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Exploring the relationship between conformational heterogeneity and ligand 
binding 

 
Stephanie Anne Wankowicz 

 
Abstract 

 
Protein folding converts a disordered polymer to a globular structure, reducing 

many conformational degrees of freedom and incurring a significant conformational 

entropy penalty. However, residual conformational entropy is retained in a protein’s 

folded native state. Subtle changes between positions within the native state, mostly 

from sidechains, alters residual conformational entropy, leading to differences in binding 

affinity and allosteric communication. While NMR has provided measurements of 

conformational entropy, these measurements do not provide information on where this 

entropy is coming from, such as if this is coming from a sidechain moving harmonically 

or anharmonically. However, we can take advantage of the fact that X-ray 

crystallography and CryoEM experimental data capture the conformational ensemble 

allowing us to measure the motion of residues and their atomistic structure. This 

provides an unparalleled platform to answer how, where, and why conformational 

entropy.  

The first chapter of this thesis presents the improvements to the qFit algorithm. This 

algorithm allows for the automated modeling of multiple conformations per residue 

across a protein for high resolution X-ray crystallography or cryo-EM.  We present 

algorithm improvements including the ability to run the program on a laptop. This 

algorithm was the basis for much of the future work of my thesis. 
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The second chapter contains the findings of the relationship between 

conformational heterogeneity and ligand binding. Using qFit, we identified the changes 

in conformational heterogeneity between matched bound and unbound high resolution 

X-ray structures. We identified a reciprocal relationship upon ligand binding where as 

binding site residues become more rigid, distant residues become more flexible, 

indicating an entropic compensation.  

The third chapter contains my future outlook on the questions and techniques to 

probe conformational entropy mechanism. This chapter includes how to integrate new 

modeling techniques to understand how different motions of residues lead to differences 

in conformational entropy.   
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Preface      

The bulk of this chapter appears as Riley et al. preprinted in bioRxiv in 2021, and a 

version of which was ultimately published in Protein Science later the same year.  

Abstract 

New X-ray crystallography and cryo-electron microscopy (cryo-EM) approaches yield 

vast amounts of structural data from dynamic proteins and their complexes. Modeling 

the full conformational ensemble can provide important biological insights, but 

identifying and modeling an internally consistent set of alternate conformations remains 

a formidable challenge. qFit efficiently automates this process by generating a 

parsimonious multiconformer model. We refactored qFit from a distributed application 

into software that runs efficiently on a small server, desktop, or laptop. We describe the 

new qFit 3 software and provide some examples. qFit 3 is open-source under the MIT 

license, and is available at https://github.com/ExcitedStates/qfit-3.0. 

Introduction 

Conformational dynamics play an essential role in many aspects of protein function, 

including ligand binding, allostery, and enzyme turnover 1,2. In each of these processes, 

the protein does not adopt a single conformation, but rather a conformational ensemble 

including a number of low-energy states. This ensemble can then be redistributed or 

reshaped by small-molecule binding, post-translational modifications, or other 

perturbations, thereby controlling biological function. To fully understand the 

fundamental interplay between protein conformational heterogeneity and function, it is 
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necessary to develop experimental and computational techniques to reveal alternative 

protein conformations in atomic detail. 

 

X-ray crystallography is a powerful tool for addressing this need. Because individual 

protein molecules in the crystal lattice sample different conformations, there is a 

growing appreciation that crystallographic electron density maps contain a wealth of 

information about sparsely populated, alternative protein conformations3. Moreover, 

crystallography is undergoing an experimental renaissance: new tools are emerging 

with the potential to bias conformational distributions in crystals and gain new 

mechanistic insights into the links between protein dynamics and function. 

 

For example, crystallographic datasets collected across multiple temperatures — as 

opposed to at a single cryogenic temperature — often reveal ensembles with more 

conformational diversity4–8, including at dynamic enzyme active sites 9. High-throughput 

crystallographic protein:ligand screening can identify otherwise undetectable low-

occupancy ligand-bound protein states7,10,11. And time-resolved diffraction experiments, 

triggered by a variety of stimuli12–15, can offer detailed windows into how protein 

conformational ensembles evolve in real time. Time-resolved experiments are becoming 

more accessible as serial microcrystallography experiments can take place not only at 

X-ray free-electron lasers, but also at third-generation synchrotrons with microfocus 

beamlines 16. Serial microcrystallography can also help reveal alternative protein states 

by dissecting distinct crystal polymorphs within the microcrystal population 17. These 

advances, coupled with an ever-growing level of automation and faster X-ray detectors 
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18, are yielding larger amounts of data that highlight the need for automated (rather than 

manual) computational methods for modeling alternative conformations and their 

correlations in electron density maps. 

 

In parallel to the renaissance for X-ray crystallography, cryo-electron microscopy (cryo-

EM) is in the midst of a “resolution revolution” 19. Recently, cryo-EM structures of 

apoferritin at “atomic resolution” (1.2–1.25 Å) 20,21 demonstrated how far this method 

has come in recent years. Similar to electron density maps from X-ray crystallography, 

Coulomb potential maps from cryo-EM reveal evidence for alternative protein states, 

which in this case are sampled by individual protein molecules on the microscopy grid. 

Unfortunately, so far no methods exist for unbiased and automatic modeling of 

correlated alternative conformations in cryo-EM maps. Additionally, many cryo-EM 

structures feature large protein complexes with thousands of amino acids, posing a 

significant challenge to traditional model building approaches. Efficient, automated 

algorithms 22 could meet this challenge for cryo-EM. 

 

There is thus a clear need for computational model-building methods that better explain 

X-ray and cryo-EM data by incorporating alternative conformations. Protein 

conformational heterogeneity can be represented using various approaches, including 

B-factors, multi-copy ensembles, or multiconformer models 1. First, B-factors are 

present for every atom in the Protein Data Bank (PDB) 23 file format. Theoretically, B-

factors represent the harmonic, thermal displacement of each atom about its mean 

position, either isotropically with one parameter or anisotropically with six parameters 24. 
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However, in practice, B-factors often absorb uncertainty in a more general sense about 

each atom’s position, and are insufficient representations of anharmonic motions such 

as transitions between side-chain rotamers 25. Second, multi-copy ensemble models 

consist of some number (>1) of full, independent copies of the protein with distinct xyz 

coordinates and B-factors that collectively explain the experimental data 26. Ensemble 

models can successfully describe discrete conformational heterogeneity such as 

rotamer transitions -- but they unnecessarily inflate the number of model parameters for 

those regions of the protein with essentially a single, unique conformation 27. Finally, 

multiconformer models lie somewhere in the middle in terms of model complexity. A 

multiconformer model represents local, anharmonic features in the data with a small 

number (2–5) of discrete conformations, but represents regions of the protein that show 

little to no evidence of flexibility with a single conformation. These conformations are 

assigned labels (“alternative locations” or “altlocs”), such as A, B, etc., with 

corresponding occupancies in the PDB format on a per-atom basis. Groups of atoms 

whose alternate positions are correlated (side chains, stretches of contiguous 

backbone, collective exchange across an active site, etc.) are assigned the same label 

and occupancy. When constructed in a parsimonious manner, multiconformer models 

can limit a model’s complexity while maximizing its explanatory power. 

 

To efficiently generate parsimonious multiconformer models for protein X-ray crystal 

structures, we previously introduced the software package qFit 28. Besides providing 

mechanistic insights, for example by revealing hidden protein contact signaling 

networks 29 and allosteric pathways 7, multiconformer qFit models have also established 
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that the conformational ensemble at room temperature is not dominated by radiation 

damage 30, and that the effect of crystal dehydration on the conformational ensemble is 

similar to that of cryocooling 31. We recently introduced multiconformer treatment of 

ligands in complex with proteins in a standalone version, qFit-ligand 32. However, 

previous versions of qFit were computationally demanding (requiring a high-

performance computing cluster), and were restricted to density maps from X-ray 

crystallography only, among other limitations. 

 

Here we report a new, refactored version of qFit, which we call qFit 3, with several key 

improvements. qFit 3 operates on maps from either X-ray crystallography or cryo-EM. 

It combines multiconformer modeling of proteins and of ligands complexed with proteins 

(from qFit-ligand) in a single software package written in Python. The software 

distribution includes a script to refine the multiconformer model generated by qFit with 

Phenix 33. Importantly, we reduced the runtime by two orders of magnitude. qFit 3 

typically runs for a ~300 residue protein in several hours on a laptop, making it 

significantly more accessible to users. 

 

Overall, qFit 3 reveals hidden alternative conformations in protein structures in a rapid, 

automated, and unbiased manner. This new software will allow a broader array of users 

to explore conformational heterogeneity in their systems of interest. It will also smooth 

the path toward integrating new and exciting types of structural biology data, including 

series of datasets related by temperature, ligands, or time, as well as biologically 

important and/or large protein systems from X-ray free electron lasers (XFELs) or cryo-
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EM. qFit 3 will thus empower novel studies of the relationship between protein dynamics 

and biological function. 

 

 
Figure 1.1| Usage flowchart for qFit 3 for either protein or ligand inputs and for 
either X-ray or cryo-EM data. (1) qFit requires an initial model and map information. In 
the case of X-ray diffraction data, qFit will require both the structure factors and a high-
quality, unbiased map, such as a composite omit map. (2) With these files, qFit will 
generate a parsimonious model (multiconformer_model2.pdb) containing the fewest 
number of sampled conformers that explain the experimental data. (3) This 
intermediate/preliminary model should proceed through an iterative procedure to refine 
the occupancies of conformers in the model, and cull those conformers that have <9% 
occupancy. (4) The resulting model can then be used to explore conformational 
diversity. 
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Supplementary Figure 1.1| A flowchart for typical use of qFit with X-ray data. 

Results 

qFit was completely refactored in the Python programming language and released as 

open-source software; see Methods and the GitHub repository 

(https://github.com/ExcitedStates/qfit-3.0) for more details. A typical qFit 3 workflow is 

illustrated in Figure 1.1 and Supplementary Figure 1.1. qFit 3 takes as minimal input a 

starting model and either a real-space map in the MRC/CCP4 format or map 

coefficients in the MTZ format. For X-ray crystallography, the preferred map is a 

composite omit map to minimize model bias, which can be readily generated with 

Phenix. For cryo-EM, the input is a real-space map together with the resolution of the 
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data and a flag to use electron scattering factors for generating synthetic densities. qFit 

3 relies on a sample-and-select procedure based on constrained optimization to identify 

alternative conformations of proteins and their ligands. To ensure optimal model 

selection and prevent overfitting, qFit 3 evaluates increasing model complexities, 

selecting the model with the lowest Bayesian Information Criterion (BIC). qFit 3 now 

also provides all functionality to model ligand alternate conformations, previously 

available separately in qFit-ligand. A distinctly important new feature is qFit 3’s 

capability to model alternate conformations into cryo-EM maps. Numerous additional 

options and details are described in the Methods section and can be found in the qFit 3 

GitHub repository. Here, we demonstrate typical use cases of qFit for protein systems 

and their ligands. All analyses in this section used default parameters, unless otherwise 

stated. 

 

We first carried out qFit 3 modeling on a previously deposited cryogenic X-ray structure 

of a protein tyrosine phosphatase, PTPN18 (PDB ID: 2OC3) 34. While the deposited 

model includes ten residues with alternate conformers, a difference density map shows 

unmodeled positive density over 3σ around Phe30 and Gln34 (Figure 1.2). qFit 3 

models suggest that an alternate conformer for Phe30 and an ensemble of three side-

chain conformers for Gln34 better fit the density, and reduce nearby difference density 

peaks (Figure 1.2A). Running on a quad-core processor, qFit sampled and selected 

alternative conformations for this 290-residue protein in 12.75 hours. 
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The default algorithm of qFit 3 changed slightly compared to earlier versions. 

Previously, each amino acid in turn was truncated at the Cβ atom and refined 

anisotropically. This had two advantages: 1) it generally positioned the Cβ atom at the 

peak average density of potential alternate conformations, and 2) the anisotropy of the 

atomic displacement parameter provided guidance for backbone motions. Although this 

earlier version often better captured subtle backbone movements, it led to significantly 

increased computational expense and complexity 35. Nonetheless, the present version 

of qFit can be made to mimic the behavior of the earlier algorithm on a single residue by 

providing an alternative input. A thoroughly-tested room-temperature structure of the 

peptidyl-prolyl cis-trans isomerase CypA (PDB ID: 3K0N) displays multiple conformers 

for Phe113 9. Starting from a single conformer (Figure 1.2), we truncated Phe113 at Cβ, 

refined the structure anisotropically, calculated a composite omit map, and used this as 

input to qFit 3. This pre-processing enabled qFit to recapitulate the alternative 

conformations observed in the published model (Figure 1.2). With Phe113 in place, qFit 

3 ran in 460 min over the other 161 residues. This computationally expensive pre-

processing procedure is provided as an option, and improved backbone modeling will 

be a focus of future development.  
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Figure 1.2| qFit 3 recapitulates deposited alternate conformations in X-ray 
crystallography density maps, and suggests additional conformations to explain 
unmodeled density. (A) Left: PTPN18 (PDB ID: 2oc3) displays regions of unmodeled 
density near Phe30 and Gln34 in the deposited mFo-DFc difference density map at +3σ 
(green cloud). These are visible in a 2mFo-DFc composite omit density map contoured 
at 1σ (blue mesh), which is clarified by a low-density 0.5σ contour (blue cloud). Right: 
qFit 3 adds extra conformers to model these residues. Gln34 is modeled by three 
conformers (corresponding to the rotamers mm110, mt0, mt0 25); Phe30 is also 
modeled by two conformers (both in the “favored” t80 rotamer space). The distance 
between Phe30 and Gln34 doesn’t lead to steric hindrance between any of the 
conformers of either residue. Note that qFit 3 sets the minimum number of conformers 
in Ile33 to three (because of Gln34) to ensure backbone consistency; Phe30 is part of 
another backbone segment. (B) Left: Following the methodology in qFit 2 35, Phe113 
was truncated at Cβ and refined. Both the composite omit map and the difference map 
indicated the presence of at least two conformers for this residue. Right: qFit 3 sampled 
and selected two conformers of Phe113 (matching the two known ones) to explain the 
density in the composite omit map. 
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qFit 3, for the first time, also accepts cryo-EM density maps as input. We have adopted 

the simplified scattering factor calculation of averaging the contributions of all atoms to 

calculate synthetic maps, as is used in real-space refinement in Phenix 

(Supplementary Figure 1.2)36. As an example application of this new functionality, we 

ran qFit 3 on two ultra-high-resolution cryo-EM structures: β3 GABA receptor 21 (1.2 Å 

resolution) and apoferritin 20 (1.7 Å resolution). qFit 3 was run on both chain A and the 

entire structure for both examples. Chain A of apoferritin (176 residues) had a runtime 

of 112 minutes using four cores. 

 
Supplementary Figure 1.2| A flowchart for typical use of qFit with cryo-EM data. 
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For these examples, qFit 3 captured both previously modeled and newly modeled 

alternative conformations (Figure 1.3). Within chain A, there were originally 19 residues 

with modeled alternative conformers. qFit 3 successfully identified alternate 

conformations for 16 (84.2%) of these residues and suggested 66 additional residues 

with alternative conformations. In Figure 1.3, we demonstrate the ability of qFit 3 to 

recapitulate alternative conformers in Ser124. In Figure 1.3, we demonstrate the ability 

of qFit 3 to detect a new alternative rotamer for Gln14 (pt0 and mm-40 25, RMSF 1.16 

Å).  
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Figure 1.3| qFit 3 recapitulates deposited alternate conformations in cryo-EM 
density maps, and suggests alternate conformations to explain noisy data. (A) 
Left: Deposited alternative conformations for Ser113 in a high-resolution published cryo-
EM structure of apoferritin (PDB ID: 6v21). These are visible in a 2mFo-DFc composite 
omit density map contoured at 1σ (dark blue cloud) and at 0.5σ (light blue cloud and 
blue mesh). Right: qFit 3 and subsequent refinement successfully modeled identical 
alternative conformations. Occupancies are indicated in italics. (B) Left: Deposited 
single conformation for Gln14 in the same structure of apoferritin.Right: qFit 3 and 
subsequent refinement identifies the original conformer, plus an alternative conformer 
(mt and tt rotamers 25). 
 
Additionally, qFit 3 can determine alternative conformations of ligands 32. Distinct ligand 

conformations can play an important role in determining binding affinities, activity, and 

disassociation from the protein. Visualizing ligand alternate conformations can help 

determine the role of entropy in binding affinity, or help guide lead optimization in drug 

discovery 37. qFit-ligand takes a model, map, and information about the position of the 

ligand of interest (chain and residue number). The output is a set of conformations of 
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the ligand. In Figure 4, we show two examples of ligands taking on multiple 

conformations to two different proteins, CDK238 and Human Leukotriene A4 

Hydrolase39.  

 
 

 
Figure 1.4| qFit 3 generates occupancy-weighted multiconformer models for 
bound ligands. (A) Left: Deposited alternative conformations of thiazolylpyrimidine, an 
inhibitor of CDK2, in a co-crystal structure (PDB ID: 5hq5). The 2mFo-DFc composite 
omit density map is contoured at 1σ (dark blue cloud) and at 0.5σ (light blue cloud and 
grey mesh). Occupancies of alternative conformations are labeled in italics. Right: qFit-
ligand successfully identifies both deposited alternative thiazolylpyrimidine 
conformations, as well as an additional, similar conformer.  (B) Left: Deposited 
conformation of 4-(4-benzylphenyl)thiazol-2-amine, an epoxide hydrolase selective 
inhibitor, co-crystallized with human Leukotriene A4 Hydrolase (PDB ID: 4l2l)39. Right: 
qFit-ligand models both the deposited 4-(4-benzylphenyl)thiazol-2-amine conformation 
and suggests two additional conformations that, unlike the deposited conformation, fit 
entirely within the 1σ density contour. 
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Discussion 

qFit 3 is a significantly faster implementation of the qFit algorithm that can now run on 

commodity computer hardware like a laptop. It is open-source and freely available, with 

simple installation instructions. qFit 3’s speed enables application of the qFit approach 

to series of multiple datasets generated by new high-throughput methods in 

crystallography; to large, increasingly high-resolution cryo-EM structures with many 

thousands of amino acids; and to many more structural bioinformatics studies that focus 

on conformational heterogeneity. 

