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Abstract 

Understanding how the structural and chemical transformations take place in battery 

particles under thermal conditions can inform designing thermally robust electrode 

materials. Such a study necessitates the use of diagnostic techniques that are capable 

of probing the transformations at multiple length scales and at different states-of-

charge (SOC). In this study, the thermal behavior of LiNi0.6Mn0.2Co0.2O2 (NMC-622) 

was examined as a function of SOC, using an array of bulk and surface sensitive 

techniques. In general, thermal stability decreases as lithium content is lowered, and 

conversion in the bulk to progressively reduced metal oxides (spinels, rock salt) 

occurs as the temperature is raised. Hard X-ray absorption spectroscopy (XAS) and 

X-ray Raman spectroscopy (XRS) experiments, which probe the bulk, reveal that Ni 

and Co are eventually reduced when partially delithiated samples (regardless the 

SOC) are heated, although Mn is not. Surface sensitive synchrotron techniques such 

as soft XAS and transmission X-ray microscopy (TXM), however, reveal that, for 

50% delithiated samples, apparent oxidation of nickel occurs at particle surfaces 

under some circumstances. This is partially compensated by reduction of cobalt, but 

may also be a consequence of redistribution of lithium ions upon heating. TXM 

results indicate the movement of reduced nickel ions into particle interiors or oxidized 

nickel ions to the surface, or both. These experiments illustrate the complexity of the 

thermal behavior of NMC cathode materials. The study also informs the importance 

of investigating the surface and bulk difference as a function of SOC when studying 

the thermal behaviors of battery materials. 
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Introduction 
Lithium-ion batteries (LIBs) have been credited for revolutionizing consumer 

electronics and electrical vehicles. Increasing the energy density and cycle life, reducing 

the cost and improving the safety have been continuing efforts to further advance the 

practical applications of LIBs.1,2 The most successful commercial cathode materials in 

LIBs are based on layered transition metal oxides, where the charge compensation mostly 

takes place at the transition metal oxides.3,4 However, the oxygen anions in the lattice 

also play an important role in battery performance. Most degradation pathways of layered 

oxides are associated with the chemical properties of oxygen anions.5,6 Although the 

oxygen anions do not directly contribute to the reversible capacity, their orbital 

occupancies may change during electrochemical cycling because of the strong orbital 

hybridization with the transition metal d orbitals.7–9 Several degradation processes in 

layered oxides can be directly attributed to the oxygen instability in the lattice, which 

include but do not limit to surface reconstruction caused by surface oxygen loss, and 

electrolyte oxidation caused by transfer of surface lattice oxygen to the electrolyte.10–14 

These degradation processes contribute to the failure of LIBs. For stoichiometric layered 

oxides, such as NMC materials (LiNixMnyCozO2; x+y+z ≈1), the oxygen becomes less 

stable as the degree of delithiation gets higher.10,15,16 The oxygen stability in the layered 

lattice is closely related to the thermal stability of these materials. 

Details of the thermal behavior of metal oxide cathode materials for LIBs are of 

considerable interest, because of the potential for severe safety consequences associated 

with thermal runaway. As the Ni content in NMC cathodes is raised to improve practical 

energy densities, the thermal stability decreases.17,18 Phase conversion to reduced metal 

oxides with concomitant oxygen release is known to occur upon heating of Ni-rich 
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cathode materials in high states-of-charge (SOC),18–23 increasing the risk of fire in LIBs 

subjected to abuse. These phenomena are more complex than they at first appear; phase 

conversion is affected not only by temperature, but also time of exposure, and oxygen 

release is affected by sample heterogeneity,24,25 particle size,26 and morphology,27 and 

also intimately connected to chemo-mechanical occurrences such as particle cracking.28 

Further complicating matters are interactions with other components in the cells such as 

carbon and binder.29 To remove the effects of the latter, for this study, we prepared 

chemically delithiated LiNi0.6Mn0.2Co0.2O2 (NMC-622) samples to isolate reactions 

limited to those of the active materials themselves, and examined materials in several 

different SOCs, corresponding not only to overcharge conditions, but also normal top-of-

charge (approximately 50% delithiated). We used several characterization methods 

designed to probe both particle surfaces and the bulk to understand the effects of thermal 

treatments on these model systems, with the goal of providing further information that 

might be useful for designing more robust cathode materials for safer batteries. This 

comprehensive characterization allowed us to discover that the NMC materials do not 

simply undergo continuous reduction upon thermal treatment as earlier studies have 

reported; instead the delithiated NMC particles show a large degree of variation from the 

surface to the bulk, which exhibits a strong dependence on the extent of delithiation. We 

anticipate that the insights based on the studies reported herein can lead to further 

improvements in cathode designs.  

Experimental 

Sample Preparation 

Synthesis of solid spherical NMC-622 sample 
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Transition metal hydroxide (TM(OH)2) precursor Ni0.6Mn0.2Co0.2(OH)2 was 

provided by a third party. Lithium hydroxide monohydrate (≥98.0%, Sigma Aldrich) was 

mixed with the TM(OH)2 precursor in a molar ratio of 1.02:1 in an agate mortar for 20 

mins. Then the mixture was transferred into a ball milling jar. Small amounts of acetone 

was added into the mixture to immerse the powder. Then the acetone and powder mixture 

was ball milled at low speed (200 rpm) for 60 min. and followed with milling at high 

speed (400 rpm) for another 60 min. The mixture was then dried under air to remove 

excess acetone. Then the dried product was annealed in a box furnace at 850 oC for 6 hrs 

under air flow with a 2 oC/min ramping rate for both heating and cooling steps. 

