω)

Claim: Ad is indecomposable, with irreducible head and socle isomorphic to Hd−2s.

To prove the claim, first notice that the map Ad
Ω−→ Ls−1

ω Hd−2s cannot split, for otherwise
H⊕2
d−2s would be a submodule of SdV , which would contradict corollary 5.2.5.

Now suppose that Ad split, i.e. we have Ad = M1⊕M2 for two non-trivial submodules M1

and M2, and write pM1 , pM2 for the projections onto M1 and M2 respectively. Then φ ◦ pM1 ,
φ ◦ pM2 and ψ would be three linearly independent maps Ad → k[G/K], a contradiction.
Therefore Ad is indecomposable.

The fact that soc(Ad) ∼= Hd−2s follows from the fact that Qd is multiplicity-free and each
summand is self-dual. Since Ad is self-dual, the head must also be isomorphic to Hd−2s. We
now have the following picture of Ad, with its socle filtration illustrated:
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Ad =

Hd−2s

Qd

Hd−2s

It remains to understand Qd. We split our analysis into the cases of r ≥ 2 and r = 1.
Case when r ≥ 2. By our description of

SdV/LωS
d−2V ∼= Ad/L

s
ωHd−2s

as a g0-module in lemma 5.6.2, we see that the g0-dominant weights with respect to the
standard even Borel of g0 are all of the form tε1 + δ1 + · · ·+ δi for some t ≥ 0 and some i.

If we choose the Borel corresponding to the εδ-sequence δ · · · δε · · · ε, we see that the
only such weights which are g-dominant with respect to this Borel are ones of the form
δ1 + · · ·+ δn + tε1 for some t ≥ 0. When we change via odd reflections to the Borel with εδ
sequence ε · · · εδ · · · δ, this highest weight becomes (t+ n)ε1. Call this latter Borel b.

We learn therefore, that with respect to the Borel b, the irreducibles which can appear
in Qd must all have highest weight tε1 for some t ≥ 0.

Since Ad is indecomposable, any irreducible factors which show up in it must have the
same central character. The module Hd−2s has highest weight (d− 2s)ε1 with respect to b,
and the only other highest weight of the form tε1 with the same central character is dε1. It
follows that either Qd = Lb(dε1) or Qd = 0. But again, if Qd = 0 then Ad would give a
non-trivial extension of Hd−2s by itself which does not exist. This gives the structure of Ad
when r ≥ 2:

Ad =

Lb((d− 2s)ε1)

Lb(dε1)

Lb((d− 2s)ε1)

Case when r = 1. Notice that our decomposition of SdV for d large implies, by 5.6.3,

k[G/K] =

2(n−r)+2⊕
i=n−r+1

Ad ⊕
⊕

d>2(n−r)+2

Hd

so Ad is a direct summand of k[G/K]. On the other hand, k[G/K] = IndGK k, where here
K = OSP1|2n. Since the category of finite-dimensional representations of K is semi-simple,
by Frobenius reciprocity we obtain that k[G/K] must be a direct sum of injective g-modules.

In particular, Ad must be itself be a sum of injective modules. Because we have shown
it is indecomposable with socle Lbst((d − 2s)ε1) with respect to the standard Borel bst of
osp(2|2n), it must be the injective hull of this irreducible module. The socle filtration of this
module is:



CHAPTER 5. SPHERICAL SUPERVARIETIES 86

Ad =

Lbst((d− 2s)ε1)

Lbst(dε1)⊕ Lbst(−ε1 + δ1 + · · ·+ δd−2s+1)

Lbst((d− 2s)ε1)

5.6.13 Computation of S•Pn|n

In this section we compute the algebra of functions on ΠPn|n as a p(n)-module.

Write V = Pn|n. We choose for Borel b =

[
A B
0 −At

]
, where A is upper triangular and

B is symmetric. Recall that ΠV is spherical with respect to b. Therefore, we will compute
highest weights of S•(ΠV ∗) with respect to b.

We have ΠV ∗ ∼= V ∼= Lb(ε1), so Sd(ΠV ∗) ∼= Sd(V ). Our non-degenerate odd p(n)-
invariant form, which we view as an odd p(n)-module homomorphism

q : S2V → k,

gives odd p(n)-module homomorphisms

q : SdV → Sd−2V

for all d ≥ 2. We also have

(SdV )∗ ∼= SdV ∗ ∼= SdΠV ∼= ΠdΛdV

and hence we have the element c ∈ Π2Λ2V ∗ = (S2V )∗ which is adjoint to q, i.e. for x ∈ SdV ,
y ∈ Πd−2Λd−2V , we have

(q(x), y) = (−1)|x|(x, cy)

where (−,−) denotes the pairing of dual vector spaces. Since c is odd, c2 = 0, so we get
that q2 = 0.

As a g0-module we have the decomposition

SdV =
⊕

i+ j = d
j ≤ n

SiL0(ε1)⊗ ΛjL0(−εn)

By Pieri’s rule, we get

SiL0(ε1)⊗ ΛjL0(−εn) = L0(iε1 − εn−j+1 − · · · − εn)⊕ L0((i− 1)ε1 − εn−j+2 − · · · − εn)

when 1 ≤ j < n, and if j = n we only get the first factor.
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For j 6= n, as a g0-module the kernel of q on SiV0 ⊗ ΛjV ∗
1

will be

L0(iε1 − εn−j+1 − · · · − εn)

For j = n, the kernel of q on SiL0(ε1)⊗ΛjL0(−εn) will be everything if d = n (equivalently
i = 0), or the kernel will be trivial if d > n (equivalently i > 0). Hence, as a g0-module, the
kernel of q on SdV will be ⊕

0≤i<min(d,n)

L0((d− i)ε1 − εn−i+1 − · · · − εn).

for d 6= n, and for d = n we get⊕
0≤i≤n

L0((n− i)ε1 − εn−i+1 − · · · − εn).

We can write S•V = k[x1, . . . , xn, ξ1, . . . , ξn] where xi has weight εi, ξi weight −εi. Then x1

is our highest weight vector, and so xd1 will be a highest weight vector for all d ≥ 0. As a
g0-module, xd1 generates SdV0. In g1 we have all differential operators ξi∂xj − ξj∂xi , for i < j.
Applying to xd1, sequentially,

ξn∂x1 − ξ1∂xn , ξn−1∂x1 − ξ1∂xn−1 , . . . , ξ2∂x1 − ξ1∂x2

we get, up to scalar,

ξnx
d−1
1 , ξn−1ξnx

d−2
1 , . . . , ξ2 · · · ξnxd−n+1

1

these are exactly the generators of the irreducible g0-summands of the kernel of q for d 6= n.
For d = n, we also get the one-dimensional g0-module generated by

ξ1 · · · ξn.

However, this element is not in Ug·xn1 ; indeed, xn1 is in the g-submodule given by the image of
q : Sn+2V → SnV , but ξ1 · · · ξn is not in the image of q. Further, by applying operators xi∂ξi
from the p(n)-action we can get back to SdV0 from any of the above elements ξi · · · ξnxd−n+i

1 .
It follows from the above analysis that ker q ∼= Lb(dε1) for d 6= n. If d = n, ker q is a
nontrivial extension of Lb(−ω) by Lb(nε1).

Now we claim that S0(V ) = k, S1V = V , and for d ≥ 2, d 6= n we have the following
socle filtrations:

SdV =
ΠL((d− 2)ε1)

L(dε1)
,
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unless d = n, in which case we get

SnV =

ΠL((n− 2)ε1)

ΠnL(−ω)

L(nε1)

.

Further, in each of the above cases, the radical of the module is equal to ker q.
Proof of claim: we have already computed the kernel of q in each case and have shown

it is indeed the radical of each module shown above. Further, our analysis shows that as a
g0-module, we get an isomorphism (for d ≥ 2)

q : SdV/ ker q → Lb((d− 2)ε1)

It follows that this must be an isomorphism of g-modules. To finish the proof, we need to
show the socle filtration is as advertised. We see that q(x1ξ1 · · · ξn−1) 6=, and further

(ξn∂x1 − ξ1∂xn)(x1ξ1 · · · ξn−1) = (−1)n−1ξ1 · · · ξn.

This completes the proof. We obtain the following corollary on the cohomology of q.

Corollary 5.6.8. The cohomology of the operator q on S•V is one-dimensional and spanned
by ξ1 · · · ξn. As a p(n)-module it is isomorphic to ΠnL(−ω).

5.6.14 Symmetric algebras for q(n)-modules

By Schur-Sergeev duality (see [10] chapter 3), we have that Sm(Q∗n|n) is irreducible of highest
weight −mεn with respect to the standard Borel for all m,n.

For the family of typical spherical modules for q(2), we compute the symmetric algebras of
the dual with respect to the Borel (bst)op. This leads to a canonical identification Lbst(λ)∗ ∼=
L(bst)op(−λ) when the length of λ is 2 (the length is the number of non-zero entries of λ with
respect to the basis ε1, . . . , εn of h∗

0
described in section 2.3.2). We then have for t 6= −1/2,

by the character formula for typical q(2)-modules,

Sd(L((t+ 1)ε1 + tε2)∗) ∼= ΠdL(bst)op(−d(t+ 1)ε1 − dtε2)

and
Sd(ΠL((t+ 1)ε1 + tε2)∗) ∼= L(bst)op(−d(t+ 1)ε1 − dtε2)

5.7 Group-graded supergroups and actions

Next we study spherical varieties for an especially well-understood class of quasi-reductive
supergroups, those which are group-graded. We first give a definition along with a brief
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discussion of group-graded supergroups and their actions. This will closely follow the defini-
tions and theorems of section 4 of [62], except that we are working in the algebraic category
and not the complex analytic category.

Introduce the category GSV whose objects are supervarieties of the form X = (|X0|,Λ•N )
where X0 is a variety and N is a coherent sheaf on X0. In other words the objects are graded
supervarieties with a given choice of grading. This endows all objects of GSV with a canonical
Z-grading on their structure sheaf. We then define morphisms in this category to be those
morphisms of supervarieties that preserve the given Z-gradings.

There is a natural functor gr from the category of locally graded supervarieties to GSV.
On objects it is given by

grX = (|X|,
⊕
i≥0

J i
X/J i+1

X ),

so that in particular |X| = | grX| and X(k) = | grX(k)|. Note that the natural map
ΛiJX/J 2

X → J i
X/J i+1

X is an isomorphism because of our assumption that supervarieties are
locally graded. For a morphism ψ : X → Y we let grψ : grX → grY be the same map of
underlying topological spaces and set

(grψ)∗ :
⊕
i≥0

J i
Y /J i+1

Y → (grψ)∗
⊕
i≥0

J i
X/J i+1

X

to be
(grψ)∗(f + J i

Y ) = ψ∗(f) + J i
X

where f is a section of J i−1
Y .

If X and Y are locally graded supervarieties, then X×Y is a locally graded supervariety
in a natural way, and JX×Y = p∗XJX +p∗YJY , where pX , pY are the natural projection maps.
On the other hand, given two graded supervarieties X ′ = (|X ′|,Λ•NX′), Y ′ = (|Y ′|,Λ•NY ′),
we define their direct product in GSV to be the direct product of supervarieties X ′×Y ′ with
the natural splitting OX′×Y ′ = Λ•(p∗X′0

NX′⊕p∗Y ′0NY ′). Then there is a canonical isomorphism

in GSV gr(X×Y ) ∼= grX× grY coming from the fact that taking tensor product commutes
with taking associated graded for filtered vector spaces with finite filtrations.

If G is an algebraic supergroup, then using the canonical isomorphism gr(G×G) ∼= grG×
grG we have that grG with the maps grmG, gr eg and gr sG forms a algebraic supergroup.
If g = LieG we write ggr := Lie grG. Further, if a : G × X → X is an action of a Lie
supergroup on a locally supervariety X, then gr a : gr(G×X) ∼= grG× grX → grX defines
an action of grG on grX.

Definition 5.7.1. If G is a supergroup, we call grG the group-graded supergroup gotten
from G, and we say G is a group-graded supergroup if G ∼= grG as supergroups. If a :
G × X → X is an action of G on a locally graded supervariety X, we call gr a the graded
action of grG on grX, and we say that a is a graded action if it is isomorphic to gr a in the
natural sense.
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Remark 5.7.2. As algebraic supergroups are smooth affine supervarieties, they are always
graded. The property of being group-graded is stronger in that it requires the multiplication
and inversion morphisms to respect some grading.

We give an explicit construction of grG. Being affine the supergroup G is graded, so
fix a grading of G so that its structure sheaf is equipped with a Z-grading. We call G with
this chosen grading grG, and we think of it as an object of GSV. This choice of grading
determines a grading of G×G, and thus we may write

m∗G =
⊕
i≥0

(m∗G)i, s∗G =
⊕
i≥0

(s∗G)i

where (m∗G)i, respectively (s∗G)i increase the Z-grading of an element by exactly i. We set
m∗grG = (m∗G)0, s∗grG = (s∗G)0, and e∗grG = e∗G, and these are all algebra homomorphisms. In
this way, the induced maps on the supervariety G given by mgrG, sgrG, and egrG become
morphisms in GSV and define the structure of a supergroup on grG, and thus this supergroup
is group-graded. It follows in particular that we may identify (grG)0 and G0 as algebraic
groups.

Now since we have constructed grG so that it is the same supervariety as G (the only
difference being that it has a chosen Z-grading on its structure sheaf), we have an identi-
fication TeG = Te grG. Thus we may canonically identify g ∼= ggr as super vector spaces.
Given ue ∈ TeG, we write uL (resp. uR) for the corresponding G right-invariant (resp. G
left-invariant) vector field on G, and gruL (resp. gruR) for the corresponding grG right-
invariant (resp. grG left-invariant) vector field on G. Using the Z-grading on k[G] we may
write uL =

∑
i∈Z

(uL)i (resp. uR =
∑
i∈Z

(uR)i) as endomorphisms of k[G], where (uL)i (resp.

(uR)i) changes the Z-grading by i.

Lemma 5.7.3. Let ue ∈ TeG. If ue is even then gruL = (uL)0 and gruR = (uR)0, and if ue
is odd then gruL = (uL)−1 and gruR = (uR)−1.

Proof. We prove this for right-invariant vectors, with the case of left-invariant vector fields
being similar. have

uL = −(ue ⊗ 1) ◦ (m∗G) =
⊕
i≥0

−(ue ⊗ 1) ◦ (m∗G)i.

For f ∈ k[G]k, (m∗G)i(f) ∈
⊕
j

k[G]j ⊗ k[G]k+i−j. If ue is even, then ue vanishes on k[G]i for

i > 0, so
−(ue ⊗ 1) ◦ (m∗G)i = (uL)i,

so gruL = (uL)0. If ue is odd, then ue vanishes on k[G]i for i 6= 1, so

−(ue ⊗ 1) ◦ (m∗G)i = (uL)i−1,

so gruL = (uL)−1.
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Corollary 5.7.4. We have [ggr

1
, ggr

1
] = 0, i.e. ggr is graded (see example 2.3.2). In fact a

supergroup G is group-graded if and only if g is graded, where g = LieG.

Proof. For the first statement, the supercommutator of two degree (-1)-maps is of degree (-2)
with respect to the Z-grading. However there are no vector fields of degree (-2) on a graded
supervariety, thus the supercommutator must be zero. A proof of the second statement is
given in proposition 4.4 of [62].

Now G0 ×G0 acts on G by left and right translation. Using Koszul’s realization of k[G]
as a coinduced algebra on k[G0] (see [31]), which gives a natural grading of G, we obtain
a natural G0 × G0-equivariant grading (this does not require that G0 is reductive; if G0 is
reductive we could also use theorem 4.8.2 to find a G0 × G0-equivariant grading). Thus if
we constructed grG as above, then using the G0 × G0-equivariant grading we would have
that if ue is even, uL = (uL)0 and uR = (uR)0 since they will preserve the Z-grading. Thus
we have shown:

Lemma 5.7.5. If we construct grG by using a G0 ×G0-equivariant grading of G, then for
an even tangent vector ue ∈ TeG, uL = gruL and uR = gruR. In particular g0 = ggr

0
as

Lie algebras of vector fields on G. Further, the natural isomorphism of super vector spaces
g1
∼= ggr

1
induced from this grading is an isomorphism of g0-modules.

Proof. It remains to show the second statement. For this, we observe that for u ∈ g0, v ∈ g1,
[u, v]i = [u, vi]. Since gr v = v−1, the statement follows.

We now move on to the study of graded actions. For the rest of the section we assume
that X is locally graded.

Lemma 5.7.6. Suppose G is a supergroup which acts on a supervariety X, and consider
the action of grG on grX. Then for u ∈ ggr

0
, u preserves the Z-grading on OgrX , and for

u ∈ ggr

1
, u acts by degree −1 on OgrX .

Proof. For f ∈ (OgrX)i, we have

u(f) = −(ue ⊗ 1) ◦ (gr a)∗(f).

Now since gr a preserves the Z-grading, we have (gr a)∗(f) ∈
⊕

0≤j≤i
(OgrG)j ⊗ (OgrX)i−j. If

u ∈ ggr

0
, then ue vanishes on (OG)i for i > 0, and if u ∈ ggr

1
then ue vanishes on (OG)i for

i 6= 1. The result follows.

Now if K is a closed subgroup of G via the inclusion φ : K → G, then the Z-gradings
induced on k[G] and k[K] from Koszul’s realization make the natural pullback surjection
φ∗ : k[G] → k[K] into a graded map. Thus the kernel of this map, IK ⊆ k[G], becomes a
graded ideal. Further, if we consider the group-graded supergroup structure on K and G
from these gradings, φ will be a homomorphism of supergroups grK → grG. Thus grφ = φ,
and so IK = IgrK .
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Lemma 5.7.7. If X is a supervariety and x ∈ X(k), StabgrG(x) = StabG(x) as closed
subvarieties of G.

Proof. Write K = StabG(x), Ix for the maximal ideal sheaf of x ∈ X(k) and Igr
x for the

maximal ideal sheaf of x ∈ grX(k). Then by assumption we have (ax)
∗(Ix) = IK . But

with respect to the Z-grading from Koszul’s realization, IK is a graded ideal and thus
(gr ax)

∗(Igr
x ) = IK = IgrK , and we are done.

Corollary 5.7.8. If X is a homogeneous G-supervariety isomorphic to G/K, then grX is
a homogeneous grG-supervariety isomorphic to grG/ grK.

5.7.1 G a quasi-reductive group-graded supergroup

Let G be a quasi-reductive supergroup, and write g = LieG as always.

Lemma 5.7.9. If l ⊆ g1 is an abelian ideal of g, then l is contained in every hyperborel
subalgebra of g.

Proof. If b is a hyperborel subalgebra, then b + l is a subalgebra that still satisfies the first
two properties of being a hyperborel, and thus by maximality b = b + l.

Corollary 5.7.10. Let G be a group-graded quasi-reductive supergroup. Then every hyper-
borel of g is of the form b0 ⊕ g1, where b0 is a Borel subalgebra of g0. In particular G has
only one hyperborel subalgebra up to conjugacy.

Proof. In this case g1 is an abelian ideal of g, so we use lemma 5.7.9 to get that every
hyperborel must contain g1, and thus they are all of this form. If b, b′ are two hyperborels,
then conjugating b0 to b′

0
will conjugate b to b′.

In fact, we have

Proposition 5.7.11. If g is quasi-reductive and g1 is contained in a hyperborel subalgebra,
then g is graded.

Proof. Since [g1, g1] ⊆ g0 is a submodule of the adjoint representation, if it is nonzero it
must intersect any Cartan subalgebra nontrivially. Thus if g1 is contained in a hyperborel
subalgebra we must have [g1, g1] = 0, i.e. g is graded.

The following lemma now follows easily from what we have shown so far.

Lemma 5.7.12. If G is a quasi-reductive supergroup, and B is a hyperborel subgroup of G,
then grG is quasi-reductive and grB is a subgroup of a hyperborel of grG.

We can now prove that the functor gr preserves sphericity.

Corollary 5.7.13. Suppose that G is quasi-reductive and X is a spherical G-supervariety.
Then grX is a locally graded spherical grG-supervariety under the graded action.
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Proof. Let B be a hyperborel of G with an open orbit on X. Then by corollary 5.7.8, grB
has an open orbit on the same underlying open subset of |X|. By lemma 5.7.12, grB is
contained in a hyperborel of grG, and the hyperborel of grG containing grB has an open
orbit at x. Thus grX is spherical.

For the rest of this section we assume that G is a group-graded quasi-reductive super-
group.

Proposition 5.7.14. Suppose that X is a locally graded spherical G-supervariety. Then
soc k[X] is a subalgebra of k[X] and the restriction of i∗X to soc k[X] is injective. In particular,
soc k[X] is an even subalgera of k[X] without nilpotents.

Proof. A semisimple representation of G is exactly the pullback of a semisimple representa-
tion of G0 under the natural surjection G → G0. Therefore soc k[X] can be thought of as
a sum of simple G0-representations, and thus the tensor product of two subrepresentations
of soc k[X] is again a semisimple G0-representation. Since multiplication is G-equivariant, it
follows that soc k[X] is a subalgebra of k[X].

Recall that iX is a G0-equivariant map of algebras. If soc k[X] ∩ ker i∗X 6= 0, then it
must contain a simple subrepresentation L. Let f ∈ L be the B-highest weight vector for
some hyperborel B of G. Then by theorem 5.1.4, f is non-nilpotent and thus i∗X(f) 6= 0, a
contradiction. This completes the proof.

Corollary 5.7.15. If X is a locally graded affine spherical G-supervariety, then k[X] is
completely reducible if and only if X = X0.

Proof. If X = X0 then G acts via the quotient to G0 so k[X] is completely reducible.
On the other hand, the condition that k[X] is completely reducible is equivalent to

k[X] = soc k[X]. By proposition 5.7.14, this condition implies that i∗X is an isomorphism, so
X = X0.

We now focus on the case of homogeneous spherical supervarieties for G.

Lemma 5.7.16. If X is a homogeneous G-supervariety, then X is graded, and the action
a : G×X → X is isomorphic to the graded action gr a.

Proof. This follows directly from corollary 5.7.8.

Proposition 5.7.17. If X is a homogeneous G-supervariety, then X is spherical if and only
if X0 is a spherical G0-variety.

Proof. If X = G/K, then we want to determine when k = LieK has a complementary
hyperborel subalgebra in g = LieG. By corollary 5.7.10, the hyperborels of g = LieG are
all of the form b0 ⊕ g1 for a Borel subalgebra b0 of g0. Thus it is equivalent to find a Borel
subalgebra b0 complementary to k0 in g0. Since X0 = G0/K0, this completes the proof.
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Proposition 5.7.18. If X is a homogeneous spherical G-supervariety, then there exists a
grading of X for which k[X]0 = soc k[X]. In particular, if B is a hyperborel of G, then
Λ+
B(X) = Λ+

B0
(X0).

Proof. By lemma 5.7.16, there exists a grading of X for which the action of G is graded.
With respect to this action, g1 acts by degree −1 derivations on OX . Thus k[X]0 ⊆ k[X]g1 =
soc k[X]. On the other hand, by proposition 5.7.14, iX : soc k[X]→ k[X0] is injective. Since
iX : k[X]0 → k[X0] is an isomorphism we must have k[X]0 = soc k[X].

In the case of homogeneous affine spaces, we have the following strengthening of corol-
lary 5.7.15. Note that a homogeneous space G/K is affine if and only if K0 is reductive, i.e.
K is quasi-reductive.

Proposition 5.7.19. If X = G/K is a homogeneous affine G-space, then the following are
equivalent.

1. X = X0.

2. k[X] is completely reducible.

3. k splits of from k[X] as a G-module.

Before proving this, we first state a lemma.

Lemma 5.7.20. Suppose that G is quasi-reductive and that g = Lie(G) has an odd abelian
ideal l ⊆ g1. Then if K ⊆ G is a quasi-reductive subgroup, k splits off from k[G/K] only if
l ⊆ k = Lie(K).

Proof. Suppose that l is not contained in k. Let m = k ∩ l, and let r be a k0-invariant
complement to m in l, where we are using that K0 is reductive. Write L,M , and R for the
purely even vector spaces with L = l1,M = m1, and R = r1. We may naturally view L as a
g0-module according to the restriction of the adjoint action of g0 to l, using that l is an ideal
of g.

Now consider the following g-module V . As a g0-module, V = L⊗ L∗ ⊕ ΠL∗. Choose a
g0-invariant complement l′ to l in g1. Then we say that for u ∈ l′, u acts by 0 on V , and for
u ∈ l, u acts by 0 on V0 = L⊗L∗, while for ϕ ∈ V1 = ΠL∗, we set u ·ϕ := u⊗ϕ ∈ V0. Then
this defines a representation of g on V . Further, the span of the element vL ∈ V0 = L⊗ L∗
which correspond to the identity map on L defines an even trivial subrepresentation k〈vL〉
of V . This subrepresentation does not split off of V , as we see that if u1, . . . , un is a basis
of L and ϕ1, . . . , ϕn is a the parity shift of a dual basis in ΠL∗, then we have the following
equation in V :

n∑
i=1

ui · ϕi =
n∑
i=1

ui ⊗ ϕi = vL

Consider the element ψ ∈ V ∗ corresponding to the trace form on R⊗R∗ ⊆ L⊗L∗. Then
as an element of V ∗, ψ is k0-invariant since R is a k0-submodule. If u ∈ k1 and ϕ ∈ V1,
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then u · ϕ = u ⊗ ϕ ∈ M ⊗ L∗, and thus ψ(u ⊗ ϕ) = 0. It follows that ψ ∈ (V ∗)k, i.e. it
defines an even coinvariant of V , so by Frobenius reciprocity it defines a G-module morphism
Ψ : V → k[G/K]. Further, since ψ(vL) 6= 0 and vL is G-fixed, Ψ(vL) is a non-zero constant
function on G/K. We see that

n∑
i=1

ui ·Ψ(ϕi) = Ψ

(
n∑
i=1

ui · ϕi

)
= Ψ(vL).

