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Abstract

We present the effective field theory for dark matter interactions with the visible sector that

is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of

fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators

that would arise from dimension-five and dimension-six operators above electroweak scale, we

perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes

dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients

of the nuclear response functions using a chiral effective theory description of nuclear forces. Our

results consistently keep the leading contributions in chiral counting for each of the initial Wilson

coefficients.
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I. INTRODUCTION

Dark Matter (DM) scattering in direct detection lends itself well to an Effective Field

Theory (EFT) description [1–17]. DM scattering on nuclei can be taken to be nonrelativistic,
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since, in order to be gravitationally bound in the DM halo, the DM velocity needs to be

below about 600 km/s. The typical DM velocity in the halo is thus |~vχ| ∼ 10−3. The

maximal recoil momentum transfer depends on the reduced mass of the DM-nucleus system

and on the range of recoil energies, ER, that the experiments are measuring. The recoil

energy is typically kept in the range of a few keV to few tens of keV, while the heaviest

nuclei have masses of mA ∼ 100 GeV. This gives a maximal momentum transfer of

qmax . 200 MeV. (1)

This is also a typical size of the momenta exchanged between the nucleons bound inside

the nucleus. The maximal recoil momentum is much smaller than the proton and neutron

masses, q � mN , so that the nucleons remain nonrelativistic also after scattering and the

nucleus does not break apart. One can then use the chiral EFT (ChEFT) approach to nuclear

forces to organize different terms using an expansion in q/ΛChEFT ∼ mπ/ΛChEFT ∼ 0.3.

In this paper we perform such a systematic treatment of DM direct detection. We

start from an EFT that describes couplings of DM to quarks, gluons and photons through

higher dimension operators, keeping only the terms that would arise from dimension-five

and dimension-six operators above the electroweak scale. We then match nonperturbatively

onto a theory that describes DM interactions with light mesons, i.e., Chiral Perturbation

Theory (ChPT) with DM, and to a theory that also includes DM interactions with protons

and neutrons, i.e., Heavy Baryon Chiral Perturbation Theory (HBChPT). A single insertion

of DM interaction with either a light meson, or with a nucleon, then induces the scattering

of DM on the nucleus. We are able to compare the parametric sizes of different contributions

by using chiral counting within ChEFT of nuclear forces. We keep the leading contributions

in chiral counting and calculate the resulting coefficients that multiply the nuclear response

functions of Ref. [2, 6], treating q2 as an external parameter.

The EFT description of DM – nucleus scattering is valid if the mediators between the

DM and the visible sector are heavier than O(1GeV), and therefore covers a wide range of

UV-complete theories of DM. Our expressions extend previous results on direct detection

scattering rates. We cover both fermionic and scalar DM, systematically keeping the leading

terms in chiral counting. Special care is needed, for instance, in the evaluation of the product

of axial-vector DM and vector quark currents, as well as the product of vector DM and

axial-vector quark currents. These products vanish in the long wavelength limit where both
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the relative velocity between DM and nucleus, ∆v, and the momentum exchange, q, are

becoming arbitrarily small (∆v, q → 0). The leading contributions thus follow from higher

orders in a derivative expansion of the interactions.

The chiral counting also allows for a systematic assignment of uncertainties on the pre-

dictions. Since we restrict the analysis to the leading order in chiral counting, the errors on

the predictions are expected to be of O(30%). Furthermore, we use the chiral counting to

discuss higher-order corrections in the direct detection rates. The short-distance scattering

on two nucleons is, for instance, suppressed by O(q3) compared to the scattering on a single

nucleon. However, the long-distance corrections due to DM scattering on a pion exchanged

between two nucleons can already start at O(q) [3, 9].

This paper is organized as follows. In Sections II-IV we focus on fermionic DM, while we

give the results for scalar DM in Section V. In Section II we first introduce the EFT for DM

coupling to quarks, gluons and photons through higher dimension operators. We treat the

DM mass as heavy, mχ � q, leading to a Heavy Dark Matter Effective Theory (HDMET).

The DM interactions with mesons and nucleons are constructed in Section III, while Sec-

tion IV contains the calculation of the form factors for the nuclear response functions. The

analysis is repeated for scalar DM in Section V. We draw our conclusions in Section VI. In

Appendix A we give the translation of our results to the basis of Ref. [2, 6], while in Ap-

pendix C we provide the values of the required low-energy constants. Appendix B contains

further details on DM interactions with mesons and nucleons.

II. NONRELATIVISTIC DARK MATTER INTERACTIONS

We first focus on fermionic DM and its interactions with quarks, gluons and photons at

the scale µ ∼ 1 GeV. These interactions are generated by mediators that couple to both

the DM and the visible sector. The DM interactions can be described by an EFT as long

as the mediators are much heavier than O(1GeV),

Lχ =
∑
a,d

Ĉ(d)
a Q(d)

a , where Ĉ(d)
a =

C(d)
a

Λd−4
. (2)

Here, the C(d)
a are dimensionless Wilson coefficients, while Λ can be identified with the

mediator mass. For later convenience of notation we also introduced dimensionful Wil-

son coefficients, Ĉ(d)
a . In our analysis we only keep those operators that would arise from

4



dimension-five and dimension-six operators above the scale of electroweak symmetry break-

ing [18].

We first consider the case where DM is relativistic. There are two dimension-five opera-

tors,

Q(5)
1 =

e

8π2
(χ̄σµνχ)Fµν , Q(5)

2 =
e

8π2
(χ̄σµνiγ5χ)Fµν , (3)

where Fµν is the electromagnetic field strength tensor. The magnetic dipole operator Q(5)
1

is CP even, while the electric dipole operator Q(5)
2 is CP odd. The dimension-six operators

are

Q(6)
1,q = (χ̄γµχ)(q̄γµq), Q(6)

2,q = (χ̄γµγ5χ)(q̄γµq), (4)

Q(6)
3,q = (χ̄γµχ)(q̄γµγ5q) , Q(6)

4,q = (χ̄γµγ5χ)(q̄γµγ5q) , (5)

and we also include a subset of the dimension-seven operators, namely

Q(7)
1 =

αs
12π

(χ̄χ)GaµνGa
µν , Q(7)

2 =
αs

12π
(χ̄iγ5χ)GaµνGa

µν , (6)

Q(7)
3 =

αs
8π

(χ̄χ)GaµνG̃a
µν , Q(7)

4 =
αs
8π

(χ̄iγ5χ)GaµνG̃a
µν , (7)

Q(7)
5,q = mq(χ̄χ)(q̄q) , Q(7)

6,q = mq(χ̄iγ5χ)(q̄q) , (8)

Q(7)
7,q = mq(χ̄χ)(q̄iγ5q) , Q(7)

8,q = mq(χ̄γ5χ)(q̄γ5q) . (9)

Here, q = u, d, s denote the light quarks (we limit ourselves to flavor conserving operators),

Ga
µν is the QCD field strength tensor, while G̃µν = εµνρσG

ρσ is its dual, and a = 1, . . . , 8

are the adjoint color indices. The strong coupling constant αs is taken at µ ∼ 1 GeV. We

also assumed that DM is a Dirac fermion in the expressions above. However, our results

will also apply for a Majorana fermion DM with the exception that the operators Q(5)
1,2 and

Q
(6)
1,q;3,q vanish in this case, and with straightforward modifications in the matching onto

the nonrelativistic theory, see Appendix D. Matching the UV theory to the EFT may then

require the inclusion of higher dimension operators which is beyond the scope of the present

paper. In (8), (9) we included a factor of quark mass, mq, in the definitions of the operators

because it arises from the flavor structure of many of the models of DM. In our analysis we

keep the operators involving scalar currents of the form mq(χ̄χ)(q̄q), but not those involving

tensor currents, such as mq(χ̄σµνχ)(q̄σµνq), etc. The former can arise from the dimension-

five UV operator (χ̄χ)H†H by integrating out the Higgs at the electroweak scale, see [18].

The latter requires a dimension-seven operator in the UV, such as (χ̄σµνχ)(Q̄Lσ
µνuR)H.
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The DM in the galactic halo is nonrelativistic with a typical velocity |~vχ| ∼ 10−3 so that

the momenta exchanges are much smaller than the DM mass, q � mχ. DM scattering in

direct detection experiments is thus described by a Heavy Dark Matter Effective Theory

(HDMET) in which the DM mass is integrated out [12, 18, 19], giving an expansion in

1/mχ. The leading term in the Lagrangian then describes the motion of DM in the limit of

infinite DM mass. To derive it we factor out of the DM field χ the large momenta due to

the propagation of the heavy DM mass, defining (here χ is a Dirac fermion, for Majorana

fermions see Appendix D)

χ(x) = e−imχv·x
(
χv(x) +Xv(x)

)
, (10)

where

χv(x) = eimχv·x
1 + /v

2
χ(x) , Xv(x) = eimχv·x

1− /v
2

χ(x) . (11)

This defines the heavy-particle field χv(x) in analogy to the heavy quark field in Heavy

Quark Effective Theory [20–23]. The remaining x dependence is due to the soft momenta.

For instance, direct detection scattering changes the soft momentum of the DM by q but

does not change the DM velocity label v. The velocity label vµ can be identified with either

the incoming or outgoing DM velocity four-vector, or any other velocity four-vector that is

nonrelativistically close to these two. In the following section we will identify vµ with the

lab frame velocity so that vµ = (1,~0 ); but, for now, we leave it in its four-vector form.

The “small-component” field Xv describes the antiparticle modes. To excite an antiparti-

cle mode requires the absorption of a hard momentum of orderO(2mχ). In building HDMET

the antiparticle modes are integrated out, giving the tree-level relation [20]

χ = e−imχv·x
(

1 +
i/∂⊥

iv · ∂ + 2mχ − iε

)
χv , (12)

where γµ⊥ = γµ − vµ/v. The HDMET Lagrangian is thus given by

LHDMET = χ̄v(iv · ∂)χv +
1

2mχ

χ̄v(i∂⊥)2χv + · · ·+ Lχv . (13)

The first term is the leading-order (LO) HDMET Lagrangian and contains no explicit depen-

dence on mχ. The coefficient of the O(1/mχ) term is fixed by reparametrization invariance

[24], and the ellipsis denotes higher-order terms. The effective Lagrangian Lχv gives the

interactions of DM with the SM. The expansion in powers of 1/mχ and 1/Λ can be made
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explicit by defining

Lχv =
∑
d,m

Ĉ(d,m)
a Q(d,m)

a , where Ĉ(d,m)
a =

C(d,m)
a

Λd−m−4mm
χ

. (14)

Here, the operators Q(d,m)
a arise as the terms of order 1/mm

χ in the HDMET expansion of the

UV operators Q(d)
a . For instance, we have (neglecting radiative corrections to the matching

conditions)

χ̄χ→ χ̄vχv + · · · , (15)

χ̄iγ5χ→
1

mχ

∂µ
(
χ̄vS

µ
χχv
)

+ . . . , (16)

χ̄γµχ→ vµχ̄vχv +
1

2mχ

χ̄vi
↔
∂
µ
⊥χv +

1

2mχ

∂ν
(
χ̄vσ

µν
⊥ χv

)
+ · · · , (17)

χ̄γµγ5χ→ 2χ̄vS
µ
χχv −

i

mχ

vµχ̄vSχ·
↔
∂χv + · · · , (18)

χ̄σµνχ→ χ̄vσ
µν
⊥ χv +

1

2mχ

(
χ̄viv

[µ
σ
ν]ρ
⊥
↔
∂ ρχv − v[µ∂ν]χ̄vχv

)
+ . . . , (19)

χ̄σµνiγ5χ→ 2χ̄vS
[µ
χ v

ν]χv + · · · , (20)

where σµν⊥ = i[γµ⊥, γ
ν
⊥]/2, χ̄v

↔
∂µχv = χ̄v(∂

µχv) − (∂µχ̄v)χv, and Sµ = γµ⊥γ5/2 is the spin

operator. The square brackets in the last line denote antisymmetrization in the enclosed

indices, while the ellipses denote higher orders in 1/mχ.

We group the operators in HDMET in terms of their d − m values and only display

those 1/mχ-suppressed operators that will be needed to obtain all LO terms in chiral EFT

description of DM scattering on nuclei. The two dimension-five operators in (3) get replaced

by the HDMET operators

Q(5,0)
1 =

e

4π2
εµναβ(χ̄vS

α
χv

βχv)F
µν , Q(5,0)

2 =
e

2π2
(χ̄vS

µ
χv

νχv)Fµν , (21)

Q(6,1)
1 =

ie

8π2

(
χ̄vv

µσνρ⊥
↔
∂ ρχv

)
Fµν , Q(6,1)

2 = − e

8π2

(
vµ∂νχ̄vχv

)
Fµν . (22)

We used the relation

χ̄vσ
µν
⊥ χv = −2εµναβvα

(
χ̄vSχ,βχv

)
, (23)

where εµναβ is the totally antisymmetric Levi-Civita tensor, with ε0123 = 1. If the matching

from the UV theory of DM interactions is done at tree level at µ ∼ mχ, we have the following

relations [18]

C(5)
1

tree
= C(5,0)

1
tree
= C(6,1)

1
tree
= C(6,1)

2 , C(5)
2

tree
= C(5,0)

2 , (24)
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so that below µ ∼ mχ the operators always appear in the combination

Q(5,0)
1 +

1

mχ

(
Q(6,1)

1 +Q(6,1)
2

)
+ · · · . (25)

The relations (24) would receive corrections if the matching is performed at loop level. Note

that in our analysis we will not need the 1/mχ corrections to the CP odd operator Q(5,0)
2 .

The dimension-six operators to LO in 1/mχ are

Q(6,0)
1,q = (χ̄vχv)(q̄/vq), Q(6,0)

2,q = 2(χ̄vSχ,µχv)(q̄γ
µq), (26)

Q(6,0)
3,q = (χ̄vχv)(q̄/vγ5q) , Q(6,0)

4,q = 2(χ̄vSχ,µχv)(q̄γ
µγ5q). (27)

The 1/mχ-suppressed operators that we need to consider1 are

Q(7,1)
1,q =

1

2
(χ̄vi

↔
∂
µ
⊥χv)(q̄γµq), Q(7,1)

2,q = −i(χ̄vSχ·
↔
∂χv)(q̄/vq), (28)

Q(7,1)
3,q =

1

2
(χ̄vi

↔
∂
µ
⊥χv)(q̄γµγ5q) , Q(7,1)

4,q = −i(χ̄vSχ·
↔
∂χv)(q̄/vγ5q), (29)

Q(7,1)
5,q =

1

2
∂ν(χ̄vσ

µν
⊥ χv)(q̄γµq), Q(7,1)

6,q =
1

2
∂ν(χ̄vσ

µν
⊥ χv)(q̄γµγ5q), (30)

where our convention is that the derivatives act only within the brackets or on the nearest

bracket. For matching from the UV theory at scale µ ∼ mχ, we would have the following

relations

C(6)
i,q

tree
= C(6,0)

i,q = C(7,1)
i,q

tree
= C(7,1)

(i+9)/2,q , i = 1, 3 ; C(6)
i,q

tree
= C(6,0)

i,q = C(7,1)
i,q , i = 2, 4 . (31)

Note that the equality denoted by “tree” is only valid for tree-level matching, while the

remaining relations are valid to all orders due to reparametrization invariance, cf. Eqs.

(B10) and (B11). Hence, in the EFT below µ ∼ mχ, the following linear combinations of

operators would appear with the same coefficient,

Q(6,0)
1,q +

1

mχ

(
Q(7,1)

1,q +Q(7,1)
5,q

)
+ · · · , Q(6,0)

2,q +
1

mχ

Q(7,1)
2,q + · · · ,

Q(6,0)
3,q +

1

mχ

(
Q(7,1)

3,q +Q(7,1)
6,q

)
+ · · · , Q(6,0)

4,q +
1

mχ

Q(7,1)
4,q + · · · ,

(32)

with the ellipses denoting higher-order terms. Note that the coefficient in front of Q(7,1)
5,q and

Q(7,1)
6,q in the two sums can differ from unity at loop level in the matching.

1 In fact only the operators in (29) and (30) will enter the phenomenological analysis but we keep the other

operators for completeness and transparency of notation.
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The relevant dimension-seven operators (6)-(9) involve scalar and pseudoscalar DM cur-

rents. The HDMET scalar current operator starts at O(1/m0
χ), while the pseudoscalar

current starts at O(1/mχ). We thus define the HDMET operators

Q(7,0)
1 =

αs
12π

(χ̄vχv)G
aµνGa

µν , Q(8,1)
2 =

αs
12π

∂ρ
(
χ̄vS

ρ
χχv
)
GaµνGa

µν , (33)

Q(7,0)
3 =

αs
8π

(χ̄vχv)G
aµνG̃a

µν , Q(8,1)
4 =

αs
8π
∂ρ
(
χ̄vS

ρ
χχv
)
GaµνG̃a

µν , (34)

Q(7,0)
5,q = mq(χ̄vχv)(q̄q) , Q(8,1)

6,q = mq∂µ
(
χ̄vS

µ
χχv
)
(q̄q) , (35)

Q(7,0)
7,q = mq(χ̄vχv)(q̄iγ5q) , Q(8,1)

8,q = −mq∂µ
(
χ̄vS

µ
χχv
)
(q̄iγ5q) , (36)

so that we have the following tree-level matching conditions

C(7)
i

tree
= C(7,0)

i , i = 1, 3, 5, 7 ; C(7)
i

tree
= C(8,1)

i , i = 2, 4, 6, 8 . (37)

III. DARK MATTER INTERACTIONS WITH MESONS AND NUCLEONS

A. QCD with external currents

As far as QCD interactions are concerned the DM currents can be viewed as classical

external fields. The quark level DM-SM interaction Lagrangian can thus be written in a

form familiar from the ChPT literature [25] as

L = L0
QCD + sG(x)

αs
12π

Ga
µνG

aµν + θ(x)
αs
8π
Ga
µνG̃

aµν

+ q̄(x)γµ
[
νµ(x) + γ5aµ(x)

]
q(x)− q̄(x)

[
s(x)− iγ5p(x)

]
q(x),

(38)

where q = (u, d, s) is a vector of light quark fields. Here L0
QCD is the QCD+QED Lagrangian

in the limit of zero quark masses and no interactions with DM. We treat the quark masses

and insertions of DM currents as perturbations. They are collected in six spurions which,

for relativistic DM (4)-(9), are given by

νµ(x) = −eQ̄qA
e
µ + νχ,µ = −eQ̄qA

e
µ + C̄(6)

1

(
χ̄γµχ

)
+ C̄(6)

2

(
χ̄γµγ5χ

)
, (39)

aµ(x) = C̄(6)
3

(
χ̄γµχ

)
+ C̄(6)

4

(
χ̄γµγ5χ

)
, (40)

s(x) =Mq + sχ =Mq −Mq C̄(7)
5

(
χ̄χ
)
−Mq C̄(7)

6

(
χ̄iγ5χ

)
, (41)

p(x) =Mq C̄(7)
7

(
χ̄χ
)
−Mq C̄(7)

8

(
χ̄iγ5χ

)
, (42)

sG(x) = Ĉ(7)
1

(
χ̄χ
)

+ Ĉ(7)
2

(
χ̄iγ5χ

)
, (43)
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θ(x) = Ĉ(7)
3

(
χ̄χ
)

+ Ĉ(7)
4

(
χ̄iγ5χ

)
. (44)

Here, we introduced 3 × 3 diagonal matrices of Wilson coefficients and electromagnetic

charges

C̄(d)
i = diag

(
Ĉ(d)
i,u , Ĉ

(d)
i,d , Ĉ

(d)
i,s

)
,

Q̄q = diag
(
Qq

)
= diag(2/3,−1/3,−1/3).