Preparation of delithiated samples 

All delithiated samples were prepared by chemical delithiation inside an argon-

filled glove box. Briefly, a stock oxidant solution (i.e., 0.12M NO2BF4 in anhydrous 

acetonitrile) was prepared in advance to ensure that all the oxidant was well dissolved. 

Then NMC-622 powder was mixed with different amounts of the stock oxidant solution 

in the desired stoichiometric ratio to reach various delithiated states. For example, 0.3g 

(3.096E-3 moles) NMC-622 powder was added to 26 mL of 0.12M NO2BF4/acetonitrile 

solution and stirred in glovebox for 24 hrs to reach the “100%” delithiated state. All 

samples were then centrifuged and washed with pure acetonitrile three more times and 

dried under vacuum overnight. All the above procedures were done in an argon-filled 

glovebox (O2 < 1 ppm and H2O < 1 ppm). 

Sample Characterization  

Pristine and delithiated powder samples were dissolved in concentrated nitric acid 

and further diluted and analyzed with an inductively coupled plasma optical emission 
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spectrometer (ICP-OES, Perkin-Elmer Optima5400) to determine the chemical 

composition. Hot stage X-ray powder diffraction (XRD) studies were carried out using a 

Panalytical X’Pert Pro diffractometer equipped with an Anton Parr HTK 1200 hot stage 

using monochromatized Cu Kα radiation. The samples were heated in air at a ramping 

rate of 5 °C/min, then held for 15 min at the desired measurement temperature before 

data collection. The Le-Bail refinement was conducted in a GSAS-EXPGUI package.32 

Synchrotron Characterization 

For ex situ soft X-ray absorption spectroscopy (XAS) experiments, samples were 

mounted on an aluminum sample holder with double-sided carbon tape in an argon-filled 

glove box, transferred in a double-contained jar to a glove bag purged with argon 

connected to the XAS load-lock chamber.  Measurements were conducted on the bending 

magnet beamline 8-2 at Stanford Synchrotron Radiation Lightsource (SSRL) using a ring 

current of 500 mA and a 1100 lines/mm spherical grating monochromator. The 

monochromator was operated with 40 µm entrance and exit slits, providing ~2.0×1010 

ph s−1 at 0.4 eV resolution in a 0.1 × 0.1 mm2 beam spot.24 Data were acquired under 

ultrahigh vacuum (10−9 Torr) in a single load at room temperature using Auger electron 

yield (AEY, measured by a cylindrical mirror analyzer at constant kinetic energy), total 

electron yield (TEY, measured by sample drain current) and fluorescence yield (FY, 

measured with an IRD AXUV-100 silicon diode). All spectra were normalized by the 

incident current from a gold-evaporated fine grid positioned upstream of the main 

chamber. For transition metal L-edges, a linear fit background was removed and then the 

maximum intensities were normalized to unity.  
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Hard XAS measurements were carried out in both transmission and fluorescence 

modes at beamline 4-1 of SSRL. Calibration was applied to all spectra using the first 

inflection point of the corresponding Ni, Mn or Co metal foil. X-ray absorption near edge 

structure (XANES) data were analyzed using Athena software.33  

3D full field transmission X-ray microscopy (FF-TXM) was performed at SSRL 

beamline 6-2c. Small amount of powder samples were loaded into quartz capillary tubes 

with diameters of 100 µm and wall thicknesses of 10 µm. Series of transmission images 

were collected as the energy of the incoming X-rays was scanned across the Ni 

absorption K-edge. The spatial resolution was ~30 nm.  The energy step was set to be 1 

eV in the near edge region and at a larger step size of 10 eV over the pre-edge and post 

edge regions, respectively. The energy window was set to a wide range for better 

normalization of the X-ray absorption spectra.34 The initial data reduction was processed 

with an in-house developed software package TXM-Wizard,35 and over 20 million 

XANES spectra were recovered with each one of them associated with a unique pixel in 

the image. The 0.5-intensity-cut of the K-edge was utilized to identify the relative 

oxidation states of transition metals.61  

Ex situ X-ray Raman spectroscopy (XRS) measurements were performed at 

beamline 6-2b at SSRL. The samples were compressed into pellets and mounted onto the 

holder. The spectra were recorded with samples kept in helium atmosphere and each 

spectrum was a bandwidth of 1 eV. The X-ray Raman signals were collected with Si-660 

reflection of the 40-crystal XRS spectrometer at 9694.8 eV with a monochromator Si 

(311) around 10.3 keV to have the Raman offset corresponding to Co L-edge, Ni L-edge 

and O K-edge. 
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Results and Discussion 

 In the present study, we chose to focus on chemical delithiation to produce 

oxidized samples because a cleaner surface for soft XAS analysis is needed, especially in 

the surface-sensitive electron yield mode. Figure 1a and 1b show XRD patterns of NMC-

622 samples delithiated to various levels, prior to heating. Most of the samples retained 

the R3m structure after delithiation, with some shifting of peaks consistent with changes 

in the lattice parameters upon oxidation. An exception is the material that is nominally 

100% delithiated. There is considerable peak broadening and a strong shift of the (003) 

reflection (lowest angle peak) rightward indicative of a marked decrease in the c lattice 

parameter. During the analogous electrochemical process, the H3 phase with a (003) 

reflection in Figure 1b, is observed only as a shoulder on the main low angle peak for this 

material when it is charged to an extremely high voltage (e.g., 5V).15,36 However, for the 

chemical delithiation, the H3 phase exhibits a single symmetrical low angle peak with the 

decreased c lattice parameter. This implies that the lithium removal through chemical 

delithiation is complete. However, there is also a coalescence of the double peaks near 2θ 

