UC Irvine
UC Irvine Previously Published Works

Title
Estimation in Phase-Shift and Forward Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/4cf8387h

Journal
IEEE Transactions on Signal Processing, 61(15)

ISSN
1053-587X

Authors

Jiang, Feng

Chen, Jie
Swindlehurst, A Lee

Publication Date
2013-08-01

DOI
10.1109/tsp.2013.2260333

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4cf8387b
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

arXiv:1208.4423v2 [cs.IT] 19 Apr 2013

Estimation in Phase-Shift and Forward

Wireless Sensor Networks

Feng Jiang, Jie Chen, and A. Lee Swindlehurst
Department of Electrical Engineering and Computer Science
University of California at Irvine,
Irvine, CA 92697, USA

Email:{feng.jiang, jie.chen, swindj&@uci.edu

Abstract

We consider a network of single-antenna sensors that abserunknown deterministic parameter.
Each sensor applies a phase shift to the observation anetisers simultaneously transmit the result
to a multi-antenna fusion center (FC). Based on its knowdedligthe wireless channel to the sensors,
the FC calculates values for the phase factors that minitthizevariance of the parameter estimate,
and feeds this information back to the sensors. The use ofagepshift-only transmission scheme
provides a simplified analog implementation at the sensuat,adso leads to a simpler algorithm design
and performance analysis. We propose two algorithms far phdoblem, a numerical solution based
on a relaxed semidefinite programming problem, and a clésed-solution based on the analytic
constant modulus algorithm. Both approaches are showrotade performance close to the theoretical
bound. We derive asymptotic performance analyses for cased/ing large numbers of sensors or
large numbers of FC antennas, and we also study the impadtasieperrors at the sensor transmitters.
Finally, we consider the sensor selection problem, in whinly a subset of the sensors is chosen to
send their observations to the FC.

Index Terms

Wireless sensor networks, analog sensor networks, digtdtbeamforming, phase-only beam-

forming, sensor management
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I. INTRODUCTION
A. Background

Wireless sensor networks (WSNs) have been widely studieddébection and estimation
problems. Recently, considerable research has focusederusion ofanalog rather than
encoded digital data in a distributed sensor network to awprestimation performance. The
advantages of analog WSNs have been established in [1j#f8re it was shown that when
using distortion between the source and recovered signaheagperformance metric, digital
transmission (separate source and channel coding) ashaevexponentially worse performance
than analog signaling. A number of studies have focused gorithm development and analysis
for analog WSNs with a single-antenna fusion center (FC)[4]n the sensors amplify and
forward their observations of a scalar source to the FC datachannels, and algorithms are
developed to either minimize estimation error subject am$mit power constraints or minimize
power subject to estimation error constraints. The scalarce model for this problem was
generalized to correlated vector sources_ in [5]. An oppustic power allocation approach was
proposed in[[B], and the scaling law with respect to the nunobsensors was shown to be the
same as the optimal power allocation proposed in [4].Intf¥@, asymptotic variance of the best
linear unbiased estimator of an analog WSN is derived, tmgewith an analysis of the effect
of different assumptions regarding channel knowledge atsinsors. Scaling laws with respect
to the number of sensors have been studied in [8] for a diyebsised method (where only
the sensor with the best channel transmits), as well as &cdherent multiple access channel
(MAC) and orthogonal channel cases, assuming a Gaussiacesdn [9], a power optimization
problem was formulated to minimize the outage probabilitgh@e MSE for the coherent MAC
channel. More complicated settings involving analog WShth wonlinear measurement models
[10] or relays [11], [12] have also been studied.

The results described above all assume that the FC is eqlipjpe only one antenna. Just
as multi-antenna receivers can provide significant capacitdiversity gains in communication
systems, the estimation performance of a WSN should alsefibdrom the use of a multi-
antenna FC, though prior work on this scenario is limited.eheral scenario is investigated in
[13], involving vector observations of a vector-valueddam process at the sensors, and linearly
precoded vector transmissions from the sensors to a miknaa FC. Optimal solutions for the

precoders that minimize the mean-squared error (MSE) d&@hare derived for a coherent MAC
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under power and bandwidth constraints. [In/[14], singleean& sensors amplify and forward
their observations to a multi-antenna FC, but it is shown thaRayleigh fading channels, the

improvement in estimate variance is upper bounded by onlgceof of two compared to the

case of a single-antenna FC. The performance of two heuakjorithms for choosing the gain

and phase of the sensor transmissions is also studied. Gudrgeresults by the same authors
in [15], [16], have demonstrated that when the channel wuey (zero-mean) Rayleigh fading,
there is a limit to the improvement in detection performafmea multi-antenna FC as well,

but when the channel is Rician, performance improves mancady with respect to number of

antennas.

The term “amplify and forward” is often used to describe agatensor networks like those
discussed above, since each sensor applies a complex gtie tbservation before sending
it to the FC. For a coherent MAC, one can think of this as a typdaistributed transmit
beamforming, although it is distinguished from distrilmiteeamforming applications such as
those in communications since in a WSN the observed noisexmsmitted together with the
signal of interest. Some prior research in radar and comeations has focused on scenarios
where the beamformer weights implement only a phase shifierahan both a gain and a
phase. The advantage of using phase shifting only is thamiplgies the implementation and
is easily performed with analog hardware. Phase-shifg-belamformers have most often been
applied to receivers that null spatial interfererice [1Z8][ but it has also been considered on the
transmit side for MISO wireless communications system$, [Mich is similar to the problem
considered here. For the distributed WSN estimation proplghase-only sensor transmissions
have been proposed in [20], where the phase is a scaled wafstbe observation itself. Phase-
only transmissions were also considered in the context sifiduted detection in_[15], leading
to a problem similar to one of those we consider here.

