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ARTICLE

Multi-ancestry fine-mapping improves
precision to identify causal genes
in transcriptome-wide association studies

Zeyun Lu,1,12,* Shyamalika Gopalan,2,3,12 Dong Yuan,1 David V. Conti,1,2 Bogdan Pasaniuc,4,5,6,7

Alexander Gusev,8,9,10 and Nicholas Mancuso1,2,11,*
Summary
Transcriptome-wide association studies (TWASs) are a powerful approach to identify genes whose expression is associated with complex

disease risk. However, non-causal genes can exhibit association signals due to confounding by linkage disequilibrium (LD) patterns and

eQTL pleiotropy at genomic risk regions, which necessitates fine-mapping of TWAS signals. Here, we present MA-FOCUS, a multi-

ancestry framework for the improved identification of genes underlying traits of interest. We demonstrate that by leveraging differences

in ancestry-specific patterns of LD and eQTL signals, MA-FOCUS consistently outperforms single-ancestry fine-mapping approaches

with equivalent total sample sizes across multiple metrics. We perform TWASs for 15 blood traits using genome-wide summary statistics

(average nEA ¼ 511 k, nAA ¼ 13 k) and lymphoblastoid cell line eQTL data from cohorts of primarily European and African continental

ancestries. We recapitulate evidence demonstrating shared genetic architectures for eQTL and blood traits between the two ancestry

groups and observe that gene-level effects correlate 20% more strongly across ancestries than SNP-level effects. Lastly, we perform

fine-mapping using MA-FOCUS and find evidence that genes at TWAS risk regions are more likely to be shared across ancestries than

they are to be ancestry specific. Using multiple lines of evidence to validate our findings, we find that gene sets produced by MA-FOCUS

are more enriched in hematopoietic categories than alternative approaches (p ¼ 2.36 3 10�15). Our work demonstrates that including

and appropriately accounting for genetic diversity can drive more profound insights into the genetic architecture of complex traits.
Introduction

Genome-wide association studies (GWASs) have identified

genomic risk regions for numerous complex traits and

diseases but leave unclear the underlying causal mecha-

nisms responsible for risk. Multiple lines of evidence

have suggested that genomic risk is imparted through per-

turbed regulation of nearby target genes, which predicts

that the steady-state abundance of expression levels at

target genes is associated with disease risk.1–6 Transcrip-

tome-wide association studies (TWASs),1,2 which explicitly

test this hypothesis, have successfully identified novel

genomic risk regions and specific genes that influence

complex diseases.7–9 Much of the recent success of

TWASs is due to the use of genetically predicted, rather

than directly assayed, gene expression, which enables

their application to existing large-scale GWASs, thus

significantly increasing statistical power. Recently, we

and others have demonstrated that TWASs also suffer

from confounding due to expression quantitative trait

loci (eQTL) pleiotropy and linkage disequilibrium (LD),

which can induce correlation in test statistics between
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causal and non-causal genes analogously to causal and

tagging variants in GWASs.10–16

Despite these recent breakthroughs, our understanding

of the genetic architecture of complex traits has been

limited by a lack of diversity in human genetics studies:

individuals with primarily European genetic ancestry

comprise 79% of all GWAS participants, despite represent-

ing only 16% of the global population.17 Although risk loci

frequently replicate across ancestries,18–22 the LD patterns,

minor allele frequencies (MAFs), and number of causal var-

iants with their effect sizes can vary across genetic ances-

tries.21 This heterogeneity in genetic architecture hinders

clinical applications of GWASs such as polygenic risk

scores (PRSs), an issue that has been highlighted by the

poor portability of PRS models across ancestries.23,24 On

the other hand, the trans-ancestry design of recent GWASs

has highlighted the benefits of taking an integrative multi-

ancestry approach to study complex disease biology, both

by leveraging genetic heterogeneity across human groups

to aid in fine-mapping and by enabling the discovery

of ancestry-specific disease etiologies.20,21,25–27 As with

GWASs, we expect the integration of genetically diverse
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Figure 1. MA-FOCUS disentangles the causal gene from tagging genes by leveraging GWAS, eQTL, and LD data from multiple
ancestries
(A) MA-FOCUS consists of two steps. First, it requires genome-wide association study (GWAS), expression quantitative trait locus (eQTL),
and linkage disequilibrium (LD) data from multiple ancestries to calculate the transcriptome-wide association study (TWAS) and gene
expression (GE) correlation matrix; second, it outputs a credible gene set (CS) with posterior inclusion probability (PIP) and locus-
normalized PIP (nPIP).
(B) Toy example of TWAS Manhattan plots for European (EUR) and African (AFR) ancestries illustrating association signals at a locus for
the causal gene (in red) and tagging genes (in black). The correlation among association signals is a combined result of eQTL signals and
LD (see material and methods). By accounting for heterogeneity in eQTL effect sizes and LD across different ancestries, MA-FOCUS pro-
duces a smaller gene credible set with a more posterior probability assigned to the causal gene. The gray dashed line indicates transcrip-
tome-wide significance.
datasets into TWASmethodologies will improve our under-

standing of trait architectures that are both shared and

unique to particular genetic ancestries.28–30

In this work, we present MA-FOCUS (multi-ancestry

fine-mapping of causal gene sets), an approach that inte-

grates GWASs, eQTL, and LD data frommultiple ancestries

to assign a posterior inclusion probability (PIP) that a given

gene explains the TWAS signals at a risk region.31–33 It uses

inferred PIPs to compute credible sets of causal genes at a

predefined confidence level r (Figure 1). A key feature of

MA-FOCUS is that it does not assume that the eQTL archi-

tecture underlying gene expression is shared across ances-

tries.34,35 Instead, MA-FOCUS assumes only that the causal

genes for a focal trait or disease are shared across ancestries

without restrictions on their effect sizes. It is expected

that gene-level effects are likely more transferable across

ancestry groups than single-nucleotide polymorphism

(SNP)-level effects as genes are inherently a more meaning-

ful biological unit.36 As a result, MA-FOCUS leverages

cross-ancestry heterogeneity in LD patterns and eQTL

associations to identify causal genes with improved preci-

sion and accuracy when compared with alternative

approaches.

By performing extensive simulations, we demonstrate

that MA-FOCUS consistently outperforms the analogous

single-ancestry method with equivalent total sample sizes

and a ‘‘baseline’’ approach based on meta-analyzed GWAS

statistics from different ancestries. In addition, we show

that MA-FOCUS is robust in simulations where the trait-

relevant tissue is missing and a proxy tissue is used instead.

To illustrate its applicability to real multi-ancestry data, we

conduct multiple TWAS and fine-mapping analyses with

MA-FOCUS for 15 blood traits in European- and African-
The American
ancestry cohorts using large-scale GWAS summary statis-

tics18 (average nEA ¼ 511 k, nAA ¼ 13 k) and eQTL weights

calculated from the Genetic Epidemiology Network of Ar-

teriopathy (GENOA) study37 (nEA ¼ 373, nAA ¼ 441). We

recapitulate results demonstrating the shared genetic ar-

chitecture for gene expression and blood traits between

the two ancestries.We also find evidence that gene-level ef-

fects inferred from TWASs correlate 20% more strongly

across ancestries than SNP-level effects. Fine-mapping 23

genomic regions that exhibit TWAS signals for both ances-

tries, we find that MA-FOCUS identifies genes relevant to

hematopoietic and cardiovascular disease etiology missed

by the baseline approach. Using multiple validation strate-

gies,38 we show that genes in MA-FOCUS credible sets are

more strongly enriched for hematological measurements

compared with the baseline approach. Overall, our ana-

lyses using MA-FOCUS emphasize the importance of in-

corporating genetic information from diverse genetic

ancestries to drive new insights into the genetic architec-

ture of complex traits.
Material and methods

Multi-ancestry FOCUS model
For the ith of k total ancestries, we model a centered and standard-

ized complex trait y i ˛Rni from ni individuals as a linear combina-

tion of gene expression levels Gi ˛Rni3m at m genes as

y i ¼ Gia þ εi;

where a˛Rm are the causal effects of gene expression on the com-

plex trait, and εi ˛Rni is random environmental noise with

EðεiÞ ¼ 0 and VðεiÞ ¼ s2e; iIni . Additionally, we model ancestry-

specific gene expression as a linear combination of genotypesXi as
Journal of Human Genetics 109, 1388–1404, August 4, 2022 1389



Gi ¼ XiW i þ Eg; i;

where Xi ˛Rni3pi is the centered and standardized genotype ma-

trix at pi SNPs, W i ˛Rpi3 m is the ancestry-specific eQTL effect-

size matrix, and Eg; i ˛Rni3m is random environmental noise.

