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Abstract

Computational models of morphology acquisition have played
a central role in debates over the nature of morphological rep-
resentations. The apparent success of recent artificial neural
network architectures for morphological inflection in natural
language processing has renewed this debate. However, the
actual suitability of these advanced neural models as models
of human morphology acquisition remains uncertain. We ar-
gue that much of this confusion stems from inconsistent meth-
ods of training and evaluation. In this work, we demonstrate
that more careful data set creation and an evaluation combining
quantitative analysis and comparison with human development
will put the evaluation of neural models on firmer ground.
Keywords: Linguistics, NLP, morphology, language acqui-
sition, neural networks

Introduction
Computational models of morphological inflection burst onto
the scene as part of the Past Tense Debate in the late 1980s
(Rumelhart & McClelland, 1986; Pinker & Prince, 1988),
where they were seen as providing insights into the cognitive
computations underlying morphological learning and repre-
sentation; see Pinker and Ullman (2002); McClelland and
Patterson (2002); Seidenberg and Plaut (2014) for surveys.
One feature of the debate was a push on one side for connec-
tionist models, a family of artificial neural networks (ANNs).
With the advent of more powerful “deep” ANNs in machine
learning and natural language processing (NLP) in recent
years, there has been renewed interest in ANNs as potential
cognitive models (Kirov & Cotterell, 2018; Corkery, Matu-
sevych, & Goldwater, 2019; McCurdy, Goldwater, & Lopez,
2020; Belth, Payne, Beser, Kodner, & Yang, 2021; Beser,
2021; Dankers, Langedijk, McCurdy, Williams, & Hupkes,
2021; Wiemerslage, Dudy, & Kann, 2022).

At the same time, morphological inflection has established
itself as a (relatively) standardized task in NLP in the guise of
the SIGMORPHON shared tasks (Cotterell et al., 2016, 2017,
2018; A. McCarthy et al., 2019; Vylomova et al., 2020; Pi-
mentel et al., 2021; Kodner et al., 2022). While submissions
to these competitions aim primarily to maximize accuracy,
the 2021 and 2022 competitions included explicitly cognitive
sub-tasks (Kodner & Khalifa, 2022).

Results on the cognitive plausibility of ANNs are contra-
dictory. We suspect that part of this can be explained by in-
consistent success criteria. In terms of accuracy, performance
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on shared tasks is often near-ceiling. Models may instead be
evaluated by how well their ratings correspond with human
acceptability judgments. While these correlations are good,
but sometimes problematic on English past tense (Corkery et
al., 2019), they are not particularly human-like on German
noun pluralization (McCurdy et al., 2020), another classic of
the Past Tense Debate (Clahsen & Rothweiler, 1993).

Another alternative to pure accuracy or correlation with
judgments is to evaluate the ‘human-likeness’ of productions:
learning trajectories and errors. Taking this approach, even
state-of-the-art models submitted to the shared task come up
lacking. No evidence for u-shaped learning of English past
tense (Marcus et al., 1992; Prasada & Pinker, 1993) was ob-
served in Kodner and Khalifa (2022), and what Kirov and
Cotterell (2018) report as u-shaped is really oscillating learn-
ing, something never reported in the developmental literature.

Research Goals
We aim to evaluate ANNs in terms of their overall accu-
racy and match to human learning trajectories. This approach
takes inspiration from the developmental literature and early
papers in the Past Tense Debate where errors were taken to
provide particular insight into the representations underlying
learning. We investigate the acquisition of English past tense
(Marcus et al., 1992), German noun pluralization (Marcus,
Brinkmann, Clahsen, Wiese, & Pinker, 1995), and Arabic
noun pluralization (Ravid & Farah, 1999), since much is
known about acquisition patterns for these phenomena.

Our main methodological contribution is the creation of
developmentally-plausible training data. If a model is to be
evaluated from a cognitive perspective, it should learn from
input that shares key properties with the input to language ac-
quisition. Thus, training data is sampled from child-directed
speech from CHILDES (MacWhinney, 2000) to the extent
possible, following Belth et al. (2021) and Kodner and Khal-
ifa (2022). Most SIGMORPHON shared tasks have sampled
data from the UniMorph database of inflectional patterns,
which is extracted primarily from Wiktionary (A. D. Mc-
Carthy et al., 2020; Batsuren et al., 2022) or from the CELEX
corpus (Baayen, Piepenbrock, & Gulikers, 1996), such as
Kirov and Cotterell (2018) and Wiemerslage et al. (2022).
Neither data source corresponds well to early learner input.

