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Abstract

We consider a network of single-antenna sensors that observe an unknown deterministic parameter.

Each sensor applies a phase shift to the observation and the sensors simultaneously transmit the result

to a multi-antenna fusion center (FC). Based on its knowledge of the wireless channel to the sensors,

the FC calculates values for the phase factors that minimizethe variance of the parameter estimate,

and feeds this information back to the sensors. The use of a phase-shift-only transmission scheme

provides a simplified analog implementation at the sensor, and also leads to a simpler algorithm design

and performance analysis. We propose two algorithms for this problem, a numerical solution based

on a relaxed semidefinite programming problem, and a closed-form solution based on the analytic

constant modulus algorithm. Both approaches are shown to provide performance close to the theoretical

bound. We derive asymptotic performance analyses for casesinvolving large numbers of sensors or

large numbers of FC antennas, and we also study the impact of phase errors at the sensor transmitters.

Finally, we consider the sensor selection problem, in whichonly a subset of the sensors is chosen to

send their observations to the FC.

Index Terms

Wireless sensor networks, analog sensor networks, distributed beamforming, phase-only beam-

forming, sensor management
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I. INTRODUCTION

A. Background

Wireless sensor networks (WSNs) have been widely studied for detection and estimation

problems. Recently, considerable research has focused on the fusion of analog rather than

encoded digital data in a distributed sensor network to improve estimation performance. The

advantages of analog WSNs have been established in [1]–[3],where it was shown that when

using distortion between the source and recovered signal asthe performance metric, digital

transmission (separate source and channel coding) achieves an exponentially worse performance

than analog signaling. A number of studies have focused on algorithm development and analysis

for analog WSNs with a single-antenna fusion center (FC). In[4], the sensors amplify and

forward their observations of a scalar source to the FC via fading channels, and algorithms are

developed to either minimize estimation error subject to transmit power constraints or minimize

power subject to estimation error constraints. The scalar source model for this problem was

generalized to correlated vector sources in [5]. An opportunistic power allocation approach was

proposed in [6], and the scaling law with respect to the number of sensors was shown to be the

same as the optimal power allocation proposed in [4]. In [7],the asymptotic variance of the best

linear unbiased estimator of an analog WSN is derived, together with an analysis of the effect

of different assumptions regarding channel knowledge at the sensors. Scaling laws with respect

to the number of sensors have been studied in [8] for a diversity-based method (where only

the sensor with the best channel transmits), as well as for the coherent multiple access channel

(MAC) and orthogonal channel cases, assuming a Gaussian source. In [9], a power optimization

problem was formulated to minimize the outage probability of the MSE for the coherent MAC

channel. More complicated settings involving analog WSNs with nonlinear measurement models

[10] or relays [11], [12] have also been studied.

The results described above all assume that the FC is equipped with only one antenna. Just

as multi-antenna receivers can provide significant capacity or diversity gains in communication

systems, the estimation performance of a WSN should also benefit from the use of a multi-

antenna FC, though prior work on this scenario is limited. A general scenario is investigated in

[13], involving vector observations of a vector-valued random process at the sensors, and linearly

precoded vector transmissions from the sensors to a multi-antenna FC. Optimal solutions for the

precoders that minimize the mean-squared error (MSE) at theFC are derived for a coherent MAC
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under power and bandwidth constraints. In [14], single-antenna sensors amplify and forward

their observations to a multi-antenna FC, but it is shown that for Rayleigh fading channels, the

improvement in estimate variance is upper bounded by only a factor of two compared to the

case of a single-antenna FC. The performance of two heuristic algorithms for choosing the gain

and phase of the sensor transmissions is also studied. Subsequent results by the same authors

in [15], [16], have demonstrated that when the channel undergoes (zero-mean) Rayleigh fading,

there is a limit to the improvement in detection performancefor a multi-antenna FC as well,

but when the channel is Rician, performance improves monotonically with respect to number of

antennas.