It follows that k does not split off from k[G/K], and we are done.

Now we prove proposition 5.7.19.

Proof. Since g1 if an odd abelian ideal of g, if K ⊆ G is a quasi-reductive subgroup, k splits
off from k[G/K] only if g1 ⊆ k by lemma 5.7.20, and in this case G/K is a purely even
variety. This shows (3) =⇒ (1). Both (1) =⇒ (2) and (2) =⇒ (3) are obvious.

5.8 Sphericity and the Duflo-Serganova functor

Let g be a Lie superalgebra and x ∈ g1 a self-commuting element (i.e. [x, x] = 0). Then
Im ad(x) = [x, g] is an ideal of ker ad(x), so we may define a new Lie superalgebra gx :=
ker ad(x)/ Im ad(x). Further, if V is a representation of g, then Vx := ker(x)/ Im(x) will be
a representation of gx. This defines a functor DSx from the category of g-modules to the
category of gx-modules, called the Duflo-Serganova functor, which was originally studied in
[15]. It is a tensor functor but it is not exact.

5.8.1 Formulation of question

Let G̃ be a quasi-reductive supergroup with Lie superalgebra g̃, and let x ∈ g̃1 be a self-
commuting element. Let C(x) be the stabilizer of x under the parity shift of the adjoint

representation, i.e. the action of G̃ on Πg̃. In particular

LieC(x) = c(x) = ker ad(x),

the centralizer of x in g̃. LetM ⊆ C(x) be a normal subgroup with LieM = [x, g̃] = Im ad(x).
Now let G := C(x)/M so that g := LieG ∼= g̃x. Finally, let K be a closed subgroup of G
with k its Lie superalgebra.

Consider the homogeneous supervariety G̃/K̃ where K̃ is a closed subgroup of C(x) with

k̃ := Lie K̃ the preimage of k under the projection c(x) → g. Notice that a special case of

this is when K = G and K̃ = C(x) so that we get G̃/C(x). This is exactly the odd adjoint
orbit of x in Πg̃.

We will give a answer to the following question for certain supergroups G, certain sub-
groups K, and certain self-commuting elements x:
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(Q1) If G/K is spherical, is G̃/K̃ also spherical? Equivalently is k̃ is a spherical subalgebra
of g̃?

As already indicated, (Q1) includes in particular the question:

(Q2) Is G̃/C(x) spherical? In other words, are odd adjoint orbits of self-commuting elements
of g̃1 spherical?

Given the importance of adjoint orbits in representation theory, the second question is of
clear interest.

Both (Q1) and (Q2) are false in general: if g0 is reductive and V is a g0-module that is not
spherical then the centralizer of a general odd element in g0n V will not be a spherical sub-
algebra. However in many situations, in particular for distinguished basic Lie superalgebras,
the answer is yes:

Theorem 5.8.1. Suppose that G̃ is a quasi-reductive supergroup such that Lie G̃ is distin-
guished basic. Then the answer to (Q1), and thus also (Q2), is always yes. Further we have

a characterization of which Borels (up to conjugacy) of g̃ are complementary to k̃ in g̃.

To clarify, a subspace V ⊆ g̃ is complementary to k̃ if V + k̃ = g̃. If g̃ is not basic
distinguished then our results are not as strong, but are still of interest.

Our approach to understanding sphericity in this problem will be via Borel subalgebras,
which are always contained in hyperborel subalgebras if g is Cartan even, which we will
assume. Thus if a subalgebra k ⊆ g has a complementary Borel subalgebra, and g is Cartan
even, it will also have a complementary hyperborel subalgebra.

5.8.2 General case

Suppose that g̃ is a Cartan-even quasi-reductive Lie superalgebra, h ⊆ g̃ a Cartan subalgebra,
and x ∈ g̃1 is an odd self-commuting root vector of weight α. Finally, choose a Borel
subalgebra b ⊆ g which is complementary to k. Then we suppose that there exists a Borel
subalgebra b̃ of g̃ such that

(1) α is the smallest root, i.e. if b̃ is determined by the homomorphism γ : Q → R, then
γ(α) ≤ γ(β) for all β ∈ ∆; and

(2) b ⊆ (c(x) ∩ b̃)/([x, g] ∩ b̃).

Writing px : c(x)→ g for the natural projection, we claim that k̃ = p−1
x (k) has k̃ + b̃ = g̃,

so in particular k̃ is a spherical subalgebra. Indeed, if y is a root vector of weight β and
y /∈ c(x), then [x, y] 6= 0 so α + β is a root. Since α is the smallest root, we must have

β ∈ ∆+, i.e. β must be positive. Therefore y ∈ b̃. On the other hand if y ∈ c(x) then by our

second assumption on b̃ we have that b̃ ∩ c(x) + k̃ = c(x) so y ∈ b̃ + k̃. Thus we have shown

that g̃ = b̃ + k̃. We state this as a theorem:
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Theorem 5.8.2. In the context of section 5.8.1, suppose that G̃ is Cartan-even, x is a root
vector of weight α, and k is spherical with respect to some Borel subalgebra b. Then if there
exists a Borel subalgebra b̃ of g̃ such that α is the smallest root and b ⊆ (c(x)∩ b̃)/([x, g]∩ b̃),

then G̃/K̃ is spherical with respect to b̃.

This result has the following nice corollary.

Corollary 5.8.3. If G̃ is a Cartan-even quasi-reductive Lie supergroup and x ∈ g̃1 is root

vector with weight α such that there exists a Borel subalgebra b̃ of Lie G̃ where α is the
smallest root, then G̃/C(x) is spherical with respect to this Borel.

5.8.3 Basic distinguished case

The Duflo-Serganova functor has been heavily studied for basic distinguished Lie superalge-
bras. For the remainder of this section, let g be one of basic distinguished Lie superalgebras
and choose a Cartan subalgebra h ⊆ g. We will use many of the results proven in [15],
including the next lemma.

Lemma 5.8.4. Let x ∈ g1 be self-commuting. Then there exists a Cartan subalgebra h and
mutually orthogonal isotropic roots α1, . . . , αk such that x = x1 + · · · + xk where xi ∈ gαi is
a nonzero root vector.

Definition 5.8.5. Given a self-commuting element x ∈ g1, the integer k in the above lemma
is an invariant of x and we call it the rank of x. We define the defect of g to be the maximal
rank of all self-commuting elements of g1.

Define the self-commuting cone X0 of g to be the variety X0 = {x ∈ g1 : [x, x] = 0}.
Then X0 is stratified by rank. Further, X0 is G0-stable under the adjoint action of G0 on
g1, and this action preserves the rank of an element. In [15] it shown that there are only
finitely many G0-orbits on X0, and the orbits are in natural bijection with the orbits of the
Weyl group acting on the set of all subsets of ∆1 consisting of mutually orthogonal isotropic
roots.

The exceptional Lie superalgebras are all of defect one, so for our purposes they will
mostly fall under theorem 5.8.2. On the other hand, gl(m|n) is of defect min(m,n) and
osp(m|2n) is of defect min(bm

2
c, n), so these cases will be more complicated. For them we

will use the following lemma which is easy to prove.

Lemma 5.8.6. For gl(m|n) and osp(m|2n), all odd self-commuting elements are G0-conjugate
to one of the form x = x1 + · · · + xk, where xi is a root vector of weight ci(εi − δi), where
ci = ±1.

We now give a table which explains the application of the Duflo-Serganova functor on g
for each case we consider. Note that if x is rank 0 we have x = 0 and gx = g, so we don’t
consider this case.
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g Defect Rank of x gx
gl(m|n) min(m,n) k gl(m− k|n− k)

osp(2m|2n) min(m,n) k osp(2(m− k)|2(n− k))
osp(2m+ 1|2n) min(m,n) k osp(2(m− k) + 1|2(n− k))

d(2|1; t) 1 1 sl2
ab(1|3) 1 1 sl3
g(1|2) 1 1 sl2

Table 5.4: Duflo-Serganova functor for basic distinguished Lie superalgebras

Now we briefly explain how to split the surjection c(x)→ gx in these cases, as is described
in [15]. Let x ∈ g1 be self-commuting and write x = x1 + · · ·+ xk as in lemma 5.8.4 for odd
mutually orthogonal isotropic roots A = {α1, . . . , αk}. Let

∆x = {β ∈ ∆ : (β, αi) = 0 for i = 1, . . . k} \ {±α1, . . . ,±αk}.

Let hA = span(hα1 , . . . , hαk) ⊆ h, where hαi is the coroot of αi. Then hA ⊆ h⊥A. If we
let h∆x = span(hβ : β ∈ ∆x) then h∆x ⊆ h⊥A, and h∆x ∩ hA = 0. Now choose a splitting
h⊥A = h(x)⊕hA such that h∆x ⊆ h(x). Then gx may be described as the following subalgebra
of g:

gx = h(x)⊕
⊕
β∈∆x

gβ.

With a little more care in how one chooses h(x), one may perform the above process of
producing a splitting for gx1+···+xi for each 1 ≤ i ≤ k so that we have gx1+···+xi−1

⊆ gx1+···+xi
for all i. Let us suppose we have done this, so that we have a chain of subalgebras

gx = gx1+···+xk ⊆ gx1+···+xk−1
⊆ · · · ⊆ gx1 ⊆ g.

5.8.4 gl(m|n) and osp(m|2n)

We now deal with the cases of gl(m|n) and osp(m|2n). Let us state a few lemmas. We
remain in the setup of the above construction for gx as a subalgebra of g.

Lemma 5.8.7. If b is a Borel subalgebra of g containing h, then b∩gx is a Borel subalgebra
of gx containing h(x).

Proof. Using the description of gx as a subalgebra of g spanned by certain root spaces
and a torus, and that the roots of b are those which are positive with respect to some
homomorphism Q→ R, this is immediate via restriction of said homomorphism

Lemma 5.8.8. Let g be the Lie superalgebra gl(m|n) or osp(m|2n). Let b(x) be a Borel
subalgebra of gx with h(x) ⊆ b(x). Then there exists a Borel b of g such that
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(1) α1 is the lowest root

(2) b ∩ gx1+···+xi−1
is a Borel subalgebra of gx1+···+xi−1

, and αi is the lowest root of of this
Borel.

(3) b ∩ gx = b(x).

Proof. Using lemma 5.8.6, let us assume that αi = ci(εi − δi) where ci = ±1.
Note that for gl(m|n) and osp(m|2n) Borel subalgebra b may be constructed via a ho-

momorphism Q → R given by pairing with a particular integral coweight h ∈ h, which we
now construct. If h(x) is the Cartan of b(x), a subalgebra of h by our setup, let hx ∈ h(x)
be an integral coweight which defines b(x). Using the explicit description of the root system
given in chapter 1, define hi to be dual to εi, hi dual to δi. Then let

h′ = c1(a1h1 − b1h1) + · · ·+ ck(akhk − bkhk),

where
a1 < b1 < a2 < b2 < · · · < ak < bk � 0.

Here we we want bk to have the property that bk < min
α

(hx, α). Then let h = h′ + hx. The

element h′ will give conditions (1)-(2), and hx condition (3), using that h′ is orthogonal to
all the roots in ∆x.

We continue with our setup in the next proposition.

Proposition 5.8.9. Let b be a Borel subalgebra containing h. Then b+ c(x) = g if and only
if b satisfies the conditions (1) and (2) in lemma 5.8.8 for some reordering of α1, . . . , αk.

First we have a lemma:

Lemma 5.8.10. Let g be either gl(m|n) or osp(m|2n). Then if β is any root, and α1, . . . , αk
is a set of mutually orthogonal isotropic roots, then β is not orthogonal to at most two of the
αi.

Proof. This is easily seen from the root systems of each algebra.

Proof of proposition 5.8.9. Suppose b satisfies the conditions. Let y ∈ gβ be a root vector
of g. If β = ±αi for some i, then clearly y ∈ b + c(x). Hence we may assume this is not
the case. If y is orthogonal to all αi, then y ∈ c(x). Therefore let αi, αj with i ≤ j be such
that (β, αi), (β, αj) 6= 0, and (β, αl) = 0 for l 6= i, j (note that we may have i = j). By our
assumptions on y, we know it must commute with xl for l 6= i, j.

If y commutes with xi and xj, then y ∈ c(x). By assumption we have y ∈ gx1+···+xi−1
, so

if [y, xi] 6= 0 we use that αi is the smallest root of b ∩ gx1+···+xi−1
to obtain that β must be

positive in gx1+···+xi−1
, and thus y ∈ b.

Finally, we suppose i < j, [y, xi] = 0 and [y, xj] 6= 0. Write x−i ∈ g−αi for a nonzero
root vector of weight −αi. Then we have [x−i, y] = z 6= 0, and z is a root vector of weight
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β−αi possessing the same properties as β with respect to the roots α1, . . . , αk. In particular,
[xl, z] = 0 for l 6= i, j. Up to a nonzero scalar we can write y = [xi, z], and therefore

y = [xi, z] = [xi + xj, z]− [xj, z] = [x, z]− [xj, z]

Since [x, z] ∈ c(x), it suffices to show that [xj, z] ∈ b + c(x), which is a root vector of weight
β − αi + αj, and thus again has the same orthogonality properties as β with respect to the
roots α1, . . . , αk. Further we see that it commutes with xj, and so by repeating our above
argument with y = [xj, z] we will find that y ∈ c(x) + b. Since h ⊆ b, we have shown that
g = c(x) + b.

Now suppose that b is a root Borel subalgebra such that b + c(x) = g. Suppose none of
the roots α1, . . . , αk are lowest. Then choose one which is minimal, call it α1 up to reordering.
Then there exists a negative root β such that [eβ, x1] 6= 0, where eβ ∈ gβ is a nonzero root
vector. However by assumption we may write eβ = b + c, for b ∈ b, c ∈ c(x). Then we
have [eβ, x] = [b, x]. But the lowest non-zero weight vector in [b, x] will be larger than that
in [eβ, x] in the ordering that defines b, a contradiction. Therefore we have that α1 is the
smallest root.

Now suppose, up to reordering of our indices, we have shown that α1, . . . , αi satisfy
the correct minimality properties. Suppose up to reordering that αi+1 is minimal amongst
αi+1, . . . , αk in gx1+···+xi−1

, but αi is not minimal in gx1+···+xi . Then by the same argument
just described, there exists a nonzero root vector eβ ∈ gx1+···+xi such that [eβ, xi+1] is a lower
root vector in gx1+···+xi . Suppose eβ = b+ c, with b ∈ b and c ∈ c(x). Then we have

[eβ, xi+1 + · · ·+ xk] = [b, xi+1 + · · ·+ xk]− [c, x1 + · · ·+ xi]

Now since [eβ, xi+1 + · · · + xk] ∈ gx1+···+xi , and [c, x1 + · · · + xi] ∈ [x1 + · · · + xi, g], we
must have that the all root vectors with non-zero coefficient in [eβ, xi+1 + · · ·+xk] appear in
[b, xi+1 + · · ·+ xk]. But this is impossible, since b will only increase weights in our ordering.
Hence αi+1 must be minimal. Induction proves our claim.

Proposition 5.8.11. Let g and x be as in the above proposition, and let k(x) ⊆ gx be a
subalgebra such that b(x) + k(x) = gx, for a Borel b(x) with Cartan subalgebra h(x) (we
may always assume this up to conjugacy). Let k = [x, g] + k(x). Then k is spherical, and
for a Borel subalgebra b containing h we have b + k = g if and only if b satisfies (1)-(3) of
lemma 5.8.8 for some Borel subalgebra b(x) complementary to k(x).

Proof. Let b be a Borel of b satisfying conditions (1)-(3) with respect to α1, . . . , αk and
the Borel b(x). Then by proposition 5.8.9 we have b + c(x) = g. On the other hand,
c(x) = b(x) + k. Therefore g = b + k.

Conversely, if b+c(x) = g, by proposition 5.8.9 we have b that satisfies conditions (1)-(2).
The third condition is clear.
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5.8.5 The case of exceptional algebras

Now let g be an exceptional basic distinguished Lie superalgebra, and choose a Cartan
subalgebra h ⊆ g.

Lemma 5.8.12. The self-commuting cone of g has two orbits, {0} and G0 · eα where eα is
a non-zero root vector of weight α where (α, α) = 0.

Proof. We know that g has defect one, and further all isotropic roots are in the same Weyl
group orbit, so the statement follows.

Using lemma 5.8.12, we now assume that x = eα, where eα is an odd isotropic root α.

Proposition 5.8.13. A Borel subalgebra b of g which contains h is complementary to c(x)
if and only if α is the smallest root. Further, such Borel subalgebras always exist.

Proof. For the first statement we can use an argument identical to proposition 5.8.9. The
second statement can be checked case by case.

Proposition 5.8.14. Let k(x) ⊆ gx be a spherical subalgebra of gx. Then k := k(x) + [x, g]
is a spherical subalgebra of g. A Borel subalgebra b containing h is complementary to k if
and only if α is the lowest root of b and b ∩ gx is complementary to k(x).

Proof. The same proof as in proposition 5.8.11 applies.

From our work we have now finished proving theorem 5.8.1.



102

Chapter 6

Symmetric supervarieties

6.1 Symmetric supervarieties

6.1.1 Symmetric supervarieties

Let G be quasi-reductive. By an involution θ of G we mean a (nontrivial) homomorphism
of θ : G→ G of supergroups such that θ2 = idG. Then θ induces an involution on G0 and g,
which by abuse of notation we also write as θ. Write Gθ

0 for the fixed points of θ on G0 and
k the fixed points of θ on g, and define Gθ to be the closed subgroup of G corresponding to
the SHCP (Gθ

0, k).
Now let K ⊆ G be a closed subgroup such that (Gθ)0 ⊆ K ⊆ Gθ, where (Gθ)0 is the

connected component of the identity of Gθ. In particular we have Lie(K) = k. Note that
since G0 is reductive Gθ

0 is also, so K and thus also k are quasi-reductive.

Definition 6.1.1. The homogeneous space G/K is called a symmetric supervariety. We call
the pair (g, k) a supersymmetric pair.

We will often study supersymmetric pairs coming from involutions on Lie superalgebras
where no associated Lie supergroup has been chosen.

Example 6.1.2. Every Lie supergroup admits a canonical central involution δ which acts by
the identity on G0 and by the grading operator δ(x) = (−1)xx on g. In particular since it is
central it induces an order two bijection on the set of involutions of G with itself, up to any
notion of conjugacy, given by θ 7→ δ ◦ θ.

The associated symmetric supervariety G/G0 has underlying space consisting of just a
point with coordinate superalgebra is k[G/G0] = HomUg0(Ug, k). Thus it is is isomorphic to
Πg1 as a G0-supervariety. Note that it is spherical if and only if there exists a hyperborel
containing g1, equivalently if and only if g is graded by corollary 5.7.4.

Definition 6.1.3. Given a supersymmetric pair (g, k) coming from an involution θ, we write
(g, k′) for the supersymmetric pair coming from the involution δ ◦ θ. Writing p for the
(−1)-eigenspace of θ, we write p′ for the (−1)-eigenspace for δ ◦ θ.
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Notice that k′ = k0 ⊕ p1 and p′ = p0 ⊕ k1.

6.2 Iwasawa decomposition

The example 6.1.2 demonstrates that symmetric supervarieties need not be spherical. In the
classical world, symmetric varieties for reductive groups are always spherical, as follows from
the Iwasawa decomposition of the supersymmetric pair (g, k). Thus it must be the case that
the Iwasawa decomposition fails for symmetric supervarieties in general. We recall how this
decomposition works now, generalizing it to the super case.

Let g be a quasi-reductive Lie superalgebra, θ an involution of g, and k the fixed points
of θ. Write p for the (−1)-eigenspace of θ so that [k, p] ⊆ p and [p, p] ⊆ k. Now let a ⊆ p
be a maximal toral subalgebra of p, i.e. a maximal abelian subspace of p0 with the property
that the elements of a are semisimple in g0. We refer to a as a Cartan subspace of the
supersymmetric pair (g, k). Then a is also a Cartan subspace of the supersymmetric pair
(g, k′). Note that it is a classical fact that a 6= 0 if and only if g0 6⊆ k, and any two Cartan
subspaces are conjugate. Then we may decompose g into weight spaces under the adjoint
action of a.

Definition 6.2.1. Write ∆ ⊆ a∗ for the set of non-zero weights under the action of a on g.

If we extend a to a θ-stable Cartan subalgebra h0 ⊆ g0, then ∆ will exactly consist of the
set of non-zero restrictions of roots to a. Explicitly, we have a natural projection h∗ → a∗

coming from restriction, sending λ 7→ λ = (λ− θλ)/2, and ∆ = {α : α ∈ ∆} \ {0}.

Definition 6.2.2. Define ∆0 ⊆ ∆ to be the roots α ∈ ∆ such that α = 0, i.e. such that
α = θα.

We call ∆ ⊆ a∗ the restricted root system of θ and we call the elements of ∆ restricted
roots. Write Q := Z∆ ⊆ a∗ for the restricted root lattice. Then for a choice of homomor-

phism φ : Q → R such that φ(α) 6= 0 for all α ∈ ∆ we obtain subsets ∆
± ⊆ ∆ of positive

and negative restricted roots. We call such a partition of ∆ into positive and negative roots
that arises in this way a positive system for ∆. Define

n =
⊕
α∈∆

+

gα.

Write c(a) for the centralizer of a in g. Observe that

c(a) = h⊕
⊕
α∈∆0

gα

Then c(a) is θ-stable, and so c(a) = c(a) ∩ k⊕ c(a) ∩ p.
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Proposition 6.2.3. The condition c(a)∩ p = a is equivalent to the following decomposition
of g:

g = k⊕ a⊕ n.

We call such a decomposition an Iwasawa decomposition of the supersymmetric pair (g, k)
(or of the involution θ).

Proof. Suppose the Iwasawa decomposition holds, and let x ∈ c(a)∩ p. Write x = k+ a+ n
for a unique k ∈ k, a ∈ a, and n ∈ n. Then

−k − a− n = −x = θx = k − a+ θn.

Thus we find that k = −k and n = −θn. This forces k = 0, and since n and θn have different
weights for the action of a, we must have n = 0. Thus x ∈ a.

Conversely, suppose c(a) ∩ p = a. Then c(a) ⊆ a + k so we check that gα ⊆ k + a + n for

all α ∈ ∆. Let x ∈ gα. If α ∈ ∆
+

we have x ∈ n, so assume instead α is negative. Then
x = (x+ θx)− θx, and x+ θx ∈ k while θx ∈ n, so we are done.

One reason for the importance of the Iwasawa decomposition, as we already stated, is
the following.

Proposition 6.2.4. If (g, k) admits an Iwasawa decomposition, then there exists a Borel
subalgebra b such that b + k = g. In particular an associated symmetric supervariety G/K
is spherical.

Proof. Let φ : Q → R determine a positive system for ∆. We have a natural surjection
Q→ Q induced by restriction of roots to Q. Since Q is a free abelian group, we may write
Q = Q⊕Q′ for a free-abelian group Q′. Now extend φ to a homomorphism φ : Q→ R such
that φ(α) 6= 0 for all α ∈ ∆ and φ(α) > 0 whenever φ(α) > 0. Then the Borel subalgebra
determined by φ contains a⊕ n and thus is complementary to k in g.

Definition 6.2.5. Given an involution θ which admits an Iwasawa decomposition, we obtain
a group homomorphism φ : Z∆→ R as constructed in the proof of proposition 6.2.4, giving
rise to a positive system of ∆. We call a positive system of ∆ constructed in this way an
Iwasawa positive system and a Borel subalgebra arising from an Iwasawa positive system
will be called an Iwasawa Borel subalgebra of g.

It is a well-known theorem that if g = g0 is reductive then every symmetric pair has an
Iwasawa decomposition (see for instance section 26.4 of [61]). It follows that we always have
c(a) ∩ p0 = a. Therefore we obtain:

Corollary 6.2.6. If (g, k) is a supersymmetric pair with Cartan subspace a then g admits
an Iwasawa decomposition if and only if c(a) ∩ p1 = 0, i.e. c(a)1 ⊆ k1.
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In the super world example 6.1.2 shows this need not be true, in particular it is possible
for c(a)∩ p1 6= 0. In general, if c(a)1 6= 0 then necessarily at least one of (g, k) or (g, k′) must
not admit an Iwasawa decomposition. Further in this case one of these two supersymmetric
pairs admits an Iwasawa decomposition if and only if c(a)1 ⊆ k1 or c(a)1 ⊆ p1. This need
not happen, as the following example illustrates.