Estimates of child vocabulary knowledge for many lan-
guages (Fenson et al., 1994; Bornstein et al., 2004; Szagun,
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Steinbrink, Franik, & Stumper, 2006), combined with obser-
vations of morphological development e.g., (Brown, 1973;
Aksu-Koç, 1985; Ravid & Farah, 1999; Elsen, 2002; Deen,
2005) show that children acquire most of their morphological
competence on the basis of just hundreds of types regardless
of a language’s morphological complexity. Thus we limit our
training data to at most 1000 lemmas.

Additionally, we sample training and test data weighted by
frequency, since this more closely approximates the human
learning task and real-world application. Vocabulary acquisi-
tion is correlated with item frequency in the input (Goodman,
Dale, & Li, 2008), so children will need to use their produc-
tive morphological knowledge to inflect low-frequency forms
that they have not seen in their input.

Except for 2017 and 2022, the SIGMORPHON shared
tasks sampled uniformly rather than weighted by frequency,
and most recent work in cognitive modeling follows (e.g.,
Kirov and Cotterell (2018) discard CELEX lemma frequency
as well). We compare weighted sampling with uniform sam-
pling to determine how it influences ANN learners. Some
prior work, including and following Kirov and Cotterell
(2018), train their models on full morphological paradigms.
However, since this does not at all reflect childhood linguis-
tic experience, where the vast majority of potential inflected
forms are never attested (Chan, 2008; Lignos & Yang, 2018),
we do not consider a full-paradigm sampling strategy.

Finally, we make several data samples with unique random
seeds in order to investigate the stability of model perfor-
mance on different data sets. On a technical level, sampling
has been shown to significantly affect performance in other
morphology learning tasks (Liu & Prud’hommeaux, 2022),
so a single sample cannot be taken as representative. By tak-
ing multiple samples, we aim to test the stability of learning
systems. After all, every child receives their own unique input
sample and yet develops similarly.

Experiments
Data sources and preparation
Three phenomena were investigated, all of which have
been previously studied from developmental and computa-
tional perspectives: English past tense inflection, German
noun pluralization, and Arabic noun pluralization. Original
data for each language is taken from the 2022 SIGMOR-
PHON developmental subtask and is all orthographical (di-
acritized for Arabic). English and German data were ex-
tracted from CHILDES (MacWhinney, 2000) child-directed
speech (CDS) and intersected with UniMorph to remove er-
rorful annotations; we then converted them to a standard for-
mat. Extracting forms from CDS provides frequency esti-
mates for typical morphological input during acquisition and
removes rare and unusual items from UniMorph. Frequen-
cies for Arabic were extracted from the Penn Arabic Tree-
bank (Maamouri, Bies, Buckwalter, & Mekki, 2004) because
CHILDES Arabic corpora are not suitably annotated.

Following the format widely adopted for morphologi-

cal inflection tasks in recent years, training items are pre-
sented as (lemma, inflected form, morpho-syntactic
feature set) triples, and test items are (lemma, feature
set) pairs, where the learner is asked to provide the appro-
priate inflected form. This is effectively the computational
adaptation of the classic Wug test paradigm following Berko
(1958). (1)-(2) provide example English and German training
and test items.

(1)
English Training Items
run ran V;PST
walk walked V;PST

English Test Items
see ? V;PST
look ? V;PST

(2)
German Training Items
Lampe Lampen N;FEM;PL
Tanz Tänze N;MASC;PL

German Test Items
Paar ? N;NEUT;PL
Amsel ? N;FEM;PL

Data splits
We employed both uniform and frequency-weighted sam-
pling strategies to generate training, fine-tuning, develop-
ment, and test splits. Both sampling strategies were applied
five times with unique random seeds to produce distinct data
sets. We also compare these against the data splits adopted
for SIGMORPHON 2022. The training+fine-tuning sets were
sub-sampled into nested sets of size 100, 200, and so on in
order to approximate a learning curve as vocabulary size in-
creases. These sets were uniformly split into 80% training
and 20% fine-tuning. The maximum English and Arabic sets
contained 1000 items, while the maximum German sets were
limited to 600 due to limited data. All dev sets had 500 items.
Remaining items were assigned to test (Arabic: 496, English:
554, German: 600). Dev and test were kept consistent regard-
less of training size. No lemmas overlapped between the sets.
Three sampling strategies were adopted:

