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Emerging roles for R-loop structures in the management of
topological stress
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X Frederic Chedin‡§1 and Craig J. Benham§¶2

From the ‡Department of Molecular and Cellular Biology, the §Genome Center, and the ¶Departments of Mathematics and
Biomedical Engineering, University of California, Davis, California 95616

Edited by Karin Musier-Forsyth

R-loop structures are a prevalent class of alternative non-B
DNA structures that form during transcription upon invasion of
the DNA template by the nascent RNA. R-loops form universally
in the genomes of organisms ranging from bacteriophages, bac-
teria, and yeasts to plants and animals, including mammals. A
growing body of work has linked these structures to both phys-
iological and pathological processes, in particular to genome
instability. The rising interest in R-loops is placing new empha-
sis on understanding the fundamental physicochemical forces
driving their formation and stability. Pioneering work in Esche-
richia coli revealed that DNA topology, in particular negative
DNA superhelicity, plays a key role in driving R-loops. A clear
role for DNA sequence was later uncovered. Here, we review and
synthesize available evidence on the roles of DNA sequence and
DNA topology in controlling R-loop formation and stability.
Factoring in recent developments in R-loop modeling and sin-
gle-molecule profiling, we propose a coherent model account-
ing for the interplay between DNA sequence and DNA topology
in driving R-loop structure formation. This model reveals
R-loops in a new light as powerful and reversible topological
stress relievers, an insight that significantly expands the reper-
toire of R-loops’ potential biological roles under both normal
and aberrant conditions.

DNA superhelicity: What is it, and why does it matter?

DNA superhelicity, discovered over 50 years ago (1–3), is an
essential physical property of the DNA double helix that can be
most easily understood for closed circular duplex DNA mole-
cules, such as plasmids. Each strand in a circular duplex DNA is
a circle, and these two circles are interlinked due to the helical
nature of DNA (4). The number of times either strand crosses
through the closed circle formed by the other strand is a fixed
integer called the linking number (Lk).3 Lk can only be changed
by transiently cutting one or both strands, followed by strand

passage or rotation and religation. In the absence of any exter-
nal stress, the “relaxed” linking number value, denoted here
Lk0, will reflect the geometry of the Watson–Crick B form
DNA, with one strand crossing every �10.5 bp. Molecules with
different Lk values (referred to as topoisomers) experience
varying degrees of superhelical stress depending on their link-
ing difference, � � Lk � Lk0, also called superhelicity. Super-
helicity can be either positive or negative, reflecting an excess or
deficit of strand crossings, respectively. The superhelix density,
� � �/Lk0, allows comparisons of the levels of superhelicity in
molecules of different lengths.

Superhelicity can also be imposed on noncircular DNA mol-
ecules. If a piece of linear DNA is held between semi-rigid
attachment points such that the diffusion of superhelical
stresses beyond these points is blocked, a topologically con-
strained domain is formed. Examples include CTCF-anchored
topologically associated domains (TADs) and lamin-associated
domains in mammalian genomes (5–7). Chromatin templates
themselves are also topologically constrained (8, 9). Simple
sequence-specific DNA-binding factors, such as the lac repres-
sor, can act as topological domain boundaries (10 –13). Pro-
karyotic circular genomes are partitioned into multiple
dynamic, negatively supercoiled domains that contribute to
genome architecture (14 –16). Thus, a topological domain is
any portion of a DNA molecule, linear or circular, on which
superhelicity can be imposed. Although the linking difference
imposed on a domain can only be changed by transiently cut-
ting one or both of the strands, several processes alter how
superhelicity is distributed within a domain (see below).

DNA superhelicity is critical to biology for a variety of rea-
sons. First, the three-dimensional (3D) shapes available to a
superhelical DNA molecule must satisfy geometrical twisting
and writhing constraints, as first elucidated by Vinograd and
Lebowitz (1, 17). The strain on a negative superhelical domain
can be accommodated either as undertwist of the DNA duplex
or by the formation of toroidally or plectonemically writhed
structures (18) (Fig. 1). These higher-order structures are bio-
logically relevant because they contribute to genome folding in
3D space, increase local proximity of DNA sequences, and
affect local concentrations of DNA- and RNA-binding factors
involved in gene expression control and genome dynamics (19).
When negative superhelicity is expressed as undertwist, the
DNA can undergo strand separation, exposing the two strands
in a single-stranded bubble (Fig. 1). Superhelical duplex desta-
bilization can be critical for processes that require strand open-
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ing, such as the initiation of transcription and of DNA replica-
tion. Promoter and origin regions in prokaryotes have evolved
AT-rich DNA sequences that can efficiently transition to a
strand-separated state (20 –24). Hundreds of Escherichia coli
genes respond to superhelicity changes, supporting the notion
that topology plays an important role in the control of gene
expression (25–27). Negative superhelicity is also thought to
facilitate transcription elongation, whereas excessive positive
supercoiling impedes it (28).