 

Although qFit 3 can be run in an automated fashion on large (numbers of) structures, 

the user should apply caution in interpreting its multiconformer models. False positives 

can occur when qFit 3 selects spurious alternative protein conformations based on 

density that corresponds to other atoms such as water molecules. False negatives can 

occur when qFit 3 fails to sample backbone conformational space sufficiently. 

Development of qFit is ongoing and the user community is invited to contribute to the 

open-source project at https://github.com/ExcitedStates/qfit-3.0. 

 

To improve qFit further, we envision several new developments. For example, qFit’s 

backbone sampling methodology has ample room for improvement. Currently in qFit, 

each amino acid’s backbone is translated along the principal axes of the anisotropic 

ellipsoid of the Cß atom (or O for Gly), while closure of the backbone is maintained by 

torsion-based nullspace inverse kinematics, thus positioning it to accommodate suitable 

alternative side-chain rotamers (Methods). Although this current backbone sampling is 

powerful for capturing small-scale motions, it is limited in its ability to capture larger 
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ones (Figure 2B). A suite of backbone sampling methods in qFit, ranging from backrubs 

40 and helix “shear” 41,42 to inverse-kinematics-based loop modeling 43, would be able to 

overcome this limitation. These new methods will allow qFit to model alternative 

conformations that are related to each other by larger, biologically relevant motions, as 

with loops in protein tyrosine phosphatase 1B (PTP1B) 7 and helices in isocyanide 

hydratase (ICH) 15. A related challenge is that hierarchical alternative conformations — 

such as alternative loop or helix backbone positions that each have alternative side-

chain rotamers — are not supported in the existing PDB format. It may be possible to 

use additional restraints to bypass this limitation, as with refinement of the multi-state 

models from PanDDA 44, which are conceptually related but distinct from the 

multiconformer models from qFit. Alternatively, the new PDBx/mmCIF format that was 

recently adopted by the PDB could be used to explicitly define hierarchical relationships 

between alternative conformations. 

 

Another important direction is improving ligand models, and correlating protein alternate 

conformations with alternate ligand binding modes. Currently, qFit lacks chemical 

knowledge of ligand atoms such as hybridisation and protonation. Incorporating this 

knowledge, for example with the help of sophisticated force fields that work in tandem 

with crystallography maps 45, will greatly improve ligand model quality and help 

determine the precise interactions between protein and ligand. 

 

Finally, the problem of compositional heterogeneity must be addressed. Some of the 

alternative conformations in the protein may be in response to the ordering of other 
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components in the unit cell (heteroatoms such as ligands, crystallographic additives, 

and solvent). While multi-dataset approaches, such as PanDDA 11, may increase 

confidence in modeling partially occupied ligands and crystal additives, addressing the 

problem of partially occupied solvent may be bootstrapped by using stereotypical 

interactions in a solvated rotamer library 46. Solving this problem will also help to better 

define the border between proteins or ligands and bulk solvent 47, which is likely to be 

key to reducing the “R-factor gap in crystallography” 48. 

 

X-ray crystallography and cryo-electron microscopy remain the dominant experimental 

techniques to obtain structural information for proteins and their complexes with other 

macromolecules or with ligands, like therapeutic chemical compounds. New, emerging 

experimental techniques in X-ray crystallography and ever-increasing resolution limits in 

cryo-EM can reveal an ensemble of protein and ligand conformations that can provide 

insights into molecular mechanisms and function. qFit 3 automates interpreting an 

ensemble from X-ray or cryo-EM density maps, and generates an unbiased, internally 

consistent, parsimonious model of conformational heterogeneity. We refactored qFit 

with a specific focus on efficiency and ease-of-use, so that it effortlessly installs and 

runs on a standard laptop to facilitate advanced interpretation of experimental structural 

biology data.  
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Methods 

qFit algorithm 

qFit samples a large number of conformers and uses a deterministic approach to select 

a small ensemble of these conformers that parsimoniously explains local density. The 

method starts from an initial single-conformer model and generates candidate 

conformers for each residue/ligand in the initial structure. It evaluates all possible 

combinations of these conformers to determine an optimal ensemble. A final relabeling 

step ensures that conformers of different residues/ligands have consistent altloc labels. 

For all analyses in this manuscript, default parameters were used unless otherwise 

stated. Figure 1.5 provides a graphical overview of both the qFit-protein and qFit-ligand 

algorithms, the two main command-line utilities of the qFit 3 package for automatic 

multiconformer modeling of proteins or ligands. 
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Figure 1.5| A flowchart of the sample-and-select protocols for (A) qFit-protein, and (B) 
qFit-ligand.  
 
The qFit 3 protocol accepts input density maps or map coefficients in several commonly 

accepted crystallographic or cryo-EM file formats (MTZ, CCP4). For best performance, 

we recommend the use of a composite omit map for crystallographic densities 49. All 

runs of qFit 3 on crystal structures described in this manuscript used an input composite 

omit map generated with the phenix.composite_omit_map command from the Phenix 

software suite 33. Refinement was carried out on each partial model (omit-type=refine) 

and default parameters were used for this calculation. qFit 3 also expects a PDB file 

containing the structure of interest as input. Hydrogens are automatically removed to 

provide uniform treatment of input models. Note that during the final refinement stage, 
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hydrogens will be (re-)added (see Final refinement script). For analyses described in 

this manuscript, we removed all alternate conformers (except for altloc A) using the 

phenix.pdbtools executable and used the resulting single-conformer input structure as 

input for all subsequent modeling.  

 
Map treatment 

qFit 3 converts the input maps to absolute scale following the protocol described in 

reference 50. The software creates a lookup table corresponding to the theoretical 

spatial density value distribution for each atomic element for radial shells spaced at 0.01 

Å. The mask radius for this calculation is resolution-dependent (default radius = 0.5 Å + 

resolution/3). qFit 3 indirectly avoids clashes during sampling by means of a real-space 

density subtraction. It uses all atoms whose conformations are not being sampled to 

calculate a density map to perform this real-space subtraction. This prevents 

undesirable modeling into density from neighboring residues/side chains. The mask 

radius and an option to use excluded volume for clash detection instead, as detailed in 

32, can be determined via the command line. Different sets of scattering factors are used 

for electron density maps from X-ray crystallography vs. Coulomb potential maps from 

cryo-EM. For convenience, we refer to both types of maps as “density maps” in this 

paper. 

 

Conformational sampling for residues 

qFit 3 exhaustively samples residue conformations in three stages: backbone sampling, 

Cα-Cß-Cγ bond angle sampling (for certain residues), and side-chain sampling (Figure 
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5A). These are all enabled by default, but can be individually disabled via command-line 

options. 

 

Backbone sampling 

qFit 3 samples backbone conformations by means of a nullspace inverse kinematics 

algorithm 28,35,43. Backbone sampling for each residue extends to neighboring residues, 

two on each side. Backbone sampling is not performed if a residue lacks two neighbors 

on both sides (e.g., close to terminal residues). The Cß atom of the residue of interest 

(or O atom for Gly) is moved in the direction of the major and minor axes of its thermal 

ellipsoid. By default, three amplitudes for this sampling are used (0.1 + σ, 0.2 + σ, 0.3 + 

σ), where σ is randomly selected in the interval [-0.125, 0.125].  

 

The amplitude scaling factor and the maximum value of σ can be defined at input. In 

total, three amplitudes times six directions = 18 positions for the Cß (O in case of 

glycine) are tested. The five-residue fragment is then deformed using nullspace inverse 

kinematics and dihedral angle degrees of freedom. The input conformation is also 

added to the ensemble, leading to 19 backbone conformations after backbone 

sampling. Peptide flips 35 are not yet implemented in qFit 3. 

 

Cα-Cß-Cγ bond angle sampling 

For amino acids with large planar aromatic groups (Phe, Tyr, Trp, His), qFit samples 

around the Cα-Cß-Cγ bond angle of the 19 backbone conformations resulting from the 

previous sampling step. For each conformation, we sample the Cα-Cß-Cγ bond angles 
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as follows: [θ - 7.5o, θ - 3.75o, θ, θ + 3.75o, θ + 7.5o]. Both the range and the step of the 

bond angle sampling can be adjusted via command line. This step expands the number 

of sampled conformations to 95 for the large planar aromatic residues. 

 

Side-chain sampling 

Side-chain sampling in qFit 3 is performed by iteratively rotating around the χ angles of 

ideal rotamers. The protocol begins by rotating around χ1. For each of the (19 or 95) 

backbone conformations, we rotate around each of the rotamers for the target residue in 

the penultimate rotamer library 25. For each rotamer, we explore a sampling window 

using a rotamer neighborhood of [-60o, +60o] at 10o intervals. Both the sampling window 

and the step size can be defined via command-line options. For the default parameters, 

at most 19*5*(8+1)*13 = 11,115 conformations are generated (with either Phe, Tyr, Trp, 

or His), which provides a balance between performance and accuracy. From this set, 

we remove conformations that lack support from the subtracted density map (voxel with 

minimum density intensity < 0.3 e-1 Å-3), conformations that contain self-collisions 

(based on hard spheres), and conformations that are redundant (using an all-atom 

RMSD threshold of 0.01 Å). These exclusion strategies can be adjusted via command-

line options. For protein and ligand atoms, B-factor sampling is also a non-default 

option. 

 

Once the backbone and χ1 sampling is complete, the protocol initiates a selection step 

based on our optimization strategy (see Optimization protocol for more details). We 

select all atoms starting from the backbone up to the atoms involved in the χ angle 
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being sampled (χ1 in this first iteration). The remaining atoms are rendered inactive, and 

their density contribution is not taken into account during optimization. Up to five 

conformers can be selected at each iteration, which then serve as the basis for 

sampling of subsequent χ angles. 

 

From the second iteration onwards, we sample up to two χ angles simultaneously (also 

defined at command line). After sampling χi we exclude unsupported, clashing, and 

redundant conformers (as outlined above) and use this filtered conformer ensemble to 

sample around χi+1. In the worst case scenario (Arg), χi leads to 5*(34+1)*13 = 2,275 

conformers and up to 2,275*(34+1)*13 = 1,035,125 conformations are produced for χi+1. 

In practice, this number of conformations is never produced owing to redundancy. We 

limit the number of conformations that can be used during optimization to 15,000 for 

computational efficiency and memory (RAM) constraints. If sampling two χ angles in a 

single iteration leads to more than 15,000 conformers, we reduce sampling to a single χ 

for that iteration. Side-chain sampling concludes when all χ angles have been sampled. 

  

Conformational sampling for ligands: Ligand sampling in qFit 3 is performed in two 

steps: a local rigid body search followed by an iterative step which samples the degrees 

of freedom about the flexible areas of the ligand 32 (Figure 5B). For the local search, we 

identify all possible roots, i.e. rigid fragments of atoms. Rigid fragments are defined as a 

set of connected atoms that do not contain a rotatable bond. We sample conformations 

starting from each possible root. Around the center of each ligand root, we test 100 

possible rotations, by sampling rotation space in intervals of [0o, 10o]. For each rotation, 
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we enumerate possible translations for x, y, and z coordinates in the interval [-0.2 Å, 0.2 

Å] at 0.1 Å increments. The local search leads to 100(rotations)*125(translations) = 

12,500 conformers. We then exclude conformers that do not have support from the 

density (voxel with minimum density intensity < 0.3 e-1 Å-3) and conformations that are 

redundant, using an all-atom RMSD threshold cutoff of 0.01 Å. Additionally, conformers 

with internal (ligand) or external clashes (receptor) are removed using a spatial hashing 

algorithm, which efficiently converts the 3D coordinates to a 1D hash table to determine 

if the sampled portion of the ligand occupies the same spatial coordinates as any other 

part of the ligand and/or receptor. After this exclusion step, remaining conformations are 

used as input for the optimization routine (see below), which selects up to five 

conformers of each root to best represent the local density.  

 

Still treating each root independently, we take the root fragments selected by the local 

rigid body search and “expand” each fragment to the full ligand, by iteratively sampling 

around rotatable bonds. The protocol follows a rotatable bond hierarchy from the root to 

the extremities of the molecule. For each rotatable bond, we sample all angles in a [0o, 

360o] interval at 10o increments. Two rotatable bonds are sampled at a time, leading to 

5*36*36 = 6,480 conformations per iteration. At each iteration, we exclude conformers 

that do not have support from the density (voxel with minimum density intensity < 0.3 e-1 

Å-3), those with an all-atom RMSD of <0.01 Å, or that contain internal or external 

clashes. After exclusion, qFit uses the optimization routine to select up to five 

conformers to be used for the next iteration. After all rotatable bonds have been 

sampled, up to five conformers can be output for each root. One final optimization step 
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is used to select up to five consensus conformers from the pool of conformers produced 

across all roots.  

 

Optimization Protocol: We frame the problem of selecting a subset of conformers that 

best represents local density as an optimization problem. Each conformer has an 

occupancy ωi associated with it. The vector of all occupancies ωT contains the variables 

for the optimization, with the extra constraints that ωi  are non-negative and their sum 

lies in the unit interval. We optimize real-space residuals, calculated from the observed 

density (ρobs) against the occupancy-weighted sum of the calculated densities (ρicalc ) for 

all conformers. We can formulate this problem as constrained quadratic optimization: 

 

 
        

Residuals are calculated over all voxels within (0.5 + resolution / 3) Å from any active 

atoms across all input conformers. To prevent overfitting conformers with arbitrarily 

small occupancies, we require a threshold constraint on the occupancies, turning the 

problem into a mixed-integer quadratic program (MIQP): 

 

 
 



27 
 

Note that this ensures that the number of conformers selected is at most . The 

optimal threshold parameter is determined using a penalized-likelihood criteria (see 

below). An MIQP is NP-hard, thus applying an MIQP solver directly to the conformers 

output from our sampling step is computationally inefficient 28,35. Applying a QP solver to 

the thousands of conformers output from our sampling routine, and then selecting the 

QP-fitted conformers with non-zero occupancy as input for MIQP, allows for near-

optimal solutions to be calculated within a tractable time. Our protocol uses cvxopt 

(https://cvxopt.org/) and a proprietary, freely available implementation of the IBM ILOG 

CPLEX Optimization Studio (Python API, version 12.10) to solve QP and MIQP 

programs.   

 

Achieving parsimony by means of the Bayesian Information Criterion (BIC) 

To prevent overfitting and to ensure optimal model selection, we use the Bayesian 

Information Criterion to decide on model complexity. For every optimization call in qFit, 

we iteratively test increasing values of the threshold parameter  and determine if the 

gain of information justifies the use of a more complex model. We fit iteratively, allowing 

the maximum number of conformers to vary from 1 up to 5 conformers ranked 

according to real-space correlation. For each iteration, we use our combined QP/MIQP 

routine to optimize the real-space residual sum of squares (RSS). We calculate the BIC 

for each level of complexity according to the following formula: 

  
, 

 
where  is the number of voxels in our resolution-dependent mask (see previous section 

for details) and  is the number of parameters in the model. 
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Each active atom has four parameters: x, y, z, and B-factor. Note that the occupancies 

are variables and not parameters. The factor  is a proxy for model complexity and 

imposes a limit on the maximum number of conformations. We select the number of 

conformers that minimizes the BIC. 

 

Parallelization 

qFit 3 can be run individually for a single residue or ligand of interest, or in parallel 

across a whole protein using Python’s multiprocessing module to spawn embarrassingly 

parallel subprocesses that run qFit across all residues in a target protein.  

 

Validation metrics 

For each residue/ligand modeled by qFit 3, we output several validation metrics, which 

include the BIC and the related Akaike information criterion  with  

and k as above. qFit 3 also reports a confidence interval for the real-space cross-

correlation of the proposed conformers. The confidence interval is calculated from the 

Fisher z-score of the real-space cross-correlation  51: 

 

 

 

Note that the z-score is approximately normally distributed with a standard deviation of

 , where  is the number of voxels in our resolution-dependent mask 

around the set of conformers being assessed. qFit 3 reports the 95% confidence 

interval  for the cross-correlation. Overlapping intervals suggest that the gain in 
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cross-correlation is statistically not significant; we cannot reject the null hypothesis that 

the cross-correlations are the same at 95% confidence.  

 

These auxiliary validation metrics are not used to filter results, but provide a guideline 

for balancing gain of information vs. model complexity.  

 

Building an internally consistent structural model  

In the procedure above, residues are modeled independently, i.e., without taking into 

account multiconformer models for neighboring residues. This leads to two modeling 

inconsistencies. First, consecutive residues may have different occupancies for each 

altloc, or even a different number of alternate conformations. Second, alternate 

conformers of (not necessarily consecutive) side chains in a spatial neighborhood can 

clash owing to inconsistent assignment of altloc identifiers. To resolve these two 

inconsistencies, we execute two routines: qFit-segment, which addresses the problem 

of inconsistency along the backbone, and qFit-relabel, which resolves clashing alternate 

conformers between neighboring residues by reassigning altloc labels.  

 

The qFit-segment routine starts by identifying all segments along the backbone for 

which all residues have at least two backbone conformers. To mark the start and end 

points of such backbone segments, we identify residues for which either (a) a single 

conformer was output, or (b) where the backbone Cα and O atoms of that residue’s 

conformers do not deviate by more than 0.05 Å. A segment is then delimited by these 

single-backbone-conformer residues. To create consistent segments, we proceed 



30 
 

iteratively. We break the segments in fragments of up to 4 residues (adjustable via the 

command line). We enumerate all possible combinations of conformers for the 

fragment, which at worst case leads to 54 = 625 possible conformers. We use our 

optimization strategy (QP/MIQP iteratively, using the BIC) to select up to five 

conformers per fragment based on optimal fit to the experimental map (not based on 

covalent geometry). To ensure consistency with the PDB file format and compatibility 

with refinement software, we duplicate conformers for some residues within a fragment 

as needed to ensure that all consecutive residues have the same number of backbone 

conformers. Once all 4-residue fragments have been modeled in this fashion, we 

proceed to enumerate all possible combinations of such length-4 fragments. This leads 

to fragments of at most length 16, and, again, at worst case 54 = 625 possible 

conformers. We continue to iterate in this fashion, enumerating all possible 

combinations and solving/modeling, until the segment is completed. The output of the 

qFit-segment routine is segments, each with up to five conformers, for which the 

backbone is consistent, i.e., for which all atoms for each conformer have the same label 

and occupancy.  

 

Next, qFit-relabel relies on simulated annealing (SA) optimization of a Lennard-Jones 

potential to reassign altloc labels. We calculate the pairwise Lennard-Jones potential 

across every atom of all conformers output by qFit. Parameters for the Lennard-Jones 

calculation were taken from the Amber ff99SB forcefield 52. The procedure selects five 

segments at random (a segment can include a single residue in this case) and randomly 

shuffles their labels. We then assess the change in the Lennard-Jones potential and 
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either accept or reject this move. The probability of accepting an unfavorable move is 

defined as: 

 

 

 

The temperature begins at 273 (arbitrary units), and is decreased by 10% every 10,000 

perturbations. By default, 100,000 perturbations are sampled during relabeling. 