In addition to the work outlined above, other WSN research foaused on sensor selection
problems, particularly in situations where the sensorsehiawmited battery power. In these
problems, only a subset of the sensors are chosen to trati@inibbservations, while the others
remain idle to conserve power. The sensor selection prolilasmbeen tackled from various
perspectives, with the goal of optimizing the estimatiocusacy [11], [21],[22] or some heuristic
system utility [23], [24]. In [21], the authors investigdtenaximum likelihood (ML) estimation

of a vector parameter by selecting a fixed-size subset of éheass. An approximate solution
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was found by relaxing the original Boolean optimization teanvex optimization problem. A
dynamic model is used to describe the parameter of intard82j, and sensors use the Kalman
filter to estimate the parameter. At each time step, a sirggie® is selected and the measurement
at the selected sensor is shared with all other sensors. Aemeah sensor selection algorithm
was proposed to minimize an upper bound on the expecteda&imerror covariance. Instead
of the estimation accuracy, a utility function that taketiaccount the measurement quality or
energy cost can also be used as the metric for sensor saldctij@4], each sensor independently
optimizes its own operation status based on a utility fuumctivhich depends on the sensor’s
own measurement and the predicted operation status of s¢insors. A threshold is then found
to enable the sensor to switch its status for either eneffigiezfcy or energy consumption, and

a power allocation algorithm was proposed to minimize theEM#® FC.

B. Approach and Contributions

In this paper we consider a distributed WSN with single-ange sensors that observe an
unknown deterministic parameter corrupted by noise. Tihedomplexity sensors apply a phase
shift (rather than both a gain and phase) to their obsenvatial then simultaneously transmit
the result to a multi-antenna FC over a coherent MAC. One radge of a phase-shift-only
transmission is that it leads to a simpler analog implentamtat the sensor. The FC determines
the optimal value of the phase for each sensor in order tomiei the ML estimation error, and
then feeds this information back to the sensors so that taeyapply the appropriate phase shift.
The estimation performance of the phase-optimized sere@ronk is shown to be considerably
improved compared with the non-optimized case, and closkaibachieved by sensors that can
adjust both the transmit gain and phase. We analyze the asiimpehavior of the algorithm
for a large number of sensors and a large number of antennlas BC. In addition, we analyze
the impact of phase errors at the sensors due, for exampégrdes in the feedback channel, a
time-varying main channel or phase-shifter drift. We alsosider a sensor selection problem
similar to that in [21], and analyze its asymptotic behavasr well. Some additional details

regarding the contributions of the paper are listed below.

1) We present two algorithms for determining the phase faateed at each sensor. In the first,
we use the semi-definite relaxation presented_ in [15], [@5]dnvert the original problem

to a semidefinite programming (SDP) problem that can be effiyi solved by interior-
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point methods. For the second algorithm, we apply the aigadghstant modulus algorithm
(ACMA) [26], which provides a considerably simpler clostedm solution. Despite the
reduction in complexity, the performance of ACMA is showma \@imulation to be only
slightly worse than the SDP solution, and close to the thaaelower bound on the
estimate variance. This is especially encouraging for agtsy with a large number of
sensorsN, since the SDP complexity is on the order &, while that for ACMA is
only on the order ofV2,

2) We separately derive performance scaling laws with &@dpethe number of antennas and
the number of sensors assuming non-fading channels thafptk loss into account. For
both cases, we derive conditions that determine whethewobthe presence of multiple
antennas at the FC provides a significant benefit to the etstimperformance. Prior work
in [14]-[16] has focused on either AWGN channels with ideatichannel gains, or on
fading channels where the channel gains are identicallyilolited, corresponding to the
case where the distances from the sensors to the FC are yotlghkame. References
[14]-[16] also assume a special case where the noise at édbh sensors has the same
variance, although [16] examines how certain upper boundsesformance change when
the sensor noise is arbitrarily correlated.

3) Using our model for the non-fading case, we are able toiddie detailed conditions
under which the asymptotic estimation performance will iaye with the addition of
more antennad/ at the FC. While[[14],[[15] showed that performance alwaypriones
with increasingM for AWGN channels with identical gains and identically distited
sensor noise, we derive more detailed conditions that tadceaccount the possibility of
non-uniform distances between the sensors and FC and nfamramoise at the sensors.

4) We conduct an analysis of the impact of phase errors ateghsoss assuming relatively
small phase errors with varianocﬁ < 1 (square-radians). In particular, we show that the
degradation to the estimate variance is bounded above bst@r faf 1 +o—§. We note that
the effect of errors in the transmit phase at the sensorseagopsly been considered for
the case of\/ =1 in [7], although using a different phase error model.

5) We consider the sensor selection problem separatelpforahd high sensor measurement
noise. For the low measurement noise scenario, we relaxetgos selection problem to

a standard linear programming (LP) problem, and we alsoqe®@ reduced complexity
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version of the algorithm. For the high measurement nois@aa® we show that the
estimation error is lower bounded by the inverse of the nreamsent noise power, which
motivates the use of a simple selection method based on iclgotse sensors with the

lowest measurement noise.