DNA superhelicity also affects protein-DNA interactions. A
host of DNA-binding proteins sense the topological state of
DNA, with negative superhelicity generally facilitating protein-
DNA interactions. Nucleosomes, for instance, preferentially
form on negatively supercoiled DNA, with each nucleosome-
binding event stabilizing one negative superhelical turn (29,
30). The replication initiation proteins of E. coli (DnaA) and of
Drosophila (ORC1), along with a number of transcription fac-
tors (31–36), also prefer binding to negatively supercoiled
DNA. Negatively supercoiled topological domains therefore
represent hubs of genome organization and activity in both
prokaryotes and eukaryotes (37, 38). Negative superhelicity can
also induce the formation of alternative non-B DNA structures
(see below), and these structures, in turn, can regulate gene
expression (26, 39, 40).

All genomes experience superhelical stresses

All genomes, whether of viral, prokaryotic, archaeal, or
eukaryotic origin, experience superhelical stresses as a result of
transcription and replication. These processes involve large
macromolecular machines that translocate processively along
the DNA (41). Impediments to the rotation of these complexes
around the DNA axis force the DNA to rotate instead, which
imposes large amounts of torque on the fiber (30, 42). This leads
to a dynamic repartitioning of superhelicity, whereby a diffusive
wave of positive superhelicity is pushed ahead of the advancing
replication and transcription forks, and a wave of negative
superhelicity of equal magnitude is produced behind. During
transcription, the main focus of this review, this repartitioning
of positive and negative superhelicity is referred to as the “twin
supercoiling domain model” (43, 44) (Fig. 2, A and B).

Transcription-induced supercoiling is a major source of
superhelical stress in all genomes. Direct DNA topology mea-
surements in mammalian cells established that transcription
creates a �1.5-kb negatively supercoiled domain upstream of
(i.e. behind) active promoters (45). The superhelix density
achieved varied with gene activity, reaching � � �0.07. Assum-
ing that transcription generates reciprocal superhelical density
waves of ��� � 0.05, then 150 superhelical turns of each sign will
be generated during each round of transcription of an average
length human gene (30 kb). On a larger scale, Naughton et al.
(46) showed that the human genome consists of a series of
underwound and overwound domains delineated by both
GC/AT sequence transitions and binding sites for the domain-
organizing CTCF protein. Underwound domains were tran-
scriptionally active and enriched for open chromatin, and their
topological states were dynamically responsive to transcription
inhibition. Interestingly, transcription and its ability to form
topological domains has been linked to the large-scale folding
of chromatin domains (46). Independent modeling experi-
ments have suggested that transcription-induced supercoiling
facilitates both cis-interactions between loci in TADs, including
promoter-enhancer contacts (47–49), and chromatin loop
extrusion (19, 50).

Not surprisingly, mechanisms that manage topological
stresses are essential for efficient transcription and replication.
DNA topoisomerases, a family of ubiquitous and conserved
proteins (for recent reviews, see Refs. 51 and 52) transiently cut,
move, and religate DNA strands to relax superhelicity. Type I
topoisomerases, which transiently cut one strand of DNA to
relax superhelicity, occur in all free-living organisms. Type II
topoisomerases make dsDNA cuts and then pass another part
of the duplex through the gap before religation, changing �Lk
by 2. Whereas most type II topoisomerases relax DNA, the pro-
karyotic DNA gyrases introduce negative supercoils to offset
positive superhelical stresses (53). As a result, topological
domains in prokaryotes are maintained in a negatively super-
helical state with an average superhelix density � � �0.05
(15, 54).