Benchmarking suggests that this value is sufficient for the scoring function to converge 

(data not shown). The output of the relabeling routine is a multiconformer model with up 

to five conformers per residue, in which backbones are consistent and in which 

alternate conformers for side chains are not clashing. 

 

Final refinement script 

We performed iterative refinement on the qFit multiconfomer models using version 1.18 

of the Phenix software suite33 to normalize the initially distorted covalent geometry, to 

ensure that the output models are properly fit into density (Supplementary Figure 1.3), 

and to remove any unnecessary conformers. 

 



32 
 

 
Supplementary Figure 1.3| A flowchart for the recommended final refinement 
procedure. This was used for all structures modeled by qFit in this paper, and is 
contained in both qfit_final_refine_xray.sh and qfit_final_refine_cryoem.sh. 
 
 

For X-ray crystallography structures, this iterative refinement protocol uses the 

phenix.refine executable (script name: qfit_final_refine_xray.sh). The initial round of 

refinement is done without hydrogens and uses the strategy=*individual_sites. We then 

(re-)add hydrogens to the model 53. The next rounds of refinement use the following 

parameters: strategy=*individual_sites *individual_adp *occupancies, 

number_of_macro_cycles=5. At each iteration, we remove all conformers for which the 

occupancy fell below a cutoff of 0.09. This iterative cycle continues for as long as atoms 

are being removed due to this occupancy cutoff criterion. We then perform one last 

refinement round.  

 

For cryo-EM structures, we use a similar refinement protocol as described above, but 

using phenix.real_space_refine 36 (script name: qfit_final_refine_cryoem.sh). All rounds 

of real-space refinement use the default parameters. 
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High-performance and cloud computing 

qFit is capable of scaling from single laptops to large high-performance computing 

clusters. The following instructions enable qFit on Amazon's AWS, and should readily 

generalize to other cloud providers and RPM-based Linux distributions. 

We describe configurations at two different scales: a single instance and an autoscaling 

cluster with a free master instance. 

Launch an instance that will be used to execute qFit. AWS's c5.9xlarge instance has an 

appropriate number of cores and amount of memory for most proteins. 

 

The following Bash script, reproduced from docs/aws_deploy.sh in the qFit repository, 

installs qFit and its dependencies within a conda environment: 

#!/usr/bin/env bash 
 
# Tested on Amazon Linux 2, but should work on most RPM-based Linux distros 
 
# install Anaconda RPM GPG keys 
sudo rpm --import https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc 
 
# add Anaconda repository 
cat <<EOF | sudo tee /etc/yum.repos.d/conda.repo 
[conda] 
name=Conda 
baseurl=https://repo.anaconda.com/pkgs/misc/rpmrepo/conda 
enabled=1 
gpgcheck=1 
gpgkey=https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc 
EOF 
 
sudo yum -y install conda 
sudo yum -y install git gcc 
 
source /opt/conda/etc/profile.d/conda.sh 
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conda create -y --name qfit 
conda activate qfit 
 
conda install -y -c anaconda mkl 
conda install -y -c anaconda -c ibmdecisionoptimization cvxopt cplex 
 
git clone https://github.com/ExcitedStates/qfit-3.0.git 
cd qfit-3.0/ 
 
# Optionally, uncomment the following line to set a specific version of qFit 
#git checkout v3.2.0 
pip install . 
 
Consider creating an image of the instance at this point to avoid executing the above 
script each time an instance is launched from a base instance. 
 
After installation, it is necessary to execute source  
 
/opt/conda/etc/profile.d/conda.sh  
 
to set up conda within your Bash shell then activate the conda environment by 
executing 
 
conda activate qfit. 
 
Using the example described it qFit's README.md, alternative conformers for all 
residues in 3K0N can be calculated by executing  
 
qfit_protein 3K0N.mtz -l 2FOFCWT,PH2FOFCWT 3K0N.pdb -p 36  
 
for 3K0N.mtz and 3K0N.pdb in the current working directory, utilizing up to 36 cores. 

Autoscaling cluster 
Additionally, ParallelCluster can be used to create an autoscaling cluster to maximize 
efficiency of cloud resources. 
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High-performance and cloud computing 

Autoscaling cluster 

Cluster creation and configuration 
ParallelCluster is a suite of officially supported open-source tools used to create an 
autoscaling cluster on AWS. 
 
After installation, pcluster configure provides a setup assistant to configure a cluster. A 
series of prompts guides the user through selection of region, scheduler, operating 
system, minimum and maximum size, master and compute instance type, and network 
configuration. These instructions assume selection of Slurm as the scheduler and 
Amazon Linux 2 as the operating system. 
 
The following [cluster] section of the configuration file (saved at ~/.parallelcluster/config 
on Linux) represents reasonable settings: 
 
[cluster default] 
key_name = ###redacted### 
base_os = alinux2 
scheduler = slurm 
master_instance_type = t2.micro 
cluster_type = ondemand 
compute_instance_type = c5.9xlarge 
max_queue_size = 10 
maintain_initial_size = false 
vpc_settings = default 
post_install = https://raw.githubusercontent.com/ExcitedStates/qfit-
3.0/master/docs/aws_deploy.sh 
 
This cluster will always run a t2.micro master instance, the first 750 hours per month of 
which are free, and a variable number of c5.9xlarge compute instances. While the 
scheduler's queue is empty and all jobs have finished, no compute instance will be 
running; when a job is submitted, a new compute instance will be launched so long as 
the total number would not exceed max_queue_size. New instances will download and 
execute the file at post_install URL, installing and configuring qFit. 
 
For reduced costs in exchange for risk of job termination, cluster_type can be set to 
spot instead of ondemand. Spot pricing and risk of interruption are variable and depend 
on instance type, which should be considered when selecting compute instance type. 
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The cluster can be created with the command pcluster create default, accessed via 
SSH with pcluster ssh default and deleted with pcluster delete default. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     



37 
 

References 

1. van den Bedem H, Fraser JS (2015) Integrative, dynamic structural biology at atomic 

resolution--it’s about time. Nat. Methods 12:307–318. 

2. Aviram HY, Pirchi M, Mazal H, Barak Y, Riven I, Haran G (2018) Direct observation 

of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proc. Natl. 

Acad. Sci. U. S. A. 115:3243–3248. 

3. Lang PT, Ng H-L, Fraser JS, Corn JE, Echols N, Sales M, Holton JM, Alber T (2010) 

Automated electron-density sampling reveals widespread conformational polymorphism 

in proteins. Protein Sci. 19:1420–1431. 

4. Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T 

(2011) Accessing protein conformational ensembles using room-temperature X-ray 

crystallography. Proc. Natl. Acad. Sci. U. S. A. 108:16247–16252. 

5. Keedy DA, Van Den Bedem H, Sivak DA, Petsko GA (2014) Crystal cryocooling 

distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 

[Internet]. Available from: 

https://www.sciencedirect.com/science/article/pii/S0969212614001403 

6. Keedy DA, Kenner LR, Warkentin M, Woldeyes RA, Hopkins JB, Thompson MC, 

Brewster AS, Van Benschoten AH, Baxter EL, Uervirojnangkoorn M, et al. (2015) 

Mapping the conformational landscape of a dynamic enzyme by multitemperature and 

XFEL crystallography. Elife [Internet] 4. Available from: 

http://dx.doi.org/10.7554/eLife.07574 



38 
 

7. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ (2018) An expanded allosteric 

network in PTP1B by multitemperature crystallography, fragment screening, and 

covalent tethering. Elife [Internet]. Available from: 

https://elifesciences.org/articles/36307 

8. Doukov T, Herschlag D, Yabukarski F (2020) A Robust Method for Collecting X-ray 

Diffraction Data from Protein Crystals across Physiological Temperatures. bioRxiv 

[Internet]:2020.03.17.995852. Available from: 

https://www.biorxiv.org/content/10.1101/2020.03.17.995852v1 

9. Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (2009) Hidden 

alternative structures of proline isomerase essential for catalysis. Nature 462:669–673. 

10. Pearce NM, Bradley AR, Krojer T, Marsden BD, Deane CM, von Delft F (2017) 

Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer 

new chemical opportunities and reveal cryptic binding sites. Struct Dyn 4:032104. 

11. Pearce NM, Krojer T, Bradley AR, Collins P, Nowak RP, Talon R, Marsden BD, 

Kelm S, Shi J, Deane CM, et al. (2017) A multi-crystal method for extracting obscured 

crystallographic states from conventionally uninterpretable electron density. Nat. 

Commun. 8:15123. 

12. Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D, Frank M, Hunter M, Boutet 

S, Williams GJ, Koglin JE, et al. (2014) Time-resolved serial crystallography captures 

high-resolution intermediates of photoactive yellow protein. Science 346:1242–1246. 

 



39 
 

13. Hekstra DR, White KI, Socolich MA, Henning RW, Šrajer V, Ranganathan R (2016) 

Electric-field-stimulated protein mechanics. Nature 540:400–405. 

14. Thompson MC, Barad BA, Wolff AM, Sun Cho H, Schotte F, Schwarz DMC, 

Anfinrud P, Fraser JS (2019) Temperature-jump solution X-ray scattering reveals 

distinct motions in a dynamic enzyme. Nat. Chem. 11:1058–1066. 

15. Dasgupta M, Budday D, de Oliveira SHP, Madzelan P, Marchany-Rivera D, 

Seravalli J, Hayes B, Sierra RG, Boutet S, Hunter MS, et al. (2019) Mix-and-inject XFEL 

crystallography reveals gated conformational dynamics during enzyme catalysis. Proc. 

Natl. Acad. Sci. U. S. A. 116:25634–25640. 

16. Ebrahim A, Moreno-Chicano T, Appleby MV, Chaplin AK, Beale JH, Sherrell DA, 

Duyvesteyn HME, Owada S, Tono K, Sugimoto H, et al. (2019) Dose-resolved serial 

synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCrJ 6:543–

551. 

17. Ebrahim A, Appleby MV, Axford D, Beale J, Moreno-Chicano T, Sherrell DA, 

Strange RW, Hough MA, Owen RL (2019) Resolving polymorphs and radiation-driven 

effects in microcrystals using fixed-target serial synchrotron crystallography. Acta 

Crystallogr D Struct Biol 75:151–159. 

18. Casanas A, Warshamanage R, Finke AD, Panepucci E, Olieric V, Nöll A, Tampé R, 

Brandstetter S, Förster A, Mueller M, et al. (2016) EIGER detector: application in 

macromolecular crystallography. Acta Crystallogr D Struct Biol 72:1036–1048. 

19. Callaway E (2020) Revolutionary cryo-EM is taking over structural biology. Nature 



40 
 

578:201. 

20. Yip KM, Fischer N, Paknia E, Chari A, Stark H (2020) Breaking the next Cryo-EM 

resolution barrier – Atomic resolution determination of proteins! bioRxiv 

[Internet]:2020.05.21.106740. Available from: 

https://www.biorxiv.org/content/10.1101/2020.05.21.106740v1 

21. Chirgadze DY, Murshudov G, Aricescu AR, Scheres S (2020) Single-particle cryo-

EM at atomic resolution. BioRxiv [Internet]. Available from: 

https://www.biorxiv.org/content/10.1101/2020.05.22.110189v1.abstract 

22. Li P-N, de Oliveira SHP, Wakatsuki S, van den Bedem H (2020) Sequence-guided 

protein structure determination using graph convolutional and recurrent networks. arXiv 

[cs.LG] [Internet]. Available from: http://arxiv.org/abs/2007.06847 

23. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, 

Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res. 28:235–242. 

24. Merritt EA (1999) Expanding the model: anisotropic displacement parameters in 

protein structure refinement. Acta Crystallogr. D Biol. Crystallogr. 55:1109–1117. 

25. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate 

rotamer library. Proteins 40:389–408. 

26. Burnley BT, Afonine PV, Adams PD, Gros P (2012) Modelling dynamics in protein 

crystal structures by ensemble refinement. Elife 1:e00311. 

27. Babcock NS, Keedy DA, Fraser JS, Sivak DA (2018) Model selection for biological 



41 
 

crystallography. bioRxiv [Internet]. Available from: 

https://www.biorxiv.org/content/10.1101/448795v1.abstract 

28. van den Bedem H, Dhanik A, Latombe JC, Deacon AM (2009) Modeling discrete 

heterogeneity in X-ray diffraction data by fitting multi-conformers. Acta Crystallogr. D 

Biol. Crystallogr. 65:1107–1117. 

29. Brock JS, Hamberg M, Balagunaseelan N, Goodman M, Morgenstern R, 

Strandback E, Samuelsson B, Rinaldo-Matthis A, Haeggström JZ (2016) A dynamic 

Asp-Arg interaction is essential for catalysis in microsomal prostaglandin E2 synthase. 

Proc. Natl. Acad. Sci. U. S. A. 113:972–977. 

30. Russi S, González A, Kenner LR, Keedy DA, Fraser JS, van den Bedem H (2017) 

Conformational variation of proteins at room temperature is not dominated by radiation 

damage. J. Synchrotron Radiat. 24:73–82. 

31. Atakisi H, Moreau DW, Thorne RE (2018) Effects of protein-crystal hydration and 

temperature on side-chain conformational heterogeneity in monoclinic lysozyme 

crystals. Acta Crystallogr D Struct Biol 74:264–278. 

32. van Zundert GCP, Hudson BM, de Oliveira SHP, Keedy DA, Fonseca R, Heliou A, 

Suresh P, Borrelli K, Day T, Fraser JS, et al. (2018) qFit-ligand Reveals Widespread 

Conformational Heterogeneity of Drug-Like Molecules in X-Ray Electron Density Maps. 

J. Med. Chem. 61:11183–11198. 

33. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, 

Hung LW, Jain S, McCoy AJ, et al. (2019) Macromolecular structure determination 



42 
 

using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr 

D Struct Biol 75:861–877. 

34. Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, Savitsky P, 

Burgess-Brown NA, Müller S, Knapp S (2009) Large-scale structural analysis of the 

classical human protein tyrosine phosphatome. Cell 136:352–363. 

35. Keedy DA, Fraser JS (2015) Exposing hidden alternative backbone conformations 

in X-ray crystallography using qFit. PLoS Comput. Biol. [Internet]. Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624436/ 

36. Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams 

PD (2018) Real-space refinement in PHENIX for cryo-EM and crystallography. Acta 

Crystallogr D Struct Biol 74:531–544. 

37. Su H, Zou Y, Chen G, Dou H, Xie H, Yuan X, Zhang X, Zhang N, Li M, Xu Y (2020) 

Exploration of Fragment Binding Poses Leading to Efficient Discovery of Highly Potent 

and Orally Effective Inhibitors of FABP4 for Anti-inflammation. J. Med. Chem. 63:4090–

4106. 

38. Bank RPD 4EK8. Available from: https://www.rcsb.org/structure/4ek8 

39. Stsiapanava A, Olsson U, Wan M, Kleinschmidt T, Rutishauser D, Zubarev RA, 

Samuelsson B, Rinaldo-Matthis A, Haeggström JZ (2014) Binding of Pro-Gly-Pro at the 

active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide 

hydrolase selective inhibitor. Proc. Natl. Acad. Sci. U. S. A. 111:4227–4232. 

40. Davis IW, Arendall WB 3rd, Richardson DC, Richardson JS (2006) The backrub 



43 
 

motion: how protein backbone shrugs when a sidechain dances. Structure 14:265–274. 

41. Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates 

natural protein conformational variability and improves mutant side-chain prediction. J. 

Mol. Biol. 380:742–756. 

42. Hallen MA, Keedy DA (2013) Dead-end elimination with perturbations (DEEPer): A 

provable protein design algorithm with continuous sidechain and backbone flexibility. : 

Structure, Function, and … [Internet]. Available from: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.24150 

43. van den Bedem H, Lotan I, Latombe JC (2005) Real-space protein-model 

completion: an inverse-kinematics approach. Section D: Biological … [Internet]. 

Available from: https://scripts.iucr.org/cgi-bin/paper?wd5022 

44. Pearce NM, Krojer T, von Delft F (2017) Proper modelling of ligand binding requires 

an ensemble of bound and unbound states. Acta Crystallogr D Struct Biol 73:256–266. 

45. van Zundert GCP, Moriarty NW, Sobolev OV, Adams PD, Borrelli KW (2020) 

Macromolecular refinement of X-ray and cryo-electron microscopy structures with 

Phenix / OPLS3e for improved structure and ligand quality. bioRxiv 

[Internet]:2020.07.10.198093. Available from: 

https://www.biorxiv.org/content/10.1101/2020.07.10.198093v2 

46. Jiang L, Kuhlman B, Kortemme T, Baker D (2005) A “solvated rotamer” approach to 

modeling water-mediated hydrogen bonds at protein--protein interfaces. Proteins: 

Struct. Funct. Bioinf. 58:893–904. 



44 
 

47. Liebschner D, Afonine PV, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, 

Adams PD (2017) Polder maps: improving OMIT maps by excluding bulk solvent. Acta 

Crystallogr D Struct Biol 73:148–157. 

48. Holton JM, Classen S, Frankel KA, Tainer JA (2014) The R-factor gap in 

macromolecular crystallography: an untapped potential for insights on accurate 

structures. FEBS J. 281:4046–4060. 

49. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Adams PD, Read 

RJ, Zwart PH, Hung L-W (2008) Iterative-build OMIT maps: map improvement by 

iterative model building and refinement without model bias. Acta Crystallogr. D Biol. 

Crystallogr. 64:515–524. 

50. Lang PT, Holton JM, Fraser JS, Alber T (2014) Protein structural ensembles are 

revealed by redefining X-ray electron density noise. Proc. Natl. Acad. Sci. U. S. A. 

111:237–242. 

51. Volkmann N (2009) Confidence intervals for fitting of atomic models into low-

resolution densities. Acta Crystallogr. D Biol. Crystallogr. 65:679–689. 

52. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) 

Comparison of multiple AMBER force fields and development of improved protein 

backbone parameters. Proteins: Struct. Funct. Bioinf. 65:712–725. 

53. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and 

glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. 

