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Rapid phenotypic adaptation is often observed in natural popula-
tions and selection experiments. However, detecting the genome-
wide impact of this selection is difficult since adaptation often
proceeds from standing variation and selection on polygenic
traits, both of which may leave faint genomic signals indistin-
guishable from a noisy background of genetic drift. One promis-
ing signal comes from the genome-wide covariance between
allele frequency changes observable from temporal genomic data
(e.g., evolve-and-resequence studies). These temporal covariances
reflect how heritable fitness variation in the population leads
changes in allele frequencies at one time point to be predic-
tive of the changes at later time points, as alleles are indirectly
selected due to remaining associations with selected alleles. Since
genetic drift does not lead to temporal covariance, we can use
these covariances to estimate what fraction of the variation in
allele frequency change through time is driven by linked selec-
tion. Here, we reanalyze three selection experiments to quantify
the effects of linked selection over short timescales using covari-
ance among time points and across replicates. We estimate that
at least 17 to 37% of allele frequency change is driven by selec-
tion in these experiments. Against this background of positive
genome-wide temporal covariances, we also identify signals of
negative temporal covariance corresponding to reversals in the
direction of selection for a reasonable proportion of loci over
the time course of a selection experiment. Overall, we find that
in the three studies we analyzed, linked selection has a large
impact on short-term allele frequency dynamics that is readily
distinguishable from genetic drift.

linked selection | experimental evolution | adaptation

A long-standing problem in evolutionary genetics is quan-
tifying the roles of genetic drift and selection in shaping

genome-wide allele frequency changes. Selection can affect allele
frequencies, both directly and indirectly, with the indirect effect
coming from the action of selection on correlated loci elsewhere
in genome [e.g., linked selection (1–4); ref. 5 has a review]. Previ-
ous work has mostly focused on teasing apart the impacts of drift
and selection on genome-wide diversity using population sam-
ples from a single contemporary time point, often by modeling
the correlation between regional recombination rate, gene den-
sity, and diversity created in the presence of linked selection (6,
7). This approach has shown that linked selection has a major
role in shaping patterns of genome-wide diversity across the
genomes of a range of sexual species (8–16) and has allowed us
to quantify the relative influence of positive selection (hitchhik-
ing) and negative selection (background selection) (8, 9, 16–19).
However, we lack an understanding of both how linked selection
acts over short time intervals and its full impact on genome-wide
allele frequency changes.

There are numerous examples of rapid phenotypic adapta-
tion (20–23) and rapid, selection-driven genomic evolution in
asexual populations (24–26). Yet, the polygenic nature of fit-
ness makes detecting the impact of selection on genome-wide
variation over short timescales in sexual populations remark-
ably difficult (27–29). This is because the effect of selection on

a polygenic trait (such as fitness) is distributed across numerous
loci. This can lead to subtle allele frequency shifts on standing
variation that are difficult to distinguish from background lev-
els of genetic drift and sampling variance. Increasingly, genomic
experimental evolution studies with multiple time points, and
in some cases multiple replicate populations, are being used
to detect large-effect selected loci (30, 31) and differentiate
modes of selection (32–34). In addition, these temporal–genomic
studies have begun in wild populations, some with the goal of
finding variants that exhibit frequency changes consistent with
fluctuating selection (35, 36). In a previous paper, we pro-
posed that one useful signal for understanding the genome-wide
impact of polygenic linked selection detectable from temporal
genomic data is the temporal autocovariance (i.e., covariance
between two time points) of allele frequency changes (37). These
covariances are created when the loci that underly heritable
fitness variation perturb the frequencies of linked alleles; in
contrast, when genetic drift acts alone in a closed population,
these covariances are expected to be zero for neutral alleles.
Mathematically, temporal covariances are useful because it is
natural to decompose the total variance in allele frequency
change across a time interval into the variances and covari-
ances in allele frequency change between generations. Further-
more, biologically, these covariances reflect the extent to which
allele frequency changes in one generation predict changes in
another due to shared selection pressures and associations with
selected loci.

Significance

A long-standing problem in evolutionary biology is to under-
stand the processes that shape the genetic composition of
populations. In a population without migration, two pro-
cesses that change allele frequencies are selection, which
increases beneficial alleles and removes deleterious ones, and
genetic drift, which randomly changes frequencies as some
parents contribute more or fewer alleles to the next gener-
ation. Previous efforts to disentangle these processes have
used genomic samples from a single time point and models
of how selection affects neighboring sites (linked selection).
Here, we use genomic data taken through time to quantify
contributions of selection and drift to genome-wide frequency
changes. We show that selection acts over short timescales
in three evolve-and-resequence studies and has a sizable
genome-wide impact.
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Here, we provide empirical analyses to quantify the impact
of linked selection acting over short timescales (tens of gener-
ations) across two evolve-and-resequence studies (33, 38) and an
artificial selection experiment (39). These sequencing selection
experiments have started to uncover selected loci contribut-
ing to the adaptive response; however, it is as yet far from
clear how much of genome-wide allele frequency changes are
driven by selection or genetic drift. We repeatedly find a signal
of temporal covariance, consistent with linked selection acting
to significantly perturb genome-wide allele frequency changes
across the genome in a manner that other approaches would
not be able differentiate from genetic drift. We estimate a lower
bound of the fraction of variance in allele frequency change
caused by selection, as well as the correlation between allele
frequency changes between replicate populations caused by con-
vergent selection pressures. Overall, we demonstrate that linked
selection has a powerful role in shaping genome-wide allele
frequency changes over very short timescales in experimental
evolution.