Example 6.2.7. Consider the involution θ on gl(n|n) given explicitly by[
a b
c d

]
7→
[
−dt bt

−ct −at
]

This gives rise to the supersymmetric pair (gl(n|n), p(n)). A Cartan subspace is given by

a =

{[
d 0
0 d

]
: d is diagonal

}
.

Hence

c(a) =

{[
d d′

d′ d

]
: d, d′ are diagonal

}
∼= sl(1|1)× · · · × sl(1|1).

We see that θ|c(a)1
6= ± idc(a)1

, so neither (g, k) nor (g, k′) admit an Iwasawa decomposition.
However despite the failure of having an Iwasawa decomposition, p(n) is still a spherical

subalgebra of gl(n|n), i.e. there is a complementary Borel subalgebra of p(n) in gl(n|n). In
particular the Borel subalgebra bδεδ···δε with simple roots

δ1 − ε1, ε1 − δ2, δ2 − ε2, . . . , εn−1 − δn, δn − εn

is complementary to p(n) (in fact this is the only Borel subalgebra with this property up to
conjugacy).

An issue, as we will see, with the supersymmetric pair in example 6.2.7 is that the
involution does not preserve the non-degenerate invariant form on gl(n|n). Indeed, for basic
distinguished Lie superalgebras we have a nice situation if we assume that the involution
preserves the invariant form.

Theorem 6.2.8. If g is a basic distinguished Lie superalgebra and θ is an involution that
preserves the invariant bilinear form on g, then either θ or δ ◦ θ has an Iwasawa decompo-
sition.

The proof of this theorem is given in appendix B and goes by way of studying (mild gen-
eralizations of) generalized root systems (GRSs) as developed by Serganova in [48]. Indeed,
the root system ∆ ⊆ h∗ satisfies the axioms of a GRS (see appendix B for definitions) and
the involution θ induces an automorphism of this GRS that preserves the bilinear form on
it when θ preserves the form on g. In appendix B we study the possibilities for ∆0, the set
of roots fixed by θ, in order to prove theorem 6.2.8.

In fact theorem 6.2.8 follows from the following more general theorem: let g be a distin-
guished basic Lie superalgebra and let θ be a semisimple automorphism of g which preserves
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the non-degenerate invariant form. Let h be a θ-stable Cartan subalgebra and write a ⊆ h
for the sum of eigenspaces of θ on h with eigenvalue not 1. Then we have

Theorem 6.2.9. The Lie superalgebra c(a) is an extension of an abelian Lie superalgebra by

the product of ideals a× l̃× l, where l is an even semisimple Lie algebra and l̃ is isomorphic
to either a simple basic Lie superalgebra, sl(n|n) for some n ≥ 1, or is trivial.

Applying theorem 6.2.9 to the case where h is a Cartan subalgebra containing a Cartan
subspace a, we learn that c(a)1 is contained in a distinguished Lie superalgebra and thus it
is not hard to show from this that θ|c(a)1

= ± idc(a)1
, which is what we need.

We now list all supersymmetric pairs (g, k) where g is basic distinguished and the asso-
ciated involution preserves the form on g. When m 6= n we assume the involution fixes the
center of gl(m|n). The induced automorphism of the GRS via the action on a θ-stable Cartan
subalgebra containing a Cartan subspace is also described. In each case we are describing
the action of the involution on basis elements of h∗ where we omit any basis elements that
are fixed by the involution. See section 2.3.2 for the descriptions of root systems for each.
For cases (1) and (3) we are giving the GRS automorphism when r ≤ m/2 and s ≤ n/2.

For all cases not of type g(1|2) or ab(1|3) we refer to Serganova’s classification in [53].
The cases for g(1|2) and ab(1|3) were communicated to the author by Serganova.

Note that by lemma 6.3.1, osp(1|2) does not admit a nontrivial involution preserving
an invariant form, and therefore by remark B.3.3 has no nontrivial involutions. Further,
lemma 6.3.1 also implies there is never an involution that acts by (-1) on a Cartan subalgebra
and preserves the form. This may seem surprising given the existence of the Chevalley
involution for reductive Lie algebras. The following remark seeks to contextualize this.

Remark 6.2.10. A complex Kac-Moody Lie algebra g always admits a nontrivial involution
ω, the Chevalley involution, that acts by (−1) on a Cartan subalgebra (see [25] chapter 1).
If one modifies this involution to make it complex antilinear as in chapter 2 of [25], one can
construct a Cartan involution of g, i.e. an involution whose fixed points are a compact real
form of g. For finite type complex Kac-Moody algebras one can use Cartan involutions to
set up a bijection between real forms of g and complex linear involutions of g, as originally
shown by Cartan.

For complex Kac-Moody Lie superalgebras the natural generalization of the Chevalley
involution, which we write as ω̃, is of order 4. In fact ω̃2 = δ, so it is of order 2 on g0 and
order 4 on g1. Write Aut2,4(g) for the complex linear automorphisms θ of g which are order
2 on g0 and order 4 on g1. If g a finite-dimensional contragredient Lie superalgebra then
there is a bijection between the real forms of g and conjugacy classes in Aut2,4(g) as shown
in [11].

Proposition 6.2.11. Let θ be an involution as in theorem 6.2.8 which admits an Iwasawa
decomposition and suppose that b is an Iwasawa Borel subalgebra of g. Then the simple
roots of b that are fixed by θ generate all fixed roots of θ. In particular, c(a) is generated by
h t {eγ, e−γ}γ∈I , where I is the set of positive simple roots fixed by θ.
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Supersymmetric Pair Iwasawa Decomposition? GRS Automorphism

(gl(m|n),
gl(r|s)× gl(m− r|n− s)) Iff (m− 2r)(n− 2s) ≥ 0

εi ↔ εm−i+1, 1 ≤ i ≤ r,
δj ↔ δn−j+1, 1 ≤ j ≤ s

(gl(m|2n), osp(m|2n)) Yes εi ↔ −εi, δi ↔ −δ2n−i+1

(osp(m|2n),
osp(r|2s)×

osp(m− r, 2n− 2s))
Iff (m− 2r)(n− 2s) ≥ 0

εi ↔ −εi, 1 ≤ i ≤ r
δi ↔ δn−i+1, 1 ≤ i ≤ s

(osp(2m|2n), gl(m|n)) Yes δi ↔ −δi, εi ↔ εm−i+1

(d(2|1;α), osp(2|2)× so(2)) Yes ε↔ −ε, δ ↔ −δ

(ab(1|3), gosp(2|4)) Yes ε1 ↔ −ε1, δ ↔ −δ

(ab(1|3), sl(1|4)) Yes ε1 ↔ −ε1, ε2 ↔ −ε2, δ ↔ −δ

(ab(1|3), d(2|1; 2)) Yes εi ↔ −εi for all i

(g(1|2), d(2|1; 3)) Yes εi ↔ −εi for all i

(g(1|2), osp(3|2)× sl2) No εi ↔ −εi for all i

Table 6.1: Supersymmetric pairs for basic distinguished Lie superalgebras

Proof. If β is a positive root then we may write

β =
∑
α/∈I

cαα +
∑
γ∈I

dγγ

where the first sum is over simple roots α not fixed by θ, and cα, dγ ∈ Z≥0. If θβ = β then
we obtain that

β =
∑
α/∈I

cαθα +
∑
γ∈I

dγγ.

But θα is a negative root for α /∈ I, and thus cα = 0.

In terms of roots we obtain the following.

Corollary 6.2.12. In the context of proposition 6.2.11, a base for ∆0 is given by the set of
simple roots of ∆ (for an Iwasawa positive system) which are fixed by θ.
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6.2.1 Satake diagrams

Let (g, k) be a supersymmetric pair where g is a distinguished basic Lie superalgebra and
which comes from an involution preserving the form. Then a choice of simple roots of its
root system can be encoded in a Dynkin-Kac diagram, and one obtains a bijection between
Dynkin-Kac diagrams and choices of simple roots up to Weyl group symmetries for a given
superalgebra (see [26]). Just as in the classical case, if one chooses an Iwasawa positive
system one can construct a Satake diagram from it using the results of the following lemma,
which are standard. Note we use that the simple roots are linearly independent for the
superalgebras we consider.

Lemma 6.2.13. Let Σ be the set of simple roots coming from an Iwasawa positive system.
Then if α is a simple root such that θα 6= α, then

−θα = α′ +
∑
γ∈I

dγγ

where α′ is a simple root and I ⊆ Σ is the set of simple roots fixed by θ. The correspondence
α 7→ α′ defines a bijection of order 1 or 2 of Σ \ I with itself. In particular, for distinct
simple roots α, β, we have α = β if and only if β = α′.

Proof. Write {αi}i for the set of simple roots not fixed by θ. Then −θαi is a positive root
for all i, and thus we may write

−θαi =
∑
j

cijαj +
∑
γ∈I

diγγ

for some diγ ∈ Z≥0, where C = (cij) is square and has nonnegative integer entries. Applying
(−θ) to this equation once again, we obtain that

αi =
∑
j,k

cijcjkαk +
∑

riγγ

for some riγ ∈ Z. Since αi is simple, this forces C2 to be the identity matrix, which implies
that C is in fact a permutation matrix. This permutation matrix defines our autobijection.

For the last statement, if α = β, then α− θα = β− θβ, so there exists γα, γβ in the span
of fixed simple roots such that

α + α′ + γα = β + β′ + γβ.

By linear independence of our base, we must have that {α, α′} = {β, β′}, so we are done.

Using the above result, we may construct a Satake diagram from (g, k) as follows: choosing
an Iwasawa positive system, we get a Dynkin-Kac diagram for g. Now draw an arrow between
two distinct simple roots if they are related by the involution constructed in lemma 6.2.13.
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Finally, draw a solid black line over a node if the corresponding simple root α is fixed by
θ. Classically one would color the node black, but unfortunately Dynkin-Kac diagrams may
already have black nodes as they represent non-isotropic odd simple roots. Neither option
feels particularly pleasing to this author, however.

We call the result a Satake diagram for the corresponding supersymmetric pair. Note
that it is not unique– proposition 6.2.14 shows that it is determined exactly up to choices
of positive systems for ∆ and ∆0 (see definition 6.2.2). Others have given examples of such
diagrams, such as in [40]. In that paper nodes are drawn black if the corresponding simple
root is fixed by θ. The author has drawn all possibilities elsewhere but did not see the use
in listing them here.

Before we state the proposition, we define a positive system of ∆0 to be a choice of
positive and negative roots in ∆0 arising from a group homomorphism ψ : Z∆0 → R such
that ψ(γ) 6= 0 for all γ ∈ ∆0.

Proposition 6.2.14. There is a natural bijection between Iwasawa positive systems and
choices of positive systems for ∆ and ∆0.

Proof. The simple roots of any positive root system form a Z-basis of Q. Thus by propo-
sition 6.2.11 we have that Z∆0 splits off from Q, so we can write Q = Z∆0 ⊕ Q′. Write
π : Q → Z∆ for the canonical projection, and observe that Z∆0 ⊆ kerπ. Therefore the
restricted map Q′ → Z∆ is surjective, so we may split it and write Q′ = Z∆ ⊕ Q′′, so that
Q′ = Z∆0 ⊕ Z∆⊕Q′′.

Now let φ : Q→ R be a group homomorphism determining an Iwasawa positive system
coming from φ : Z∆ → R as in proposition 6.2.4. Write ψ : Z∆0 → R for the restriction of
φ to Z∆0. Then since ψ(γ) 6= 0 for all γ ∈ ∆0, ψ determines a positive system for ∆0. Thus
the Iwasawa positive system gives rise to positive systems of ∆ and ∆0 respectively from φ
and ψ.

Conversely, given positive systems of ∆ and ∆0 coming from group homomorphisms
φ : Z∆ → R and ψ : Z∆0 → R, the map φ : Z∆ → R defined by φ = ψ ⊕ φ ⊕ 0 :
Z∆0⊕Z∆⊕Q′′ → R determines an Iwasawa positive system. The described correspondences
are seen to be bijective and thus we are done.

6.3 Restricted root systems

Consider one of the supersymmetric pairs (g, k) from the table of section 6.2 which admits
an Iwasawa decomposition. Write θ for the involution, and by abuse of notation also write
θ for the induced involution on the root system ∆ ⊆ h∗ coming from the dual of a Cartan
subalgebra h containing a Cartan subspace a. Continue writing Q = Z∆ ⊆ h∗ for the root
lattice, ∆0 ⊆ ∆ for the roots fixed by θ and ∆ for the restricted roots. We make a few notes
about differences between the super case and the purely even case.

For an even symmetric pair there are often roots α for which θ(α) = −α. In the super
case this cannot hold for odd roots.
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Lemma 6.3.1. If α is an odd root, then θ(α) 6= −α.

Proof. Suppose α is odd and satisfies θ(α) = −α. Write hα ∈ h for the coroot of α, i.e. hα
satisfies (hα,−) = α as an element of h∗. Then we may assume θeα = e−α and θe−α = eα
where eα ∈ gα, e−α ∈ g−α are nonzero and [eα, e−α] = [e−α, eα] = hα. But then

θhα = θ[eα, e−α] = [θeα, θe−α] = [e−α, eα] = hα.

However the action of θ on h∗ is dual to the action of θ on h, so since α and hα are dual to
one another we must have θhα = −hα, a contradiction.

The following lemma is well-known from the even case, and is proven in [3].

Lemma 6.3.2. If α is an even root, then θα + α is not a root.

However that the corresponding statement for odd roots is false in many cases, for
instance it’s never true for odd roots in the cases of (gl(m|2n), osp(m|2n)), (osp(2m|2n),
gl(m|n)), (D(2, 1;α), osp(2|2)× so(2)), and for (osp(m|2n), osp(r|2s)× osp(m− r|2(n− s)))
it is not true for roots of the form ±εi ± δj where 1 ≤ i ≤ r.

6.3.1 Structure of ∆

Classically, ∆ defines a (potentially non-reduced) root system in a∗, the restricted root system
of the symmetric pair. Each restricted root α has a positive integer multiplicity attached
to it given by mα := dim gα. The data of the restricted root system with multiplicities
completely determines the corresponding symmetric pair.

In the super case it is less clear what type of object the restricted root system is. Even
and odd roots can restrict to the same element of a∗, so the natural replacement of the
multiplicity of a restricted root is (a multiple of) the superdimension of the corresponding
weight space. In many cases the object obtained behaves like the root system of a basic
distinguished superalgebra from a combinatorial perspective, however the bilinear form is
deformed. We discuss this situation later on, but first state what can be proven in general.

Let ∆re = {α : (α, α) 6= 0, α 6= 0}, the real restricted roots, and let ∆im = ∆ \∆re, the
imaginary restricted roots.

Proposition 6.3.3. The set ∆ ⊆ a∗ with the restricted bilinear form satisfies the following
properties:

1. span ∆ = a∗;

2. The form is non-degenerate;

3. Given α ∈ ∆re, we have kα,β := 2 (α,β)
(α,α)

∈ Z and rα(β) = β − kα,βα ∈ ∆.

4. Given α ∈ ∆im, β ∈ ∆ with β 6= ±α, if (α, β) 6= 0 then at least one of β ± α ∈ ∆.
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5. ∆ = −∆;

Further, ∆re ⊆ a∗ is an even (potentially non-reduced) root system and ∆im is invariant
under its Weyl group.

Proof. Properties (1) and (5) are obvious, and (2) follows from the fact that we are only con-
sidering Lie superalgebras with non-degenerate invariant forms and our involution preserves
the form. The statement (3) is proven just as in the classical case. For (4), since (α, β) 6= 0,
either (α, β) 6= 0 or (−θα, β) 6= 0 so either β±α or β± (−θα) is a root, and restricting gives
the desired statement.

That ∆re is a root system is classical (see for instance chapter 26 of [61]), and it’s easy
to see that ∆im is Weyl group invariant.

Remark 6.3.4. Although we use the notation ∆im, it is not true in general that (α, α) = 0
for α ∈ ∆im, and this is the main way that a restricted root systems differs from a GRS.

Using proposition 6.3.3 we may now decompose ∆re into a union of irreducible real root

systems, ∆re = ∆
1

ret· · ·t∆
k

re. WriteWi for the Weyl group of ∆
i

re, and letW = W1×· · ·×Wk.
Since ∆ was irreducible we know that k ≤ 3 by proposition B.1.5. We may decompose a∗ as

a∗ = V0⊕V1⊕· · ·⊕Vk, where Vi = span(∆
i

re), and we set V0 = (
∑

i≥1 Vi)
⊥. Write qi : a∗ → Vi

for the projection maps. The following result is obvious.

Lemma 6.3.5. A real component ∆
i

re of ∆ is either gotten by

(1) the restriction of nonisotropic roots in a real component of ∆re preserved by θ, or

(2) is obtained as a diagonal subspace of two isomorphic real components of ∆ that are
identified by θ.

From lemma 6.3.5 we can prove:

Proposition 6.3.6. For each i > 0, qi(∆im) \ {0} is a union of small Wi-orbits.

Proof. Let α, β ∈ ∆im such that qi(α), qi(β) 6= 0 and they lie in the same Wi-orbit. Let
α, β ∈ ∆ be lifts of α and β.

If ∆
i

re falls into the second case of lemma 6.3.5, then if we write p for the projection from

h∗ onto one of the real components being folded into ∆
i

re then pα and pβ must be conjugate
under the Weyl group for that real component too, so we can apply proposition B.1.7.

Suppose on the other hand that ∆
i

re falls into the first case of lemma 6.3.5. Write p

for the projection from h∗ onto the corresponding real component giving ∆
i

re. Then if pα
and pβ are conjugate under the Weyl group we can apply proposition B.1.7. If they are not
conjugate under the Weyl group, ∆ must have two imaginary components (see appendix B.1).
If θ preserves the imaginary components, then α and −θβ will lie in the same imaginary
component and project to α, β still. If θ permutes the imaginary components, then the
supersymmetric pair is either (gl(m|2n), osp(m|2n)) or (osp(2|2n), osp(1|2n−2r), osp(1|2r)).
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In the first case ∆re = Am−1 t An−1 so that α and β cannot be in distinct imaginary
components of ∆, and in the second case p(∆im) is a single small Weyl group orbit anyway.

6.3.2 Deformed restricted root systems

In the case when ∆re has more than one component, it turns out that the restricted root
system is a deformed GRS, as introduced in [54]. There, the authors introduce generalized
root systems as more a general object than in [48] by relaxing condition (4) in definition B.1.1
to (we change notation here to use ∆ instead of R)

(4’) If α, β ∈ ∆ and (α, α) = 0, then if (α, β) 6= 0 at least one of β ± α ∈ ∆.

It is also assumed that the inner product is non-degenerate. It is shown in [48] that in a
GRRS only one of β ± α can be in ∆. Following [19], we will call the notion of GRS in
the sense of [54] a weak GRS (WGRS). Serganova classified all WGRSs in section 7 of [48];
there are two cases that do not appear in the classification of GRSs (see theorem B.1.9 for
the classifications of GRSs):

� C(m,n), m,n ≥ 1: ∆1
re = Cm, ∆2

re = Cn, ∆im = W (ω
(1)
1 + ω

(2)
1 )

� BC(m,n), m,n ≥ 1: ∆1
re = BCm, ∆2

re = Cn, ∆im = W (ω
(1)
1 + ω

(2)
1 ).

Sergeev and Veselov define a deformed WGRS as the data of a WGRS with a deformed
inner product determined by a nonzero parameter t ∈ k×, along with Weyl-group invariant
multiplicities m(α) ∈ k for each root α ∈ ∆. These multiplicities are required to satisfy
certain polynomial relations and that m(α) = 1 for an isotropic (with respect to the non-
deformed bilinear form) root α.

We now explain when and how we can realize ∆ as a deformed WGRS. For each of the
supersymmetric pairs we consider where ∆re has more than one component the deformation
parameter t is determined by the restriction of the form. In this case ∆im 6= ∅, and the
multiplicity of every α ∈ ∆im is −` for some positive integer `. We define the multiplicities
of a restricted root α ∈ ∆ to be m(α) = −1

`
sdim gα. Then we claim that we obtain a

deformed WGRS in this way. This can be checked case by case, and we do this in the table
below. Note that this fact has been known to several researchers for some time (most of
whom knew before the author). We give this information here for the benefit of the reader.

In the table below we list, for each supersymmetric pair we consider in which ∆re has
more than one component, the corresponding Sergeev-Veselov deformation parameters. Note
that in [54], the letter k is used instead of t; we have changed it to avoid confusion with the
name of our base field. No confusion should arise with respect to the t in d(2|1; t), as they
fortunately agree for its supersymmetric pair.

Note that for the third supersymmetric pair we assume (m, r, s) 6= (2, 2, 0) since this case
is special and dealt with later in the table.
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Supersymmetric Pair t p q r s

(gl(m|n),
gl(r|s)× gl(m− r|n− s)) −1

(n−m)+
2(r − s) −1

2
(m− n) + 2(s− r) −1

2

(gl(m|2n), osp(m|2n)) −1
2

0 0 0 0

(osp(2m|2n), osp(r|2s)×
osp(2m− r, 2(n− s))) −1

2

(r −m)+
(n− 2s)

0 −2(n− 2s) + 2(m− r) −3
2

(osp(2m+ 1|2n),
osp(r|2s)×

osp(2m+ 1− r, 2(n− s)))
−1

2

(r −m)+
(n− 2s)− 1

2

0 1− 2(n− 2s) + 2(m− r) −3
2

(osp(2m|2n), gl(m|n)) −2 0 −1
2

0 −1
2

(d(2|1; t),
osp(2|2)× so(2))

t 0 −1
2

0 −1
2

(osp(4|2n),
osp(2|2n)× so(2)

1 0 − 1
2n

0 − 1
2n

(ab(1|3), gosp(2|4)) −3 0 −5
4

0 −1
4

(ab(1|3), sl(1|4)) −3
2

0 −1
2

0 −1
2

Table 6.2: Sergeev-Veselov parameters from supersymmetric pairs

As a matter of explanation, the meaning of the parameters is as follows. In the root
system BC(m,n), each real component has three Weyl group orbits determined by the
length of the root. In the first component, the multiplicity m(α) of a short root α is p,
of the next longest root is t, and of the longest root is q. In the second real component,
the multiplicity of the short root is r, the next longest root t−1 and the longest root s. As
already stated isotropic roots are required to have multiplicity one.

The deformed bilinear form is given by B1+tB2, where B1, B2 are the standard Euclidean
inner products on the root system BC. Now each of our restricted root systems can be viewed
as BC(m,n) with some multiplicities being set to zero.

6.3.3 Supersymmetric pairs of distinguished superalgebras

Below we list all supersymmetric pairs (up to conjugacy) for the distinguished superalgebras
which do not appear in the table of section 6.2. For each we state whether or not the pair
is spherical as well as whether it admits an Iwasawa decomposition.
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Supersymmetric Pair Spherical? Iwasawa Decomposition?

(g, g0) Iff g = g0 Iff g = g0

(gl(n|n), p(n)) Yes No

(gl(n|n), q(n)) Yes Yes

(p(n), p(r)× p(n− r)) Iff r = 1 No

(p(n), gl(r|n− r)) Iff n = 2, 3 No

Table 6.3: Remaining supersymmetric pairs for distinguished Lie superalgebras

6.4 k[G/K] in general

Here we discuss some general aspects of what can be proven about the G-module structure
of k[G/K]. In the next section we look more specifically at the structure of k[G] as a
G×G-module, corresponding to the symmetric supervariety G×G/G where G is embedded
diagonally.

Suppose that G/K is a symmetric supervariety, where G is connected, coming from
an involution θ for which the supersymmetric pair (g, k) admits an Iwasawa decomposition
g = k ⊕ a ⊕ n. In particular G/K is a spherical supervariety. Let h be a θ-stable Cartan
subalgebra containing a and write h = t ⊕ a, where t consists of the fixed points of θ on h.
Write M = CK(a) for the centralizer of a in K so that Lie(M) = m = ck(a).

Recall that by Frobenius reciprocity, an embedding of a G-module V in k[G/K] is equiv-
alent to the data of a K-module homomorphism V → k, i.e. an element of (V ∗)K .

Suppose that V is a highest weight module with respect to the Borel b, and let v ∈ V (b)

be a nonzero element of weight λ. Then since k + b = g, we must have that Uk · v = V .
Let ϕ : V → k be the K-coinvariant corresponding to the embedding V ⊆ k[G/K]. Then
ϕ(v) 6= 0 for else ϕ will be zero on all V . If h ∈ t ⊆ k, then ϕ(hv) = 0, while on the other
hand h · v = λ(h)v. Thus λ|t = 0, so λ ∈ a∗.