The term “amplify and forward” is often used to describe analog sensor networks like those

discussed above, since each sensor applies a complex gain tothe observation before sending

it to the FC. For a coherent MAC, one can think of this as a type of distributed transmit

beamforming, although it is distinguished from distributed beamforming applications such as

those in communications since in a WSN the observed noise is transmitted together with the

signal of interest. Some prior research in radar and communications has focused on scenarios

where the beamformer weights implement only a phase shift rather than both a gain and a

phase. The advantage of using phase shifting only is that it simplifies the implementation and

is easily performed with analog hardware. Phase-shift-only beamformers have most often been

applied to receivers that null spatial interference [17], [18], but it has also been considered on the

transmit side for MISO wireless communications systems [19], which is similar to the problem

considered here. For the distributed WSN estimation problem, phase-only sensor transmissions

have been proposed in [20], where the phase is a scaled version of the observation itself. Phase-

only transmissions were also considered in the context of distributed detection in [15], leading

to a problem similar to one of those we consider here.

In addition to the work outlined above, other WSN research has focused on sensor selection

problems, particularly in situations where the sensors have limited battery power. In these

problems, only a subset of the sensors are chosen to transmittheir observations, while the others

remain idle to conserve power. The sensor selection problemhas been tackled from various

perspectives, with the goal of optimizing the estimation accuracy [11], [21], [22] or some heuristic

system utility [23], [24]. In [21], the authors investigated maximum likelihood (ML) estimation

of a vector parameter by selecting a fixed-size subset of the sensors. An approximate solution
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was found by relaxing the original Boolean optimization to aconvex optimization problem. A

dynamic model is used to describe the parameter of interest in [22], and sensors use the Kalman

filter to estimate the parameter. At each time step, a single sensor is selected and the measurement

at the selected sensor is shared with all other sensors. A numerical sensor selection algorithm

was proposed to minimize an upper bound on the expected estimation error covariance. Instead

of the estimation accuracy, a utility function that takes into account the measurement quality or

energy cost can also be used as the metric for sensor selection. In [24], each sensor independently

optimizes its own operation status based on a utility function which depends on the sensor’s

own measurement and the predicted operation status of othersensors. A threshold is then found

to enable the sensor to switch its status for either energy efficiency or energy consumption, and

a power allocation algorithm was proposed to minimize the MSE at FC.

B. Approach and Contributions

In this paper we consider a distributed WSN with single-antenna sensors that observe an

unknown deterministic parameter corrupted by noise. The low-complexity sensors apply a phase

shift (rather than both a gain and phase) to their observation and then simultaneously transmit

the result to a multi-antenna FC over a coherent MAC. One advantage of a phase-shift-only

transmission is that it leads to a simpler analog implementation at the sensor. The FC determines

the optimal value of the phase for each sensor in order to minimize the ML estimation error, and

then feeds this information back to the sensors so that they can apply the appropriate phase shift.

The estimation performance of the phase-optimized sensor network is shown to be considerably

improved compared with the non-optimized case, and close tothat achieved by sensors that can

adjust both the transmit gain and phase. We analyze the asymptotic behavior of the algorithm

for a large number of sensors and a large number of antennas atthe FC. In addition, we analyze

the impact of phase errors at the sensors due, for example, toerrors in the feedback channel, a

time-varying main channel or phase-shifter drift. We also consider a sensor selection problem

similar to that in [21], and analyze its asymptotic behavioras well. Some additional details

regarding the contributions of the paper are listed below.

1) We present two algorithms for determining the phase factors used at each sensor. In the first,

we use the semi-definite relaxation presented in [15], [25] to convert the original problem

to a semidefinite programming (SDP) problem that can be efficiently solved by interior-
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point methods. For the second algorithm, we apply the analytic constant modulus algorithm

(ACMA) [26], which provides a considerably simpler closed-form solution. Despite the

reduction in complexity, the performance of ACMA is shown via simulation to be only

slightly worse than the SDP solution, and close to the theoretical lower bound on the

estimate variance. This is especially encouraging for networks with a large number of

sensorsN , since the SDP complexity is on the order ofN3.5, while that for ACMA is

only on the order ofN2.