Results
We first analyzed the dataset of Barghi et al. (33), an evolve-
and-resequence study with 10 replicate populations exposed to a
high-temperature laboratory environment, evolved for 60 gener-
ations, and sequenced every 10 generations. Using the seven time
points and 10 replicate populations, we estimated the genome-
wide 6× 6 temporal covariance matrix Q for each of the 10

replicates. Each row of these matrices represents the tempo-
ral covariance Cov(∆10ps , ∆10pt) between the allele frequency
change (in 10-generation intervals, denoted ∆10pt ) of some ini-
tial reference generation s (the row of the matrix) and some
later time point t (the column of the matrix). We corrected
these matrices for biases created due to sampling noise and
normalized the entries for heterozygosity (SI Appendix, sections
S1.2 and S1.4). These covariances are expected to be zero when
only drift is acting, as only heritable variation for fitness can
create covariance between allele frequency changes in a closed
population (37). Averaging across the 10 replicate temporal
covariances matrices, we find temporal covariances that are sta-
tistically significant (95% block bootstraps CIs do not contain
zero), consistent with linked selection perturbing genome-wide
allele frequency changes over very short time periods. The
covariances between all adjacent time intervals are positive and
then decay toward zero as we look at more distant time intervals
(Fig. 1A), as expected when directional selection affects linked
variants’ frequency trajectories until ultimately linkage disequi-
librium (LD) and the associated additive genetic variance for
fitness decays (which could occur as a population reaches a new
optimum and directional selection weakens) (37). The tempo-
ral covariances per replicate are noisier, but this general pattern
holds (SI Appendix, Fig. S23).

Since our covariances are averages over loci, the covariance
estimate could be strongly affected by a few outlier regions. To
test whether large outlier regions drive the genome-wide signal
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Fig. 1. (A) Temporal covariance, averaged across all 10 replicate populations, through time from the Barghi et al. (33) study. Each line depicts the temporal
covariance Cov(∆ps, ∆pt) from some reference generation s to a later time t, which varies along the x axis; each line corresponds to a row of the triangle of
the temporal covariance matrix with the same color (Right). The ranges around each point are 95% block bootstrap CIs. (B) A lower bound on the proportion
of the total variance in allele frequency change explained by linked selection, G(t), as it varies through time t along the x axis. The black line is the G(t)
averaged across replicates, with the 95% block bootstrap CI. The other lines are the G(t) for each individual replicate, with colors indicating what subset of
the temporal covariance matrix in Right is being included in the calculation of G(t).
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we see in the Barghi et al. (33) data, we calculate the covari-
ances in 100-kb windows along the genome (we refer to these
as windowed covariances throughout) and take the median win-
dowed covariance (and trimmed-mean windowed covariance)
as a measure of the genome-wide covariance robust to large-
effect loci. These robust estimates (SI Appendix, Table S1 and
Fig. S24) confirm the patterns we see using the mean covariance,
establishing that genomic temporal covariances are nonzero
due to the impact of selection acting across many genomic
regions.

While the presence of positive temporal covariances is con-
sistent with selection affecting allele frequencies over time,
this measure is not easily interpretable. We can calculate
a more intuitive measure from the temporal covariances to
quantify the impact of selection on allele frequency change:
the ratio of total covariance in allele frequency change to
the total variance in allele frequency change. We denote the
change in allele frequency as ∆pt = pt+1 − pt , where pt is
the allele frequency in generation t . Since the total variation
in allele frequency change can be partitioned into variance
and covariance components, Var(pt − p0) =

∑t−1
i=0 Var(∆pi) +∑t−1

i=0

∑t−1
j 6=i Cov(∆pi , ∆pj ) (we correct for biases due to

sequencing depth), and the covariances are zero when drift acts
alone, this is a lower bound on how much of the variance in allele
frequency change is caused by linked selection (37). We call this
measure G(t), defined as

G(t) =

∑t−1
i=0

∑t−1
j 6=i Cov(∆pi , ∆pj )

Var(pt − p0)
. [1]