J. Mol. Biol. 285:1735–1747. 



45 
 

 
Chapter II 

Ligand binding remodels protein side chain conformational heterogeneity  
 
Stephanie A. Wankowicz1,2, Saulo de Oliveira3, Daniel Hogan1, Henry van den 
Bedem1,3, James S. Fraser1,* 

 
 

1) Department of Bioengineering and Therapeutic Sciences, University of California, 

San Francisco, San Francisco, CA 94158, USA.  

2) Biophysics Graduate Program, University of California San Francisco, San 

Francisco, CA 94158, USA. 

3) Atomwise Inc. San Francisco, CA 94103 USA 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Preface      

The bulk of this chapter appears as Wankowicz et al. preprinted in bioRxiv in 2022, and 

a version of which was ultimately published in eLife later the same year.  

Abstract 

While protein conformational heterogeneity plays an important role in many aspects of 

biological function, including ligand binding, its impact has been difficult to quantify. 

Macromolecular X-ray diffraction is commonly interpreted with a static structure, but it 

can provide information on both the anharmonic and harmonic contributions to 

conformational heterogeneity. Here, through multiconformer modeling of time- and 

space-averaged electron density, we measure conformational heterogeneity of 743 

stringently matched pairs of crystallographic datasets that reflect unbound/apo and 

ligand-bound/holo states. When comparing the conformational heterogeneity of side 

chains, we observe that when binding site residues become more rigid upon ligand 

binding, distant residues tend to become more flexible, especially in non-solvent 

exposed regions. Among ligand properties, we observe increased protein flexibility as 

the number of hydrogen bonds decrease and relative hydrophobicity increases. Across 

a series of 13 inhibitor bound structures of CDK2, we find that conformational 

heterogeneity is correlated with inhibitor features and identify how conformational 

changes propagate differences in conformational heterogeneity away from the binding 

site. Collectively, our findings agree with models emerging from NMR studies 

suggesting that residual side chain entropy can modulate affinity and point to the need 

to integrate both static conformational changes and conformational heterogeneity in 

models of ligand binding.  
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Introduction 

Ligand binding is essential for many protein functions, including enzyme catalysis, 

receptor activation, and drug response 1. Ligand binding reshapes the protein 

conformational ensemble between the ligand-bound (holo) and unbound (apo) states, 

stabilizing some conformations and destabilizing others 2. Despite the dynamic nature of 

proteins, when comparing structures, often only static conformational changes are 

considered. However, differences due to ligand binding can range from large, collective 

movements, such as a loop closure over the binding pocket, to small, local fluctuations 

of side chains 3. Differences in binding affinity and specificity are most often attributed to 

the enthalpic portion of binding free energy, including visualized interactions between 

the receptor and ligand. On the other hand, conformational heterogeneity, especially 

side chain fluctuations, can also contribute energetically to the binding affinity by 

modulating entropy 4,5. While the individual fluctuation of residues are small, they can 

add up to significantly contribute to the entropic portion of binding free energy. Previous 

work examining a diverse set of protein complexes calculated that protein 

conformational entropy can contribute between -2 (favoring) and 4 (disfavoring) kcal/mol 

to binding free energy 6,7.  A holistic understanding of the origins of binding would ideally 

explore both enthalpic and entropic energetic contributions to binding affinity 8.  

 

Side chain conformational heterogeneity, including jumps between and variation within 

rotameric conformations, measured by Nuclear Magnetic Resonance (NMR) relaxation 

studies has been linked to entropy 6,9. In principle, complementary information could be 

accessed by other structural methods. Structural information from X-ray crystallography 

or Cryo-electron microscopy (CryoEM), typically produces a single set of structural 
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coordinates. However, the underlying density maps are created from thousands-to-

millions of protein molecules, and averaged in both time and space through the crystal 

lattice or electron microscope particle stack 10,11. When averaged in a single density 

map, conformational heterogeneity across these copies can manifest as “anharmonic 

disorder”, which can be modeled using multiple alternative conformations, or “harmonic 

disorder”, which can be modeled by B-factors/atomic displacement parameters (Figure 

2.1). Molecular dynamics experiments have demonstrated that if alternative 

conformations are not modeled correctly and consistently, then B-factors take on values 

that are not representative of the underlying conformational heterogeneity 12,13. 

Moreover, B-factors incorporate many effects, including the biases and restraints of the 

refinement programs, modeling errors, crystal lattice defects, and occupancy changes 

of atoms. Therefore, consistently modeling X-ray structures as multiconformer models, 

with alternative side chain and backbone conformations, along with B-factors, may 

better complement the view emerging from NMR and improve our understanding of the 

energetics of binding 14.  

 

Here, we examine how protein side chain conformational heterogeneity changes upon 

ligand binding by assembling a large, high-quality dataset of matched holo and apo X-

ray crystallography structures. To integrate both harmonic and anharmonic disorder, we 

use a consistent multiconformer modeling procedure, qFit 15 and crystallographic order 

parameters 16. We test the hypothesis that ligand binding narrows the conformational 

ensemble, resulting in a decrease in heterogeneity of side chains in the holo structure 

compared with the apo structure. Our analysis reveals complex patterns of 
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conformational heterogeneity that vary between and within proteins upon ligand binding. 

Specifically, in proteins where binding site residues become more rigid upon ligand 

binding, distant residues tend to become less rigid. This observation suggests that both 

natural and artificial ligands can modulate the natural composition of the protein 

conformational heterogeneity across the entire receptor to modulate the free energy of 

binding.  

Results 

Assembling the dataset 
To assess the differences in conformational heterogeneity upon ligand binding, we 

identified high quality, high resolution (2Å resolution or better) X-ray crystallography 

datasets from the PDB 17. We classified structures as holo if they had a ligand with 10 or 

more heavy atoms, excluding common crystallographic additives (Supplementary 

Figure 2.1). Structures without ligands, excluding common crystallographic additives, 

were classified as apo (Supplementary Figure 2.1). We identified holo/apo matched 

pairs by requiring the same sequence and near-isomorphous crystallographic 

parameters. Furthermore, we required the resolution difference between holo and apo 

pairs to be 0.1 Å or less, selecting representative apo structures to minimize the 

difference in resolution (Supplementary Figure 2.1). This stringently matched ligand 

holo-apo dataset contained 1,205 pairs. We also used identical selection criteria to 

create a control dataset of 293 apo-apo pairs, taken from the set of holo/apo pairs. 
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Supplementary Figure 2.1| The dataset selection process. (A) To select holo/apo 
matched pairs, we first categorized the PDB structures into holo or apo structures, 
removing structures with a resolution worse than 2Å, not resolved using X-ray 
crystallography, and those that include nucleic acids. Holo structures (n=30,530) were 
required to have a ligand, not including common crystallographic additives, with 10 or 
more heavy atoms. All others were classified as apo (n=30,171). (B) For every holo 
structure, we compared it to the 30,717 apo structures first matching for exact sequence 
and space group and controlling for similar unit cell dimensions (within 0.1 Å) and 
angles (within 1 degree). Finally, we selected the structures paired for resolution within 
0.1 Å.  
 

Re-refining and qFit modeling of apo/holo pairs  

To minimize biases resulting from different model refinement protocols, we re-refined all 

structures using the deposited structure factors and phenix.refine 18. The majority of 

structures in our re-refined dataset had less than 2% of residues modeled with 

alternative conformations, likely reflecting undermodeling of conformational 

heterogeneity represented in the PDB, based on prior literature  19. To more consistently 

assess conformational heterogeneity, we rebuilt all structures using qFit, an automated 

multiconformer modeling algorithm (Keedy et al., 2015; Riley et al., 2021) with 

subsequent refinement using phenix.refine 18. While qFit has biases, running all models 

through a consistent protocol will avoid manual biases that could creep into the holo or 

apo structures specifically. Additionally, by re-building each model as a multiconformer 

model, we were able to better distinguish the contributions of harmonic and anharmonic 

conformational heterogeneity across the structure (Figure 2.1). All models went through 
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additional quality control, removing structures that resulted in large increases in R-free 

at each refinement step, high clashscores, or large RMSD between the pairs (Methods, 

Supplementary Figure 2.2). This procedure resulted in 743 pairs. Due to apo datasets 

serving as the reference state for multiple ligand bound structures, our dataset consists 

of 743 unique holo structures and 432 unique apo structures.  

 

Figure 2.1| Representing structural data as multiconformer models. (A) The grey 
outlines represent snapshots of the true underlying ensemble of the phenylalanine 
residue. The orange stick represents the residue modeled as a single conformer. The 
teal sticks represent the residue modeled as alternative conformers. The single 
conformer accounts for all heterogeneity in the B-factor, increasing the B-factor and 
reducing our ability to determine harmonic versus anharmonic motion. When a residue 
is modeled using alternative conformers, this heterogeneity is divided between 
harmonic heterogeneity, captured by the B-factors of each alternative conformation and 
the anharmonic heterogeneity, captured by spread in coordinates between the 
alternative conformations. (B) To quantify the conformational heterogeneity of each 
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residue, we used multi-conformer order parameters 16, which are the products of the 
ortho order parameter, which captures the harmonic or B-factor portion of each 
conformation and the angular order parameter, which captures the anharmonic portion 
or the displacement between alternative conformers. These are multiplied to produce 
the final order parameter (Methods). (C) The change in the number of alternative 
conformers (holo-apo) in binding site residues. In the re-refined dataset (orange), the 
majority structures have the same number of alternative conformers in the binding site, 
with the second most popular category gaining alternative conformers in the holo 
structure. In the qfit dataset (teal), the majority of structures lose an alternative 
conformer in the holo structure, with the second most common category being gaining 
an alternative conformer. (D) The differences in B-factors (holo-apo) in the re-refined 
(orange) and qFit (teal) datasets. Overall, there was no significant difference in B-
factors between holo and apo structures in both the re-refined and qFit datasets.  
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Supplementary Figure 2.2| Quality control of multiconformer models. (A) The 
differences in R-free values between the PDB deposited structures and after re-
refinement. 85 structures were removed (green) as their R-free increased by more than 
2.5%. (B) The difference in R-free statistics between the re-refined structures and the 
qFit structures. 77 structures were removed (green) as their R-free increased by more 
than 2.5%. (C) The difference in R-free statistics in qFit structures between the holo and 
apo structure. 16 pairs were removed (green) as ther R-free statistics differed by 5% or 
more between the pairs. (D) Flowchart representing our quality control process, with 
removed structures in green boxes. 

Properties of the apo/holo pairs 

The median resolution across our dataset was 1.6Å with a small trend towards improved 

(higher) resolution in the apo structure (0.01Å, median improvement (holo-apo); 

p=3.8x10-20, Wilcoxon signed rank test; Supplementary Figure 2.3). Across the 

dataset, 546 unique ligands were present in the structures, with 134 of these (e.g. NAG, 
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AMP, etc) appearing in multiple structures (Supplementary Figure 2.4). The median 

number of ligand heavy atoms was 19, with only 10 very large ligands (>50 heavy 

atoms, e.g. Atazanavir; Supplementary Figure 2.4). The proteins in the dataset 

represent 315 unique Uniprot IDs, with a bias towards enzymes that have been used for 

model systems for structural biology, including: Endothiopepsin (n=73 pairs), Lysozyme 

(n=62 pairs), Trypsin (n=48 pairs), and Carbonic Anhydrase 2 (n=46 pairs; 

Supplementary Figure 2.4).  

 

 
Supplementary Figure 2.3| Resolution difference in apo/holo pairs. (A) Resolution 
difference between pairs (holo-apo). The median pairwise difference was 0.01Å, with 
slightly better resolution in the apo structures, and the standard deviation was 0.06Å. (B) 
The distribution of resolution (median=1.6Å) of the apo (n=432) and holo (n=743) 
dataset. The median apo resolution was 1.58Å and the median holo resolution was 
1.58Å. 
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Supplementary Figure 2.4| Ligand statistics of holo structures. (A)The top 30 ligands in 
our dataset by PDB chemical ID. NAG (2-acetamido-2-deoxy-beta-D-glucopyranose) 
and H06 ((E)-4-((2-nicotinoylhydrazono)methyl) benzimidamide) where the most 
frequent ligands in our dataset. (B) The distribution of the number of heavy atoms of a 
ligand of interest. The median number of heavy atoms was 19. There were only 10 very 
large ligands (>50 heavy atoms, e.g. Atazanavir). (C) The most common proteins in our 
dataset. Eleven proteins in our dataset were included in 6 or more pairs. This included 
our most common proteins including: Endothiopepsin (n=73 pairs), Lysozyme (n=62 
pairs), Trypsin (n=48 pairs), and Carbonic Anhydrase 2 (n=46 pairs). (D) The 
distribution of enzymes (n=95) based on their Enzyme Commission Number. 

Conformational Heterogeneity across the Re-refined and qFit dataset 

To determine the differences in conformational heterogeneity upon ligand binding in 

both the re-refined and qFit models, we assessed four commonly used metrics: the 

number of alternative conformers, B-factors (atomic displacement parameter), root-

mean-square fluctuations (RMSF), and rotamer changes.  
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Number of Alternative Conformations 

Alternative conformations were modeled at low frequency in the re-refined dataset 

compared to the qFit modeled structures (1.7% vs. 47.8% of residues). In the re-refined 

dataset, there is a bias to increased modeling of alternative conformations in the holo 

dataset (50.5% gain vs. 29.8% loss), whereas more even representation was observed 

in the qFit dataset (44.3% gain vs. 54.8% loss; Supplementary Figure 2.5). These 

results suggest that the trend of increased side chain conformational heterogeneity in 

PDB deposited structures may have its origin in human bias with more careful human 

attention to careful model building of binding site residues in holo structures.   

 

We next focused our analysis on binding site residues, defined as any residue with a 

heavy atom within 5Å of any ligand heavy atom. In the re-refined dataset, 23.9% of the 

matched pairs had a gain in alternative conformations in the holo model compared to 

only 19.3% losing an alternative conformer in the holo model, suggesting, counter-

intuitively, that ligand binding increases local side chain mobility (Figure 2.1). However, 

in the qFit dataset, holo models tend to lose alternative conformations in the binding site 

residues (39.7% gain vs. 51.5% loss; Figure 2.1).  
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Supplementary Figure 2.5| Alternative Conformers and B-factors. (A) The change in 
the number of alternative conformers (holo-apo) across all residues. In the re-refined 
dataset (orange), the majority models have a gain of the number of alternative 
conformers in the holo, with the second most common category being a loss of 
alternative conformers. In the qfit dataset (teal), the majority of structures lose an 
alternative conformer in the holo model, with the second most common category being 
gaining an alternative conformer. (B) The difference in B-factors across all residues. 
There was a slight increase in B-factors in holo models in both the re-refined and the 
qFit datasets.  

B-factors 

Next we explored the harmonic contribution to conformational heterogeneity as modeled 

by B-factors on a pairwise, residue by residue basis. Across all residues in the re-

refined dataset, B-factors were slightly higher in holo models (0.31Å2 , median 

difference (holo-apo); p=4.4x10-208, Wilcoxon signed rank test; Supplementary Figure 

2.5). In the qFit dataset, similar to the re-refined structures, holo residues had slightly 

higher B-factors (0.34Å2, median difference (holo-apo); p=5.6x10-264, Wilcoxon signed 

rank test; Supplementary Figure 2.6). Of note, the B-factors in the qFit dataset are 

slightly smaller than the re-refined dataset (13.41Å2 vs. 13.94Å2, average B-factors) 

reflecting the tendency for alternative conformation effects to be modeled as increased 

B-factors. When examining the binding site residues, there was no significant difference 
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in B-factors between the holo and apo models in both the re-refined (0.01Å2, median 

difference in B-factors; p=0.34, Wilcoxon signed rank test; Figure 1D) and qFit datasets 

(0.06Å2, median difference in B-factors; p=0.7, Wilcoxon signed rank test; Figure 1D, 

Figure 1- Figure Supplement 6B). The lack of change in B-factors close to ligands 

between the holo and apo models indicate that changes between the holo and apo B-

factors are driven by signals distant from the binding site.  

 

Supplementary Figure 2.6| B-factor differences between apo and holo. (A) The 
difference in B-factors between holo and apo pairs. The range of the difference in B-
factors was -199.8Å2 to 197.0Å2, here we remove the most 10% extreme values, which 
are due to poor density in loop regions leading to high B-factors for those individual 
residues. Across all residues, on average B-factors were higher in holo structures 
compared to apo (0.34Å2, median difference (holo-apo); p=4.4x10-208, Wilcoxon signed 
rank test). (B) In binding site residues, B-factors were on average the same between 
holo and apo residues (0.06Å2, median difference in B-factors; p=0.7, Wilcoxon signed 
rank test). 

Conformational differences incorporating alternative conformations 

Because of the low number of alternative conformers in the re-refined dataset, we only 

explored the anharmonic differences for side chains between the holo and apo models 

in the qFit dataset. First, to determine the extent of conformational change of alternative 

conformations, we compared the rotameric distribution of side chains. Side chain 

rotamer changes between apo and holo structures have been reported to be very 
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prevalent in single conformer models, with 90% of binding sites having at least one 

residue changing rotamers upon ligand binding 20. To accommodate multiconformer 

models, we assigned all conformations to distinct rotamers using phenix.rotalyze. We 

classified each residue as having “no change” in rotamers if the set of rotamer 

assignments matched for the holo and apo residue. In binding sites, we also observed 

that “no change” was the most common outcome for residues (78.6%; Figure 2.2). In 

the second largest category, “distinct”, the holo and apo residue shared no rotamer 

assignments (15.5% of residues; Figure 2.2). 