= 65° (Figure 1b) for the 100% delithiated sample, which suggests some loss of 

lamellarity and disordering at such high level of lithium removal. This may also be a 

consequence of a loss of crystallinity, as peak broadening is also evident. Proton insertion 

into layered cathodes has been reported in samples highly delithiated with NO2BF4,37 

which may have happened here. Apart from this sample, however, the bulk structural 

features of the chemically delithiated materials resemble those of the electrochemically 

oxidized analogs.36,38,39 
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 Figure S1 details the results of in situ hot stage XRD experiments on the 

chemically delithiated materials with various lithium contents. There is a general trend to 

lower thermal stability with respect to phase conversion as lithium content decreases, as 

well as a tendency to form products containing progressively more reduced transition 

metal ions and lower oxygen contents. For the 10% delithiated NMC (Figure S1b), 

structural changes occur at and above about 300 °C, as evidenced by broadening of XRD 

peaks and a progressive decrease in the (003)/(104) peak intensity ratios, suggestive of 

some loss of lamellarity.68 The results are consistent with formation of a “splayered” 

material; i.e., a layered material with some spinel character. The disordering is more 

evident at 300 °C for the 25% delithiated sample (Figure S1c), and above this 

temperature, changes in the patterns suggestive of partial formation of a separate spinel 

phase similar to LiMn2O4 occur.   

 

Figure 1. (a) XRD patterns of pristine and delithiated NMC-622 powders as a function of 

lithium content. (b) Expanded regions of (a) showing (003) reflections and peaks near 2θ 
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= 65°. Arrow points to the coalescence of the (108) and (110) peaks in the nominally 100% 

delithiated powder, which suggest a loss of lamellarity. (c) XRD patterns of the 50% 

delithiated powder as a function of temperature, and (d) cell volumes of phases produced 

upon heating taken from data in (c). (e) XRD patterns of the 75% delithiated powder as a 

function of temperature, and (f) cell volumes of phase produced upon heating taken from 

data in (e). The associated error analyses for Figures 1d and 1f are shown in Tables S1 

and S2.   

At 50% lithium content (Figure 1c and Figure S1d), disordering occurs at around 

200 °C, and changes consistent with formation of disordered spinel occur above this 

temperature (e.g., coalescence of the double peaks near 2θ = 65°, and changes in relative 

intensities of reflections near 2θ = 35-40°). At 400 °C, the disordered spinel phase 

(resembling LiMn2O4) further changes to an M3O4-type spinel phase, implying a large 

loss of oxygen. The presence of the new phase is evidenced by a new set of peaks of the 

spinel phase as marked in Figure 1c (e.g., the (220) peak near 2θ = 31o). In contrast, these 

changes occur at lower temperatures for the 75% delithiated NMC (Figures 1e and Figure 

S1e), with evidence of some M3O4 spinel present by 300 °C. Above this temperature, 

additional sharp peaks in the XRD patterns emerge (e.g., near 2θ = 37.5°), consistent 

with the presence of a rock salt phase, MO, which implies further loss of oxygen. For the 

fully delithiated sample, peak broadening in the XRD patterns is already observed at 150 

°C (Figure S1f), and the sample is extremely disordered at 200 °C, although a sharp, 

weak peak near 2θ = 37.5°, tentatively belonging to rock salt or a mixture of rock salt and 

spinel is visible. Peaks become better defined at 300 °C and above and can be assigned to 

a mixture of rock salt and M3O4 spinel. These phenomena are consistent with the 
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observations in other thermally treated layered materials reported by Bak et al.18 and Nam 

et al.,20 even though different onset temperatures for the phase changes were reported 

because different compositions of materials were used in these reports. 

We further confirmed the observed phase changes for NMC-622 with different 

lithium content by conducting Le Bail fitting for 50% and 75% delithiated samples that 

were treated at various temperatures. As shown in Figure 1d and Figure S2, layered, 

spinel and rock-salt phases coexist in the 50% delithiated sample at 300 oC. The 

corresponding unit cell volume changes are also shown in Figure 1d as a function of 

temperature. For the 75% delithiated NMC-622, these phase changes happen at a lower 

temperature (~200 oC) (Figure 1f and Figure S3).  

 The formation of spinel and MO-type phases for the more highly delithiated 

NMC-622 materials indicate that oxygen is lost during heating, an observation that has 

grave implications for battery safety. While in situ laboratory or synchrotron XRD 

experiments give vital information about the bulk behavior of cathode materials during 

heating, many details are lacking, such as how these phases propagate, their exact 

compositions, and the redox states of the metals (which is related to oxygen content) in 

some cases. Knowing these details may be helpful in guiding the design of more 

thermally robust materials and preventing catastrophic failure. To gain more insight on 

the thermal behavior, we investigated the structural and electronic properties of selected 

delithiated samples heated to either 170 °C or 350 °C in more detail as well as those of 

the pristine delithiated materials, using several different synchrotron X-ray techniques, to 

probe both surface and bulk changes. At 170 °C, most of the samples have not yet 

undergone major detectable phase conversions, while at 350 °C, loss of oxygen and 
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significant structural changes are well underway for the more highly delithiated materials. 

Thus, investigating materials heated to these two different temperatures give valuable 

information about the subtle changes that occur prior to major structural rearrangement as 

well as after. 

 

Figure 2. Hard XAS spectra of pristine and delithiated samples for (a) Ni K-edge, (c) Co 

K-edge, and (e) Mn K-edge. The inset figures show the pre-edge region. First derivative 

curves of these spectra for (b) Ni K-edge, (d) Co K-edge, and (f) Mn K-edge. The 

derivative curves are used here to display better visualization of peak (or energy) shifts of 

samples at different conditions.  