This estimates the impact of selection on allele frequency change
between the initial generation 0 and some later generation t ,
which can be varied to see how this quantity grows through time.
When the sum of the covariances is positive, this measure can
intuitively be understood as a lower bound on relative fraction
of allele frequency change normally thought of as “drift” that
is actually due to selection. Additionally, G(t) can be under-
stood as a short-timescale estimate of the reduction in neutral
diversity due to linked selection (or equivalently, the reduction
in neutral effective population size needed to account linked
selection) (SI Appendix, section S7). Since the Barghi et al. (33)
experiment is sequenced every 10 generations, the numerator
uses the covariances estimated between 10-generation blocks of
allele frequency change; thus, the strong, unobservable covari-
ances between adjacent generations do not contribute to the
numerator of G(t). Had these covariances been measurable on
shorter timescales, their cumulative effect would likely have been
higher yet (SI Appendix, sections S2 and S8.4 have more details).
Additionally, selection inflates the variance in allele frequency
change per generation; however, this effect cannot be easily dis-
tinguished from drift. For both these reasons, our measure G(t)
is quite conservative (we demonstrate this through simulations
in SI Appendix, section S8.4). Still, we find a remarkably strong
signal. Greater than 20% of total, genome-wide allele frequency
change over 60 generations is the result of selection (Fig. 1B).
This proportion of variance attributable to selection builds over
time in Fig. 1B as the effects of linked selection are compounded
over the generations unlike genetic drift. Our G(t) starts to
plateau to a constant level as the covariances from earlier gen-
erations have decayed and so, no longer contribute as strongly
(Fig. 1).

Additionally, we looked for a signal of temporal autocovari-
ance in Bergland et al. (35), a study that collected Drosophila
melanogaster through spring–fall season pairs across 3 years. If
there was a strong pattern of genome-wide fluctuating selection,
we might expect a pattern of positive covariances between simi-
lar seasonal changes (e.g., spring–fall in two adjacent years) and

negative covariances between dissimilar seasonal changes (e.g.,
spring–fall and fall–spring in two adjacent years). However, we
find no such signal over years, and in reproducing their original
analysis, we find that their number of statistically significant sea-
sonal polymorphisms is not enriched compared with an empirical
null distribution created by permuting seasonal labels (we discuss
this in more depth in SI Appendix, section S6).

The replicate design of Barghi et al. (33) allows us to quantify
another covariance: the covariance in allele frequency change
between replicate populations experiencing convergent selec-
tion pressures. These between-replicate covariances are created
in the same way as temporal covariances: alleles linked to a
particular fitness background are expected to have allele fre-
quency changes in the same direction if the selection pressures
are similar. Intuitively, where temporal covariances reflect that
alleles associated with heritable fitness backgrounds are pre-
dictive of frequency changes between generations, replicate
covariances reflect that heritable fitness backgrounds common to
each replicate predict (under the same selection pressures) fre-
quency changes between replicates; we note that there is not a
direct one-to-one correspondence between temporal and repli-
cate covariances since the latter are driven by a shared selection
pressure and the stochastic genetic backgrounds across replicate
populations. We measure this through a statistic similar to a
correlation, which we call the convergent correlation: the ratio
of average between-replicate covariance across all pairs to the
average SD across all pairs of replicates:

cor(∆ps , ∆pt) =
EA6=B (Cov(∆ps,A, ∆pt,B ))

EA6=B

(√
Var(∆ps,A)Var(∆pt,B )

), [2]

where A and B here are two replicate labels, and for the Barghi
et al. (33) data, we use ∆10pt .

We have calculated the convergent correlation for all rows of
the replicate covariance matrices. Like temporal covariances, we
visualize these through time (Fig. 2 A, Left), with each line rep-
resenting the convergent correlation from a particular reference
generation s as it varies with t (shown on the x axis). In other
words, each of the colored lines corresponds to the like-colored
row of the convergence correlation matrix (Fig. 2 A, Right). We
find that these convergent correlation coefficients are relatively
weak and decay very quickly from an initial value of about 0.1
(95% block bootstrap CIs [0.094, 0.11]) to around 0.01 (95% CIs
[0.0087, 0.015]) within 20 generations. This suggests that while
a substantial fraction of the initial response is shared over the
replicates, this is followed by a rapid decay, a result consistent
with the primary finding of the original Barghi et al. (33) study:
that alternative loci contribute to longer-term adaptation across
the different replicates.

A benefit of between-replicate covariances is that unlike
temporal covariances, these can be calculated with only two
sequenced time points and a replicated study design. This
allowed us to assess the impact of linked selection in driving
convergent patterns of allele frequency change across repli-
cate populations in two other studies. First, we reanalyzed the
selection experiment of Kelly and Hughes (38), which evolved
three replicate wild populations of Drosophila simulans for
14 generations adapting to a novel laboratory environment.
Since each replicate was exposed to the same selection pres-
sure and shared LD common to the original natural founding
population, we expected each of the three replicate popula-
tions to have positive convergence correlations. We find that
all three convergent correlation coefficients between replicate
pairs are significant (Fig. 2B) and average to 0.36 (95% CI
[0.31, 0.40]). Additionally, we can calculate the proportion of the
total variance in allele frequency change from convergent selec-
tion pressure, analogous to our G(t), where the numerator is the
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Fig. 2. (A) The convergence correlations, averaged across Barghi et al. (33) replicate pairs, through time. Each line represents the convergence correlation
cor(∆ps, ∆pt) from a starting reference generation s to a later time t, which varies along the x axis; each line corresponds to a row of the temporal
convergence correlation matrix depicted on Right (where the diagonal elements represent the convergence correlations between the same time points
across replicate populations). We note that convergent correlation for the last time point is an outlier; we are unsure as to the cause of this (e.g., it does
not appear to be driven by a single pair of replicates). (B) The convergence correlations between individual pairs of replicates in the Kelly and Hughes (38)
data (note that the CIs are plotted but are small on this y-axis scale). (C) The convergence correlations between individual pairs of replicates in the data
from Castro et al. (39) for the two selection lines (LS1 and LS2) and the control (Ctrl); gray CIs are those using the complete dataset, and blue CIs exclude
chromosome 5 (chr5) and chr10, which harbor the two regions Castro et al. (39) found to have signals of parallel selection between LS1 and LS2. Through
simulations, we have found that the differences in convergence correlation CI widths between these Drosophila studies and the Longshanks study are due
to the differing population sizes.