DNA topoisomerases are closely associated with, and neces-
sary for, normal transcription. In mammals, DNA topoisomer-
ase I directly binds to the transcription machinery and becomes
catalytically activated upon release into productive elongation

Figure 1. Superhelicity introduces torsional stress and modifies DNA
shape. A covalently closed circular DNA molecule is shown at the top in a
relaxed state. The introduction of four negative supercoils causes undertwist
(Tw) stress in the molecule, which can be expressed as a change in twist
shown at the bottom as strand opening or as a change in overall shape shown
at the right by the formation of a negatively supercoiled writhed (Wr)
structure.
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(55). This fine-tuned mechanism for DNA topoisomerase I
control enables the dynamic removal of positive supercoils
ahead of the machinery to facilitate elongation, while preserv-
ing promoter-opening negative superhelicity toward the tran-
scription start site. A role for DNA topoisomerase I in favoring
elongation was also observed for long genes (56 –58). Topo II
enzymes, by contrast, have been implicated in the local man-
agement of excess supercoils around transcription start sites,
particularly for highly expressed genes (45, 59). The Top2B
enzyme has been implicated in managing the excess promoter-
proximal supercoils generated upon heat shock and serum and
hormone induction at the expense of the generation of DNA
breaks (60 –62).

Superhelicity favors transitions to alternative non-B
DNA structures

Superhelicity represents a high energy state for DNA. At
equilibrium, the energy associated to DNA superhelicity is
quadratic and can be modeled as E(�) � 1⁄2K�2, where � is the

linking difference (63, 64). The twisting and writhing of the
molecule in three dimensions reflects this energy as the DNA
deforms to accommodate the imposed superhelicity. As nega-
tive superhelicity increases, transitions to alternative non-B
form DNA structures will become favored. Strand opening, for
example, absorbs undertwist, thereby allowing the rest of the
domain to relax a corresponding amount. Whereas the transi-
tion itself costs energy through the formation of junctions
between duplex B-DNA and the alternative structure itself, the
accompanying relaxation provides an energy return. If this
return is larger than the transition cost, then the transition is
favored at equilibrium. Negative superhelicity drives transi-
tions to a wide variety of alternative structures in vitro, includ-
ing strand-separated (i.e. melted) DNA, Z-form DNA, cruci-
forms, H-form DNA, and R-loops, the focus of this review (39,
40, 65). Which transitions occur in a specific domain depends
on base sequence and the level of superhelicity it experiences.
Importantly, long genomic sequences will often carry multiple
regions susceptible to forming various alternative structures.

Figure 2. Transcription generates superhelical stresses that can be mitigated by R-loop formation. Transcription-driven supercoiling leads to the
formation of dual waves of positive (downstream) and negative (upstream) superhelicity depicted here as interlinked plectonemic structures (A) or toroidal
structures (B). C, topological disruptions caused by transcription are shown as undertwist (upstream) and overtwist (downstream). As the RNA polymerase (light
blue) translocates forward, an R-loop initiates and extends. R-loop formation relaxes the upstream negative superhelical stress by absorbing undertwist within
the strand opening that accompanies the formation of long R-loops. In addition, the displaced looped out ssDNA strand may wrap around the RNA:DNA hybrid
in a left-handed helical fashion (bottom), further absorbing negative superhelicity.
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These structures exist in a competitive equilibrium because the
available superhelicity couples together the transition behav-
iors of all susceptible sites in the domain. This coupling hap-
pens because a transition at any one site will absorb superheli-
city, thus decreasing the amount remaining to drive transitions
elsewhere and thereby lowering their likelihood (66, 67). The
existence of many thousands of alternative DNA structures in
the genomes of activated B cells in vivo demonstrates the pres-
ence of vast stores of negative superhelicity in mammalian
genomes (68).

R-loops: Prevalent non-B DNA structures

R-loops are three-stranded nucleic acid structures consisting
of an RNA:DNA hybrid and a displaced ssDNA strand (69).
R-loops can form in trans as a result of the invasion of an RNA
strand into complementary dsDNA. Such invasion typically
requires protein-mediated catalysis, either by components of
the homology-directed DNA recombination machinery (70,
71) or by CRISPR-Cas systems (72, 73). R-loops also form in cis
during transcription upon hybridization of the nascent RNA
with the template DNA strand behind the advancing RNA po-
lymerase (RNAP) (74). The formation of a nascent RNA:DNA
hybrid leaves the nontemplate DNA strand unpaired and free to
wrap around the hybrid duplex (Fig. 2C). Co-transcriptional
R-loops are the primary focus of this review.