Recall from proposition 6.2.11 that m is generated by t and {eα, e−α} where α runs over
the simple positive roots fixed by θ. Clearly e±αv = 0 if α is even since the root subalgebra
of α will generate sl2. If α is odd but nonisotropic, then its roots subalgebra is osp(1|2)
so again e±αv = 0. Finally, if α is isotropic then since G/K is b-spherical e−αv = 0 by
proposition 5.4.6. Thus we have shown that

Lemma 6.4.1. If V is a b-highest weight submodule of k[G/K], then V (b) is annihilated by
m. In particular, Λb(G/K) ⊆ a∗.
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We would like to determine to some extent both Λ+
b (G/K) and soc k[G/K]. The monoid

Λ+
b0

(G0/K0) is well-known and described for instance in section 26 of [61]. Of course by

proposition 5.2.6 a dense subset of the weights of Λ+
b0

(G0/K0) lift to Λ+
b (G/K). Here is

a more precise statement giving a sufficient condition for lifting a weight, the proof and
statement of which is easily adapted from the classical setting.

Proposition 6.4.2. Let λ ∈ a∗ be a b-dominant weight. Then there exists a highest weight
module V of highest weight 2λ admitting a nonzero k-coinvariant.

Proof. Consider the g-module L(λ)θ, which as a super vector space is L(λ) but with action
twisted by θ. Taking the dual, we obtain the irreducible representation (L(λ)θ)∗, whose
weights are exactly the set {−θµ : µ is a weight of L(λ)}, and since −θλ = λ we find that
(L(λ)θ)∗ ∼= L(λ).

Now the identity map L(λ) → L(λ)θ is a k-equivariant isomorphism, so we obtain a
canonical k-coinvariant in L(λ)⊗ (L(λ)θ)∗ ∼= L(λ)⊗2. Writing vλ ∈ L(λ) for a highest weight
vector, the k-coinvariant will be nonzero on vλ ⊗ vλ. Let V ⊆ L(λ)⊗2 be the g-submodule
generated by vλ ⊗ vλ, a b-highest weight module. Then if we restrict our k-coinvariant to V
it is nonzero.

The above proof provides a sufficient condition for a weight λ to be in Λ+
b (G/K) up to

the action of the finite group K0/(K0)0, where (K0)0 is the connected component of the
identity of K0. In particular, if G0 is simply connected then Gθ

0 will be connected and so
proposition 6.4.2 implies that 2λ ∈ Λ+

b (G/K) if λ ∈ a∗ is b-dominant.
Now we explain that for generic λ ∈ Λ+

b (G/K), L(λ) is a submodule of the socle of
k[G/K]. First recall that weight λ ∈ h∗ is typical for b if (λ+ρ, α) 6= 0 for all isotropic roots
α, where ρ is the Weyl vector (see chapter 1 of [10]). The significance of typical weights is
that a dominant weight λ ∈ Λ+

b (g) is typical if and only if L(λ) is projective in F(g).

Lemma 6.4.3. If ∆0 contains no isotropic roots, then a dense open subset of a∗ consists of
typical weights. In particular, a generic λ ∈ Λ+

b (G/K) will be typical and thus L(λ) will be
in the socle of k[G/K].

Proof. Since ∆0 has no isotropic roots, α 6= 0 for all α isotropic. Thus there is clearly a
dense open subset of a satisfying our conditions.

Now we consider the case when ∆0 contains isotropic roots. In this case, let x ∈ m1

be self-commuting of rank equal to the defect of m, so that mx contains no self-commuting
odd elements, and thus has no isotropic roots in its root system. In particular mx will be
a product of a reductive Lie algebra with osp(1|2n) for some n (potentially n = 0). Let us
assume that (g, k) admits an Iwasawa decomposition, i.e. m ⊆ k, so that we have g = k⊕a⊕n.
Then observe that since k, a, and n are all m-stable under the adjoint action and a commutes
with m, we have gx = kx ⊕ a ⊕ nx. Thus (gx, kx) is a supersymmetric pair that also admits
an Iwasawa decomposition.
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Let b be an Iwasawa Borel that arises from this decomposition and contains x. Then by
lemma 6.4.3, a dense open subset of dominant integral weights in a∗ are typical for gx. Let
λ ∈ a∗ be such a weight, and suppose that λ ∈ Λ+

b (G/K). Write V for the highest weight
submodule of k[G/K] that λ gives rise to. Then its socle will be irreducible of highest weight
µ, say, and by lemma 6.4.1 we have µ ∈ a∗. Thus the central character defined by λ and
µ must be the same. However by applying the Duflo-Serganova functor given by x, we see
that this implies that λ and µ are dominant weights for gx and must define the same central
character for gx (see for instance [50]). However since λ is typical and µ is dominant this
implies that λ = µ, i.e. V = L(λ). Thus we have proven:

Theorem 6.4.4. If λ ∈ Λ+(G/K) is typical for the supersymmetric pair (gx, kx) where x ∈ m
is self-commuting of maximal rank, then L(λ) is isomorphic to a submodule of k[G/K]. In
particular for a generic dominant weight λ ∈ Λ+(G0/K0) the socle of k[G/K] contains an
irreducible component isomorphic to L(λ).

6.5 G as a spherical supervariety

Let G be a quasi-reductive supergroup. Then G × G acts homogeneously on G by left
and right translation, and this identifies G as a symmetric supervariety with respect to the
involution θ of G×G which swaps the factors.

Some is already known about the structure of k[G] as a representation. For instance,
in [51], the structure as a G-module under left translation was computed and was shown
to be a sum of injective modules. In [32] a filtration of k[GL(m|n)] as a G × G-module
was constructed following the ideas of Donkin and Koppinen in the modular case, using the
highest weight category structure of representations of GL(m|n). Serganova’s result on the
structure of k[G] under left translation also follows from Green’s work on coalgebras in [20],
generalized to the setting of supercoalgebras. We state some further results on k[G] looking
at its structure as a G × G-module that are straightforward extensions of results found in
[20], in particular on indecomposable block summands and the socle of k[G]. Then we state
a result that describes the Loewy layers of the socle filtration of k[G] (theorem 6.5.11) which
the author has not found in the literature. This description is proven in greater generality
in appendix C.

Theorem 6.5.1. Let g be a quasi-reductive Lie superalgebra and consider the supersymmetric
pair (g × g, g) defined by the involution θ of g × g which swaps the factors. Then this
supersymmetric pair admits an Iwasawa decomposition if and only if g is Cartan-even.

Proof. In this case a maximal toral subalgebra of the (-1)-eigenspace is given by a =
{(h,−h) : h ∈ h0} where h0 ⊆ g0 is a Cartan subalgebra of g0. Therefore the central-
izer of a is just the centralizer of h0 × h0 in g× g. This is equal to h0 × h0 if and only if h0

is a Cartan subalgebra of g, i.e. g is Cartan-even.
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Proposition 6.5.2. If G is Cartan-even, then the finite-dimensional irreducible represen-
tations of G × G are exactly those of the form L1 � L2 for finite-dimensional irreducible
representations L1, L2 of G.

Proof. A representation of this form is irreducible because EndG(Li) ∼= k for each i and the
Jacobson density theorem. Conversely, if L is an irreducible representation of G × G then
after choosing a Borel subgroup, it has a highest weight λ1 + λ2, where λi is a weight of ith
copy of G in the direct product. Thus L = LB(λ1) � LB(λ2).

Definition 6.5.3. Let V be a finite-dimensional G-module corresponding to the coaction
V → k[G] ⊗ V . Define εV : V � V ∗ → k[G] to be the canonical G × G-equivariant map
corresponding to the coaction. Notice that it is always nonzero if V is nonzero. Equivalently,
εV may be defined by Frobenius reciprocity; it is the unique element of HomG×G(V �V ∗, k[G])
that corresponds to the natural pairing V ⊗ V ∗ → k under the isomorphism

HomG×G(V � V ∗, k[G]) ∼= HomG(V ⊗ V ∗, k)

Remark 6.5.4. If V is a finite-dimensional G-representation then there is a canonical isomor-
phism of G×G-modules V � V ∗ ∼= (ΠV )� (ΠV )∗, and this map factors εV through εΠV . In
particular, Im εV = Im εΠV .

For the rest of this section we will assume that G is Cartan-even. Given an irreducible
representation L of G, the map εL : L�L∗ → k[G] is injective by irreducibility and the fact
that εL is not the zero map. In this way we obtain a natural inclusion⊕

L

L� L∗ ⊆ soc(k[G]),

where the sum runs over all irreducible representations of G up to parity. We now go about
showing this is the entire socle.

Let B′ be a Borel subgroup of G (as defined in [51]) and (B′)− its opposite Borel. Let
B be a hyperborel subgroup containing B′ and B− a hyperborel subgroup containing (B′)−.
Then B×B− is a hyperborel of G×G, and G is is B×B−-spherical. Further, (B−)0 is the
opposite Borel subgroup of B0 in G0.

Lemma 6.5.5. If L is an irreducible representation of G, then L(B) = L(B′).

Proof. Indeed L(B) ⊆ L(B′) but by remark 2.3.15 1 ≤ dimL(B) ≤ dimL(B′) = 1.

Definition 6.5.6. For a hyperborel subgroup B of G, we say an integral weight λ is B-
dominant if there exists an irreducible representation L of G such that ΛB(L) = {λ}.

Recall that (for instance by the Peter-Weyl theorem),

Λ+
B0×(B−)0

(G0) = {(λ,−λ) : λ is a B0-dominant weight}.
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Lemma 6.5.7. We have

Λ+
B×B−(G) = {(λ,−λ) : λ is a B-dominant weight}.

Proof. By the inclusion Λ+
B×B−(G) ⊆ Λ+

B0×(B−)0
(G0) we know that Λ+

B×B−(G) must be con-

tained in the RHS. However our socle computation above shows that L(λ) � L(λ)∗ ⊆ k[G]
for all B-dominant weights λ, and this is exactly the G × G irreducible representation of
highest weight (λ,−λ).

Corollary 6.5.8. soc(k[G]) ∼=
⊕
L

L� L∗, where the sum runs over all irreducible represen-

tations of G up to parity.

In corollary 6.5.8, up to parity means that we construct a partition on the set of isomor-
phism classes of irreducible representations of G by identifying L with ΠV for each irreducible
representation L of G. Then the direct sum runs over the elements of this partition and we
choose a representative of each equivalence class.

We explain further the structure of k[G]. Let Rep(G) denote the category of finite-
dimensional representations of G. Then we may decompose Rep(G) into a sum of simple
blocks, where a block B is an abelian subcategory of Rep(G) such that if B′ is another block
distinct from B, then Exti(V, V ′) = Exti(V ′, V ) = 0 for all i and all objects V of B and V ′ of
B′. A block B is simple if it cannot be decomposed into a sum of smaller, nontrivial blocks.
Notice that every block must contain an irreducible representation.

Given a block B of G, we denote by ΠB the block consisting of all G-modules ΠV where
V is in B. If we write BlG for the set of blocks of G, we want to consider the set BlG/ ∼
where ∼ is the equivalence relation on blocks generated by B ∼ ΠB for all blocks B. For
B ∈ BlG/ ∼, we write IrrB for the set of irreducible representations that appear in B up to
parity. The following is an analogue of theorem (1.5g) part (ii) and theorem (1.6a) in [20].

Proposition 6.5.9. We have as a G×G-module

k[G] =
⊕

B∈BlG/∼

MB

where MB is an indecomposable G×G-module given by

MB =
∑
V ∈B

Im εV .

Further,

soc(MB) =
⊕
L∈IrrB

L� L∗.

Remark 6.5.10. It follows that the module MB is finite-dimensional if and only if IrrB is
finite. This example shows another phenomenon that may occur in the super case: given a
spherical G-supervariety X, k[X] need not be a direct sum of finite-dimensional G-modules.



CHAPTER 6. SYMMETRIC SUPERVARIETIES 119

We can say more about the socle filtration of MB, and thus of k[G]. Recall that for a
finite-dimensional G-module V , the Loewy length of V , which we write as ``(V ), is defined
to be the length of a minimal semisimple filtration of V (or equivalently the length of the
socle or radical filtration of V ). The first of the following results is an analogue of what was
essentially known in [20] for coalgebras. We provide a full proof in appendix C, generalizing
the result to coalgebras in certain tensor categories.

Theorem 6.5.11. For each block B ∈ BlG / ∼ we have:

�

sockMB =
∑

V ∈B, ``(V )≤k

Im εV

� For simple G-modules L,L′ which lie in a block of the equivalence class B, we have

[sockMB/ sock−1MB : L′ � L∗] = [L′ : sock I(L)/ sock−1 I(L)]

= dimHomG(P(L′), sock I(L)/ sock−1 I(L))

6.5.1 The case G = GL(1|1)

Let G = GL(1|1), and g = LieG. We give a very explicit description of the g× g action on
k[G]. In this case, there is only one block of Rep(G) which is not semisimple, the principal
block B0, and it contains the irreducible representations where the center of gl(1|1) acts
trivially. We draw a picture depicting the local structure of MB0 below. Note that MB0 is
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Figure 6.1: Regular representation of GL(1|1)

infinite-dimensional since there are infinitely many simple modules in B0. Each dot in the
picture represents a weight vector, with the bottom and top rows having even parity and
the middle row having odd parity. We write u, v for the action of the odd weight vectors
of gl(1|1) by left translation, and u, v for the action of the odd weight vectors by right
translation. One can see rather explicitly here that if we restrict the action to only left or
only right translation, then this is just a sum of injective modules.
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Appendix A

Indecomposable spherical
representations

In this appendix we present the full classification of spherical indecomposable representation
of the distinguished Lie superalgebras.

A.1 Spherical representations and their properties

A.1.1 Spherical representations

Definition A.1.1. Let V be a super vector space, g a distinguished Lie superalgebra, b ⊆ g
a Borel subalgebra of g, and ρ : g → gl(V ) a representation of g. Then we say the triple
(V, g, ρ) is spherical with respect to b if V is a non-zero vector space, and it is a spherical
variety for the Lie superalgebra ρ(g) + k idV with respect to ρ(b) + k idV .

Equivalently, there exists a vector v ∈ V0 such that (ρ(b) + k idV ) · v = V . A vector v
satisfying this condition will be called a spherical vector.

In general we say a g-module V is spherical if there exists a Borel b ⊆ g such that (V, g, ρ)
is spherical with respect to b, where ρ : g→ gl(V ) defines the g-action.

Remark A.1.2. By abuse of language, we will often refer to a super vector space V as being
spherical when the algebra which acts on it is clear from context. We may also omit the
representation ρ and just say that (V, g) is spherical, where V is a g-module and the action
is clear from context.

If V is spherical of even (resp. odd) highest weight λ with respect to b, then we will say
that λ is an even (resp. an odd) spherical weight for g with respect to b, or simply that λ is
spherical when the choice of Borel and parity of the highest weight is clear from context.

Remark A.1.3. As with supervarieties a spherical g-module is, in general, not spherical for
all Borels. However, if V is spherical for g with respect to b, then it is also spherical with
respect to any conjugate of b.
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Lemma A.1.4. Let (V, g, ρ) be a spherical representation with respect to b.

1. If V ′ is a super vector space and ψ : V → V ′ is an isomorphism, let Ψ : gl(V )→ gl(V ′)
denote the induced isomorphism of algebras. Then (V ′, g,Ψ◦ρ) is spherical with respect
to b.

2. Let τ be an automorphism of g. Then (V, g, ρ ◦ τ) is spherical with respect to τ−1(b).

Proof. The proof is straightforward.

By lemma A.1.4, sphericity is determined by the image of a Lie superalgebra under the
representation. Therefore we make the following definition.

Definition A.1.5. We say that two spherical representations (V, g, ρ) and (V ′, g′, ρ′) are
equivalent if there exists an isomorphism of super vector spaces ψ : V → V ′ such that if
Ψ : gl(V )→ gl(V ′) is the induced map, then ρ′(g′) + k idV ′ = Ψ(ρ(g)) + k idV ′ .

A.1.2 Properties of spherical representations

Here we collect some properties of spherical modules. First a definition.

Definition A.1.6. We say (V, g, ρ) is numerically spherical if V0 is a spherical g0-module
and dimV1 ≤ maxb dim b1.

Lemma A.1.7. Spherical modules are numerically spherical. Any subquotient of a spherical
module is numerically spherical.

Proof. For the first statement, if (V, g, ρ) is spherical with respect to b, then if v ∈ V0 is a
spherical vector we have

(b + k idV ) · v = (b0 + k idV +b1) · v = (b0 + k idV ) · v ⊕ b1 · v = V0 ⊕ V1.

The second statement is straightforward.

Remark A.1.8. Note that if g is basic, then all Borels of g have the same odd dimension,
while in general this is no longer true. In particular, for p(n) Borel subalgebras can have

odd dimension between n(n−1)
2

and n(n+1)
2

.

Lemma A.1.9. The quotient of a spherical representation remains spherical.

Proof. The image of a spherical vector under the quotient map provides a spherical vector
in the quotient.

Lemma A.1.10. If g is basic, then an irreducible representation V is spherical if and only
if V ∗ is. If (V, g) is spherical, then (V ∗, g) is equivalent to it.
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Proof. In this case, there exists an automorphism τ of g which acts by multiplication by
(−1) on a Cartan subalgebra. Since highest weights spaces of irreducible representations are
one-dimensional for a basic algebra, if V is irreducible we have, V τ ∼= V ∗. The result now
follows from lemma A.1.4.

Remark A.1.11. If we drop the condition of irreducibility in lemma A.1.10, the argument
breaks down, since we no longer have V τ = V ∗.

For example, let g = gl(1|1) and consider the representation of g on k1|1 = kv ⊕ kw,

where v is even and w odd, as follows. Let I =

[
1 0
0 1

]
act by 0, h =

[
1 0
0 −1

]
act by 1 on w

and −1 on v, and x =

[
0 1
0 0

]
send v to w and y =

[
0 0
1 0

]
act by 0.

Then this is representation is spherical (with respect to the Borel b = k〈h, I, x〉), but the
dual is not spherical with respect to any Borel subalgebra.

Remark A.1.12. By lemma A.1.10, when g is basic it suffices to consider irreducible represen-
tations up to their dual. Note that lemma A.1.10 does not apply to the non-basic algebras
p(n) or q(n). Although q(n) does admit an automorphism τ which acts by (−1) on h0,
because highest weight spaces of irreducible representations need not be one-dimensional,
there are situations when V is irreducible but V τ � V ∗.

Lemma A.1.13. Let r be a linear Lie superalgebra, i.e. r ⊆ gl(V ) for a super vector space
V . Suppose we have r0v = V0. If there exists w ∈ V0 such that r · w = V , then r · v = V .

Proof. Exponentiate r0 to R0 = exp(r0) ⊆ GL(V )0. Then by assumption, the orbits of both
v and w under R0 are open in V0 and since we work in the Zariski topology they must lie in
the same orbit. Therefore there exists x ∈ R0 such that v = x · w. Hence

r · v = {Xv : X ∈ r}
= {X(xw) : X ∈ r}
= {xAd(x−1)(X)w) : X ∈ r}
= {x(Xw) : X ∈ r}
= x(r · w) = V

Corollary A.1.14. Let V be a g-module, b a Borel of g such that V0 is spherical for g0.
Then if v ∈ V0 is any spherical vector for b0 and b · v 6= V , then V is not spherical with
respect to b.

Proof. This follows from lemma A.1.13 by letting r = (ρ(b) + k idV ), where ρ : g→ gl(V ) is
the representation giving the g-action.
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Lemma A.1.15. Let V be an irreducible spherical g-module of b-highest weight λ, such that
dimVλ = (0|1). We do not assume V is spherical with respect to b. Then there exists an
odd negative root α such that λ + α is a b0-highest weight of V0. In particular, λ + α is
g0-spherical.

Proof. Let v ∈ Vλ be a non-zero highest weight vector. Consider the set

S = {α ∈ ∆− : xα · v 6= 0 for some xα ∈ gα}

Then we claim S 6= ∅. If not, v will be annihilated by n+
1

and n−
1

. The condition that
dimV = (0|1) implies further that v is annihilated by h1, so we find then that v is annihilated
by g1. Since V = Ug · v, this in turn implies that V0 = 0, a contradiction.

Since S is not empty, we may choose α ∈ S which is maximal with respect to the Bruhat
order. Then for z ∈ n+

0
we have

zxαv = [z, xα]v + xαzv = [z, xα]v

However, [z, xα] is of weight strictly larger than α in the Bruhat order. If [z, xα] ∈ n−, then
by maximality of α we have [z, xα]v = 0. If [z, xα] ∈ h1⊕ n+

1
, then we also have [z, xα]v = 0.

So xαv is an even b0-highest weight vector.

Lemma A.1.16. Suppose g is distinguished and Cartan-even. Let λ be a dominant highest
weight. If L(λ) is numerically spherical, then the following hold:

1. L0(λ) is a spherical g0-module;

2. If g is basic, and α is a simple isotropic root such that (λ, α) 6= 0, then dimL0(λ−α) ≤
dim b1.

Proof. (1) follows from the observation that L(λ)0 must be a spherical g0-module, and that
L0(λ) is a g0-submodule of L(λ)0. For (2), by the theory of odd reflections we will have that
L0(λ− α) is a g0-submodule of L(λ)1, and the statement follows.

Lemma A.1.17. In the context of lemma A.1.16, if ΠL(λ) is numerically spherical, then
the following hold:

1. dimL0(λ) ≤ max
b

dim b1;

2. If g is basic, and α is a positive simple isotropic root such that (λ, α) 6= 0, then L0(λ−α)
is a spherical g0-module.

3. If g is basic and λ is not a character, there exists a positive odd isotropic root α such
that (λ, α) 6= 0 and L0(λ− α) is a spherical g0-module.
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Proof. (1) follows from by definition of numerically spherical modules.
For (2), by the theory of odd reflections L0(λ− α) will be a g0-submodule of L(λ)0, and

the statement follows.
For (3), since λ is not character, if we consider all possible sequences of odd reflections

we can apply to our Borel, there will be some sequence of odd reflections rαs , · · · , rα1 giving
rise to a new Borel such that (λ, α1) = · · · = (λ, αs−1) = 0 and (λ, αs) 6= 0.

Let α = αs. By the theory of odd reflections, λ−α will be an even highest weight vector
with respect this new Borel of g. Therefore L0(λ− α) will be a spherical g0-module.

Remark A.1.18. Characters of a Lie superalgebra, including the trivial one, are all spher-
ical and equivalent to (k1|0,0) where 0 denotes the trivial Lie algebra. Further, if χ is a
character of g and (V, g, ρ) is a spherical representation, then (V, g, ρ ⊗ χ) is also spherical
and is equivalent to (V, g, ρ). It follows we may work with equivalence classes of spherical
representations up to twists by characters.

We also observe that all one-dimensional odd modules are numerically spherical.

A.2 Explanation of procedure for proof

To classify spherical indecomposable representations, we will work case by case with various
Lie superalgebras.

For a chosen algebra g, we will first list any needed notation and setup. Then we will
determine all (numerically) spherical irreducible representations. If g has that h = h0 (i.e.
for all cases but g = q(n)), we proceed according to the following steps:

1. We choose a fixed, ‘standard’ Borel for g, which we write as bst.

2. We state all g0-dominant weights which are spherical with respect to bst
0

. We will
simply quote the results found by Kac in [27].

3. From (1) and (2), we write a list of candidate bst-dominant weights λ for which L(λ)
could be numerically spherical. By remark A.1.18, we may find candidate weights up
to twists by characters of g.

Such λ must have the properties that they are dominant with respect to bst and spheri-
cal with respect to g0. Further, by lemma A.1.16, if g is basic and α is a simple positive
isotropic root such that (λ, α) 6= 0, then we must have dimL0(λ − α) ≤ dim b1. This
will be used heavily.

4. Determine whether L(λ) = Lbst(λ) is (numerically) spherical for each λ from (3).

5. Create a candidate list of bst-dominant weights λ for which ΠL(λ) could be numerically
spherical. Again, we can work up to twists by characters. By lemma A.1.17, such a λ
must have that

dimL0(λ) ≤ max
b

dim b1.
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If g is basic, then lemma A.1.17 says that λ−α falls into the list in (2) for some positive
(with respect to bst) isotropic root α with (λ, α) 6= 0. Further, if α is a simple positive
isotropic root such that (λ, α) 6= 0, then λ − α falls into the list in (2). This will be
used heavily.

If g = p(n), then by lemma A.1.15 there must exist an odd negative root α for which
λ+ α is spherical for g0.

6. Determine whether ΠL(λ) is (numerically) spherical for each λ from (5).

If g = q(n), then we proceed as above, except we make a single list of candidate weights
for which L(λ) or ΠL(λ) could be (numerically) spherical, and then make a check. This is
because unless λ = 0, we will have L(λ)λ = (k|k) where k > 0, so some conditions in both
(3) and (5) will apply to λ.

The above steps will give all (numerically) spherical irreducible representations. By
lemma A.1.7 and lemma A.1.9, an indecomposable spherical representation must have nu-
merically spherical composition factors and a spherical head. To determine all spherical
indecomposables, we will take the modules from our above list and compute extensions
between them, and check if any extensions are spherical.

A.3 Spherical gl(m|n)-modules

Set g = gl(m|n). Using gl(m|n) ∼= gl(n|m), in finding all spherical representations we may
assume without loss of generality that m ≤ n. For more on this algebra, see [39] or [10]. We
refer to section 2.3.2 and section 2.3.4 for an explanation of our notation for the root system
and Borels of g.