convergent covariance and the denominator is the total vari-
ance (SI Appendix, section S4). We find that 37% of the total
variance is due to shared allele frequency changes caused by
selection (95% CI [29%, 41%]); these are similar to the conver-
gence correlation since the variance is relatively constant across
the replicates.

Next, we reanalyzed the Longshanks selection experiment,
which selected for longer tibiae length relative to body size in
mice, leading to a response to selection of about 5 SDs over the
course of 20 generations (39, 40). This study includes two inde-
pendent selection lines, Longshanks 1 (LS1) and Longshanks
2 (LS2), and an unselected control line (Ctrl) where parents
were randomly selected. Consequently, this selection experiment
offers a useful control to test our convergence correlations: we
expect to see significant positive convergence correlations in the
comparison between the two Longshanks selection lines but not
between each of the control and Longshanks line pairs. We find
that this is the case (gray CIs in Fig. 2C), with convergence corre-
lations between each of the Longshanks lines and the control not
being statistically different from zero, while the convergence cor-
relation between the two Longshanks lines is strong (0.18) and
statistically significant (CIs [0.07, 0.25]).

One finding in the Longshanks study was that two major-effect
loci showed parallel frequency shifts between the two selec-

tion lines. We were curious to what extent our genome-wide
covariances were being driven by these two outlier large-effect
loci, so we excluded them from the analysis. Since we do not
know the extent to which LD around these large-effect loci
affects neighboring loci, we took the conservative precaution of
excluding the entire chromosomes these loci reside on (chro-
mosomes 5 and 10) and recalculating the temporal covariances.
We find that excluding these large-effect loci has little impact
on the CIs (blue CIs in Fig. 2C), indicating that these across-
replicate covariances are indeed driven by a large number of
loci. This is consistent with a signal of selection on a polygenic
trait driving genome-wide change, although we note that large-
effect loci can contribute to the indirect change at unlinked
loci (41, 42).

The presence of an unselected control line provides an alter-
native way to partition the effects of linked selection and genetic
drift: we can compare the total variance in allele frequency
change of the control line (which excludes the effect of artifi-
cial selection on allele frequencies) with the total variance in
frequency change of the Longshanks selection lines. This allows
us to estimate the increase in variance in allele frequency change
due to selection, which we can further partition into the effects
of selection shared between selection lines and those unique
to a selection line by estimating the shared effect through the
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Fig. 3. (A and B) The distribution of temporal covariances calculated in
100-kb genomic windows from the Barghi et al. (33) study plotted alongside
an empirical neutral null distribution created by recalculating the windowed
covariances on 1,000 sign permutations of allele frequency changes within
tiles. The number of histogram bins is 88, chosen by cross-validation (SI
Appendix, Fig. S25). In A, windowed covariances Cov(∆pt , ∆pt+k) are sep-
arated by k = 2× 10 generations, and in A, the covariances are separated
by k = 4× 10 generations; each k is an off diagonal from the variance
diagonal of the temporal covariance matrix (cartoon of upper triangle of
covariance matrix in A and B, where the first diagonal is the variance, and
the dark gray indicates which off diagonal of the covariance matrix is plot-
ted in the histograms). (C) The lower and upper tail probabilities of the
observed windowed covariances, at 20 and 80% quintiles of the empir-
ical neutral null distribution, for varying time between allele frequency
changes (i.e., which off diagonal k). The CIs are 95% block bootstrap CIs,
and the light gray dashed line indicates the 20% tail probability expected
under the neutral null. Similar figures for different values of k are in SI
Appendix, Fig. S27.

observed covariance between replicates (Materials and Methods
and SI Appendix, section S4 have more details). We estimate
at least 32% (95% CI [21%, 48%]) of the variance in allele fre-
quency change is driven by the effects of selection, of which 14%
(95% CI [3%, 33%]) is estimated to be unique to a selection line,
and 17% (95% CI [9%, 23%]) is the effect of shared selection
between the two Longshanks selection lines.