A subset of the above results was presented in an earlieei@de paper [27].

C. Organization

The paper is organized as follows. Secfidn Il describes $saraed system model. Sectlod Il
formulates the phase optimization problem and proposesreencal solution based on SDP as
well as a closed-form solution based on the algebraic conhstadulus algorithm. In Sectian ]V,
the asymptotic performance of the algorithm is analyzedadarge number of sensors and
antennas. The effect of phase errors is analyzed in Sdctiandvthe sensor selection problem
is investigated in Section_VI. Simulation results are theaspnted in Sectioh VIl and our

conclusions can be found in Section VIII.

[l. SYSTEM MODEL

We assume thatV single-antenna sensors in a distributed sensor networ&partiently
observe an unknown but deterministic complex-valued patand according to the following
model for sensot:

yi:9‘|‘vi7

whereu; is complex-valued Gaussian observation noise with vagiai¢. The noise is assumed
to be independent from sensor to sensor. Each sensor phésdtstobservation and transmits
the signak;y; to the FC, whereu;| = 1. Assuming a coherent MAC and an FC with antennas,
the vector signal received at the FC can be expressed as

y = Hal + HDv +n , (2)

whereH = [hy, ..., hy] andh; € CM*! is the channel vector between tith sensor and the
FC,a = [ay,...,ay]’ contains the adjustable phase paramet®rss diag{ay,...,an}, v is
the sensor measurement noise vector with covaridfice E{vv"”} = diag {02 ,,--- ,02 v},
andn is complex Gaussian noise at the FC with covariafi¢an’} = 021,,, wherel,, is an

M x M identity matrix. Note that since the sensors can only phhgetheir observation prior
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to transmission, we ignore the issue of power control andraeghat the sensors have sufficient
power to forward their observation to the FC.

The combined noise terDv + n in (@) is Gaussian with covarianddVH" + 521, since
DVD? =V due to the phase-only assumption. Assuming the FC is awadheahannel matrix
H, the noise covarianc¥ ando?, it can calculate the ML estimate éfusing [28]

by — alHY(HVHY + 021,) 'y .
allHH (HVHY + 021,,)~'Ha

The estimatoéML is unbiased with variance

1

Var(Oyr) = (2 HY (HVHY + 021,,) 'Ha) ™ 2)

Furthermore, sincéal| = N when only phase shifts are used at the sensors, it is easyeto se
that the variance is lower bounded by

1
Nmax (HE(HVHY 1 021,,)~H) ’

where\,,.«(+) denotes the largest eigenvalue of its matrix argument. Matethe bound in(3) is

3)

Var(éML) >

in general unachievable, since with probability one thegimatrix will not have an eigenvector

with unit modulus elements.

. OPTIMIZING THE SENSORPHASE

In this section we consider the problem of choosingo minimize Var(éML) in (). The
unit modulus constraint prevents a trivial solution, butxgsnote below, a direct solution is not
possible even without this constraint since the noise ¢awee would then depend an The

general optimization problem is formulated as
m}}n Var(fy1) (4)
s.t. la;| =1,i=1,...,N .

Defining B = HY(HVH” + 521,,)"'H, the problem can be rewritten as
max a’Ba (5)

s.t. la;| =1,i=1,...,N .

Note that this optimization can only determiado within an arbitrary phase shi®, but this

scaling has no impact on the estimatefofin other words, the vectai and the vectome’?
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for arbitrary ¢ will both yield the same estimat,;. Since the FC is aware of the vectar
determined by the optimization ifl(5), any arbitrary phasetdr present in th&élad term of the
model in [1) will be canceled when the ML estimatefois computed. This is also clear from
the variance expression inl (2), which is insensitive to ahgse shift toa.

If there are only two sensors in the network, a simple cldeeah solution to [(b) can be
. . a  belf . o .
obtained. DefiningB = ; with a,b,c > 0 anda = [¢/1, ¢7%2], thena® Ba is
be™7 c
calculated as

afBa = a+c+2bcos(By — By — B)

< a+c+2b, (6)

and the equality in[(6) can be achieved for ahy g, that satisfys, — 8, = 3. For the general
situation whereN > 2, a solution to[(b) appears to be intractable. Instead, indibeussion
that follows we present two suboptimal approaches in ordatbtain an approximate solution.
The first approach is based on an SDP problem obtained byinglax rank constraint in a
reformulated version of (5), similar to the approach pragbm [15], [25]. The second converts
the problem to one that can be solved via the ACMA [of] [26]. Iwierth emphasizing here
that if the transmission gain of the sensors was also adijlesttnen the corresponding problem

would be

max a’HY(HDVD"H” + ¢21,,) 'Ha (7)

a

s.t. ala< N,

which also has no closed-form solution due to the dependence (through the matrixD)
inside the matrix inverse. While in general both our SDP tatuand [T) require numerical
optimizations, we will see in Sections IV-VI that the thetical analysis of performance and the
solution to the sensor selection problem is consideralphpkar with the phase-only constraint.
The simulations of Section VII will also demonstrate thagrihis often little performance loss

incurred by using phase-shift-only transmissions.
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A. SDP Formulation
To begin, we rewrite[(5) as follows:
max - tr (Baa") 8)
st.  Ja|l=1,i=1,...,N.
Making the associatiolA = aa’’, problem [8) is equivalent to:
max tr(BA) 9)
s.t. A,=11i1=1,....N
rank(A) =1
A-0,

where A, ; denotes théth diagonal element oA. Following the approach of [15], [25], we then

relax the rank-one constraint, so that the problem beconstaralard SDP:

max tr(BA) (10)
s.t. A%Z:l,'L: ,...,N
AxQ

Defining B, = rea{B}, B; = imag{B}, and similarly forA, and A;, we can convert (10) to

the equivalent real form

max tr(B, A, — B;A)) (12)
{Ar,Ai}
s.t. Ari’izl,’i:]_,...,N
A, —A;
= 0.
A, A,

Problem [(111) can be efficiently solved by a standard intgr@nt method([29].