Notation: Write

detε := ε1 + · · ·+ εm, detδ := δ1 + · · ·+ δn

For a g0-dominant weight λ, we will write Km|n(λ) for the Kac module

Km|n(λ) = Ug⊗U(g0⊕g1) L0(λ).

Here we use the usual Z-grading on g, g = g−1 ⊕ g0 ⊕ g1.
We write GLm|n for the standard gl(m|n)-module structure on km|n.
Choice of standard Borel: bst = bε

mδn , i.e. the Borel of upper triangular matrices of
gl(m|n). Observe that for every Borel b of g, we have dim b1 = mn.

Characters of g: The characters of g are exactly the multiples of the Berezinian weight
Ber, defined by

Ber = ε1 + · · ·+ εm − δ1 − · · · − δn = detε − detδ

Spherical weights for g0 = gl(m)× gl(n):

0, ε1, −εm, δ1, −δn
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2ε1, −2εm, 2δ1, −2δn (A.3.1)

ε1 + ε2, −εm−1 − εm, δ1 + δ2, −δn−1 − δn
ε1 + δ1, ε1 − δn, −εm + δ1, −εm − δn

We also may add to any of the above weights an arbitrary linear combination of detε and
detδ, and get another spherical weight.

A.3.1 The case of gl(1|1)

We deal with g = gl(1|1) separately. We have

g1 = k〈u+, u−〉, where u± ∈ g±(ε1−δ1)

There are exactly two Borel subalgebras, and they are non-conjugate:

bst := bεδ = g0 ⊕ k〈u+〉, bδε = g0 ⊕ k〈u−〉

Every weight sε1 + tδ1 is dominant. These are all g0-spherical, and all differ with tε1 by
some multiple of the Berezinian, so without loss of generality we can restrict our attention
to weights of the form tε1.

Proposition A.3.1. For gl(1|1), all non-trivial indecomposable spherical modules (up to
equivalence) fall into the following list:

1. The standard module GL1|1, which is spherical with respect to bδε and has stabilizer
(bεδ)(ε1)

2. The (1|1)-dimensional module K1|1(0), which is spherical with respect to bδε, and has
stabilizer bεδ. This module is equivalent to the p(1)-module P1|1 (see appendix A.6).

Proof. The proof is straightforward and hence omitted.

A.3.2 The case of gl(1|2)

Candidate even weights:

tε1 (t 6= 0), −ε1 + δ1, −2ε1 + 2δ1

Check for (numerical) sphericity of L(λ):

� First suppose that λ = tε1, with t 6= 0. In this case, L(λ) is a quotient of K1|2(λ), which
is (2|2)-dimensional. It’s a straightforward check that K1|2(λ) is always spherical, and
so L(λ) is also.
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� If λ = −ε1 + δ1, then λ differs with the Berezinian by −δ2, which gives ΠGL∗1|2 which

is spherical (this will be shown later).

� Finally suppose λ = −2ε1 + 2δ1. Then λ differs by a multiple of the Berezinian with
−2δ2, which is the highest weight of Λ2GL∗1|2. We will see below that the second
exterior power of the standard module for gl is always spherical, so this is too.

Candidate odd weights:

tε1 (t 6= 0), λ = tε1 + δ1

Check for (numerical) sphericity of ΠL(λ):

• Suppose λ = tε with t 6= 0. Then if t = 1, we get the parity shift of the standard
module, which is spherical (shown below). If t 6= 1 then λ is a typical weight, so that
ΠL(λ) ∼= ΠK1|2(λ). One can check that this module is spherical exactly with respect
to the Borel δεδ.

• If λ = tε1 + δ1, then if t = −1, ΠL(λ) is equivalent up to the Berezinian with GL∗1|2,

which is spherical. If t = 1, then λ = ε1 + δ1 which gives Λ2GL1|2, and as already
mentioned this is spherical. If t 6= ±1, then the sequence of odd reflections rε1−δ1
followed by rε1−δ2 both change the weight, which forces the odd dimension of the
module to be larger than 2, so it cannot be numerically spherical.

(Numerically) Spherical irreducibles for gl(1|2): Along with (Π)k we have the
following, up to equivalence:

(Π)GL1|2, (Π)K1|2(tε1) (t 6= 0, 1) Λ2GL1|2

Indecomposables For dimension reasons, the only possible extensions which are spher-
ical are of an even one-dimensional module with a spherical irreducible or of ΠGL1|2 with a
module equivalent to it or an odd one-dimensional module.

The trivial module for gl(1|2) admits non-trivial extensions only with (GL1|2)Ber and
(GL1|2)∗−Ber, and these extensions are exactly K1|2(0), K1|2(0)∗ ∼= (K1|2(ε1))Ber along with
two modules that are geometrically equivalent to these. It has already been noted that
K1|2(0) and K1|2(ε1) are spherical, so we get two new indecomposable spherical modules in
this way. The module K1|2(0) is spherical exactly with respect to δδε and εδδ, while K1|2(ε1)
is spherical exactly with respect to only δδε. No further extensions can be constructed which
remain spherical.

The module ΠGL1|2 has extensions exactly with Πk−Ber and Λ2GL1|2. The extensions
by the latter is not numerically spherical, and hence not spherical. But the extension with
Πk−Ber with ΠGL1|2 as the quotient is exactly ΠK1|2(ε1), which is spherical exactly with
respect to the Borel δεδ. Note the opposite extension of the two has an odd one-dimensional
quotient, so cannot be spherical. No further extensions can be constructed which remain
spherical.
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Rep dims Borels Stabilizer

K1|2(tε1), t 6= 0, 1 (2|2) εδδ, δδε osp(1|2)

K1|2(0) (2|2) εδδ, δδε k × osp(1|2)

K1|2(ε1) (2|2) δδε sp(2)n ΠSP2

ΠK1|2(tε1), t 6= 0 (2|2) δεδ (b−δεδ)((1−t)ε−δ2)

Table A.1: Spherical representations of gl(1|2)

Our work shows we get the following list of spherical indecomposables for gl(1|2) which
do not come from the standard module, along with stabilizers of spherical vectors and Borels
for which sphericity is achieved. All modules arising from the standard module will be dealt
with in the next subsection.

A.3.3 Some spherical irreducibles for gl(m|n)

From our above work we may now assume either m ≥ 2 or n ≥ 3.
We present the (numerically) spherical modules for gl(m|n) that arise naturally from

the standard module, and prove they are spherical. We write v1, . . . , vm, w1, . . . , wn for a
homogeneous basis for GLm|n. Here vi is even with weight εi and wj is odd with weight δj.

Proposition A.3.2. Suppose 1 ≤ m ≤ n and either m ≥ 2 or n ≥ 3. Then of all the
modules (Π)SdGLm|n and (Π)ΛdGLm|n, where d ≥ 1, the numerically spherical ones are
exactly those in the following list, and they are all spherical:

(Π)GLm|n, S2GLm|n, Λ2GLm|n, ΠS2GLn|n ∼= (ΠΛ2GLn|n)Π, ΠS2GLn|n+1

Further, these modules are equivalent to one showing up in the following table, where we
allow for m,n to be arbitrary. The table also lists the conjugacy classes of Borels each is
spherical with respect to along with the stabilizer of a spherical vector v.

By osp(GL∗m|n, v) we mean the superalgebra of matrices preserving the form on GL∗m|n
induced by the spherical vector v. By p(n)Π, we mean the algebra gotten by applying the
parity shift automorphism to p(n). In the last stabilizer, the extra copy of k is acting by the
character −1 (this extra copy of k is spanned by the diagonal element dual to the weight δ1,
hence the notation).

Proof. Observe that GLm|n ∼= ΠGLn|m, and so ΛdGLm|n ∼= ΠdSdGLn|m for all d. It therefore
suffices to study GLm|n and (Π)SdGLm|n for d ≥ 2, where we now only require that m,n ≥ 1
and that either m = n = 2 or max(m,n) ≥ 3. We have the following cases; let V = GLm|n.

1. V : We observe that V is spherical if we take vm for our spherical vector, exactly with
respect to Borels for which δi − εm is positive for all i.
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Rep dims Borels Stabilizer

GLm|n (m|n) · · · ε gl(m− 1|n)n
GL∗m−1|n

S2GLm|n

(
n(n−1)

2
+ m(m+1)

2

∣∣mn) δi1εj1δ2i2εj2δ2i3 · · · εjkδ2il osp(GL∗m|n, v)

(ΠΛ2GLn|n)Π ∼=
ΠS2GLn|n

(n2|n2) εδεδ · · · εδ p(n)Π

ΠS2GLn|n+1 (n(n+ 1)|n(n+ 1)) δεδε · · · εδ (p(n)Π × k)n
(ΠPn|n)−δ1

Table A.2: Spherical tensor representations of gl(m|n)

2. Excluding SkV and ΠSkV for k > 2: If SkV is spherical then SkV0 is g0-spherical,
which implies m = 1- but if m = 1 the odd part of SkV will be too large. If ΠSkV is
spherical, then Sk−1V0 ⊗ V1 is g0-spherical, which implies either m = 1 or n = 1. In
both of these cases, however, the odd part of ΠSkV will be too large.

We are left to look at (Π)S2V .

3. S2V is always spherical: A homogeneous basis for S2V is

Even : vivj i ≤ j, wiwj i < j; Odd : viwj

The vector v = v2
1 + · · · + v2

m + w1w2 + · · · + wn−1wn is a g0-spherical vector, so by
corollary A.1.14, S2V is spherical with respect to a Borel b defined by an εδ string if
and only if b · v = V .

Now a Borel b defined by an εδ string will contain the odd operators wi∂vj exactly when
δi − εj is positive, and will have odd operators vi∂wj exactly when εi − δj is positive.
Further, we see that 1

2
wi∂vj(v) = wivj and vi∂wj(v) = vi(wj−1 + wj+1), where we let

w0 = wn+1 = 0.

Now fix an i with 1 ≤ i ≤ m. Because of our choice of even Borel, we observe that if
εi− δj is positive, then so is εi− δk for k > j. Also, if δj − εi is positive, so is δk− εi for
k < j. Hence we may choose j so that for a k ≤ j, δk − εi is positive, and for j < k,
εi− δk is positive. Then in b1 ·v we will get all monomials viwk for all k ≤ j along with
all terms vi(wk−1 + wk+1) for j < k ≤ n. It is now a linear algebra exercise to show
that these monomials span the subspace spanned by {viwk : 1 ≤ k ≤ n} if and only
if n− j is even. Therefore, b1 · v = (S2V )1 if and only if the number of δ’s appearing
after any ε in the εδ-string is even- i.e. the εδ string must be of the form

δi1εj1δ2i2εj2δ2i3 · · · εjkδ2il

4. Examination of ΠS2V : The even part is V0 ⊗ V1, and its odd part is S2V0 ⊕ Λ2V1.
Therefore the dimension of the odd part is n2+m2+m−n

2
. This is less than or equal to
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nm if and only if 0 ≤ n−m ≤ 1. This leaves the cases V = GLn|n and V = GLn|n+1.
We show these modules are indeed spherical.

For the case of V = GLn|n, a g0-spherical vector is given by v = v1w1 + · · · + vmwm.
Let b be a Borel defined by an εδ string. Then ΠS2V is spherical for a Borel b if and
only if b1 · v = (ΠS2V )1. The Borel has odd operators exactly as described in the case
for S2V . Here we see that vi∂wj(v) = vivj and wi∂vj(v) = wiwj. Now in order to get
v2

1, we must have ε1 − δ1 is positive, so the εδ string must start with ε. In order to get
w1w2, we must have δ1 − ε2 is positive, so the εδ string must start with εδ. Similarly,
to get v2

2 we must have ε2− δ2 positive, and so on, so that continuing this way we find
that the Borel must have εδ string εδεδ · · · εδ. Further, the representation is spherical
with respect to this Borel.

For V = GLn|n+1, a g0-spherical vector is given by v = v1w2 + v2w3 + · · · + vmwm+1.
Let b be a Borel defined by an εδ string. We see that vi∂wj(v) = vivj−1, and wi∂vj(v) =
wiwj+1. Following the same idea as in the previous case, in order to get w1w2 we must
have δ1−ε1 positive, and to get v2

1 we must have ε1−δ2 positive, and continuing on like
this we find that our Borel must have εδ string δεδε · · · εδ. Further, this representation
is spherical with respect to this Borel.

Remark A.3.3. The representation S2GLm|2n and its relation to the Capelli problem for the
symmetric pair (gl(m|2n), osp(m|2n)) is studied in [44].

A.3.4 gl(1|n)

Candidate even weights:

tε1 (t 6= 0), −ε1 + δ1, −δn

−2ε1 + 2δ1, −2δn, −ε1 + δ1 + δ2, −δn−1 − δn
where t ∈ k.

Check for (numerical) sphericity of L(λ): In the following table we go through each
possible case, grouping them appropriately according to how we either prove they do not give
a (numerically) spherical representation or explain why they are covered by proposition A.3.2.
The technique is the exact same as what was used when studying gl(1|2).
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λ Action Conclusion

tε1, t /∈ Z>0

Weight is typical; apply
three odd reflections, get two

odd highest weights
Odd part too large

tε1, t ∈ Z>0

After adding multiple of Berezinian
get something of the form

(Π)SkGL
(∗)
1|n or (Π)ΛkGL

(∗)
1|n

Falls under cases considered
by proposition A.3.2

−ε1 + δ1

−δn
−2δn

−ε1 + δ1 + δ2

−δn−1 − δn

−2ε1 + 2δ1
Apply rε1−δ2 ◦ rε1−δ1 get odd

highest weight −3ε1 + 2δ1 + δ2
Odd part too large

Candidate odd weights:

tε1 (t 6= 0), tε1 + δ1, −δn

Check for (numerical) sphericity of ΠL(λ):

λ Action Conclusion

tε1, t ∈ Z>0 After adding multiple of Berezinian
get something of the form

(Π)SkGL
(∗)
1|n or (Π)ΛkGL

(∗)
1|n

Falls under cases considered
by proposition A.3.2tε1 + δ1, t = ±1

−δn
tε1, t /∈ Z>0 Apply rε1−δ2 ◦ rε1−δ1 ; get

new odd highest weight
Odd part too large

tε1 + δ1, t 6= ±1

(Numerically) Spherical irreducibles for gl(1|n), n ≥ 3: Along with (Π)k, we have
the following numerically spherical irreducibles:

(Π)GL1|n, S2GL1|n, Λ2GL1|n

Indecomposable Spherical Modules: The only extensions which could be spherical
in this case are extensions of the trivial even module by a numerically spherical module, or
an extension of ΠGL1|n by a numerically spherical module which is geometrically equivalent
to either Πk or ΠGL1|n.
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In this case, the trivial even module has non-trivial extensions only with Πn(Sn−1V ∗)−Ber

and Πn(Sn−1V )Ber. These modules are never numerically spherical for n ≥ 3.
The module ΠGL1|n has non-trivial extensions only with Πn−1(Sn−2V ∗)−Ber and L(nε1−

δ2−· · ·−δn) (up to a parity shift). The latter module is not numerically spherical. Although
the former is numerically spherical, its extensions with ΠGL1|n will never be numerically
spherical. It follows that we get no new spherical indecomposables.

A.3.5 The general case gl(m|n), m ≥ 2

Candidate even weights:

tdetε (t 6= 0), ε1, detε − εm, 2ε1, 2detε − 2εm (m > 2)

ε1 + ε2 (m > 2), detε − εm−1 − εm (m > 2)

−detδ + δ1, −δn, −2detδ + 2δ1 (n > 2) − 2δn

−detδ + δ1 + δ2 (n > 2), −δn−1 − δn (n > 2)

−detε + ε1 + δ1, ε1 − δn, −εm + δ1, detε − εm − δn
Check for (numerical) sphericity of L(λ):
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λ Action Conclusion

t detε, t = 0,±1

After adding multiple
of Berezinian
L(λ) becomes

something of the form

(Π)SkGL
(∗)
m|n or

(Π)ΛkGL
(∗)
m|n

Falls under cases considered
by proposition A.3.2

ε1

detε−εm
2ε1

ε1 + ε2, m > 2

detε−εm−1 − εm, m > 2,

− detδ +δ1

−δn
−2δn

− detδ +δ1 + δ2, n > 2

−δn−1 − δn, n > 2

2 detε−2εm, m > 2

Apply rεm−1−δ1 ◦ rεm−δ1
get odd

highest weight
2ε1 + · · ·+ 2εm−2+

εm−1 + δ1

Odd part too large

−2 detδ +2δ1, n > 2

Apply rεm−δ2 ◦ rεm−δ1
get odd

highest weight
−εm − δ2−

2δ3 − · · · − 2δn

Odd part too large

The final cases to consider for λ are:

−detε + ε1 + δ1, ε1 − δn, −εm + δ1, detε − εm − δn

• If λ = − detε +ε1 + δ1, then applying rεm−δ2 ◦ rεm−δ1 we get odd highest weight
− detε +ε1 − εm + δ1 + δ2. If n > 2, then this shows the odd part is too large.

If n = m = 2, then λ = −ε2 + δ1. Applying rε2−δ2 ◦ rε2−δ1 gives odd highest weight
−2ε2 + δ1 + δ2, generating a 3-dimensional submodule of the odd part. On the other
hand, if we instead applied rε1−δ1 ◦ rε2−δ1 , we’d get odd highest weight −ε1 − ε2 + 2δ1,
giving a distinct 3-dimension submodule of the odd part. Therefore, the odd part has
to be at least 6-dimensional, which is too large.

• If λ = ε1 − δn, this is the parity shift of the adjoint module, which has too large an
odd part.



APPENDIX A. INDECOMPOSABLE SPHERICAL REPRESENTATIONS 138

• If λ = −εm + δ1, then applying rεm−δ1 followed by either rεm−δ2 or rεm−1−δ1 gives odd
highest weights −εm−1− εm + 2δ1 and −2εm + δ1 + δ2. This shows the odd part will be
too large.

• Finally, if λ = detε−εm − δn, then applying rεm−1−δ1 ◦ rεm−δ1 gives odd highest weight
ε1 + · · ·+ εm−2 + δ1 − δn, which is of dimension n2 − 1 +m(m− 1)/2, which is bigger
than nm whenever n > 2, m ≥ 2.

Therefore we can assume n = m = 2, in which case n2 − 1 + m(m − 1)/2 = 4. Then
we can also apply rε2−δ2 ◦ rε2−δ1 to get distinct odd highest weight ε1 − ε2, making the
odd part too large.

Candidate odd weights:

tdetε (t 6= 0), ε1, ε1 + ε2 (m ≥ 3), 2ε1

−δn, −δn−1 − δn (n ≥ 3), −2δn

ε1 + δ1 − detε, ε1 − δn, −εm + δ1, −εm − δn + detε

Check for (numerical) sphericity of ΠL(λ):

λ Action Conclusion

t detε, t = 0,±1

After adding multiple
of Berezinian

ΠL(λ) becomes
something of the form

(Π)SnGL
(∗)
m|n or

(Π)ΛnGL
(∗)
m|n

Falls under cases considered
by proposition A.3.2

ε1 + t detε, t = 0

2ε1 + t detε, t = 0

ε1 + ε2 + t detε, m > 2, t = 0

−δn + t detδ, t = 0

−2δn + t detδ, t = 0

−δn−1 − δn + t detδ, n > 2 t = 0

This leaves us to consider the cases for λ:

tdetε t 6= 0,±1, −detε + ε1 + δ1, ε1 − δn, −εm + δ1, −detε − εm − δn

• If λ = tdetε t 6= 0,±1, then applying rεm−δ1 we get even highest weight t detε−εm + δ1.
Next we may apply either rεm−1−δ1 or rεm−δ2 , giving odd highest weights t detε−εm−1−
εm + 2δ1, or t detε−2εm + δ1 + δ2. It follows the odd part will be too large.

• If λ = −detε + ε1 + δ1 and m = n = 2, then λ differs by a multiple of the Berezinian
with ε1 − δ2, giving the adjoint representation which is not numerically spherical. If
n > 2, then applying rεm−δ2 ◦ rεm−δ1 gives an even weight which is not g0-spherical.
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� If λ = ε1 − δn we get the adjoint module, which is not numerically spherical.

� If λ = −εm + δ1, then if m = n = 2 we again get a twist of the adjoint module, while
if n > 2, applying rεm−δ2 ◦ rεm−δ1 gives an even weight which is not g0-spherical.

� Finally, if λ = detε−εm− δn then when n = m = 2 we get the adjoint module, while if
n > 2 then applying rεm−1−δ1 ◦ rεm−δ1 we get an even weight which is not g0-spherical.

Spherical irreducibles for gl(m|n), 2 ≤ m ≤ n: Apart from (Π)k, numerically spher-
ical irreducibles are all spherical in this case.

GLm|n, ΠGLm|n, S2GLm|n, Λ2GLm|n, ΠS2GLn|n, ΠS2GLn|n+1

We note however that if we remove the condition that m ≤ n, then ΠGLm|n is equivalent to
GLn|m and Λ2GLm|n is equivalent to S2GLn|m.

Spherical indecomposables for gl(m|n), 2 ≤ m ≤ n:
In this case, S2GLm|n, Λ2GLm|n,ΠS

2GLm|m, and ΠS2GLm|m+1 all have odd dimension
equal to the odd dimension of a Borel. Hence the only possible spherical extensions these
modules could have are by a one-dimensional even module. However there are no such
extensions. In fact, in this case the trivial module has no non-trivial extensions by any
(numerically) spherical irreducibles, and nor does its parity shift.

This leaves us to look at the standard module. However neither it nor its parity shift
admits non-trivial extensions by numerically spherical modules. It follows that all spherical
indecomposable gl(m|n)-modules for 2 ≤ m ≤ n are all irreducible.

A.4 osp(m|2n) case

We now study the case g = osp(m|2n), with m,n > 0, (m,n) 6= (2, 1) (since osp(2|2) ∼=
sl(1|2)). For more about osp(m|2n) and a description of bst-dominant weights, see [10] and
[39]. We refer to section 2.3.2 and section 2.3.4 for a discussion of our notation for Borels
and root systems.

A.4.1 Modules from the standard representation

Write OSPm|2n for the standard representation of osp(m|2n) on km|2n.

Proposition A.4.1. 1. OSPm|2n is spherical if and only if m ≥ 2. In this case it is
spherical exactly with respect to Borels with εδ strings of the form ε · · · , or (±ε)δn
when m = 2.

2. ΠOSPm|2n is always spherical exactly with respect to Borels with εδ strings of the form
δ · · · .

Proof. For the first statement, OSP1|2n is not spherical because the odd dimension of any
Borel of osp(1|2n) is n, which is too small. The rest is straightforward.
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A.4.2 osp(2|2n), n ≥ 2

Standard Borel: bst = bεδ
n
. The odd dimension of every Borel is 2n.

Spherical weights for g0 = o(2)× sp(2n):

δ1 + sε1, sε1 (ν 6= 0), δ1 + δ2 + sε1 (n = 2) (A.4.1)

Candidate even weights

δ1 − ε1, sε1 (s 6= 0), δ1 + δ2 − ε1(n = 2)

Candidate odd weights

sε1 (s 6= 0), −ε1 + δ1

Check for (numerical) sphericity of (Π)L(λ):

λ Parity Action Conclusion

δ1 − ε1 even Apply rε1−δ2 ◦ rε1−δ1 ;
get new even or

odd highest weight

Odd part too
large or even part

not spherical
sε1, n > 2, s 6= 0, 1 even

sε1, s 6= 0, 1 odd

sε1, s = 1 even

Do nothing

Isomorphic to standard
module up to parity

shift. Covered by
proposition A.4.1

sε1, s = 1 odd

sε1, n = 2, s = 3 even

Do nothing
Isomorphic to

L(δ1 + δ2 − ε) or its dual-
a spherical module

δ1 + δ2 − ε1,
n = 2

even

sε1,
n = 2, s 6= 1, 3

even

Apply the odd reflections
rε1−δ1 , rε1−δ2 , rε1+δ2

Gives two odd highest weights

Odd part too largeδ1 − ε1,
n = 2

odd

δ1 − ε1,
n > 2

odd
Apply rε1−δ3 ◦ rε1−δ2 ◦ rε1−δ1

get even highest weight vector
Even part not spherical

(Numerically) Spherical irreducibles for osp(2|2n), n ≥ 2: Apart from Πk, all
numerically spherical irreducibles are spherical.

OSP2|2n, ΠOSP2|2n, Lbst(δ1 + δ2 − ε1)
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A.4.3 osp(2m|2n), m ≥ 2

Standard Borel bst = bδ
nεm .

Spherical weights for g0 = o(2m)× sp(2n):

(m,n) Weights

Any m,n δ1, ε1

Any n; m = 2, 3, 5 1
2
(ε1 + · · · ± εm)

Any n; m = 2, 3 ε1 + · · · ± εm
Any n and m = 2,
or n ≤ 2, m = 3

1
2
(ε1 + · · · ± εm) + δ1

Any m; n = 2 δ1 + δ2

Any m; n = 1 2δ1

Candidate even weights: Only λ = δ1. Although δ1 + δ2 when n = 2 and 2δ1 when
n = 1 are dominant, applying a simple odd reflection gives an odd highest weight which is
too large.