We observed that in the longest study we analyzed (33),
some genome-wide temporal covariances become negative at
future time points (the first two rows in Fig. 1 A, Left). This
shows that alleles that were on average going up initially are
later going down in frequency (i.e., that the average direc-
tion of selection experienced by alleles has flipped). This might
reflect either a change in the environment or the genetic back-
ground, due to epistatic relationships among alleles altered by
frequency changes (which can occur during an optima shift;
ref. 43) or recombination breaking up selective alleles. Such
reversals in selection dynamics could be occurring at other time
points, but the signal of a change in the direction of selec-
tion at particular loci may be washed out when we calculate
our genome-wide average temporal covariances. To address
this limitation, we calculated the distribution of the temporal
covariances over 100-kb windowed covariances (Fig. 3 shows
these distributions pooling across all replicates, and SI Appendix,
Fig. S26 shows individuals replicates). The covariance estimate
of each genomic window will be noisy, due to sampling and
genetic drift, and the neutral distribution of the covariance is
complicated due to LD, which can occur over long physical dis-
tances in evolve-and-resequence and selection studies (44, 45).
To address this, we have developed a permutation-based pro-
cedure that constructs an empirical neutral null distribution by
randomly flipping the sign of the allele frequency changes in
each genomic window (i.e., a single random sign flip is applied
to all loci in a window). This destroys the systematic covariances
created by linked selection and creates a sampling distribu-
tion of the covariances spuriously created by neutral genetic
drift while preserving the complex dependencies between adja-
cent loci created by LD. This empirical neutral null distribution
is conservative in the sense that the variances of the covari-
ances are wider than expected under drift alone, as selection
not only creates covariance between time intervals but also,
inflates the magnitude of allele frequency change within a time
interval. We see (Fig. 3 A and B) that there is an empirical
excess of windows with positive covariances between close time
points compared with the null distribution (a heavier right tail)
and that this then shifts to an excess of windows with nega-
tive covariances between more distant time points (a heavier
left tail).

We quantified the degree to which the left and right tails are
inflated compared with the null distribution as a function of time
and see excesses in both tails in Fig. 3C. This finding is also
robust to sign-permuting allele frequency changes on a chromo-
some level, the longest extent that gametic LD can extend (SI
Appendix, Fig. S29). We see a striking pattern that the windowed
covariances not only decay toward zero but in fact, become neg-
ative through time, consistent with many regions in the genome
having had a reversed fitness effect at later time points.

Finally, we used forward-in-time simulations to explore the
conditions under which temporal and convergent correlations
arise. We show a subset of our results for a model of stabi-
lizing selection on a phenotype where directional selection is
induced by a sudden shift in the optimum phenotype of varying
magnitudes (Fig. 4A). We find that positive temporal covari-
ances are produced by such selection (Fig. 4B) and that these
positive temporal covariances can compound together to gener-
ate a large proportion of allele frequency change being due to
selection [i.e., large G(t)] over the relatively short time peri-
ods similar to our analyzed selection datasets span (Fig. 4C).
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Fig. 4. Forward-in-time simulations demonstrate how temporal covariance, G(t) trajectories, and convergence correlations arise during optima shifts of two
different magnitudes, under GSS. (A) Trait means across 30 replicates before and after optima shifts (solid lines) for two different magnitudes (indicated by
color). The new optimal trait values are indicated by the purple and yellow dashed lines. (B) Mean temporal covariance Cov(∆p5, ∆pt) across 30 simulation
replicates, where t varies along the x axis (points), with a loess-smoothed average (solid lines). (C) G(t) trajectories through time for 30 replicate simulations
across two optima shifts. The solid lines are loess-smoothed averages. (D) The convergence correlations between two populations (each 1,000 diploids) split
from a common population that underwent an optima shift in either the same direction (converge) or opposite directions (diverge) at generation 5. In B–D,
directional selection begins at generation 5, when the optima shifts; this is indicated by the vertical dashed red lines (SI Appendix, section S8.2 has details
on these simulations).

The magnitude of G(t) increases with the strength of selec-
tion (i.e., the variance in fitness) such that stronger selection
generates larger proportions of allele frequency change. We
find a similar picture of stronger convergent selection pres-
sures generating larger convergence correlations (Fig. 4D; SI
Appendix, Fig. S12 shows how other factors impact convergence
correlations).

Averaging across replicates, these simulation results show
G(t) is relatively insensitive to the number of loci underlying the
trait. However, if only a small number of loci influence the trait,
the G(t) trajectories are typically much more stochastic across
replicates. This reaffirms that the genome-wide linked selection
response we see in the Barghi et al. (33) data is highly polygenic
(compare Fig. 1B with SI Appendix, Fig. S6). Furthermore, using
our simulations we find that sampling only every 10 generations
does indeed mean that our estimates of G(t) are an underesti-
mate of the proportional effect of linked selection as they cannot
include the covariance between closely spaced generations (SI
Appendix, Fig. S14).

Additionally, we explored other modes of selection with simu-
lations. We find that the long-term dynamics of the covariances
under directional truncation selection, which generates substan-
tial epistasis, are richer than we see under Gaussian stabiliz-
ing selection (GSS) and multiplicative selection (SI Appendix,
Fig. S18). We also conducted simulations of purifying selection
alone (i.e., background selection) and find that this can also gen-
erate positive temporal covariances (SI Appendix, Fig. S16) and
under some circumstances, can even generate convergence cor-
relations (SI Appendix, Fig. S17). Thus, it is unlikely that the
signatures of linked selection we see are entirely the result of
the novel selection pressure the populations are exposed to, and
some of this signature may be ongoing purifying selection. Only
in the case of the Longshanks experiment does the presence of
a control line allow us to conclude that selection that is almost
entirely due to the novel selection pressure.