R-loops are known to form in every genome where they have
been looked for, including bacterial plasmids (75, 76), bacterial
genomes (77–79), and bacteriophages (80), as well as mito-
chondrial genomes (81). Genomic profiling studies have con-
firmed that R-loops are prevalent in the nuclear genomes of
eukaryotes, covering 3–5% of the genome in yeasts (82–85),
plants (86), and mammals (87–90). In humans, R-loops form
over tens of thousands of broadly conserved genic hotspots that
are enriched at gene ends (69, 87). Importantly, R-loop forma-
tion is a dynamic process that occurs at modest frequencies. In
a human cell population at steady state, R-loop frequencies
range from 0.5 to 10%, depending on the locus and its sequence,
transcription levels, and overall gene length (87, 90). Similar
links between R-loop distribution, gene expression, and se-
quence were observed in yeast and plants (82– 84, 86).

Given their prevalence, R-loops represent an important class
of non-B DNA structures that is increasingly the subject of
investigation. R-loops can be biochemically reconstituted with
high efficiency using simple in vitro transcription systems (91–
93), and a variety of orthogonal methods have been developed
to report their formation in plasmids and chromosomes (88, 94,
95). Studies have linked R-loops to a range of both positive and
negative cellular outcomes, suggesting that these structures not
only form in genomes but also are biologically relevant. The
main purpose of this review is to highlight our understanding of
the physiochemical forces that underlie R-loop formation,
focusing on the role of DNA topology. We refer readers to
recent reviews that cover the possible biological roles of
R-loops in health and disease (69, 74, 96–99).

Understanding R-loops from first principles

As with other non-B DNA structures, an R-loop will be
favored to form if its energy at equilibrium is lower than that of

B-form DNA. As with other alternative DNA structures, the
largest energy barrier to R-loop formation is the formation of
the two junctions between duplex DNA and the R-loop itself.
Junction energies have been measured for B/Z transitions and
strand separation in the range of 10 –11 kcal/mol/pair of junc-
tions (100 –103). It is possible that the value for R-loops is even
higher, given that three strands must be accommodated instead
of two. A recent energy-based equilibrium energy–modeling
approach (104) reveals that R-loops can compensate for this
high junctional cost using two complementary paths: DNA
sequence and DNA topology.

Making an R-loop involves breaking DNA:DNA base pairs
and forming RNA:DNA base pairs. If the energy of the RNA:
DNA base pairs is lower than that of the DNA:DNA base pairs
with the same sequence, the energy of the structure as a whole
will be reduced. When analyzed as dinucleotides, seven of the
16 possible combinations favor the RNA:DNA state over the
DNA duplex (105). Most of these sequences are G-rich or
purine-rich. This analysis suggests that R-loops should prefer
to form in G-rich and G/A-rich regions of transcripts. Experi-
mental evidence indeed shows that R-loops form efficiently
from G-rich transcripts (92, 93) and that G clusters constitute
strong initiation points for R-loops (106, 107). GC-rich DNA
sequences that show strand asymmetry in the distribution of G
and C bases (GC skew) are prone to R-loop formation at endog-
enous loci (88, 94, 108) and in vitro (88, 92–94). Evidence from
R-loop mapping studies shows that R-loop hotspots are gener-
ally (but not always) enriched for GC-skewed regions and
purine-skewed regions (83, 86, 87, 95). These results indicate
that R-loop formation in a wide variety of organisms follows at
least in part the intrinsic thermodynamic landscape of RNA:
DNA versus DNA:DNA base pairing.

DNA topology provides a second way by which R-loops can
lower their energy below that of superhelical duplex DNA. A
role for negative supercoiling in favoring R-loops has been
experimentally established through a strong body of work in
E. coli (for a review, see Ref. 109). Strains of E. coli deficient for
the DNA relaxing DNA topoisomerase I enzyme were shown to
accumulate R-loops (76), highlighting the key role of negative
superhelicity in driving R-loops during transcription. DNA
gyrase, with its ability to introduce negative supercoiling into
DNA (53), was the primary driver of transcription-associated
hypernegative supercoiling and of R-loop formation (76). DNA
topoisomerase I activity, by contrast, suppressed this phenom-
enon (76, 91, 110, 111). Strains overexpressing RNase H, an
enzyme that specifically degrades RNA in the context of RNA:
DNA hybrids, partially rescued the defects arising from DNA
topoisomerase I deficiency (112) and abolished the formation
of DNA gyrase– and R-loop– dependent hypernegatively
supercoiled plasmids (91, 111). This work suggested that
R-loop formation is a common occurrence in prokaryotes that
is dynamically regulated by both pro-R-loop (negative super-
coiling) and anti-R-loop (DNA topoisomerase I, RNase H)
factors.