2) We separately derive performance scaling laws with respect to the number of antennas and

the number of sensors assuming non-fading channels that take path loss into account. For

both cases, we derive conditions that determine whether or not the presence of multiple

antennas at the FC provides a significant benefit to the estimation performance. Prior work

in [14]–[16] has focused on either AWGN channels with identical channel gains, or on

fading channels where the channel gains are identically distributed, corresponding to the

case where the distances from the sensors to the FC are roughly the same. References

[14]–[16] also assume a special case where the noise at each of the sensors has the same

variance, although [16] examines how certain upper bounds on performance change when

the sensor noise is arbitrarily correlated.

3) Using our model for the non-fading case, we are able to elucidate detailed conditions

under which the asymptotic estimation performance will improve with the addition of

more antennasM at the FC. While [14], [15] showed that performance always improves

with increasingM for AWGN channels with identical gains and identically distributed

sensor noise, we derive more detailed conditions that take into account the possibility of

non-uniform distances between the sensors and FC and non-uniform noise at the sensors.

4) We conduct an analysis of the impact of phase errors at the sensors assuming relatively

small phase errors with varianceσ2
p ≪ 1 (square-radians). In particular, we show that the

degradation to the estimate variance is bounded above by a factor of 1+ σ2
p . We note that

the effect of errors in the transmit phase at the sensors has previously been considered for

the case ofM = 1 in [7], although using a different phase error model.

5) We consider the sensor selection problem separately for low and high sensor measurement

noise. For the low measurement noise scenario, we relax the sensor selection problem to

a standard linear programming (LP) problem, and we also propose a reduced complexity
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version of the algorithm. For the high measurement noise scenario, we show that the

estimation error is lower bounded by the inverse of the measurement noise power, which

motivates the use of a simple selection method based on choosing the sensors with the

lowest measurement noise.

A subset of the above results was presented in an earlier conference paper [27].

C. Organization

The paper is organized as follows. Section II describes the assumed system model. Section III

formulates the phase optimization problem and proposes a numerical solution based on SDP as

well as a closed-form solution based on the algebraic constant modulus algorithm. In Section IV,

the asymptotic performance of the algorithm is analyzed fora large number of sensors and

antennas. The effect of phase errors is analyzed in Section Vand the sensor selection problem

is investigated in Section VI. Simulation results are then presented in Section VII and our

conclusions can be found in Section VIII.

II. SYSTEM MODEL

We assume thatN single-antenna sensors in a distributed sensor network independently

observe an unknown but deterministic complex-valued parameter θ according to the following

model for sensori:

yi = θ + vi ,

wherevi is complex-valued Gaussian observation noise with variance σ2
v,i. The noise is assumed

to be independent from sensor to sensor. Each sensor phase shifts its observation and transmits

the signalaiyi to the FC, where|ai| = 1. Assuming a coherent MAC and an FC withM antennas,

the vector signal received at the FC can be expressed as

y = Haθ +HDv + n , (1)

whereH = [h1, . . . ,hN ] andhi ∈ CM×1 is the channel vector between theith sensor and the

FC, a = [a1, . . . , aN ]
T contains the adjustable phase parameters,D = diag{a1, . . . , aN}, v is

the sensor measurement noise vector with covarianceV = E{vvH} = diag
{

σ2
v,1, · · · , σ

2
v,N

}

,

andn is complex Gaussian noise at the FC with covarianceE{nnH} = σ2
nIM , whereIM is an

M ×M identity matrix. Note that since the sensors can only phase shift their observation prior
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to transmission, we ignore the issue of power control and assume that the sensors have sufficient

power to forward their observation to the FC.

The combined noise termHDv+ n in (1) is Gaussian with covarianceHVHH + σ2
nI, since

DVDH = V due to the phase-only assumption. Assuming the FC is aware ofthe channel matrix

H, the noise covarianceV andσ2
n, it can calculate the ML estimate ofθ using [28]

θ̂ML =
aHHH(HVHH + σ2

nIM)−1y

aHHH(HVHH + σ2
nIM)−1Ha

.