In general, the solution td (1) will not be rank one, so anitamthl step is necessary to
estimatea. Let A*, A’ denote the solution to probler (11), then the solution tdlenmm (10)
is given by A* = A + jA;. If rank(A*) > 1, we can use a method similar to Algorithm 2 in

[30] to extract a rank-one solution, as follows:
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1) Decompo&A* = CHC, defineB = CBCY, and find a unitary matriXU that can
diagonalizeB.
2) Letr € CV*! be a random vector whosth element is set te’~:, wherew; is uniformly
distributed over{0, 27).
3) Seta = CHUr, and the solution is given by* = [a} --- a’]T, wherea! = /4% and
/z represents the phase of a complex number
A detailed discussion of the reasoning behind the above-oaekmodification can be found in
[30].

B. ACMA Formulation

For this discussion, we will assume thEt> M, which represents the most common scenario.
Thus, theN x N matrix B in the quadratic forra’’ Ba that we are trying to maximize is low
rank; in particular, ran{8) < M < N. Clearly, any component cf orthogonal to the columns
or rows of B will not contribute to our goal of minimizing the estimaterizance. In particular,

if we define the singular value decomposition (SVB)= UXU", we ideally seek a vectax

such that
a = Zwkuk =U,w 12)
k=1
|ai| = 1,
whereU,, = [u; --- u,] contains the firstn < rankB) < M singular vectors ofB and

w = [w; -+ wy,]T. The problem of finding the coefficient vecter of a linear combination of
the columns of a given matrikJ,,, that yields a vector with unit modulus elements is precisely
the problem solved by the ACMA [26].

Our problem is slightly different from the one considered26], since there will in general
be no solution to[(12) even in the absence of noise. Howewarui simulation results we will
see that the ACMA solution provides performance close todbgained by the SDP formulation
above. Note also that there is a trade-off in the choice:pthe number of vectors in spds)
to include in the linear combination df (12). A small valuerofallows us to focus on forming

a from vectors that will tend to increase the valueadfBa, while a larger value forn provides

Since A* is the solution to probleni{10)A* is positive semidefinite.
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more degrees of freedom in finding a vector whose elemerisfysat;| = 1. Another drawback
to choosing a larger value fon is that the ACMA solution can only be found i¥ > m?. As
long asM is not too large, one could in principle try all valueswf=1,---, M that satisfy
N > m? and choose the one that yields the smallest estimate varidvie will see later in the
simulations that a small value for already provides good performance, so the choice:0$
not a significant issue.

The general ACMA approach can be formulated to find multipleitsons to [(12), but in our
case we only need a single solution, and thus a simplifiedoreis ACMA can be used, as
outlined here for a givem:. The ACMA is obtained by defining the rows &f,, as UZ =

[, --- ay], and then rewriting the constraift;| = [ufw| =1 as

(o) (wow) =1,
where () denotes the complex conjugate andthe Kronecker product. Stacking aN such
constraints into a single equation results in
P(wow)=0, (13)
where
(o)’ -1
P = 5 S (14)
(ay @ ay)" -1
If an exact solution to[(13) existed, then a vector in the splice ofP would have the form
[(v‘v ® w)T 1 T, andw could be found by stripping away theand then unstacking the resulting
vector into a rank-one matrix (see [26] for more details)olm problem, an exact solution fo (13)
does not exist, so we use the following approach to obtainpgnoximation:
1) Let q represent the right singular vector Bf associated with the smallest singular value,
and define the vectaij to contain the firstn? elements ofq.
2) Setw equal to the singular vector €+ Q" with largest singular value, where thex m
matrix

Q = vec'(q) (15)

is formed by dividingq into sub-vectors of lengthn and stacking them together in a

matrix.
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3) Seta = U,,w. The vectora is then found by setting the magnitude of all the elements

of a equal to unity. In particular, théth element ofa is given by

af = el

C. Comparison of Computational Complexity

As discussed in[[25], the computational load of the SDP mwbin (10) is of the order
O(N?3%). The additional steps required to take the SDP result andhfiathk-one solution require
an O(N?) eigenvalue decomposition, so the overall complexity is itated by the SDP. For
ACMA, the dominant computational step occurs in finding theprincipal eigenvectors of the
Hermitian matrixB, which requires only an ordep(mN?) computation[[31]. Finding the least
dominant singular vector aP is an O(N?) + O(m?) operation, and the remaining steps have
relatively trivial complexity. Sincen < N in typical scenarios, we see that ACMA enjoys a
significantly lower computational load compared to the SPpraach. Despite this, we will see

that ACMA has performance that is only slightly inferior teing the SDP solution.