(45)

The general HDMET expressions for spurions are somewhat lengthier,

νµ(x) = −eQ̄qA
e,µ + νµχ = −eQ̄qA

e,µ + C̄(6,0)
1 vµχ̄vχv +

1

2
C̄(7,1)

1 χ̄vi
↔
∂
µ
⊥χv

+
1

2
C̄(7,1)

5 ∂ν
(
χ̄σµν⊥ χv

)
+ 2C̄(6,0)

2 χ̄vS
µ
χχv − iC̄

(7,1)
2 vµχ̄vSχ·

↔
∂χv + · · · ,

(46)

aµ(x) = C̄(6,0)
3 vµχ̄vχv +

1

2
C̄(7,1)

3 χ̄vi
↔
∂
µ
⊥χv +

1

2
C̄(7,1)

6 ∂ν
(
χ̄σµν⊥ χv

)
+ 2C̄(6,0)

4 χ̄vS
µ
χχv

− iC̄(7,1)
4 vµχ̄vSχ·

↔
∂χv + · · · ,

(47)

s(x) =Mq + sχ =Mq −Mq C̄(7,0)
5

(
χ̄vχv

)
−Mq C̄(8,1)

6 ∂µ
(
χ̄vS

µ
χχv
)

+ · · · , (48)

p(x) =Mq C̄(7,0)
7

(
χ̄vχv

)
−Mq C̄(8,1)

8 ∂µ
(
χ̄vS

µ
χχv
)

+ · · · , (49)

sG(x) = Ĉ(7,0)
1

(
χ̄vχv

)
+ Ĉ(8,1)

2 ∂µ
(
χ̄vS

µ
χχv
)

+ · · · , (50)

θ(x) = Ĉ(7,0)
3

(
χ̄vχv

)
+ Ĉ(8,1)

4 ∂µ
(
χ̄vS

µ
χχv
)

+ · · · , (51)

where the C̄(d,m)
i are defined in analogy to Eq. (45) and the ellipses denote higher orders in

the 1/mχ expansion. The scalar spurion s(x) contains the diagonal quark matrix, Mq =

diag(mq), as well as the DM scalar current sχ. Similarly, the vector current contains a

contribution due to quarks interacting with the QED gauge field, eQ̄qA
e
µ, as well as the

DM vector current νχ,µ. All the remaining spurions vanish in the limit of vanishing DM

interactions. The chiral counting of spurions is νµ, aµ, sG, θ ∼ O(p0), and s, p ∼ O(p2).

However, in HDMET the contributions from the pseudoscalar DM current only start at

O(p) in sG, θ and at O(p3) in s, p.

The QCD Lagrangian L0
QCD exhibits a global chiral U(3)L × U(3)R symmetry that is

spontaneously broken to the vectorial U(3)V at low energies (the anomalous U(1)A can be

included because of the shift symmetry in θ, see below). The combined Lagrangian (38),

composed of the spurion terms and the QCD Lagrangian, is still formally invariant under

the local chiral transformations

q(x)→ VR(x)
1

2
(1 + γ5)q(x) + VL(x)

1

2
(1− γ5)q(x), (52)

10



if the spurions transform simultaneously as

νµ + aµ → VR(νµ + aµ)V †R + iVR∂µV
†
R , (53)

νµ − aµ → VL(νµ − aµ)V †L + iVL∂µV
†
L , (54)

s+ ip→ VR(s+ ip)V †L , (55)

sG → sG . (56)

The θ(x) undergoes a shift transformation such that it cancels the contribution due to

the anomalous U(1)A axial part of the transformations (52). For chiral transformations

VL,R(x) = exp
(
iα(x)∓ iβ(x)

)
this gives [25]

θ → θ − 2 Tr(β). (57)

Since the DM currents can be viewed as classical external fields as far as the QCD

interactions are concerned, we can use the U(1)A transformation with

β(x) =
θ(x)

2

M−1
q

Tr(M−1
q )

, (58)

to eliminate the θ term in Eq. (38) and move it to the axial and pseudo-scalar currents [26].

After the transformation, the Lagrangian is given by

L =L0
QCD + sG(x)

αs
12π

Ga
µνG

aµν + q̄(x)γµ
[
νµ(x) + γ5a

′
µ(x)

]
q(x)

− q̄(x)
[
s(x)− iγ5p

′(x)
]
q(x),

(59)

where

a′µ = aµ +
∂µθ

2

M−1
q

Tr(M−1
q )

, p′ = p+
θ

Tr(M−1
q )

(60)

where we kept only terms linear in the spurions, so that in this approximation s′ = s. We

have omitted the primes on the transformed quark fields in (59). The primed spurions a′µ

and p′ obey the same transformation laws as the unprimed equivalents in (53)-(55).

B. Chiral perturbation theory for dark matter interactions

The formal invariance of L in (38) under the local transformations (52) constrains the

allowed DM interactions with pions and nucleons. We start with the ChPT Lagrangian for

DM–pion interactions which needs to be formally invariant under the transformations (52),

11



thus limiting the possible spurion insertions. As usual, the ChPT is organized in terms of

a derivative expansion. The pseudo-Nambu-Goldstone bosons (PNGBs) are collected in the

Hermitian matrix Π ≡
∑

a λaπa, given by

Π =


π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 −2η8√
6

 , (61)

where λa are the Gell-Mann matrices normalized as Tr(λaλb) = δab. We do not include η′ in

the ChPT Lagrangian due to its large mass, which therefore contributes to the DM-nucleon

contact terms. We thus also ignore η − η′ mixing, so that η8 ' η.

The PNGB degrees of freedom parametrize the coset space (SU(3)L×SU(3)R)/SU(3)V .

We use the exponential parametrization of the coset space, given by the matrix U(x). Under

chiral transformations

U → VRUV
†
L . (62)

The U matrix is unitary, UU † = U †U = 1. Since the DM θ(x) current has been moved to

the axial and scalar currents, it is consistent to impose the condition2 detU = 1. Thus, in

our convention the U matrix is

U(x) = exp
(
i
√

2Π/f
)
, (63)

where f ' 92 MeV equals the pion decay constant at leading order in ChPT (experimentally,

we have fπ = 92.21(14) MeV [27]). Note that under a parity transformation πa → −πa, and

thus U → U †.

The ChPT Lagrangian at LO, i.e., at O(p2), is given by [25]

L(2)
ChPT =

f 2

4
Tr
(
∇µU

†∇µU
)

+
B0f

2

2
Tr
[
(s− ip′)U + (s+ ip′)U †

]
, (64)

where B0 is a low-energy constant. To O(mq) it is given by the quark condensate, and

equals 〈q̄q〉 ' −f 2B0. Using quark condensate from [28] and the LO relation f = fπ one

has B0 = 2.666(57) GeV, evaluated at the scale µ = 2 GeV. The covariant derivative in (64)

is defined as

∇µU =∂µU − i(νµ + a′µ)U + iU(νµ − a′µ), (65)

2 Alternatively, we could have worked with untransformed interaction Lagrangian (38) in which case the

condition detU = e−iθ(x) would need to be imposed [25].
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so that under chiral transformations

∇µU → VR∇µUV
†
L . (66)

Each of the terms in (64) can be multiplied by an arbitrary function of sG.

To obtain the leading DM interactions with the pseudoscalar mesons we expand (64)

up to linear order in the DM currents. The zeroth order term gives the usual LO ChPT

Lagrangian

L(2),QCD
ChPT =

f 2

4
Tr
(
∂µU

†∂µU
)

+
B0f

2

2
Tr
[
Mq(U + U †)

]
, (67)

while the QED interactions are

L(2),QED
ChPT =i

ef 2

2
Ae,µ Tr

[(
U∂µU

† + U †∂µU
)
Q̄q

]
. (68)

The linear terms give the interactions of PNGBs with DM as

Lχ,ChPT =− if 2

2
Tr
[(
U∂µU

† + U †∂µU
)
νµχ +

(
U∂µU

† − U †∂µU
)
aµ
]

+
B0f

2

2
Tr
[
sχ(U + U †)− ip(U − U †)− iθ

Tr(M−1
q )

(U − U †)
]

+ SG(x)sG

− if 2

4

∂µθ

Tr(M−1
q )

Tr
[(
U∂µU

† − U †∂µU
)
M−1

q

]
.

(69)

The scalar function SG(x) multiplying sG is chirally invariant. To fix it to quadratic order

in the derivative expansion we require that the trace of the QCD energy-momentum tensor

be reproduced in the chiral effective theory. The general quadratic expansion has the form

SG(x) = a1
f 2

4
Tr
(
∂µU

†∂µU
)

+ a2
B0f

2

2
Tr
[
Mq(U + U †)

]
. (70)

From the trace of the QCD energy momentum tensor, given at quark level by θµµ =

− 9
8π
αsG

a
µνG

aµν +
∑

qmq q̄q, and at leading order in the ChPT expansion by θµ eff
µ =

−Tr(∂µΠ∂µΠ) + 4B0 Tr(MqΠ
2), one obtains the LO expressions for the low-energy coef-

ficients a1,2 [29],

a1 =
2

3
a2 =

4

27
. (71)

Expanding (69) to first nonzero order in PNGB fields for each of the spurions gives

LDM
ChPT ⊃iTr

([
∂µΠ ,Π

]
νµχ
)
−
√

2f Tr
(
∂µΠ aµ

)
−B0 Tr

(
sχΠ2

)
+
√

2B0f Tr
(
Π p
)

+
[ 2

27
Tr
(
∂µΠ∂µΠ

)
− 6

27
B0 Tr

(
MqΠ

2
)]
sG + f

θ√
2

Tr(∂2ΠM−1
q )

Tr(M−1
q )

+ · · · ,
(72)
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where the ellipses denote terms with more PNGBs. The p, aµ, and θ spurions are flavor

diagonal. The corresponding traces, Tr
(
∂µΠ aµ

)
, Tr

(
Π p
)
, and Tr(∂2ΠM−1

q ) therefore lead

to couplings of DM axial and scalar currents to a single π0 or η. In contrast, the νµχ , sχ, sG,

and θ DM currents couple to at least two PNGBs. They thus enter the ChPT description

of the DM-nucleon scattering for the first time at one-loop level.

Note that in (72) we do not display the terms that contribute to the DM mass. Due to

chiral symmetry breaking the DM mass term is

Lχ ⊃ −mχ

(
χ̄χ
)
−
(
χ̄χ
)∑

q

B0f
2mqĈ(7)

5,q −
(
χ̄iγ5χ

)∑
q

B0f
2mqĈ(7)

6,q . (73)

The last two terms arise from B0f
2 Tr[sχ(U + U †)]/2 in (69) and modify the DM mass by

δmχ. Keeping only the leading terms in δmχ/mχ, the last term can be eliminated by a small

axial rotation of the DM field. The second term, however, modifies the DM mass by a term

of order Λ4
QCD/Λ

3. This is a small correction for all intents and purposes. For Λ & vEW one

has δmχ . 1 eV.

The various external DM currents in Lχ,ChPT (69) have different chiral dimensions. We

thus organize the DM–meson interactions in terms of their overall chiral suppression, in-

cluding the derivative suppression of the DM currents when expanded in 1/mχ,

Lχ,ChPT = L(1)
χ,ChPT + L(2)

χ,ChPT + L(3)
χ,ChPT + · · · . (74)

Keeping only the leading terms in chiral counting for each of the Wilson coefficients in (14)

gives

L(1)
χ,ChPT = −if

2

2
(χ̄vχv)v

µ Tr
[
(U∂µU

† + U †∂µU) C̄(6,0)
1 + (U∂µU

† − U †∂µU) C̄(6,0)
3

]
− if 2(χ̄vS

µ
χχv) Tr

[
(U∂µU

† + U †∂µU) C̄(6,0)
2 + (U∂µU

† − U †∂µU) C̄(6,0)
4

]
,

(75)

L(2)
χ,ChPT ⊃ −

B0f
2

2
(χ̄vχv) Tr

[
(U + U †)MqC̄(7,0)

5 + i(U − U †)MqC̄(7,0)
7

]
+
f 2

27
(χ̄vχv)

[
Tr
(
∂µU

†∂µU
)

+ 3B0 Tr
[
Mq(U + U †)

]]
Ĉ(7,0)

1

− if 2

4mχ

(χ̄vi
↔
∂
µ
⊥χv) Tr

[
(U∂µU

† + U †∂µU) C̄(6,0)
1 + (U∂µU

† − U †∂µU) C̄(6,0)
3

]
+
if 2

4

(χ̄vχv)

Tr(M−1
q )

Tr
[
∂µ
(
U∂µU

† − U †∂µU
)
M−1

q

]
Ĉ(7,0)

3 ,

(76)
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L(3)
χ,ChPT ⊃ −

B0f
2

2
∂µ(χ̄vS

µ
χχv) Tr

[
(U + U †)MqC̄(8,1)

6 − i(U − U †)MqC̄(8,1)
8

]
+
f 2

27
∂ν(χ̄vS

ν
χχv)

[
Tr
(
∂µU

†∂µU
)

+ 3B0 Tr
[
Mq(U + U †)

]]
Ĉ(8,1)

2

+
if 2

4

∂ν(χ̄vS
ν
χχv)

Tr(M−1
q )

Tr
[
∂µ
(
U∂µU

† − U †∂µU
)
M−1

q

]
Ĉ(8,1)

4 ,

(77)

In (76) we also kept part of the formally subleading terms proportional to C̄(6,0)
1 and C(6,0)

3

because there is a cancellation with L(1)
χ,ChPT that occurs after the expansion in meson fields.

The Lagrangians (75)-(77) expanded to first nonzero order in the meson fields are collected

in (B14)-(B16).

C. Heavy baryon chiral perturbation theory

In order to describe the DM interactions including nucleons we use Heavy Baryon Chiral

Perturbation Theory (HBChPT) [30]. This is the appropriate effective field theory as long

as q ∼ mπ � mN , where mN is the nucleon mass and q the typical momentum exchange.

The baryon momentum can be split into

pµ = mNv
µ + kµ, (78)

where vµ is the four-velocity of the nucleon, while the soft momentum kµ ∼ O(q) gives

the off-shellness of the nucleon. The large momentum component due to the inertia of the

heavy baryon can be factored out from the dynamics. Generalizing to the baryon octet, we

introduce the HBChPT baryon field

Bv(x) = exp(imN/vvµx
µ)B(x), (79)

where mN and v are the baryon mass and velocity, respectively. Some useful properties of the

field Bv are 1
2
(1 + /v)Bv = Bv, B̄vγ5Bv = 0, B̄vγµBv = vµB̄vBv, and B̄vγ

µγ5Bv = 2B̄vS
µ
NBv,

where SµN is the spin operator satisfying

v · SN = 0 , S2
NBv = −3

4
Bv , {SµN , S

ν
N} = 1

2

(
vµvν − gµν

)
, [SµN , S

ν
N ] = −iεµνλσvλSN,σ .

(80)

As in HDMET, vµ is just a label and is not changed by the QCD interactions or by DM

scattering that only lead to exchanges of soft momenta of O(q). In the lab frame we have

vµ = (1,~0 ).
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The octet of baryons forms a 3× 3 matrix

Bv =


1√
2
Σ0
v + 1√

6
Λv Σ+

v pv

Σ−v − 1√
2
Σ0
v + 1√

6
Λv nv

Ξ−v Ξ0
v − 2√

6
Λv.

 . (81)

For tree-level contributions to DM-nucleon scattering, i.e. working at LO, we need to keep

only the pv and nv entries of the Bv matrix, while the remaining entries can be set to zero.

In order to write down HBChPT it is useful to define the square root of the matrix U ,

U(x) = ξ(x)2. (82)

The ξ(x) transforms under chiral rotations as3

ξ(x)→ VR(x)ξ(x)V †(x) = V (x)ξ(x)V †L(x). (83)

This equation defines the vector transformation V (x), an element of the group SU(3)V that

remains unbroken after the spontaneous breaking of the chiral SU(3)L×SU(3)R symmetry.

From the scalar and pseudoscalar spurions appearing in (59) we can construct a quantity

that transforms as an adjoint of SU(3)V ,

ξ†(s+ ip′)ξ† → V (x)ξ†(s+ ip′)ξ†V (x)†. (84)

A related parity-even spurion,

s+ ≡ ξ†(s+ ip′)ξ† + ξ(s− ip′)ξ, (85)

is thus also in the adjoint of SU(3)V ,

s+ → V s+V
†. (86)

Note that s+ contains, in addition to the DM scalar, pseudoscalar, and θ currents, a contri-

bution from the quark masses. For later convenience we define a parity-even spurion that

vanishes in the limit of zero DM currents,

sχ+ ≡ ξ†(sχ + ip)ξ† + ξ(sχ − ip)ξ +
iθ

Tr(M−1
q )

(
U † − U

)
+ · · · . (87)

3 This differs from [30] and follows [25]. The convention of [30] is obtained by the replacement ξ → ξ†.
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The ellipses denote terms that involve more than one insertion of the DM currents. One

therefore has

s+ = sχ+ + ξ†Mqξ
† + ξMqξ , (88)

where the last two terms arise purely from the QCD Lagrangian.

From the a′µ and νµ spurions in (59) we can form axial, Aµ, and vector, Vµ, currents that

transform under chiral rotations as

Vµ → V VµV
† + iV ∂µV

†, Aµ → V AµV
†. (89)

They are sums of DM and SM currents,

Vµ = V χ
µ + iV ξ

µ , Aµ = Aχµ + Aξµ, (90)

where4

V χ
µ =

1

2

[
ξ†(νχ,µ + a′µ)ξ + ξ(νχ,µ − a′µ)ξ†

]
, (91)

V ξ
µ =

1

2

(
ξ†∂µξ + ξ∂µξ

†) + i
eAeµ

2

(
ξ†Q̄qξ + ξQ̄qξ

†), (92)

and

Aχµ =
1

2

[
ξ†(νχ,µ + a′µ)ξ − ξ(νχ,µ − a′µ)ξ†

]
, (93)

Aξµ =
i

2

(
ξ†∂µξ − ξ∂µξ†)−

eAeµ
2

(
ξ†Q̄qξ − ξQ̄qξ

†). (94)

The V ξ
µ and Aξµ are pure QCD and QED currents, while the dependence on the DM currents

is included in V χ
µ and Aχµ.

The pNGBs can be factored out of the baryon fields Bv so that they transform as

Bv → V BvV
†. (95)

We define the covariant derivative by

∇µBv = ∂µBv − i[Vµ, Bv] = ∂µBv − i[V χ
µ , Bv] + [V ξ

µ , Bv]. (96)

Under chiral rotations it transforms as ∇µBv → V∇µBvV
†.

4 Our convention for the QED covariant derivative is Dµ = ∂µ + ieQAeµ, where Q is the charge of the

particle in terms of the positron charge, and Aeµ is the photon field.
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With the above notation in hand we can write down the HBChPT Lagrangian. The O(p)

terms are5

L(1)
HBChPT =iTr

(
B̄vv ·∇Bv

)
− 2mG

27
Tr
(
B̄vBv

)
sG + 2DTr

(
B̄vS

µ
N{Aµ, Bv}

)
+ 2F Tr

(
B̄vS

µ
N [Aµ, Bv]

)
+ 2GTr

(
B̄vS

µ
NBv

)
Tr
(
Aµ
)

+ Tr(Vµ) Tr
(
B̄vv

µBv

)
.

(97)

We included the dimension-seven sG contribution, formally ofO(p0), in theO(p) Lagrangian.

Note that the last two terms do not appear in [30] since the QCD and QED parts of

the currents vanish, TrV ξ
µ = TrAξµ = 0, while in our case TrVµ = Tr(νµ) and TrAµ =

Tr aµ + ∂µθ/2 can be nonzero, depending on the DM interactions. The coefficient of the last

term is fixed by requiring that the vector current q̄γµq counts the number of valence quarks

in the baryons.

The scalar and pseudoscalar spurions first appear in the O(p2) HBChPT Lagrangian.