The estimator̂θML is unbiased with variance

Var(θ̂ML) =
(

aHHH(HVHH + σ2
nIM)−1Ha

)−1
. (2)

Furthermore, since‖a‖ = N when only phase shifts are used at the sensors, it is easy to see

that the variance is lower bounded by

Var(θ̂ML)≥
1

Nλmax (HH(HVHH + σ2
nIM)−1H)

, (3)

whereλmax(·) denotes the largest eigenvalue of its matrix argument. Notethat the bound in (3) is

in general unachievable, since with probability one the given matrix will not have an eigenvector

with unit modulus elements.

III. OPTIMIZING THE SENSOR PHASE

In this section we consider the problem of choosinga to minimize Var(θ̂ML) in (2). The

unit modulus constraint prevents a trivial solution, but aswe note below, a direct solution is not

possible even without this constraint since the noise covariance would then depend ona. The

general optimization problem is formulated as

min
a

Var(θ̂ML) (4)

s.t. |ai| = 1, i = 1, . . . , N .

DefiningB = HH(HVHH + σ2
nIM)−1H, the problem can be rewritten as

max
a

aHBa (5)

s.t. |ai| = 1, i = 1, . . . , N .

Note that this optimization can only determinea to within an arbitrary phase shiftejφ, but this

scaling has no impact on the estimate ofθ. In other words, the vectora and the vectoraejφ
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for arbitrary φ will both yield the same estimatêθML. Since the FC is aware of the vectora

determined by the optimization in (5), any arbitrary phase factor present in theHaθ term of the

model in (1) will be canceled when the ML estimate ofθ is computed. This is also clear from

the variance expression in (2), which is insensitive to any phase shift toa.

If there are only two sensors in the network, a simple closed-form solution to (5) can be

obtained. DefiningB =





a bejβ

be−jβ c



 with a, b, c > 0 and a = [ejβ1, ejβ2], thenaHBa is

calculated as

aHBa = a+ c+ 2b cos(β1 − β2 − β)

≤ a+ c+ 2b , (6)

and the equality in (6) can be achieved for anyβ1, β2 that satisfyβ1 − β2 = β. For the general

situation whereN > 2, a solution to (5) appears to be intractable. Instead, in thediscussion

that follows we present two suboptimal approaches in order to obtain an approximate solution.

The first approach is based on an SDP problem obtained by relaxing a rank constraint in a

reformulated version of (5), similar to the approach proposed in [15], [25]. The second converts

the problem to one that can be solved via the ACMA of [26]. It isworth emphasizing here

that if the transmission gain of the sensors was also adjustable, then the corresponding problem

would be

max
a

aHHH(HDVDHHH + σ2
nIM)−1Ha (7)

s.t. aHa ≤ N ,

which also has no closed-form solution due to the dependenceon a (through the matrixD)

inside the matrix inverse. While in general both our SDP solution and (7) require numerical

optimizations, we will see in Sections IV-VI that the theoretical analysis of performance and the

solution to the sensor selection problem is considerably simpler with the phase-only constraint.

The simulations of Section VII will also demonstrate that there is often little performance loss

incurred by using phase-shift-only transmissions.
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A. SDP Formulation

To begin, we rewrite (5) as follows:

max
a

tr
(

BaaH
)

(8)

s.t. |ai| = 1, i = 1, . . . , N .

Making the associationA = aaH , problem (8) is equivalent to:

max
A

tr(BA) (9)

s.t. Ai,i = 1, i = 1, . . . , N

rank(A) = 1

A � 0 ,

whereAi,i denotes theith diagonal element ofA. Following the approach of [15], [25], we then

relax the rank-one constraint, so that the problem becomes astandard SDP:

max
A

tr(BA) (10)

s.t. Ai,i = 1, i = 1, . . . , N

A � 0 .

Defining Br = real{B}, Bi = imag{B}, and similarly forAr andAi, we can convert (10) to

the equivalent real form

max
{Ar ,Ai}

tr(BrAr −BiAi) (11)

s.t. Ar i,i = 1, i = 1, . . . , N




Ar −Ai

Ai Ar



 � 0 .

Problem (11) can be efficiently solved by a standard interior-point method [29].