 Normalized XANES spectra for the Ni, Co, and Mn K-edges on the chemically 

delithiated samples are shown in Figures 2a, 2c, and 2e, respectively. In general, the 

XANES spectra can be divided into two regions: (1) the main absorption edge, which 

corresponds to transitions from the 1s to 4p states40,41 and (2) the pre-edge peaks, which 

are usually ascribed to 1s to 3d transitions through a weak electric quadrupole transition. 

The transition probability of 1s to d orbital is less in comparison to the p orbital because 
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of orbital symmetry restrictions. However, the hybridization of d and p orbitals makes the 

electric dipole transition from 1s to the hybridized orbital (the p component rather than 

the d component) allowed and the pre-edge peak intensity become observable.42,43 The 

shape of the XANES spectra gives information about the local geometry, while the 

absorption edge (i.e., the absorption edge determined based on the inflection point, or the 

energy where the intensity is 50% of the edge maximum, or the average of the energies at 

20% and 80% of the edge maximum40,44) is sensitive to the oxidation states of the 

element of interest.40–43  

In Figure 2a, there is a progressive shift of the Ni XANES spectra to higher 

energies (we use the energy where the intensity is 50% of the edge maximum as the 

indicator) as the lithium content decreases, consistent with charge compensation by 

oxidation of Ni in the bulk. An exception is the nominally 100% delithiated sample 

(black dashed curve in Figure 2a), for which, as previously discussed, proton insertion 

may have occurred. Another possible reason that the 100% delithiated sample has lower 

oxidation states than expected is that the sample loses its lamellarity as discussed in the 

previous XRD analysis. This causes the disassembly of the secondary and even primary 

particles through exfoliation and hence increases the surface area of the particles that can 

be exposed to the solvents and reactants during chemical delithiation. The surface 

reconstruction that normally happens at high state of charge may play a predominant role 

and becomes detectable even with bulk sensitive hard XAS. (The thermal behavior of this 

sample was not further studied herein because of its structural anomalies). Similar trends 

although with smaller changes are also observed in the pre-edge features (inset of Figure 

2a). This is more clearly observable in the derivative plot (Figure 2b). Such changes have 
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been reported for LiNi0.3Mn0.3Co0.3O2 (NMC-333),7,43 LiNiO2
13 and Li(Ni0.5Co0.5)O2

45
 

materials, in which Ni is the only or dominant redox center upon charging and 

discharging. 

 The spectral changes for both Co and Mn upon delithiation are more complicated 

because no systematic edge shifting is observed. Instead, changes in the shapes of the 

edge features are observed, which can be related to the local coordination number, 

symmetry, and covalency with the coordinated ligands. For Co K-edge, it has been 

reported that the oxidation state of Co in NMC-333 material changes from 3+ to 4+ when 

the state of charge reaches more than 80%, where a cut-off voltage of 4.7 V is defined as 

100% state of charge.43 However, in another study, no such change was noticed even 

when NMC-333 was charged to 5V.7 The ambiguity in interpretation of the K-edge data 

makes it difficult to conclude whether Co redox occurs for these samples, based on the 

subtle changes in the absorption edge and the pre-edge features (Figures 2b and 2e). 

Similarly, Mn K-edge spectra (Figures 2c and 2f) show shape changes but no systematic 

edge energy shifting. It is accepted that Mn remains tetravalent for NMC materials 

undergoing redox, when the spectra are compared with standard materials such as 

Li1.2Cr0.4Mn0.4O2
46, LiNi0.5Mn0.5O2

47 and NMC-333.7,43 
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Figure 3. Ni K-edge, Co K-edge and Mn K-edge XANES spectra for (a, c, e) 50% and (b, 

d, f) 75% delithiated NMC-622 powders, at room temperature, and after heating to 170 

°C or 350 °C. Inset figures show the pre-edge features of each sample and each element. 

Figures 3a and 3b show ex situ Ni K-edge XANES results on the 50% and 75% 

delithiated materials heated to 170 °C or 350 °C, respectively. Negligible changes in the 

edge energies are observed for the 50% delithiated sample heated to 170°C for all of the 

transition metals (Figures 3a, 3c and 3e). At the higher temperature (i.e., 350 °C), a slight 

shift to lower energy is evident (more clearly seen in the derivative plot, Figure S4a) for 

the Ni K-edge (although not for the Mn or Co edges) indicating that Ni has been slightly 

reduced compared to the unheated material. At this temperature, conversion to a 

disordered LiMn2O4-like spinel is well underway (Figure 1c and d). The hard XAS 

results show evidence of metal reduction in the bulk at 350 °C, associated with the phase 

conversion. This implies that there is some loss of oxygen involved in formation of the 

LiMn2O4-type phase. 
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 More pronounced systematic shifts to lower energies in the Ni and Co K-edge 

spectra (Figures 3b, 3d and S4b, S4d) occur for the 75% delithiated material, especially 

after it has been heated to 350 °C. This is consistent with the XRD results, which show 

the presence of an M3O4-type spinel and some rock salt at 300 °C. Formation of these 

phases require an average reduction of the valence states of the metal ions. Compared to 

Ni and Co, Mn exhibits almost no change at 170 °C for both samples with different 

lithium contents and for the 50% delithiated sample even up to 350 °C. There is a slight 

shift of Mn edge to lower energies at 350 °C for this sample (blue curve in Figures 3f and 

S4f), but it is marginal compared to the changes seen in the Ni and Co K-edges. This 

demonstrates the superior thermal stability of Mn and its critical role in the structural 

stabilization of the NMCs.  