UNIFORM: As in most prior work, data was partitioned
uniformly at random without replacement, so that there were
no differences in frequency between the sets. An advantage
of this approach is that it can be performed on data sets with
no frequency information, but it does not reflect the situation
in language acquisition.

WEIGHTED: Sub-sampling was weighted by frequency
without replacement. The first 100 training+fine-tuning set
was sampled from the entire data set, followed by 100 more
items to create the 200 training+fine-tuning set, and so on.
After training was completely sampled, dev+test were sam-
pled together from the remainder and then split uniformly at
random. Thus, the smallest training sets are skewed towards
the highest-frequency items and dev+test are skewed towards
the lower frequency items. We take this to reflect the situ-
ation during language acquisition: high-frequency items are
more likely to be present in a typical child’s input and thus
can be memorized, while low-frequency items are less likely
to be presented to any given child and will often need to be
inferred from morphological knowledge constructed over on
average higher-frequency forms.

SIGM22: The SIGMORPHON 2022 split was included for
comparison. It also relied on weighted sampling, but only one
split was produced. All test sets contained 600 items. Dev
sets varied (Arabic: 343, English: 454, German: 500).
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Models

We evaluated three neural models and one non-neural model,
chosen for their performance in recent shared tasks.

CHR-TRM (Wu, Cotterell, & O’Donnell, 2019) is a
character-level transformer previously holding the state-of-
the-art in SIGMORPHON task and serving as a baseline
in 2021 and 2022. We used the provided default hyper-
parameters for small training conditions.

CLUZH-GR (Wehrli, Clematide, & Makarov, 2022) is a
character-level transducer which outperformed CHR-TRM in
2022. While the SIGMORPHON submission was optimized
for each language individually, we used consistent hyper-
parameters to facilitate comparison. CLUZH-B4 replaces the
greedy decoding of the GR with beam decoding, size=4.

NONNEUR (Cotterell et al., 2017) has been used as a base-
line since 2017. It extracts lemma-form mappings from train-
ing and trains a majority classifier with the associated fea-
ture sets. We trained NONNEUR on the combined training
and fine-tuning sets so that each model was exposed to the
same data in some way during training.

Quantitative Analysis
In this section, we present quantitative analyses of model per-
formance. Throughout this section, we report results on the
test set; we carried out the same series of examinations for
the dev set and there was no observable qualitative difference
in the findings. All reported accuracies are exact match.

Effect of training size

We start with analyzing the effect of different training
sizes on the overall accuracy. After deriving the evalua-
tion results from the two sampling strategies (UNIFORM and
WEIGHTED) for all languages, we combined them together
and performed linear regression (with the programming lan-
guage R). The model predicts the overall accuracy score as a
function of the training size, controlling for the language, the
model type, and the sampling strategy, along with interactions
between each of the aforementioned four fixed effects:
ACCURACY∼LANG * MODEL * TRAIN SIZE * SAMPLING STRAT

Based on the regression model, there is a weak yet sig-
nificant effect of training size overall (β=0.02, p < 0.001);
this suggests that while more training data yield higher ac-
curacy scores, the effect is not as pronounced as one might
expect. The role of training size appears to be consistent re-
gardless of the specific sampling strategy, evidenced by the
lack of significant interaction effects between the two factors.
The interaction between the training size and model type is
most significant for CHR-TRM (β=0.03, p < 0.01). Across
languages, this tendency between CHR-TRM and training size
was more pronounced for German (β=0.07, p < 0.001). This
is confirmed visually in Figures 1-3. Performance increases
as training size increases for all models, but a much sharper
increase is observed for CHR-TRM than the others. The same
patterns were observed on the SIGM22 data.
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Figure 1: Learning curves for Arabic nouns. Thin lines =
individual seeds and thick lines = averages across seeds.
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Figure 2: Learning curves for German nouns. Thin lines =
individual seeds and thick lines = averages across seeds.