The terms relevant for our analysis are

L(2)
HBChPT ⊃ bD Tr B̄v{s+, Bv}+ bF Tr B̄v[s+, Bv] + b0 Tr

(
B̄vBv

)
Tr
(
sχ+
)
− Tr B̄v∇2Bv

2mN

+
1

2mN

Tr
(
Vµ
)

Tr
(
B̄vi

↔
∇µBv

)
− G

mN

Tr
(
B̄vSN ·i

↔
∇Bv

)
Tr
(
v ·A

)
− (D + F )

2mN

Tr
(
B̄v{SN ·i

↔
∇, v ·A}Bv

)
− (D − F )

mN

Tr
[
(B̄vSN ·i

↔
∇Bv)(v ·A)

]
− iεαβλσvα

[
g4 Tr

(
B̄vSNβ∇λ∇σBv

)
− ig5 Tr

(
B̄vSNβBv∇λVσ

)
+ ig′4 Tr

(
B̄vSNβBv

)
∂λ Tr(Vσ)

]
+ · · · ,

(98)

where we used reparametrization invariance to fix some of the low-energy constants, see

Eq. (B12). The remaining constants are given in Table I. They are related to the proton

and neutron magnetic moments, the nucleon sigma terms, σpu,d, and the axial-vector matrix

elements, ∆qp, as detailed in Appendix C. The complete expression for L(2)
HBChPT is given in

Appendix B 1.

The DM spurions in the above Lagrangian can be expanded in terms of the PNGB fields.

Keeping only the first nonzero terms, one has

V χ
µ = νχ,µ −

i√
2f

[Π, aµ]−
i∂µθ [Π,M−1

q ]

2
√

2f Tr(M−1
q )

+ · · · , (99)

5 Here we use the notation p for the typical momenta exchange, p ∼ q, since this is the usual notation in

ChPT. It reduces the confusion with the quark indices.
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LE constant value LE constant value

D 0.812(30) bD 1.4± 0.8

F 0.462(14) bF −1.8± 0.8

G −0.376(28) g4 4.70/mN

mG 848(14) MeV g′4 1.03/mN

b0 −3.7± 1.4 g5 5.95(6)/mN

Table I: Numerical values for the low-energy constants relevant for leading order DM scattering in

ChEFT. Scale-dependent quantities are defined in the MS scheme at 2 GeV. For more details and

references, see the main text.

Aχµ = aµ −
i√
2f

[Π, νχ,µ] +
∂µθ

2

M−1
q

Tr(M−1
q )

+ · · · , (100)

sχ+ = 2sχ +

√
2

f
{Π, p}+

2
√

2

f

θΠ

Tr(M−1
q )

+ · · · . (101)

In our analysis we need the pure QCD interactions as well as the interactions of nucleons

with DM. Setting the DM currents to zero in LHBChPT gives the pure QCD part of HBChPT.

This has the following chiral expansion, LQCD
HBChPT = L(1),QCD

HBChPT + L(2),QCD
HBChPT + · · · , where

L(1),QCD
HBChPT =iTr

(
B̄vv ·∇ξBv

)
+ 2DTr

(
B̄vS

µ
N{A

ξ
µ, Bv}

)
+ 2F Tr

(
B̄vS

µ
N [Aξµ, Bv]

)
, (102)

L(2),QCD
HBChPT ⊃bD Tr B̄v{ξ†Mqξ

† + ξMqξ, Bv}+ bF Tr B̄v[ξ
†Mqξ

† + ξMqξ, Bv] + · · · . (103)

The QCD part of the HBChPT covariant derivative is

∇ξ
µBv = ∂µBv + [V ξ

µ , Bv] . (104)

The interactions between DM and nucleons have a chiral expansion that starts at O(p0),

Lχ,HBChPT = L(0)
χ,HBChPT + L(1)

χ,HBChPT + L(2)
χ,HBChPT + · · · . In our analysis we need terms up

to O(p3). Keeping only the leading terms for each of the Wilson coefficients in (14), the

HBChPT interaction Lagrangians are

L(0)
χ,HBChPT = (χ̄vχv)

(1

2
Tr B̄v

[
(ξ†C̄(6,0)

1 ξ + ξC̄(6,0)
1 ξ†), Bv

]
+ Tr B̄vBv Tr C̄(6,0)

1

)
+ 2(χ̄vS

µ
χχv)

(
DTr B̄vS

µ
N

{
ξ†C̄(6,0)

4 ξ + ξC̄(6,0)
4 ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†C̄(6,0)

4 ξ + ξC̄(6,0)
4 ξ†, Bv

]
+ 2GTr B̄vS

µ
NBv Tr C̄(6,0)

4

)
− 2

27
mG (χ̄vχv) Tr(B̄vBv) Ĉ(7,0)

1 ,

(105)
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L(1)
χ,HBChPT ⊃ 2(χ̄vSχ,µχv)

∑
q

J̃V µ,NLO
q Ĉ(6,0)

2,q +
(
χ̄vχv

)∑
q

v · J̃A,NLO
q,µ Ĉ(6,0)

3,q

− i(χ̄vSχ·
↔
∂χv)

(1

2
Tr B̄v

[
(ξ†C̄(7,1)

2 ξ + ξC̄(7,1)
2 ξ†), Bv

]
+ Tr B̄vBv Tr C̄(7,1)

2

)
+
i

2

[
χ̄v
↔
∂
µ
⊥χv − i∂ν

(
χ̄vσ

µν
⊥ χv

)](1

2
Tr B̄v

[
vµ(ξ†C̄(7,1)

3 ξ − ξC̄(7,1)
3 ξ†), Bv

]
+DTr B̄vS

µ
N

{
ξ†C̄(7,1)

3 ξ + ξC̄(7,1)
3 ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†C̄(7,1)

3 ξ + ξC̄(7,1)
3 ξ†, Bv

]
+ 2GTr B̄vS

µ
NBv Tr C̄(7,1)

3

)
(106)

− 2

27
mG ∂µ(χ̄vS

µ
χχv) Tr(B̄vBv) Ĉ(8,1)

2

− (χ̄vχv)
Ĉ(7,0)

3

2 Tr(M−1
q )

{
1

2
v ·∂ Tr B̄v

[
(ξ†M−1

q ξ − ξM−1
q ξ†), Bv

]
+ ∂µ

(
DTr B̄vS

µ
N

{
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

]
+ 2GTr(M−1

q ) Tr B̄vS
µ
NBv

)}
,

L(2)
χ,HBChPT ⊃ −(χ̄vχv)

[
b0 Tr(B̄vBv) TrMq

(
C̄(7,0)

5 (U † + U)− iC̄(7,0)
7 (U † − U)

)
+ bD Tr B̄v

{
ξ†Mq

(
C̄(7,0)

5 − iC̄(7,0)
7

)
ξ† + ξMq

(
C̄(7,0)

5 + iC̄(7,0)
7

)
ξ, Bv

}
+ bF Tr B̄v

[
ξ†Mq

(
C̄(7,0)

5 − iC̄(7,0)
7

)
ξ† + ξMq

(
C̄(7,0)

5 + iC̄(7,0)
7

)
ξ, Bv

]]
− ∂ν(χ̄vSνχχv)

Ĉ(8,1)
4

2 Tr(M−1
q )

{
1

2
v ·∂ Tr B̄v

[
(ξ†M−1

q ξ − ξM−1
q ξ†), Bv

]
+ ∂µ

(
DTr B̄vS

µ
N

{
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

]
+ 2GTr(M−1

q ) Tr B̄vS
µ
NBv

)}
,

(107)

L(3)
χ,HBChPT ⊃ −∂µ(χ̄vS

µ
χχv)

[
b0 Tr(B̄vBv) TrMq

(
C̄(8,1)

6 (U † + U) + iC̄(8,1)
8 (U † − U)

)
+ bD Tr B̄v

{
ξ†Mq

(
C̄(8,1)

6 + iC̄(8,1)
8

)
ξ† + ξMq

(
C̄(8,1)

6 − iC̄(8,1)
8

)
ξ, Bv

}
+ bF Tr B̄v

[
ξ†Mq

(
C̄(8,1)

6 + iC̄(8,1)
8

)
ξ† + ξMq

(
C̄(8,1)

6 − iC̄(8,1)
8

)
ξ, Bv

]]
.

(108)

The expressions for the NLO currents J̃V,NLO
q,µ and J̃A,NLO

q,µ appearing in (106) can be found

in (B40) and (B43). The diagonal matrix of Wilson coefficients C̄i was defined in (45).

The DM HBChPT Lagrangians (106)-(108), expanded in the meson fields, are collected in

Section B 2.
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IV. DISCUSSION AND MATCHING ONTO NUCLEAR CHIRAL EFT

We are now in a position to calculate the scattering of DM on nuclei using a chiral EFT

description of nuclear forces. We first briefly review the results of the previous two sections,

keeping only the essential ingredients, and introduce a simplified notation. We rewrite the

HDMET interaction Lagrangian (13) as

Lχ = L(5)
χ + L(6)

χ + L(7)
χ + · · · , (109)

where we collect in each Lagrangian L(d)
χ the terms that would come from relativistic DM

operators with dimensionality d in (2)-(9), L(d)
χ =

∑
a,m Ĉ

(d+m,m)
a Q(d+m,m)

a . We work to tree-

level order in the matching at the scale µ ∼ mχ. The Wilson coefficients then satisfy the

relations (24), (31), (37), so that we have

L(5)
χ = Ĉ(5,0)

1

e

8π2
FµνJ

T,µν
χ + Ĉ(5,0)

2

e

8π2
FµνJ

AT,µν
χ . (110)

L(6)
χ = JV,µχ

∑
q=u,d,s

[
Ĉ(6,0)

1,q

(
q̄γµq

)
+ Ĉ(6,0)

3,q

(
q̄γµγ5q

)]
+ JA,µχ

∑
q=u,d,s

[
Ĉ(6,0)

2,q

(
q̄γµq

)
+ Ĉ(6,0)

4,q

(
q̄γµγ5q

)]
.

(111)

L(7)
χ = JSχ

∑
q=u,d,s

[
Ĉ(7,0)

5,q mq

(
q̄q
)

+ Ĉ(7,0)
7,q mq

(
q̄iγ5q

)
+ Ĉ(7,0)

1

αs
12π

Ga
µνG

aµν + Ĉ(7,0)
3

αs
8π
Ga
µνG̃

aµν
]

+mχJ
P
χ

∑
q=u,d,s

[
Ĉ(8,1)

6,q mq

(
q̄q
)
− Ĉ(8,1)

8,q mq

(
q̄iγ5q

)
+ Ĉ(8,1)

2

αs
12π

Ga
µνG

aµν + Ĉ(8,1)
4

αs
8π
Ga
µνG̃

aµν
]
.

(112)

Note that, for tree-level matching, the HDMET interactions are simply a product of the DM

and SM currents, with the DM currents taken outside the sums over quark flavors. The DM

currents are given by

JT,µνχ = χ̄vσ
µν
⊥ χv +

1

2mχ

(
χ̄viv

[µ
σ
ν]ρ
⊥
↔
∂ ρχv − v[µ∂ν]χ̄vχv

)
+ . . .

tree
= χ̄σµνχ , (113)

JAT,µνχ = χ̄vS
[µ
χ v

ν]χv + · · · tree
= χ̄σµνiγ5χ, (114)

JV,µχ = vµχ̄vχv +
1

2mχ

χ̄vi
↔
∂
µ
⊥χv +

1

2mχ

∂ν
(
χ̄σµν⊥ χv

)
+ · · · tree

= χ̄γµχ , (115)

JA,µχ = 2χ̄vS
µ
χχv −

i

mχ

vµχ̄vSχ·
↔
∂χv + · · · tree

= χ̄γµγ5χ , (116)
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JSχ = χ̄vχv + · · · tree
= χ̄χ , (117)

JPχ =
1

mχ

∂µχ̄vS
µ
χχv + · · · tree

= χ̄iγ5χ . (118)

The notation in (110)-(112) will prove useful we discuss the leading contributions in chiral

counting for each of the Wilson coefficients, as it makes it easy to see where the q/mχ-

suppressed terms come from. For matching at higher loop orders at scale µ ∼ mχ one could

generalize the above notation by making the DM currents quark-flavor dependent and move

them inside the quark flavor sums, although the notation would not be simpler than in (14).6

The Lagrangian L(5)
χ , Eq. (110), contains only QED interactions of DM with the SM.

On the other hand, we have seen in the previous two sections that the L(6,7)
χ interactions

involving quarks and gluons, Eq. (111) and (112), match onto an effective Lagrangian with

mesons and nucleons, Lχ,ChPT+Lχ,HBChPT. Here Lχ,ChPT contains only the light pseudoscalar

mesons π, K, and η as QCD asymptotic states, while Lχ,HBChPT contains, in addition, the

protons and neutrons. One can organize the different terms using chiral counting since the

momentum transfer is small, q ≤ qmax � 4πfπ (cf. Eq. (1)), where fπ is the pion decay

constant. The chiral expansion corresponds to an expansion in momenta exchanges, p ∼ q,

where the meson masses are counted as mπ ∼ O(p). As a consequence the quark masses

scale as mq ∼ O(p2) since mq ∝ m2
π. The interactions of DM with mesons start at O(p),

Lχ,ChPT = L(1)
χ,ChPT + L(2)

χ,ChPT + · · · , (121)

while the interactions of DM with nucleons start at O(p0)

Lχ,HBChPT = L(0)
χ,HBChPT + L(1)

χ,HBChPT + L(2)
χ,HBChPT + · · · . (122)

The QCD interactions among pions have an expansion in p2, while the interactions between

pions and nucleons have an expansion in p,

LQCD
ChPT = L(2)

ChPT + L(4)
ChPT + · · · , LQCD

HBChPT = L(1)
HBChPT + L(2)

HBChPT + · · · . (123)

6 For instance one could define

JV,µχ,j,q = vµ
(
χ̄vχv

)
+
[
rj,q(χ̄vi

↔
∂
µ
⊥χv) + r(j+9)/2,q∂ν

(
χ̄σµν⊥ χv

)]
/2, j =1, 3, (119)

JA,µχ,j,q = 2
(
χ̄vS

µ
χχv

)
− rj,qv

µ(χ̄viS·
↔
∂χv), j =2, 4, (120)

with rj,q = Ĉ(7,1)j,q /Ĉ(6,0)1,q .
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The explicit forms of the above Lagrangians are given in (67), (68), (75)-(77), (102), (103),

and (105)-(108). The LO QCD interactions are schematically

L(2)
ChPT ∼ (∂µπ)2 + (π∂µπ)2 + · · · ,

L(1)
HBChPT ∼ N̄v ·∂N + N̄Nv ·∂π + N̄SµNNπ∂µπ + · · · ,

(124)

where we expanded in the meson fields, π, with N denoting a nucleon field.

The leading few terms in chiral counting for the DM–meson interactions are

L(1)
χ,ChPT = JV,µχ

∑
q

(
JVq,µĈ

(6,0)
1,q + JAq,µĈ

(6,0)
3,q

)
+ JA,µχ

∑
q

(
JVq,µĈ

(6,0)
2,q + JAq,µĈ

(6,0)
4,q

)
,

(125)

L(2)
χ,ChPT = JSχ

∑
q

(
JSq Ĉ

(7,0)
5,q + JPq Ĉ

(7,0)
7,q + JGĈ(7,0)

1 + JθĈ(7,0)
3

)
, (126)

L(3)
χ,ChPT = mχJ

P
χ

∑
q

(
JSq Ĉ

(8,1)
6,q − JPq Ĉ

(8,1)
8,q + JGĈ(8,1)

2 + JθĈ(8,1)
4

)
. (127)

Here, we used tree-level matching expressions, and have thus factored out the DM currents

(115)-(118). We took into account the scaling JPχ ∼ O(p), c.f. Eq. (118), while all the other

DM currents are O(p0). The quark level currents were hadronized into the corresponding

mesonic currents,

q̄γµq → JVq,µ ∼ π∂µπ + · · · , q̄γµγ5q → JAq,µ ∼ ∂µπ + · · · ,

mq q̄q → JSq ∼ mqπ
2 + · · · , q̄iγ5q → JPq ∼ mqπ + · · · ,

αs
12π

GµνG
µν → JG ∼ ∂2π2 + · · · , αs

8π
GµνG̃

µν → Jθ ∼ ∂2π + · · · .

(128)

Again, we showed their schematic structure when expanded in the meson fields, keeping

only the first nonzero terms. The full form of the currents are given in Appendix B.

The DM–nucleon interactions, keeping only the leading terms in chiral counting for each

effective operator, are given by

L(0)
χ,HBChPT =

∑
q

(
JVχ ·J̃Vq Ĉ

(6,0)
1,q + JAχ ·J̃Aq Ĉ

(6,0)
4,q

)
+ JSχ J̃

GĈ(7,0)
1 , (129)

L(1)
χ,HBChPT ⊃

∑
q

(
JAχ ·J̃Vq Ĉ

(6,0)
2,q + JVχ ·J̃Aq Ĉ

(6,0)
3,q

)
+mχJ

P
χ J̃

G Ĉ(8,1)
2

+ JSχ J̃
θ Ĉ(7,0)

3 ,

(130)

L(2)
χ,HBChPT ⊃ JSχ

∑
q

(
J̃Sq Ĉ

(7,0)
5,q + J̃Pq Ĉ

(7,0)
7,q

)
+mχJ

P
χ J̃

θ Ĉ(8,1)
4 , (131)
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L(3)
χ,HBChPT ⊃ mχJ

P
χ

∑
q

(
J̃Sq Ĉ

(8,1)
6,q − J̃Pq Ĉ

(8,1)
8,q

)
, (132)

where in each term one should keep only the leading nonzero terms in the HDMET expansion

of the DM currents. The explicit form of the Lagrangians are given in Eqs. (105)-(108), while

the expressions expanded in meson fields are given in Eqs. (B18)-(B23). The quark-level

currents get hadronized to nucleon currents. They are schematically

q̄γµq → J̃V,µq ∼ vµN̄N + · · · , q̄γµγ5q → J̃A,µq ∼ N̄SµNN + · · · ,

mq q̄q → J̃Sq ∼ mqN̄N + · · · , mq q̄iγ5q → J̃Pq ∼ mqN̄Nπ + · · · ,
αs

12π
GG→ J̃G ∼ N̄N + · · · , αs

8π
GG̃→ J̃θ ∼ qµN̄SN,µN + · · · ,

(133)

with their explicit forms given in Eqs. (B34)-(B39), Eqs. (B40)-(B43), and Eqs. (B47)-

(B58). Using the expressions (115)-(118) for the DM currents expanded in 1/mχ, and the

fact that v · SN = 0, v · Sχ = 0, we see that the O(p0) terms cancel in the products JVχ · J̃Aq
and JAχ · J̃Vq . These are then part of L(1)

χ,HBChPT, see Eq. (130). Schematically, we have for

the products of currents in (129)-(132)

JVχ ·J̃Vq ∼ JSχ J̃
G ∼ (χ̄vχv) (N̄N), JAχ ·J̃Aq ∼ (χ̄vSχχv) ·(N̄SNN),

JAχ ·J̃Vq ∼ JPχ J̃
G ∼ (χ̄v∂ ·Sχχv) (N̄N), JVχ ·J̃Aq ∼ JSχ J̃

θ ∼ (χ̄vχv) (N̄∂ ·SNN),

JSχ J̃
S
q ∼ mq(χ̄vχv) (N̄N), JSχ J̃

P
q ∼ mq(χ̄vχv) (N̄N)π, JPχ J̃

θ ∼ (χ̄v∂ ·Sχχv) (N̄∂ ·SNN),

JPχ J̃
S
q ∼ (χ̄v∂ ·Sχχv)mq(N̄N), JPχ J̃

P
q ∼ (χ̄v∂ ·Sχχv)mq(N̄N)π,

(134)

where in addition the JAχ ·J̃Vq and JVχ ·J̃Aq contain the operator εαβµνvαqβ(χ̄vSµχv) (N̄SνN).

In accordance with the chiral counting, the products of currents (134) entering L(d)
χ,HBChPT

have chiral dimension d, that is, they either have d derivatives, or have d−2 derivatives and

one factor of mq ∼ O(p2). Note that the hadronization of the pseudoscalar current, q̄iγ5q,

requires the emission of at least one meson.