Performing a TWAS using predicted gene expression requires the

latent ancestry-matched eQTL weights W i, which are unknown.

In practice, we use expression weights Ui estimated from an inde-

pendent, ancestry-matched eQTL reference panel using penalized

linear models (or Bayesian counterparts).1,2 We model the ith an-

cestry’s marginal TWAS summary statistics for the gene j with a

complex trait yi as ztwas; i; j ¼ 1
se;i

ffiffi
n

p
i

bGT

i; jy i, where bG i;j ¼ XiUi; j is

the predicted expression imputed by the eQTL panel. By algebraic

expansion for m genes, we have

ztwas; i ¼ Ui
TV iW ili þ 1

se; i

ffiffiffiffi
ni

p UT
i X

T
i εi;

where we re-parameterize the causal effects of gene expression as

li ¼
ffiffiffi
ni

p
se; i

a and the ancestry-matched LD at pi SNPs as V i ¼
n�1
i XT

i Xi. Assuming that expression weights Ui and causal effects

a are fixed, we can compute the sampling distribution of ztwas; i as

ztwas; i

�� Ui; V i � N
�
Ui

TV iW ili; U
T
i V iUi

�
;

and as sample size increases, UT
i V iUi asymptotically approaches

Ui
TV iW i.

Next, we model a prior distribution for the causal effects as li j c;
nis

2
c; i � N

�
0; Dc; i

�
, where Dc;i ¼ diag

�
nis

2
c; i

jcj ,c

�
, c is an m3 1

causal configuration binary vector (where cj ¼ 1 if the jth gene at

the region is causal and 0 otherwise), jcj denotes the number of

non-zero elements of c, and nisc; i
2 denotes the sample-size scaled

causal effect prior variance.10 We marginalize li out to obtain the

TWAS sampling distribution conditioned on a causal gene set as

ztwas; ij Ui; V i; c; nis
2
c; i � Nð0; JiDc;iJi þJiÞ;

where Ji ¼ UT
i V iUi is the estimated expression correlation ma-

trix. Therefore, downstream fine-mapping inference will not be

affected by ancestry-specific causal effect sizes of gene expression.

We assume that the causal genes underlying a complex trait are

shared across ancestries, which we model by sharing the c vector.

Since we do not know the causal genes indicated by c beforehand,

we adopt a Bayesian approach and compute the posterior for a

given causal configuration c as

Pr

�
c

���� nztwas; i; Ui; V i; nis
2
c; i

ok

i¼1
; f

�

¼ Prðcjf ÞQk
i¼1Nð0; JiDc;iJi þJiÞP

c0 ˛ CPrðc 0 jf ÞQk
i¼1Nð0; JiDc0 ;iJi þJiÞ

;

where Prðcjf Þ ¼ f jcjð1 � f Þðm � jcjÞ for some prior causal probabil-

ity f , and C is the space of causal gene configurations. In practice,

we set f to be 1
m0 where m0 Rm denotes the number of known but

not necessarily tested genes at the region. Intuitively, this reflects

the naive expectation that a given risk locus contains a single

causal gene. For computational tractability, we can constrain the

space defined by C to exclude complex configurations with jcj >
t for some reasonable threshold t (e.g., 3–5). In addition, our likeli-

hood, and thus posterior, depends on nis
2
c; i, which governs the

variance of scaled causal gene effects li. Previously, we recommen-
1390 The American Journal of Human Genetics 109, 1388–1404, Aug
ded using a genome-wide mean z2twas as a heuristic, which works

well under polygenic architectures10 but may perform poorly in

sparser situations. Motivated by Shi et al. (2016),39 here we

describe a local heuristic that estimates nis
2
c; i as

nis
2
c; i ¼ zT

twas; iJi
�1 ztwas; i � m ;

which is an unbiased estimator of causal effect variance aTJia (see

supplemental information). In the case of negative estimates, we

instead use zTtwas; iJi
�1 ztwas; i.

Computing posterior inclusion probabilities and

r-credible sets
Our model describes the posterior probability for a given causal

configuration c across ancestries; however, we are more interested

in the probability that a specific gene is causal across ancestries.

We define the PIP for the jth gene by marginalizing over all causal

configurations c where cj ¼ 1 as:

PIP
�
cj ¼ 1

��� nztwas; i; Ui; V i; nis
2
c; i

ok

i¼1
; f

	
¼

X
c0 ˛ C:c0j ¼1

Pr
�
c0

��� nztwas; i; Ui; V i; nis
2
c; i

ok

i¼1
; f

	
:

To capture the probability that none of the genes included in our

analysis explain the observed TWAS Z scores at a risk region, we

include the null model as a possible outcome in the credible set,

Pr

�
c

0 ¼ 0

���� nztwas; i; Ui; V i; nis
2
c; i

ok

i¼1

�
. To compute a r-credible

set,31–33 where r reflects the desired confidence that a gene set con-

tains a causal gene, we take a greedy approach that traverses genes

ordered decreasingly by their locus-normalized PIPs until the cu-

mulative sum reaches at least r.
Overview of the simulation pipeline
Here we provide a high-level summary of ourmulti-ancestry TWAS

simulation pipeline described in five main steps (Figure S1), with

details for each step described in the following sections. First, we

computed approximately independent LD blocks and sampled ge-

notypes for GWAS and eQTL reference panels in two ancestry

groups. Second, we simulated ancestry-matched eQTL data using

simulated eQTL reference genotypes from the first step, sampled

eQTL effects under a sparse architecture, and simulated gene

expression at causal and non-causal genes. Third, we simulated a

complex trait in the ancestry-matched GWAS data as a linear func-

tion of eQTL effects of the causal gene from the second step and

simulated GWAS genotypes from the first step. Fourth, we per-

formed ancestry-matched TWAS using penalized models fitted in

the respective eQTL reference panels. Fifth, we performed fine-

mapping using single-ancestry FOCUS and MA-FOCUS. We pro-

vide details for each step below.
Computing independent LD blocks and simulating

reference eQTL panels
We performed simulations using genotype data from phase three

of the 1000 Genomes Project (1000G) for individuals of European

(EUR; n ¼ 490) and African (AFR; n ¼ 639) ancestries (see

Table S1).40 We restricted genotypes to high-quality HapMap

SNPs and removed for missingness (>1%), MAF (<1%), and viola-

tions of Hardy-Weinberg equilibrium (HWE mid-adjusted

p < 1 3 10�5). To identify approximately independent regions

consistent with both EUR and AFR ancestries, we used a
ust 4, 2022



recently described extension of LDetect that considers LD infor-

mation frommultiple ancestries.21,41 Briefly, we constructed chro-

mosome-wide ancestry-matched LD matrices V i and computed a

chromosome-wide trans-ancestry LD matrix V trans such that it in-

corporates shared recombination loci across ancestries (see Shi

et al., 202021). Applying LDetect21,41 to V trans resulted in 1,278

approximately independent LD blocks. We sampled 100 blocks

that carried between five and eight annotated genes (based on

hg19 RefSeq release 63) as risk regions. Additionally, we extended

each LD block 500 kb upstream of the first gene’s transcription

start site (TSS) and 500 kb downstream of the last gene’s transcrip-

tion end site (TES) and updated V i accordingly.