IV. ASYMPTOTIC PERFORMANCEANALYSIS

In this section, we analyze the asymptotic performanceeaabie using only phase-shifts for
the sensor transmissions. We will separately study casesewthe number of sensors is large
(N — o0) or the number of FC antennas is largel (~ oo). Our analysis will be based on an
a non-fading channel model that takes path loss into accaimtilar to models used in [32],
[33]. In particular, for the channel between the FC and sef\sae assume

1 -~
= d—?hz- ;

whered; denotes the distance between ilie sensor and the FCy is the path loss exponent

h;

andh, is given by

flz’ — [ej’Ym ez L. ej%’.,M]T

Y

wherey; ; is uniformly distributed ovef0, 27).
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A. Estimation Performance for Large N

From [3) we know that the lower bound dfur(f,,,) depends on the largest eigenvalue of
HY(HVH" +021,,)"'H. We begin by deriving a lower bound for this eigenvalue. Then)th

element ofHVHY can be expressed as

N i (im=vin) 2

(HVHY) =) ——
d4

=1
According to the strong law of large numbers, ds— oo we have

N il
1 6](7%,111 ’Yz,n)0-2 . ( ) 0.2 ) '
im - ua W V1 3 (Vi,m—"i,n)
R Rt Jela
B {%]

oL m=n
o x (16)

0 m#n,

where @) follows from the assumption thay; ,,, d; and a}jﬂ. are independent and)(is due
to the fact thaty, ,, and~;,, are independent and uniformly distributed oVer2rz). Thus, for

sufficiently largeN we have

o2
lim HVH"” = NE {dﬂ} Ly . (17)
Based on[(17), we have
lim Aax (HP (HVH? + 621,,)"'H) = 021 [lim )\maX(HHH)]
N—oo NE d;;} _'_0_721 N—oo

: (18)

where ¢) is due to the fact thak,,..(HH) = \,...(HH). Substituting[(IB) into[{3), we have
the following asymptotic lower bound on the estimate varean

2
9y

NE{%:} +0?

Var(éML) Z (19)
v {7}
For large enoughV, the lower bound can be approximated using sample averages:
2
R SN T4 2
Var(0yr) > L (20)

SN
Next, we derive an upper bound on the estimate variance anga it with the lower bound

obtained above. The upper bound is obtained by calculatiegvariance obtained when only
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a single antenna is present at the FC. For the given channd¢lintbe optimal choice for the
vector of sensor phases is just the conjugate of the chateslega = [e=/711 ... e=dva|T,

which when applied ta (2) leads to

2
N %% 2
Zi:l Za 0,
k3
B N ?
=143

When N — oo, both the upper and lower bounds convergé,tbut the ratio of the lower bound

N

Var(éML) (21)

in (20) to the upper bound in_(21) converges to

(Eha)  ({F) | wld) )

lim .
BT el e

Interestingly, we see that War {d%} < E {d%a} the gap between the upper and lower bound
is very small, and the availability of multiple antennasts £C does not provide much benefit

compared with the single antenna system whén— co. On the other hand, iVar {di} —

E {d%&} the potential exists for multiple antennas to significatdwer the estimate variance.

B. Estimation Performance for Large M
Using the matrix inversion lemma, we have

1
HYHVH? + 021,)"'H = HY (—2
Un

n n

1 1 -
Iy——H <V—1 + —ZHHH) HH> H
g g
1 H 1 H -1 1 H o H
= SH'H- —_H'H(V'+_H"H| H'H. (23)

On Op On

Furthermore, thém, n)th element ofH”H is given by

(H"H), = d?nl m Z]Eeﬂw—%vﬂ : (24)
Similar to (16), asM — oo we have
M
g g e = @)
and thus
lim HHH:Mdiag{ia ia} . (26)
M—oo d% d?\,

August 21, 2018 DRAFT



15

Substituting [(26) into[(23), we have

M M
' o H o ot —ler .
Nl[gnooH (HVH" + 0:1,,) H = diag {d%o‘afl T MUIZM, ’ T d3o? + MaiN } ’
and thus
R 1
lim Var(6yr) = : 27)
M0 MY L g

Note that this asymptotic expression is independent of tiece ofa. Here, for largel/,
the benefit of having multiple antennas at the FC hinges orrdlsive magnitude oiMaii
versusd;*o;. If Mo, ; < d;*c7, a reduction in variance by a factor 8f is possible. In this
case, where the SNR at the FC is low but the signals sent frenseéhsors are high quality,
the coherent gain from the combination of the relativelyseeree sensor signals helps increase
the SNR at the FC. On the other hand, whefiw?; > d;*07, performance is asymptotically

independent of\/. Here, the coherent gain not only applieséttut also to the sensor noise,

which is stronger in this case.

V. IMPACT OF IMPERFECTPHASE

The previous sections have assumed that the FC can caltatectora and feed the phase
information back to the sensors error free. Whether thebi@ekl channel is digital or analog,
there are about to be errors either in the received feedbattieasensors or in how the phase
shift is actually implemented. Furthermore, the wireleearmel may change during the time
required for calculation and feedback axfso even if the phase shifts are implemented perfectly
at the sensors, they may no longer be valid for the curremiredialn this section, we evaluate
the impact of errors in the sensor phase shifts on the estimatcuracy.