A. DM–nucleus scattering in chiral EFT

The above DM–nucleon interactions are the building blocks for predicting the DM–

nucleus scattering rates using the ChEFT-based description of nuclear forces. DM scattering

is described by a single insertion of the interaction Lagrangian Lχ, Eq. (2), in the scattering
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amplitude. Our goal is to obtain the leading contribution to the DM-nucleus scattering

rate for all the interactions in Eq. (3)-(9). Each of the operators in (3)-(9) induces both a

coupling of DM to the light mesons only and a coupling of DM to nucleons and mesons. In

order to gauge the importance of each of these two types of contributions we use the chiral

counting for nuclear forces within ChEFT.

The ChEFT description of nuclear forces is based on Weinberg’s insight that the N -body

nucleon potentials can be obtained from N -nucleon irreducible amplitudes [31, 32]. The

N -nucleon irreducible amplitudes consist of those diagrams that cannot be disconnected by

cutting N nucleon lines, i.e., there must be at least one pion exchange. The internal pion

and nucleon propagators are off-shell by E ∼ O(p) ∼ O(mπ). As such they allow for a

consistent chiral counting. The properties of the nucleus can then be obtained by solving

the Schrödinger equation involving the 2, 3, . . . , N -nucleon potentials. This is equivalent

to resumming the reducible diagrams where some of the internal nucleon lines are close to

being on-shell, with E ∼ O(p2/mN).

We are interested in DM scattering on a nucleus with atomic number A. The scattering

operator follows from a sum of A-nucleon irreducible amplitudes, MA,χ, with one insertion of

the DM interaction. A given A-nucleon irreducible amplitude scales as MA,χ ∼ (p/ΛChEFT)ν ,

with [3, 32, 33]

ν = 4− A− 2C + 2L+
∑
i

Viεi + εχ, (135)

for a diagram with C connected parts, L loops, Vi strong-interaction vertices of type i,

and one DM interaction vertex. The effective chiral dimension εi of the vertex of type i

is given by εi = di + ni/2 − 2, where di is the chiral dimension of the vertex and ni the

number of nucleon legs attached to the vertex. We explicitly isolated the contribution εχ

due to the external DM current since each amplitude will only have one such insertion [3].

For instance, the effective chiral dimension of a vertex from L(d)
χ,ChPT is εχ = d − 2, while

the DM-nucleon interactions in L(d)
χ,HBChPT have effective chiral dimension εχ = d − 1. The

leading QCD interactions from L(1)
HBChPT and L(2)

ChPT have εi = 0. This means that one can

insert an arbitrary number of these strong vertices without affecting the pν power scaling.

The chiral loop counting in irreducible amplitudes suggests that the cut-off of the ChEFT

is the same as in ChPT, ΛChEFT ∼ Λχ ∼ 4πfπ ∼ 1 GeV. The resummation of the bubble

diagrams in the reducible amplitudes, on the other hand, leads to the appearance of the
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Figure 1: The leading order diagrams for the DM-nucleus scattering. The effective DM–nucleon

and DM–meson interactions is denoted by a circle, the dashed lines denote mesons, and the dots

represent the remaining A− 2 nucleon lines.

observed shallow bound states for pmN/Λ
2
ChEFT ∼ 1, and thus for ΛChEFT ∼ 0.5 GeV.7

Conservatively, we will use in the numerical estimates p/ΛChEFT ∼ mπ/ΛChEFT ∼ 0.3.

The LO diagrams for DM-nucleon scattering are shown in Fig. 1. The left diagram

gives the leading contribution for the hadronization of the q̄γµq, q̄q, and GG currents. For

these currents the right diagram is power suppressed. The right diagram is the leading

contribution for the hadronization of the q̄iγ5q current (the insertion is the mesonic JP

current), in which case the left diagram is absent. Finally, for q̄γµγ5q and GG̃ both the

left and the right diagrams are leading and contribute at the same order (for JVχ ·JAq the

left diagram dominates). In terms of the pν scaling we have for the leading contributions

proportional to the Ĉ(n,m)
a Wilson coefficients

νmin = νLO[JVχ ·J̃Vq ] = νLO[JAχ ·J̃Aq ] = νLO[JSχ J̃
G],

νmin + 1 = νLO[JVχ ·J̃Aq ] = νLO[JAχ ·J̃Vq ] = νLO[JPχ J̃
G] = νLO[JSχ J̃

θ] = νLO[JSχ J
P
q ],

νmin + 2 = νLO[JSχ J̃
S
q ] = νLO[JPχ J̃

θ] = νLO[JPχ J
P
q ],

νmin + 3 = νLO[JPχ J̃
S
q ].

(136)

Here νmin = 3− 3A simply reflects our normalization of the A-nucleon state, where A is the

7 This scaling would imply that the nucleon mass is parametrically larger than ΛChEFT, so that p/mN ∼
O(p2), where p ∼ mπ [32, 34]. In the derivation of the nuclear potentials using ChEFT one counts p/mN ∼
O(p), the same as in HBChPT [35]. The Weinberg’s counting is fully consistent when deriving the nuclear

potentials. Renormalization of the potentials when solving the Schrödinger equation, however, may require

counterterms of formally higher chiral order [33–36]. For instance, divergences due to iterations of leading-

order interactions may not be absorbed by the leading-order operators themselves [33]. While conceptually

discomforting, this problem is numerically small when using momentum cut-off regularization for modes

above ∼ 1GeV. The alternative KSW counting [37–39], treating the NLO corrections perturbatively, is

fully consistent, but leads to poorly convergent results [40].
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atomic number of the nucleus. In the brackets we displayed the leading products of currents

that multiply the Ĉ(n,m)
a in Eqs. (129)-(132). As already mentioned above, for most products

of currents the left diagram in Fig. 1 gives the dominant contribution. The resulting pνLO

suppression then follows directly from the chiral suppression of the corresponding interaction

Lagrangian, L(0,1,2,3)
χ,HBChPT. The exceptions are JSχ J

P
q and JPχ J

P
q , for which the right diagram

in Fig. 1 dominates. These products have a chiral suppression that is smaller than naively

expected from the dimensionality of the corresponding term in L(0,1,2,3)
χ,HBChPT since the single

pion exchange reduces νLO by one. From the general counting rule (135) a similar conclusion

would be reached also for the product JVχ ·J̃Aq . However, in this case the single pion coupling

to the DM current vanishes due to vector current conservation, so that the formally leading

contribution from the right diagram in Fig. 1 is zero. A special case is JAχ ·J̃Aq for which both

diagrams in Fig. 1 contribute at the same order.

Note that at LO in chiral counting DM interacts with a single nucleon, either directly

through the short distance operator, or through a single pion exchange. An interesting

question is at which order in p the two-body interactions do become important. Examples

of the relevant subleading contributions are shown in Fig. 2. The first two diagrams are due

to DM coupling to a short distance two-nucleon current. These contributions always scale

as pνLO+3. There are also contributions, shown in the third diagram of Fig. 2, where the

DM attaches to the meson exchanged between two nucleons, leading to long-distance two-

nucleon currents. For DM interactions originating from O(6)
2,q ∼ JAχ ·JVq , O(7)

5,q ∼ JSχ ·JSq , and

O(7)
6,q ∼ JPχ ·JSq , this contribution scales as pνLO+1, while for DM interactions originating from

O(6)
1,q ∼ JVχ ·JVq it scales as pνLO+2. In these cases the long distance two-nucleon contributions

are parametrically larger than the short distance ones. For the remaining operators the

long-distance contributions are of the same order or power suppressed compared to the

short-distance ones.

In addition, there are higher-order corrections that involve single-nucleon interactions

with DM. The last diagram in Fig. 2 shows an example of such an one-loop contribution. In

addition there are also power suppressed single-nucleon current insertions. These include the

counterterms that cancel the 1-loop divergences. For the DM interactions JAχ ·JVq , JSχ ·JSq , and

JPχ ·JSq , the one-loop contributions scale as pνLO+1, and are, together with the long-distance

pion exchange from the third diagram in Fig. 2, the leading chiral corrections.

In this work we are satisfied with LO matching and neglect relative O(p)-suppressed
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Figure 2: Sample NLO diagrams for the DM-nucleon scattering inside nuclei. The effective DM–

nucleon or DM–meson interaction is denoted by a box, the dashed lines denote mesons.

terms. Our results thus have a relative O(q/ΛChEFT) ∼ 30% accuracy. At this order the

effective DM interactions involve only single nucleon currents. At NLO, i.e., at relative

O((q/ΛChEFT)2) ∼ 10% accuracy, the DM is still interacting with a single nucleon current for

almost all DM–nucleon effective operators. The exceptions are the DM–nucleon interactions

JAχ ·JVq , JSχ ·JSq , and JPχ ·JSq . For these the two-nucleon contributions are a long-distance effect

so that the corrections are still calculable in ChPT. The results for scalar quark currents in

the case of Xe are available in [3, 9], and are of the expected size. The genuine short-distance

two-nucleon currents, for which one would require lattice QCD calculations, appear only at

NNNLO in chiral counting, i.e., below few-percent accuracy.

B. Form factors for dark matter–nucleon interactions

We can use the formalism in the previous section to calculate the form factors for the

DM–nucleon interactions. We perform the leading order matching, shown in Fig. 1. The

hadronized q̄γµq, q̄q, GG̃, and GG currents receive contributions from the left diagram,

the q̄iγ5q current from the right diagram, while q̄γµγ5q receives contributions from both

diagrams. The expanded hadronic currents are collected in Appendix B 4. We include

the contributions from single π0 and η exchanges in the q2-dependent coefficients of the

nonrelativistic operators defined below. The momenta exchanges are small enough that the

DM-nucleon interactions cannot lead to the dissociation of nuclei and the production of

on-shell pions.

The resulting effective Lagrangian is

Leff =
∑
i,d

(
c

(d)
i,p (q2)Q

(d)
i,p + c

(d)
i,n(q2)Q

(d)
i,n

)
, (137)
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Figure 3: The kinematics of DM scattering on nucleons, χ(p1)N(k1)→ χ(p2)N(k2).

with d counting the number of derivatives in the operators. It is understood that Leff is to

be used only at tree level. The operator basis is, for d = 0,

Q
(0)
1,p =

(
χ̄vχv

)(
p̄vpv

)
, Q

(0)
2,p =

(
χ̄vS

µ
χχv
)(
p̄vSN,µpv

)
, (138)

with a similar set of operators for neutrons, with p → n. The Q
(0)
1,p operator will induce

spin-independent DM scattering on the nucleus, while Q
(0)
2,p will induce the spin-dependent

scattering. In our analysis we also include all the d = 1 operators,

Q
(1)
1,p =

(
χ̄vχv

)(
p̄viq ·SNpv

)
, Q

(1)
2,p =

(
χ̄viq ·Sχχv

)(
p̄vpv

)
, (139)

Q
(1)
3,p = mN

(
χ̄vχv

)(
p̄v v⊥ ·SN pv

)
, Q

(1)
4,p = mN

(
χ̄v v⊥ ·Sχ χv

)(
p̄vpv

)
, (140)

Q
(1)
5,p = iεαβµνvαqβ

(
χ̄vSχ,µχv

)(
p̄vSN,νpv

)
, Q

(1)
6,p = mNε

αβµνvαv⊥,β
(
χ̄vSχ,µχv

)(
p̄vSN,νpv

)
.

(141)

The related operators for neutrons are obtained with a p→ n replacement. From the d = 2

set of operators we need only

Q
(2)
1,p =

(
χ̄viq ·Sχχv

)(
p̄v iq ·SN pv

)
, Q

(2)
2,p = imN ε

αβµνvαqβv⊥,µ
(
χ̄vSχ,νχv

)(
p̄vpv

)
. (142)

Above, we have defined several kinematic quantities for DM-nucleon scattering,

χ(p1)N(k1)→ χ(p2)N(k2), see Fig. 3. The momentum exchange is

qµ ≡ kµ2 − k
µ
1 = pµ1 − p

µ
2 , qµ =

(
q0, ~q

)
. (143)

The definition of momentum exchange three vector is thus8

~q = ~k2 − ~k1 = ~p1 − ~p2. (144)

8 This differs by a sign from [6], a difference that we will keep track of in our definitions of the NR operators.
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It is also useful to define the four-component perpendicular relative velocity (see also [6])

vµ⊥ =
1

2

( pµ1
mχ

+
pµ2
mχ

− kµ1
mN

− kµ2
mN

)
= ∆vµ − qµ

2µN
, (145)

where ∆vµ is the initial relative velocity between DM and nucleon,

∆vµ =
pµ1
mχ

− kµ1
mN

, (146)

and µN = mχmN/(mχ + mN) the reduced mass of the DM–nucleon system (we work in

the isospin limit, mN = mp = mn). Note the difference in our notation between vµ, the

HBChPT velocity label, and ∆vµ, the initial relative velocity. In the lab frame we have

vµ = (1,~0 ), while ∆vµ ∼ O(ΛQCD/mN) arises primarily due to the movement of nucleons

inside the nucleus. The perpendicular relative velocity obeys v⊥ · q = 0. Furthermore, in

the lab frame one has vµ⊥ = (0, ~v⊥) so that also ~v⊥ · ~q = 0.

The d = 0 Wilson coefficients for interactions of DM with protons are given by

c
(0)
1,p = 2 Ĉ(6,0)

1,u + Ĉ(6,0)
1,d −

2mG

27
Ĉ(7,0)

1 + σpu Ĉ
(7,0)
5,u + σpd Ĉ

(7,0)
5,d + σsĈ(7,0)

5,s −
αQp

2πmχ

Ĉ(5,0)
1 , (147)

c
(0)
2,p = 4

(
∆up Ĉ(6,0)

4,u + ∆dp Ĉ(6,0)
4,d + ∆s Ĉ(6,0)

4,s

)
+

2α

π

µp
mN

Ĉ(5,0)
1 , (148)

while the contributions for the neutrons are obtained through the replacement p→ n, u↔ d.

For convenience of notation we assumed that HDMET matching was done at tree level (see

the end of this Section for the general case). The above results can then be used directly

also for the relativistic form of the DM EFT (3)-(9) by simply replacing Ĉ
(d,0)
i → Ĉ

(d)
i . The

terms proportional to Ĉ(5,0)
1 come from a single photon exchange. For the photon propagator

we used that v · q = O(q2), so that (q2 − (v · q)2)/q2 = 1 +O(q2). The low-energy constant

mG is the gluon contribution to the nucleon mass. The remaining HBChPT constants have

been converted to nucleon sigma terms, σpu,d, axial vector matrix elements, ∆qp, and nuclear

magnetic moments, µN , using the leading-order expressions in Appendix C. Their values

are given in Appendix C and are collected in Tab. II. Qp(n) = 1(0) is the proton (neutron)

electric charge.
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LE constant value LE constant value LE constant value

∆up = ∆dn 0.897(27) ∆dp = ∆un −0.376(27) ∆s −0.026(4)

µp 2.79 µn −1.91 µs −0.073(19)

B0mu (6200± 400) MeV2 B0md (13300± 400) MeV2 B0ms (0.27± 0.01) GeV2

σpu (17± 5) MeV σpd (32± 10) MeV σs (41.3± 7.7) MeV

σnu (15± 5) MeV σnd (36± 10) MeV

gA 1.2723(23) mG 848(14) MeV

Table II: Numerical input values for the non-perturbative constants. For more details and refer-

ences, see Appendix C.

The d = 1 Wilson coefficients are

c
(1)
1,p =

B0 gA
m2
π − q2

(
muĈ(7,0)

7,u −mdĈ(7,0)
7,d

)
+
B0

3

(∆up + ∆dp − 2∆s)

m2
η − q2

(
muĈ(7,0)

7,u +mdĈ(7,0)
7,d − 2msĈ(7,0)

7,s

)
− m̃

[
∆up
mu

+
∆dp
md

+
∆s

ms

+
gA
2

(
1

mu

− 1

md

)
q2

m2
π − q2

+
1

6

(
∆up + ∆dp − 2∆s

)( 1

mu

+
1

md

− 2

ms

)
q2

m2
η − q2

]
Ĉ(7,0)

3 ,

(149)

c
(1)
2,p = −σpuĈ

(8,1)
6,u − σ

p
dĈ

(8,1)
6,d − σsĈ

(8,1)
6,s +

2mG

27
Ĉ(8,1)

2 − 2αQp

πq2
Ĉ(5,0)

2 , (150)

c
(1)
3,p =

2

mN

[
∆up Ĉ(6,0)

3,u + ∆dp Ĉ(6,0)
3,d + ∆s Ĉ(6,0)

3,s

]
, (151)

c
(1)
4,p = − 2

mN

[
2 Ĉ(6,0)

2,u + Ĉ(6,0)
2,d

]
, (152)

c
(1)
5,p =

4µ̂pu
mN

Ĉ(6,0)
2,u +

2µ̂pd
mN

Ĉ(6,0)
2,d −

6

mN

µs Ĉ(6,0)
2,s

+
4

mχ

(
∆up Ĉ(6,0)

3,u + ∆dp Ĉ(6,0)
3,d + ∆s Ĉ(6,0)

3,s

)
,

(153)

c
(1)
6,p = 0 , (154)

while the Wilson coefficients for the interactions of DM with neutrons, cni , are obtained by the

replacements p→ n, u↔ d. The above results apply to the relativistic form of the DM EFT

(3)-(9) by replacing Ĉ
(d,0)
i → Ĉ

(d)
i and Ĉ

(8,1)
i → Ĉ

(7)
i , as long as the matching to HDMET was

performed at tree level (see the end of this Section for the general case). In Eq. (149) and

in Eq. (155) below we use ∆up−∆dp = ∆dn−∆un = gA as this combination is determined

more precisely, see Eq. (C16). The B0 coefficient is related to the quark condensate so that
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B0mq ∼ m2
π, see Eq. (C27). We have also defined the contributions to the proton and neutron

magnetic moments from the u- and d-quark currents, µ̂pu = µ̂nd = 1.84, µ̂pd = µ̂nu = −1.03

(see Eq. (C26)), while µs is the s quark contribution to the proton and neutron magnetic

moments, see Eq. (C23).

The d = 2 Wilson coefficients are

c
(2)
1,p =

2α

πq2

µp
mN

Ĉ(5,0)
1 − 2

3

(∆up + ∆dp − 2∆s)

m2
η − q2

(
Ĉ(6,0)

4,u + Ĉ(6,0)
4,d − 2Ĉ(6,0)

4,s

)
− 2gA
m2
π − q2

(
Ĉ(6,0)

4,u − Ĉ
(6,0)
4,d

)
+
B0

mχ

gA
m2
π − q2

(
mu Ĉ(7,0)

8,u −md Ĉ(7,0)
8,d

)
+

B0

3mχ

(∆up + ∆dp − 2∆s)

m2
η − q2

(
mu Ĉ(7,0)

8,u +md Ĉ(7,0)
8,d − 2msĈ(7,0)

8,s

)
+ m̃

[
∆up
mu

+
∆dp
md

+
∆s

ms

+
gA
2

(
1

mu

− 1

md

)
q2

m2
π − q2

+
1

6

(
∆up + ∆dp − 2∆s

)( 1

mu

+
1

md

− 2

ms

)
q2

m2
η − q2

]
Ĉ(8,1)

4 ,

(155)

c
(2)
2,p = − 2αQp

πmNq2
Ĉ(5,0)

1 , (156)

while the expressions for the neutron follow from the replacements p→ n, u↔ d. As before

the above results also apply to the relativistic form of the DM EFT (3)-(9) by replacing

Ĉ
(d,0)
i → Ĉ

(d)
i , Ĉ(8,1)

4 → Ĉ(7)
4 /mχ (for tree level matching to HDMET). Note that, due to

the photon 1/q2 pole, the Ĉ(5,0)
1 contributions are of the same order as in (147), (149), even

though they multiply operators that are O(q2) suppressed. Similarly, due to the meson

poles, the contributions proportional to the Wilson coefficients Ĉ(6,0)
4,q in c

(2)
1,p, coming from

the right diagram in Fig. 1 are of the same chiral order as the Ĉ(6,0)
4,q terms in c

(0)
2,p, coming

from the left diagram in Fig. 1.