At each risk region, we simulated ten genes whose expression is

under partial genetic control by first sampling the number of

eQTLs for the jth gene, kj ¼ maxð1; Poissonð2ÞÞ. Next, we assigned

kj SNPs uniformly at random to be eQTLs (out of p total for a given

locus) and simulated p31 effect-sizes vectorW i; j � N

�
0;

h2g
kj
Ip

�
at

the kj causal eQTLs and 0 at the p � kj non-causal SNPs where h2
g ˛

f0:01; 0:05; 0:1g is the proportion of variance in gene expres-

sion attributable to cis-eQTLs (i.e., SNP heritability of gene

expression).5,42

In addition, we simulated eQTLs as either independent or

shared across ancestries; in the former case, SNPs and their effect

sizes were chosen for each ancestry individually (under shared

h2
g and k parameters) as described above; in the latter, these were

chosen once and then fixed for all ancestries.34,35 Then, we simu-

lated an ni; eQTL3p centered and standardized continuous geno-

type matrix Xi; eQTL using a multivariate normal distribution

Nð0; V iÞwhere ni; eQTL is the ancestry-matched eQTL panel sample

size. For gene j, we calculated expression Gi; j according to Gi; j ¼
Xi; eQTL; jW i; j þ Eg; i; j, where Eg; i; j � N

�
0; s2g; i; j

�
1
h2g

� 1

�
In

�
is

random environmental noise for expression Gi; j, and s2g; i; j ¼
WT

i; jV i; jW i; j. To estimate ancestry-matched expression weights

Ui; j, we regressed Gi; j on Xi; eQTL; j using least absolute shrinkage

and selection operator (LASSO) regularization. To simulate eQTL

effects when only a genetically correlated proxy tissue is available,

we sampled proxy eQTL effects W�
i; j under a bivariate normal dis-

tribution as

�
W i; j; W

�
i; j

	
� N

0
@0;

2
4h2

g; i

.
kj rg

rg h2
g; �; i

.
kj

3
55 Ip

1
A;

where W i; j are the causal tissue eQTLs and rg ˛ f0; 0:3; 0:6;
0:9; 1g is the genetic covariance between two tissues.
Simulating complex traits and statistical fine-mapping

of TWASs
To reflect the practical reality that participants in GWASs and

eQTL panels are usually different, we re-simulated genotypes

Xgwas; i � Nð0; V iÞ at the risk region to compute GWAS summary

statistics while keeping eQTLs W i; j of the ten simulated genes

from the previous step. Then, we randomly sampled one gene as

causal and used its eQTLs to simulate a complex trait yi as

y i ¼ Gi; jaj þ εi ¼ Xgwas; i; jW i; jaj þ εi;

where aj � Nð0; 1Þ is the causal gene expression effect,

εi � N
�
0; s2i

�
1

h2
GE

� 1
	
In

	
is random environmental noise for yi
The American
(where s2i ¼ WT
i; jV iW i; ja

2
j ), and h2

GE ˛ f0; 1:71 310�5;

1:14310�4; 7:57310�4; 5:03310�3g is the proportion of com-

plex trait variation explained by the genetic component of gene

expression. Next, to compute ancestry-matched GWAS summary

statistics, we performed linear regression on y i marginally for

each SNP in Xgwas; i and calculated GWAS Z scores zgwas; i using

the resulting Wald test statistic. We then performed an ancestry-

matched summary-based TWAS ztwas; i using the predicted expres-

sion Ui for each gene with ztwas; i ¼ UT
i zgwas; i.

Lastly, we performed TWAS fine-mapping using single-ancestry

FOCUS10 and MA-FOCUS on ztwas; i to generate 90% credible sets

for each ancestry and under the jointmodel, respectively. To deter-

mine whether the improvement of MA-FOCUS is solely due to

increased sample sizes, we also evaluated a ‘‘baseline’’ approach.

Specifically, the baseline approach consists of computing meta-

analyzed GWAS statistics as ~zgwas ¼ vEURbgwas; EURþ vAFR bgwas; AFR

ðvEUR þ vAFRÞ1=2
, where

vi ¼ 1=se2gwas; i is the inverse variance weight. Rather than

constructing meta-analysis expression weights, ~ztwas is then

computed by using the EUR expression weights UEUR. Finally, we

conducted fine-mapping on ~ztwas using single-ancestry FOCUS

and computed 90% credible sets. In all, we ran four methods

(EUR FOCUS, AFR FOCUS, baseline, and MA-FOCUS) on 100 LD

blocks to output one credible set per LD block per method. To

test whether including information from additional ancestries of

diverse genetic ancestries increases the performance of MA-

FOCUS, we evaluated scenarios including individuals simulated

using 1000G East Asian (EAS; n ¼ 481) ancestry data40 (Table S1)

and performed MA-FOCUS on three ancestries by fixing per-

ancestry eQTL sample size, h2
g , and h2

GE and allowing the total

GWAS sample size to vary.
Simulating ancestry-specific genetic architectures and

data-missing cases
To characterize the performance of MA-FOCUS when the medi-

ating gene-trait heritability h2
GE is ancestry specific, we simulated

cases with varied h2
GE values in one ancestry group while keeping

it fixed in the other to represent heterogeneity in genetic architec-

tures. Additionally, in practice, eQTL panels for a particular tissue

of interest may be either unavailable or underpowered due to the

small sample size. To evaluate the performance of MA-FOCUS in

cases where relevant eQTL data are unavailable,43 we tested two

scenarios that used different types of ‘‘proxy’’ data.1,8,10,34,35,44

First, we simulated cases where the trait-relevant tissue was un-

available in AFR, and a proxy tissue from the same ancestry with

correlated gene expression was substituted. Second, we simulated

cases where eQTL weights for AFR were entirely unavailable, and

weights from EUR were used instead. The latter differs from the

baseline approach in that the TWASs and FOCUS were conducted

with ancestry-matched, not meta-analyzed, GWAS results.
Description of simulation parameters and fine-mapping

performance metrics
We compared MA-FOCUS results to single-ancestry FOCUS results

for EUR and AFR and the baseline approach across multiple simu-

lations, which varied according to whether or not eQTLs were

shared. We also varied four additional parameters: GWAS sample

sizes, eQTL panel sample sizes, cis-SNP heritability of gene expres-

sion (cis-h2
g ), and the proportion of trait variance explained

by genetically regulated gene expression (h2
GE). Unless stated other-

wise, the simulation parameters were set to defaults of 100,000 for
Journal of Human Genetics 109, 1388–1404, August 4, 2022 1391



the per-ancestry GWAS sample size, 200 for the per-ancestry eQTL

panel size, expression cis-h2
g ¼ 0:05, and trait h2

GE ¼ 7:573 10�4.

We evaluated fine-mapping performance based on three metrics:

mean PIP of the causal genes, mean 90% credible set size, and fre-

quency with which the causal genes are included in 90% credible

sets per simulation (sensitivity). In addition, we fit linear regres-

sion adjusted for corresponding parameters to report one-sided

Wald test p values.
Fitting SNP-based prediction models of LCL expression

in the GENOA study
To calculate ancestry-specific gene expression weights in real data,

we used genotype and lymphoblastoid cell line (LCL) derived gene

expression data from European ancestry (EA) and admixed African

American (AA) individuals from the GENOA study.37 Genotype

data were generated using Affymetrix and Illumina genotyping ar-

rays; in total, 1,384 EA and 1,263 AA individuals were assayed on

the Affymetrix 6.0 array, 20 EA and 269 AA on the Illumina 1M

array, and 103 EA on the Illumina 660 k array. All genotype

data analyses were conducted using PLINK 1.9, vcftools, and

bcftools.45–48 We imputed genotype data using the TOPMed

server, implementing Minimac4 v1.0.2 and eagle v2.4 phasing

based on GRCh38.49 Each ancestry dataset was imputed sepa-

rately, except for EA individuals assayed on Illumina arrays, which

we merged prior to imputation. We retained biallelic SNPs with

good imputation quality (r2 > 0:6) for both EA and AA cohorts

AND removed for MAF <1% and for HWE p < 1 3 10�6, resulting

in 1,160,917 and 1,330,340 quality-controlled (QC) SNPs for EA

and AA, respectively. We used GCTA50 to compute genotype prin-

cipal components (PCs) and genetic relatedness matrices within

the EA and AA cohorts after further filtering for SNPs with imputa-

tion r2 > 0:9 and low pairwise LD (using –indep-pairwise 200 1

0.3 in PLINK46). We filtered out individuals such that no pair ex-

hibited a relatedness coefficient greater than 0.05, resulting in

373 EA and 441 AA individuals. For downstream eQTL model

fitting, we used only HapMap v3 SNPs.51

Expression data for the EA and AA cohorts were assayed at

16,944 and 32,881 genes (overlap of 14,797) on the Affymetrix

Human Exon 1.0 and Affymetrix Human Transcriptome 2.0 ar-

rays, respectively, and processed by Shang et al.37 After lifting

over the expression data to GRCh38, for each gene in its respective

ancestry, we ran FUSION1,7,9 to estimate cis-h2
g , and to calculate

ancestry-specific eQTL weights, limiting the analysis to SNPs fall-

ing within a window including 500 kb upstream and downstream

of each gene’s TSS and TES, respectively. We included 30 gene

expression PCs, five genotype PCs, age, sex, and genotyping plat-

form as covariates in building SNPmodels.1,7,9We identified 3,680

and 4,291 genes in EA and AA, respectively, with an estimated cis-

h2
g of at least 0.01 (nominal p < 0.01) of which 2,496 genes over-

lapped both ancestries. We limited our downstream analyses to

4,646 unique genes that had evidence for significant cis-h2
g , as

defined above, in either ancestry and non-zero weights in both

ancestries.1,7,9
Global ancestry estimates of GENOA participants
To estimate global ancestry proportions for African American indi-