In general, the solution to (11) will not be rank one, so an additional step is necessary to

estimatea. Let A∗
r, A

∗
i denote the solution to problem (11), then the solution to problem (10)

is given byA∗ = A∗
r + jA∗

i . If rank(A∗) > 1, we can use a method similar to Algorithm 2 in

[30] to extract a rank-one solution, as follows:
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1) Decompose1 A∗ = CHC, define B̃ = CBCH , and find a unitary matrixU that can

diagonalizeB̃.

2) Let r ∈ CN×1 be a random vector whoseith element is set toejωi, whereωi is uniformly

distributed over[0, 2π).

3) Set ã = CHUr, and the solution is given bya∗ = [a∗1 · · · a∗N ]
T , wherea∗i = ej∠ãi and

∠z represents the phase of a complex numberz.

A detailed discussion of the reasoning behind the above rank-one modification can be found in

[30].

B. ACMA Formulation

For this discussion, we will assume thatN > M , which represents the most common scenario.

Thus, theN ×N matrix B in the quadratic formaHBa that we are trying to maximize is low

rank; in particular, rank(B) ≤ M < N . Clearly, any component ofa orthogonal to the columns

or rows ofB will not contribute to our goal of minimizing the estimate variance. In particular,

if we define the singular value decomposition (SVD)B = UΣUH , we ideally seek a vectora

such that

a =

m
∑

k=1

wkuk = Umw (12)

|ai| = 1 ,

whereUm = [u1 · · · um] contains the firstm ≤ rank(B) ≤ M singular vectors ofB and

w = [w1 · · · wm]
T . The problem of finding the coefficient vectorw of a linear combination of

the columns of a given matrixUm that yields a vector with unit modulus elements is precisely

the problem solved by the ACMA [26].

Our problem is slightly different from the one considered in[26], since there will in general

be no solution to (12) even in the absence of noise. However, in our simulation results we will

see that the ACMA solution provides performance close to that obtained by the SDP formulation

above. Note also that there is a trade-off in the choice ofm, the number of vectors in span(B)

to include in the linear combination of (12). A small value ofm allows us to focus on forming

a from vectors that will tend to increase the value ofaHBa, while a larger value form provides

1SinceA∗ is the solution to problem (10),A∗ is positive semidefinite.
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more degrees of freedom in finding a vector whose elements satisfy |ai| = 1. Another drawback

to choosing a larger value form is that the ACMA solution can only be found ifN > m2. As

long asM is not too large, one could in principle try all values ofm = 1, · · · ,M that satisfy

N > m2 and choose the one that yields the smallest estimate variance. We will see later in the

simulations that a small value form already provides good performance, so the choice ofm is

not a significant issue.

The general ACMA approach can be formulated to find multiple solutions to (12), but in our

case we only need a single solution, and thus a simplified version of ACMA can be used, as

outlined here for a givenm. The ACMA is obtained by defining the rows ofUm as UH
m =

[ũ1 · · · ũN ], and then rewriting the constraint|ai| = |ũH
i w| = 1 as

(

¯̃ui ⊗ ũi

)H
(w̄ ⊗w) = 1 ,

where (̄·) denotes the complex conjugate and⊗ the Kronecker product. Stacking allN such

constraints into a single equation results in

P (w̄⊗w) = 0 , (13)

where

P =











(

¯̃u1 ⊗ ũ1

)H
−1

...
...

(

¯̃uN ⊗ ũN

)H
−1











. (14)

If an exact solution to (13) existed, then a vector in the nullspace ofP would have the form
[

(w̄ ⊗w)T 1
]T

, andw could be found by stripping away the1 and then unstacking the resulting

vector into a rank-one matrix (see [26] for more details). Inour problem, an exact solution to (13)

does not exist, so we use the following approach to obtain an approximation:

1) Let q represent the right singular vector ofP associated with the smallest singular value,

and define the vector̃q to contain the firstm2 elements ofq.