The coefficients c
(1)
1,N , c

(1)
2,p, c

(2)
1,N have a q2-dependence from pion, η, and photon exchanges,

i.e., they are non-local at the scale q ∼ mπ. This signals that the above effective description

of DM–nucleon interactions is not an effective field theory in the usual sense, and Leff

from (137) may only be used at tree level. The effective description does make sense,

though, since the pion and the η cannot be kinematically produced and never appear as

asymptotic states. In the scattering process q2 is spacelike, so that one never reaches the

pion or η pole in the above expressions. The single photon exchange similarly leads to a

classical potential for the DM-proton interactions.

The above results apply with trivial changes also if the matching to HDMET is performed
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beyond tree level. In that case one needs to replace Ĉ(5,0)
1 → mχĈ(6,1)

2 in (147), Ĉ(5,0)
1 →

mχĈ(6,1)
1 in (156), Ĉ(6,0)

3,q → mχĈ(7,1)
3,q in (151), Ĉ(6,0)

3,q → mχĈ(7,1)
6,q in (153), Ĉ(7,0)

8,q → mχĈ(8,1)
8,q in

(155).

Using the results of Ref. [6] for the nuclear response in DM direct detection, the cross

section for DM scattering on the nucleus is given by9

dσ

dER
=

mA

2π|~vχ|2
1

(2Jχ + 1)

1

(2JA + 1)

∑
spins

|M|2NR, (157)

where ER is the recoil energy of the nucleus, mA its mass, and ~vχ the initial DM velocity in

the lab frame. The non-vanishing contributions to the matrix element squared are [6]

1

2Jχ + 1

1

2JA + 1

∑
spins

|M|2NR =
4π

2JA + 1

∑
τ=0,1

∑
τ ′=0,1

{
Rττ ′

M W ττ ′

M (q) +Rττ ′

Σ′′W ττ ′

Σ′′ (q)

+Rττ ′

Σ′ W ττ ′

Σ′ (q) +
~q 2

m2
N

[
Rττ ′

∆ W ττ ′

∆ (q) +Rττ ′

∆Σ′W ττ ′

∆Σ′(q)
]}
,

(158)

where Jχ = 1/2 is the spin of DM, and JA is the spin of the target nucleus. The nonrelativistic

matrix element MNR has the same normalization as the one in [6]. The coefficients Rττ ′
i

depend on ~v⊥2
T , ~q 2/m2

N , as well as on the coefficients c
(d)
i,N in (147)-(156), and are given by [6]

Rττ ′

M = c
(0)
1,τc

(0)
1,τ ′ +

m2
N

4

[ ~q 2

m2
N

c
(1)
2,τc

(1)
2,τ ′ + ~v⊥2

T

(
c

(1)
4,τc

(1)
4,τ ′ + ~q 2c

(2)
2,τc

(2)
2,τ ′

)]
, (159)

Rττ ′

Σ′′ =
1

16

[
c

(0)
2,τc

(0)
2,τ ′ + ~q 2

(
c

(0)
2,τc

(2)
1,τ ′ + c

(2)
1,τc

(0)
2,τ ′ + 4c

(1)
1,τc

(1)
1,τ ′

)
+ ~q 4c

(2)
1,τc

(2)
1,τ ′

]
, (160)

Rττ ′

Σ′ =
m2
N

8
~v⊥2
T c

(1)
3,τc

(1)
3,τ ′ +

1

16

(
c

(0)
2,τc

(0)
2,τ ′ + ~q 2c

(1)
5,τc

(1)
5,τ ′

)
, (161)

Rττ ′

∆ =
m2
N

4

(
c

(1)
4,τc

(1)
4,τ ′ + ~q 2c

(2)
2,τc

(2)
2,τ ′

)
, (162)

Rττ ′

∆Σ′ =
m2
N

4

(
c

(1)
4,τc

(1)
5,τ ′ − c

(2)
2,τc

(0)
2,τ ′

)
. (163)

Note that (159)-(163) are already specific to the case of fermionic DM, Jχ = 1/2 (see [6] for

the general expression). Above,

~v⊥T = ~vχ − ~q/(2µχA), (164)

is the component of initial DM velocity in the lab frame, ~vχ, that is perpendicular to ~q, in

complete analogy with the single nucleon case (145). The typical value is |~v⊥T | ∼ 10−3. Here

9 For the reader’s convenience we translate our notation to the basis of [6] in Appendix A.
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µχA = 1/(1/mχ + 1/mA) is the reduced mass of the DM and the nucleus. The sum in (158)

is over isospin values τ = 0, 1. The Wilson coefficients c
(d)
i,τ are related to the proton and

neutron Wilson coefficients through

c
(d)
i,0 =

1

2

(
c

(d)
i,p + c

(d)
i,n

)
, c

(d)
i,1 =

1

2

(
c

(d)
i,p − c

(d)
i,n

)
. (165)

V. SCALAR DARK MATTER

The above results are easily extended to the case of scalar DM.10 For relativistic scalar

DM, denoted by ϕ, the effective interactions with the SM start at dimension six,

Lϕ = Ĉ(6)
a Q(6)

a + · · · , where Ĉ(6)
a =

C(6)
a

Λ2
, (166)

where ellipses denote higher dimension operators. The dimension-six operators are

Q(6)
1,q =

(
ϕ∗i

↔
∂µϕ

)
(q̄γµq), Q(6)

2,q =
(
ϕ∗i

↔
∂µϕ

)
(q̄γµγ5q), (167)

Q(6)
3,q = mq(ϕ

∗ϕ)(q̄q) , Q(6)
4,q = mq(ϕ

∗ϕ)(q̄iγ5q) , (168)

Q(6)
5 =

αs
12π

(ϕ∗ϕ)GaµνGa
µν , Q(6)

6 =
αs
8π

(ϕ∗ϕ)GaµνG̃a
µν . (169)

Q(6)
7 = i

e

8π2

(
∂µϕ

∗∂νϕ
)
F µν , (170)

Here
↔
∂µ is defined through φ1

↔
∂µφ2 = φ1∂µφ2 − (∂µφ1)φ2, and q = u, d, s again denote the

light quarks. The strong coupling constant αs is taken at µ ∼ 1 GeV. The operator Q(6)
6 is

CP-odd, while the other operators are CP-even. Note that because there are also leptonic

equivalents to the operators Q(6)
1,q which we do not include in the analysis, the inclusion of

Q(6)
7 is not redundant (the equations of motion relate ∂µFµν =

∑
f eQf f̄γνf where f are

both quarks and leptons).

In (167)-(170) we kept the leading operators that one would get from a UV theory of

complex scalar DM for each of the chiral and flavor structures. At dimension six there

are also the Rayleigh operators (ϕ∗ϕ)F µνFµν and (ϕ∗ϕ)F µνF̃µν which, however, lead to

scattering rates suppressed by a factor of α compared to Q(6)
7 [41]. For real scalar DM the

10 For operators, spurions, and Wilson coefficients we adopt the same notation for scalar DM as for fermionic

DM. No confusion should arise as this abuse of notation is restricted to this section.
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operators Q(6)
1,q, Q

(6)
2,q, and Q(6)

7 vanish, and one would need to consider subleading operators.

In this paper we limit ourselves to the case of complex scalar DM.11

The next step is to consider scalar DM interactions with the visible sector in HDMET.

To derive it we factor out the large momenta,

ϕ(x) = e−imϕv·xϕv . (171)

The HDMET for scalar DM is thus

LHDMET = ϕ∗viv ·∂ϕv +
1

2mϕ

ϕ∗v(i∂⊥)2ϕv + · · ·+ Lϕv . (172)

The first term is the LO HDMET for scalar fields. The 1/mϕ term is fixed by reparametriza-

tion invariance [24], while the ellipses denote the higher-order terms. The interaction La-

grangian Lϕv is also expanded in 1/mϕ,

Lϕv =
∑
d,m

Ĉ(d,m)
a Q(d,m)

a , where Ĉ(d,m)
a =

C(d,m)
a |nf=5

Λd−m−4mm
ϕ

. (173)

As for fermionic DM, the operators Q(d,m)
a arise as the terms of order 1/mm

χ in the HDMET

expansion of the UV operators Q(d)
a in (167)-(170). Because of the derivatives acting on

scalar fields the index m can also be negative, since

i
(
ϕ∗
↔
∂µϕ

)
→ 2mϕvµ

(
ϕ∗vϕv

)
+ i
(
ϕ∗v
↔
∂µϕv

)
+ · · · , (174)(

∂[µϕ
∗∂ν]ϕ

)
→ imϕv[µ∂ν]

(
ϕ∗vϕv

)
+
(
∂[µϕ

∗
v∂ν]ϕv

)
+ · · · . (175)

We thus have three HDMET operators that start at dimension five

Q(5,−1)
1,q = 2(ϕ∗vϕv)(q̄/vq), Q(5,−1)

2,q = 2(ϕ∗vϕv)(q̄/vγ5q), (176)

Q(5,−1)
3 = − e

8π2
vµ∂ν

(
ϕ∗vϕv

)
F µν . (177)

The relevant dimension-six operators are

Q(6,0)
1,q =

(
ϕ∗vi

↔
∂µϕv

)
(q̄γµq), Q(6,0)

2,q =
(
ϕ∗vi

↔
∂µϕv

)
(q̄γµγ5q), (178)

Q(6,0)
3,q = mq(ϕ

∗
vϕv)(q̄q) , Q(6,0)

4,q = mq(ϕ
∗
vϕv)(q̄iγ5q) , (179)

11 We have also neglected the contributions of operators of dimension seven and higher that are promoted to

dimension five or six in going to HDMET, e.g., ∂µϕ∗∂µϕ q̄q → m2
ϕϕ
∗
vϕv q̄q. These operators are suppressed

by additional powers of mϕ/Λ compared to the operators that we consider.
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Q(6,0)
5 =

αs
12π

(ϕ∗vϕv)G
aµνGa

µν , Q(6,0)
6 =

αs
8π

(ϕ∗vϕv)G
aµνG̃a

µν , (180)

Q(6,0)
7 = i

e

8π2

(
∂µϕ

∗
v∂νϕv

)
F µν . (181)

These are simple extensions of the relativistic operators in (167)-(170), but the derivatives

are now all O(q) since they act on HDMET fields. Reparametrization invariance fixes

C(5,−1)
1,q = C(6,0)

1,q , C(5,−1)
2,q = C(6,0)

2,q , C(5,−1)
3 = C(6,0)

7 (182)

to all loop orders in the matching at the scale mχ. In the Lagrangian (173) the operators

thus always appear in the linear combinations

mϕQ(5,−1)
1,q +Q(6,0)

1,q , mϕQ(5,−1)
2,q +Q(6,0)

2,q , mϕQ(5,−1)
3 +Q(6,0)

7 . (183)

It is now easy to obtain the ChPT and HBChPT Lagrangians. The external spurions in

the QCD Lagrangian (38) are, for relativistic DM,

νµ(x) = −eQ̄qA
e
µ + νχ,µ = −eQ̄qA

e
µ + C̄(6)

1

(
ϕ∗i

↔
∂µϕ

)
, (184)

aµ(x) = C̄(6)
2

(
ϕ∗i

↔
∂µϕ

)
, (185)

s(x) =Mq + sχ =Mq −Mq C̄(6)
3

(
ϕ∗ϕ

)
, (186)

p(x) =Mq C̄(6)
4

(
ϕ∗ϕ

)
, (187)

sG(x) = Ĉ(6)
5

(
ϕ∗ϕ

)
, (188)

θ(x) = Ĉ(6)
6

(
ϕ∗ϕ

)
. (189)

For HDMET the external spurions are thus

νµ(x) = −eQ̄qA
e
µ + νχ,µ = −eQ̄qA

e
µ + 2vµC̄(5,−1)

1 (ϕ∗vϕv) + C̄(6,0)
1

(
ϕ∗vi

↔
∂µϕv

)
+ · · · , (190)

aµ(x) = 2vµC̄(5,−1)
2 (ϕ∗vϕv) + C̄(6,0)

2

(
ϕ∗vi

↔
∂µϕv

)
+ · · · , (191)

s(x) =Mq + sχ =Mq −Mq C̄(6,0)
3

(
ϕ∗vϕv

)
+ · · · , (192)

p(x) =Mq C̄(6,0)
4

(
ϕ∗vϕv

)
+ · · · , (193)

sG(x) = Ĉ(6,0)
5

(
ϕ∗vϕv

)
+ · · · , (194)

θ(x) = Ĉ(6,0)
6

(
ϕ∗vϕv

)
+ · · · , (195)

with ellipses denoting higher order terms. We use the same notation for Wilson coefficients

as in (45). Note that the derivatives act on HDMET fields and are thus O(q).
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From this we can immediately obtain the ChPT interactions for scalar DM,

L(1)
ϕ,ChPT = −if 2mϕ(ϕ∗vϕv)v

µ Tr
[
(U∂µU

† + U †∂µU) C̄(6,0)
1 + (U∂µU

† − U †∂µU) C̄(6,0)
2

]
, (196)

L(2)
ϕ,ChPT ⊃ −

B0f
2

2
(ϕ∗vϕv) Tr

[
(U + U †)MqC̄(6,0)

3 + i(U − U †)MqC̄(6,0)
4

]
+ (ϕ∗vϕv)

[ 2

27
Tr
(
∂µΠ∂µΠ

)
− 6

27
B0 Tr

(
MqΠ

2
)]
Ĉ(6,0)

5

− if 2

2

(
ϕ∗vi

↔
∂µϕv

)
Tr
[
(U∂µU

† + U †∂µU) C̄(6,0)
1 + (U∂µU

† − U †∂µU) C̄(6,0)
2

]
.

(197)

In (196) we used the relations C̄(5,−1)
1 = mϕC̄(6,0)

1 and C̄(5,−1)
2 = mϕC̄(6,0)

2 , valid to all orders in

perturbation theory (cf. Eq. (182)), in order to explicitly show the mϕ dependence. Com-

pared to the fermionic DM ChPT Lagrangians in (75)-(77), there are fewer terms in (196)-

(197), as there is no equivalent of the pseudoscalar and axial-vector DM currents for scalar

DM. Working at LO we thus do not need to consider L(3)
ϕ,ChPT at all. Note that in L(2)

χ,ChPT we

need to keep the O(p2) terms proportional to C̄(6,0)
1,2 , even though these Wilson coefficients ap-

pear already in L(1)
ϕ,ChPT. Both of these terms give contributions of the same order in ChEFT

since (196) gives v · q ∼ O(p2) suppressed contributions for typical external momenta.

The HBChPT interaction Lagrangians for scalar DM are

L(0)
ϕ,HBChPT = mϕ(ϕ∗vϕv)

(
Tr B̄v

[
(ξ†C̄(6,0)

1 ξ + ξC̄(6,0)
1 ξ†), Bv

]
+ 2 Tr B̄vBv Tr C̄(6,0)

1

)
− 2

27
mG (ϕ∗vϕv) Tr(B̄vBv) Ĉ(6,0)

5 ,
(198)

L(1)
ϕ,HBChPT ⊃ 2mϕ(ϕ∗vϕv)

∑
q

v · J̃A,NLO
q,µ Ĉ(6,0)

2,q

+ i(ϕ∗v
↔
∂µϕv)

(1

2
Tr B̄v

[
vµ(ξ†C̄(6,0)

2 ξ − ξC̄(6,0)
2 ξ†), Bv

]
+DTr B̄vS

µ
N

{
ξ†C̄(6,0)

2 ξ + ξC̄(6,0)
2 ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†C̄(6,0)

2 ξ + ξC̄(6,0)
2 ξ†, Bv

]
+ 2GTr B̄vS

µ
NBv Tr C̄(6,0)

2

)
− (ϕ∗vϕv)

Ĉ(6,0)
6

2 Tr(M−1
q )

{
1

2
v ·∂ Tr B̄v

[
(ξ†M−1

q ξ − ξM−1
q ξ†), Bv

]
+ ∂µ

(
DTr B̄vS

µ
N

{
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

]
+ 2GTr(M−1

q ) Tr B̄vS
µ
NBv

)}
,

(199)

L(2)
ϕ,HBChPT ⊃ −(ϕ∗vϕv)

[
b0 Tr(B̄vBv) TrMq

(
C̄(6,0)

3 (U † + U)− iC̄(6,0)
4 (U † − U)

)
+ bD Tr B̄v

{
ξ†Mq

(
C̄(6,0)

3 − iC̄(6,0)
4

)
ξ† + ξMq

(
C̄(6,0)

3 + iC̄(6,0)
4

)
ξ, Bv

}
+ bF Tr B̄v

[
ξ†Mq

(
C̄(6,0)

3 − iC̄(6,0)
4

)
ξ† + ξMq

(
C̄(6,0)

3 + iC̄(6,0)
4

)
ξ, Bv

]]
.

(200)
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The contribution of O(p0) to the Wilson coefficient C̄(5,−1)
2 cancels because v · J̃A,LO

q,µ = 0,

so that the leading contributions are given by L(1)
ϕ,HBChPT in (199), where we used the all-

order relation C̄(5,−1)
2 = mϕC̄(6,0)

2 , Eq. (182), to make the dependence on mϕ explicit. The

expression for the NLO axial-vector current J̃A,NLO
q,µ is given in (B43). The diagonal matrix

of Wilson coefficients C̄i was defined in (45). The A-nucleon irreducible amplitudes follow

the same scaling within ChEFT as for fermionic DM, Eq. (135), with the trivial replacement

εχ → εϕ. Here, the effective chiral dimension εϕ is the same as for the fermionic DM, as

we did not include the dimension of the external DM fields in its definition,and we have

εϕ = d− 2 for L(d)
ϕ,ChPT and εϕ = d− 1 for L(d)

ϕ,HBChPT.

Accounting for the effect of π0 and η exchange through q-dependent Wilson coefficients

results in an effective Lagrangian

Leff =
∑
i,d

(
c

(d)
i,p (q2)Q

(d)
i,p + c

(d)
i,n(q2)Q

(d)
i,n

)
, (201)

where d denotes the number of derivatives. For scalar DM we have, for d = 0, 1,

Q
(0)
1,p =

(
ϕ∗vϕv

)(
p̄vpv

)
, (202)

Q
(1)
1,p =

(
ϕ∗vϕv

)(
p̄viq ·SNpv

)
, Q

(1)
2,p = mN

(
ϕ∗vϕv

)(
p̄v v⊥ ·SN pv

)
, (203)

with a similar set of operators for neutrons, with p → n. Unlike fermionic DM we do

not need the d = 2 operators when working to leading order. For fermionic DM, photon

exchange and couplings of the DM spin to axial-vector and pseudoscalar quark currents lead

to momentum-suppressed operators in the nonrelativistic limit. Because of the enhancement

by the photon and pion poles, respectively, these contributions were of leading order. No such

terms are possible for scalar DM as it does not carry spin. The leading contributions from

the operators (167)-(170) are thus already captured by the nonrelativistic operators (202)

and (203) with up to one derivative. The matching calculation gives, for scalar DM,

c
(0)
1,p = 2mϕ

(
2 Ĉ(6,0)

1,u + Ĉ(6,0)
1,d

)
− 2mG

27
Ĉ(6,0)

5

+ σpu Ĉ
(6,0)
3,u + σpd Ĉ

(6,0)
3,d + σs Ĉ(6,0)

3,s −
αQp

2π
mϕĈ(6,0)

7 ,

(204)
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c
(1)
1,p =

B0 gA
m2
π + ~q 2

(
muĈ(6,0)

4,u −mdĈ(6,0)
4,d

)
+
B0

3

(∆up + ∆dp − 2∆s)

m2
η + ~q 2

(
muĈ(6,0)

4,u +mdĈ(6,0)
4,d − 2msĈ(6,0)

4,s

)
− m̃

[
∆up
mu

+
∆dp
md

+
∆s

ms

− gA
2

(
1

mu

− 1

md

)
~q 2

m2
π + ~q 2

− 1

6

(
∆up + ∆dp − 2∆s

)( 1

mu

+
1

md

− 2

ms

)
~q 2

m2
η + ~q 2

]
Ĉ(6,0)

6 ,

(205)

c
(1)
2,p =

4mϕ

mN

[
∆up Ĉ(6,0)

2,u + ∆dp Ĉ(6,0)
2,d + ∆s Ĉ(6,0)

2,s

]
. (206)

Starting from the EFT for relativistic DM (167)-(170), the above results can be used by sim-

ply replacing Ĉ(6,0)
i → Ĉ(6)

i = C(6)
i /Λ2. Because of the reparametrization invariance relation

(182), they are also valid if the masses of DM and mediators are comparable, in which case

the matching to HDMET is done at the same time as the mediators are being integrated

out, i.e., at µ ∼ Λ ∼ mϕ. Note that B0mq ∼ O(m2
π), with the explicit relations given in

(C27). In terms of the pν scaling we have for the leading contributions proportional to the

Ĉ(n,m)
a Wilson coefficients

νmin = νLO[JVϕ ·J̃Vq ] = νLO[JSϕ J̃
G] ,

νmin + 1 = νLO[JVϕ ·J̃Aq ] = νLO[JSϕ J̃
θ] = νLO[JSϕJ

P
q ] ,

νmin + 2 = νLO[JSϕ J̃
S
q ] ,

(207)

where we follow the same notation as for the case of fermionic DM for ease of comparison.