viduals in the GENOA study, we ran ADMIXTURE52 on genotype

data. First, we merged the imputed and filtered GENOA genotypes

with 1000G phase three genotype data40 of 1,436 individuals

from additional ancestries in Africa, Europe, and the Americas

(Table S2). We removed the combined genotype data for missing-
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ness>1%,MAF<1%, and HWE p< 13 10�6. We also removed all

palindromic variants and filtered for pairwise LD (using –indep-

pairwise 200 1 0.3 in PLINK46). This resulted in 479,763 SNPs

being retained for analysis. Next, we ran 30 replicates of

ADMIXTURE for K ¼ 3 using a random seed and the default pa-

rameters.52 Finally, we used pong53 to identify a single mode

across all replicates and to visualize the results.
Validation of LCL prediction models in GEUVADIS
To validate our estimated ancestry-specific gene expression

weights derived from the GENOA study,37 we obtained paired ge-

notypes and LCL-derived mRNA expression data at 22,721 genes

for 373 EUR participants and 89 Yoruba in Ibadan (YRI) partici-

pants from the GEUVADIS study.54 First, we performed the same

relatedness- and variant-based filtering described above, resulting

in 358 EUR and 89 YRI participants and 8,403,216 and

14,855,241 SNPs, respectively. Next, focusing on the 4,581 genes

that overlapped with GENOA, we performed FUSION1,7,9 to esti-

mate cis-h2
g of LCL gene expression in GEUVADIS and compute

ancestry-specific eQTL weights analogously to the GENOA

described above adjusted for participants’ sex and three genotype

PCs.50 Finally, we predicted LCL expression for GEUVADIS and

GENOA participants using GENOA-based and GEUVADIS-based

expression weights, respectively, and calculated the coefficients

of determination (r2) between corresponding predicted and

measured expression levels.
TWAS and fine-mapping of 15 blood traits from GWAS

summary data
We obtained published GWAS summary statistics for 15 blood

traits (Table S3) from Chen et al.18 After lifting SNPs over to

GRCh38 and updating their identifiers to dbSNP v153, we used

LDSC munge55 to perform quality control by keeping summary

statistics based on imputation INFO scores >0.9, MAF >0.01,

and chi-squared statistics <80 to limit the influence of outlier

SNPs. We flipped alleles as necessary for consistent orientation

across European-ancestry and African-ancestry GWAS statistics.

The average GWAS sample size was 511,471 for European and

13,298 for African ancestries across all SNPs and 15 blood traits, re-

flecting an approximately 40-fold difference in sample sizes. As in

our simulations, we calculated TWAS Z scores of EA, AA, and the

baseline approach for each trait by leveraging corresponding

GWAS summary statistics in Chen et al.,18 FUSION-fitted LCL

eQTL reference weights in GENOA,1,37 and reference LD estimated

from 1000G individuals.40 To validate our TWAS results, we re-per-

formed TWAS analyses using LCL eQTL weights fitted from the

GEUVADIS reference data.

To quantify the extent to which LD blocks that contained TWAS

significant signals (maximum p < 0.05/4,579, the number of

genes with TWAS statistics) but did not exhibit GWAS significant

signals (minimum p > 5 3 10�8, the genome-wide threshold)

had increased GWAS signals on average, we performed a permuta-

tion test that first sampled from all LD blocks that did not exhibit

GWAS signals, agnostic to TWAS signal, then computed the

average GWAS chi-squared statistics at the sampled region, and

last computed an empirical value that counted how frequently

these sampled regions exhibited stronger signals than the original

observed statistics.

To shed light on ancestry similarity in genetic architecture, we

first computed the cross-ancestry correlations and their corre-

sponding standard errors of GWAS and TWAS normalized Z scores
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for each trait using a blocked jackknife approach.We normalized Z

scores by dividing original Z scores by the square root of GWAS

sample sizes (for TWAS, it is GWAS sample sizes of the most signif-

icant eQTL in the gene) to account for sample size differences. To

compute an average across all 15 blood traits, we meta-analyzed

individual correlations across 15 blood traits and tested the differ-

ence with pooled standard errors. Second, we estimated TWAS ef-

fect sizes from the original Z scores as a ¼ ztwasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Neqtl; gwas�h2g

p and tested

for a difference in means across ancestries using a two-sample

t test.8

Next, we fine-mapped the original resulting TWAS Z scores us-

ing MA-FOCUS, single-ancestry FOCUS, and the baseline

approach, focusing on independent genomic regions (e.g., LD

blocks computed by LDetect and lifted over to GRCh38)41 that ex-

hibited transcriptome-wide significant signals in both EA-specific

and AA-specific TWAS. We annotated genes based on their inclu-

sion in the 90% credible set, as described above. To validate our

fine-mapping results, we re-ran MA-FOCUS on the GEUVADIS-

based TWAS Z scores. Given that not all genes tested for associa-

tion in GENOA data have corresponding weights computed in

GEUVADIS, we restricted on overlap genes and calculated how

well inferred PIPs correlate across genes assayed in either dataset,

and how often the rank of lead genes in GENOA (i.e., highest

PIP in a credible set) changed.

To provide evidence of the causal genes being shared rather than

ancestry specific, we performed a Bayesian model comparison.

Specifically, we used PIPs computed fromMA-FOCUS and individ-

ual ancestry FOCUS to calculate log-Bayes factors (logBF) for each

gene in an MA-FOCUS credible set as

logBF ¼ log

�
PIPMA� FOCUS

PIPEAð1 � PIPAAÞ þ PIPAAð1 � PIPEAÞ
�
:

Here, genes with large positive logBF values have better statisti-

cal support for shared causal roles than ancestry-specific genes.

Validation of blood trait fine-mapping results
To determine if the genes prioritized by MA-FOCUS are more bio-

logically meaningful than those prioritized by other methods, we

validated credible sets using three different approaches. First, we

performed a gene set enrichment analysis for genes identified in

credible sets (i.e., aggregating genes identified across all loci) for

a given fine-mapping method and blood trait using the R package

enrichR.56,57 We manually selected 20 trait categories related to

hematological measurement in DisGeNET, a database of curated

gene-trait associations,38 based on the most relevant body system

using MeSH (see web resources) and The Experimental Factor

Ontology (EFO)58 hierarchies (Table S4). We counted the number

of significantly enriched categories with Bonferroni correction

(p < 0.05/n, where n is the number of enrichment testing) for

each method and performed meta-analyses on these categories us-

ing Fisher’s method. Second, we performed enrichment analyses

directly comparing fine-mapped gene sets of blood traits in

Chen et al.18 with the counterparts in DisGeNET.38 Third, we eval-

uated gene sets using a previously published ‘‘silver standard’’ (see

web resources) to determine whether they better predict causal

genes of 159 blood-related Mendelian and rare diseases

(Table S5). Since these diseases are monogenic or oligogenic, their

causal genes are affirmative in high confidence and are likely to

have moderate effects on blood-related complex traits. Leveraging

the database from Online Mendelian Inheritance in Man (OMIM)

and Orphanet, we performed logistic regression to calculate the
The American
area under the receiver operating characteristic (AUROC) within

each method and each blood-related trait in Chen et al.18
Results

MA-FOCUS improves power to identify causal genes in

simulations

We first evaluated the performance of MA-FOCUS in simu-

lations and compared it with the baseline approach, which

consists of GWAS meta-analysis across ancestries followed

by TWASs and fine-mapping with a single ancestry’s

weights (see material and methods). Briefly, we simulated

a complex trait as a function of genetically regulated

gene expression for both ancestries when the causal tissue

was known (see material and methods) while varying

GWAS and eQTL sample sizes and features of the underly-

ing genetic architecture. Across all simulation scenarios

where causal eQTLs were independent across ancestries,

we found MA-FOCUS reported higher PIPs for causal genes

than the baseline approach (0.62 compared with 0.45; p ¼
9.053 10�40), smaller credible sets (4.89 compared to 6.62;

p ¼ 2.13 3 10�131), and higher sensitivity (88.30%

compared to 81.30%; p¼ 9.353 10�9). Specifically, consis-

tent with previous TWASs and TWAS fine-mapping simula-

tion studies,1,10 performance improved as GWAS and eQTL

sample sizes increased, likely reflecting increased statistical

power (Figures 2 and S2). In addition, we found that

increasing eQTL panel size affected MA-FOCUS sensitivity

more dramatically than increasing GWAS sample size.