 The insets of Figures 3a-3f are the pre-edge regions of the respective XANES 

spectra. As mentioned earlier, the pre-edge features are strongly influenced by the 

coordination number and coordination symmetry. Electric dipole transitions are allowed 

through p-d hybridization in tetrahedral symmetry, while only electric quadruple 

transitions (which are much less intense than dipole transitions) can occur in octahedral 

symmetry.42,48 The relatively weak intensity of all the pre-edge peaks indicate that the 

transition metals are in octahedral symmetry rather than tetrahedral symmetry. A closer 

look at the pre-edge features reveals that Mn has two distinctly separated peaks (around 

6541 and 6543 eV in the insets of Figures 3e and 3f), which indicates that Mn is in the 

tetravalent state as only one pre-edge peak is observed for trivalent Mn.43,49 Thus, Mn 

remains 4+ throughout the heating procedures for both 50% and 75% delithiated samples. 

This is consistent with our previous conclusion that was based on the main absorption 
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edge energy analysis. Two pre-edge peaks have been reported for LiCoO2
44 and NMC-

33343 materials, where they attributed the two peaks to 1s to t2g and 1s to eg transitions. 

However, the splitting of pre-edge peaks for Co is not so well structured in some other 

reports for NMC and lithium nickel cobalt aluminum oxide (LiNi0.8Co0.15Al0.05O2, NCA) 

materials7,20 as well as in our case. Regardless, the pre-edge peak intensity change 

contains more information. As shown in the insets of Figure 3c and 3d, the pre-edge peak 

intensity remains almost unchanged for the 50% delithiated sample heated to 350 °C, 

while there is a significant increase of peak intensity for the 75% delithiated sample after 

heating to 350 °C. The increasing intensity indicates the symmetry distortion around Co 

site.20 This can be explained by the fact that Co migrates to the adjacent tetrahedral site in 

the highly delithiated sample heated to high temperatures to form the spinel phase, as 

observed in the XRD analysis. In contrast, the Ni pre-edge peak intensity (insets in 

Figures 3a and 3b) did not change, indicating that it did not migrate to tetrahedral sites 

due to the thermal abuse. However, there is a peak shift to lower energies (same as the 

main edge) for the 75% delithiated sample heated to 350 °C. To briefly summarize the 

XANES data, both Ni and Co undergo reduction in the highly delithiated materials heated 

to high temperatures, while Mn remains its tetravalent state. In addition, Co migrates to 

tetrahedral sites, resulting in a phase change from a layered structure to spinel.  

The hard XAS results are broadly consistent with the in situ hot stage XRD 

findings. Both experiments characterize the bulk behavior, but the soft XAS data (Figure 

4) paint a more complex picture of what happens during heating, especially at the surface. 

Soft XAS experiments probe surface to near-surface areas of samples, with the depth 

being examined dependent upon the detector in use. At the Stanford Synchrotron 
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Radiation Lightsource, we employed three types of detectors: Auger electron yield (AEY, 

probing 1-2 nm into the surface), total electron yield (TEY, about 5 nm in), and 

fluorescence yield (FY mode, 50-100 nm in). The spot size of ~1 mm means that many 

thousands of particles are examined simultaneously in a powdery sample, so that the 

results are ensemble-averaged. 

 

Figure 4. Ni L-edge XAS data in TEY mode for (a) pristine, 50%, and 75% delithiated 

powders, (b) 50% delithiated powders at room temperature and after heating to 170 °C or 

350 °C, and (c) 75% delithiated powders at room temperature and after heating to 170 °C 

or 350 °C. The L3 edge (centered at 855 eV) is split into two peaks; we use L3high and 

L3low to represent the peaks centered at higher and lower energies, respectively. Ni 

L3high/L3low ratios at different probing depths (AEY, 1-2 nm, TEY, 5 nm, and FY, 50-100 

nm) for (d) pristine, 50%, and 75% delithiated powders, (e) 50% delithiated powders at 

room temperature and after heating to 170 °C or 350 °C, and (f) 75% delithiated powders 

at room temperature and after heating to 170 °C or 350 °C.  
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Figures 4a-c show the Ni L-edge TEY results for pristine, 50% and 75% 

delithiated samples before and after heating to 170 °C or 350 °C. The spectra show 

characteristic L3 doublet peaks near 853 eV corresponding to the 2p3/2 à3d transition and 

a L2 peak (2p1/2 à3d) near 870 eV.  The ratios of the intensities of the L3high to L3low 

peaks give qualitative information about the Ni redox states, with higher values 

indicating a greater degree of oxidation.15,50,51 The changes in the relative peak intensities 

can be clearly observed in Figure 4a for the pristine material and the delithiated samples, 

which indicate that the Ni oxidation state increases as the lithium content decreases. 