Define the phase shift for thi¢h sensor as; = ¢/*, and assume that
Q; = CYZ( + Az ,

wherea; is the optimal phase and; is a Gaussian perturbation (in radians) with zero mean
and variancer;. DefineE = HY(HVH" + 02I)2, so thatVar(d,,) can be expressed as

R 1 1
VCLT’(QML) = HaHE||2 = Z]\il aHeZ.|2 ) (28)
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wheree; is the ith column of E. Let ¢, ;¢/%7 be a polar coordinate representation of ttle

element ofe;, so that

M
|aHei|2 _ Z 6i7jea;+Aj+ﬁj
M M
= Z +Zzezlezmcos(al+Al+ﬁl_a m_ﬁm) (29)
j=1 =1 m=1
m##l

Defined;,, = Ay — A, and7f,, = af + B — aj, — Bm. If we assumer? < 1, (29) may be
approximated via a 2nd order Taylor series as follows:

e cos(t} ) ;
|aHei|2 ~ Zel J + Z Z €i,1€i,m <COS 7—l m) Sln(Tl,m)él,’m - 2l7 ((SI,M)Q)

=1 m=1,

m#l
N N cos(ti ), .
= Ze”-i-;r; €i,1€4,m COS Tlm ; ; €i,1€i,m (sm (17 m)§lm 2l’ (§§7m)2 .(30)
m#l l

Substituting [(3D) into[(28), we have
1

Va/f‘(é]uL) ~

. — 2N\
2%1(2?—1 e+, Zv]vvz;% eiteim cos(tf ) =S, Z%;% €i1€im (Sin(Tf,m)5f,m+ o TZ m (61 ) ))
- m m

In the previous equation, the effect of the phase error idimed to the second double sum
inside the outermost parentheses. If we deﬁﬁg to be the estimate obtained with no phase

errors, then
1

M N N N ;
Ez’:l (Zj:l ezz,j—i_Zl:l Zn”z;} €i1€im COS(TlZ,m))

which is deterministic and does not depend on the randomepérasrs. We can then obtain the

Var(h,) = ) (31)

following approximation

cos(r} ) i\ 2
Z (Zl 1 Zm 1 €i1€m <Sln(7-l m) I,m + 21’ ( l,m) ))
Zj\il (Zjv 1 z,j +Zl 1 Zm 1 €i,1€i,m COS(TI m))

where (f) is due to the first order Taylor approximati¢h — ) I~ + for x < y. We use

Var(éML) (f%) Var(éﬁw) 1+

the ratio of Var(f,,) to Var(9%,,) to measure the effect of the phase error, which yields
M N «N i\ si COS(TL m)
Var(Oyr) s Zi:l (Zl:l Z:ﬁ;& €i,1€i,m (Sln(Thm)él,m (6lm) ))

o~
Var(@i,) Zfi (Z;V1 2J+Zl 127” 1€2leZmCOS(Tlm)>
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Note that the only term in the above expression that is randdire numerator on the right-hand

side.
Taking the expectation of the ratio with respect to the phmeturbations);, we have

M N N o . i i COS(TliYm) i 2
E { VGT(éML) } _ - Zi:l (Zl_l Z%;% €i,1€i,m (Sln(Tl,m)E {(Sl,m} + 2 E { ((Sl,m) }))

Var(6F M N N N ;
(Orrr) Zi:l <Zj—1 612,,7'"‘21:1 Zﬁ;} €i,1€i,m COS(Tll,m))

Zij\il Zl]il Z%;% €i,1€i,m COS(Tf,m)Ufa

M N N «—N ;
Dic (Zj_l e+ m Z%;% €i,1€i,m COS(Tll,m))

; (32)

where in () we exploit the fact thak {4;,,} = 0 andE {( f,m)2} = 2072. Since

N N N
Z Z €i1€im €08(T;,,) < (N — 1) Z eﬁl ,
1=1

=1 m=1
m

the ratio in [(32) is approximately upper bounded by

Var(éML) < _ i) 0_2
E {Tw(é@)} <it(1-+)a. (33)

We see from[(33) that the impact of the phase errors increagbsN, but in all cases the

degradation in the estimate variance is approximately 8dedrabove by a factor of + af,.

VI. SENSORSELECTION

As mentioned earlier, in situations where it is desired te osly a subset of the sensors to
estimate the parametez.d., in order to conserve power at the sensors), the FC needs adneth
to perform the sensor selection. Assuming oAly< N of the sensors are to be selected for
transmission to the FC, an optimal solution to the problenuldi@equire solving the following

maximization:

max  x"D7H? (HVXH" + 02I);)" HDx (34)
N
i=1
|ai| =1,
whereD = diag{ai, - ,an},x = [z1,--- ,zn]T isthe selection vector anl = diag{z1, -+, zx}.

Even if one chooses one of the suboptimal approaches deddrilSection Il for estimating,

August 21, 2018 DRAFT



18

solving forx in (34) requires an exhaustive search over all posdibieensor combinations and
is in general NP-hard. Instead, in this section we deriveditmmms under which much simpler
selection strategies can be applied. We consider the folfpiwo cases: (1) low sensor noise
relative to the noise at the FG;; < o7, and (2) relatively high sensor nois€, > o... For

(1), we derive a LP solution as well as a simpler greedy atgorj and for (2) we show that

the problem reduces to choosing the sensors with the loweasunement noise.