Effect of sampling strategy

We now turn to investigate the effect of each sampling strat-
egy (UNIFORM vs WEIGHTED) on the evaluation results.
Considering all languages together, the average overall accu-
racy over all training sizes derived from UNIFORM is slightly
higher on average (67.17%)1 than that from WEIGHTED
(65.24%). The score difference between the two sampling
strategies is the largest for English (2.77%), and the lowest for
Arabic (0.91%). SIGM22 also employed a weighted sampling
strategy, which also leads to a lower average overall accuracy
score (65.29%) than UNIFORM. These results strengthen our
finding above that UNIFORM overall leads to inflated perfor-
mance for evaluations of morphological inflection models.

The score discrepancy between UNIFORM and WEIGHTED
is clearest at smaller training sizes, where the largest dif-
ferences are found for English (UNIFORM 66.32% vs.
WEIGHTED 59.45% at 100 training). When comparing in-
dividual model types, CHR-TRM showed the largest dis-
crepancy at smaller training sizes (UNIFORM 14.83% vs
WEIGHTED 7.42% at 100 training; UNIFORM 42.69% vs
WEIGHTED 30.28% at 300 training).

1Accuracies are reported as percent correct for readability.
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Figure 3: Learning curves for English verbs. Thin lines =
individual seeds and thick lines = averages across seeds.

Variation across random seeds
Our analysis thus far attends to accuracy scores averaged
across random seeds. This raises the question: how much
variability is there in model performance across random
seeds? Given the five random seeds of each unique combi-
nation of different languages, sampling strategies, and model
types, we calculated two metrics, which we refer to hereafter
as score range and random seed variability. The former mea-
sures the difference between the lowest and the highest accu-
racy, while the latter computes the standard deviation of the
accuracy scores across the 5 random seeds.

We first analyzed the score variation across random seeds
for each language. Across sampling strategy, training sizes
and model types, we found the average score ranges for Ara-
bic (6.26%) and German (5.57%) to be higher than that for
English (5.14%); the results of average random seed vari-
ability for the three languages follow the same trend (Arabic:
2.49%; German: 2.25%; English: 2.06%).

We then analyzed the score range for each sampling strat-
egy. Overall, UNIFORM led to slightly a higher score range
(5.75%) compared to WEIGHTED (5.59%); on the other hand,
the average random seed variability for the two sampling
strategies is comparable (UNIFORM: 2.28%; WEIGHTED:
2.26%). However, there appears to be more variable results
when looking at the accuracy scores for individual languages
when combined with different sampling strategies. For Ara-
bic, UNIFORM and WEIGHTED yielded very close average
score range values (6.33% vs 6.19%), as well as mean ran-
dom seed variability values (2.51% vs. 2.47%). By contrast,
for German, WEIGHTED led to more variable score values;
whereas UNIFORM resulted in a higher mean score range and
average random seed variability for English.

Lastly, we studied the relationship between training sizes
and score variation, specifically, whether larger training sizes
would lead to less model performance variation and thereby
more reliable evaluation results. To address that, we again
utilized linear regression analysis. We fit two models here.
For both models, we included the training size as a fixed ef-
fect, controlling for the effects of language, model types, and
sampling strategies (with interaction terms between all afore-

mentioned fixed effects); one model predicts the score range
value, while the other predicts the random seed variability:

SCORE RANGE/SEED VARIABILITY ∼
LANG * MODEL * TRAIN SIZE * SAMPLING STRAT

Based on results from the regression models, it seems that
the training size has pronounced negative effects on score
range (β=-0.007, p < 0.05) as well as random seed variabil-
ity (β=-0.003, p < 0.05). That said, these coefficient values
are quite small; this suggests that although as training size
gets larger, there is a tendency for less variable model perfor-
mance on average, this tendency is relatively weak.

Linguistic Analysis
For a model to be cognitively plausible, it should not only
achieve high performance but also learn in a similar way to
children. This section evaluates the neural models’ outputs in
terms of how well they reproduce observed patterns in child
language acquisition.