Figure 4d shows the values of L3high/L3low for the AEY, TEY, and FY data on these 

materials; i.e., the relative Ni oxidation states as a function of probing depth. For the as-

made material, prior to delithiation, the average oxidation state of Ni is slightly lower 

near the surface than farther into the bulk. The oxidation state gradient also exists for the 

two partially delithiated materials. The gradient is symptomatic of surface reconstruction 

from a layered structure to a rock salt phase.10,52 Surface reconstruction is a commonly 

observed phenomenon for NMC electrodes, and occurs under a variety of conditions, 

although it tends to be more pronounced after electrochemical charge than for chemical 

delithiation.50  

Figure 4e summarizes the results for the 50% delithiated material before and after 

heating to 170 °C or 350 °C. The average oxidation state of Ni rose after the 170 °C 

treatment, although it was still lower near the surface than deeper into the sample. A 

marked increase in average Ni oxidation state occurred after heating to 350 °C, with 

homogenization throughout the top 50-100 nm of the sample. A comparison to the Ni K-

edge data, however, indicates significant differences between the surface and the bulk 
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deeper than 100 nm in, the latter of which shows evidence of Ni reduction after heating to 

350 °C rather than oxidation. The behavior of the 75% delithiated sample is markedly 

different from that of the 50% delithiated material (Figure 4f). A slight intensification of 

the Ni oxidation state gradient is observed after heating to 170 °C, but otherwise there is 

little change on average. In contrast, a dramatic reduction in the average Ni oxidation 

state after heating to 350 °C occurred at all depths that were probed as was found with the 

Ni K-edge data (i.e., in the bulk). Our results indicate that what occurs at or near the 

surface is drastically different from the bulk behavior and it is also closely related to the 

extent of delithiation (i.e., the state of charge).  

 

Figure 5. (a, b, c) Co L-edge XAS data and (d, e, f) Mn L-edge XAS data for  (a, d) 

pristine, 50% and 75% delithiated powders, (b, e) 50% delithiated powders at room 

temperature and after heating to 170 °C or 350 °C, and  (c, f) 75% delithiated powders at 

room temperature and after heating to 170 °C or 350 °C. 
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 Figures 5a-c and 5d-f show the Co L-edge TEY and Mn L-edge TEY data, 

respectively, for the pristine, delithiated, and heated samples. Here, little change is seen 

in Co and Mn oxidation states as a function of lithium content (Figures 5a and 5d), at 

least at ~5 nm deep into the sample (TEY mode). This is similar to what was found in the 

K-edge data, which showed only modest changes in the average oxidation state for Co, 

and no change for Mn. Very slight broadening and peak shifting of the Co L3 peak at 

about 783 eV (Figure 5b, for the 50% delithiated material) to the lower energy side after 

heating to 170 °C and a more significant broadening and shifting after the 350 °C 

treatment indicate that Co is reduced,53 but little change is observed in the Mn L-edge 

data (Figure 5e). Thus, the surface oxidation of Ni that was observed for this sample is at 

least partly compensated for by the reduction of Co. For the 75% delithiated sample 

(Figures 5c and f), more significant peak broadening and shifting to lower energy occurs 

at the Co L3 edge, particularly after heating to 350 °C, evidence for greater reduction of 

Co than in the 50% delithiated sample. Little change is observed in the Mn L-edge 

spectra (Figure 5f). This again is consistent with the bulk results, where Mn exhibits 

superior thermal stability. 

Figure 6 shows the O K-edge spectra for the samples under investigation, in TEY 

mode. The integrated intensity of these peaks is proportional to the concentration of O 

hole states, and increases as the samples become more oxidized (Figure 6b). In other 

words, charge compensation upon oxidation is borne at least partly by oxygen and 

reflects the degree of covalency of the TM-O bonds. Our previous study included a 

detailed picture of the TM-O peak positions for standard transition metal oxides and can 

be found in reference 15 and is also plotted in Figure 6a. In this paper, we calibrated the 
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peak position of Li2CO3 to 534 eV (brown curve in Figure 6a). Figure 6b shows the 

pristine and delithiated samples before heat treatment. The sharp feature at 534 eV in the 

pristine (as-made) material can be attributed to π*(C=O) in Li2CO3, a commonly 

observed impurity in Ni-rich NMCs, stemming from the synthesis conditions.15 This peak 

is not observed in the O K-edge TEY data for the two partially delithiated samples, 

indicating that the chemical oxidation and washing process resulted in removal of 

Li2CO3, similar to what occurs during electrochemical oxidation15. The set of peaks 

between about 528 and 534 eV belong to lattice oxygen coordinated to various transition 

metals (TM-O). The use of the standards aids in assigning peaks in the pristine NMC-622 

where Mn is tetravalent, Co is trivalent and Ni is intermediate between +2 and +3. The 

sharp peak centered around 529 eV belongs to Ni3+-O (compare to the LiNiO2 standard, 

blue curve in Figure 6a and blue dashed line indicated in Figure 6b) and the increase in 

intensity of this peak further confirms that Ni is oxidized during delithiation.  
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Figure 6. O K-edge data in TEY mode for: (a) different standards including LiNiO2, 

MnO2, LiCoO2, NiO and Li2CO3. The same set of standards were used and taken from 

reference 15, (b) pristine, 50% and 75% delithiated powders, (c) 50% delithiated powders 

at room temperature and after heating to 350 °C, and (d) 75% delithiated powders at 

room temperature and after heating to 350 °C. All measurements were conducted ex-situ 

and at room temperature. 

 Figures 6c and d show that the lattice oxygen peaks change in intensity for both 

the 50% and 75% delithiated powders after heating to 350 °C. The blue dashed arrows 

(around 529 eV) indicate the peak associated with Ni3+-O, while the brown dashed 

arrows (around 532 eV) mark Ni2+-O and some contribution from the Mn4+-O. It is clear 

that the Ni3+-O peak of the 50% delithiated sample increased in intensity after heating, 

indicating oxidation of Ni at the surface. For the 75% delithiated sample, the peak around 
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529 eV diminished after heating to 350 °C, while the peak intensity related to Ni2+-O 

increased. These results are consistent with the Ni L-edge results (Figures 4b and 4c) and 

further confirm that, upon heating to 350 °C, Ni is oxidized at the surface of the 50% 

delithiated sample while it is reduced at the 75% delithiated sample surface. Highly 

delithiated NMC materials are prone to lose oxygen, leading to a lower valence state of 

Ni and formation of NiO-like rock salt structure by reacting with electrolyte10,15,54–56 or 

through thermal treatment.18,20,21,28,57 Therefore, it is somewhat surprising to observe that 

Ni is oxidized at the surface upon heating in the 50% delithiated sample. 