A. Algorithms for High FC Noise

Let a be the phase vector obtained using one of the algorithms étid®elll assuming all

N sensors are active. Wher}; < o2, we ignore the ternHVXH? in (34), and the problem

simplifies to
max  x' DFHYHDx (35)
N
=1

DefineF = DHHYHD so that [[3b) can be rewritten as

max  x' Re{F}x (36)
N
i=1

Sincer? = x;, (38) is equivalent to

N N-1 N
max Z Fiz;+2 Z Z Re(F,; ;}x;z; (37)
e i=1 i=1 j=i+1
N
i=1
Ty = {07 1} )
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whereF; ; denotes thdi, j)th element of matriXF. By linearizing the terme;z; [34], (37) is

equivalent to

max Z F;x; +2 Z Z Re{F; ;i (38a)
Tl i=1 i=1 j=i+1

s.t. Z =K (38b)

i=1

1—xi—xj+yij20 (38C)

-y =0 (38d)

Tj — Yij >0 (386)

Yij = 0 (38f)

where the constraint§ (38¢)-(389) leaduytp = z;x;.

Note that all of the constraints if_(38) are linear, except(B8d). If we relax the constraint
in (38d), the conditiord < z; < 1 is implicitly included in [39t){(39f), and we are left with a
LP problem in standard form [34]:

max Z Fi iz + 2 Z Z Re(F;,; }vi; (39a)
ridy o

s.t. Z =K (39b)

=1

l—2,—x;+y; >0 (39¢)

—Yi; =0 (39d)

xj —yi; >0 (39%)

yi; > 0. (39f)

To find thez; = {0, 1} solution needed for sensor selection, one can take thet @fs{#9) and
simply set theK largest elements to one and the rest to zero. If desired, thed€ sensors have
been selected, the phase veciofor these X' sensors can be recomputed based on a reduced

dimension version of the algorithms in Section Il
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The above LP problem hag(N—‘1 + N variables an®N (N — 1) 4+ 1 constraints, and thus
will require on the order of< (V1) +N> (2N(N — 1) + 1) arithmetic operations_[29]. A
simpler greedy algorithm is presented below that only nexguD) (K N) operations, and that
achieves performance close to the LP approach. The gregdyitam is based on the following

observation:

x'D"H"HDx = alajh h;

i MN H'Mx

K-1
ajh{fhj + |hg|? + 2Re{ > aKajhghj} .
j=1

The idea behind the greedy algorlthm is to add sensors ondimtabased on those for which

the last two terms in the above sum are the largest. The steéps algorithm are detailed below.

Greedy Sensor Selection Algorithm

1) Select the first sensor as the one with the strongest chanre arg max;, ||h;[|?, and

initialize the active sensor set &= {i} .
2) While |S| < K, perform the following:

a) Solve

i= argrilgé( |y |2 + QRE{Z akajh,fhj} :

JjES
b) UpdateS =S .
As with the LP algorithm, once th& sensors are selected, an updated solution for the asgbciate

K elements ofa can be obtained.

B. Algorithm for High Sensor Noise

Wheno?, > o7 and assuming thaV > M (the case of interest when sensor selection is
necessary), the original criterion can be simplified to
a’HY (HVH") 'Ha = 2V V:HY (HVHY) HV:V 2a
— aV iP,yV ia,
wherePy, = V:H? (HVHH)_1 HV: is a rank)M projection matrix. Ideally, to maximize

the criterion function, one should attempt to find a vectorthed form V~za that lies in the
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subspace defined By 5. Assuming the vectas can approximately achieve this goal, the lower
bound on variance is approximately achieved and we have
1 11

alV=iPy,V-ia alflVia TN L

=1 g2 .
v,1

(40)

With respect to the sensor selection problem, this sugdgesatsvheno?; > o7, the K sensors

with the smallest values aof?; should be chosen.

VIlI. SIMULATION RESULTS

Here we present the results of several simulation exampledustrate the performance of
the proposed algorithms. In all cases, the path loss expen&ras set tol, and each result is
obtained by averaging over 300 channel realizations. Theose are assumed to lie in a plane
at random angles with respect to the FC, uniformly distedubver|0,27). The distances of
the sensors to the FC will be specified separately below. &uate the performance without
feedback,a is set to a vector of all ones. In some of the simulations, wi @a@mpare the
performance of the proposed algorithms with that obtaingd, where both the sensor gain
and phase can be adjusted. In these simulations, we usetithe-s&t method to optimizeé(7),
and we use several different initializations in order to énav better chance of obtaining the
global optimum. When the ACMA algorithm is implemented, théspace dimension was set
atm = 2.