Candidate odd weights: Only λ = δ1.
Check for (numerical) sphericity of (Π)L(λ):

Weight Parity Action Conclusion

δ1 even
Do nothing

Parity shift of standard module;
covered by proposition A.4.1δ1 odd

(Numerically) Spherical irreducibles for osp(2m|2n), m ≥ 2: Along with (Π)k, we
have two spherical irreducibles:

OSP2m|2n, ΠOSP2m|2n

A.4.4 osp(2m+ 1|2n)

Standard Borel: bst = bδ
nεm .
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Spherical weights for g0 = o(2m+ 1)× sp(2n):

(m,n) Weights

Any m,n δ1, ε1

Any n; m ≤ 4 1
2
(ε1 + · · ·+ εm)

(1, 1), (1, 2),
or (2, 1)

1
2
(ε1 + · · ·+ εm) + δ1

Any m; n = 2 δ1 + δ2

Any m; n = 1 2δ1

Candidate even weights: Only δ1. Again, the other bst-dominant weights appearing
the above table have too large an odd part as seen by applying the odd simple reflection
rδn−ε1 .

Candidate odd weights: Only λ = δ1.
Check for sphericity of (Π)L(λ):

Weight Parity Action Conclusion

δ1 even
Do nothing

Parity shift of standard module;
covered by proposition A.4.1δ1 odd

Spherical indecomposables for osp(m|2n), (m,n) 6= (2, 1): The trivial module has
a distinct central character from OSPm|2n for all (m,n), and therefore there are no new
spherical indecomposables for osp(m|2n) when (m,n) 6= (2, 2).

When m = n = 2, the central character of Lbst(δ1 +δ2−ε1) is the same as that of OSP2|4,
and therefore it has no extensions with a trivial module. Any extension of Lbst(δ1 + δ2 − ε1)
with OSP2|4 will have too large an odd part, and therefore cannot be spherical. So osp(2|2n)
also has no new spherical indecomposables.

Below is a table of all spherical irreducibles for osp(m|2n), as well as Borels for which
sphericity is achieved, and stabilizers of spherical vectors:

A.5 Exceptional basic simple algebras

Here we consider when g = g(1|2), ab(1|3), and d(2|1; t). We show that none of these algebras
have nontrivial spherical modules (unless d(2|1; t) ∼= osp(2|4)). We refer to L. Martirosyan’s
thesis [36] for more on g(1|2) and ab(1|3). For the description of the root system of d(2|1; t)
used below, see [48], and for the parametrization of dominant weights we refer to example
10.7 of [47].
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Rep dims Borels Stabilizer

OSPm|2n, m 6= 1 (m|2n) ε · · · osp(m− 1|2n)

ΠOSPm|2n (2n|m) δ · · · osp(m− 1|2n− 2)n (k ⊕ km−1|2n−2)

L(δ1 + δ2 − ε1), m = n = 2 (6|4) (±ε)δδ, δδε osp(1|2)× osp(1|2)

Table A.3: Spherical representations of osp(m|2n)

A.5.1 g(1|2) case

See section 2.3.2 for a description of the root system. The following table goes through our
usual to-do list, and shows there are no non-trivial numerically spherical irreducibles.

bst Borel with simple roots δ + ε3, ε1, ε2 − ε1.

g0-spherical weights δ, 2δ, ε1 + ε2

Candidate even weights
None; 2δ is dominant, but applying
rδ+ε3 gives too large an odd part

Candidate odd weights None

A.5.2 ab(1|3) case

Root system: Again see section 2.3.2 for the root system. Once more the following table
shows there are no non-trivial numerically spherical irreducibles.

bst
Borel with simple roots

1
2
(−ε1 − ε2 − ε3 + δ), ε3, ε2 − ε3, ε1 − ε2

g0-spherical weights 1
2
δ, δ, ε1,

1
2
(ε1 + ε2 + ε3)

Candidate even weights

None; δ is dominant, but
applying r 1

2
(−ε1−ε2−ε3+δ) gives

too large an odd part

Candidate odd weights None

A.5.3 d(2|1; t) case

The root system is described in section 2.3.2.



APPENDIX A. INDECOMPOSABLE SPHERICAL REPRESENTATIONS 144

Standard Borel: bst is a Borel with three simple isotropic roots α1, α2, α3 (such a Borel
is unique up to conjugacy). Then the principal roots are βi = αj + αk, where {i, j, k} =
{1, 2, 3}, i.e. they are even roots which are simple after application of some number of odd
reflections to the simple root system bst.

bst-dominant weights: Since the principal roots are a basis of the h∗
0
, we may parametrize

a weight λ by (c1, c2, c3), where ci = λ(hβi). The conditions that λ is dominant integral with
respect to this Borel is that c1, c2, c3 ∈ Z≥0, and one of the following holds:

1. c1, c2, c3 ∈ Z>0

2. c1 = (t+ 1)c2 + c3 = 0

3. c2 = −tc1 + c3 = 0

4. c3 = −tc1 + (t+ 1)c2 = 0

Spherical weights for g0:

(x, 0, 0), (0, x, 0), (0, 0, x) where x = 1, 2

and
(a, b, c) where two out of a, b, c are 1, and the other is 0.

Candidate even weights:

(0, 1, 1) with t = −2, (1, 0, 1) with t = 1

Check sphericity of L(λ): We have d(2|1; 1) ∼= d(2|1;−2) ∼= osp(2|4), so these fall
under appendix A.4.

Candidate odd weights:

(0, 1, 1) with t = −2, (1, 0, 1) with t = 1

Check sphericity of ΠL(λ): The cases are again covered by appendix A.4.

(Numerically) Spherical irreducibles for d(2|1; )̃: None, unless d(2|1; t) ∼= osp(2|4).
Therefore there are no new spherical indecomposable modules.

A.6 The case p(n)

Let g = p(n), n ≥ 2. We refer the reader to [5], in particular for computations of dual
representations, as well as [9] and [49] for more on the representation theory of this algebra.

Notation: A matrix presentation for p(n), under the representation of the standard
module, is [

A B k −At
]

(A.6.1)
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where Bt = B, Ct = −C.
We have a Z-grading g = g−1 ⊕ g0 ⊕ g1, where g0 = g0, g1 are matrices with A = C = 0

and g−1 are matrices with A = B = 0.
Write Pn|n for the standard module of p(n), and q ∈ (S2P ∗n|n)1 for a non-degenerate odd

form on Pn|n preserved by p(n). Then q induces an isomorphism P ∗n|n
∼= ΠPn|n.

Root system: Write h for the (even) Cartan subalgebra of diagonal matrices. A de-
scription of the root system is given in section 2.3.2.

Standard Borel: bst = bst
0
⊕ g−1, where bst

0
is the Borel of g0 with simple roots ε1 −

ε2, . . . , εn−1 − εn.
Characters for g: Recall [p(n), p(n)] is a codimension-one ideal of p(n) with one-

dimensional even quotient. The even irreducible representations of this quotient are indexed
by the complex numbers, and pullback to multiples of the representation of highest weight
ω = ε1 + · · ·+ εn.

Proposition A.6.1. The standard module Pn|n is never spherical. The parity shift ΠPn|n is
spherical exactly with respect to (up to conjugacy) Borels b with b0 = bst

0
, and ε1 + εi positive

for all i.

Proof. This is seen from the matrix presentation in (A.6.1).

We may now put aside the case when n = 1:

Proposition A.6.2. Up to equivalence, the only non-trivial indecomposable spherical module
for p(1) is ΠP1|1. The stabilizer of a spherical vector is trivial.

Proof. The proof is straightforward and thus omitted.

We now assume n ≥ 2.

Proposition A.6.3. The module S2Pn|n is indecomposable. If n > 2, it has simple socle
Lbst(−εn−1 − εn) with a one-dimensional odd quotient. The form q induces an isomorphism
(S2Pn|n)∗ ∼= Λ2V , and we have L(−εn−1 − εn)∗ ∼= L(−2εn).

In particular, if n > 2, dims L(−εn−1 − εn) = dims L(−2εn) = (n2|n2 − 1), and neither
module nor its parity shift is spherical.

Proof. For the statement about S2Pn|n, see Lemma 2.1.2 of [5] or the end of section 5.6.
We have S2P ∗n|n

∼= S2ΠPn|n ∼= Λ2Pn|n. We compute directly that the highest weight of

Λ2Pn|n is −2εn.
Finally, the statement about dimensions is clear. Because the maximum of dim b1 over

all Borel subalgebras is n(n + 1)/2, and we have (n(n + 1)/2) < n2 − 1 for n > 2, the odd
part of (Π)L(−εn−1 − εn) or (Π)L(−2εn) will always be too large to be spherical.

Now we assume n ≥ 3.
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Even spherical dominant weights for g0
∼= gl(n):

ε1, 2ε1, −εn, −2εn, ε1 + ε2 − εn−1 − εn

Candidate even weights: Same as above.
Check for (numerical) sphericity of L(λ):

• The cases of λ = −εn,−2εn,−εn−1 − εn were dealt with in proposition A.6.1 and
proposition A.6.3.

• If λ = ε1, we compute L(λ)∗ ∼= L(−nεn − ω). Hence for n ≥ 4 the even part cannot
be spherical, while when n = 3 the dimension is the same as that of L(−2εn), and it
cannot be spherical.

• If λ = 2ε1, then L(λ)∗ ∼= L(−(n + 1)εn − ω), so the even part is never spherical for
n ≥ 3.

• If λ = ε1 + ε2, then L(λ)∗ = L((1 − n)εn − ω). Hence for n ≥ 5 the even part is not
spherical, while for n = 4 the dimension is the same as that of L(−2ε1), so it cannot
be spherical. If n = 3, ε1 + ε2 − ω = −ε3, so this falls under proposition A.6.1.

Candidate odd highest weights:

−ε1, −2εn, −εn−1 − εn, −2εn−1 − 2εn(n = 3)

−εn−2 − εn−1 − εn (n ≥ 4) − εn−3 − εn−2 − εn−1 − εn (n ≥ 5)

Check for (numerical) sphericity of ΠL(λ):

� The cases of λ = −εn,−2ε,−εn−1 − εn where dealt with in proposition A.6.1 and
proposition A.6.3.

� If λ = −2εn−1− 2εn with n = 3, this is equivalent to ΠL(2ε1), which was already dealt
with.

� If λ = −εn−2−εn−1−εn with n ≥ 4. This is equivalent to the module ΠL(ε1+· · ·+εn−3),
whose dual is ΠL(−4εn − ω). The odd part is then too large to be spherical.

� If λ = −εn−3 − εn−2 − εn−1 − εn with n ≥ 5, this is equivalent to the module ΠL(ε1 +
· · ·+ εn−4), whose dual is ΠL(−5εn − ω). Again the odd part is too large.
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A.6.1 p(2)

Candidate even weights:
−ε2, ε1 − ε2

Check for (numerical) sphericity of L(λ):

� The cases L(−ε2),ΠL(−ε2) were covered in proposition A.6.1.

� The module L(ε1− ε2) is the socle of the adjoint representation, represented explicitly
as the matrices [

A B
0 −At

]
where tr(A) = 0 and Bt = B. An explicit computation shows that neither this nor its
parity shift is spherical. Hence neither L(ε1 − ε2) nor ΠL(ε1 − ε2) is spherical.

Candidate odd weights:
−ε2, ε1 − ε2

Check for (numerical) sphericity of ΠL(λ): The case λ = −ε2 is covered in propo-
sition A.6.1, and λ = ε1 − ε2 was discussed in the even weight check above.

(Numerically) spherical irreducibles for p(n), n ≥ 2: The only non-trivial spherical
irreducible is ΠPn|n. The stabilizer is k = p(n− 1)n ΠL(−εn−1). The numerically spherical
irreducibles also include Πk and Pn|n.

Spherical Indecomposables: For p(2), up to equivalence there is one non-trivial ex-
tension of one-dimensional modules, which is equivalent to the p(1)-module P1|1. There are
no extensions of (Π)P2|2 by a one-dimensional module, and any extensions of (Π)P2|2 by a
twist of (Π)P2|2 have too large an odd part to be spherical. This deals with the case n = 2.

There are no non-trivial extensions of 1-dimensional modules, or of two modules equiv-
alent to (Π)Pn|n for p(n) when n ≥ 3. Therefore we need to determine when there are
extensions between (Π)Pn|n and a one-dimensional module.

The weights of (Π)Pn|n are ±εi, while the weights of any one-dimensional module are
multiples of ω. Because our odd roots are all of the form ±(εi + εj), the only time such an
extension could exist is when n = 3. Further, the extension would need to appear in either
the thin Kac module ∇(ω) or the thick Kac module ∆(−ω) by our weight restrictions (see
[5] for more on these modules).

We see that neither P3|3 nor its parity shift appear in the thick Kac module

∆(−ω) = Up(3)⊗U(p(3)−1⊕p(3)0) k−ω

On the other hand, the thin Kac module on kω, i.e.

∇(ω) = Up(3)⊗U(p(3)0⊕p(3)1) kω
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provides us with a module with the following socle filtration:

∇(ω) =

kω

ΠP3|3

Πk−ω

.

Since the space of extensions between any two simple modules for p(3) is always at most
one-dimensional, the only extensions of (Π)P3|3 by a one-dimensional module will appear in
a subquotient of the above module or its parity shift. Of those, the ones which are non-
irreducible and spherical are ∇(ω), rad∇(ω), and ∇(ω)/ soc∇ω. We note that ∇(ω) is
in fact a restriction of P4|4. Information about Borels for which sphericity is achieved and
stabilizers of spherical vectors is not very revealing, and thus is omitted.

A.7 q(n) case

Let g = q(n). For a more in-depth treatment of this algebra we refer the reader to [10].
Notation: We present g as the subalgebra of gl(n|n) consisting of matrices

g =

{[
A B
B A

]
: A,B ∈ gl(n)

}
Let

h =

[
D D′

D′ D

]
where D,D′ are arbitrary diagonal matrices.

We write Qn|n for the standard module of q(n).
Root system: See section 2.3.2.
Standard Borel: Choose for positive system ε1 − ε2, . . . , εn−1 − εn. Write bst for the

corresponding Borel subalgebra. Note that for q(n) all Borel subalgebras are conjugate.
Notice also that dim b1 = n(n+ 1)/2 < n2 for n ≥ 2.

A.7.1 Spherical weights for g0:

ε1, 2ε1, −εn, −2εn

ε1 + ε2, −εn−1 − εn

A.7.2 q(1)

Proposition A.7.1. For q(1), the non-trivial spherical indecomposable modules are

Ind
q(1)
q(1)0

ktε1 , where t ∈ k is arbitrary.
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For t 6= 0 these modules are all equivalent to Q1|1, and the stabilizer of a spherical vector is

trivial. When t = 0, Ind
q(1)
q(1)0

k0 is equivalent to U1|1.

Proof. Omitted.

A.7.3 q(n), n ≥ 3

Candidate weights: (all weights below are length one, hence satisfy ΠL(λ) ∼= L(λ))

ε1, 2ε1, −εn, −2εn

Check for (numerical) sphericity of L(λ): We have L(ε1) ∼= Qn|n and L(−εn) ∼=
Q∗n|n, and each are spherical by a straightforward check- in fact, they are equivalent.. The

module L(2ε1) is S2(Qn|n), so has odd dimension n2, which is too large. Similarly L(−2εn)
is S2(Q∗n|n), so cannot be spherical.

Numerical spherical irreducibles for q(n), n ≥ 3: Up to equivalence, the only
non-trivial numerically spherical irreducible is Qn|n and it is spherical. The stabilizer of a
spherical vector is q(n− 1)n (Qn−1|n−1)∗.

Spherical indecomposables for q(n), n ≥ 3: For q(n), there are no extensions of k
by k, however the surjective algebra homomorphism q(n) → k0|1 gives rise to a non-trivial
extension of Πk by k. This module is spherical and equivalent to U1|1.

Since k, Qn|n, and Q∗n|n have distinct central characters, there are no extensions between
them. Any extension of Qn|n by itself cannot be spherical because its even part will not be
spherical. Hence we have found all spherical indecomposables of q(n) for n ≥ 3.

A.7.4 q(2)

Candidate weights:

(t+ 1)ε1 + tε2, (t+ 2)ε1 + tε2, where t ∈ k

We need to consider the irreducible representations with these given highest weights as well
as their parity shifts when the length of the weight is two. Note that the above weights are
always typical except for 1

2
ε1 − 1

2
ε2 and ε1 − ε2.

Check for (numerical) sphericity of L(λ) and ΠL(λ):

� If λ = ε1 − ε2 then up to parity shift, L(ε1 − ε2) ∼= [q(2), q(2)]/kI2|2, which is (3|3)
dimensional. By a direct computation neither this nor its parity shift is spherical.

� Suppose λ = 1
2
ε1 − 1

2
ε2. Then L(λ) is isomorphic up to a parity shift to the represen-

tation coming from the map of algebras q(2)→ p(2) which induces the following exact
sequence:

0→ kI2|2 → q(2)→ [p(2), p(2)]→ 0

Therefore we can understand this representation, up to a parity shift, as the restriction
of the action of p(2) on P2|2 to its derived subalgebra.
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Rep dims Stabilizer

L((t+ 1)ε1 + tε2), t 6= −1/2 (2|2) q(1)n Ind
q(1)
q(1)0

k2t+1

ΠL((t+ 1)ε1 + tε2), t 6= −1/2 (2|2) q(1)n Ind
q(1)
q(1)0

k2t+1

Res[p(2),p(2)]P2|2 (2|2) q(1)n Π(Ind
q(1)
q(1)0

k0)

Table A.4: Spherical representations of q(2)

� If λ = (t + 2)ε1 + tε2 for t 6= −1, then the character formula for L(λ) tells us that it
will be (4|4) dimensional, so neither it nor its parity shift can be spherical, having too
large an odd part.

� Finally, suppose λ = (t+ 1)ε1 + tε2, with t 6= −1/2. Then by direct computation both
L(λ) and ΠL(λ) are spherical (note that L(λ) ∼= ΠL(λ) if and only if t = 0 or t = −1).

Spherical irreducibles for q(2): We compute Sd(Rep∗) with respect to (bst)op. This
leads to a canonical identification Lbst(λ)∗ ∼= L(bst)op(−λ) when the length of λ is 2.

Spherical indecomposables for q(2): Again, the quotient map q(2)→ k0|1 gives rise
to a module equivalent to U1|1. The modules (Π)L((t+ 1)ε1 + tε2) for λ 6= 0,−1/2, ,−1 are
projective hence have no extensions with other modules. For λ = −1/2, it has the same
central character as the trivial module but its weights prevent any extensions between them.
Finally, Q2|2 and Q∗2|2 and the trivial module again have distinct central characters, so we
get new spherical indecomposable representations.
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Appendix B

Generalized roots systems and the
Iwasawa decomposition

Here we prove theorem 6.2.8, via the more general theorem 6.2.9. Note that we change
our standard notations for root systems, replacing ∆ with R, in order to be consistent with
commonly used notation.

B.0.1 Structure of proof

In section 1 we recall the definition of finite GRRSs, state the classification of finite irreducible
GRRSs, and prove a few facts we will need later on about them. In section 2 we introduce
automorphisms of GRRSs and prove theorem 6.2.9. Section 3 interprets the results from
section 2 into statements about centralizers of tori proving theorem 6.2.9. Finally, section 4
proves theorem 6.2.8.

B.1 Generalized reflection root systems

B.1.1 Definitions and properties

In [48] the notion of a generalized root system (GRS) was introduced, and GRSs were
completely classified. In [19], this notion was generalized to that of a generalized reflection
root system (GRRS) that was designed to encompass root systems of affine Lie superalgebras.
Finite GRRSs come from root systems of certain (almost) simple Lie superalgebras and we
have found they are a natural object to look at for the problem we consider.

The proofs of properties of GRSs stated in [48] carry over almost entirely to finite GRRSs.
We will restate some of these results without proof with this understanding.

Definition B.1.1. Let V be a finite-dimensional k-vector space equipped with a symmet-
ric bilinear form (·, ·) (not necessarily non-degenerate). A finite generalized reflection root
system (GRRS) is a nonempty finite set R ⊆ V \ {0} satisfying the following axioms:
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1. span(R) = V ;

2. for α ∈ R, (α,−) 6= 0 as an element of V ∗.

3. for α, β ∈ R with (α, α) 6= 0 we have kα,β := 2(α,β)
(α,α)

∈ Z and rα(β) := β − kα,βα ∈ R;

4. for α ∈ R such that (α, α) = 0 there exists a bijection rα : R→ R such that rα(β) = β
if (α, β) = 0, and rα(β) = β ± α if (α, β) 6= 0;

5. R = −R.

We call the elements of R roots.

For the rest of this appendix we will call a finite GRRS R just a GRRS with the under-
standing that it is finite. We will not consider infinite GRRSs.

Remark B.1.2. � A GRS, as defined in [48], is a GRRS where the form (, ) is assumed to
be non-degenerate.

� We note that (2) is equivalent to saying that for all α ∈ R the bijection rα : R→ R is
nontrivial.

� Another notion of a GRS was given in definition 7.1 in [48]. If one defines α∨ =
2

(α,α)
(α,−) for a non-isotropic root α and α∨ = (α,−) for an isotropic root α, then a

GRRS is a GRS in the sense of definition 7.1 of [48] if and only if α∨ 6= β∨ for all odd
isotropic roots α, β. We will see this is the case for all irreducible GRRSs except for
Ã(1, 1), which is defined below.

Lemma B.1.3. Let R ⊆ V be a GRRS and suppose S ⊆ R is a subset of R such that

� S = −S;

� for each α ∈ S there exists β ∈ S such that (α, β) 6= 0;

� for each α ∈ S, rα(S) = S.

Then S ⊆ span(S) is a GRRS.

Proof. This follows from the definition.

Definition B.1.4. If R is a GRRS we define the subset of real (non-isotropic) and imaginary
(isotropic) roots as

Rre = {α ∈ R : (α, α) 6= 0} Rim = {α ∈ R : (α, α) = 0}.

Further, we call α ∈ R odd if α ∈ Rim or 2α ∈ Rre. Otherwise we say a root is even.
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By construction Rre ⊆ span(Rre) = U will be a (potentially non-reduced) root system
in the usual sense and in particular the form is non-degenerate when restricted to U . Thus
we can decompose U as U = V1 ⊕ · · · ⊕ Vk, where Ri

re := Rre ∩ Vi ⊆ Vi is irreducible and
Rre =

∐
i

Ri
re. Let Wi denote the Weyl group of Ri

re, and let W = W1 × · · · ×Wk, the Weyl

group of Rre ⊆ U . Then W acts naturally on V and preserves R and (−,−). Finally let V0

be the orthogonal complement to U in V so that

V = V0 ⊕ V1 ⊕ · · · ⊕ Vk,

where Rre ∩ V0 = ∅. We write pi : V → Vi i = 0, 1, . . . , k for the projection maps. Note that
(−,−) may be degenerate when restricted to V0.

A GRRS R is reducible if we can write R = R′
∐
R′′, where R′ and R′′ are nonempty and

orthogonal to one another. In this case each of R′ and R′′ will form GRRSs in the respective
subspaces they span. A GRRS R is irreducible if it is not reducible. Every GRRS can be
decomposed into a finite direct sum of irreducible GRRSs.

Proposition B.1.5. (Proposition 2.6 of [48]) For an irreducible GRRS R, either dimV0 = 1
and k ≤ 2 or dimV0 = 0 and k ≤ 3. If V0 6= 0, then p0(Rim) = {±v} for some nonzero
vector v ∈ V0.

Remark B.1.6. The proposition B.1.5 in particular implies that if V0 = 0 then (, ) is non-
degenerate. If V0 6= 0 then (, ) is degenerate if and only if it restricts to the zero form on
V0.

For the irreducible root system Ri
re ⊆ Vi, we write Pi = {x ∈ Vi : 2(x,α)

(α,α)
∈ Z for all α ∈

Ri
re} for the weight lattice of Vi. A Wi-orbit X ⊆ Pi is small if x− y ∈ Ri

re for any x, y ∈ X,
where x 6= ±y.

Proposition B.1.7. (Proposition 3.5 of [48]) Let R be a GRRS. Then pi(Rim) is a subset of
Pi \{0}, and is the union of small Wi-orbits. In particular (pi(α), pi(α)) 6= 0 for all α ∈ Rim

and i > 0.

Let R be a GRRS. Then Rim is W -invariant, and thus we may break it up into its orbits

Rim = R1
im t · · · tRm

im.

We call the orbits imaginary components of R.

Lemma B.1.8. Let R be an irreducible GRRS. If α, β are isotropic roots that lie in the
same imaginary component of R, and pi(α) = ±pi(β) for all i, then either α = ±β or
α± β = 2p`(α) ∈ R`

re for some ` ∈ {1, . . . , k}.

Proof. For ease of notation, for a vector v ∈ V write v2 := (v, v), and write pi(β) = εipi(α),
where εi = ±1. Then by assumption we have that

0 = (α, α) =
∑
i

pi(α)2.
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Suppose that α 6= ±β. Since there are at most three terms in the above sum, there must
be an ` such that ε` is distinct from εi for all i 6= `. We see that in this notation,

(α, β) =
∑
i

εipi(α)2.