The vector and scalar DM currents are JVϕ = iϕ∗
↔
∂µϕ and JSϕ = ϕ∗ϕ, respectively, with

their HDMET decomposition given in (176), (177). The leading contributions for the JSϕJ
P
q

interaction comes from the right diagram in Fig. 1. The pion exchange reduces the chiral

scaling of the resulting amplitude by one, compared to the contact interaction. For all the

other operators the leading contribution comes from the left diagram in Fig. 1, so that the

chiral scaling is given by the chiral dimension of the corresponding HBChPT Lagrangian,

L(d)
ϕ,HBChPT. As before, νmin = 3 − 3A simply reflects our normalization of the A-nucleon

state. Note that the results (204)-(205) are valid for matching at µ ∼ mϕ to all loop orders,

but only to leading order in the chiral expansion.

The cross section for scalar DM scattering on the nucleus is [6]

dσ

dER
=

mA

2π|~vχ|2
4π

2JA + 1

[ ∑
τ,τ ′=0,1

Rττ ′

M W ττ ′

M (q) +Rττ ′

Σ′′W ττ ′

Σ′′ (q) +Rττ ′

Σ′ W ττ ′

Σ′ (q)

]
, (208)
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where ER is the recoil energy of the nucleus, mA its mass, ~vχ the initial DM velocity in the

lab frame, and W ττ ′
i (q) the nuclear response functions. The coefficients multiplying them

are given by

Rττ ′

M = c
(0)
1,τc

(0)
1,τ ′ , Rττ ′

Σ′′ =
1

4
~q 4c

(1)
1,τc

(1)
1,τ ′ , Rττ ′

Σ′ =
m2
N

8
~v⊥2
T c

(1)
2,τc

(1)
2,τ ′ . (209)

The perpendicular velocity ~v⊥T is defined in (164), while the relations between the coefficients

in (204)-(206) and the coefficients in the isospin basis c
(d)
i,τ are given in (165).

VI. CONCLUSIONS

Dark Matter scattering in direct detection is naturally described by an EFT if the media-

tors are heavier than about ∼ 1GeV. We performed the leading order matching between the

EFT with quark, gluons and photons as the external states and the EFT that describes DM

interactions with light mesons and nucleons. We covered both fermionic and scalar DM and

analyzed the operators that correspond to interactions between the visible and DM sector

up to and including dimension-six operators above the electroweak scale. The resulting EFT

was then used to obtain the coefficients that multiply the nuclear response functions, see,

e.g., Ref. [6]. Our main results for fermionic DM are given in (147)-(156). With these one

can go directly from the EFT with quarks, gluons and photons, Eqs. (3)-(9) to the nuclear

response functions and DM scattering rates. The results for scalar DM are given in (204)-

(205). The translation to the notation of Ref. [6] for fermionic DM is given in Appendix A,

in Eqs. (A13)-(A21). Note that only a subset of 9 out of 14 possible nonrelativistic operators

with up to two derivatives is generated in our set-up.

For each of the initial operators coupling DM to quarks and gluons we derived the leading

contributions when they hadronize. In order to compare the size of different potential

contributions we used chiral power counting in the ChEFT of nuclear forces, where we

counted the momentum exchange between DM and the nucleus as |~q| ∼ mπ ∼ O(200 MeV).

Using this counting one can see, for instance, that for fermionic DM the axial-axial oper-

ator induces two different leading contributions to the spin-dependent scattering rate. The

first contribution is due to the scattering of DM on a single nucleon, while the second con-

tribution arises from a pion exchange between DM and the nucleon. The pion exchange

contribution involves a nonrelativistic operator with two derivatives, Q
(2)
1,N in Eq. (142) that
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would naively give a O(q2) suppressed contribution to the scattering amplitude. Its con-

tribution is, however, enhanced by the pion pole 1/(m2
π + |~q |2), giving a contribution of

O(|~q |2/m2
π) ∼ O(1) for |~q | ∼ mπ. For this reason we needed to keep the nonrelativistic

operators with up to two derivatives.

Similar arguments apply to all the operators in Eqs. (3)-(9). Pion exchange is the leading

contribution to the scattering amplitude for operators with pseudoscalar quark currents,

while it is of the same order as the contact interactions with nucleons for the axial-axial

operator as well as those operators coupling the DM current to GG̃. For the remaining

operators, the DM-nucleon contact interactions give the leading contributions. Moreover,

obtaining contributions of leading order in chiral counting requires some care for the case

of vector and axial-vector quark currents, since these need to be expanded to NLO in chiral

counting when they are multiplied by axial-vector and vector DM currents, respectively.

The EFT we constructed in this paper is valid at µ ∼ 1GeV. A different EFT analysis,

valid all the way up to the scale of the mediator much above the electroweak scale, can

be useful when relating direct detection to processes at much higher energies, the DM

searches at the LHC [42–49] or signals from DM annihilation [50–55]. When relating these

with direct detection it is important to use simplified models [56–60] and even to include

loop corrections [61–69]. In the present work we completed the final step of this program,

explicitly connecting the EFT describing DM interactions with quarks and gluons with

nuclear physics.

Our results assume that that there are no large cancellations between different Wilson

coefficients in the UV. In the presence of cancellations one would need to include terms of

higher order in the chiral expansion. For instance, the pseudoscalar-pseudoscalar UV opera-

torQ(7)
8,q in Eq. (9) contributes to the (q·Sχ)(q·SN) nonrelativistic operator in Eq. (142). This

contribution vanishes, however, if muĈ(7,0)
8,u = mdĈ(7,0)

8,d = msĈ(7,0)
8,s , cf., Eq. (155). The leading

contribution to the DM-nucleon scattering would then come from a contact term of higher

order in chiral counting which could be viewed as due to η′ exchange. For contributions of

this type one could easily extend our analysis and include the η′ exchange contributions by

multiplying each term in LChPT + LHBChPT with an arbitrary function of the η′ field. How-

ever, since the mass of the η′ is comparable with the cut-off of the theory, it is consistent to

integrate it out, as we did. The same is true for the scalar-pseudoscalar UV operator Q(7)
7,q in

Eq. (9) whose contributions to the (q ·SN) nonrelativistic operator in Eq. (139) also vanish
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in the limit muĈ(7,0)
7,u = mdĈ(7,0)

7,d = msĈ(7,0)
7,s . A somewhat different situation is encountered

for the axialvector-axialvector operator Q(6)
4,q in Eq. (5). Its contributions to Q

(2)
1,N vanish if

Ĉ(6,0)
4,u = Ĉ(6,0)

4,d = Ĉ(6,0)
4,s . However, in this case the contact contributions of Q(6)

4,q to Q
(0)
2,N would

still be nonzero, see Eq. (148), and would be leading over the η′ exchange contributions.

Similar situations can arise for all the other operators in (3)-(9), where, through fine-

tuning in the UV theory, one can cancel the leading contributions in chiral counting. In

such situations it would be important to extend our analysis to higher orders in chiral

counting, as well as to analyze whether or not such fine-tunings are stable under quantum

corrections in the UV. We postpone such an analysis to future work [18].

Note that our analysis, while valid within the assumed power counting, does not capture

the leading contributions for all theories of DM, even without considering fine tuning. For

instance, dimension-seven Rayleigh operators can be leading for Majorana DM [70, 71]. For

this particular case the EFT analysis is already available [41], while a more complete analysis

of dimension-seven and higher dimension operators is still called for.
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Appendix A: Relation to the basis of Anand et al.

In this appendix we relate our nonrelativistic basis to the operator basis from Ref. [6]. The

operators in (138)-(142) are products of nonrelativistic DM and nucleon currents, although

still given in a Lorentz covariant notation. We now pass to a manifestly nonrelativistic

notation12, for which we use the operator basis from Ref. [6]. The operators with up to two

derivatives are

ON1 = 1χ1N , ON2 =
(
v⊥
)2

1χ1N , (A1)

12 Our metric convention for the Lorentz vectors is pµ = (p0, ~p ), pµ = (p0,−~p ).
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ON3 = 1χ ~SN ·
(
~v⊥×

i~q

mN

)
, ON4 = ~Sχ · ~SN , (A2)

ON5 = ~Sχ ·
(
~v⊥ ×

i~q

mN

)
1N , ON6 =

(
~Sχ ·

~q

mN

)(
~SN ·

~q

mN

)
, (A3)

ON7 = 1χ
(
~SN · ~v⊥

)
, ON8 =

(
~Sχ · ~v⊥

)
1N , (A4)

ON9 = ~Sχ ·
( i~q

mN

× ~SN

)
, ON10 = −1χ

(
~SN ·

i~q

mN

)
, (A5)

ON11 = −
(
~Sχ ·

i~q

mN

)
1N , ON12 = ~Sχ ·

(
~SN × ~v⊥

)
, (A6)

ON13 = −
(
~Sχ · ~v⊥

)(
~SN ·

i~q

mN

)
, ON14 = −

(
~Sχ ·

i~q

mN

)(
~SN · ~v⊥

)
, (A7)

with N = p, n. Note that each insertion of ~q is accompanied with a factor of 1/mN , so that

all of the above operators have the same dimensionality. The minus signs and order changes

in the cross products for the definitions of some of the operators compensate the relative

sign difference between our convention for the momentum exchange (143) and the one in [6].

The Wilson coefficients are in this basis given by

cNNR,1 = c
(0)
1,N , cNNR,2 = 0 , cNNR,3 = 0 , (A8)

cNNR,4 = −c(0)
2,N , cNNR,5 = m2

Nc
(2)
2,N , cNNR,6 = −m2

Nc
(2)
1,N , (A9)

cNNR,7 = −mNc
(1)
3,N , cNNR,8 = −mNc

(1)
4,N , cNNR,9 = mNc

(1)
5,N , (A10)

cNNR,10 = mNc
(1)
1,N , cNNR,11 = mNc

(1)
2,N , cNNR,12 = −mNc

(1)
6,N . (A11)

cNNR,13 = 0 , cNNR,14 = 0 . (A12)

With this dictionary one can go directly from the EFT with quark, gluons and photons as

external states, (3)-(9), to the nuclear response functions, using the coefficients in (147)-

(156). In the expressions (149)-(156) one also needs to replace q2 → −~q 2, so that, e.g., the

propagators due to pion exchange are proportional to 1/(m2
π + ~q 2). For tree-level matching

onto HDMET we thus have in terms of the operators (3)-(9)

cpNR,1 = 2 Ĉ(6)
1,u + Ĉ(6)

1,d −
2mG

27
Ĉ(7)

1 + σpu Ĉ
(7)
5,u + σpd Ĉ

(7)
5,d + σsĈ(7)

5,s −
αQp

2πmχ

Ĉ(5)
1 , (A13)

cpNR,4 = −4
(

∆up Ĉ(6)
4,u + ∆dp Ĉ(6)

4,d + ∆s Ĉ(6)
4,s

)
− 2α

π

µp
mN

Ĉ(5)
1 , (A14)

cpNR,5 =
2αQpmN

π~q 2
Ĉ(5)

1 , (A15)
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cpNR,6 = m2
N

{
2α

π~q 2

µp
mN

Ĉ(5)
1 +

2

3

(∆up + ∆dp − 2∆s)

m2
η + ~q 2

(
Ĉ(6)

4,u + Ĉ(6)
4,d − 2Ĉ(6)

4,s

)
+

2gA
m2
π + ~q 2

(
Ĉ(6)

4,u − Ĉ
(6)
4,d

)
− B0

mχ

gA
m2
π + ~q 2

(
mu Ĉ(7)

8,u −md Ĉ(7)
8,d

)
− B0

3mχ

(∆up + ∆dp − 2∆s)

m2
η + ~q 2

(
mu Ĉ(7)

8,u +md Ĉ(7)
8,d − 2msĈ(7)

8,s

)
− m̃

mχ

[
∆up
mu

+
∆dp
md

+
∆s

ms

− gA
2

(
1

mu

− 1

md

)
~q 2

m2
π + ~q 2

− 1

6

(
∆up + ∆dp − 2∆s

)( 1

mu

+
1

md

− 2

ms

)
~q 2

m2
η + ~q 2

]
Ĉ(7)

4

}
,

(A16)

cpNR,7 = −2
(

∆up Ĉ(6)
3,u + ∆dp Ĉ(6)

3,d + ∆s Ĉ(6)
3,s

)
, (A17)

cpNR,8 = 4 Ĉ(6)
2,u + 2 Ĉ(6)

2,d , (A18)

cpNR,9 = 4µ̂puĈ
(6)
2,u + 2µ̂pdĈ

(6)
2,d − 6µs Ĉ(6)

2,s +
4mN

mχ

(
∆up Ĉ(6)

3,u + ∆dp Ĉ(6)
3,d + ∆s Ĉ(6)

3,s

)
, (A19)

cpNR,10 = mN

{
B0 gA
m2
π + ~q 2

(
muĈ(7)

7,u −mdĈ(7)
7,d

)
+
B0

3

(∆up + ∆dp − 2∆s)

m2
η + ~q 2

(
muĈ(7)

7,u +mdĈ(7)
7,d − 2msĈ(7)

7,s

)
− m̃

[
∆up
mu

+
∆dp
md

+
∆s

ms

− gA
2

(
1

mu

− 1

md

)
~q 2

m2
π + ~q 2

− 1

6

(
∆up + ∆dp − 2∆s

)( 1

mu

+
1

md

− 2

ms

)
~q 2

m2
η + ~q 2

]
Ĉ(7)

3

}
,

(A20)

cpNR,11 =
mN

mχ

(
− σpuĈ

(7)
6,u − σ

p
dĈ

(7)
6,d − σsĈ

(7)
6,s +

2mG

27
Ĉ(7)

2 +
2αQpmχ

π~q 2
Ĉ(5)

2

)
, (A21)

while the remaining coefficients are zero. The coefficients for neutrons are obtained by

replacing p → n, u ↔ d. The Wilson coefficients of ON2 ,ON3 , ON13, ON14 are zero in our

framework as a result of the fact that we limited our discussion to the operators (21)-

(30) that can be generated from UV physics described by dimension-five and dimension-six

operators above the electroweak scale [18]. These Wilson coefficients are expected to be

generated if either one works to higher orders in q or if higher dimension operators are

included in the UV.

The above expressions extend the results in Ref. [5], where estimates for cNNR,6 and cNNR,10

were obtained without using the chiral expansion and thus do not contain the pion pole

contributions. A chiral expansion was performed in Ref. [9]. Our expressions involving the

axial quark current agree with Ref. [9], as do the expressions for the pseudoscalar quark

currents in the limits where the results of Ref. [9] are applicable, i.e., for either isospin
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triplet or flavor octet flavor structures.

Appendix B: Further details on chiral dark matter interactions

In this appendix we give further details on the ChPT and HBChPT Lagrangians that

describe DM interactions.

1. HBChPT Lagrangian at second order

We first give the full form of the HCBhPT Lagrangian at O(p2), including DM interac-

tions. The terms relevant for our analysis were shown already in Eq. (98). The complete

form of the Lagrangian is (see also [30, 72])

L(2)
HBChPT = L(2)

ps + L(2)
V + L(2)

A + L(2)
S , (B1)

where we split the contributions proportional to different spurions as denoted by subscripts

(except for L(2)
S that collects terms that involve the nuclear spin operator). The L(2)

ps contains

the scalar and pseudoscalar spurions,

L(2)
ps = bD Tr B̄v{s+, Bv}+ bF Tr B̄v[s+, Bv] + b0 Tr

(
B̄vBv

)
Tr
(
sχ+
)
. (B2)

The terms with the vector current, V µ, are

L(2)
V =c1 Tr

(
B̄v∇2Bv

)
− c′1 Tr

(
Vµ
)

Tr
(
B̄v i

↔
∇µBv

)
− c′2 Tr

(
∂ ·V

)
Tr
(
B̄vBv

)
− c′3 Tr

(
B̄vBv

)
v ·∂ Tr

(
v ·V

)
+ c′4

(
TrVµ)2 Tr(B̄vBv

)
+ c′5

(
Tr v ·V

)2
Tr(B̄vBv) ,

(B3)

where13 (B̄v

↔
∇µBv) ≡ B̄v∇µBv − B̄v

←
∇µBv. The c′i terms vanish if there are no DM currents

in Vµ, as then TrVµ = TrV ξ
µ = 0; they were thus omitted in [30, 72]. Note also that, in

general, the DM current νχ,µ, Eq. (39), is not conserved, ∂µν
µ
χ 6= 0, so that ∂ ·V 6= 0. Because

the vector quark currents are conserved, one does have c′2 = c′3 = 0, see Section B 4. The

13 We use the convention that
↔
∇µ acts only inside the brackets. In c′1 there is thus not derivative acting on

Tr(Vµ).
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terms involving the axial-vector current Aµ but not the spin operator are

L(2)
A =d1 Tr

(
B̄vA

2Bv

)
+ d2 Tr

(
B̄v(v ·A)2Bv

)
+ d3 Tr

(
B̄vBvA

2
)

+ d4 Tr
(
B̄vBv(v ·A)2

)
+ d5 Tr

(
B̄vBv

)
Tr
(
A2
)

+ d6 Tr
(
B̄vBv

)
Tr
(
(v ·A)2

)
+ d7 Tr

(
B̄vAµ

)
Tr
(
AµBv

)
+ d8 Tr

(
B̄vv ·A

)
Tr
(
v ·ABv

)
+ d9 Tr

(
B̄vAµBvA

µ
)

+ d10 Tr
(
B̄vv ·ABvv ·A

)
+ d′1 Tr

(
B̄vBv

)(
TrAµ

)2
+ d′2 Tr

(
B̄vBv

)(
Tr v ·A

)2

+ d′3 Tr
(
B̄vAµBv

)
Tr
(
Aµ
)

+ d′4 Tr
(
B̄vv ·ABv

)
Tr
(
v ·A

)
+ d′5 Tr

(
B̄vBvAµ

)
Tr
(
Aµ
)

+ d′6 Tr
(
B̄vBvv ·A

)
Tr
(
v ·A

)
.

(B4)

For the d7 and d8 terms, the contraction of Dirac indices is understood across the two traces.

The d′i terms vanish in the limit of vanishing DM currents, and were omitted in [72].