One interpretation of these early findings is that the under-
wound state of DNA associated with transcription-driven neg-
ative supercoiling (43) produces partially melted regions that
permit invasion by the nascent RNA, initiating an R-loop. How-
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ever, analysis of superhelical duplex destabilization shows that
sites of strand separation are confined to the AT-richest regions
of a domain (24). By contrast, most R-loops occur in G/C-rich
locations. Thus, whereas transient supercoiling-induced strand
separation or base unstacking cannot be ruled out as contrib-
uting to R-loop initiation, this view may not adequately capture
the role of negative superhelicity. We suggest instead that, as
described for other non-B DNA alternative structures, negative
superhelicity constitutes a high-energy, stressed state of the
DNA that is efficiently relieved by R-loop formation and the
relaxation it produces (104). The structure of an R-loop lends
itself well to relaxing negative superhelicity. In an R-loop, the
two DNA strands are separated and no longer twist around
each other; this allows surrounding undertwist to migrate into
the R-loop bubble, relaxing the rest of the domain. Every time
an R-loop grows by the helical pitch of DNA (10.5 bp), it
absorbs an additional negative superhelical turn. Assuming
that the displaced strand is free (which may not necessarily
be the case (113, 114)), it can helically wrap around the RNA:
DNA hybrid, and, if the wrap is left-handed, this will absorb
additional undertwist (Fig. 2C). These two effects together
provide significant stress relief to the DNA domain. The
ability of R-loops to lower the energy level of the DNA fiber
provides a clear alternative explanation for the role of nega-
tive superhelicity in their formation and stability. Alto-
gether, if the combined energy saving resulting from favor-
able base pairing and topological relaxation exceeds the
junction energy cost, then R-loop formation will be favored
to occur at equilibrium.

R-loops are powerful, reversible, superhelical stress
relievers

This model reveals R-loops in a new light as nonenzymatic
topological “stress relief valves.” In support of this notion,
R-loop formation upon in vitro transcription of supercoiled cir-
cular plasmids is well-known to cause significant plasmid relax-
ation. We showed that a 3.5-kb plasmid carrying �18 negative
supercoils (assuming a superhelix density of � � �0.05 for
DNA extracted from E. coli) was partially to fully relaxed by an
R-loop, indicating that these structures absorb an astounding
amount of superhelicity (104). The amount of superhelical
stress relief afforded by an R-loop depends primarily on its
length. R-loop sizes can be analyzed at the single-molecule level
by measuring the single-stranded character of the displaced
DNA strand using long-read sequencing (94). Now adapted for
PacBio sequencing (115), single-molecule R-loop footprinting
(SMRF-Seq) was used to measure the lengths of the in vitro
R-loops formed on the plasmid substrate described above. The
majority of the structures ranged from 80 to 175 bp, with a
median length of 120 bp (104). Such structures are expected to
relax �8 –17 supercoils based on the length of the untwisted
region. The helical wrapping of the displaced strand is expected
to relax an additional 1–2 supercoils. Thus, R-loops of median
length 120 bp relax the large majority of the negative superhe-
licity present in plasmids nearly 30 times their size, demonstrat-
ing the ability of R-loops to act as long-range topological relief
valves.