Arabic Noun Pluralization
Arabic nouns form plurals in two ways: by suffixation (sound
plurals) or by stem mutation (broken plurals). There are two
sound plural suffixes in the nominative, feminine (FEM) -āt,
and masculine (MASC) -ūn. The relationship between gender
and sound plural ending is generally reliable, but some (gen-
erally non-human) MASC nouns take the FEM sound plural.

Broken plurals can be divided into many subclasses by
which templatic pattern defines the output of their stem muta-
tions. In Modern Standard Arabic (MSA), there are approx-
imately 30 broken plural patterns (J. J. McCarthy & Prince,
1990), though the exact count depends on the level of abstrac-
tion assumed for the templatic pattern.

We annotated the predictions of the best performing mod-
els of seed 0 for training sizes 200, 400, 600, 800, and
1,000. The annotation made a distinction between the two
sound plurals (FEM and MASC) to detect sound-to-sound er-
rors Snd→Snd, while broken plurals are annotated as Br re-
gardless of the plural pattern. This level of granularity was
adopted from Dawdy-Hesterberg and Pierrehumbert (2014).

Ravid and Farah (1999) identify two kinds of u-shaped
learning in Palestinian Arabic-learning children: (1) they be-
gin by accurately distinguishing MASC and FEM sound plu-
rals followed by over-application of the FEM to MASC forms
before returning to high accuracy. (2) they also go through a
period of over-applying FEM sound plurals to what should be
broken plurals. There are very few instances of FEM-to-MASC
sound and broken-to-broken errors.

Figure 4 provides a breakdown of error types at each anno-
tated training size for CLUZH-B4, the best overall performing
model type, in the style of Dawdy-Hesterberg and Pierrehum-
bert (2014). We make some key observations. First, learning
is monotonic. Neither type of u-shaped learning is observed.
Second, Br→Snd errors are indeed relatively common. Third,
however, most errors are Br→Br (e.g., nabiyy-*nab instead of
nabiyy-PanbiyāP) or Snd→Br (e.g., maSrūb-*maSārı̄b instead
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of maSrūb-maSrūbāt), which are very rare developmentally,
while Snd→Snd errors are quite rare in CLUZH-B4’s produc-
tions even though they dominate developmentally. Across all
annotated predictions, 32 Snd→Snd are MASC→FEM, while
20 are the reverse. FEM→MASC errors are proportionately far
more common than what is attested developmentally.

An error analysis of the CLUZH-GR and CHR-TRM uncov-
ered qualitatively similar patterns. Overall, the ANNs make
errors that are not similar to children’s errors.
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Figure 4: Breakdown of CLUZH-B4’s Arabic errors across
training sizes. Color indicates error type. PATB are due to
annotation errors in the original data. ? are nonsense outputs.
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Figure 5: Breakdown of each neural model’s Arabic errors at
maximum training. Color indicates error type.

English Past Tense
For English, we analyzed predictions made by all models on
the full training set (Figure 7) and predictions of the CLUZH-
B4 model trained on each nested set in increments of 100
(Figure 6); all analyses were done on seed 0. Model predic-
tions were classified into three types: -(e)d (regular, e.g.,
smear-smeared), irreg (irregular or analogized to irregu-
lar, e.g., fly-flew, tweet-*twet), or ? (unnatural predictions,
e.g., correspond-*correspood). Because the goal of this task
was not to capture the idiosyncrasies of English orthography,
near-correct regular predictions such as obey-obeid or trim-
trimed were annotated as -(e)d.

On the full training set, both CLUZH-GR and CLUZH-
B4 make only over-regularization and over-irregularization
errors, with over-regularizations dominating. By contrast,
over-regularizations are in the minority for CHR-TRM, which
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Figure 6: Breakdown of CLUZH-B4’s English errors at each
training size. Color indicates error type.
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Figure 7: Breakdown of each neural model’s English errors
at maximum training. Color indicates error type.

produces a greater proportion of unnatural errors and over-
irregularizations. Since children produce orders of magni-
tude more over-regularization than over-irregularization er-
rors (Marcus et al., 1992; Xu & Pinker, 1995), no model
demonstrates a human-like error distribution.