For instance, increasing the eQTL panel size 2-fold, from

200 to 400, improved sensitivity from 91% to 97%,

whereas the same proportionate increase in the GWAS

sample size, from 100,000 to 200,000, increased sensitivity

from 91% to 93% (Figures 2 and S2). Furthermore, we re-

performed these simulations assuming that the causal

eQTLs were shared across ancestries and observed that

MA-FOCUS consistently outperformed the baseline

(Figure S3). However, this performance advantage was

slightly attenuated compared to the independent eQTL

setting, highlighting the ability of MA-FOCUS to improve

performance while being agnostic to eQTL architecture.

Hereafter, we focused on presenting results where eQTLs

were simulated independently in each ancestry to high-

light the potential advantage of MA-FOCUS in real-world

applications where eQTLs exhibit heterogeneity across

ancestries.37

Next, we sought to quantify the increases in fine-map-

ping power that could be gained by including individuals

from diverse genetic ancestries rather than increasing the

sample size of a single-ancestry GWAS. Specifically, we

assumed an existing eQTL panel of 200 individuals for

AFR and EUR ancestries and compared the performance

of MA-FOCUS with single-ancestry fine-mapping, given a

fixed number of total GWAS participants. We found that

MA-FOCUS estimated higher PIPs at causal genes (mean

of 0.67 compared to 0.57; p ¼ 0.01) and produced credible
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Figure 2. MA-FOCUS outperforms the baseline approach in all three metrics as GWAS sample sizes vary when eQTLs are indepen-
dent across ancestries
(A–C) Posterior inclusion probabilities (PIPs) for 100 simulated causal genes (A), the distribution of 90% credible set sizes for 100 simu-
lated gene regions (B), and the sensitivity (C) fromMA-FOCUS, and baseline approach, varying genome-wide association study (GWAS)
sample sizes across multi-ancestry ancestries. See the material and methods for default parameters. The black dashed lines indicate 90%.
Error bars are constructed using a 95% confidence interval.
sets containing fewer genes (mean of 4.86 compared to

5.33; p ¼ 0.03) with better sensitivity (0.91 compared to

0.83; p ¼ 0.01) when compared with those computed

from FOCUS applied to equivalently powered EUR-only

TWAS data (Figure S4). This relative performance advan-

tage held when we compared two-ancestry to three-

ancestry scenarios (Figure S5). Consistent with previous

multi-ancestry SNP-based fine-mapping approaches,20,27

our results suggest that incorporating additional ancestry

genetic diversity in GWASs drives more significant payoffs

in fine-mapping performance than simply increasing the

sample sizes of GWASs on previously studied ancestries.

To evaluate the performance of MA-FOCUS as a function

of the underlying genetic architecture, we next performed

simulations varying the cis-SNP heritability of gene

expression (cis-h2
g ) and the proportion of trait heritability

attributable to a causal gene (h2
GE). Across architectures,

MA-FOCUS significantly outperformed the baseline (p ¼
2.52 3 10�14 for PIP metric, p ¼ 7.45 3 10�49 for credible

set metric, and p ¼ 3.61 3 10�4 for sensitivity; Figures S6

and S7). Moreover, when there is no causal gene effect

(i.e., h2
GE ¼ 0), we found that MA-FOCUS returned larger

PIPs for the null model (p ¼ 2.883 10�5) and smaller cred-

ible sets (p ¼ 1.64 3 10�25) on average compared with the

baseline (Figure S7). Our results show that MA-FOCUS is

better powered than the baseline to identify the true causal

model, including the null model, across a range of herita-

bilities for gene expression and the overall trait.

Multi-Ancestry FOCUS is robust to genetic-architectural

and data-dependent assumptions

Next, we sought to characterize the performance of MA-

FOCUS when assumptions of the underlying model were

partially violated. First, we simulated a complex trait where

the mediating gene-trait effects differed across ancestries
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by setting ancestry-specific h2
GE values (i.e., fixed for EUR

and varying for AFR across a range; see material and

methods). Again, we found that MA-FOCUS consistently

reported higher PIPs for causal genes (p ¼ 3.42 3 10�11)

and smaller 90% credible sets (p¼ 6.803 10�33) compared

with the baseline (Figures 3 and S8). Furthermore, the

sensitivity of gene sets reported by MA-FOCUS was robust

to up to 7-fold differences in ancestry-specific h2
GE (i.e.,

7:57310�4 for EUR compared to 1:14310�4 for AFR).

Only when the AFR h2
GE was �2% of the EUR h2

GE

(7:57310�4 for EUR compared to 1:71310�5 for AFR) did

we find MA-FOCUS performance to degrade, which was

consistent with reduced statistical power under a fixed

sample size. Together, these results show that MA-FOCUS

is generally robust to ancestry-specific architectures.

To investigate the impact of imbalanced GWAS sample

sizes, we performed simulations matching the sample

sizes of a recent multi-ancestry blood trait GWAS18

(nEUR ¼ 511;471 and nAFR ¼ 13;298; see material and

methods). In this setting, MA-FOCUS computed credible

sets that were smaller compared to the baseline (p ¼
3.54310�6; Figure S9B)with similarmeanPIPs at the causal

genes (p ¼ 0.13; Figure S9A) and sensitivity (p ¼ 0.17;

Figure S9C). This demonstrates that, evenwhenGWASsam-

ple sizes vary by an order of magnitude across ancestries,

MA-FOCUSprovides improvedfine-mapping performance.

Next, we performed simulations where the trait-relevant

tissue for AFR was unavailable and was substituted with

eQTL data quantified in a proxy tissue with correlated ge-

netic effects (see material and methods). The performance

of MA-FOCUS was highly dependent on the underlying

correlation between proxy and causal tissues and increased

with increasing inter-tissue genetic covariance, as expected

(Figure S10). We again observed that MA-FOCUS outper-

formed the baseline approach and AFR FOCUS across all
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Figure 3. MA-FOCUS remains robust in having higher causal gene PIPs when trait heritability mediated by gene expression differs
across ancestries
Distribution of inferred PIPs at the causal gene when the trait architecture varies across ancestries. We fixed trait variation explained by
causal gene expression to h2

GE ¼ 7:57310�4 for simulated European (EUR) individuals while varying its amount in African (AFR)
individuals. The orange and purple dotted lines indicate the mean and the median of PIPs using EUR FOCUS. The black dashed lines
indicate 90%.
metrics (p < 1 3 10�7 for all PIP and credible set metrics,

p ¼ 0.02 with MA-FOCUS/baseline comparison, and p ¼
0.09 with MA-FOCUS/AFR FOCUS comparison for sensi-

tivity; Figure S10).

Finally, we performed simulations where eQTL reference

panels for AFR were unavailable and EUR weights were

used instead for TWASs and fine-mapping. We found that

the relative performance of MA-FOCUS was mixed across

different metrics, estimating similar causal PIPs and sensi-

tivity (p ¼ 0.32 and 0.34; Figures S11A and S11C) and

smaller credible set sizes (p ¼ 3.73 3 10�9; Figure S11B).

In all, this highlights the importance of a multi-ancestry

study design collecting gene expression data from different

ancestries when possible.