While none of our experiments have selected the popula-
tions in divergent directions, in our simulations we find that

such selection can generate negative convergent correlations
(Fig. 4D). This suggests that selection experiments combining
multiple replicates, control lines, as well as divergent selection
pressures might be quite informative in disentangling the contri-
bution of particular selection pressures from genome-wide allele
frequency changes.

Discussion
Since the seminal analysis of Smith and Haigh (1) demonstrat-
ing that linked neutral diversity is reduced as an advantageous
polymorphism sweeps to fixation, over four decades of theo-
retical and empirical research has bettered our understanding
of linked selection. One underused approach to understand
the genome-wide effects of selection on polygenic trait (e.g.,
on standing variation) stems from an early quantitative genetic
model of linked selection (41) and its later developments (42,
46–48; ref. 5 has a comparison of these models with classic
hitchhiking models). Implicit in these models is that autocovari-
ance between allele frequency change is created when there is
heritable fitness variation in the population, a signal that may
be readily detected from temporal genomic data (37). Depend-
ing on how many loci affect fitness, even a strong effect of
linked selection may not be differentiable from genetic drift
using only single contemporary population samples or looking
at temporal allele frequency change at each locus in isolation.
In this way, averaging summaries of temporal data allows us to
sidestep the key problem of detecting selection from standing
variation: that the genomic footprint leaves too soft of a signa-
ture to differentiate from a background of genetic drift. In fact,
we find that the temporal covariance signal is detectable even
in the extremely difficult to detect case of selection on highly
polygenic traits (37).

It is worth building some intuition why temporal covariance
allows us to detect such faint signals of polygenic linked selec-
tion from temporal genomic data. Variance in allele frequency
change is subject to both drift and sampling noise, which at
any single locus, may swamp the temporal covariance signal due
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to selection or create spurious covariances when selection is
not acting. However, these spurious covariances do not share
a directional signal, whereas the covariances created by linked
selection do; consequently, averaging across the entire genome,
the temporal signal exceeds sampling noise.

Our analyses reveal that a sizable proportion of allele fre-
quency change in these experimental evolution populations is
due to the (likely indirect) action of selection. Capitalizing on
replicated designs, we characterized the extent to which con-
vergent selection pressures lead to parallel changes in allele
frequencies across replicate populations and found that a sub-
stantial proportion of the response is shared across short
timescales. These likely represent substantial underestimates
of the contribution of linked selection because the studies we
have reanalyzed do not sequence the population each gen-
eration, preventing us from including the effects of stronger
correlations between adjacent generations. Furthermore, our
estimation methods are intentionally conservative: for example,
they exclude the contribution of selection that does not persist
across generations and selection that reverses sign; thus, they
can be seen as a lower bound of the effects of selection, which
we have confirmed through forward-in-time simulations. Finally,
through simulation results, we show that for a given level of
additive genetic variance, the strengths of temporal and repli-
cate covariances depend on the mode of selection, the details
of the populations or selection experiment, and the level of
LD, yet the level of temporal covariance is relatively invari-
ant to the number of loci underlying fitness, as long as fitness
is sufficiently polygenic.

These estimates of the contribution of selection could be
refined by using patterns of LD and recombination, which would
allow us to more fully parameterize a linked selection model of
temporal allele frequency change (37). The basic prediction is
that regions of higher LD and lower recombination should have
greater temporal autocovariance than regions with lower LD and
higher recombination. However, one limitation of these pooled
sequence datasets is that none of the studies we reanalyzed esti-
mated LD data for the evolved populations. While there are
LD data for a natural population of D. simulans (49, 50), we
did not find a relationship between temporal covariance and
LD. We believe that this is driven by the idiosyncratic nature of
LD in evolve-and-resequence populations, which often extends
over large genomic distances (38, 44). Future studies complete
with LD data and recombination maps would allow one to
disentangle the influence of closely linked sites from more distant
sites in causing temporal autocovariance and allow the fitting of
more parametric models to estimate population parameters such
as the additive genetic variance for fitness directly from tempo-
ral genomic data alone (37). Future work could refine our G(t)
estimates by including selection’s impact on the variance in allele
frequency terms (e.g., equation 26 of ref. 37) and possibly quan-
tifying the covariances missed when sequencing is not done each
generation; both would lead to less conservative estimates that
could show a large impact of selection.

Our primary focus here has been on evolution in laboratory
populations. It is unclear whether we should expect a similar
impact of selection in natural populations. In some of these

experiments, selection pressures may have been stronger or more
sustained than in natural populations (51, 52). Conversely, these
laboratory populations were maintained at relatively small cen-
sus sizes (Table 1), which will amplify the role of genetic drift,
and increase the frequency of rare deleterious alleles in selection
lines due to founder effects. The advantage of laboratory experi-
ments is that they are closed populations; in natural populations,
temporal covariance could also arise from the systematic migra-
tion of alleles from differentiated populations. Adapting these
methods to natural populations will require either populations
that are reasonably closed to migration or the effect of migration
to be accounted for possibly either by knowledge of allele fre-
quencies in source populations or the identification of migrant
individuals.