Further, the dominance of over-regularizations is not con-
sistent across training sizes for CLUZH-B4 (Figure 6): both
the overall error rate and the distribution of errors oscillate
significantly, and the rates of over-irregularization and unnat-
ural errors are generally much higher than expected. Addi-
tionally, children often exhibit u-shaped learning when they
learn that -(e)d is productive and liberally overapply it to ir-
regular verbs (Marcus et al., 1992; Prasada & Pinker, 1993).
Though CLUZH-B4 exhibits a temporary spike in error rate at
300 words (Figure 6), this spike is caused by an increase in
over-irregularization rather than over-regularization. Thus,
the ANNs do not fit well with developmental findings: they
fail to exhibit child-like error distributions, and the best per-
forming model does not exhibit developmental regression.

German Noun Pluralization
German nouns are inflected with one of five (nominative and
accusative) plural patterns: -(e)n, the most frequent, espe-
cially among FEM nouns, -e, the second most frequent, - /0,
-(e)r, and -s, the least frequent. This is interesting because
-s appears to be the default form of last resort despite its low
frequency (Marcus et al., 1995). Thus, German noun plu-
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rals provide a way to distinguish productivity from frequency,
something that the English past tense cannot do.

To investigate whether the models generalized -s, plurals
were annotated to indicate which of the five pluralization
types is applied: -e, -(e)s, -(e)r, -(e)n, or -0. Since
the goal here was not to perfectly capture German orthog-
raphy, failure to capture consonant doubling (-inen instead of
expected -innen) was not penalized. Model predictions that
did not fit into any of these categories (usually due to unnat-
ural stem-internal changes) were labeled ?. Figure 8 breaks
down error types by training size on seed 0 for CLUZH-B4 the
overall best performing model. At 200 and above, the over-
application of -e is consistently the plurality or majority error
type. Developmentally, early application of -e is consistent
with child development, where -e and - /0 are acquired very
early (Gawlitzek-Maiwald, 1994).
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Figure 8: Breakdown of CLUZH-b4’s German errors at each
training size. Color indicates error type.
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Figure 9: Breakdown of each neural model’s German errors
at maximum training. Color indicates error type.

Over-application of -(e)n dominates at 100 training items
then falls off. It is the default ending for FEM nouns, and
CLUZH-B4 applies it to FEM near-categorically and often in-
correctly applies it to MASC and neuter NEUT nouns. It also
over-extends the -s plural for a time, particularly around 300-
400 items in training, which is consistent with developmen-
tal expectations (Elsen, 2002). Figure 9 shows each neural
model’s error types at maximum training on seed 0. For each
of the three models, over-application of -e is dominant fol-
lowed by -(e)n and - /0. The error rate is unacceptably high,

but learning trajectories are roughly what would be expected
from a cognitively-plausible learning model.

Discussion
Our quantitative analysis shows that UNIFORM sampling
tends to inflate performance relative to more realistic
WEIGHTED sampling, thus we advocate for adopting
weighted sampling when possible to evaluate artificial neu-
ral networks (ANNs). Choice of random seed yielded score
ranges as high as 6 percentage points, which is substantial.
Evaluation across several random seeds highlights the sensi-
tivity of a model to sampling effects, where low sensitivity
is likely more cognitively plausible, consistent with the ob-
servation that children show consistent development despite
each having received unique input samples.

Our linguistic analysis focuses on how well models’ learn-
ing trajectories and error types correspond to observed hu-
man learning. Results on German were promising. Produc-
tive inflection patterns emerged in roughly the expected or-
der, and CLUZH-B4 demonstrates over-application of -s. Re-
sults for Arabic and English were less promising. Models did
not show patterns of u-shaped learning which are robustly at-
tested in child learners, nor did they reproduce attested strong
asymmetries between different error types.

Future studies of this type may be repeated with phono-
logical transcriptions rather than orthography, especially for
English. It is unclear what effect orthography has on perfor-
mance. In one sense, irregularities in English spelling add
complexity. However, spelling also collapses some spoken
distinctions such as the three-way phonologically conditioned
allomorphy of -(e)d (/-t/, /-d/, /-@d/), thus decreasing chances
for error. Taken together, this work demonstrates that our
conclusions about ANNs as cognitive models of morphology
are sensitive to the often implicit design decisions made dur-
ing evaluation. We hope that this line of work will be ex-
tended to more models, languages, and morphological phe-
nomena.
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