If this quantity is 0, then we may add it to ε`(α, α) and find that 2ε`p`(α)2 = 0, hence
p`(α)2 = 0. However this contradicts proposition B.1.7. So we must instead have (α, β) 6= 0,
so that by axiom (2) of a GRS, either α + β or α − β is a root. It must be real in either
case, and therefore cannot have a component in V0 and can only have a nonzero component
in one Vi for some i > 0. It now follows whichever of α ± β is a root, it will be equal to
2pi(α) for some i > 0, and we are done.

B.1.2 Classification

Theorem 5.10 of [48] classified irreducible GRSs. However from an analysis of the proof
one see that it also classifies GRRSs, and only on extra family of GRRS arises that are not
already GRSs and this is the family Ã(n, n). This is verified in [19] as well. In terms of

Lie superalgebras, Ã(n, n) is the root system of pgl(n|n) = gl(n|n)/kIn|n. To be precise, if
we write h ⊆ gl(n|n) for the subalgebra of diagonal matrices, then h∗ has a non-degenerate
inner product from the supertrace form. If we take the subspace of h∗ spanned by roots of
gl(n|n) and restrict the form to it, we get the GRRS Ã(n, n).

Theorem B.1.9. The irreducible GRRSs with Rim 6= 0 are as follows.

(0) Ã(n, n), n ≥ 1: Rre = An t An, Rim = (Wω1 + v) t (Wωn − v).

1. A(0, n), n ≥ 1: Rre = An, Rim = (Wω1 + v) t (Wωn − v)

2. C(0, n), n ≥ 2: Rre = Cn, Rim = (Wω1 + v) t (Wω1 − v)

3. A(m,n): m 6= n,m ≥ 1: R1
re = Am, R2

re = An, Rim = (W (ω
(1)
1 + ω

(2)
n ) + v) t

(W (ω
(1)
m + ω

(2)
1 )− v)

4. A(n, n), n ≥ 2: R1
re = An, R2

re = An, Rim = W (ω
(1)
1 + ω

(2)
n ) tW (ω

(1)
n + ω

(2)
1 )

5. B(m,n), m,n ≥ 1: R1
re = Bm, R2

re = BCn, Rim = W (ω
(1)
1 + ω

(2)
1 )

6. G(1, 2): R1
re = BC1, R2

re = G2, Rim = W (ω
(1)
1 + ω

(2)
1 )

7. D(m,n), m > 2, n ≥ 1: R1
re = Dm, R2

re = Cn, Rim = W (ω
(1)
1 + ω

(2)
1 )

8. AB(1, 3): R1
re = A1, R2

re = B3, Rim = W (ω
(1)
1 + ω

(2)
3 )

9. D(2, n), n ≥ 1: R1
re = A1, R2

re = A1, R3
re = Cn, Rim = W (ω

(1)
1 + ω

(2)
1 + ω

(3)
1 )
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10. D(2, 1;λ): R1
re = A1, R2

re = A1, R3
re = A1, Rim = W (ω

(1)
1 + ω

(2)
1 + ω

(3)
1 )

The only GRRS which is not a GRS (i.e. for which the inner product is degenerate) is

Ã(n, n).
In cases (0)-(3), v ∈ V0 is some nonzero vector, and each inner product is determined

up to proportionality, except for D(2, 1;λ) where we get a family of distinct inner products
parametrized by λ 6= 0,−1 modulo an action of S3. Further the inner products on two
distinct real components of D(2, 1;λ) agree if and only if D(2, 1;λ) ∼= D(2, 1), which is when
λ = 1,−2, or −1/2.

Remark B.1.10. The cases (1)-(10) are each the root system of a unique simple basic Lie su-
peralgebra. The only basic simple Lie superalgebra that is left out in the above classification
is psl(2|2). This is due to having root spaces of dimension bigger than one. However using

GRRSs we do get Ã(1, 1), which as already stated corresponds to pgl(2|2), whose derived
subalgebra is psl(2|2).

Corollary B.1.11. let α, β be linearly independent isotropic roots in an irreducible GRRS
R. Then for some i > 0, one of two things must occur:

1. pi(α) and pi(β) are orthogonal and either pi(α) + pi(β) ∈ Ri
re or pi(α)− pi(β) ∈ Ri

re.

2. 2pi(α) = ±2pi(β) ∈ Ri
re.

Proof. If α and β lie in the same imaginary component of R, then pi(α) and pi(β) lie in the
same small Wi-orbit. If pi(α) 6= ±pi(β) for some i, then pi(α) is orthogonal to pi(β) and by
proposition B.1.7 pi(α)− pi(β) ∈ Ri

re so we are done. Otherwise, we are in the situation of
lemma B.1.8, giving 2pi(α) = ±2pi(β) ∈ Ri

re for some i, and we are done.
If α and β lie in distinct imaginary components, then we have R is one of the GRRSs

listed in (0)-(4) above. But we see that in each case there are two imaginary components and
they are swapped under negation. Thus α and −β are in the same imaginary component,
so we may apply the argument just given to finish the proof.

B.2 Automorphisms of weak generalized root systems

Let R ⊆ V be an irreducible GRRS and θ an automorphism of R, meaning that θ : V → V
is a linear isomorphism preserving the bilinear form, with θ(R) = R. Write S ⊆ R for the
roots fixed by θ. By linearity, we have that S = −S and if α, β ∈ S and α + β ∈ R, then
α + β ∈ S. We now prove the main technical result of the appendix.

Proposition B.2.1. Let α, β be linearly independent odd roots of S. Then there exists a
real root γ ∈ Rre with θ(γ) = γ (i.e. γ ∈ S) such that (γ, α) 6= 0 and (γ, β) 6= 0.
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Proof. We break the proof up into two cases.

Case 1: α, β are isotropic:
In general, θ will either preserve all Ri

re or will permute some of the Ri
re. We first deal

with the latter case. If θ permutes Ri
re and Rj

re, then in particular these root systems must
be isomorphic. Looking at our list, this leaves only (0), (4), (9), and (10) as possibilities.
However, in the cases of (0) and (4) the inner product on each factor of An is negative
the other, so no such θ can exist that permutes them. Further, in the case of (10) such a
permutation could only exist if two of the underlying real root systems are isomorphic, i.e.
their inner products agree, which would give D(2, 1). So it remains to deal with case (9).

For the case of (9), we may assume that R3
re is preserved by θ. If p3α 6= ±p3β then

necessarily p3α and p3β are orthogonal because of what the orbit of ω
(3)
1 is. By smallness of

the orbit of ω1 in Cn we will have γ = p3α − p3β ∈ R3
re is fixed by θ, and this will not be

orthogonal to α or β so that (γ, α) 6= 0 and (γ, β) 6= 0. If p3α = ±p3β then γ = 2p3α ∈ R3
re

works.
If instead θ preserves each Ri

re, then each piα is fixed by θ. We then apply corollary B.1.11
to get that there exists an i such that some linear combination of pi(α) and pi(β) is in Ri

re

which is not orthogonal to α or β and is fixed by θ.

Case 2: one of α, β non-isotropic
If α is non-isotropic, then one real component of R must be BCn for some n, hence either

R = G(1, 2) or R = B(m,n). If R = G(1, 2), then α = ±ω(1)
1 . Hence if β is isotropic then

(p1(β), α) 6= 0 so we can take γ = α. If β is non-isotropic then β = ±ω(1)
1 as well, so clearly

(α, β) 6= 0 and we can again take γ = α.

If R = B(m,n) and β is isotropic, then p2β = σω
(2)
1 for some σ in the Weyl group of BCn.

Hence either p2β = ±α, in which case we can take γ = α, otherwise γ = p2β + α ∈ BCn
works. If β is non-isotropic then either β = ±α, in which case we take γ = α, and otherwise
γ = β + α ∈ BCn works.

Corollary B.2.2. If S contains linearly independent odd roots or no odd roots at all, then
S ⊆ span(S) is a GRRS.

Proof. We may apply lemma B.1.3 along with proposition B.2.1 to obtain the result.

Remark B.2.3. Note that we could have S = {±α} for an isotropic root α. For example if
we consider A(0, 2), the automorphism given by a simple reflection of the Weyl group of A2

will give rise to such a situation.

Now let T ⊆ S be the smallest subset of S containing all odd roots of S and such that if
α ∈ T , β ∈ S and (α, β) 6= 0, then β ∈ T . Then T will be orthogonal to T ′ := S \ T , and T ′

will consist of only even roots by proposition B.2.1.

Proposition B.2.4. T ′ ⊆ span(T ′) is a reduced root system. Further, we have the following
possibilities for T :
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1. T = ∅.

2. T = {±α} for an isotropic root α.

3. T ⊆ span(T ) is an irreducible GRRS containing at least one odd root.

In all cases, T is orthogonal to T ′ and we have both S∩ span(T ) = T and S∩ span(T ′) = T ′.

Proof. The first statement is clear. For the second statement, if S ∩ Rim = {±α} for some
α, then we claim T = {±α}. This is because if not then there exists β ∈ T \{±α} such that
β must is real and (α, β) 6= 0. Thus rβα would be another isotropic root in T .

If S∩Rim 6= {±α} for some α then either it is empty, or contains two linearly independent
isotropic roots. In the former case T will either be empty or a non-reduced root system which
is irreducible (by proposition B.2.1) and thus is BCn. In the latter case T ⊆ span(T ) is an
irreducible GRRS with Tim 6= ∅ by proposition B.2.1 and lemma B.1.3.

Now in each possibility for T we always have that the span of the odd roots is everything,
as this is true for any irreducible GRRS. It follows that span(T ′) is orthogonal to span(T ).
Since the inner product restricted to span(T ′) will be non-degenerate we must have S ∩
span(T ′) = T ′. On the other hand if α ∈ T ′∩ span(T ) we would have that α is a null vector,
a contradiction.

Corollary B.2.5. Either S ⊆ span(S) is a GRRS or S = T ′ t {±α} where T ′ ⊆ span(T ′)
is an even reduced root system and α is an isotropic root orthogonal to T ′.

B.3 Applications to centralizers of some tori

Lemma B.3.1. Suppose that g is a Lie superalgebra such that

1. g0 is reductive;

2. If h ⊆ g0 is a Cartan subalgebra (CSA) of g0, then it is self-centralizing in g.

3. For any nonzero weight α of a CSA h we have dim gα ≤ 1.

Then θ ∈ Aut(g) is semisimple if and only if θ|g0 is semisimple. In particular, θ is semisimple
if and only if it preserves a Cartan subalgebra of g0.

Remark B.3.2. Property (2) is equivalent to asking that for any root decomposition of g,
each weight space (including the trivial weight space) is of pure parity.

Proof. It is known that an automorphism of a reductive Lie algebra is semisimple if and only
if it preserves a Cartan subalgebra. Therefore if θ|g0 is semisimple, it preserves a Cartan
subalgebra h ⊆ g0, and thus must act by a permutation on the roots. Since the root spaces
are one-dimensional, it follows that some power of θ must act by a scalar on each weight
space, and thus θ must be semisimple.
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Suppose that g is either a simple basic Lie superalgebra not equal to psl(2|2) or is gl(m|n)
for some m,n so that g satisfies the hypothesis of lemma B.3.1. Let θ ∈ Aut(g) be a
semisimple automorphism of g which preserves a non-degenerate invariant form on g. We
get an orthogonal decomposition g = k⊕ p, where k is the fixed subalgebra of θ, and p is the
sum of the nonzero eigenspaces of θ.

Remark B.3.3. The Killing form is non-degenerate for sl(m|n) with m 6= n, osp(m|2n) when
m − 2n 6= 2 and m + 2n ≥ 2, and on G(1, 2) and AB(1, 3). Thus every automorphism of
these superalgebras necessarily preserves the form.

Now suppose h ⊆ g0 is a Cartan subalgebra which is θ-invariant. Write h = ⊕̃a, where
=̃k∩ h and a = p∩ h. Then θ induces an automorphism of h∗ preserving the set of roots, R,
and thus induces an automorphism of the GRRS R ⊆ V = span(R). In the case of gl(m|n),

R ⊆ span(R) will either be A(m−1, n−1) if m 6= n or Ã(n−1, n−1) if m = n 6= 1, and this
is the GRRS we consider. If m = n = 1, we are not looking at a GRRS but the following
result will be obvious anyway.

We keep the notations as above for S, T, and T ′. Write c(a) for the centralizer of a in g.
Notice that we have c(a) = h +

⊕
α∈S

gα

Lemma B.3.4. Let l ⊆ g be the subalgebra of g generated by the roots {eα : α ∈ T ′}, and

write l̃ for the subalgebra of g generated by {eα : α ∈ T}. Then l is a semisimple Lie algebra,

and either l̃ is isomorphic to a simple basic Lie superalgebra, isomorphic to sl(n|n) for some
n ≥ 1, or is trivial.

Further, the natural map a× l̃× l→ c(a) is an injective Lie algebra homomorphism. This

realizes a× l̃× l as an ideal of c(a).

Proof. Since T ′ is a reduced even root system, the subalgebra l is a Kac-Moody algebra
of finite-type and thus is semisimple. If T 6= ∅ then we apply proposition B.2.4: either
T = {±α} for an odd isotropic root α, in which case l̃ ∼= sl(1|1), or T is an irreducible

GRRS. The only possibilities for l̃ in the latter case are then either a simple basic Lie
superalgebra or sl(n|n) for n ≥ 2.

Using proposition B.2.4 we see that [l, l̃] = 0, and these algebras commute with a. Hence

we obtain a natural map a× l̃× l→ c(a) and it is injective again by proposition B.2.4.

Proposition B.3.5. The algebra c(a) is an extension of an abelian algebra by the product

of ideals a× l̃× l. In particular c(a)1 + [c(a)1, c(a)1] is an ideal of c(a) isomorphic to either
a basic simple Lie superalgebra or sl(n|n) for some n.

Proof. The quotient is surjected onto by h, hence is abelian.

Remark B.3.6. The proposition B.3.5 implies that the structure of c(a) is determined by

abelian algebras of outer derivations of l̃ × l that act semisimply and preserve both l and
l̃. Since a semisimple Lie algebra has no outer derivations, we only need to consider outer
derivations of l̃. For this, the only algebras with outer derivations are psl(n|n) and sl(n|n).
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These algebras all have a one-dimensional algebra of outer derivations except for psl(2|2),
whose outer derivations are isomorphic to sl(2). However since we only consider semisimple
outer derivations, up to symmetry there is only one outer derivation up to scalar.

Thus the possibilities for nontrivial extensions for c(a) that could arise from proposi-
tion B.3.5 would be of the form a× gl(n|n)× l or a× pgl(n|n)× l.

B.4 Involutions and the Iwasawa decomposition

Let us now assume that g is either simple basic or is gl(m|n) for some m,n ∈ N, and that θ is
an involution preserving the non-degenerate invariant form on g. Then in our decomposition
g = k ⊕ p we have that p is the (−1)-eigenspace of θ. Recall that on a Lie superalgebra
g = g0 ⊕ g1 there is a canonical involution δ ∈ Aut(g) defined by δ = idg0

⊕(− idg1
). This

involution is central Aut(g).

Lemma B.4.1. If θ 6= idg, δ, then p0 6= 0.

Proof. If p0 = 0, then we have g0 is fixed by θ. Then θ fixes a Cartan subalgebra h ⊆ g0,
and hence θ must preserve the root spaces with respect to this Cartan, and so by the order
2 condition it acts by ±1 on each odd root space of g. Now g1 is a g0-module, and θ will
be an intertwiner for this module structure. By general theory of simple Lie superalgebras
(see chapter 1 of [39]), g1 is either irreducible or breaks into a sum of two non-isomorphic
irreducible g0-representations g′

1
, g′′

1
such that [g′

1
, g′′

1
] = g0 (or [g′

1
, g′′

1
] is a codimension 1

subalgebra of g0 in the case of gl(m|n)). In the former case, θ must act by ±1 on g1.
In the latter case, if θ does not act by ±1 on all of g1 then WLOG it will act by (−1) on

g′
1

and by 1 on g′′
1
, and thus [g′

1
, g′′

1
] ⊆ p0 = 0, a contradiction.

B.4.1 Iwasawa decomposition

Since we have an involution on g0 preserving the non-degenerate form on it, by classical
theory we may choose a maximal toral subalgebra a ⊆ p0 that can be extended to a θ-
invariant Cartan subalgebra of g, which we will call h. We obtain a decomposition h = t⊕a,
where t is the fixed subspace of θ. We again write c(a) for the centralizer of a. Notice that
a is also a maximal toral subalgebra of the (−1)-eigenspace of the involution δ ◦ θ.

We already deduced the structure of c(a) as an algebra in proposition B.3.5, and in

particular we saw that c(a)1 ⊆ l̃1. Now θ restricts to an automorphism of c(a) preserving

l̃, and by classical theory we have c(a)0 ∩ p = a. Thus by lemma B.4.1 either θ|̃l = id̃l or
θ|̃l = δ̃l.

Definition B.4.2. For λ ∈ h∗ write λ := (λ − θλ)/2 ∈ a∗ for the orthogonal projection of
λ to a∗ (equivalently the restriction to a), and write R for the restriction of roots in R to
a∗ which are nonzero. We call R ⊆ a∗ the restricted root system, and elements of R we call
restricted roots.
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Let ZR ⊆ a∗ be the Z-module generated by R, and then choose a group homomorphism

φ : ZR → R such that φ(α) 6= 0 for all α ∈ R. Let R
±

= {α ∈ R : ±φ(α) > 0} so that we

obtain a partition of the restricted roots R = R
+ t R−. We call R

+
the positive restricted

roots, and we call a partition of R arising in this way a choice of positive system for R. Write
n± =

⊕
α∈R±

gα (where gα is the weight space of α ∈ a∗ with respect to the adjoint action of a

on g), and n = n+ as a shorthand.

Theorem B.4.3. If θ|c(a)1
= id, then we get an Iwasawa decomposition of g:

g = k⊕ a⊕ n

Proof. The proof is identical to the classical case. We see that for α ∈ R, we have linear
isomorphisms θ : gα → g−α, so that gα ∩ k = gα ∩ p = 0. Hence if y ∈ gα is nonzero and
y = y0 + y1 where y0 ∈ k and y1 ∈ p, then y0 6= 0 and y1 6= 0, and we have θ(y) = y0 − y1.
From this it is clear that k + a + n contains n−, and it is also clear that it contains h. We
see c(a) is complementary to a + n + n−, and by our assumption on θ we have c(a) ⊆ k + a,
which shows that k + a + n = g.

To show the sum is direct, if we have x+ h+ y = 0, where x ∈ k, h ∈ a, and y ∈ n, then
applying [h′, ·] for h′ ∈ a we find that [h′, y] = −[h′, x] ∈ p. Hence θ([h′, y]) = −[h′, y] ∈ n,
while [θ(h′), θ(y)] = −[h′, θ(y)] ∈ n−. Hence [h′, y] = 0 for all h′ ∈ a implying y = 0. It
follows that x + h = 0, and since x ∈ k and h ∈ p this implies x = h = 0, and we are
done.

Before stating the next corollary, we make a definition.

Definition B.4.4. Let R be a GRRS and let Q = ZR ⊆ h∗ be the root lattice. Given a
group homomorphism φ : Q → R such that φ(α) 6= 0 for all α ∈ R, we obtain a partition
R = R+ t R− where R± = {α ∈ R : ±φ(α) > 0}. We call R+ the positive roots of R, and
any partition of R arising in this way is called a positive system.

Positive systems for R are equivalent to choices of Borel subalgebras of a corresponding
Lie superalgebra g containing h, where the Borel subalgebra is given by b = h⊕

⊕
α∈R+

gα (in

fact we define Borel subalgebras to be subalgebras arising in this way).

Corollary B.4.5. If θ is an involution on a simple basic superalgebra or gl(m|n) such that
θ preserves the non-degenerate invariant form, then either θ or δ ◦ θ admits an Iwasawa
decomposition. In particular, either the fixed points of θ or the fixed points of δ ◦ θ have a
complementary Borel subalgebra.

Proof. If θ = δ or θ = id, the statement is obvious. Otherwise, we may assume we are in the
hypothesis of theorem B.4.3. If g = psl(2|2) we reference the classification of involutions in
[53].
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To find a complementary Borel subalgebra, let φ : ZR → R be a group homomorphism
determining a positive system for R. Split the natural surjection of free abelian groups
ZR → ZR so that ZR ∼= ZR ⊕K. Then construct φ : ZR → R which is an extension of φ
with respect to the inclusion ZR → ZR such that both φ(α) 6= 0 if α ∈ R and φ(α) > 0 if
φ(α) > 0 for α ∈ R. Then the Borel subalgebra b = h⊕

⊕
φ(α)>0

gα contains a⊕ n and thus is

complementary to k by the Iwasawa decomposition.
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Appendix C

Layers of the coradical filtration

In the appendix we prove theorem 6.5.11. The result is naturally stated and proven in the
more general context of a coalgebra object in a rigid monoidal tensor category satisfying
certain restrictions.

C.1 Statement of main result1

Let k be a field and C a semisimple pointed tensor category over k (precise definitions are
given in appendix C.2). Recall that pointed means that every simple object of C is invertible.
For instance C could be the category of finite-dimensional (super) vector spaces. Let C be
a coalgebra object in the cocompletion of C. Then C is a bicomodule over itself via its
comultiplication morphism. We prove a result on one aspect of this structure.

As a C-bicomodule, C has an ascending Loewy series, i.e. its socle filtration

0 = σ0(C) ⊆ σ1(C) ⊆ σ2(C) ⊆ · · · .

This is often called the coradical filtration of C, and it is in fact a filtration of C by coalgebras.
We seek to describe the layers of this filtration. But we need a few assumptions on C.

Before we state the assumptions, we recall a few constructions. First, every simple right
comodule L of C has an injective envelope I(L), which is a right comodule that is an object
of the cocompletion of C. It too has a socle filtration σ•(I(L)) as a right comodule. Next,
given a right C-comodule V and an object S of C, the tensor product S⊗V has the natural
structure of a right comodule. Finally, if V is a right C-comodule, then its right dual V ∗ is
a left C-comodule and if W is a right comodule then the tensor product V ∗ ⊗W has the
natural structure of a bicomodule, which we denote by writing V ∗ �W .

Here are the assumptions we place on C: for the third assumption we need to fix n ∈ N
with n ≥ 1.

1In a discussion with Pavel Etingof the author has been informed that this result is known for finite-
dimensional coalgebras and can be proven for infinite dimensional coalgebras using the equivalence between
the category of comodules and the category of rational modules over the dual algebra.
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(C1) If L is a simple right C-comodule and S is a simple object of C, then L and S ⊗L are
not isomorphic as comodules unless S ∼= 1.

(C2) If L,L′ are right C-comodules then L∗ � L′ is a simple bicomodule and further every
simple bicomodule is of this form up to isomorphism.

(C3-n) If L,L′ are simple right comodules, then, [σn(I(L)) : L′] <∞.

The above conditions hold for many examples. Our motivating example is where C is the
category of finite-dimensional super vector spaces over k and C is the coalgebra of polynomial
functions on a quasi-reductive supergroup with an even Cartan subgroup. However if C is
the category of finite-dimensional vector spaces, then (C1) automatically holds, and if C is
a coalgebra over an algebraically closed field k, then (C1)-(C2) hold2. More generally, if G
is a group, k an algebraically closed field of characteristic zero or characteristic p where p is
coprime to the order of each finite subgroup of G, and C is the category of G-graded vector
spaces over k, then (C1) and (C2) become equivalent. This follows as a corollary of the main
results of [4], that a finite-dimensional G-graded simple algebra B is a matrix algebra over
k if and only if the center of B is k.

Finally we observe that (C3-n) holds for all n if for all simple right comodules L,L′,
Ext1(L,L′) is always finite-dimensional and for a fixed L vanishes for all but finitely many
L′ (up to isomorphism). For in this case the Ext quiver of the category of right comodules
will be suitably finite.

The main theorem we prove is:

Theorem C.1.1. Assuming (C1)-(C3-n), if i ≤ n then for simple right comodules L,L′ we
have

[σi(C)/σi−1(C) : L∗ � L′] = [σi(I(L))/σi−1(I(L)) : L′].

In particular if (C3-n) holds for all n, then the above equality holds for all i.

The following statement is clearly equivalent.

Theorem C.1.2. Assuming (C1)-(C3-n), if i ≤ n then for simple right comodules L,L′ we
have

[σi(C) : L∗ � L′] = [σi(I(L)) : L′].

In particular if (C3-n) holds for all n, then the above equality holds for all i.

In the case of i = 2 we obtain a generalization of a corollary of the Taft-Wilson theorem
for pointed coalgebras over a field.

Corollary C.1.3. Assuming (C1)-(C2), if L,L′ are simple right comodules with Ext1(L,L′)
is finite-dimensional then we have

[σ2(C)/σ1(C) : L∗ � L′] = dim Ext1(L′, L).

2Thank you to Nicolás Andruskiewitsch for explaining why this is true.
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The finiteness assumption in (C3-n) is clearly necessary in order to state the theorems.
The assumptions (C1) and (C2) are necessary for obtaining a clear description of the simple
bicomodules of C. If A is a simple finite-dimensional G-graded algebra over an algebraically
closed field of characteristic zero for a group G, and the center of A contains a non-scalar
element, then the assumptions (C1) and (C2) will fail for C = A∗ the dual coalgebra of A,
as an object of G-graded vector spaces.