Because the relaxation provided by R-loops is expected to
grow roughly linearly with their length (104), it is important to
understand the distribution of R-loop sizes in genomic
sequences. Using SMRF-Seq, we interrogated a number of
R-loop hotspots in the human genome at ultradeep coverage.
R-loop lengths typically ranged from 200 to 500 bp, a full order
of magnitude larger than other non-B DNA structures (68).
Strikingly, kilobase structures, while rarer, were not uncom-
mon (115), consistent with prior mapping data on R-loop–
prone murine class switch regions (94, 108, 116, 117). R-loops
are giants in the world of non-B DNA structures and are
uniquely suited to absorb large amounts of negative DNA
superhelicity. A 300-bp-long R-loop (the median length of
genomic R-loops (115)) is expected to fully relax a 6 –7-kb DNA
molecule with a superhelix density � � �0.05. Rare kilobase-
size R-loops are expected to relax vast amounts of negative
superhelicity, affecting the topology of the DNA fiber over long
distances. Importantly, because R-loops can hold vast stores of
negative superhelicity, R-loop resolution can release this super-
helicity back into the surrounding DNA domain (see Fig. 4).
Indeed, R-loop formation does not involve any change in
linking number: the total superhelicity of a given domain is
only transiently repartitioned by either R-loop formation or
resolution.

Whereas these considerations hold true for “naked” DNA,
eukaryotic chromosomes carry nucleosome arrays. Each
nucleosome binds �147 bp of DNA and stabilizes one turn of
negative superhelicity (29, 118, 119), indicating that the super-
helix density of nucleosomal winding is �0.07. The dissociation
of nucleosomes downstream (i.e. in front of) the RNA polymer-
ase releases this stored negative superhelicity, counteracting
the transcription-driven wave of positive supercoiling (Fig. 3A).
Similarly, the reassociation of nucleosome behind the RNAP
will stabilize one negative supercoil, lessening the accumulation
of negative superhelical stress in the wake of the RNAP com-
plex. The fact that positive supercoiling destabilizes nucleo-
somes and negative supercoiling facilitates their formation
(120 –122) nicely agrees with the notion that nucleosomes play
important roles in managing supercoiling during transcription
(45, 46, 123, 124). Nonetheless, empirical observations show
that transcription results in a build-up of upstream negative
supercoils (45, 46). In this situation, R-loops can play useful
roles in relieving this superhelical stress. This, in turn, is
expected to impede or prevent nucleosome redeposition
behind the RNAP for two reasons. First, R-loops cannot be
wrapped around nucleosomes (125), and second, relaxed
DNA is a poor substrate for nucleosome formation (120,
122). This agrees with observations that R-loops are associ-
ated with increased chromatin accessibility under normal
conditions (87). Because R-loops are capable of absorbing
virtually all of the negative superhelicity in large regions,
R-loop formation could reduce the strength of nucleosomal
binding over neighboring domains (Fig. 3B). Conversely, the
release of the topology stored in an R-loop upon its resolu-
tion is also expected to favor rapid nucleosome binding. The
details of the energetics and kinetics of these important
interactions between nucleosomal binding and R-loops
largely remain to be elucidated.
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The interplay between DNA sequence and DNA topology
guides R-loop formation, elongation, and stability

The notion that DNA topology and DNA sequence cooper-
ate to control local R-loop propensity predicts that at one
extreme, R-loops could occur over highly favorable sequences
without the need for significant superhelical relief. In vitro tran-
scription of highly GC-skewed class switch sequences and CpG
island regions results in R-loop formation even on linear tem-
plates (104, 126). Measurements of R-loop efficiency as a func-
tion of substrate topology nonetheless revealed that negatively
supercoiled plasmids favored R-loops by at least one order of
magnitude, even in the context of an R-loop prone sequence
(104). At the other extreme, very high levels of superhelicity are
predicted to support R-loop formation even over unfavorable
DNA regions. This was confirmed by bulk in vitro transcription
assays (127). Examination of individual in vitro R-loop foot-
prints at deep coverage confirmed that R-loops tend to initiate
over unfavorable sequences when plasmids are highly nega-
tively supercoiled (104). Most R-loops observed when negative
supercoiling was high were promoter-proximal, likely because
these early R-loops formed first, and the relaxation they provide
inhibits structure formation over more favorable downstream
regions. Thus, increased negative superhelicity can alter both
the frequency and the landscape of R-loop formation, at least in
vitro.

Under most conditions, R-loop formation is likely to require
a balance of contributions from DNA sequence and topology.