While it challenging to apply temporal methods to natural
populations, there is a lot of promise for these approaches (35,
36). Efforts to quantify the impact of linked selection have found
that obligately sexual organisms have up to an 89% reduction
in genome-wide diversity over long time periods (16, 18, 53–55)
Thus, linked selection makes a sizable contribution to long-term
allele frequency change in some species, and there is reason
to be hopeful that we could detect this from temporal data,
which would help to resolve the timescales that linked selection
acts over in the wild. In our reanalysis of the Barghi et al. (32)
study, we find evidence of complex linked selection dynamics,
with selection pressures flipping over time due to environmental
change, the breakup of epistatic combinations, or advantageous
haplotypes. Such patterns would be completely obscured in sam-
ples from only contemporary populations. Thus, we can hope to
have a much richer picture of the impact of selection as tempo-
ral sequencing becomes more common, allowing us to observe
the effects of ecological dynamics in genomic data (52).

Furthermore, understanding the dynamics of linked selection
over short timescales will help to unite phenotypic studies of
rapid adaptation with a detectable genomic signature to address
long-standing questions concerning linked selection, evolution-
ary quantitative genetics, and the overall impact selection has on
genetic variation.

Materials and Methods
Datasets Analyzed. We used available genomic data data from four stud-
ies: pooled population resequencing data from Barghi et al. (33), Kelly and
Hughes (38), and Bergland et al. (35) and individual-level sequencing data
from Castro et al. (39). In all cases, we used the variants kept after the
filtering criteria of the original studies.

Variance and Covariance Estimates. To remove systematic covariances in
allele frequency change caused by tracking the reference or minor
allele, we randomly choose an allele to track frequency for each locus.
Then, we calculate the variance–covariance matrix of allele frequency
changes using a Python software package we have written, available at
http://github.com/vsbuffalo/cvtk. This simultaneously calculates temporal
variances and covariances and replicate covariances and uses the sampling
depth and number of diploid individuals to correct for bias in the variance
estimates and a bias that occurs in covariance estimates between adjacent
time points due to shared sampling noise (SI Appendix, sections S1.2–S1.4
have mathematical details of these estimators). We assess that our bias
correction procedure is working adequately through a series of diagnos-
tic plots that ensure that the procedure removes the relationship between

Table 1. Summary of the main selection studies we analyzed

Study Species Selection Replicates Population size* Generations Time points

Kelly and Hughes (38) D. simulans Laboratory adaptation 3 ∼1,100 14 2
Barghi et al. (33) D. simulans Laboratory adaptation 10 ∼1,000 60 7
Castro et al. (39) Mus musculus Tibiae length 2 32 17 2

Mus musculus Control 1 28 17 2

*Approximate census population size during experiment.
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sampling depth and uncorrected variance and covariances (SI Appendix,
Fig. S4). Through our simulations we find that our estimates can differ based
on how fixations and losses are handled in long time series (SI Appendix, sec-
tion S8.7), but none of our findings in the text are qualitatively altered by
this decision (SI Appendix, Figs. S19 and S20).

Estimating Uncertainty with a Block Bootstrap. To infer the uncertainty of
covariance, convergence correlation, and G(t) estimates, we used a block
bootstrap procedure. This bootstrap procedure resamples blocks of loci,
rather than individual loci, to infer the uncertainty of a statistic in the
presence of unknown correlation between loci. As most estimators in this
paper are ratios [e.g., covariance standardized by sample heterozygosity,
G(t), and the convergence correlation], which we estimate with a ratio of
averages, we exploit the linearity of expectation for efficient computation
of bootstrap samples (SI Appendix, Fig. S3 shows details).

Partitioning Unique and Shared Selection Effects in the Longshanks Study. The
unselected control line in the Longshanks experiment allows us to addition-
ally partition the total variance in allele frequency change into drift, shared
effects of selection, and unshared effects of selection between selected
replicates. We begin by decomposing the allele frequency change in LS1 as
∆pt,LS1 = ∆D pt,LS1 + ∆U pt,LS1 + ∆S pt,LS, where these terms are the drift in
LS1 (∆D pt,LS1), selection unique to the LS1 replicate (∆U pt,LS1), and selection
response shared between the two Longshanks replicates (∆S pt,LS; and simi-
larly for LS2). By construction, this decomposition assumes that each of these
terms is uncorrelated within replicates, so the contribution of each term to
the total variance in allele frequency change, Var(∆pt,LS1), is the variance of
that term’s allele frequency change.