 

A more complicated situation occurs when some, but not all, of the rotamer 

assignments are shared across apo and holo residue. We classified 2.6% of residues 

as “remodeled - holo loss” (Figure 2.2) if distinct, additional rotameric conformations 

were populated in the apo residue only and 3.8% of residues as “remodeled - holo gain” 

(Figure 2.2) if distinct, additional rotameric conformations were populated in the holo 

residue only. These results suggest a counterintuitive interpretation of binding site 

residues increasing their conformational heterogeneity upon ligand binding. However, a 

major potential confounder is that holo structures reflect an ensemble average of two 

compositional states (apo and holo) with alternative conformations representing the apo 

state at reduced occupancy, which we examined by subsetting the ligands based on 

relative B-factors (see below). A potential for a third category of remodeling, where both 

apo and holo residues share at least one conformation and each have at least one 

additional conformation, did not occur in our dataset.  
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Across apo-holo pairs there was a large range of the percentages of binding site 

residues with the same rotamer classification in the pairs (23.2% to 100.0%), indicating 

that side chain remodeling can be quite variable (Figure 2.2). We found 11% of binding 

sites had all residues classified as “same” between pairs, consistent with a previous 

study that used single conformer models 20.  As an example of such a “pre-organized” 

binding site is Galectin-3 bound to thiodigalactoside (PDB: 5NFC, 4JC1; Figure 2.2). In 

contrast, 67% of binding site residues have a rotamer status difference in transthyretin 

(PDB: 1CZR, 3CFN; Figure 2.2), including a rotamer change in Leu101 to avoid a clash 

with the ligand.  
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Figure 2.2| Rotamer changes between apo and holo pairs. Examples of rotamer 
changes between apo (purple) and holo (green) binding site residues. (A) Example 
residues for: ‘no change’ in rotamer status, accounting for 78.7% of binding site 
residues; (B) “distinct” rotamers, accounting for 14.9% of binding site residues; (C) 
“remodeled- holo loss”, accounting for 2.6% of binding site residues; and (D) 
“remodeled- holo gain”, accounting for 3.8% of binding site residues. (E) The 
percentage of residues in the binding site that have the same rotamer status in the holo 
and apo structures. The black line highlights the 11% of pairs that had the same 
rotamer status for all binding site residues. (F) Paired galectin-3 apo (purple; PDB: 
5NFC) and holo (green; PDB: 4JC1, ligand: thiodigalactoside) multiconformer models 
with no changes in rotamer status in any binding site residues. (G) Paired transthyretin 
apo (purple; PDB: 1ZCR) and holo (green; PDB: 3CFN, ligand: 1-anilino-8-naphthalene) 
multiconformer models with 6 out of 9 residues with remodeled or different rotamer 
status in the binding site residues. Residues with rotamer changes are shown as sticks. 
Residues with the no change in rotamer status are shown as lines. 
 
 
To compare the magnitude of fluctuations between alternative conformations, we 

calculated RMSF for all residues. This analysis suggested that, on average, apo 

residues have slightly greater conformational heterogeneity than holo residues (-

0.006Å, mean difference of RMSF(holo-apo); p=3.7x10-8, Wilcoxon signed rank test; 
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Supplementary Figure 2.7). This trend was somewhat stronger in binding site residues 

(-0.02 Å, mean difference of RMSF(holo-apo); p=4.5x10-29, Wilcoxon signed rank test; 

Supplementary Figure 2.7). Our RMSF results suggest that, on average, there is a 

slight decrease in heterogeneity upon ligand binding and that this reduction is most 

prevalent at residues distant from the binding site. 

 

 
Supplementary Figure 2.7| RMSF differences between apo and holo. (A) Across all 
residues, apo residues had a higher RMSF compared to holo residues (0.17Å vs. 0.16Å, 
mean RMSF; -0.006, mean difference: p=4.5x10-29 ,Wilcoxon signed rank test). (B) 
Within binding site residues, apo residues also had a higher RMSF, compared to holo 
residues (0.17Å vs. 0.15Å, mean RMSF; -0.02, mean difference; p=3.7x10-8, Wilcoxon 
signed rank test).  
 
 
Collectively, these results do not conform to a simple model. There is a large amount of 

variability in the response across datasets and the median responses reveal only small 

biases. Nonetheless, considering those average responses, upon binding a ligand, the 

RMSF analysis suggests decreases in heterogeneity at the binding site, whereas the 

rotamer comparison has a slight bias to increased heterogeneity at the binding site, and 

B-factors only change at distant sites. One interpretation is that heterogeneity is 

reduced in binding site residues by a small number of anharmonic conformational 
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changes, as observed by the RMSF reduction, paired with an increase in harmonic 

fluctuations far away, as observed by an increase in the B-factors. However, it is difficult 

to interpret these changes separately, as conformational heterogeneity is a combination 

of both harmonic and anharmonic motion and there is potential degeneracy in modeling 

alternative conformations, even with qFit 21. Therefore, we moved to using an integrated 

measurement of order parameters that can account for these complications 16. 

Order parameters integrate both harmonic and anharmonic conformational 
heterogeneity 
To integrate the anharmonic fluctuations between alternative conformers with the 

harmonic fluctuations modeled by B-factors 12, we used a crystallographic order 

parameter (Figure 2.1) 16. Order parameters allow us to capture the conformational 

entropy both within and between side chain rotamer wells. While order parameters are 

traditionally used in NMR or molecular dynamic simulations, they can be calculated for 

multiconformer X-ray models and, in some cases, show reasonable agreement with 

solution measures 16. We focused on the order parameters of the first torsion angle (χ1) 

of every sidechain for all residues except for glycine and proline. Order parameters are 

measured on a scale of 0 to 1, with 1 representing a fully rigid residue and 0 

representing a fully flexible residue. Below, we analyze the differences in normalized 

order parameters between paired residues (Methods, Supplementary Figure 2.8).  
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Supplementary Figure 2.8| Order parameter normalization. To normalize the order 
parameters across all structures, we looked at 31 lysozyme structures and compared 
their order parameters. We randomly selected 3 PDBs as our ‘control’ order parameters 
(PDBs: 1VAT, 4NHS, 5LIO). (A) For every residue, we plotted the initial order 
parameters of our control PDBs compared to all of the other PDBs in our dataset. We 
obtained a slope of 0.2 with an R2 of 0.16. (B) After applying our equation that accounts 
for average B-factor and resolution (Methods) we re-plotted the normalized order 
parameters. Here we obtained a slope of 0.7 and an R2 of 0.46. 
 
 
As an additional control, we compared our apo/holo dataset to a dataset of apo/apo 

pairs. In examining the differences in order parameters, both in the holo/apo pairs and 

the apo/apo pairs, there are no large differences in conformational heterogeneity, as 

indicated by a median difference in order parameters of approximately 0. However, in 

the holo/apo pairs there is a much wider range of order parameter differences, 

indicating that ligand binding impacts conformational heterogeneity beyond 

experimental variability (p=3.4x10-17, individual Mann-Whitney U test; Figure 2.3).  

 

Next, to examine whether different regions of the protein were driving this higher 

variability, we compared the differences in order parameters among binding site 

residues, within 5Å of any ligand heavy atom, compared to a control dataset which 

matched the number of, type and solvent exposure within the protein for each binding 

site residue. In binding site residues, the holo structures had a slightly, but significantly, 
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increased order parameters, suggesting reduced conformational heterogeneity 

compared to the control dataset (0.034 vs. 0, median difference (holo-apo) order 

parameter; p=3.4x10-7, individual Mann-Whitney U test; Figure 2.3). While there is a 

larger range of responses, this indicates that, in general, binding site residues become 

more rigid upon ligand binding.  
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Figure 2.3| Ligand binding alters conformational heterogeneity patterns. (A) Across all 
residues, the distribution of order parameter changes is much wider in Holo-Apo pairs 
compared to Apo-Apo pairs (p=3.4x10-17, individual Mann-Whitney U test), however 
there is no median difference in order parameters upon ligand binding (median 
difference: 0 for both) indicating that ligands have varying impacts across different 
proteins. (B) The distribution of the average differences of order parameters in binding 
site residues compared to the average differences in a control dataset made up of the 
same number, type, and solvent exposure of amino acids. Comparing the holo/apo 
structures, on average binding site residues got more rigid upon binding. The median 
difference in order parameters was 0.03 for the binding site residues, compared to 0 for 
the control dataset (p=3.4x10-7, individual Mann-Whitney U test).  (C) The relationship of 
the difference in order parameters between the holo and apo residues in binding site 
residues versus the residual order parameter in distant, non-solvent exposed residues. 
We observed a negative trend (slope=-0.44) indicated that structures that had a loss of 
heterogeneity in the binding site (right on the x-axis) had a relative gain in heterogeneity 
in residues distant from the binding site that were not solvent exposed (top on the y-
axis). (D) We explore this trend on a structure of human ATAD2 bromodomain (PDB: 
5A5N). Residues are colored by the differences between the average binding site order 
parameter minus the order parameter for each residue. Blue residues are less dynamic 
than the average binding site residue and red residues are more dynamic than the 
average binding site residue. Binding site residues are represented by sticks and 
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distant, non-solvent exposed alpha carbons are represented by spheres. The ligand 
((2S)-2,6-diacetamido-N-methylhexanamide) is colored in teal.  
 

Spatial distribution of conformational heterogeneity changes 

Based on the large range of order parameter differences we observed across the 

protein, along with the decrease in heterogeneity localized to binding site residues, we 

next explored the relationship between changes in heterogeneity in binding site 

residues and the rest of the protein. The difference in order parameters between the 

holo and apo models were correlated in both the binding site and distant residues 

(Supplementary Figure 2.9), indicating that ligand binding generally caused global 

changes to flexibility. Given the average rigidification of the binding site residues (Figure 

2.3, Supplementary Figure 2.9), these results predict a general trend of decreased 

conformational heterogeneity in the ligand binding site would be associated with a 

relative increase in conformational heterogeneity at distant sites in the protein. This 

pattern suggests that the residual change in heterogeneity (the difference between the 

average order parameter of the distant residues and the average order parameter of the 

binding site residues) should be inversely related to the change in the binding site 

residues: more rigidified binding sites will have more flexible than expected distant sites, 

and vice versa. Therefore, we explored the relationship between binding site residues 

and distant residues, defined as those more than 10Å away from any heavy atom in the 

ligand. Indeed, on a protein-by-protein basis, the relationship between binding site 

residues and residual changes at distant sites follows this trend (Supplementary 

Figure 2.9). Consistent with studies suggesting significant residual conformational 

heterogeneity in folded buried residues 22 and the potential for those buried residues to 
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change heterogeneity upon ligand binding 23, this trend is even stronger in residues that 

were more than 10Å away from any heavy atom in the ligand and less than 20% solvent 

exposed (slope=-0.44, r2=0.46; p=5.1x10-50, two-sided t-test; Figure 2.3). This indicates 

that proteins that lose conformational heterogeneity in the binding site are associated 

with a relative increase in conformational heterogeneity in distant, non-solvent exposed 

residues. 
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Supplementary Figure 2.9| Conformational heterogeneity analysis. (A) The 
relationship between the average order parameter in distant, non-solvent exposed 
residues versus the average order parameters in binding site residues (n=743, 
slope=0.79, r2=0.65; p=6.5x10-89, two-sided t-test). (B) We compare the difference in 
order parameters in each binding site residues of Holo-Apo pairs compared to a control 
dataset made up of the same number, type, and solvent exposure of amino acids. 
Comparing the holo/apo structures, on average binding site residues got more rigid 
upon binding. The median difference in order parameters was 0.03 for the binding site 
residues, compared to 0 for the control dataset (p=3.4x10-7, individual Mann-Whitney U 
test).(C) The relationship between the residual order parameters in all distant residues 
versus binding site residue order parameters (n=743, slope=-0.34, r2=0.17; p=4.6x10-28, 
two-sided t-test). (D) The relationship between the residual order parameters in distant, 
non-solvent exposed residues versus binding site residues in the apo and apo control 
dataset residues (n=283, slope=-0.28, r2=0.20; p=1.8x10-34, two-sided t-test). (D) The 
relationship between the residual order parameters in distant, non-solvent exposed 
residues versus binding site residues in the holo dataset residues colored by size of 
protein. (F) The bootstrap analysis of the overlap of the slope of distant, average order 
parameters of non-solvent exposed residue versus average order parameters of binding 
site residue between holo-apo (green) and apo-apo (purple). While there was some 
overlap the mean slope of holo-apo (-0.44) was more than two standard deviations 
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away from the mean slope of the apo-apo (-0.28).  Comparing the two bootstrap 
distributions using a z-test, the z-value was -191.26 with a p-value of 0.0.  
 
 
There are three likely origins of this effect. First, this may reflect a feature of the 

distribution of order parameters around the mean value within each protein. Second, 

this may reflect a topological feature of protein packing, whereby packing optimization of 

certain areas of a protein decreases the optimization of other parts of the protein 24. 

Third, this may reflect the stabilization of certain conformations in a ligand bound 

protein. As a control for these effects, we compared the residual order parameter 

differences between the buried, non-solvent exposed residues and the binding site 

residues in apo-apo pairs. Globally the trends were similar, but weaker in both 

correlation and magnitude (slope=-0.28, r2=0.20; p=1.8x10-34, two-sided t-test;  

Supplementary Figure 2.9). Therefore, we interpret the trend we observe as mainly 

based on protein topology, specifically that proteins have areas where there are less 

efficiently packed alternative conformers, likely to enable entropic compensation across 

the protein during various functions, including ligand binding. We interpret that the 

stronger signal we observed in the holo-apo dataset is due to the ligand perturbation, 

which is also reflected in the median rigidification of binding site residues (Figure 2.3). 

We hypothesize that we are observing this innate protein property being used, 

specifically optimizing the binding site residues to bind a ligand, while decreasing the 

optimization elsewhere in the protein.  

 

As an example to visualize this trend, we mapped the change in order parameters onto 

the structure of the human ATAD2 bromodomain (PDB ID:5A5N). In ATAD2, the binding 
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site residues rigidify upon ligand binding whereas the majority of distant residues are 

more heterogeneous compared to the binding site residues (Figure 2.3). Specifically, 

this difference is greatest between binding residues and non-solvent exposed residues, 

as previously observed in lysozyme (Supplementary Figure 2.9 6,23). However, as in 

the global analysis, the ATAD2 example demonstrates there is a large range of changes 

in binding site order parameters, consistent with NMR examples that show a 

heterogeneous response both close to and distant from ligands (Caro, Valentine, and 

Wand 2021),  

 

Hydrogen bond patterns change upon ligand binding 

We next investigated changes in protein side chain hydrogen bonds upon ligand 

binding. Here we applied HBplus25 to identify hydrogen bonds for each side chain 

alternative conformation (Methods). We examined the occupancy weighted hydrogen 

bonds in binding site residues, using a hydrogen bond cutoff of 3.2Å. Overall, we 

observed the creation of 0.06 hydrogen bonds per residue in holo binding sites 

(Supplementary Figure 2.10), which translates to 10% of structures gaining one full 

hydrogen bond in the holo structure. This is likely indicative of stable binding sites in 

holo structures. This follows a trend observed previously where upon ligand binding, 

hydrogen bonds to water molecules decrease, but hydrogen bonds to other protein 

atoms increase20.  
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Supplementary Figure 2.10| Hydrogen bonding patterns. We examined the difference 
in hydrogen bonds across all binding site residues. (A) The percentage difference in 
hydrogen bonds between holo and apo structures in binding site residues. (B) We 
observe W118 having a much different conformation in altB in apo structure breaking 
the hydrogen bond with H122. (C) K64 in the apo structure is unable to make any 
hydrogen bonds with S133 due to wandering nitrogen in the last chi angle of K64. (D) alt 
A and B in H97 of the apo structure have a much different conformation from H97 in the 
holo structure. 
 



73 
 

 

Figure 2.4| Ligand properties impact binding site order parameters. (A) Ligands with 
higher logP value (maroon), indicative of more greasy or hydrophobic ligands, versus 
ligands with a lower logP value (gold), had lower in order parameters in the binding site 
residues (0.78 vs. 0.84, median order parameter; p=7.5x10-6, independent Mann 
Whitney U test) [Example ligands: low logP: 5-phospho-d-arabinohyroamic acid, high 
logP: ethyl 2-amino-1,3-benzothiazole-6-carboxylate]. (B) Ligands with relatively higher 
molecular weight (maroon) had higher order parameters compared to those with lower 
molecular weight(gold; 0.79 vs. 0.83, median order parameter; p=0.0001, independent 
Mann Whitney U test). [Example ligands: High number of heavy atoms: (2S)-2-(3-
hydroxy-3-oxopropyl)-6-[[[2-[(4-methoxyphenyl)methylcarbamoyl]phenyl] methyl-methyl-
amino]methyl]-2,3-dihydro-1,4-benzodioxine-5-carboxylic acid, low number of heavy 
atoms: 4-carbamimidamidobutanoic acid]. (C)Ligands with relatively higher hydrogen 
bonds per heavy atom (maroon) had higher order parameters compared to those with 
lower molecular weight (gold; 0.84 vs. 0.79, median order parameter; p=5.9x10-5, 
independent Mann Whitney U test) [example ligands: low hydrogen bond: 4-sulfamoyl-
N-(2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl) benzamide, high hydrogen bond: 
phosphoaminophosphonic acid-adenylate ester]. (D) Binding site order parameters 
were lower in ligands with partial occupancy (light pink; 0.79, median order parameter) 
and mutliconformer ligands adding to full occupancy (salmon; 0.80, median order 
parameter), compared to single conformer ligands with full occupancy (dark red; 0.83, 
median order parameter; p=4.9x10-8, independent Mann Whitney U test). (E) In fully 
occupied ligands, ligands in the top quartile of ligand B-factors, controlled for by the 
mean alpha carbon B-factor, had lower binding site order parameters (salmon; 0.79, 
median order parameter) compared to ligands in the bottom quartile (dark red; 0.85, 
median order parameter; p=1.6x10-11, independent Mann Whitney U test).  
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Supplementary Figure 2.11| Conformational heterogeneity and ligand properties. (A) 
We explored if the top and bottom quartiles of rotatable bond ligands were associated 
with an increase or decrease of rotamer changes, as defined as the percentage of close 
residues with the same rotamer in the holo and apo structure. The ligands in the top 
quartile of rotatable bonds had less rotamers that were the same between holo and apo 
structures versus ligands in the bottom quartile of rotatable bonds (80% vs. 88%, 
median same percentage of rotamers, p=0.001, independent Mann Whitney U test). (B) 
There was no significant difference in the percentage of the same rotamers between 
partially occupied and fully occupied ligands (80% vs. 85%, median percentage of the 
same rotamer; p=0.11, independent Mann Whitney U test). (C) In fully occupied ligands, 
the median B-factor was 24.8, with a range of 5.5 to 99.3.  
 