Finally, the terms involving the spin operator Sµv are

L(2)
S = L(2)

S0
+ L(2)

S′ + L(2)
S,ε , (B5)

where

L(2)
S0

=f1 Tr
(
B̄v{v ·i

↔
∇, SN ·A}Bv

)
+ f2 Tr

(
B̄v{SN ·i

↔
∇, v ·A}Bv

)
+ if3 Tr

(
B̄v[SN ·i

↔
∇, v ·A]Bv

)
+ f4 Tr

[
(B̄vv ·i

↔
∇SνNBv)Aν

]
+ f5 Tr

[
(B̄vSN ·i

↔
∇Bv)(v ·A)

]
+ f6 Tr

(
B̄v(SN ·A)2Bv

)
+ f7 Tr

(
B̄vS

ν
NBvv ·∇Aν

)
+ f8 Tr

(
B̄vS

µ
NBv∇µv ·A

)
,

(B6)

while

L(2)
S′ =f ′1 Tr

(
B̄vv ·i

↔
∇SµNBv

)
Tr
(
Aµ
)

+ f ′2 Tr
(
B̄vSN ·i

↔
∇Bv

)
Tr
(
v ·A

)
+ f ′3 Tr

(
B̄v(SN ·A)Bv

)
Tr
(
v ·V

)
+ f ′4 Tr

(
B̄vS

µ
N(v ·A)Bv

)
Tr
(
Vµ
)

+ f ′5 Tr
(
B̄vS

µ
NBv

)
Tr
(
Aµ
)

Tr
(
v ·V

)
+ f ′6 Tr

(
B̄vS

µ
NBv

)
Tr
(
Vµ
)

Tr
(
v ·A

)
+ f ′7 Tr

(
B̄v S

µ
NBv

)
v ·∂ Tr

(
Aµ
)

+ f ′8 Tr
(
B̄vS

µ
N Bv

)
∂µ Tr

(
v ·A

)
,

(B7)

and

L(2)
S,ε =− iεαβλσvα

[
g1 Tr

(
B̄vSNβAλAσBv

)
+ ig2 Tr

(
B̄vSNβAλBvAσ

)
+ g3 Tr

(
B̄vSNβBvAλAσ

)
+ g4 Tr

(
B̄vSNβ∇λ∇σBv

)
− ig5 Tr

(
B̄vSNβBv∇λVσ

)
+ g6 Tr

(
B̄vSNβAλ

)
Tr
(
AσBv

)
+ ig′1 Tr

(
B̄vSNβAλBv

)
Tr(Aσ) + ig′2 Tr

(
B̄vSNβBvAλ

)
Tr(Aσ)

+ g′3 Tr
(
B̄vSNβ

↔
∇λBv

)
Tr(Vσ) + ig′4 Tr

(
B̄vSNβBv

)
∂λ Tr(Vσ)

]
.

(B8)
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In writing the above Lagrangian we imposed invariance of QCD under parity. Equations

of motion for the baryon fields were used to trade Tr
(
B̄v(v·∇)2Bv

)
, Tr

(
v·V
)

Tr
(
B̄vv·∇Bv

)
,

Tr
(
B̄v(SN ·A)(v ·∇)Bv

)
in favor of the other terms in (B3)-(B8). This differs from the

convention used in [30, 72]. We also used the relations in Eq. (80) to simplify the terms

involving the spin operators. Note that the f1,2 terms in (B6) are multiplied by i, correcting

a typographical error in [30] (see also [73]).

Note that the last term in the first line of (B1) contains only the DM part of the scalar

current, while the QCD part has already been absorbed in the definition of the Bv masses.

This term and the d′i, f
′
i , g
′
1 terms do not appear in [30] since the traces of QCD vector and

axial currents vanish

The terms that contain at most one insertion of DM current are

L(2)
HBChPT ⊃ bD Tr B̄v{s+, Bv}+ bF Tr B̄v[s+, Bv] + b0 Tr

(
B̄vBv

)
Tr
(
sχ+
)
,

+ c1 Tr B̄v∇2Bv − c′1 Tr
(
Vµ
)

Tr
(
B̄vi

↔
∇µBv

)
− c′2 Tr

(
∂ ·V

)
Tr
(
B̄vBv

)
− c′3 Tr

(
B̄vBv

)
v ·∂ Tr

(
v ·V

)
+ f1 Tr

(
B̄v{v ·i

↔
∇, SN ·A}Bv

)
+ f2 Tr

(
B̄v{SN ·i

↔
∇, v ·A}Bv

)
+ if3 Tr

(
B̄v[SN ·i

↔
∇, v ·A]Bv

)
+ f4 Tr

[(
B̄vv ·i

↔
∇SνNBv

)
Aν
]

+ f5 Tr
[
(B̄vSN ·i

↔
∇Bv)(v ·A)

]
+ f7 Tr

(
B̄vS

ν
NBvv ·∇Aν

)
+ f8 Tr

(
B̄vS

µ
NBv∇µv ·A

)
+ f ′1 Tr

(
B̄vv ·i

↔
∇SµNBv

)
Tr
(
Aµ
)

+ f ′2 Tr
(
B̄vSN ·i

↔
∇Bv

)
Tr
(
v ·A

)

(B9)

+ f ′7 Tr
(
B̄v S

µ
NBv

)
v ·∂ Tr

(
Aµ
)

+ f ′8 Tr
(
B̄vS

µ
N Bv

)
∂µ Tr

(
v ·A

)
− iεαβλσvα

[
g4 Tr

(
B̄vSNβ∇λ∇σBv

)
− ig5 Tr

(
B̄vSNβBv∇λVσ

)
+ g′3 Tr

(
B̄vSNβ

↔
∇λBv

)
Tr(Vσ) + ig′4 Tr

(
B̄vSNβBv

)
∂λ Tr(Vσ)

]
+ · · · ,

where we kept only the terms that are nonzero once expanded up to linear order in the meson

fields. Not all of these terms are needed for our ChEFT analysis, though. The reduced set

of relevant terms is given in (98).

The coefficients mG, D, F,G, bi, b
′
i, ci, c

′
i, di, d

′
i, fi, f

′
i , gi, g

′
i are real low-energy constants.

Some of these coefficients are fixed by the fact that the theory needs to be invariant under

infinitesimal Lorentz transformations [24, 74],

Bv → eiε·xBv, v · ∇ → v · ∇+
1

mN

ε · ∇⊥, ∇µ
⊥ → ∇

µ
⊥ −

1

mN

εµ(v · ∇). (B10)

To lowest order the above transformation effectively corresponds to reparametrization in-

variance under the shift of the label momentum vµ → vµ + εµ/mN , but they also shift the
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external currents,14

Aµ → Aµ + vµ
ε · A
mN

− εµv · A
mN

, V µ → V µ + vµ
ε · V
mN

− εµv · V
mN

. (B11)

Reparametrization invariance then leads to the relations [75] (see also [8, 74])

c1 = c′1 = − 1

2mN

, f2 = − 1

2mN

(D + F ) , f5 = − 1

mN

(D − F ) ,

f ′2 = − 1

mN

G , g′3 = 0 .
(B12)

In addition, the conservation of the quark vector current and the Lorentz structure of the

matrix element for quark axial vector current give

c′2 = c′3 = 0, f3 = f8 = f ′8 = 0, (B13)

respectively, see Section B 4.

We discuss the numerical values of the remaining parameters that are relevant for DM

phenomenology in Sec. C.

2. ChPT and HBChPT Lagrangians expanded in meson fields

Here we give the DM interaction Lagrangian in ChPT, Eqs. (125)-(127) and HBChPT,

Eqs. (129)-(131), expanded up to linear order in the meson fields. Unlike in the main text,

the expressions in this subsection are valid beyond tree level matching onto HDMET. The

O(p) ChPT Lagrangian for DM interactions with mesons is

L(1)
χ,ChPT = 2f(χ̄viq ·Sχχv)

[(
− Ĉ(6,0)

4,u + Ĉ(6,0)
4,d

)
π0 −

(
Ĉ(6,0)

4,u + Ĉ(6,0)
4,d − 2Ĉ(6,0)

4,s

) η√
3

]
+ · · · ,

(B14)

with qµ = pµ1 − p
µ
2 the difference of incoming and outgoing DM momenta, while the ellipses

denote terms with two or more mesons. It comes from the product JAχ ·JAq in (125), while

the contributions from JVχ ·JVq and JAχ ·JVq start only at O(π2). Note that the formally

leading term in (B14) from JVχ ·JAq in (125), i.e., from the first line in (75), cancels exactly

due to vector current conservation against the corresponding 1/mχ suppressed contribution

to (B15) from the third line in (76). We thus do not display these two contributions.

14 This can also be used to show the equality in (31) imposed by reparametrization invariance, but now

f̄γµf and f̄γµγ5f are to be treated as external currents.
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The O(p2) and O(p3) DM ChPT Lagrangians are

L(2)
χ,ChPT = (χ̄vχv)

{
B0f

[(
muĈ(7,0)

7,u −mdĈ(7,0)
7,d

)
π0

+
(
muĈ(7,0)

7,u +mdĈ(7,0)
7,d − 2msĈ(7,0)

7,s

) η√
3

]
− fm̃

2
q2
[( 1

mu

− 1

md

)
π0 +

( 1

mu

+
1

md

− 2

ms

) η√
3

]
Ĉ(7,0)

3

}
+ · · · ,

(B15)

L(3)
χ,ChPT = (χ̄viq ·Sχχv)

{
B0f

[(
muĈ(8,1)

8,u −mdĈ(8,1)
8,d

)
π0

+
(
muĈ(8,1)

8,u +mdĈ(8,1)
8,d − 2msĈ(8,1)

8,s

) η√
3

]
+

+
fm̃

2
q2
[( 1

mu

− 1

md

)
π0 +

( 1

mu

+
1

md

− 2

ms

) η√
3

]
Ĉ(8,1)

4

}
+ · · · ,

(B16)

where we have defined

m̃ =

(
1

mu

+
1

md

+
1

ms

)−1

. (B17)

The terms shown above come from JSχ ·JPq and JSχ ·Jθ in (126), and from JPχ ·JPq and JPχ ·Jθ

in (127), respectively. The contributions from JS,Pχ ·JSq and JS,Pχ ·JG, by contrast, start only

at O(π2). The unexpanded versions of (B14)-(B16) are given in (75)-(77).

Expanding the O(p0) HBChPT interaction Lagrangian with DM, Eq. (129), to lowest

order in meson fields gives

L(0)
χ,HBChPT ⊃ (χ̄vχv)(p̄vpv)

(
2Ĉ(6,0)

1,u + Ĉ(6,0)
1,d −

2mG

27
Ĉ(7,0)

1

)
+ 4(χ̄vSχ,µχv)(p̄vS

µ
Npv)

(
(D + F +G)Ĉ(6,0)

4,u +GĈ(6,0)
4,d + (D − F +G)Ĉ(6,0)

4,s

)
+ (pv ↔ nv , u↔ d) .

(B18)

Here the pv and nv are the HBChPT fields for protons and neutrons. The O(p) Lagrangian,
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Eq. (130), is given by

L(1)
χ,HBChPT ⊃ −(χ̄vv⊥ ·Sχχv)(p̄vpv)× 2

[
2Ĉ(6,0)

2,u + Ĉ(6,0)
2,d

]
+ (χ̄vχv)(p̄vv⊥ ·SNpv)× 2mχ

[
(D + F +G)Ĉ(7,1)

3,u +GĈ(7,1)
3,d + (D − F +G)C(7,1)

3,s

]
+ (χ̄viq ·Sχχv)(p̄vpv)×

2

27
mGĈ(8,1)

2

− (χ̄vχv)(p̄viq ·SNpv)×
[
D
( m̃
mu

+
m̃

ms

)
+ F

( m̃
mu

− m̃

ms

)
+G

]
Ĉ(7,0)

3

+ 2iεαβµνvαqβ(χ̄vSχ,µχv)(p̄vSN,νpv)×
[(
g4 − g′4

)
Ĉ(6,0)

2,u − g′4Ĉ
(6,0)
2,d

−
(
g4 − g5 + g′4

)
Ĉ(6,0)

2,s + 2
(

(D + F +G)Ĉ(7,1)
6,u +GĈ(7,1)

6,d + (D − F +G)Ĉ(7,1)
6,s

)]
+ (pv ↔ nv , u↔ d) ,

(B19)

where we used that some terms vanish due to Eq. (B13). The four-component perpendicular

relative velocity vµ⊥ is defined in (145). In the derivation of the above HBChPT Lagrangian

we also used the relations

pµ1,2 =
1

2

[
± qµ +

(
pµ1 + pµ2

)]
=

1

2

[
± qµ + 2mχv

µ
⊥ +

mχ

mN

(
kµ1 + kµ2

)]
, (B20)

kµ1,2 =
1

2

[
∓ qµ +

(
kµ1 + kµ2

)]
=

1

2

[
∓ qµ − 2mNv

µ
⊥ +

mN

mχ

(
pµ1 + pµ2

)]
, (B21)

the relation (23), as well as the relation (31) imposed by reparametrization invariance.

The O(p2) DM–nucleon interaction Lagrangian, Eq. (131), expanded for each of the

Wilson coefficients to the first nontrivial order in meson fields, is given by

L(2)
χ,HBChPT ⊃ (χ̄vχv)(p̄vpv)× 2

[
−
(
b0 + bD + bF

)
muĈ(7,0)

5,u − b0mdĈ(7,0)
5,d

−
(
b0 + bD − bF

)
msĈ(7,0)

5,s

]
− (−1)Qp(χ̄vχv)(p̄vpv)

π0

f
× 2
[(
b0 + bD + bF

)
muĈ(7,0)

7,u − b0mdĈ(7,0)
7,d

]
+ (χ̄vχv)(p̄vpv)

η√
3f
× 2
[(
b0 + bD + bF

)
muĈ(7,0)

7,u + b0mdĈ(7,0)
7,d

− 2
(
b0 + bD − bF

)
msĈ(7,0)

7,s

]
+ (χ̄viq ·Sχχv)(p̄viq ·SNpv)×

[
D
( m̃
mu

+
m̃

ms

)
+ F

( m̃
mu

− m̃

ms

)
+G

]
Ĉ(8,1)

4

+ (pv ↔ nv , u↔ d) ,

(B22)
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while the O(p3) DM–nucleon interaction Lagrangian, Eq. (132), is given by

L(3)
χ,HBChPT ⊃ (χ̄viq ·Sχχv)(p̄vpv)× 2

[(
b0 + bD + bF

)
muĈ(8,1)

6,u + b0mdĈ(8,1)
6,d

+
(
b0 + bD − bF

)
msĈ(8,1)

6,s

]
− (−1)Qp(χ̄viq ·Sχχv)(p̄vpv)

π0

f
× 2
[(
b0 + bD + bF

)
muĈ(8,1)

8,u − b0mdĈ(8,1)
8,d

]
+ (χ̄viq ·Sχχv)(p̄vpv)

η√
3f
× 2
[(
b0 + bD + bF

)
muĈ(8,1)

8,u + b0mdĈ(8,1)
8,d

− 2
(
b0 + bD − bF

)
msĈ(8,1)

8,s

]
+ (pv ↔ nv , u↔ d) .

(B23)

The final ingredient that we need is the leading HBChPT chiral Lagrangian without DM

fields (124)

L(1),QCD
HBChPT ⊃

(D + F )

f

(
p̄v iq ·SNpv− n̄v iq ·SNnv

)
π0− D − 3F√

3f

(
n̄ iq ·SNn+ p̄ iq ·SNp

)
η+ · · · ,

(B24)

where we expanded to linear order in meson fields, and only display the couplings to the

neutral mesons. As in the rest of the paper, qµ = kµ2 −k
µ
1 is the difference of final and initial

nucleon momenta. The single photon interactions with neutrons and protons are given by

LQED
HBChPT ⊃ −e p̄v

(
vµ +

k̃µ12

2mN

)
Aeµ pv +

e

2mN

(
µpp̄v(σ

µν
⊥ iqµ)pv + µnn̄v(σ

µν
⊥ iqµ)nv

)
Aeν , (B25)

where µp = 2.79 and µn = −1.91 are the proton and neutron magnetic moments in units of

nuclear magnetons, respectively, and k̃µ12 is defined below in Eq. (B52).

3. Explicit form of hadronic currents

It is straightforward to give the explicit expressions for the different currents appearing

in (125)-(127),

JSq = −B0f
2

2
Tr
[
(U + U †)mq1q

]
, JPq = −B0f

2

2
Tr
[
i(U − U †)mq1q

]
, (B26)

JVq,µ = −if
2

2
Tr
[
(U∂µU

† + U †∂µU)1q
]
, JAq,µ = −if

2

2
Tr
[
(U∂µU

† − U †∂µU)1q
]
, (B27)

JG =
f 2

27

[
Tr
(
∂µU

†∂µU
)

+ 3B0 Tr
[
Mq(U + U †)

]]
, (B28)

Jθ =
if 2

4 Tr(M−1
q )

Tr
[
∂µ
(
U∂µU

† − U †∂µU
)
M−1

q

]
. (B29)

51



Expanding the currents to first nonzero order in meson fields and dropping the constant

terms in JSq gives

JVq,µ = iTr
([
∂µΠ,Π

]
1q
)

+ · · · , JAq,µ = −
√

2f Tr
(
∂µΠ 1q

)
+ · · · , (B30)

JSq = B0 Tr
(
Π2mq1q) + · · · , JPq =

√
2B0fmq Tr(Π 1q) + · · · , (B31)

JG = 2
27

Tr
(
∂µΠ∂µΠ

)
− 6

27
B0 Tr

(
MqΠ

2
)

+ · · · , (B32)

Jθ =
f√

2 Tr(M−1
q )

Tr
[
∂2ΠM−1

q

]
+ · · · . (B33)

Here we defined 1u = diag(1, 0, 0), 1d = diag(0, 1, 0), 1s = diag(0, 0, 1). The explicit forms

of the pseudoscalar and axial-vector currents in terms of the π0 and η fields are given in

(B44) and (B45).

In (122) we have expanded the DM-nucleon interactions in terms of their chiral scaling.

The LO expressions for the currents in (129), (130), (131), are

J̃V µ,LO
q =

1

2
Tr B̄v

[
vµ(ξ†1qξ + ξ1qξ

†), Bv

]
+DTr B̄vS

µ
N

{
ξ†1qξ − ξ1qξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†1qξ − ξ1qξ†, Bv

]
+ Tr B̄vv

µBv ,

(B34)

J̃Aµ,LO
q =

1

2
Tr B̄v

[
vµ(ξ†1qξ − ξ1qξ†), Bv

]
+DTr B̄vS

µ
N

{
ξ†1qξ + ξ1qξ

†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†1qξ + ξ1qξ

†, Bv

]
+ 2GTr B̄vS

µ
NBv ,

(B35)

J̃G,LO =− 2mG

27
Tr B̄vBv , (B36)

J̃θ,LO =− 1

2 Tr(M−1
q )

{
1

2
v ·∂ Tr B̄v

[
(ξ†M−1

q ξ − ξM−1
q ξ†), Bv

]
+ ∂µ

(
DTr B̄vS

µ
N

{
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

}
+ F Tr B̄vS

µ
N

[
ξ†M−1

q ξ + ξM−1
q ξ†, Bv

]
+ 2GTr(M−1

q ) Tr B̄vS
µ
NBv

)}
,

(B37)

J̃S,LO
q =− b0 Tr(B̄vBv) Tr

(
(U † + U)mq1q

)
− bD Tr B̄v

{
ξ†mq1qξ

† + ξmq1qξ, Bv

}
− bF Tr B̄v

[
ξ†mq1qξ

† + ξmq1qξ, Bv

]
,

(B38)

J̃P,LO
q =b0 Tr(B̄vBv) Tr

(
(U † − U)imq1q

)
+ bD Tr B̄v

{
ξ†imq1qξ

† − ξimq1qξ, Bv

}
+ bF Tr B̄v

[
ξ†imq1qξ

† − ξimq1qξ, Bv

]
.