Multi-ancestry TWAS identifies shared architecture in

blood traits

After confirming that MA-FOCUS outperforms other

methods of TWAS fine-mapping, we next sought to apply

it to real data from cohorts of European (EA) and African

(AA) ancestries. We performed ancestry-matched TWASs

for 15 blood traits using GWAS summary statistics18

(Tables S3 and S6; nEA ¼ 511,471, nAA ¼ 13,298) together

with an eQTL reference panel of LCLs from the GENOA

study37 (eQTL: nEA ¼ 373, nAA ¼ 441; see material and

methods). First, we estimated SNP heritability (cis-h2
g ) for

expression at 14,797 genes assayed in EA and AA GENOA

cohorts (see material and methods). We observed that,

across all genes, cis-h2
g was significantly non-zero with an

average of 0.057 for EA compared to 0.072 for AA

(p < 1 3 10�100 for both tests). Furthermore, focusing on

the 4,646 genes whose expression was significantly herita-

ble in at least one of the cohorts, cis-h2
g estimates were

positively correlated across ancestries with r ¼ 0.45

(p < 1 3 10�100 for both tests against 0 and 1; Figure 4A),
The American
which is consistent with previous results suggesting that

the genetic architecture of gene expression is significantly

shared across ancestries.37 Next, we trained prediction

models using the FUSION pipeline and performed in-sam-

ple validation with 5-fold cross-validation (CV; see mate-

rial and methods). We found that CV r2 was significantly

non-zero (EA CV r2 ¼ 0.105; AA CV r2 ¼ 0.110;

p < 1 3 10�100 for both), which were strongly correlated

with cis-h2
g estimates (r ¼ 0.93 with p < 1 3 10�100 for

both; Figure S12), suggesting that in-sample prediction

models perform well and are consistent with the theory

that heritability provides a predictive upper bound.37,42,59

Next, we further validated the predictive performance of

LCL expression models by evaluating their out-of-sample

performance in the European- and Yoruba-ancestry co-

horts (EUR and YRI, compared with GENOA EA and

GENOA AA, respectively) of the independent GEUVADIS

study (see material and methods).54 While YRI is not an

ideal ancestry proxy for admixed African Americans, we

expect a significant degree of genetic similarity between

the two given that 441 GENOA AA individuals had

an average West African ancestry proportion of 83%

(Figures S13 and S14), which YRI is commonly used to

represent.37 Focusing on 4,581 genes that overlapped

with GENOA, we calculated out-of-sample r2 between

measured LCL gene expression from GEUVADIS individ-

uals and predicted expression using inferred GENOA-based

weights. We found that r2 estimates between measured

expression from GEUVADIS individuals and expression

predicted using GENOA-based weights were significantly

correlated with estimates of GEUVADIS cis-h2
g , with r ¼

0.85 and 0.56 for EUR and YRI (p < 1 3 10�100 for both

tests against 0; p < 1 3 10�40 for testing correlation differ-

ence; Figures 4B and 4C).60 The comparatively poorer per-

formance of our AA expression weights in the GEUVADIS
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Figure 4. Heritability and correlation analysis reveal evidence for shared genetic architecture for expression in LCLs
(A) The scatter plot for the SNP heritability (cis-h2

g ) of lymphoblastoid cell line (LCL) gene expression for African American (AA) and Eu-
ropean American (EA) ancestry in the GENOA study.
(B and C) The scatterplots where the y axis is a squared correlation (r2) between measured LCL gene expression in GEUVADIS and pre-
dicted by eQTL panels fromGENOA, and the x axis is cis-h2

g . Each point represents a gene. The blue line is estimated using ordinary linear
regression.
YRI was not unexpected, given the ancestry differences be-

tween the Yoruba people and African Americans discussed

above, which likely impacted the genetic regulation of

gene expression. Indeed, we found that cis-h2
g for AA and

YRI were less correlated than EA and EUR (r ¼ 0.27 and

0.49 with p < 1 3 10�75 for both tests against 0;

p < 1 3 10�40 for testing correlation difference).60

Next, we evaluated across-ancestry prediction perfor-

mance by predicting LCL gene expression levels for

GEUVADIS EUR individuals using GENOA AA weights

(similarly for GEUVADIS YRI and GENOA EA) and esti-

mated an average of r2 ¼ 0.040 and 0.033 for EUR and

YRI (p < 1 3 10�100 for both tests; Figure S15). Consistent

with the previous work,59 we found a decrease in accuracy

for GEUVADIS YRI individuals compared to within-

ancestry results (p ¼ 1.75 3 10�31) and similar levels of ac-

curacy for GEUVADIS EUR (p ¼ 0.09). In addition, we

observed that GENOA data had a higher estimate of LCL

cis-h2
g , and its corresponding weight produced higher pre-

diction accuracy for both ancestries than GEUVADIS data

(p < 6.33 3 10�15 for all tests; see supplementary note).

Together, these results demonstrate that predictionmodels

using the GENOA dataset accurately capture the heritable

component of gene expression within ancestry groups

and recapitulate previous findings on the limited trans-

portability of cross-ancestry prediction models for gene

expression.37,59,61,62

Having validated our SNP-based LCL expression predic-

tion models, we conducted multi-ancestry TWASs for

each of the 15 blood traits on 4,579 genes in 989 unique

independent regions (see material and methods). Across

all traits, we identified a total of 6,236 (2,009 unique)

and 116 (57 unique) genome-wide TWAS significant genes

in EA and AA, respectively, in 3,032 (622 unique) regions

(p< 0.05/4,579, the number of genes with TWAS statistics;
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Figure 5A; Table S7; see data and code availability for the

full results). We observed 28 (17 unique) genes signifi-

cantly associated in both ancestry groups across 23 (11

unique) regions. Of the 8,243 trait-matched LD blocks

that contained genome-wide significant signals (p < 5 3

10�8) in either ancestry or themeta-analysis, 2,940 also ex-

hibited transcriptome-wide significant signals in either

ancestry. Conversely, 115 trait-matched LD blocks con-

tained transcriptome-wide significant signals that did not

exhibit genome-wide significant signals, which we consid-

ered as putative novel risk regions. We observed that these

115 regions exhibited greater GWAS signals on average

when compared to their trait-matched genomic back-

ground (p ¼ 0.001, 0.02, and 0.001 for EA, AA, and meta-

analysis; see material and methods). Of the 3,032 (622

unique) LD blocks containing TWAS hits, 1,329 (315

unique) contained multiple TWAS significant associations

(average 3.60 genes per region), thus motivating the use of

gene fine-mapping.

To validate our multi-ancestry TWAS associations, we

re-performed TWASs using GEUVADIS-derived predic-

tion models (see material and methods). Of the 6,352

significantly associated genes from GENOA across 15

traits and two ancestries, 4,315 were assayed in

GEUVADIS, and 2,265 exhibited transcriptome-wide sig-

nificance (p < 0.05/4,579). Overall, we observed stron-

ger TWAS signals using GENOA-derived weights (mean

chi-squared statistics of 8.74 and 1.24 for EA and AA)

compared with GEUVADIS-derived models (mean chi-

squared statistics of 8.11 and 1.13 for EUR and YRI;

p ¼ 0.002 and 7.16 3 10�7, respectively), suggesting

that the larger sample size in GENOA LCL data has

improved prediction accuracy and TWAS performance

when compared with the smaller GEUVADIS LCL

dataset.
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Figure 5. The TWAS Manhattan plot indicates highly correlated genes in certain regions
(A) The upper plot is the Manhattan plot for European American (EA) TWAS and the lower is for African American (AA) TWAS across all
15 blood traits. Colors differentiate adjacent chromosomes.
(B) Cross-ancestry correlations (r) of normalized TWAS and GWAS effect sizes (see material and methods). Each point represents a trait
(see Table S3 for each trait’s full name). The red line is the identity line. Error bars are constructed using a 95% confidence interval.
Lastly, we investigated how gene- and SNP-level effect

sizes differ across ancestry groups. Both normalized

GWAS and TWAS Z score correlations between EA and

AA were significantly non-zero for all traits (Table S8;

Figure S16; see material and methods). Interestingly, we

found that across-ancestry correlations were 20% higher

on average for TWAS-based gene effects than GWAS-based

SNP effects (r ¼ 0.061 and 0.052, respectively; p ¼ 0.028;
The American
Figure 5B; Table S8), which is consistent with previous

findings demonstrating that predicted transcriptomic risk

scores better correlate across ancestry groups59,63,64 and

suggests that gene-level effects on average better reflect

shared biology compared with SNP-level effects.36 In addi-

tion, we observed little support that TWAS-based gene ef-

fects sizes differ across EA and AA (p¼ 0.57), shedding light

on ancestry similarity in the genetic architecture of LCL.
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Figure 6. Credible sets output by MA-FOCUS have higher mean PIPs and lower standard deviation while exhibiting similar credible
set size of EA FOCUS and the baseline approach
(A) Violin plot of the mean of gene PIPs in credible sets.
(B) Violin plot of the standard deviation of gene PIPs in the credible sets.
(C) The bar plot of the count for each credible set size. Calculations do not include null models. The black dashed lines indicate 90%. The
methods include European American (EA) FOCUS, African American (AA) FOCUS, MA-FOCUS, and the baseline.
Multi-ancestry fine-mapping prioritizes likely causal

genes in blood traits

Next, we applied MA-FOCUS to TWAS results for blood

traits focusing on 163 genes overlapping the 11 unique

regions that contained TWAS signals for both EA and

AA ancestry for a given trait (see material and methods).