Calculations suggest that the vast majority of genomic DNA
sequences will require some negative superhelicity to permit
R-loop formation. This, in turn, implies that the regions
observed to form R-loops in vivo are likely experiencing nega-
tive supercoiling. Thus, R-loop maps could inform us, albeit
indirectly, about local in vivo levels of superhelical stresses.
Regions with the most favorable RNA:DNA energetics are
expected to permit R-loops even with low superhelicity (104).
As such, the conserved class of highly GC-skewed CpG island
promoters (128) may represent sensitive R-loop “reporters”
that have evolved to transition into R-loop structures at low
levels of superhelical stress. By contrast, SMRF-Seq analysis
revealed multiple examples of R-loop hotspots whose se-
quences are not strongly favored to form R-loops (115). This
suggests that these regions, which often are located in gene
bodies or terminal genic regions, may experience high levels of
local superhelicity that allow R-loop formation despite their
weaker sequence favorability. However, we cannot rule out the
possibility that R-loops might originate via multiple mecha-
nisms, some of which could be less dependent on fundamental
nucleic acid thermodynamic properties.

Whereas R-loop sequence signatures can be used to indi-
rectly infer the possible contribution of DNA topology to their
formation, direct evidence for its role is also supported in
eukaryotes in vivo. In yeast, loss of DNA topoisomerase I leads
to increased R-loop levels over the 5�-end of the highly tran-
scribed rDNA region (129). R-loop frequencies were further

Figure 3. Nucleosomes and R-loops share in topological relief duties. A, positive supercoiling (red) traveling ahead of the translocating RNAP (shown here
localized to the linker DNA) destabilizes nucleosomes, favoring their extrusion. Nucleosome release frees one negative supercoil, mitigating the buildup of
positive superhelicity. Reassociation of the nucleosome behind the polymerase is favored by the transcription-driven negative supercoiling; sequestration of
one negative supercoil upon nucleosome reformation relieves that stress. B, the formation of an R-loop results in two main consequences. First, nucleosome
redeposition is inhibited. Second, the accompanying relaxation of the upstream region may weaken surrounding nucleosome-DNA contacts.
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enhanced upon loss of RNase H activity (129), similar to prior
observations in E. coli. In human cells, depletion of Top1 leads
to a compensatory accumulation of R-loops in genes with acute
topological management needs, namely long, highly tran-
scribed, and physically constrained genes (57). Thus, DNA
topology regulates R-loop formation in silico, in vitro, and in
vivo, from E. coli to yeast to human cells. Furthermore, the evi-
dence suggests that DNA topoisomerase I and R-loops share
topological management duties, with R-loops playing compen-
satory roles in relieving negative superhelical stress in the
absence of Top1.

In addition to regulating R-loop initiation, DNA topology
was also predicted to control R-loop extension and therefore
length (104). Once initiated, R-loops are likely to extend until
the available superhelicity that drives their formation has been
(partially or fully) relaxed. Alternatively, R-loops may terminate
if the underlying DNA sequence becomes highly unfavorable.
Discerning between these two possibilities may be possible by
analyzing sequence transitions at the distal edges of individual
R-loops. We and others (116) have observed that distal DNA
sequence features are often less well-defined than those at
proximal edges and that R-loops with the same initiation site
can end at multiple downstream locations. Prior observations
have shown that, although favorable G stretches are often nec-
essary at the proximal edges of R-loops, these structures can
extend through areas that otherwise would not support initia-
tion (106). These results are expected if DNA topology regu-
lates R-loop extension. From this, we can deduce that the length
distribution of R-loops may provide information about the level
of local superhelical stress that existed in their domains prior to
their formation.

Finally, our work predicts that the relative contributions of
DNA sequence and DNA topology to the formation of a partic-
ular R-loop will also determine the stability of that structure
when faced with a change in the topology of the fiber such as
might be expected from DNA topoisomerase action or strand
breakage. As expected, R-loops that are primarily driven by
DNA topology over less favorable sequences are highly suscep-