 

Figure 7. X-ray Raman data: (a, d) Ni L-edge, (b, e) Co L-edge, and (c, f) O K-edge for 

(a, b, c) 50% delithiated and (d, e, f) 75% delithiated powders at room temperature and 

after heating to 170 °C or 350 °C. Arrows point to regions of significant peak shifting and 

broadening for several of the samples. 

Figure 7 shows ex situ X-ray Raman spectroscopy (XRS) data for the 50% and 

75% delithiated powders before and after heating to 170 °C or 350 °C. XRS, provides a 
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means for extracting the information content of soft X-ray spectra while maintaining the 

bulk sensitivity benefits of hard X-ray techniques, allowing information to be obtained on 

the transition metals and oxygen behavior deeper into the sample.58 Because it is a hard 

x-ray photon-in/photon-out technique, it offers the advantages of a hard x-ray probe 

while providing the sensitivity of soft XAS.59 This can be seen by comparing the data in 

Figure 7a, where obvious broadening of the Ni L3 edge near 855 eV to a lower energy is 

observed for the 50% delithiated powder heated to 350 °C, to that of the Ni K-edge 

XANES in Figure 2c, where there is very little change observed. The separation of L3 

peaks observed in the soft XAS results are not as evident in the XRS spectra due to the 

limited energy resolution of XRS, however, the basic features are the same. As with soft 

XAS, shifting of the Ni L3-edge to lower energy implies reduction of Ni in the bulk for 

both the 50% and 75% delithiated samples after heating to 350 °C. This difference is 

much more obvious for the 75% delithiated NMC-622 (Figure 7d). Similarly, broadening 

to lower energies of the Co peak for the 75% delithiated material heated to 350 °C 

(Figure 7e), indicative of reduction, is consistent with the changes observed in the Co K-

edge XANES spectra (Figure 3). It is clear from Figure 7b that the average Co oxidation 

state is unaffected by heating the 50% delithiated NMC-622 to either temperature, and 

also that heating to 170°C has little effect on either the average Ni or the Co oxidation 

state in the bulk for either sample. 

 XANES is somewhat limited in the ability to probe light elements such as C, N 

and O, hence XRS serves as an alternative to the conventional hard XAS techniques in 

investigating systems with light elements.58 The oxygen K-edge Raman data is shown in 

Figures 7 c and f for the 50% and 75% delithiated NMC-622 samples, respectively. The 
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peak near 530 eV corresponds to TM-O hybridization. It is clear that there is very little 

change upon heating for the 50% delithiated NMC-622, indicating that oxidation occurs 

only on the surface (based on the soft XAS data). For the 75% delithiated material heated 

to 350 °C, there is peak broadening. In this case, the shift to higher energy suggests the 

decrease of the hole states in the O2p orbitals. However, with a complicated system like 

NMC, where all three transition metals contribute to the TM-O hybridization peak, 

caution should be used in interpreting this shift simply as reduction of the transition metal. 

The formation of new phases with different degrees of TM-O covalency also alters the 

peak positions and intensity. However, it can be surmised that the surface oxidation that 

was detected with soft XAS for the 50% delithiated sample upon heating does not extend 

into the bulk.  

 It is curious that, in some cases (e.g., in the 50% delithiated sample) metals on 

surfaces are oxidized after heating although they are reduced in the bulk overall. To 

further investigate this, we employed TXM to probe both 50% and 100% delithiated 

particles before and after heating to 350 °C. The 100% delithiated sample was used as a 

test case, because the more severe reduction offers better visualization. The soft XAS 

spectra of Ni, Mn, Co L-edges and O K-edge (probing the surface), and the Ni XANES 

results (probing the bulk) of the 100% delithiated sample are presented in Figure S5 and 

S6 and indicate that the surface and bulk behaviors show similar trends to that of the 75% 

delithiated sample, although Ni reduction is more significant. 
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Figure 8. TXM images of a (a, c) 50% delithiated and (d, f) 100% delithiated NMC-622 

particle before (a, d) and after (c, f) heating to 350 °C. Ni K-edge energies are color-

mapped with blue representing lower oxidation states and red representing higher 

oxidation states. Ni K-edge energy was plotted as a function of distance from the particle 

surface before and after the (b) 50% delithiated particle and (e) 100% delithiated particle 

are heated.  

The Ni K-edge energies are color mapped for a single particle of the 50% 

delithiated sample (Figures 8a and c) and the 100% delithiated sample (Figures 8d and f) 

before and after heating to 350 oC. Higher energies (red color end) indicate a higher 

average oxidation state. In Figures 8a, c, d and f, the top row images in each panel are 3D 

reconstructed views of particles from different angles and the bottom row images are 

sliced views (2D) of the particles. Comparing Figures 8a and 8c, it is clear that the 
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surfaces have been oxidized for the 50% delithiated sample (denser red spots on the 

surface of the particle) after heating to 350 oC. In contrast, the Ni in the 100% delithiated 

particle is significantly reduced as indicated by the blue color throughout the particle 