Across these 23 trait-specific regions, each contained an

average of 6.13 TWAS significant associations across an-

cestries and 3.17 genes in the 90%-credible gene set,

none of which included the null model. We estimated

an average of 2.88 causal genes per region by summing

over local PIPs in the credible sets, with 19 out of 23

credible sets containing three or fewer genes (Table S10;

see data and code availability). The average maximum

PIP across credible sets was 0.99 (SD ¼ 0.02) and retained

similar PIPs for the second and the third rank

(Figure S17). Then, we compared credible gene sets across

different approaches. Although estimated PIPs correlated

between MA-FOCUS and the baseline (Figure S18A), we

observed MA-FOCUS output higher means and smaller

SDs of PIPs (P < 0.05 for all tests; Figure 6). Despite

this, MA-FOCUS obtained a smaller credible gene set

on average (3.17) compared to the baseline (3.35); how-
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ever, this result was not significant due to low statistical

power (p ¼ 0.22; Figure 6). In addition, EA FOCUS did

not prioritize 30 out of 73 trait-gene pairs in MA-FOCUS

credible gene sets and missed 7 out of 23 lead genes, sug-

gesting that incorporating non-European data in well-

powered loci can prioritize additional putative causal

genes (Figure S19A). We observed little support for a dif-

ference in the percentage of genes co-prioritized by AA

FOCUS/MA-FOCUS (40.2%) compared with EA FOCUS/

MA-FOCUS (49.5%; two-sample proportion test p ¼
0.24; Figure S19B), suggesting that contributing ancestry

groups do not disproportionately influence prioritized

genes. To determine the extent to which prioritized

genes are likely to be shared or ancestry specific, we per-

formed a model comparison using Bayes factors

computed from MA-FOCUS and FOCUS PIPs (see mate-

rial and methods). We observed an average log-scale BF

of 1.44 (SD ¼ 3.76), suggesting that credible-set genes

underlying these blood traits are much more likely to

be shared across ancestries than ancestry-specific genes

(Figure S20). For instance, NPRL3 in the trait mean

corpuscular volume (MCV) had a logBF of 17.1, which

we discuss below (Figure S20).
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Figure 7. Genes prioritized by MA-FOCUS are enriched in hematological categories more often than other methods
(A) The bar plot shows the number of enriched categories in DisGeNET identified by each method within the hematological-measure-
ment-related category. The enriched category is defined as Bonferroni-corrected p value less than 0.05.
(B) The dot plot shows enrichment � log10P by categories in DisGeNET corresponding to eight blood traits. See Table S3 for each trait’s
full name. EA represents European American ancestry and AA represents African American ancestry.
To investigate the stability of MA-FOCUS results, we re-

performed fine-mapping, varying the maximum number

of causal genes allowed in a configuration (see material

and methods), and found that although inferred PIPs

were relatively stable (p ¼ 5.07 3 10�51), credible gene

set sizes were sensitive to the upper bound on causal

genes (see supplemental information; Figure S21). More-

over, to validate our results using eQTL weights in

GEUVADIS, of the 49 genes in GENOA-based credible

sets, 17 had GEUVADIS-weight-derived results with a PIP

correlation estimate of 0.84 (p ¼ 2.05 3 10�5). In addi-

tion, 9 out of 17 genes were the lead genes from

GENOA, and among these 9 genes, 8 remained lead genes

from GEUVADIS, suggesting that our findings are robust

when integrating different expression data from a similar

context (LCL).

Next, we investigated genes to which MA-FOCUS as-

signed a high PIP (> 0:75) and which were included in

a credible set but not identified by the baseline approach.

We refer to these genes hereafter as the ‘‘MA-FOCUS-spe-

cific genes.’’ We also examined the converse situation:

genes for which the baseline approach found strong sup-

port but that were not prioritized by MA-FOCUS, referred

to as the ‘‘baseline-specific genes.’’ Importantly, we found

that all 22 baseline-specific genes had low PIPs (< 0:1)

from ancestry-specific fine-mapping in at least one

ancestry, while 11 of these genes had a low PIP in both

ancestries. On the other hand, only 1 out of 31 total

MA-FOCUS-specific genes had PIPs below 0.1 in both

AA and EA. We found that 6 out of 31 total MA-FOCUS-

specific genes achieved a moderate PIP of at least 0.25 in

both EA and AA ancestry-specific fine-mapping (ARNT,

BAK1, MRPL28, NPRL3, PHTF1, and TARS2; Figure S22),

suggesting that MA-FOCUS is better able to identify genes

that have evidence of causality in at least one ancestry,

while the baseline approach identifies genes that have
The American
weak or no evidence of causality in either ancestry. A liter-

ature search for these six MA-FOCUS-specific genes un-

covered additional evidence for roles in cardiovascular

system disease and development (specifically, blood cell

and vasculature formation, diabetes, leukemia, coronary

artery disease, and cardiomyopathy; Figure S23).65–75

Overall, this result suggests that by appropriately mod-

eling across-ancestry heterogeneity, MA-FOCUS can prior-

itize disease-relevant genes that naive meta-analyses

would otherwise miss.

Lastly, to validate genes prioritized by MA-FOCUS and

the baseline approach, we performed a series of tests

comparing the credible sets (see material and methods).

First, we performed gene set enrichment analysis on the

credible-set genes using the DisGeNET dataset across all

15 blood traits. We found that MA-FOCUS’s credible

sets were enriched more in hematological measurement

categories than the baseline approach (23 and 13 cate-

gories, meta-analysis p value of 2:36310�15 compared

to 2:913 10�11; Figure 7; Table S11). Second, by restrict-

ing our focus to trait-matched DisGeNET enrichment

categories, we observed that MA-FOCUS output more

significantly enriched credible gene sets than the base-

line approach (meta-analysis p value of 3:85310�5

compared to 7:73 10�4; Figure 7; Table S12). Third, us-

ing curated ‘‘silver standard’’ databases consisting of

OMIM and Orphanet for 159 blood-related diseases

(see web resources and material and methods), we

observed MA-FOCUS output a higher average AUROC

with 0.57 compared to 0.43, suggesting improved perfor-

mance in predicting causal genes of monogenic and oli-

gogenic blood-related Mendelian and rare diseases

(Table S13). Altogether, we find that credible set genes

computed using MA-FOCUS reflect relevant disease

biology better than single-ancestry and alternative

approaches.
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Case study of white blood cell count credible set genes

To further characterize the performance of MA-FOCUS, we

narrowed our focus to the results of white blood cell counts

(WBCs), which contributed the largest number of fine-

mapped regions (6=23) from all analyzed blood traits. First,

we found fewer genes in the MA-FOCUS credible sets on

average (3.3) compared to the baseline approach (3.8);

however, similar to the credible set size difference across

all blood traits discussed in the previous section, this result

was not significant due to low statistical power (p ¼ 0.15).

The fewer genes in MA-FOCUS credible sets were likely due

to their significantly higher PIPs (mean ¼ 0.86) compared

with genes in the baseline approach credible sets (mean ¼
0.63; p ¼ 0.01; Table S9). Next, we observed that MA-

FOCUS credible gene sets resulted in a greater AUROC

curve in the ‘‘silver standard’’ validation (0.63) compared

with baseline credible gene sets (0.36; Table S13).

Next, we discussed the role of three genes (UBAP2L,

HDGF, and FCGR2B; lead genes in their respective credible

sets) in regulating WBCs. First, focusing on fine-mapped

genes at 1q21.3, MA-FOCUS attributed the largest PIP to

UBAP2L. Experimental manipulation of UBAP2L has

confirmed its role in regulating the activity of hematopoi-

etic stem cells in mice via interaction with BMI1.76 Addi-

tionally, this study found that UBAP2L mRNA levels

were associated with leukemic stem cell frequency in pa-

tient-derived samples. Therefore, this gene is a plausible

candidate for regulating the white blood cell trait in hu-

man ancestries. Furthermore, MA-FOCUS identifies

HDGF at 1q23.1 and FCGR2B at 1q23.3, which previous

studies have linked to angiogenesis and blood-related dis-

eases, respectively.77–80 Functional studies have confirmed

the direct role of HDGF in promoting the development of

blood vessels in cancers.77,78 Furthermore, association

studies have linked FCGR2B, a B cell receptor that plays

an important role in immune function, with multiple

blood-related diseases, such as thrombocytopenia and sys-

temic lupus erythematosus.79,80 Specifically, thrombocy-

topenia is a disorder characterized by abnormally low

platelet counts. Although not directly related to the

WBC, numerous studies have found that these blood traits

are correlated, particularly in smokers and in disease con-

texts.81–83 Similarly, systemic lupus erythematosus is an

autoimmune disorder that frequently results in low

WBCs and is 2- to 4-fold more common in Asian and Afri-

can ancestries than in European ancestry.80 A SNP in

FCGR2B that has been found to impede this receptor’s

normal signaling function is also associated with

increased susceptibility to systemic lupus erythemato-

sus.80,84 However, this SNP has also been found to confer

protection against severe malaria, potentially explaining

its higher frequency in ancestries where malaria is

endemic. FCGR2B is therefore an interesting example of

a gene that exhibits both significant ancestry-specific vari-

ation and a similar functional effect across genetic

ancestry backgrounds. These are features that our multi-

ancestry fine-mapping method is uniquely equipped to
1400 The American Journal of Human Genetics 109, 1388–1404, Aug
leverage in order to prioritize this gene as a strong candi-