tible to spontaneous resolution when that topology is lost (104).
By contrast, R-loops that form over sequences with strong
RNA:DNA base-pairing potential are much more resistant to
topological changes. These findings have implications for our
understanding of the instances of RNA:DNA hybrid or R-loop
formation observed at sites of DNA double-strand breaks
(130 –132). Because the loss of topology induced by double-
strand breaks is detrimental to both R-loop initiation and sta-
bility, we favor models in which two-stranded RNA:DNA
hybrids are formed at the break, either through rehybridization
of the nascent RNA to a resected ssDNA strand or through de
novo loading of RNA polymerase II (130). Overall, the sensitiv-
ity of R-loops to DNA topology suggests that superhelicity-
relaxing enzymes might provide an attractive mechanism for
R-loop resolution. We note that D-loops, which are structurally
similar to R-loops and form during recombination, are effi-
ciently resolved through the combined action of the SGS1 heli-
case and Top3A DNA topoisomerase (133). Interestingly,
topoisomerase 3B can cleave R-loops and D-loops (134) and
reduce R-loop formation in vitro through its DNA relaxation
activity (135). Loss of the Top3B-interacting partner TDRD3
causes slight elevation of R-loop levels and genome instability
(135). Whether Top3B directly acts on nuclear R-loops in vivo
remains to be determined, given that Top3b also plays an
important role as an RNA topoisomerase in the cytoplasm (136,
137).

Rethinking the potential roles of R-loops under normal
and pathological conditions

As discussed above, negative superhelicity is an important
and often neglected regulator of gene expression and genomic
architecture. The observation that R-loops can transiently ab-
sorb and release large stores of negative superhelicity expands
the repertoire of potential biological roles of these structures
(Fig. 4). First, because negative supercoiling favors local strand
opening, it may facilitate promoter and/or replication origin
firing. An R-loop formed downstream of a promoter region will
sequester local superhelicity, which would negatively impact

Figure 4. R-loop formation mediates long-range reversible topological relaxation. The consequences of R-loop formation and resolution on the prop-
erties of the local chromatin environment are described. When R-loops are resolved, large stores of negative superhelicity are released into the chromatin fiber,
driving increased chromatin contacts, increased non-B DNA structure formation (bubble DNA, cruciform, and Z DNA are depicted), and increased protein-DNA
interactions. See text for details.
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strand opening and hence promoter activity. By contrast, the
wave of supercoiling released upon resolution of this R-loop
would facilitate promoter firing. The dynamic formation and
resolution of R-loops may thus contribute to long-range regu-
lation of gene expression. A similar logic can be applied to rep-
lication origins, which are often located near gene ends where
R-loops are particularly prevalent (138, 139). Evidence for
supercoiling-mediated long-distance communication between
RNA polymerases now exists in Bacteria (140), and transcrip-
tion contributes to the long-range mobility of cis-regulatory
elements in mammals (141). Second, given that alternative
non-B DNA structures compete for negative superhelicity (39,
40, 65), the sequestration of superhelicity by R-loop formation
is expected to dramatically curtail the formation of other non-B
DNA structures. Conversely, supercoil release by R-loop reso-
lution will enable the formation of other structures, such as
strand-separated bubbles, B/Z transitions, and cruciforms (Fig.
4). Third, negative supercoiling is known to facilitate some pro-
tein-DNA interactions, such as nucleosome binding, and to
enhance long-range contacts between distant loci, such as pro-
moters and enhancers (48). Transcription-induced supercoil-
ing in particular was proposed to drive the formation of TADs
(19, 50). Because the relaxation activity of R-loops is expected to
affect large surrounding areas, it is possible that R-loops may
exert a dynamic impact on the local structure of chromatin and
on its folding in 3D space, affecting long-range contacts
between distant loci.

It is interesting to consider these possible roles in light of the
fact that dysfunctions of R-loop metabolism have often been
invoked as a source of genomic instability. Excess R-loop for-
mation, because it would sequester so much superhelicity,
might be expected to cause TAD unfolding and chromatin
opening, lower promoter-enhancer contacts, reduce the prob-
ability of promoter and origin firing, and lower the frequencies
of occurrence of other non-B DNA structures (Fig. 4). This
comes in addition to R-loops’ documented detrimental effects
on transcription elongation (129, 142–146) and on potentiating
transcription-replication conflicts (69, 99). By contrast, lower
R-loop levels, resulting, for instance, from enhanced R-loop
resolution activity, might be expected to lead to higher levels of
negative superhelicity throughout the genome. This, in turn,
could favor the formation of other alternative non-B DNA
structures, such as cruciforms, triplexes, strand-separated bub-
bles, and B/Z transitions, which might affect normal DNA rep-
lication and create sites susceptible to cleavage and mutagene-
sis (147, 148). Thus, it is possible that altered R-loop
homeostasis, whether characterized by increased or decreased
R-loop loads, could lead to strong negative consequences for
genome function and stability.
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