Ligand properties influence conformational heterogeneity  

Next we investigated how ligand properties impact the conformational heterogeneity of 

binding site residues. For ligand properties dictated by the size of the ligand (number of 

rotatable bonds and number of hydrogen bonds) we normalized these metrics by the 

molecular weight of the ligand. For each property, we compared the highest and lowest 

quartiles by both the absolute order parameters of the holo structure and the order 

parameters differences between holo and apo pairs. No significant associations existed 

when comparing the differences between holo and apo order parameters, but the 

characteristics of the holo binding site and the rotamer changes were correlated with 

ligand properties in several cases. 
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We hypothesized that ligand properties associated with increase ligand dynamics, 

including more rotatable bonds, higher lipophilicity (logP), fewer hydrogen bonds, and 

more heavy atoms would be associated with increased conformational heterogeneity 

(an increase in absolute order parameters or a smaller difference between the apo and 

holo order parameters; 26. While molecules with fewer rotatable bonds (lower quartile: 

<2 (n=134) vs. upper quartile: >6 (n=134)) were indeed associated with more rigid 

binding sites (lower quartile: 0.83 vs. upper quartile: 0.81, individual Mann Whitney U 

test), this was not significant. However, higher numbers of rotatable bonds were 

associated with a lower number of same rotamers between the apo and holo binding 

site residues (88% vs. 80%, percentage same rotamer; p=6.0x10-6, individual Mann 

Whitney U test (Supplementary Figure 2.11). Increased lipophilicity (logP, upper 

quartile: <0.04 (n=134) vs. lower quartile: >2.69 (n=134)), was significantly associated 

with a more flexible binding site (0.79 vs. 0.84, median order parameters; p=7.5x10-6, 

individual Mann Whitney U test; Figure 2.4). Previous studies have indicated that 

increased lipophilicity generates more nonspecific binding interactions 27. Larger 

compounds (upper quartile: >26 heavy atoms (n=134) vs. lower quartile: <13 heavy 

atoms (n=134)) are also associated with more flexible binding sites (0.83 vs. 0.79, 

median order parameter; p=0.0001, individual Mann Whitney U test; Figure 2.4). Large 

compounds, thus a larger ligand surface area, are associated with more nonspecific 

binding interactions, which is compatible with increased protein conformational 

heterogeneity. Finally, more total hydrogen bonds per heavy atom(upper quartile: >0.47 

(n=134) vs. lower quartile: <0.25 (n=134)) are associated with more rigid binding sites 

(0.84 vs. 0.79, median order parameter; p=5.9x10-5, individual Mann Whitney U test; 
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Figure 2.4). This trend holds even when examining hydrogen bond donors or acceptors 

separately.  

 

From these results, an intuitive general picture emerges where more specific, directional 

interactions, such as hydrogen bonds28, are more likely to lock the corresponding 

protein residue in place, thus creating more rigid binding site residues29. Whereas the 

more non-specific interactions are correlated with more flexible binding site residues. 

There is also a wide range of deviation from this general picture, likely reflecting that 

natural and artificial optimization of ligands is based on free energy, not any specific 

thermodynamic component or interaction type.  These trends emphasize the need to 

monitor both the impacts of ligands on specific interactions with the protein along with 

conformational heterogeneity of the protein. Additionally, these results suggest that 

specific interactions can be tuned to rigidify a binding site. Paired with our findings of the 

relationship between order parameters in binding site and distant residues, ligand 

impacts are likely propagated throughout the protein. Ligands with more specific 

interactions, thus a less flexible binding site, will likely have a corresponding increase in 

conformational heterogeneity distant from the binding site. 

Reduced ligand occupancy and conformational heterogeneity 

One potential confounder for quantifying the change in conformational heterogeneity of 

binding site residues is that the ligands may not be fully occupied in the crystal. There 

were 193 structures with ligands with alternative conformations or partially occupied 

ligands in our datasets (Figure 2.4). Of these 193, 125 ligands had less than full 

occupancy, whereas 68 had alternative conformations that amounted to full occupancy. 
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The vast majority of ligands (n=425) were modeled originally with full occupancy. Fully 

occupied ligands were associated with more rigid binding sites than partially occupied 

ligands or ligands with alternative conformers (0.84 vs. 0.79, mean order parameters of 

binding site residues; p=2.9x10-7, individual Mann Whitney U test; Figure 2.4). There 

was no difference observed between the partially occupied ligands and ligands with 

alternative conformers (p=0.15, individual Mann Whitney U test). We also explored if 

partially occupied ligands were associated with more rotamer changes between holo 

and apo pairs, but no significant difference existed (80% vs. 85%, median percentage of 

the same rotamer; Supplementary Figure 2.11).  

 

While the scattering contributions of B-factor and occupancy changes are subtle (but 

distinct), most models likely include true occupancy changes as elevated B-factors. We 

observed a wide range of average ligand B-factors and, as expected, a lack of 

correlation between the ligand B-factors and ligand occupancy 30–32. As a proxy for likely 

partially occupied ligands, we normalized the ligand B-factor by the mean C-alpha B-

factor to identify ligands with higher B-factors than expected (Supplementary Figure 

2.11). We examined the outer two quartiles of the normalized ligand B-Factors (>0.016 

vs. <0.005, median normalized B-factor). In these “likely partially occupied” ligands, we 

observed greater conformational heterogeneity (0.86 vs 0.80, mean order parameter; 

p=1.6x10-11; individual Mann Whitney U test, Figure 2.4). In structures with modeled 

partially occupied ligands and likely partially occupied ligands, we learned that binding 

site residues tend to have more apparent conformational heterogeneity, likely due a 

combination of compositional and conformational heterogeneity.  
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Conformational heterogeneity for multiple ligands to CDK2 

To better understand our findings in the context of multiple, diverse ligands binding to a 

single receptor, we examined Cyclin-dependent Kinase 2 (CDK2), a cyclin kinase family 

that regulates the G1 to S transition in the cell cycle. Our dataset contains 13 protein-

inhibitor complexes, including both type I and type II inhibitors, all of which share the 

same apo model (PDB ID: 1PW2). We hierarchically clustered the residues and ligands 

by difference in order parameters between the holo and apo models, identifying three 

distinct clusters of residues. The first cluster (blue, Figure 2.5), consisting of 13 

residues, are rigidified upon ligand binding. This cluster included residues scattered 

throughout both the N- and C-lobes of CDK2 that rigidified upon ligand binding. This 

dispersed pattern is similar to the trend of rigidification that is observed by NMR in PKA 

upon substrate binding, suggesting that changes in conformational dynamics in kinases 

systems are structurally dispersed as a function of ligand state 33. Two notable residues 

in this cluster, Glu127 and Val18, contact the inhibitors. Upon ligand binding, Val18 

transitions from multiple conformers to a single conformation. Glu127 has a similar 

conformation in the apo and type II structures of two distinct alternative side chain 

rotamers, whereas in the type I inhibitor structure, the alternative conformers cluster 

around the same rotamer (Supplementary Figure 2.12).  
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Figure 2.5| Conformational change and heterogeneity in CDK2. (A) The clustermap of 
all residues in the 13 CDK2 protein/ligand pairs. Red values indicate a negative 
difference (holo-apo) in order parameters, indicating that the holo structures have more 
heterogeneity compared to the apo. Blue values indicate positive differences, indicating 
that the apo structures have more heterogeneity compared to the holo. We highlighted 
three important clusters, the left red cluster, middle salmon cluster, and right blue 
cluster. (B) A representative structure (PDB: 3QTW) is shown with each residue colored 
by the difference in order parameter, corresponding to the same coloring scheme as the 
clustermap. The three distinct clusters (dark red, salmon, blue) are shown in spheres. 
(C) Many of the key differences between type I inhibitor (PDB: 3QTW) and type II 
inhibitor (PDB: 1PXI) are located in the DFG motif, p-loop, and activation loop. The type 
II inhibitor structure is colored in grey and the type I inhibitor is colored as the difference 
in order parameters between the type I inhibitor and type II inhibitor structures. Red 
signifies a more dynamic region in the type I inhibitor structure, blue signifies a less 
dynamic region in the type I inhibitor structure. Changes in the DFG motif, propagates 
changes, both structural and in dynamics,  in the p-loop (highlighted by Tyr15), which 
progates even larger changes in the activation loop between the two inhibitors, including 
changes in conformation of Thr161, the phosphorylation site of CDK2. (D)Threonine 
161, the phosphorylation site for CDK2. We looked at the supporting density for specific 
residues between the apo (PDB: 1PW2, purple), type II (PDB: 1PXI, teal), and type I 
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(PDB: 3QTW, salmon) inhibitors. 2Fo-Fc electron density is shown at 1 sigma. 
Occupancies of the alternative conformers are labeled with the corresponding color. 
The apo structure has multiple conformations, whereas the type I model only has one, 
and the type II model has two very similar conformations, but these are in different 
rotamer states compared to the apo.  
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Supplementary Figure 2.12| CDK2 density in key residues. We looked at the 
difference in order parameters (holo-apo) and the supporting density for specific 
residues between the apo (PDB: 1PW2, purple), type II (PDB: 1PXI, 3QQL, teal), and 
type I (PDB: 2A0C, 3QTW, 3R1Q, salmon) inhibitors. All density is shown at 1 sigma. 
(A) Valine 18, one of the ligand contacts for both the type I and type II inhibitors. Across 
all holo structures this residue becomes more rigid, including losing an alternative 
conformer and changing rotamers in the holo structure. This residue is also a part of the 
blue cluster in the heatmap. (B) Glutamine 127, one of the ligand contacts for both type 
I and type II inhibitors. This residue has two very different alternative conformers in the 
apo structure. In the type II inhibitor structure, there are again two very different 
alternative conformers whereas in the type I inhibitor structure, there are three very 
similar alternative conformers. This residue is also a part of the blue cluster in the 
heatmap. (C) Tyrosine 15 in the P-loop has varying differences in order parameters. In 
the type II inhibitor, this tyrosine gets more rigid, along with the rest of the p-loop, 
however in the type I inhibitor structures, this tyrosine along with the rest of the p-loop 
becomes more dynamic. (D) Ringer analysis to detect alternative conformations in 
electron density maps. Ringer detected two peaks for 1PW2, indicating two alternative 
conformers, whereas only one peak was detected for 1PXI, indicating only one 
conformation.  
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The second cluster (salmon, Figure 2.5), consists of 14 residues that increase flexibility 

upon ligand binding. The majority of these residues connect the p-loop and the 

activation loop (Figure 2.5).  The electron density is very weak for many of these 

residues in most of the holo structures, driving their modeling in multiple conformations 

and elevated B-factors (Supplementary Figure 2.12). We also observed that many of 

these residues had sidechain to sidechain hydrogen bonds that were lost upon ligand 

binding (Supplementary Figure 2.13). The third cluster (dark red, Figure 2.5) is 

comprised of five residues that became more flexible in all, but two holo datasets, which 

are the only type II inhibitors in the dataset. These were all located on the activation 

loop of the kinase (Figure 2.5). As type II inhibitors, the two molecules [PDB: 1PXI 

(ligand: CK1) and PDB: 3QQL (ligand: X03)] bind the DFG out conformation present in 

the apo dataset (PDB: 1PW2) and do not have as drastic of a rigidifying effect as the 

type I inhibitors. Notably, these two inhibitors were also smaller than the type I inhibitors 

and the reduced contacts may also drive some of this effect. We also observed that the 

hydrogen bonds gained in the holo structure are inhibitor specific (Supplementary 

Figure 2.13).  
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Supplementary Figure 2.13| Hydrogen bond differences in CDK2. We examined the 
difference in hydrogen bonds across CDK2 structures. (A) Hydrogen bonds broken in 
the majority of holo structures located in loop regions, especially present in the 
activation loop. (B) Hydrogen bonds formed upon ligand binding was unique to inhibitors 
as observed in 3qtw(B, purple) and 2a0c (C, green).  
 

The multiconformer models also provide a structural rationale for these changes. The 

differences in DFG conformation change the contacts with the P-loop, which allow for 

greater side chain flexibility in the “up” form compatible with type I inhibitors. The 

interface between the P-loop and the activation loop is weaker and residues such as 

Tyr155 adopt multiple conformations. At the base of the activation loop, Thr161, a 

critical phosphorylation site, changes conformation, with a rigidifying effect common to 

both type I and II inhibitors (Figure 2.5, Supplementary Figure 2.13). The conformation 

of Thr161 found in the type II inhibitors overlap, with one of the conformations populated 

in the multiconformer apo model. In contrast, the type I inhibitors adopt a distinct 

conformation. This case study highlights how modeling information present in the 

density can reveal changes beyond those in single conformer structures.  
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Discussion 

By creating a large dataset of stringent matched pairs of apo and holo multiconformer 

models, we identified a pattern of conformational heterogeneity consistent with smaller 

scale studies of individual proteins 6. We observed that individual proteins greatly varied 

in amount and direction of change of conformational heterogeneity, as observed in 

previous studies (Caro et al., 2017). In general, we found that binding site residues tend 

to become more rigid upon ligand binding. But similar to the entire protein, there was a 

large range of effects, including many sites becoming more flexible when bound to a 

ligand. The trends suggest that disorder-order transitions between binding site residues 

and distant residues are common and potentially a selected property of many proteins 

33. Specifically, our data suggests that some of the entropy lost by the rigidification 

incurred by binding site residues upon ligand binding can be compensated with an 

increase in disorder in distant residues. This finding generalizes the phenomenon has 

been observed in single protein analyses with NMR and MD simulation 23,34,35. Both 

theoretical and experimental analyses suggest that the relationship between local 

packing optimization and small voids that permit alternative conformations will be key to 

predictably mapping this relationship 6,24. Using temperature or pressure as 

perturbations during X-ray data collection can help to further map the connection 

between packing “quality” and side chain conformational heterogeneity in greater detail 

6. While NMR order parameter studies only take into account movement that is shorter 

than the tumbling time for the protein (Hoffmann et al., 2021; Gangé et al., 1998), our 

results are insensitive to timescale. In addition, it is quite likely that our use of cyro-

cooled structures causes an underestimate of the heterogeneity occurring in these 
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datasets 36, and may potentially bias our results by locking in certain populations of the 

protein ensemble. This effect may particularly impact areas of the protein and 

surrounding solvent that go from a preorganized, low energy state to a more dynamic 

state as observed in Galectin-3 and Barnase6,37. This study can also serve as a 

template to investigate other perturbations including mutations, pressure, or 

temperature.  

 

We observed a complex interplay between conformational change and dynamics in our 

analysis of 13 inhibitor-bound datasets of the kinase CDK2, in the same crystal form 

and space group. The ability to explore one protein with multiple ligands highlights the 

utility of crystal systems amenable to isomorphous soaking or co-crystallization 38. We 

identified differences in conformational heterogeneity between type I and type II 

inhibitors that can be classified along with well-known changes, such as differences in 

the DFG motif. Tuning distal site dynamics may be a viable strategy for modulating the 

affinity of kinase inhibitors and affect the pattern of protein-protein interactions on distal 

surfaces, which is of critical importance in CDK inhibitor development 39,40.  

 

We note that our work is not sensitive to many facets of the complex changes 

associated with ligand binding 1. Our stringent resolution matching criterion may also 

render us blind to the most severe effects on conformational heterogeneity, whereby 

ligand binding causes a more widespread change leading to a loss or gain of diffraction 

power. In addition, water molecules play an important role in ligand binding, both in the 

release of ordered water molecules contributing to binding through entropy and in 
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forming specific interactions 41,42. Additionally, ligand conformational heterogeneity has 

been highlighted by several recent studies 30,43,44. Another caveat in our analysis is the 

limitations of qFit modeling for modeling extensive backbone heterogeneity into weak 

electron density. Ensemble modeling methods, which leverage molecular dynamics for 

sampling and use a different model representation may be more appropriate for 

examining these systems 45,46. Future work, integrating the conformational 

heterogeneity of the protein, ligand, and water molecules will create better predictions 

and explanations of the energetics of binding. In addition, this would allow us to interpret 

the impact of specific interactions and alterations on both the entropy and enthalpy of all 

components of the system.  

  

Our study, as well as previous NMR studies 7,9, only leverage a limited set of side chain 

dihedral angles. However, comparisons with molecular dynamics simulations suggest 

that small sets of side chain dihedrals alone may be representative of the overall 

changes in dynamics of the system 44748. What is the thermodynamic impact of 

restricting side chain conformational heterogeneity? Protein folding studies and theory 

indicate that restricting the rotamer of even a single side chain can incur an entropic 

penalty of binding of ~0.5kcal/mol 49. While we observe many such restrictions in 

binding sites due to specific interactions with ligands, our data point to corresponding 

changes away from the binding site that help balance this cost. Overall, the median 

increase in rigidity we observe in binding site residues (0.03 order parameter increase) 

would create an energetic penalty of approximately ~0.1-0.5kcal/mol, based off of the 

entropy meter calculated in Caro et al 2017 6,7, with outliers having even larger 
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thermodynamic consequences. Given the constraints of maintaining a folded 

conformational ensemble upon ligand binding, it is likely that ligand binding generally 

acts to restrict degrees of freedom locally and that protein topological constraints favor 

increased motion in distal regions 24. This overall effect likely manifests because 

optimizing affinity is desirable for medicinal chemistry and for the selective pressures 

experienced by many proteins. Such optimization is insensitive as to whether the free 

energy is driven enthalpically or entropically. However, given the attention paid to 

designing and optimizing enthalpic interactions, there is likely unleveraged potential in 

optimizing the entropic component as well. As more sophisticated models of 

conformational heterogeneity are created and validated 50 the strategy of rationally 

tuning conformational heterogeneity to improve binding affinity may be an attainable 

design strategy. 

Methods 

Dataset  

Our dataset was compiled using a snapshot of the PDB51 in September 2019, 

containing 156,187 structures. We then selected structures that had a resolution better 

or equal to 2Å (n= 64,557). We also excluded any structure that contained nucleic acids 

(n=2,280) or covalently bound ligands (n=1,030). We identified holo 

structures(n=30,530), defined as those that contained at least one ligand, defined as 

any HETATM residue with 10 or more heavy atoms, excluding common crystallographic 

additives. 
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To create apo/holo pairs, we took each holo structure and compared it to each potential 

apo structure (n=30,717), defined as structures without a ligand bound.  A pair was 

defined according to the following criteria: 

  -same space group 

  -exact sequence or exact sequence after removing the first or last five base pairs of 

either structure 

  -a resolution difference between the two structures less than 0.1Å 

  -dimensions of unit cells do not differ by more than 1Å  

  -angles of the unit cells do not differ by more than 1 degree  

 

This gave us 15,214 pairs. We then subsetted this list down to provide only one apo 

structure per holo structure, based on the smallest resolution difference. This produced 

a final pair set of 1,205 with 1,143 unique structures.  

 

We also created a pairset with 458 unique apo/apo pairs using the same criteria as the 

apo/holo pairset.  

Refinement  

We re-refined all structures using phenix.refine (https://www.phenix-

online.org/documentation/ reference/refinement.html). This was done using phenix 

version 1.17.1-3660. We performed anisotropic refinement on all pairs where both 

PDBs had a resolution better than 1.5Å. All other refinement was run isotropically. 