date for regulating WBC.
Discussion

In this work, we present MA-FOCUS, a Bayesian fine-map-

ping method that incorporates GWAS and eQTL data

together with LD reference panels frommultiple ancestries

of diverse genetic ancestries to estimate credible sets of

causal genes for complex traits. Our method is unique in

that it explicitly accounts for, and takes advantage of, het-

erogeneity in LD and the genetic architecture of gene

expression to improve TWAS fine-mapping performance.

Importantly, our method assumes only that the causal

genes for complex traits are shared across ancestries and

makes no assumptions on underlying eQTL architectures.

This is an essential feature of our method considering

recent findings that SNP-level replication across genetic

ancestries is weaker than gene-level replication36 and

that only �30% of SNP-gene expression associations

are shared between European and African American

ancestry.37 Through extensive simulations, we demon-

strate that the ability of MA-FOCUS to identify causal

genes is superior to baseline approaches and robust to

data-dependent limitations (see material and methods).

We perform ancestry-specific TWASs and apply MA-

FOCUS to 15 blood traits using GWAS statistics in Chen

et al. and LCL eQTL data in GENOA from cohorts of pri-

marily European and African continental ancestry. We

report 6,236 and 116 TWAS significant genes for EA and

AA in 622 unique regions across all blood traits. The

cross-ancestry heritability analysis on LCL gene expression

data, together with correlation analysis on blood traits of

GWAS and TWAS statistics, recapitulate evidence for the

shared genetic architecture of blood traits between the

two ancestries and provide evidence for gene-level effects

correlating better across ancestries than SNP-level effects.

Next, in 23 regions that contain TWAS signals for both an-

cestries, MA-FOCUS reports 3.17 genes in the credible sets

and estimates 2.88 putative causal genes per region across

all blood traits. Finally, we validate theMA-FOCUS credible

sets by performing enrichment analyses and referencing

the results of functional studies. We show that MA-

FOCUS’s credible sets are more strongly enriched for rele-

vant genes associated with hematological traits in the

DisGeNET platform, a database of genotype-trait associa-

tions compiled from various sources (Figure 7). Impor-

tantly, MA-FOCUS identifies genes that are known to

have functional relevance for cardiovascular system dis-

ease and development but are not identified by the base-

line approach.

Despite MA-FOCUS’s advantages in performance, as

demonstrated through extensive simulations, we note

several limitations to our analysis of blood traits. First,

MA-FOCUS’s performance advantage is attenuated when

the EA sample size is approximately 40 times greater
ust 4, 2022



than the AA sample size (Figure S6). Across the 11 blood

traits evaluated for fine-mapping, all methods output simi-

larly sized 90% credible sets (Figure 6), and MA-FOCUS’s

PIPs correlate with PIPs computed by other approaches

(Figure S18). Despite this, as discussed previously, we find

evidence that MA-FOCUS is more successful than other

approaches at identifying genes that are functionally

associated with blood traits. Secondly, the gene expression

data for our eQTL reference panel are derived from immor-

talized cell lines,37 which differ from complex living organ-

isms in fundamental ways. Therefore, this tissue type may

not be themost appropriate tissue for identifying causal re-

lationships with blood traits. When we explore this sce-

nario using simulations, we find that causal gene PIPs

and sensitivity both are substantially reduced when poorly

correlated tissue is used for one of the ancestries

(Figure S10). We expect this effect would be exacerbated

if we used a poorly correlated tissue to estimate weights

for both ancestries. Thirdly, our eQTL reference panel

and GWAS cohort for the AA ancestry represent genetically

admixed individuals whose genomes are a combination of

(West) African and European ancestry. Therefore, when

estimating weights for this ancestry, the local ancestry at

any given locus would include some proportion of Euro-

pean-derived genotypes. This likely introduces noise and

further reduces the power of our weight estimates. In total,

our analysis limitations motivate us to perform large-scale

GWAS and eQTL studies on non-European-ancestry and

admixed populations with comprehensive types of tissues

and cell types.

Here, we describe some general caveats of our multi-

ancestry TWAS fine-mapping approach. First, MA-FOCUS

assumes that genes causal for complex traits are shared

across ancestries, neglecting the possibility of ancestry-spe-

cific causal genes. However, because several large-scale

multi-ancestry GWASs have shown that most risk signals

replicate inancestries,webelieve this tobea relativelyminor

issue.18–22 Second, MA-FOCUS models complex traits as a

linear combination of steady-state gene expression, neglect-

ing potential gene-environment interaction (GxE) or gene-

gene interaction (GxG).While severalworkshave supported

linear assumptions for complex traits through large-scale

GWAS results,42,85 recent work analyzing large-scale GWAS

from multiple ancestries has provided evidence that allelic

heterogeneity across ancestries may be due to GxE,19 and

we acknowledge this as an interesting potential direction.

Overall, MA-FOCUS provides Bayesian inference on

gene causality for complex traits in specific genomic re-

gions, leveraging GWAS, eQTL, and LD data of multiple

ancestries. It improves precision in gene fine-mapping by

accounting for eQTL and LD heterogeneity across different

ancestral groups and sheds light on the genetic architec-

ture of complex traits.
Data and code availability

MA-FOCUS software: https://github.com/mancusolab/ma-focus
The American
LCL prediction models, sample GWAS statistics, and LD refer-

ence data: https://www.mancusolab.com/ma-focus

Analysis codes, and complete TWAS fine-mapping results:

https://github.com/mancusolab/MA-FOCUS-data-code

GEUVADIS data: https://www.internationalgenome.org/data-

portal/data-collection/geuvadis

The dbGaP accession number for GENOA genotype data:

phs001238.v2.p1

The GEO accession numbers for GENOA gene expression data:

GSE138914 for AA and GSE49531 for EA

We complied with the data use agreements for the GEUVADIS

and GENOA datasets.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.07.002.
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Web resources

ADMIXTURE, https://dalexander.github.io/admixture/

index.html

bedtools, https://bedtools.readthedocs.io/en/latest/

EnrichR, https://cran.r-project.org/web/packages/

enrichR/index.html

FUSION, http://gusevlab.org/projects/fusion/

GCTA, https://cnsgenomics.com/software/gcta/

ggvenn, https://github.com/yanlinlin82/ggvenn

LDSC, https://github.com/bulik/ldsc

MESH, https://www.nlm.nih.gov/mesh/meshhome.

html

PLINK, https://www.cog-genomics.org/plink/

pong, https://github.com/ramachandran-lab/pong

Silver analysis, https://github.com/hakyimlab/silver-

standard-performance

UpsetR, https://github.com/hms-dbmi/UpSetR
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Barabé, F., et al. (2014). UBAP2L is a novel BMI1-interacting

protein essential for hematopoietic stem cell activity. Blood

124, 2362–2369.

77. Zhao, W.-Y., Wang, Y., An, Z.-J., Shi, C.-G., Zhu, G.-A., Wang,

B., Lu, M.-Y., Pan, C.-K., and Chen, P. (2013). Downregulation

of miR-497 promotes tumor growth and angiogenesis by tar-

geting HDGF in non-small cell lung cancer. Biochem. Bio-

phys. Res. Commun. 435, 466–471.

78. Thirant, C., Galan-Moya, E.-M., Dubois, L.G., Pinte, S., Cha-

fey, P., Broussard, C., Varlet, P., Devaux, B., Soncin, F., Gavard,

J., et al. (2012). Differential proteomic analysis of human glio-

blastoma and neural stem cells reveals HDGF as a novel angio-

genic secreted factor. Stem Cell. 30, 845–853.

79. Bruin, M., Bierings, M., Uiterwaal, C., Révész, T., Bode, L.,
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