(Figures 8d and 8f). However, all views show that there is considerable heterogeneity in 

the distribution of Ni oxidation states. Heterogeneity has also been reported for different 

types of cathode materials (e.g., LiFeO4, LiCoO2, NMC, LiNi0.5Mn0.5O2) that undergo 

electrochemical cycling, chemical or thermal treatment.22,28,50,57,60–65 heterogeneity can be 

attributed to the intrinsic properties of the materials (e.g., particle size, shape, surface 

facets, conductivity), the electrical and/or ionic wiring, the chemomechanical propagation, 

and ion diffusivity or migration under different external stimulation.66,67  

To eliminate the effects of the heterogeneous distribution on the data analysis and 

to quantify the depth of Ni oxidation phenomenon upon heating for the 50% delithiated 

sample, the energies (i.e., Ni oxidation states) are plotted as a function of distance from 

the surface in Figure 8b for the unheated and heated particle. Although the average Ni 

oxidation state increases slightly from the surface into the bulk for the unheated particle 

(consistent with the soft XAS data shown in Figure 4), the Ni valence appears to be 

relatively homogeneous throughout the depth. In contrast, there is a steep Ni oxidation 

state gradient for the particle after it has been heated, with a higher Ni oxidation state, on 

average, at the surface than in the interior. Since each pixel has a spatial resolution about 

30 nm, the oxidation occurs roughly to a depth of ~350 nm and with the top 100 nm 

being significantly more oxidized (the probing depth of soft XAS FY mode).  In the case 

of the 100% delithiated sample, there is a uniform reduction of Ni throughout the particle 

(Figure 8e). 



 

 28 

 

Figure 9. A closer look at the TXM images of the 50% delithiated NMC-622 particle (a) 

before and (b) after heating to 350 °C. Ni K-edge energies are color-mapped with red 

representing a higher valence state and blue representing a lower valence state. Ni content 

distributions in the particle (c) before and (d) after heating. The red corresponds to higher 

Ni content and blue lower Ni content.  A map of Ni migration (differences between the 

locations of Ni before and after heating the particle) is shown in (e) with the area in the 

white box expanded in (f). Arrows point to areas where Ni has concentrated upon heating, 

and the Ni enrichment is found in both the exterior and interior surface regions of the 

hollow NMC622 particle. 

Figure 9 shows more detailed TXM results on a 50% delithiated NMC-622 

particle before and after heating to 350 oC. The results provide some additional 

information that can possibly explain the oxidation behavior on the surface upon heating. 
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The images showing Ni distributions throughout the 50% delithiated particle before 

(Figure 9c) and after (Figure 9d) heating give some insights into what may have 

happened. It is clear from these images that the Ni distribution has changed throughout 

the particle after heating. The difference map in Figure 9e quantifies this, with the 

expanded area to the right of the figure showing a region with particularly notable 

differences. The apparent oxidation state gradient that is observed in the heated particle 

may reflect the migration of lower valent Ni into the interior (or the migration of higher 

valent Ni to the surface) as reactions occur. However, the difference could also be 

attributed to the slight deformation of the particle upon heating. A recent study has shown 

that thermally-driven redistribution of Li ions can possibly lead to the charge transfer 

behavior between the bulk oxygen anions and the surface transition metal cations for 

lithium and manganese rich layered cathode materials.65 Therefore, it is also likely that 

lithium ions migrate during the heating process, with local changes in transition metal 

oxidation states for the 50% delithiated sample, which does not involve Ni migration. 

Further studies regarding the unambiguously underlying mechanism of such distinct 

surface and bulk redox behaviors and the exact extent of delithiation (i.e., somewhere 

between 50% and 75% delithiation) that such surface behavior converts are underway. 

The study justifies the importance of combing surface and bulk sensitive, spatially 

resolved characterization techniques to reveal the disparate and complicated surface and 

bulk thermal behaviors of NMC materials as a function of SOC. It is also noted that 

understanding the transition metal transport properties during thermal events is important 

for several different cathode materials, including previously reported Li rich cathodes.69  

Conclusions 
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The present study aims to unravel how the multiscale chemical and structural 

characteristics of NMC-622 materials transform during thermal conditions. We 

thoroughly investigated the bulk-to-surface transformations of NMC-622 materials at 

different states of charge. The complex thermal behavior of NMC-622 cathode materials, 

delithiated to differing SOCs, was revealed by a comprehensive study of bulk and surface 

properties of samples after heating. Bulk conversion to spinel and rock salt phases occurs, 

with lower transition temperatures occurring for materials with lower lithium contents. 

Several of these phase transitions involve oxygen evolution and transition metal 

reduction, the latter of which was confirmed for Ni and Co by hard XAS and XRS 

measurements. Mn, in contrast, remains tetravalent for the samples and temperatures that 

were studied. Soft XAS measurements showed that the surface behavior was 

considerably different than in the bulk, however, with higher Ni oxidation states observed 

on particle surfaces for the heated 50% delithiated NMC-622. Using TXM, a Ni 

oxidation state gradient was also observed for this sample after heating to 350 °C, with 

the surface to a depth of about 350 nm in more oxidized than the bulk. Mapping of the Ni 

content before and after heating to this temperature revealed that a redistribution of the 

metal occurs, which provides a possible explanation for the apparent paradoxical result. 

The present study represents one of the most comprehensive spectroscopic, scattering, 

and imaging studies for the thermal properties of NMC cathode materials to date. The 

comprehensive characterization allowed us to discover that the materials do not simply 

undergo continuous reduction as most studies have reported; instead the delithiated NMC 

particles show a large degree of variation from the surface to the bulk, which exhibits a 

strong dependence on the extent of delithiation. We also found that there was likely metal 
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segregation at the mesoscale based on the TXM results. Therefore, these results 

collectively imply that inhibiting the metal segregation would be an important path 

towards improving the thermal stability of Ni-rich layered cathodes.  
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