An outline of the appendix is as follows. In section 2 we state formal constructions
related to coalgebras and comodules in tensor categories, with [17] being our main reference.
In sections 3 we state basic results about the matrix coefficient morphism. Section 4 goes into
the existence and structure of injective comodules, and section 5 explains the structure of
the coalgebra as a right comodule. The statements and proofs of these results are known and
go back to [20]. Finally section 6 examines the structure of C as a bicomodule, concluding
with theorem C.6.6.

C.2 Setup and preliminaries

C.2.1

We follow the definitions and terminology from [17]. Let k be a field and C a semisimple
pointed tensor category over k. In other words we assume:

1. C is a locally finite semisimple k-linear abelian category;

2. C is rigid monoidal such that (−)⊗(−) is a biexact bilinear bifunctor, and End(1) ∼= k;

3. every simple object of C is invertible.

Such categories are always isomorphic (as monoidal categories) to a category vec(G,ω), the
category of finite-dimensional G-graded vector spaces (where G is a group) with associativity
isomorphism determined by the 3-cocycle ω ∈ Z3(G, k×). Note that we do not assume (C,⊗)
is braided.

C.2.2

For an object V of C, we write V ∗ for its right dual, evV : V ∗ ⊗ V → 1 for the evaluation
morphism and coevV : 1 → V ⊗ V ∗ for the coevaluation morphism. If W is a subobject of
V , we write W⊥ for the subobject of V ∗ given by the kernel of the epimorphism V ∗ → W ∗.
If f : W → V is an arbitrary morphism then we have a commutative diagram which will be
used later on:

W ∗ ⊗W evW // 1

V ∗ ⊗W

OO

// V ∗ ⊗ V

evV

OO (C.2.1)



APPENDIX C. LAYERS OF THE CORADICAL FILTRATION 165

C.2.3

We consider the cocomplete abelian category Ĉ constructed from C, as described in [60]. Note

that here if C ∼= vec(G,ω), then Ĉ ∼= Vec(G,ω) which is the category of G-graded vector

spaces of arbitrary dimension. We have a fully faithful embedding C → Ĉ admitting the
usual universal property. Further, in this case Ĉ × Ĉ is a cocomplete abelian category with
a natural fully faithful functor C × C → Ĉ × Ĉ that satisfies the desired universal property.
Thus in particular ⊗ extends to a biexact bilinear functor Ĉ × Ĉ → Ĉ which we continue to
write as ⊗ by abuse of notation.

C.2.4

Let C be a coalgebra object in Ĉ. This means C comes equipped with morphisms

∆ : C → C ⊗ C and ε : C → 1

such that

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆, (ε⊗ idC) ◦∆ = (idC ⊗ε) ◦∆ = idC .

By thinking of Ĉ as Vec(G,ω), a standard argument shows that Ĉ is a direct limit of sub-
coalgebras objects of C.

C.2.5

An object V ∈ Ĉ is said to be a right C-comodule (resp. left C-comodule) if it is equipped
with a morphism aV = a : V → V ⊗ C (resp. aV = a : V → C ⊗ V ) such that

(a⊗ idC) ◦ a = (idV ⊗∆) ◦ a, (resp. (idC ⊗a) ◦ a = (∆⊗ idV ) ◦ a)

and
(idV ⊗ε) ◦ a = idV , (resp. (ε⊗ idV ) ◦ a = idV ).

An object V ∈ Ĉ is a C-bicomodule if it is both a left and right comodule with comodule
structure morphisms aV,l and aV,r such that (idC ⊗aV,r) ◦ aV,l = (aV,l ⊗ idC) ◦ aV,r. Observe
that C is naturally a left and right comodule via aC,r = aC,l = ∆ such that it obtains the
structure of a C-bicomodule.

Again by a standard argument any C-(bi)comodule V will be a sum of sub-(bi)comodule
objects in C. In particular, simple (bi)comodules are always objects of C.

C.2.6

Consider the category ModC (resp. CMod) of right C-comodules (resp. left C-comodules)

with morphisms between two objects V,W being morphisms in Ĉ respecting comodule struc-
ture morphisms. Let Cmod (resp. modC) denote the full subcategory of right C-comodules
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(resp. left C-comodules) in C. We also have the categories CModC and CmodC of C-

bicomodules in Ĉ and C respectively. By our assumption that ⊗ is biexact, these categories
are all abelian. Further, Cmod, modC and CmodC are locally finite, and thus the Jordan-
Holder and Krull-Schmidt theorems are valid. The categories CMod, ModC and CModC
are cocomplete, and we have natural inclusion functors modC → ModC , Cmod → CMod,
and CmodC → CModC that have the usual universal properties as cocompletions.

C.2.7

Given a right (resp. left) C-comodule V and an object S ∈ Ĉ, we may construct a new right
(resp. left) C-comodule S⊗V (resp. V ⊗S) with comodule morphism aS⊗V = idS ⊗aV (resp.
aV⊗S = aV ⊗ idS). This defines an endofunctor of the categories ModC and CMod, and it
preserves modC and Cmod if S is in C. We observe that if S is simple (and thus invertible)
then this functor defines automorphisms of these abelian categories, and thus it takes simple
comodules to simple comodules.

C.2.8

Given a right C-comodule V and left C-comodule W we may construct a C-bicomodule
V � W which is V ⊗ W as an object of Ĉ and has left and right comodule structures as
described in C.2.7. This satisfies the necessary commutativity condition to be a bicomodule.

Lemma C.2.1. Suppose that V is a right C-comodule, W a left C-comodule, and S is an
object of Ĉ. Then we have a canonical isomorphism of bicomodules

(W ⊗ S) � V ∼= W � (S ⊗ V ).

Proof. Indeed, the associativity isomorphism coming from the monoidal structure of Ĉ pro-
vides us with such an isomorphism.

Corollary C.2.2. With the same hypotheses as lemma C.2.1 and assuming that S is a
simple object of C, we have a canonical isomorphism

(W ⊗ S∗) � (S ⊗ V ) ∼= W � V.

Proof. Apply lemma C.2.1 and the invertibility isomorphism S∗ ⊗ S ∼= 1.

C.2.9

Let V be an object in modC and V ∗ its right dual in C. Then V ∗ has the natural structure
of a left C-comodule by

aV ∗ = (evV ⊗ idC ⊗ idV ∗) ◦ (idV ∗ ⊗aV ⊗ idV ∗) ◦ (idV ∗ ⊗ coevV ).
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This construction is functorial, so that we have a contravariant functor (−)∗ : modC → Cmod.
This functor is an antiequivalence with inverse taking the left dual of a comodule, V 7→ ∗V .
We observe that if W is a right subcomodule of V then W⊥ is naturally a left subcomodule
of V ∗.

C.3 Matrix coefficients

C.3.1

For this section, all objects are assumed to be in C, i.e. they are of finite length. Given an
object V of modC , by C.2.9 and C.2.8 we obtain a C-bicomodule given by V ∗ � V . Define
the matrix coefficients morphism cV : V ∗ � V → C by

cV = (evV ⊗ idC) ◦ (idV ∗ ⊗aV ) = (idC ⊗ evV ) ◦ (aV ∗ ⊗ idV ).

Lemma C.3.1. Suppose that f : W → V is a morphism of right C-comodules. Then we
have the following commutative diagram:

V ∗ � V
cV // C

V ∗ �W

OO

//W ∗ �W

cW

OO

Proof. Indeed, this follows from the commutativity of the following diagram:

W ∗ ⊗W idW∗ ⊗aW //W ∗ ⊗W ⊗ C evW⊗idC // C

V ∗ ⊗W ⊗ C

OO

// V ∗ ⊗ V ⊗ C

evV ⊗idC

OO

V ∗ ⊗W //

OO

idV ∗ ⊗aW

88

V ∗ ⊗ V

idV ∗ ⊗aV

OO

The top left square is obviously commutative. The bottom right square is commutative
because f : W → V is a morphism of comodules. The top right square is simply C.2.1
tensored with C, and thus is commutative.

Corollary C.3.2. Suppose that W is a right sub-comodule of V . Then W⊥ �W ⊆ ker cV .

Proof. Clear from previous lemma.
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Lemma C.3.3. Suppose that V is a right C-comodule, with W a sub-comodule of V and U
a quotient of V . Then Im cW and Im cU are sub-bicomodules of Im cV .

Proof. Apply the commutative squares obtained from C.3.1 for the two morphisms W → V
and V → U .

Corollary C.3.4. If V is a right C-comodule and W is a subquotient of V as a comodule,
then Im cW is a sub-bicomodule of Im cV .

Lemma C.3.5. Let V be a right C-comodule, and suppose that W1,W2 are subcomodules
such that W1 + W2 = V . Then Im cV = Im cW1 + Im cW2. Similarly, if U1, U2 are quotients
comodules of V such that the map V → U1 ⊕ U2 is injective, then Im cV = Im cU1 + Im cU2.

Proof. We apply lemma C.3.3 to the epimorphism W1 ⊕W2 → V and monomorphism V →
U1 ⊕ U2, and use C.3.2 to find that cV1⊕V2 (resp. cU1⊕U2) factors through cV1 ⊕ cV2 (resp.
cU1 ⊕ cU2).

C.3.2

Given a finite-length right C-subcomodule V of C, let εV : V → 1 be the restriction of
ε to V and ε∗V : 1 → V ∗ its dual. Then the following is a commutative diagram of right
C-comodules:

V
ε∗V ⊗1

//

((

V ∗ ⊗ V
cV
��

C

Thus V is a right subcomodule of the image of cV in C. Since C is the sum of its finite
length right sub-comodules, it follows that C =

∑
Im cV , where the sum runs over all right

C-comodules in C.

C.4 Socle filtration and injectives

C.4.1

The objects of ModC , CMod, and CModC admit socle filtrations. Using the same notation
as Green in [20], we write σi(V ) for the i term in the socle filtration of an object V . In
this case we have that V is the direct limit of its socle filtration. If the socle filtration of an
object V is finite (which happens in particular if V is of finite-length, i.e. is in C), then we
write ``(V ) for the length of the socle filtration, the Loewy length of V . In this case, ``(V )
is the length of every minimal semisimple filtration of V . Further, then V also has a radical
filtration which is a descending filtration whose ith term we write as ρi(V ), and whose length
is also ``(V ). Recall that ρ1(V ) := ρ(V ) is defined to be the minimal subcomodule of V such
that V/ρ(V ) is semisimple, and we define the filtration inductively by ρi(V ) = ρ(ρi−1(V )).
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Lemma C.4.1. If V is of finite length, then σi(V )⊥ = ρi(V ∗) and ρi(V )⊥ = σi(V
∗).

Proof. Follows from the fact that dualizing is an antiequivalence of comodule categories.

C.4.2

The socle filtration on C as a C-bicomodule is often called the coradical filtration of C, and
is sometimes written Ci := σi(C). The goal of this appendix is to give a description of the
layers of the coradical filtration of C.

C.4.3

Define the functor FC : Ĉ → ModC by FC(S) = S ⊗ C. This is one of the endofunctors
described in C.2.7.

Lemma C.4.2. The functor FC is right adjoint to the forgetful functor ModC → Ĉ.

Proof. The proof follows the same ideas as in (1.5a) of [20].

C.4.4

Lemma C.4.3. The categories CMod and ModC have enough injectives.

Proof. Given a right C-comodule V , FC(V ) is injective by lemma C.4.2 and the morphism
aV : V → FC(V ) is a monomorphism of right C-comodules.

Lemma C.4.4. The direct sum of injective comodules is injective.

Proof. The proof in (1.5b) of [20] carries through to our case.

Given a right C-comodule V , an injective envelope of V is the data of an injective right
comodule I with a monomorphism V → I which induces an isomorphism σ(V )

∼−→ σ(I). An
injective envelope is unique up to isomorphism if it exists, in the usual way. Using Brauer’s
idempotent lifting process as described in [20], we can prove that injective envelopes always
exists. Choose for each simple right comodule L an injective envelope I(L). We now have:

Corollary C.4.5. The indecomposable injective right comodules are exactly those of the
form I(L) for a simple right comodule L. Thus the injective right comodules are exactly the
direct sums of injective indecomposables I(L).
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C.5 Structure of C as a right comodule

We now make some assumptions on C and its right comodule category.

(C1) We suppose that if L is a simple right C-comodule and S is a simple object of C, then
L and S ⊗ L are not isomorphic as comodules unless S ∼= 1.

(C2) We assume that if L,L′ are right C-comodules then L∗ � L′ is a simple bicomodule
and further every simple bicomodule is of this form.

Remark C.5.1. Assumption (C2) implies that every semisimple bicomodule is semisimple as
a right comodule. In particular, if V is a bicomodule of finite length then its Loewy length
as a right comodule is less than or equal to its Loewy length as a bicomodule.

Assumption (C1) is saying that the action of the Picard group of C on the set of simple
comodules is free. Thus we may, and do, choose representatives of each orbit, {Lα}α. In
other words the simple right comodules Lα have the property that if Lα ∼= S ⊗ Lβ for a
simple object S of C then α = β and S ∼= 1, and further if L is a simple right comodule then
there exists an α and a simple object S of C such that L ∼= S ⊗ Lα.

Lemma C.5.2. Every simple bicomodule may be written as L∗α � L for a unique α and
simple right comodule L.

Proof. By (C2) the simple bicomodules are all of the form L∗ � L′ for some simple right
comodules L,L′. Choose α such that L ∼= S ⊗ Lα. Then by lemma C.2.1 L∗ � L′ ∼=
(L∗α ⊗ S) � L′ ∼= L∗α � (S ⊗ L′).

The proof of uniqueness of L is a little trickier. We prove the following statement which
implies it: if L is a simple right comodule, L′ a simple left comodule, and S is a simple object
of C, then if (L′⊗S)�L ∼= L′�L then S ∼= 1. Write G = Pic(C) for the Picard group of C,
that is the group of simple objects of C up to isomorphism under tensor product. For each
g ∈ G, choose a representative simple object Sg, and let h ∈ G be the class of S so that
S ∼= Sh. Finally, write φ : (L′ ⊗ S) � L→ L′ � L for a given isomorphism of bicomodules.

Now write as objects of C isotypic decompositions L′ =
⊕
g

Tg, where Tg ∼= S
⊕ng
g and

L =
⊕
g

Ug where Ug ∼= S
⊕mg
g . The our isomorphism φ of bicomodules gives rise to an

isomorphism of right comodules⊕
g

(Tg ⊗ S)⊗ L ∼=
⊕
g

Tg ⊗ L

and an isomorphism of left comodules⊕
g

L′ ⊗ (S ⊗ Ug) ∼=
⊕
g

L′ ⊗ Ug.
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By (C1), this must induce isomorphisms of right comodules

(Tg ⊗ S)⊗ L ∼= Tgh ⊗ L, (C.5.1)

i.e. φ must take (Tg ⊗ S)⊗ L into Tgh ⊗ L for all g ∈ G, and similarly of left comodules

L′ ⊗ (S ⊗ Ug) ∼= L′ ⊗ Uhg, (C.5.2)

i.e. φ must take L′ ⊗ (S ⊗ Ug) into L′ ⊗ Uhg for all g ∈ G. However for g, h, k ∈ G, C.5.1
implies that φ induces an isomorphism

Tg ⊗ S ⊗ Uk ∼= Tgh ⊗ Uk

while C.5.2 implies that φ induces an isomorphism

Tgh ⊗ S ⊗ Uh−1k
∼= Tgh ⊗ Uk.

It follows that we must have Tg ⊗ S ⊗Uk = Tgh ⊗ S ⊗Uh−1k, i.e. gh = g and h−1k = k i.e. h
must be the identity, and so S ∼= 1 as desired.

Lemma C.5.3. If S is a simple object of C and V is in modC, then Im cV = Im cS⊗V . In
particular if L is a simple right comodule and L ∼= S ⊗ Lα, then Im cL = Im cLα.

Proof. By corollary C.2.2 we have V ∗ � V ∼= (S ⊗ V )∗ � (S ⊗ V ), and this isomorphism of
bicomodules respects the matrix coefficient morphisms.

Proposition C.5.4. We have σ(C) := σ1(C) =
⊕
α

L∗α � Lα as bicomodules.

Proof. For each α we have a nonzero, and thus injective, morphism cLα : L∗α � Lα →
σ(C). Since the simple bicomodules L∗α � Lα, L∗β � Lβ are non-isomorphic for distinct α, β
by lemma C.5.2, we obtain an inclusion

⊕
α

L∗α � Lα ⊆ σ(C). Conversely, a simple sub-

bicomodule W of C must be semisimple as a right C-comodule by remark C.5.1, and thus if
W =

⊕
i

Li for simple right comodules Li then W ⊆
∑
i

Im cLi . Now lemma C.5.3 completes

the proof.

Corollary C.5.5. We have an isomorphism of right comodules:

C ∼=
⊕
α

L∗α ⊗ I(Lα)

Proof. By proposition C.5.4 these right comodules have isomorphic socles. Since injectives
are determined by their socles, we are done.
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C.6 Layers of the coradical filtration

C.6.1

We would like to prove that if V is a finite-length right C-comodule then ``(Im cV ) = ``(V ),
i.e. the Loewy length of Im cV as bicomodule is equal to the Loewy length of V as a right
comodule. First we prove a lemma.

Lemma C.6.1. Suppose that W is a right comodule of finite length with simple socle L.
Choose a splitting L̃ ⊆ W ∗ (in C) of the epimorphism W ∗ → L∗ so that we obtain a right

subcomodule L̃⊗W of W ∗ �W . Then the restriction of cW to L̃⊗W is injective.

Proof. Since this restriction defines a morphism of right comodules L̃⊗W → C, it suffices to
show that it is injective on the socle σ(L̃⊗W ) = L̃⊗L. However L̃⊗L is a splitting of the
head of the bicomodule W ∗�L, and the restriction of cW to W ∗�L has L⊥�L = ρ(W ∗�L)

in its kernel by corollary C.3.2 , and thus factors through (W ∗�L)/(L⊥�L) ∼= L∗�L
cL−→ C.

In summary we have a commutative diagram

L̃⊗ L //

cV |L̃⊗L
%%

W ∗ ⊗ L // L∗ � L

cL
yy

C

Since the composition L̃⊗L→ L∗�L is an isomorphism and cL is injective we are done.

Lemma C.6.2. Let V be a finite-length comodule with ``(V ) = n. Then

Fk =
∑
i+j=k

ρn−i(V ∗) � σj(V ) =
∑
i+j=k

σn−i(V )⊥ � σj(V )

is a semisimple filtration of V ∗ � V such that F1 = 0 and F2n = V ∗ � V .

Proof. The tensor product of semisimple filtrations is again a semisimple filtration.

We now observe that Fn =
∑
i

σi(V )⊥�σi(V ) ⊆ ker cV and thus F• induces a semisimple

filtration of Im cV of length at most n = ``(V ). It follows that ``(Im cV ) ≤ ``(V ).
On the other hand V contains a subquotient W with ``(W ) = ``(V ) such that W has a

simple socle. Since Im cW ⊆ Im cV , if we can show that ``(Im cW ) ≥ ``(W ) = ``(V ) then we
will have that ``(Im cV ) = ``(V ).

By lemma C.6.1 we know that Im cW contains a right subcomodule of the form L̃ ⊗W
for an object L̃ of C, and thus its Loewy length as a right comodule is at least ``(W ), which
by remark C.5.1 implies its Loewy length as a bicomodule is at least ``(W ). We have now
finished showing:

Proposition C.6.3. For a finite length right comodule V , ``(V ) = ``(Im cV ).
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Proposition C.6.4. We have

σi(C) =
∑

``(V )≤i

Im cV .

Proof. By proposition C.6.3, Im cV has Loewy length equal to that of V , so if ``(V ) ≤ i
then Im cV = σi(Im cV ) ⊆ σi(C). Conversely if V ⊆ σi(C) is a right sub-comodule then
by remark C.5.1 ``(V ) ≤ i and so V ⊆ Im cV ⊆ σi(C). Since σi(C) is the sum of its right
subcomodules, we are done.

C.6.2

Fix n ∈ N with n ≥ 1. We make a finiteness assumption on the comodule category modC .

(C3-n) If L,L′ are simple right comodules, then [L′ : σn(I(L))] <∞.

Note that (C3-n) implies (C3-m) whenever m ≤ n.

C.6.3

For each pair of simple right comodules L,L′ and for each i ≤ n we define H i
L′,L to be the

right subcomodule of σi(I(L′)) that is generated by a splitting of the isotypic component of L
in σi(I(L′))/σi−1(I(L′)). In particular it is zero if and only if [L : σi(I(L′))/σi−1(I(L′))] = 0.
By (C3-n), H i

L′,L is a finite length right comodule. Further we have for i ≤ n

σi(I(L′)) =
∑

L simple

∑
j≤i

Hj
L′,L. (C.6.1)

Write H i
α,L := H i

Lα,L
.

Lemma C.6.5. For i ≤ n,

σi(C) =
∑
α

∑
L simple

∑
j≤i

Im cHj
α,L

Proof. Since ``(Hj
α,L) ≤ j ≤ i, by proposition C.6.4 it suffices to show that Im cV is contained

in the RHS whenever V is a right comodule of Loewy length less than or equal to i. However
in this case Im cV =

∑
W

Im cW where the sum runs over quotients of V with simple socles.

Note that ``(W ) ≤ ``(V ) ≤ i for all such W . On the other hand, if W has a simple socle L′

then after potentially twisting W by a simple object S (which won’t change Im cW ) we may
assume L′ ∼= Lα for some α, and then I(Lα) is the injective envelope of W . If ``(W ) ≤ i
then W ⊆ σi(I(Lα)) under an embedding of W in I(Lα). Therefore by C.6.1,

W ⊆
∑

L simple

∑
j≤i

Hj
α,L.
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and so there exists finitely many simple right comodules L1, . . . , Ln such that

W ⊆
∑
k, j≤i

Hj
α,Lk

and hence
Im cW ⊆

∑
k, j≤i

ImHj
α,Lk

.

C.6.4

We may now state the main theorem.

Theorem C.6.6. For i ≤ n,

[σi(C)/σi−1(C) : L∗ � L′] = [σi(I(L))/σi−1(I(L)) : L′].

Proof. The case of i = 1 is proposition C.5.4. If n = 1 then the theorem is proven.
Otherwise if n > 1 we consider the case i > 1. We use lemma C.6.5 and study the con-

tribution of Im cHi
α,L

for a fixed simple comodule L. Write Vi = H i
α,L and Vi−1 = σi−1(H i

α,L)

so that Vi/Vi−1 is a sum of copies of L. Consider the sub-bicomodule W = V ∗i � Vi−1 +
(Vi/Lα)∗ � Vi of V ∗i � Vi. We from the arguments of lemma C.3.1 that

cVi(W ) ⊆ Im cVi−1
+ Im cVi/Lα ,

and since ``(Vi−1), ``(Vi/L) ≤ i− 1, we find that cVi(W ) ⊆ σi−1(C). We have

(V ∗i � Vi)/W ∼= L∗α � Vi/Vi−1

and so we have epimorphisms

L∗α � Vi/Vi−1
∼= V ∗i � Vi/W → Im cVi/cVi(W )→ Im cVi/(σi−1(C) ∩ Im cVi). (∗)

We aim to show this composition (*) is in fact an isomorphism. To this end, choose a splitting

L̃α of V ∗i → L∗α so that we get a right subcomodule L̃α⊗Vi of V ∗i ⊗Vi. By lemma C.6.1, the

restriction of cVi to L̃α ⊗ Vi will be injective. Further, as a right comodule we have

σi−1(L̃α ⊗ Vi) = L̃α ⊗ Vi−1.

Thus by remark C.5.1

σi−1(C) ∩ cVi(L̃α ⊗ Vi) ⊆ cVi(L̃α ⊗ Vi−1).
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Conversely L̃α ⊗ Vi−1 ⊆ W and therefore

cVi(L̃α ⊗ Vi−1) ⊆ σi−1(C) ∩ cVi(L̃α ⊗ Vi)

which implies these are equal. It follows that we obtain an injection of right comodules

L∗α ⊗ Vi/Vi−1 → Im cVi/(σi−1(C) ∩ Im cVi)

and so (*) is an isomorphism. What this shows is that the contribution of Im cHi
α,L

to

σi(C)/σi−1(C) is exactly L∗α � Vi/Vi−1. By lemma C.5.2 it follows that

σi(C)/σi−1(C) =
⊕
α

L∗α � σi(I(Lα))/σi−1(I(Lα)).

Thus we have proven the theorem whenever L ∼= Lα for some α. For the general case we
write L ∼= S ⊗ Lα for some α and some simple object S of C and derive the result using
lemma C.2.1.

We now obtain a generalization of the following corollary of the of the Taft-Wilson the-
orem for pointed coalgebras over a field.

Corollary C.6.7. Assume (C1)-(C2) and that L,L′ are simple right comodules such that
dim Ext1(L,L′) <∞. Then

[σ2(C)/σ1(C) : L∗ � L′] = dim Ext1(L,L′).
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