(B39)

When contracting with the nonrelativistic DM currents we also need the expression for

the QCD vector current J̃V µq and axial-vector current J̃Aµq to NLO in the chiral expansion,
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i.e., to O(p). The NLO contributions to J̃V µq are

J̃V µ,NLO
q ⊃− ic1

(
Tr B̄v

[
1ξq,∇ξ,µBv

]
− Tr B̄v

←
∇ξ,µ

[
1ξq, Bv

])
− c′1 Tr

(
B̄vi

↔
∇ξ,µBv

)
+ c′2∂

µ Tr
(
B̄vBv

)
+ c′3v

µv ·∂ Tr
(
B̄vBv

)
+ εαβλµvα

(
g4 Tr B̄vSNβ

←
∇ξ
λ[1

ξ
q, Bv] + g4 Tr B̄vSNβ[1ξq,∇

ξ
λBv]

+ g5 ∂λ Tr
(
B̄vSNβBv1

ξ
q

)
− ig′3 Tr B̄vSNβ

↔
∇ξ
λBv

− g′4∂λ Tr B̄vSNβBv

)
+ · · · ,

(B40)

where B̄v

←
∇ξ
µ = ∂µB̄v − [B̄v, V

ξ
µ ] = ∂µB̄v + [V ξ

µ , B̄v], and we used the abbreviation 1ξq ≡
1
2
(ξ†1qξ + ξ1qξ†). The ellipses denote terms that, when expanded in terms of meson fields,

start at linear order or higher. Keeping only the terms that do not involve the meson fields

gives

J̃V µ,NLO
q ⊃− ic1 Tr B̄v

↔
∂µ
[
1q, Bv

]
− ic′1 Tr B̄v

↔
∂
µBv + c′2∂

µ Tr B̄vBv + c′3v
µv ·∂ Tr B̄vBv

+ εαβλµvα

[
g4∂λ Tr B̄vSNβ[1q, Bv] + g5 ∂λ Tr

(
B̄vSNβBv1q

)
− ig′3 Tr B̄vSNβ

↔
∂λBv − g′4∂λ Tr B̄vSNβBv

]
,

(B41)

with
↔
∂µ defined through φ1

↔
∂µφ2 = φ1∂µφ2 − (∂µφ1)φ2, as before. The axial current at NLO

is

J̃Aµ,NLO
q ⊃ 2if1

[
Tr
(
B̄v1

ξ
qv ·∇ξSµNBv

)
− Tr

(
B̄vS

µ
Nv ·

←
∇ξ1ξqBv

)]
+ 2if2v

µ
[

Tr
(
B̄v1

ξ
qSN ·∇ξBv

)
− Tr

(
B̄vSN ·

←
∇ξ1ξqBv

)]
+ 2f3v

µ
[

Tr
(
B̄v1

ξ
qSN ·∇ξBv

)
+ Tr

(
B̄vSN ·

←
∇ξ1ξqBv

)]
+ if4 Tr

[(
B̄vv·

↔
∇ξSµNBv

)
1ξq
]

+ if5v
µ Tr

[(
B̄vSN ·

↔
∇ξBv

)
1ξq
]

− f7 Tr
(
1ξqv ·∇ξB̄vS

µ
NBv

)
− f8v

µ Tr
(
1ξq∇ξ

νB̄vS
ν
NBv

)
+ if ′1 Tr

(
B̄vv·

↔
∇ξSµNBv

)
+ if ′2v

µ Tr
(
B̄vSN ·

↔
∇ξBv

)
− f ′7v ·∂ Tr

(
B̄v S

µ
NBv

)
− f ′8vµ ∂ν Tr

(
B̄vS

ν
N Bv

)
+ · · · .

(B42)
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Expanding in meson fields gives

J̃Aµ,NLO
q ⊃2if1 Tr

(
B̄vv·

↔
∂ S

µ
N 1qBv

)
+ if4 Tr

(
B̄vv·

↔
∂S

µ
NBv1q

)
− f7 Tr

(
v ·∂B̄vS

µ
NBv1q

)
+ if ′1 Tr

(
B̄vv ·

↔
∂S

µ
NBv

)
− f ′7v ·∂ Tr

(
B̄v S

µ
NBv

)
+ vµ

[
2if2 Tr

(
B̄vSN ·

↔
∂ 1qBv

)
+ 2f3∂ν Tr

(
B̄v1qS

ν
NBv

)
+ if5 Tr

(
B̄vSN ·

↔
∂Bv1q

)
− f8∂ν Tr

(
B̄vS

ν
NBv1q

)
+ if ′2 Tr

(
B̄vSN ·

↔
∂Bv

)
− f ′8∂ν Tr

(
B̄vS

ν
N Bv

)]
+ · · · .

(B43)

4. Quark currents expanded in meson fields

In this subsection we collect the expanded results for the nucleon and meson currents in

term of meson fields, keeping only the lowest orders. The expanded expressions have been

used in Section IV B to match onto the chiral effective theory of nuclear forces. For this

calculation we need single meson exchanges for the hadronized versions of the q̄γµγ5q, q̄iγ5q,

and Ga
µνG

aµν currents. The corresponding DM-meson interactions in L(1,2,3)
χ,ChPT, Eqs. (125)-

(127), contain the mesonic currents given in (B26)-(B29). Expanding in meson fields to the

first nonzero order one has for the axial currents

(JAu,d)µ = f
(
∓ ∂µπ0 − ∂µη√

3

)
+ · · · , (JAs )µ =

2f√
3
∂µη + · · · . (B44)

while the pseudoscalar currents are

JPu,d = B0fmu,d

(
± π0 +

1√
3
η
)

+ · · · , JPs = − 2√
3
B0fmsη + · · · . (B45)

The contribution of the Jθ current is

Jθ =
f

2

[( m̃
mu

− m̃

md

)
∂2π0 +

( m̃
mu

+
m̃

md

− 2m̃

ms

)∂2η√
3

]
. (B46)

Expanding the nucleon currents (B34)-(B39) to the first nonzero order in meson fields

gives for the q = u, d quark currents

J̃V,µq =
(
vµ +

k̃µ12

2mN

)(
N̄qNq + N̄N

)
+ ic′2q

µN̄N

+ iεαβλµvαqλ
(
g4N̄qSNβNq − g′4N̄SNβN

)
+ · · · ,

(B47)

J̃A,µq = 2(D + F )N̄q

(
SµN −

vµ

2mN

k̃12 ·SN
)
Nq + 2GN̄

(
SµN −

vµ

2mN

k̃12 ·SN
)
N

+ ivµ
(
2f3N̄qq ·SNNq − f ′8 N̄q ·SNN

)
+ · · · ,

(B48)
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J̃Sq = −2b0mqN̄N − 2(bD + bF )mqN̄qNq + · · · , (B49)

J̃Pq =
2mq

f

[
b0N̄N

(
± π0 +

η√
3

)
+ (bD + bF )N̄qNq

(
± π0 +

η√
3

)]
+ · · · . (B50)

In J̃Vq,µ and J̃Aq,µ we keep the O(p) terms from (B40), (B41), and do not display the v ·

q-suppressed terms, while for J̃Pq we display only the couplings to neutral mesons. The

plus(minus) sign in (B50) is for q = u(d), and there is no summation over repeated q indices.

Here N = (pv, nv) is the nucleon isospin doublet, so that the up and down components are

Nu = pv, Nd = nv, while N̄N = p̄vpv + n̄vnv. (B51)

To shorten the notation we introduced

k̃µ12 = k̃µ1 + k̃µ2 , qµ = −k̃µ1 + k̃µ2 , (B52)

with k̃µ1,2 = kµ1,2 − mNv
µ
N the soft nucleon momenta. The expression for the momentum

transfer qµ coincides with the definition in (143).

The corresponding strange-quark currents are given by

J̃V,µs = ic′2q
µN̄N − i(g4 − g5 + g′4)εαβλµvαqλN̄SNβN + · · · , (B53)

J̃A,µs = 2(D − F +G)N̄
(
SµN −

vµ

2mN

k̃12 ·SN
)
N − i(f8 + f ′8)vµN̄q ·SNN + · · · , (B54)

J̃Ss = −2
(
b0 + bD − bF

)
msN̄N + · · · , (B55)

J̃Ps = − 4

f

(
b0 + bD − bF

)
msN̄N

η√
3

+ · · · , (B56)

where for J̃Ps we again display only the couplings to the neutral mesons, and do not show the

v ·q-suppressed terms in J̃V,µs and J̃A,µs . Note that in order to obtain the above expressions

we have used the reparametrisation-invariance relations (B12).

The conservation of the vector current, q · J̃Vq,s = 0, requires c′2 = 0. Compar-

ing the most general parametrization of the matrix element for the axial-vector current,

〈N(k2)|q̄γµγ5q|N(k1)〉 = ūN
(
FA(q2)γµγ5 + FP ′(q2)qµ/(2mN)γ5

)
uN , with its nonrelativistic

decomposition (16), (18), requires f3 = f8 = f ′8 = 0.

The gluonic GG and GG̃ currents hadronize to

J̃G =− 2mG

27
N̄N, (B57)
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J̃θ =−
[
D
( m̃
mu

+
m̃

ms

)
+ F

( m̃
mu

− m̃

ms

)
+G

]
p̄viq · SNpv

+ p→ n, u→ d+ · · · .
(B58)

The values of the low-energy constants D,F,G,mG, b0, bD, bF , g4, g
′
4, g5 are discussed in the

following section and are collected in Table I.

Appendix C: Values of low energy constants

In this appendix we derive numerical values for the low-energy coefficients

mG, D, F,G, bD, bF , b0, g4, g
′
4, g5. The nonperturbative coefficient mG is the gluonic contribu-

tion to the nucleon mass,

mGūBuB = −9αs
8π
〈Bv|GµνG

µν |Bv〉. (C1)

This can be estimated from the trace of the stress-energy tensor θµµ = −9αs/(8π)GµνG
µν +∑

u,d,smq q̄q, giving

mG = mB −
∑
q

σBq , (C2)

where σBq ūBuB = 〈Bv|mq q̄q|Bv〉, with uB the heavy baryon spinor.15 A common notation is

also σNq = mNf
(N)
Tq , where N = p, n. Taking the naive average of the most recent lattice QCD

determinations [77–79], we find σs = (41.3±7.7) MeV The matrix elements of u and d quarks

are related to the σπN term, defined as σπN = 〈N |m̄(ūu+ d̄d)|N〉, where m̄ = (mu +md)/2.

A HBChPT analysis of the πN scattering data gives σπN = 59(7) MeV [80], in agreement

with σπN = 52(3)(8) MeV obtained from a fit to world lattice Nf = 2 + 1 QCD data [81].

Including, however, both ∆(1232) and finite spacing in the fit shifts the central value to

σπN = 44 MeV. We thus use a conservative estimate σπN = (50 ± 15) MeV. Using the

expressions in [82] gives σpu = (17 ± 5) MeV, σpd = (32 ± 10) MeV, σnu = (15 ± 5) MeV,

σnd = (36± 10) MeV. From there we get

mG = (848± 14) MeV, (C3)

15 We use the conventional HQET normalization for the fields and states, 〈B(~k′)v′ |B(~k)v〉 =

2v0δvv′(2π)3δ3(~k − ~k′), so that 〈Bv|B̄vγµBv|Bv〉 = ūB(v)γµuB(v) = 2vµ, where the heavy fermion

spinors uB are related to relativistic spinors through u(p) =
√
mNuB(v), see also [76]. Similarly, one

has 〈Bv|B̄vγµγ5Bv|Bv〉 = ūB(v)γµγ5uB(v) = 2sµ, where sµ is the heavy baryon spin.
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in the isospin limit. While the isospin violation in the σNq values, factoring out the masses,

is of O(10%), this translates to a very small isospin violation in mG, of less than 1 MeV.

The obtained value of mG thus applies to both p and n, while for other members of Bv octet

it is correct up to flavor SU(3) breaking terms.

The σNq are related to the low-energy constants b0, bD, and bF through

σpu = −2mu(b0 + bD + bF ) , σnd = −2md(b0 + bD + bF ) , (C4)

σnu = −2mub0 , σpd = −2mdb0 , (C5)

while

σs = −2ms(b0 + bD − bF ) . (C6)

The combinations that are well determined are

m̄(bD + bF ) = (−1.41± 0.24)MeV, (C7)

2m̄(2b0 + bD + bF ) = −σπN = (−50± 15)MeV, (C8)

2ms(b0 + bD − bF ) = −σs = (−41.3± 7.7)MeV. (C9)

where we used m̄ = 3.5+0.7
−0.2MeV [27]. For the first line we used the results from [82]

m̄(bD + bF ) = Bc5(md −mu)
md +mu

md −mu

, (C10)

with Bc5(md − mu) = (−0.51 ± 0.08) MeV [82, 83], and mu/md = 0.47 ± 0.04 [27]. The

above results can be transcribed to

m̄(bD + bF ) = (−1.41± 0.24)MeV,

m̄b0 = (−11.8± 3.8)MeV,

m̄(b0 + bD − bF ) = (−0.75± 0.14)MeV,

(C11)

where we used ms/m̄ = 27.5± 1.0 [27]. From here we get

m̄b0 = (−12.5±3.8)MeV , m̄bD = (4.8±1.9)MeV , m̄bF = (−6.2±1.9)MeV . (C12)

Using symmetrized errors on m̄ = 3.5+0.7
−0.2 MeV [27] this gives at the renormalization scale

µ = 2 GeV

b0 = −3.7± 1.4 , bD = 1.4± 0.8 , bF = −1.8± 0.8 . (C13)

Note that the errors in the last set of relations are large because of the relatively poorly

known m̄.
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The low-energy constants D, F , G multiplying the axial vector currents can be expressed

in terms of the matrix elements

sµ∆qp = 〈p|q̄γµγ5q|p〉Q , (C14)

where p is a proton state at rest, sµ is the proton spin (or polarization) vector such that

s2 = −1, s · p = 0, see, e.g. [84], and the matrix element is evaluated at scale Q. We work

in the isospin limit so that (C14) gives also the matrix elements for neutrons with d ↔ u

exchanged,

∆u ≡ ∆up = ∆dn , ∆d ≡ ∆dp = ∆un . (C15)

The matrix elements ∆q are scale dependent. The non-isosinglet combinations ∆u − ∆d

and ∆u+∆d−2∆s are scale independent, since they are protected by non-anomalous Ward

identities. The isovector combination

∆u−∆d = gA = 1.2723(23), (C16)

is determined precisely from nuclear β decays [27]. For the remaining two combinations we

use lattice QCD determinations [85–90]. Following [91], the averages of lattice QCD results

give ∆u + ∆d = 0.521(53) and ∆s = −0.026(4) in MS at Q = 2 GeV. Combining with

Eq. (C16) this gives [91]

∆u = 0.897(27), ∆d = −0.376(27), ∆s = −0.026(4), (C17)

all at the scale Q = 2 GeV. At LO in the chiral expansion we have then

2D = ∆u− 2∆d+ ∆s , 2F = ∆u−∆s , G = ∆d , (C18)

so that at Q = 2 GeV

D = 0.812(30) , F = 0.462(14) , G = −0.376(28) . (C19)

Note that the scale invariant combination

D + F = gA = 1.2723(23), (C20)

is determined more precisely than D and F separately.
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Proton and neutron magnetic moments fix the values of the coefficients g4, g5, g′4 in

Eq. (98). Using the NLO quark vector currents (B40) (cf. also (B47), (B53), (B25)) one

obtains

2

3
(g4 − g′4)u +

1

3
(g′4)d −

1

3
(g5 − g4 − g′4)s =

µp
mN

, (C21)

−1

3
(g4 − g′4)d −

2

3
(g′4)u −

1

3
(g5 − g4 − g′4)s =

µn
mN

, (C22)

where µp = 2.79 and µn = −1.91 are the values for proton and neutron magnetic moments

in units of nuclear magnetons µ̂N = e/(2mN) [27]. Above we denoted with subscripts which

quark current J̃V,µq the contributions originate from. The s quark contributions to the proton

and neutron magnetic moments are the same in the isospin limit, giving [92] (see also [93])

− 1

3
(g5 − g4 − g′4) =

µs
mN

=
−0.073(19)

mN

. (C23)

We then have

g4 =
µp − µn
mN

=
4.70

mN

, g′4 = −µp + 2µn
mN

=
1.03

mN

, (C24)

neglecting the small corrections due to µs. For notational convenience we also define

µp =
4

3
µ̂pu −

1

3
µ̂pd , µn = −2

3
µ̂nd +

2

3
µ̂nu , (C25)

where µ̂pu,d and µ̂nu,d are the contributions to the proton and neutron magnetic moments from

the u- and d-quark currents (the hats indicate that the quark charges have been factored

out from the definitions). Isospin relates contributions to neutron and proton, giving

µ̂pu = µ̂nd = 1.84 , µ̂pd = µ̂nu = −1.03 . (C26)

Note that in the numerics it is advantageous not to use B0 directly, but rather the

numerical values for the products B0mq. We can use the relation 2B0m̄ = m2
π to write

B0mu =
m2
π

1 +md/mu

= (6.2± 0.4)× 10−3 GeV2 ,

B0md =
m2
π

1 +mu/md

= (13.3± 0.4)× 10−3 GeV2 ,

B0ms =
m2
π

2

ms

m̄
= (0.27± 0.01) GeV2 ,

(C27)

using the ratios mu/md = 0.47 ± 0.04, ms/m̄ = 27.5 ± 1.0 [27], and the charged-pion mass

for mπ.
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Appendix D: HDMET for Majorana fermions

In this appendix we list the changes that need to be made in our results if DM is a

Majorana fermion. The changes to the final results, given for Dirac fermions in (A13)-

(A21), are straightforward. The Wilson coefficient Ĉ(5)
1,2 and Ĉ(6)

1,q;3,q are zero, because the

corresponding operators vanish for Majorana DM. All the other Wilson coefficients in (A13)-

(A21) need to be multiplied by an extra factor of 2 that arises from matching onto HDMET,

as we explain below.16

We construct the HDMET for Majorana fermions, following [94], by splitting the small

and large components according to17

χ(x) = e−imχv·x
[
χv(x) +Xv(x)

]
+ eimχv·x

[
χcv(x) +Xc

v(x)
]
, (D1)

where χv = 1
2
(1 + /v)χv, Xv = 1

2
(1 − /v)Xv, while the charge conjugated fields are given by

χcv = Cχ̄Tv , Xc
v = CX̄T

v . Here C is the charge conjugation matrix satisfying C† = CT =

C−1 = −C and CγTµC
−1 = −γµ, for instance, one can choose C = −iγ2γ0. The “small-

component” field Xv carries momenta of order O(2mχ) and is integrated out. At tree-level

one has the relation

χ = e−imχv·x
(

1 +
i/∂⊥

iv · ∂ + 2mχ − iε

)
χv + eimχv·x

(
1− i/∂⊥

iv · ∂ − 2mχ + iε

)
χcv . (D2)

Note that χ is self-conjugate, χc = χ, while the HDMET field χv is not self-conjugate. The

HDMET field describing Dirac fermion is also not self-conjugate. Still, there is a difference

between HDMET describing Majorana and Dirac fermions, since for Majorana fermion the

HDMET Lagrangian is symmetric under vµ → −vµ, χv → χcv [13, 94].

The relativistic Lagrangian for Majorana DM, L ⊃ 1
2
χ̄i/∂χ− 1

2
mχχ̄χ, then already leads

to the canonically normalized HDMET Lagrangian

LHDMET = χ̄v(iv · ∂)χv +
1

2mχ

χ̄v(i∂⊥)2χv + · · ·+ Lχv . (D3)

The higher dimension interaction Lagrangian, Lχv , is given still by (14). Due to the Ma-

jorana nature of χ, however, not all operators enter: the operators that are odd under

16 We adopt the same notation, χ, for Majorana DM as we did for Dirac DM. No confusion should arise as

this abuse of notation is restricted to this appendix.
17 Alternatively, one could instead impose χ = e−imχv·x

√
2
[
χv(x) + Xv(x)

]
= eimχv·x

√
2
[
χcv(x) + Xc

v(x)
]
,

with χv = 1
2 (1 + /v)χv, Xv = 1

2 (1− /v)Xv [13, 95]. The tree-level matching leads to the same results.
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vµ → −vµ, χv → χcv vanish. Neglecting radiative corrections to the matching conditions we

have

χ̄χ→ 2χ̄vχv + · · · , (D4)

χ̄iγ5χ→
2

mχ

∂µ
(
χ̄vS

µ
χχv
)

+ . . . , (D5)

χ̄γµγ5χ→ 4χ̄vS
µ
χχv − 2

i

mχ

vµχ̄vSχ·
↔
∂χv + · · · , (D6)

which differs by an extra factor of 2 compared to the Dirac fermion case, while the remaining

currents vanish, χ̄γµχ→ 0, χ̄σµνχ→ 0, χσµνiγ5χ→ 0.
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