In the first two examples, we study the estimation perforreainc A/ = 4 FC antennas with
increasing for a case where the sensor measurement ngisés uniformly distributed over
[0.01,0.1] and the FC noise? is set t00.1. Fig.[d shows the results assuming that the sensor
distancesd; are uniformly distributed in the interva, 20|, while in Fig.[2 d; = 11.5 for all
sensors. In both cases, even though the lower bound] of (tischievable, we see that the
performance of the proposed SDP and ACMA methods is noreshekasonably close to the
bound, and not significantly worse than the performanceiddaby optimizing both the phase
and gain. AsN gets larger in Figl]1, the estimation error for all of the noeth (except the
no-feedback case) falls within the asymptotic lower andenggunds of[(20) and_(21). When
N = 50, the ratioVar {di} /E {d%&} is 0.304 for Fig.[d, and the ratio between the lower and
upper bound i%).702, Wl’;iCh is in Lexcellent agreement with the valuelof 0.304 predicted by
Eq. (22). Since the upper bound in21) corresponds to the @d®/ = 1, one may suppose that
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the gap in Fig[ll between the bounds [0f](20) dnd (21) indicttasthe presence of multiple
antennas at the FC could provide a benefit for large However, the performance of SDP
and ACMA is approaching the upper bound more tightly, intiica that there is no benefit
from having multiple antennas in this case. In Fi. 2 wheedthare all equal, the asymptotic
bounds in[(2D) and(21) are identical, and asymptoticallyexpect no benefit from multiple
antennas at the FC. We see again that for lakge¢he performance of the SDP and ACMA
methods is essentially at the predicted bound. Whenittee equal and% < 02, the matrix
H7(HVH? + 021,,)"'H asymptotically approaches a scaled identityz matrix, schia tase
the performance of the proposed phase-shift only algostksen approaches the lower bound
of Eq. (3).

Fig. [3 illustrates the performance fo¥ = 4 with an increasing number of FC antennak
whenga; ; is uniformly distributed ovef0.001,0.01] ando;, = 0.1. In this example, for most of
the sensors we havklo;; < d;*c7, so in this case we see an improvement as the number of
FC antennas increases. However, the benefit of optimiziadrinsmit phase (and gain for that
matter) is reduced a&/ increases.

In Fig.[4, we investigate the effect of phase errors for tweesas, = 0.1 and o) = 0.2
assuming the same noise parameter settings as in the firsexamples. For each channel
realization, results for 3000 different phase error reaions were obtained and averaged to
obtain the given plot. The ratio of the variance obtainedhey $DP algorithm with and without
phase errors is plotted fav/ = 2,4, 6 for both values ofqg, and the approximate bound 6f {33)
is also shown. The results show that the performance detipadacreases withV, and that[(313)
provides a reasonable indication of performance for la¥gerig.[4 also shows that increasing
the number of FC antennas improves the robustness of thathlgao imprecise sensor phase.

In Fig. [B, we compare the performance of the three differamser selection algorithms
discussed in the paper (LP, greedy and min-sensor-noise)f@sction ofs2 assumingM = 4
antennas)N = 35 sensors and the sensor noise is uniformly distributed @01, 0.01]. The
sensor distances; are uniformly distributed in the intervgB, 20]. Three sets of curves are
plotted, one forK = 5 selected sensors, one féf = 10, and one corresponding to when all
the sensor nodes are used (the solid curve, obtained usn§DPF algorithm). After the sensor
selection, the proposed SDP is used to re-optimize thetedlesensor nodes’ phase parameters.

For smallo?. such thats?; >> o7, we see as predicted that the best performance is obtained by
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simply selecting thd< sensors with the smaller measurement noise. On the othdy hgain in
agreement with our analysis, the LP and greedy algorithrh&eae the lowest estimation error
for larger values ofs2. Interestingly, the greedy algorithm provides performeamssentially

identical to the LP approach at a significantly reduced cdatmnal cost.

VIII. CONCLUSIONS

In this paper, we investigated a distributed network of lErgntenna sensors employing a
phase-shift and forward strategy for sending their noisam@ter observations to a multi-antenna
FC. We presented two algorithms for finding the sensor phaifts that minimize the variance of
the estimated parameter, one based on a relaxed SDP aned-tdos heuristic algorithm based
on the ACMA approach. We analyzed the asymptotic performarficthe phase-shift and forward
scheme for both large numbers of sensors and FC antennasyeadérived conditions under
which increasing the number of FC antennas will signifigabénefit the estimation performance.
We also analyzed the performance degradation that reshis wensor phase errors of variance
o—g are present, and we showed that for lafjethe variance will approximately increase by
a factor of 1 + ojj provided thatofj < 1 square radian. The sensor selection problem was
studied assuming either low or high sensor noise with rdsjpethe noise at the FC. For low
sensor noise, two algorithms were proposed, one based ear [programming with a relaxed
integer constraint, and a computationally simpler greeplyr@ach. For high sensor noise, we
showed that choosing the sensors with the smallest noisgneas was approximately optimal.
Simulation studies of the proposed algorithms illustrégirtadvantages and the validity of the

asymptotic analyses.
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Fig. 1. Performance of the proposed algorithms with an e&irey number of sensors for a low measurement noise scenario

(o2 = 0.1, o7 ; uniformly distributed over{0.01, 0.1], d; uniformly distributed over3, 20] and M = 4).
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Fig. 2. Performance of the proposed algorithms with an emiregy number of sensors for a low measurement noise scenario
(02 = 0.1, o2 ; uniformly distributed over{0.01,0.1], d; = 11.5 and M = 4).
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Fig. 3. Performance of the proposed algorithms with an B&irey number of antennasi = 0.1, 0'12,,1- uniformly distributed
over [0.001, 0.01], d; uniformly distributed over3,20] and N = 4).
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Fig. 4. Effect of phase errors on algorithm performaneg € 0.1, aﬁ’i uniformly distributed ovef0.01, 0.1] andd; uniformly

distributed over3, 20]).
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Fig. 5. Performance comparison between different sendectgan algorithms v = 35, M = 4, a?,,z- uniformly distributed
over [0.001, 0.01] andd; uniformly distributed over3, 20]).
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