Refinement used the following parameters: 

• Refine strategy: individual sites + individual adp + occupancies 
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• Number of macro cycles: 8 

• NQH flips: True 

• Optimize xyz weight: True 

• Optimize adp weight: True 

• Hydrogen refine: Riding 

 

We removed 102 structures because of incompatibility with our re-refinement pipeline 

due to breaks in the protein chain or ligand incompatibility. We removed 88 structures 

where the R-free increased by >2.5% compared to the value reported in the PDB 

header (Supplementary Figure 2.2).  

Running qFit  

qFit-3.015 (version 3.2.0) was run using a composite omit map and the re-refined 

structure on the default parameters(https://github.com/ExcitedStates/qfit-3.0/). We ran 

qFit on Amazon Web Services (AWS). We used an auto scaling cluster of images 

controlled by the scheduler via ParallelCluser. Please see the qFit github for a script 

that will install qFit on AWS’s default OS image, using conda to install its 

dependencies.  

 

After qFit, we re-ran refinement as suggested by qFit-3.0. Briefly, this involves three 

rounds of refinement. The first refines coordinates only, the second goes through a 

cyclical round of refinement until the majority of low occupancy conformers are 

removed, and the third refinement polishes the structure, including hydrogens. The 

script used for post qFit refinement can be found here: 
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https://github.com/ExcitedStates/qfit-

3.0/blob/master/scripts/post/qfit_final_refine_xray.sh. We removed 100 structures 

because of incompatibility with refinement after qFit rebuilding. 

Quality Control 

From our original dataset (n=1,205 pairs), we removed 28 apo structures that had a 

crystallographic additive or amino acid in the binding site that partially overlaid with the 

holo structure. We set a minimum ligand occupancy threshold of 0.15, which did not 

remove any pairs from our dataset. Chains were renamed according to the difference in 

distance between the two chains. We also re-numbered each chain based on the apo 

structure. We then superimposed the two structures using the pymol align function. We 

measured the alpha carbon root mean squared difference (RMSD) between the two 

structures as well as the difference in just binding site residues. Structures were 

removed if the mean RMSD of the entire structure was greater than 1Å or if the mean 

RMSD in the binding site residues were greater than 0.5Å. We removed two pairs based 

on these RMSD criteria.  

 

We also assessed the difference in R-free values for each refinement step (before/after 

qFit). If the post refinement R-free value was 2.5% larger than the pre refinement R-

value, then the structure was removed (n=85, 77 structures removed; Supplement 

Figure 2.2) . Additionally, we compared the final R-free values between apo and holo 

pairs, removing pairs with R-free values with more than a 5% difference (n=16 pairs 

removed; Supplement Figure 2.2). We ran the clashscore function out of Molprobity52 

to identify severe clashes in our dataset. We removed any structures with a clashscore 
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greater than 15, removing 52 structures. After filtering out pairs that failed our quality 

checks, our dataset contained 743 matched apo/holo pairs.  

Alternative Conformations 

Side chains were considered alternative conformers if there was at least one atom that 

was modeled with an alternative conformer. Our re-refinement procedure changes the 

occupancy, coordinates, and B-factors of these conformations, but it does not add or 

delete conformations.  

 

B-factors 

B-factors were assessed on a residue basis by averaging the B-factors of all heavy 

atoms for each residue. For residues with multiple conformations, we took the mean B-

factor for all heavy atoms in each side chain, weighted by occupancy. For structures 

modeled anisotropically, we used the isotropic equivalent B-factor from phenix.  

Root Mean Squared Fluctuation (RMSF)  

RMSF was chosen over root mean squared deviation as many alternative conformers 

were predicted to have the same occupancy, thus making it difficult to define which was 

the main conformer. RMSF was measured for each residue based on all side chain 

heavy atoms. RMSF finds the geometric center of each atom in all alternative 

conformers. It then takes the distance between the geometric mean of each conformer's 

side chain heavy atoms and the overall geometric center. It then takes the squared 

mean of all of those distances, weighted by occupancy.  
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Order Parameters  

Order parameters were measured for each residue (except proline and glycine) by 

taking into account both the angle of alternative conformers (s2angle), by measuring the 

chi1 angle, and the B-factors of alpha or beta carbons along with an attached 

hydrogen(s2ortho)16. To account for differences in B-factors as resolution changes, we 

investigated the correlation between order parameters in 32 apo lysozyme structures 

ranging in resolution from 1.1 to 2Å. We optimized the s2ortho parameter by looking for 

the normalization that would provide a slope closest to one and have the smallest root 

mean squared error (Supplement Figure 2.1). We normalized the s2ortho portion using 

the following equation: 

 s2orthonormalized=s2ortho*Bfactoralpha carbon/10(resolution) 

The final order parameter reported in the paper is: 

 s2calc = s2orthonormalized*s2ang 

Rotamer Analysis 

Rotamers were determined using phenix.rotalyze52 with manually relaxing the outlier 

criteria to 0.1%. Each alternative conformation has its own rotamer state. Rotamers 

were compared on a residue by residue basis between the holo and apo, taking into 

account each rotamer state for each alternative conformation. Residues were classified 

as “no change” if rotamers matched across the apo and holo residue, “distinct” if the 

matched residue shared no rotamer assignments. Residues were classified as 

“remodeled- holo loss” if distinct, additional rotameric conformations were populated in 

the apo residue only, and “remodeled - holo gain” if distinct, additional rotameric 

conformations were populated in the holo residue only.  
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Hydrogen Bond Analysis 

To assess for the changes in hydrogen bonding across all pairs in our study, we applied 

HBplus25 to every multiconfomer structure. HBplus identifies hydrogen bonds when the 

distance between the hydrogen and acceptor are less than 3.2 Å, with a maximum 

angle of 90 degrees. Since HBplus, nor any other software program we could identify, 

looks at hydrogen bonds in reference to alternative conformers, we split up each 

multiconformer PDB by alternative conformation. For example, the altA PDB contained 

all atoms that had an alternative conformer A as well as all atoms with no alternative 

conformation.  

 

We then examined all of the hydrogen bonds for each PDB in binding site residues. We 

only considered hydrogen bonds between side chains or between side chains and the 

main chain. Hydrogen bonds were weighted based on the lowest occupancy of the 

acceptor or donor atom. We then controlled for the number of residues in the binding 

site.  

Solvent Exposed Surface Area  

We calculated the relative accessible surface area (RASA) using Define Secondary 

Structure of Proteins (DSSP)53 with the Tien et al 54 definition of Max accessible surface 

area (MaxASA). Residues with a RASA of ≥20% were considered solvent exposed55.  
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Ligand Analysis 

We obtained the ligand properties using RDkit (version 2021.03.2) by importing SDF 

files of each ligand in our dataset. To account from the multiple hypothesis testing, we 

applied a Bonferroni correction, with an alpha of 0.05, as we were testing 10 

hypotheses leaving us with a corrected significance value of 0.005. 

 

Occupancy of the ligands were taken directly from the PDB file and correspond with the 

ligand occupancy from the deposited structure. Ligand B-factors were normalized using 

the mean alpha carbon B-factor of all residues in the structure.  

 

If there were multiple ligands of interest in a structure, we looked at the properties of the 

ligand and surrounding protein residues in chain A or in the lowest alphabetical chain.  

 

Protein Type Analysis 

Protein names and enzyme names were extracted from Uniprot56. Names and 

properties were connected using PDB IDs.  

 

Ringer Analysis  

Protein Residues of interest were put through names and enzyme names were 

extracted from Uniprot56. Names and properties were connected using PDB IDs.  
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Statistics 

Paired Wilcoxen test was used for all matched properties (comparing holo v. apo 

matched residues or structures). Individual Mann-Whitney U test was used for all non-

match properties, including ligand properties. Two-sided t-test was used to compare the 

significance of the slopes.  

 

Code 

Code can be found in the following repositories: 

 -Dataset selection: 

https://github.com/stephaniewankowicz/PDB_selection_pipeline 

 -Refinement/qFit pipeline: 

https://github.com/stephaniewankowicz/refinement_qFit 

 -Analysis/Figures: https://github.com/fraser-lab/Apo_Holo_Analysis 

-qFit: https://github.com/ExcitedStates/qfit-3.0.  
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Preface  

The bulk of this chapter will appear as Wankowicz & Fraser in 2023.  

Abstract 

Protein folding converts a disordered polymer to a globular structure, reducing many 

conformational degrees of freedom and incurring a significant conformational entropy 

penalty. However, residual entropy is retained through the motion of the protein 

between different related conformations that define its native state, often referred to as 

the conformational ensemble. Subtle changes in protein motion, mostly from sidechains, 

can alter this residual conformational entropy, leading to differences in binding affinity 

and allosteric communication. While NMR has provided measurements of 

conformational entropy, these measurements do not provide information on where this 

entropy is coming from, such as if this is coming from a sidechain moving harmonically 

or anharmonically. Extracting this information from molecular simulations is currently 

impossible as the timescale of protein motion is beyond the timescale of molecular 

simulations. However, we can take advantage of the fact that X-ray crystallography and 

CryoEM experimental data capture the conformational ensemble allowing us to 

measure the motion of residues and their atomistic structure. This provides an 

unparalleled platform to answer how, where, and why conformational entropy. A 

mechanistic understanding of conformational entropy will help fill in the gaps on an 

often-forgotten dimension of biological control and function, leading to improved 

explanations of allostery and binding events.  
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The Problem of Entropy and Binding 

During protein folding, proteins go from a disordered state, where the polymer access 

an almost infinite number of states, to its native state, where the access to the majority 

of states is restricted by steric clashes, especially in backbone atoms1. As a result, the 

protein loses a significant amount of entropy, as defined by the Boltzmann entropy 

equation [S=kB ln(W)]2. However, sidechains can still have a large number of semi-

independent conformations, accounting for a significant amount of remaining 

conformational entropy within the native state. The transition from an unfolded to folded 

protein involves a reduction of states, which is observed by narrowing a free energy 

landscape (Figure 3.1). Even though the free energy landscape narrows upon folding, 

there is still considerable width, representing the conformational ensemble of a folded 

protein.  
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Figure 3.1| Conformation and energy landscape of serine residue. A. Serine residue in 
an unfolded protein can be in any orientation. It’s location on an energy landscape is 
towards the top and can traverse the entire landscape. B. Upon folding, the serine 
residue can only be in two conformations, significantly reducing its conformational 
entropy.  

To illustrate the concept of sidechain conformational entropy, consider a single serine 

sidechain in a polypeptide. In the unfolded state, the serine sidechain can equally 

access all three rotamer conformations, and the backbone is only restricted linearly 

(Figure 3.1). Upon folding, the serine backbone is reduced to only one conformation, 

with some harmonic motion, due to steric clashes. However, the serine sidechain may 
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still have access to multiple conformations, as this small, slightly polar amino acid can 

happily interact with many neighboring residues. It is likely due to steric clashes with 

surrounding amino acids that the sidechain will lose access to one or more 

conformations, leading to a reduction, but not the elimination, of conformational entropy 

in the folded state. In a free energy landscape, the loss of a potential serine 

conformation is observed as the loss of that energy well, making it much less likely for 

that conformation to exist. However, the sidechain contains conformational entropy 

through being able to anharmonically move between conformations, represented as the 

movement between energy wells in the free energy landscape. The sidechains can also 

move harmonically about each confirmation, represented by the width of free energy 

wells. Further, if the two remaining conformations are not equally likely, this will increase 

the conformational entropy due to the uncertainty of position. Entropy, as defined by the 

Boltzmann equation, increases with more microstates. If two conformations have equal 

probability, you only need to have two microstates to described their distribtuion. 

However, if the two conformations are unequal in their likelihood, you would need more 

than two microstates to describe their distribution, increasing the entropy in the system.  

Perturbation to proteins, including macromolecular binding and mutations, alters the 

protein’s free energy landscape by manipulating energy well depth and width within the 

folded protein state. From our serine example, ligand binding may lead to the 

elimination of one of the two remaining sidechain conformations (Figure 1). This would 

represent a perturbation that significantly decreases a well’s depth, making it difficult for 

the serine to access one of its conformations. This is structurally observed as a 

conformational change4, but is also related to a reduction in conformational entropy. 



109 
 

Alternatively, ligand binding may cause subangstrom movement of ligand-interacting 

sidechains towards the ligand, resulting in a void3 around our serine sidechain, 

increasing the harmonic motion of the sidechains and increasing conformational entropy 

(Figure 1). This creation of voids or pockets of areas where sidechains can increase 

their harmonic or anharmonic motion provides an energy reservoir with the native fold. 

On a free energy landscape, this would result in an alteration of the width of the free 

energy basin5. With the widening of a free energy basin, the overall structure may look 

similar, but the average subangstrom movement of sidechains increases, leading to an 

increase in conformational entropy. This energy reservoir may counteract entropy 

reduction elsewhere or provide energy for other protein functions, including 

macromolecular binding, signaling, macromolecular machines, and catalysis.  

As stated above, a perturbation can have unique effects on different areas of the 

protein. This is based on the uneven redistribution of sidechain motions upon 

perturbation. This redistribution can result in different energetic binding properties but 

can also result in allosteric communication. Going back to our serine example, ligand 

binding likely alters the motion of each serine conformation differently. It may be 

possible that only one serine sidechain conformation increases in motion, leading to a 

directional propagation of motion of neighboring sidechain6, which will further be 

impacted by residue type7. It is critical to evaluate how, why, and where changes in 

conformational entropy arise within a protein, as this can determine its functional 

effects8.  

The interplay between conformational entropy, structure, and function is complex. Over 

40 years ago, Cooper & Dryden theoretically postulated that protein thermal fluctuations 
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could provide energy for macromolecular binding and other functions5. We have only 

recently been able to experimentally measure this, highlighting the ensemble nature of 

allostery and the ability of proteins to contain a plurality of allosteric mechanisms9. 

However, to complete Cooper & Dryden’s theory, we must understand how the many 

potential atomistic motions of proteins lead to differences in conformational entropy and 

protein function.  

Ways of Measuring Ensembles 

Nuclear magnetic resonance (NMR) relaxation techniques have measured 

conformational entropy and correlated it with protein functions1011. Conformational 

entropy is measured using order parameters, which provide a site-specific 

measurement of the degree of motion of the NH or methyl groups on the picosecond-

nanosecond timescale12,13. NMR order parameters have been quantitatively linked with 

conformational entropy, demonstrating changes in methyl order parameters correlating 

with changes in experimentally measured protein conformational entropy. These studies 

showed that the motion of sidechain atoms, but not backbone atoms, holds significant 

entropy. However, these entropy estimations degenerate in relation to the structural 

model and ignore motions that occur on slower timescales. Order parameters lack 

information about the directions and extent of these motions, dampening our 

understanding of the mechanism of conformational entropy. Molecular dynamics (MD) 

can provide insight into protein motions, but their timescale is computationally limited. 

Further, small shifts in populations or the motion of single atoms can be overshadowed 

by the large dimensionality of most systems. Connecting residue motion to the 

quantitative effects of conformational entropy is critical.  
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Ensemble-based structural techniques, X-ray crystallography and CryoEM, capture 

protein conformations from millions to trillions of molecules. Models are usually created 

by placing atoms in their mean atomic positions and assigning a B-factor to capture 

motion. However, the underlying data contains information on conformations in all the 

captured molecules. Due to the low signal-to-noise ratio, decoding all these 

conformations is challenging. Nevertheless, new computational techniques can model 

more conformations, leading to an atomistic understanding of protein conformation 

entropy. The modeling of the protein conformational ensemble from X-ray or CryoEM 

allows for the connection of the atomic properties of residues, including positions and 

movements, to free energy landscapes to elucidate the macroscopic behavior of 

proteins. 

Recently, we demonstrated how to use multiconformer modeling to extract quantitive 

information on conformational entropy from thousands of cryogenic X-ray structures. 

This allows us to extract information on the directions and types of motions that 

increase or decrease conformational entropy. By examining over 700 paired bound and 

unbound structures, we demonstrated that distant residues tend to become more 

flexible when binding site residues become more rigid upon ligand binding, distant 

residues tend to become more flexible14. This indicated that entropic compensation 

might be a widespread phenomenon.   

Increasingly model building algorithms for X-ray crystallography and Cryo-EM take 

advantage of the ensemble nature of the data. The output of these models can help 

provide an atomistic explanation of the mechanisms of conformational entropy, which is 

essential to understand the fundamentals of allostery. This explanation is key to 
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understanding how protein function changes upon perturbation or in different 

environments. Here, we present how these new algorithms may be applied to 

answering some of the open questions of the mechanisms of conformational entropy.  

 

Examples of how entropy influences binding 

Protein conformational entropy correlates with binding entropy15,16. However, what 

determines how and where conformational changes are upon binding is still unknown, 

limiting our mechanistic explanation. Both protein and ligand properties have 

demonstrated different effects on conformational entropy, highlighting the complexity of 

untangling the impact of conformational entropy. Further, how conformational entropy 

interplays with binding enthalpy still needs to be discovered. Examining these problems 

with models that can connect residue locations and motion to conformational entropy 

has the potential to answer many of these outstanding questions.  

Ligand and protein alterations can impact conformational entropy changes upon 

binding. In PDZ domains, found in proteins with diverse functions, the truncation of an 

alpha helix 3 (α3), 6 angstroms away from the binding site, reduces peptide binding 

affinity by 21 fold17,18. α3 truncation does not change the structure of PDZ but increases 

sidechain flexibility, indicating that binding affinity difference is due to conformational 

entropy changes. PDZ domain conformational entropy and binding affinity may also 

depend on other domains17, indicating that proteins can tune the conformational entropy 

of distant domains, manipulating their binding affinity. In Calmodulin, peptides can 

increase or decrease calmodulin’s conformational entropy16, indicating that substrate 

properties also impact conformational entropy.  
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From these experiments, is unclear how the truncation of α3 or the binding of peptides 

causes an increase in conformational entropy. While we know that neither of these 

events leads to a complete unfolding of the protein, how sidechains increase their 

conformational entropy is unknown. The truncation of α3 may lead to increased volume 

around many residues within their existing conformations due to the lack of α3 packing 

the rest of the protein. It is also possible that the lack of α3 leads to the new 

conformation of many sidechains, potentially disrupting hydrogen bonds and salt 

bridges, leading to a lack of stability within the binding site.  

 

These hypotheses could be probed using qFit, an automated and parsimonious 

multiconformer modeling software19,20. Multiconformer modeling places all or part of a 

residue into multiple positions with corresponding occupancies, as supported by the 

electron density data. We can then use these models to calculate quantitive backbone 

and sidechain conformational heterogeneity for every residue, similar to NMR order 

parameters21. Multiconformer models simultaneously provide information on the 

residues' position and their conformational entropy. Further, we can use these models 

to create contact networks between residues to hypothesize how proteins can transfer 

their conformational entropy to perform their functions22.  