We estimate the effects of selection by first calculating the fraction of the
total variance explained by drift. We assume that the variance in allele fre-
quency change observed in the unselected control [Var(∆pt,Ctrl)] is driven
entirely by neutral genetic drift, and since an identical breeding scheme
was used across all three replicates (except that breeders for the Ctrl line
were chosen at random), we can use this as an estimate of the contribution
of neutral genetic drift in the selected lines, Var(∆pt,Ctrl) = Var(∆D pt,LS1) =

Var(∆D pt,LS2). Then, we can estimate the increase in variance in allele
frequency change due to selection as (Var(∆pt,LS1) + Var(∆pt,LS2))/2−
Var(∆pt,Ctrl) and the shared effect of selection across selected lines as
Cov(∆pt,LS1, ∆pt,LS2). Finally, the covariance in allele change between repli-
cates is used to estimate the shared effects of selection between lines,
Cov(∆pt,LS1, ∆pt,LS2) = Var(∆S pt,LS).

Windowed Covariance and the Empirical Neutral Null. Throughout the paper,
we use genomic windows for the block bootstrap procedure. For the D. sim-
ulans and D. melanogaster data from the Barghi et al. (33), Kelly and Hughes
(38), and Bergland et al. (35) studies, we used large megabase windows for
the block bootstrap procedure, while we used a 10-Mb window for the large
mouse genome data from the Castro et al. (39) study.

Given evidence of a reversal in the direction of selection at later time
points in the Barghi et al. (33) study, we calculated windowed tempo-
ral covariances on 10-kb windows and looked at the distribution of these
covariances through time. We compare these distributions of windowed
covariances with an empirical neutral null created by randomly permut-
ing the sign of allele frequency change at the block level (to preserve
the correlation structure between loci due to LD). This destroys the sys-
tematic covariances in allele frequency change created by linked selection,
which emulates a frequency trajectory under drift. This approach is con-
servative since heritable fitness variation also inflates the magnitude of
allele frequency change more than expected under drift, but we do not
change these magnitudes. Using this empirical neutral null distribution of
windowed covariances, we calculate how much of the observed windowed
covariance distribution falls outside of empirical null distribution for dif-

ferent tail probabilities. While the comparison between the distribution of
10-kb windowed covariances and the empirical neutral null created from
sign-permuting 10-kb windows is most natural, we wanted to ensure that
our finding that the shift from mostly positive to mostly negative windowed
covariances through time (Fig. 3) was robust to LD extending beyond the
range of these 10-kb windows. We took the conservative approach of also
sign permuting at the chromosome level and found the same qualitative
shift (SI Appendix, Fig. S29).

Forward-in-Time Simulations. To explore how aspects of genetic architec-
ture, models of selection, and experimental design impact temporal covari-
ance, the G(t) trajectories, and convergence correlations, we ran extensive
forward-in-time simulations using SLiM (56); here, we discuss the GSS sim-
ulations in Fig. 4, but SI Appendix, section S8 describes these simulation
routines and others in detail.

We simulated directional selection on a trait by first evolving each pop-
ulation of N = 1,000 diploids to equilibrium (we will refer to this as the
burn-in hereafter) under GSS for 10N generations with the stabilizing selec-
tion variance Vs = 1 and an optima set at 0. We note that the small burn-in
population size means that these simulations should not be taken as reflect-
ing any specific natural population, and they are for illustrative purposes
only. We simulated a polygenic architecture by setting the trait mutation
rate to 10−8 per base pair, per generation, in addition to having a separate
neutral mutation of 10−8, which created neutral mutations that we used
to calculate the temporal covariances. Our simulated region was 50 Mb in
length (about one-quarter of a Drosophila chromosome), and trait alleles
were randomly selected to have a ±0.01 effect size. By tracking the trait
mean through the burn-in, we found that it converged to the optimum
as expected. After the burn-in, the population was split into two different
replicate populations to capture the effect of bottlenecks in selection exper-
iments (these population sizes varied between 50, 500, and 1,000 diploids,
the latter representing no bottleneck). Each population then underwent an
optima shift of 0.1, 0.5, or 1 on generation 5, with the first four generations
serving as a control. These optima shifts were in the same direction (con-
verging), different directions (diverging), or only one optima shifted (as a
control). By tracking the trait mean, we saw that it converged as expected
during burn-in, and the trait showed the expected directional response to
selection (SI Appendix, Fig. S7). Using the neutral population frequency
data from these simulations, we calculated the temporal covariances, G(t)
trajectories, and convergence correlations.

Data Availability. All analyses were done in Python using numpy, matplotlib,
and Jupyter notebooks (57–60); reanalysis code and notebooks to reproduce
these analyses are available on GitHub, https://github.com/vsbuffalo/cvtk/
(61). All data are from previous studies and available; Barghi et al. (33, 62)
data were downloaded from https://datadryad.org/resource/doi:10.5061/
dryad.rr137kn, Kelly and Hughes (38, 63) data were downloaded from
https://gsajournals.figshare.com/articles/Supplemental Material for Kelly
and Hughes 2018/7124963, Bergland et al. (35, 64) data were downloaded
from https://datadryad.org/stash/dataset/doi:10.5061/dryad.v883p, and
Castro et al. (39, 65) data were downloaded from http://ftp.tuebingen.
mpg.de/fml/ag-chan/Longshanks/.
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