Conformational entropy may also drive allosteric communication during macromolecular 

binding. In kinases, allosteric binding cooperativity occurs between the nucleotide and 

substrate binding site, with PKA demonstrating positive cooperation23 and SRC 

demonstrating negative cooperation24. In PKA and SRC, conformational entropy is 
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thought to drive this cooperation. In both cases, inhibitors with similar binding affinities 

and similar overall structures have drastically different changes in NMR order 

parameters, correlating with differences in substrate binding affinities. The inhibitor and 

substrate binding sites are connected through the kinase’s hydrophobic center, where 

structural features, including R and C-spine, are located25. If conformational entropy 

drives the cooperativity effects and goes through the hydrophobic center, how do 

changes in conformational entropy interact with these structural features? We could 

investigate these questions using multiconformer modeling, allowing us to observe how 

specific interactions with ligands or kinase structural features interplay with 

conformational entropy changes. Given that there are 100s of kinase structures, we 

could apply Xtrapol8 to extract positions and occupancies of rare conformational by 

comparing an excited and base dataset26. Xtrapol8 creates weighted difference maps to 

visualize rare conformations unbiasedly. It then creates optimally weighted extrapolated 

structure factors and allows for real or reciprocal space refinement of the excited state. 

Finally, it provides estimates of the occupancies of the excited states. This method 

produces results similar to the map-deconvolution algorithm, PANDDA, which identifies 

and models low occupancy ligands and ligand fragments26,27. This modeling may 

identify the residues' motion in the kinase's core and how these motions interact with 

the R or C spine. It could also investigate differences in contact networks, which may 

provide clues as to where and why conformational entropy is changing22. 

 

Additionally, given the large number of kinase structures avaliable, we could also create 

protein pseduoensembles of PKA or SRC28. Pseudoensembles have uncovered 



115 
 

conformational clusters, highlighting how ligands perturb the conformational landscape 

and tend to bind or select different major protein conformations29–32. Further analysis of 

the motion within each state can still be probed further using multiconformer modeling. 

We can combine pseudoensembles and multiconformer modeling, using qFit, to assess 

for cooperative structural effects between the major conformational changes and the 

conformational entropy of the protein. These methods would improve our estimates of 

residue populations, leading to improved mechanistic hypotheses. Combining these 

modeling methods may uncover the interplay between major and minor changes in 

protein conformations33.   

 

Human thymidylate synthase also displays positive cooperativity in the dual binding of 

dUMP, its native nucleotide substrate34. Positive cooperativity is driven by a reduction in 

sidechain conformational entropy during the first dUMP binding event, allowing the 

second dUMP to bind with no entropic cost. This represents about 10kcal/mol energetic 

driver for the second binding effect. This energetic driver is incredibly specific as the 

binding of thymidylate synthase’s product, which only differs from dUMP by one methyl 

group, does not induce this change in entropy35. This specificity was also observed in 

peptides binding to calmodulin16. However, what is driving the difference in 

conformational entropy upon extremely similar substrates is unclear. Different specific 

interactions likely lead to differences in volume elsewhere in the protein. However, NMR 

cannot capture how specific interactions lead to these volume differences. It could be 

possible that a residue with multiple conformations in the unbound state can now only 

be in one conformation due to clashing with the ligand and can then trap cascading 
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residues in a more confined space, reducing conformational entropy. Nevertheless, that 

clash may not exist with a different substrate, allowing many residues to keep the same 

conformational entropy. By applying multiconformer modeling to these structures, we 

may uncover how the different interactions of two highly similar ligands produce drastic 

differences in conformational entropy.  

 

Entropy-driven cooperativity is also frequently observed in DNA-binding proteins. 

Protein-DNA complexes are often dynamic, potentially due to their large search space36 

or to compensate for the cost of burying polar interfaces. There is evidence from 

multiple proteins that metal ion binding at a distant site changes DNA binding affinity by 

reducing its conformational entropy 37–40. This is likely due to more specific interactions 

between multiple residues and the metal ion, but we need ensemble-based models to 

confirm this hypothesis.  

 

Conformational entropy may also impact larger conformational changes. Upon 

phosphorylation in CheY, a chemotaxis response regulator, in binding site residues 

decreased flexibility, but flexibility, specifically, fast motion, increased along its allosteric 

pathways41. The increase in fast motion flexibility correlated with a decrease in larger 

conformational changes. However, how this flexibility gets propagated and why small 

fast motion disrupts the ability for larger conformational changes still needs to be 

discovered. The large conformational change may need more correlated motion, which 

may be too energetically unfavorable when residues are moving quickly between two or 

more conformations. It is also possible that one or two residues sterically block the 
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ability for the large conformation to occur.  

 

As X-ray crystallography can detect motions across timescales, we can capture both 

types of motions observed in CheY.  To tease out the interplay of these motions, the 

extensible-component hierarchical TLS (ECHT) B-factor model models atomic disorder 

on multiple levels to more accurately capture the different length scales of motion42,43. 

This modeling can be applied to time-averaged ensemble refinement, which uses MD, 

restrained by a time-averaged agreement with the X-ray structure factors, to generate 

multiple models44. ECHT-based refinement may show how changes in conformational 

entropy are necessary for the conformational switch in CheY.    

 

Examples of how entropy influences catalysis 

Enzyme catalysis requires precise positions of catalytic residues while maintaining 

enough flexibility to allow the reaction to proceed. Subangstrom changes in the position 

or motions of residues can completely erase the catalytic efficacy of an enzyme. Human 

histidine triad nucleotide-binding (hHINT) proteins catalyze nucleotide phosphoramidase 

and acyl-phosphatase reactions. In hHINT1, when a surface glutamine 13 angstroms 

from the active site is mutated to alanine, it significantly impacts rate constants. 

However, the structure had no changes in positions in water structures or residues 

between this residue and the active site. However, protein residues increased their 

motion between the surface alanine and active site. In another ‘hint ’at the specificity of 

conformational entropy, the arginine residue in the same location in hHINT2, which is 

highly homologous to hHINT1, is mutated to alanine, there is no change in rate 
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constants45. In ketosteroid isomerase, room temperature X-ray structures and functional 

studies emphasized the importance of the probability of different positions of residues29, 

which can only be identified through multiconformer models. These models may be able 

to capture the elusive transition-state structures. While there has been significant 

progress in capturing these rare states using time-resolved cryo-EM and X-ray 

crystallography46–49, it may be possible to extract this information from multiconformer 

models, especially with room temperature or multitemperature models50.  

 

Examples of how entropy influences Molecular Machines 

Many large protein complexes drive essential protein functions by acting as 

biomolecular machines. These complexes must harness chemical and thermodynamic 

energy to drive DNA replication, RNA transcription, and protein synthesis. While some 

molecular machines use ATP or GTP to complete their functions, others do not, 

indicating they harness their limited motions to complete these arduous functions. Either 

way, entropic reservoirs likely help some complexes complete their functions. For 

example, ribosomes undergo large conformational changes during translation, driven by 

GTP hydrolysis. When GTP hydrolysis occurs, it causes spontaneous thermal 

fluctuations of the ribosome, likely increasing conformational entropy51. Single-molecule 

experiments demonstrated that this motion is more coordinated both through pre-

existing structural elements in the ribosomes but also by tRNA52.  This helps with tRNA 

binding, allowing the entropic motion of the ribosome to overcome the enthalpic penalty 

of binding tRNA, enabling faster transitions between ribosome states53. This 

phenomenon is likely not unique to the ribosome but has been impossible to probe 
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using NMR. With high-resolution and time-resolved cryo-EM, we can observe how 

binding events change the conformational entropy of large molecular machines and how 

these machines likely evolved to take advantage of their entropy reservoir.  

 

Examples of how mutations influence entropy 

Mutations also impact conformational entropy. This may help explain why mutations 

distant from binding sites impact the affinity of ligands or proteins. Single residue 

mutations can also change protein conformational entropy with varying impacts. In 

adenylate kinase8, alanine to glycine mutation in a solvent-exposed residue far from the 

binding site changed the relative substrate binding affinity by ~0.5kcal/mol. A similar 

mutation in a different domain changed the turnover rate, not the binding affinity 

highlighting how location is critical to the impact conformational entropy can have. In 

DNA-binding proteins, mutations outside the DNA-binding interface can change the 

conformational and binding entropy40. Further, in a designed protein based on 

streptococcal protein G domain β1, the leucine to valine mutation prevents the local 

unfolding of a helix54. However, the same mutation in another residue does not result in 

a change in flexibility. Why two similar mutations impact protein dynamics drastically 

differently is still unclear. All of these mutations are hypothesized to cause local 

unfolding. Nevertheless, it is unclear what local unfolding looks like. For example, local 

unfolding could cause an increase in the motions of all residues while retaining the 

same rotamer status, or it could create a void where one or two residues now flip 

between two or more rotamer well. Uncovering which of these potential situations are 

true will help identify how local unfolding leads to drastically different effects. Modeling 
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the mutation as multiconformers may uncover how the positions of these residues lead 

to differences in motion. It is also possible to model protein motions by describing bonds 

rather than atomic positions55. This allows a non-linear representation of the protein 

conformational space, highlighting correlated, subtle conformational entropy changes 

throughout the structure56. We could also measure the packing entropy, which 

determines how much space the protein can move locally, using the algorithm 

PACKMAN57. This may uncover how residue neighborhoods lead to packing and 

conformational entropy differences. 

 

Mutations can also impact protein-protein binding. The Spike protein of SARS-CoV2 is 

constantly acquiring mutations to increase its binding affinity to ACE2.  While most 

mutations have increased the enthalpy, a recent mutation on the receptor binding 

domain, N501Y, had more favorable binding with increasing temperature58. MD 

simulations showed that N501Y increases the motion of sidechain residues in both the 

RBD and ACE259, without impacting the binding surfaces between the two proteins. It 

was predicted that an increase in conformational entropy drives the favorable binding of 

these mutations. The impact of conformational entropy becomes even more complex 

when exploring potential other perturbations of proteins, including post-translational 

modifications. On top of mutations impacting conformational entropy in the RBD, 

glycans on ACE2 impact the binding affinity of the SARS-CoV2 Spike protein due to 

reducing the entropy of the glycans60. However, as glycan flexibility depends on their 

environment61, different glycans may have different entropic impacts, making this a 

tricky thing to predict.  
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Membrane proteins 

Membrane proteins are the cell’s sensors to the outside world. These large proteins 

bind small ligands outside cells and facilitate different functions inside the cell, 

sometimes transmitting that signal over 60 angstroms. Conformational entropy changes 

ligand binding likely determines this allosteric communiciation62. In neurotensin receptor 

1, a prototypical peptide-binding GPCR, orthosteric agonists and antagonists rigidify 

NST1 to different degrees, potentially leading to their pharmacological difference. This 

highlights a potential role for conformational entropy in GPCR ligand discrimination.  As 

other examples have shown, designing a ligand for a rigid protein state may result in 

decreased free energy compared to designing a ligand for a more flexible state of the 

protein.  

 

Solvent and Ligand Entropy 

Solvent entropy is also intertwined with protein conformational entropy. While solvent 

entropy is often estimated by measuring solvent-accessible surface area differences, 

this is a crude estimation. Additionally, there is evidence that solvent networks can 

allosterically communicate with distant parts of the protein.  

 

Ligand and solvent interactions change the distribution of conformational entropy63,64. 

Many ligands can bind in multiple orientations, with different poses impacting the protein 

differently65. Multiple ligand poses and their relative occupancies can sometimes be 

difficult to detect. However, programs such as qFit Ligand can identify conformationally 
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averaged ligand poses in X-ray and CryoEM structures66. If a ligand can bind in multiple 

poses, the ligand’s entropy is not reduced to zero from the theoretical high entropy state 

within solvent, potentially increasing the entropy of binding. Additionally, the different 

poses of the ligand may have unique impacts on the protein conformational entropy. 

 

Solvent molecules also contribute significantly to the system's entropy 64. It has been 

suggested that solvent motion can also act as an allosteric pathway, allowing for the 

transmission of signals throughout a protein63. Moreover, while there is likely a 

significant interplay between the solvent's entropy and the protein's conformational 

entropy, protein conformational entropy is not tied to solvent motion67.  

 

Intrinsically Disordered Regions 

Intrinsically disordered regions (IDRs) contain a large amount of conformational entropy, 

as they do not have a defined native or folded state. However, many IDRs can become 

ordered in certain scenarios. Further, different IDRs have differing amounts of 

conformational entropy depending on the transient and weak intramolecular interactions 

they have. This conformational entropy can be significantly reduced through interactions 

with the rest of the protein, including tethering, or becoming ordered upon interaction 

with another macromolecule.  

 

Future Directions 

While our ability to model conformational heterogeneity is improving, there are still 

significant gaps in translating these methods into biological insights. First, while we 
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presented multiple ways to model conformational entropy from X-ray or cryo-EM data, it 

is unclear how these motions translate into energetics. To provide a complete picture of 

the mechanisms of conformational entropy, we must be able to relate the observables in 

structural studies with the experimentally measured entropy. Additionally, most 

measurements only capture the first chi angle, which only partially accounts for 

conformational entropy.  

 

The modeling discussed here was focused on cryogenically cooled X-ray 

crystallography. However, cooling can restrict protein motion68,69. Room-temperature X-

ray crystallography detects higher-energy protein conformations70,71, with X-ray free-

electron lasers reducing room temperature related radiation damage72. Further, time-

resolved and temperature jump experiments detect conformational states that change 

over time49,73. The growing ease of detecting the position of hydrogens using neutron 

crystallography will lead to better estimates of binding affinity or turnover rates due to 

our ability to detect critical hydrogens74,75. Developing computational tools to enable 

new biological discoveries is increasingly vital. 

 

Computational methods are also constantly improving. We see the most necessary 

gains in developing methods to estimate the independence or correlation of motions on 

different timescales and between residues. In cryo-EM, flexible refinement can identify 

different conformations of proteins, but these different conformations are often large 

changes76. We encourage the creation of mixed ensemble-based and multiconformer 

models, which may identify the connection between conformational entropy and large 
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conformational changes. Methods for sampling conformations or positions of residues 

can also be improved. Creating probabilistic diffusion models could also be used to 

identify different residue or loop conformations77–79.  

 

Finally, we need validation metrics and comparisons between different experimental 

methods. How do order parameters compare between X-ray or cryoEM and NMR? Are 

differences due to restrictions in the crystals or the time restraints in NMR? It may also 

be possible to use MD simulations to help determine how low-probability events look in 

diffraction patterns or electron density80,81.  We also need to establish new data 

depositions methods to enable data sharing. While there has been significant progress 

with fragment depositions82, it still needs to be determined how we can track or deposit 

structure re-modeled as multiconformer or ensemble models83. 

 

Open lines of inquiry 

This review aims to represent the many roles conformational entropy plays in biological 

function and improved modeling many answers how conformational entropy impacts 

function. Beyond the examples above, other open lines of inquiry may be viewed in the 

light of conformational entropy.  

 

Many examples above explore how proteins can regulate function or react to new 

perturbations. It is crucial to assess the contributions of conformational entropy and its 

interaction with enthalpic interactions84. One possible way to make proteins more 

sensitive to their environment is to detect new "sensors," such as ligands, which adapt 
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the protein to perform certain functions. However, using traditional allostery models 

would involve creating or modifying the binding site to allow ligands to bind and then 

creating a specific path to their effectors. However, if allosteric regulation can occur due 

to changes in the dynamics of the protein, this provides an easier way for new functions 

to evolve, allowing the protein to respond to new stimuli. Further, pluripotent allostery, 

where ligands depend on external factors, such as metabolic and proteomic 

concentration, may act through slight changes in conformational entropy, providing 

another way to tune protein actions85. These ideas may bring to light why certain 

proteins have different functions in different cell types or cellular compartments.  

 

The link between the sequence and conformational entropy is still unknown. Alphafold, 

Rosettafold, and diffusion-based models have provided insight into single conformer 

structures, but conformational entropy cannot be extracted from these predictions86–8878. 

While algorithms are being developed to coax structure prediction software into 

modeling multiple states, it is unclear how best to implement or interpret these 

findings89,90. Further, significant improvements in sidechain placement are critical to 

integrating the structure prediction with conformational entropy. Uncovering this link 

would provide an enormous platform for hypothesis generation and prediction of the 

impacts of perturbations. Machine learning may also help us uncover the dependencies 

of conformational entropy. Using an autoencoder, we may be able to use the latent 

space to discover additional dependencies of conformational entropy. Further, this could 

be used to determine how the unlimited number of perturbations may impact 

conformational entropy.  
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Integrating the impact of conformational entropy in ligand design will likely increase our 

ability to predict the binding and impact of molecules. Conformational entropy has likely 

been used to optimize drug-like molecules without us consciously realizing it. However, 

the above methods may allow for a much more data-driven perspective for ligand 

design. Conformational entropy should be exploited in protein design. Molecular 

dynamics and NMR have helped manipulate the underlying conformational landscape of 

proteins91. It is possible to design proteins that can switch between multiple 

conformations with multiconformer modeling and measure how residues conformations 

change. This may help overcome the difficulty of designing catalytically efficient 

proteins92. Considering conformational entropy will also likely help design a stable 

structure, as these fluctuations help stabilize structures93.  

 

Conclusions 

Obtaining atomistic and mechanistic explanations of conformational entropy will help 

move the concept of entropy in macromolecular interactions from theory to 

experimentally testable and measurable. The methods and approaches discussed in 

this review will expand our toolbox of experimentally measurable protein interactions 

from mostly focused on only enthalpically driven to entropically and enthalpically driven. 

Many examples of the impact of conformational entropy upon ligand binding have 

demonstrated that the free energy of binding decreases when the protein must become 

more rigid to bind its ligand. When thinking about ligand design, a rigid, stable protein is 

usually what ligands are designed for. However, it may be more energetically favorable 
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to design for a more flexible state of the protein to reduce entropy loss upon binding. 

 

This shift of thinking may also help us understand protein evolution. Many proteins have 

likely evolved to absorb energetic losses upon perturbation, which also helps them 

evolve new functions. The manipulation of entropy through macromolecular binding is a 

subtle but powerful way to regulate biological function. Measuring and visualizing 

entropy will allow for the explanation of biological phenomena rooted more solidly in 

energetic theory.  
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