2) Setw equal to the singular vector of̃Q+Q̃H with largest singular value, where them×m

matrix

Q̃ = vec−1(q̃) (15)

is formed by dividingq̃ into sub-vectors of lengthm and stacking them together in a

matrix.
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3) Set â = Umw. The vectora is then found by setting the magnitude of all the elements

of â equal to unity. In particular, thei-th element ofa is given by

a∗i = ej∠âi .

C. Comparison of Computational Complexity

As discussed in [25], the computational load of the SDP problem in (10) is of the order

O(N3.5). The additional steps required to take the SDP result and finda rank-one solution require

an O(N3) eigenvalue decomposition, so the overall complexity is dominated by the SDP. For

ACMA, the dominant computational step occurs in finding them principal eigenvectors of the

Hermitian matrixB, which requires only an orderO(mN2) computation [31]. Finding the least

dominant singular vector ofP is anO(N2) + O(m4) operation, and the remaining steps have

relatively trivial complexity. Sincem ≪ N in typical scenarios, we see that ACMA enjoys a

significantly lower computational load compared to the SDP approach. Despite this, we will see

that ACMA has performance that is only slightly inferior to using the SDP solution.

IV. A SYMPTOTIC PERFORMANCE ANALYSIS

In this section, we analyze the asymptotic performance achievable using only phase-shifts for

the sensor transmissions. We will separately study cases where the number of sensors is large

(N → ∞) or the number of FC antennas is large (M → ∞). Our analysis will be based on an

a non-fading channel model that takes path loss into account, similar to models used in [32],

[33]. In particular, for the channel between the FC and sensor i, we assume

hi =
1

dαi
h̃i ,

wheredi denotes the distance between theith sensor and the FC,α is the path loss exponent

and h̃i is given by

h̃i = [ejγi,1 ejγi,2 · · · ejγi,M ]T ,

whereγi,j is uniformly distributed over[0, 2π).
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A. Estimation Performance for Large N

From (3) we know that the lower bound onVar(θ̂ML) depends on the largest eigenvalue of

HH(HVHH+σ2
nIM)−1H. We begin by deriving a lower bound for this eigenvalue. The(m,n)th

element ofHVHH can be expressed as

(

HVHH
)

m,n
=

N
∑

i=1

ej(γi,m−γi,n)σ2
v,i

d2αi
.

According to the strong law of large numbers, asN → ∞ we have

lim
N→∞

1

N

N
∑

i=1

ej(γi,m−γi,n)σ2
v,i

d2αi

(a)
= E

{

σ2
v,i

d2αi

}

E
{

ej(γi,m−γi,n)
}

(b)
=







E

{

σ2

v,i

d2αi

}

m = n

0 m 6= n ,
(16)

where (a) follows from the assumption thatγi,m, di and σ2
v,i are independent and (b) is due

to the fact thatγi,m and γi,n are independent and uniformly distributed over[0, 2π). Thus, for

sufficiently largeN we have

lim
N→∞

HVHH = NE

{

σ2
v,i

d2αi

}

IM . (17)

Based on (17), we have

lim
N→∞

λmax

(

HH(HVHH + σ2
nIM)−1H

)

=
1

NE

{

σ2

v,i

d2αi

}

+ σ2
n

[

lim
N→∞

λmax(H
HH)

]

(c)
=

NE

{

1
d2α
i

}

NE

{

σ2

v,i

d2αi

}

+ σ2
n

, (18)

where (c) is due to the fact thatλmax(H
HH) = λmax(HHH). Substituting (18) into (3), we have

the following asymptotic lower bound on the estimate variance:

Var(θ̂ML) ≥
NE

{

σ2

v,i

d2αi

}

+ σ2
n

N2E

{

1
d2α
i

} . (19)

For large enoughN , the lower bound can be approximated using sample averages:

Var(θ̂ML) ≥

∑N
i=1

σ2

v,i

d2αi
+ σ2

n

N
∑N

i=1
1

d2αi

. (20)

Next, we derive an upper bound on the estimate variance and compare it with the lower bound

obtained above. The upper bound is obtained by calculating the variance obtained when only
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a single antenna is present at the FC. For the given channel model, the optimal choice for the

vector of sensor phases is just the conjugate of the channel phases:a = [e−jγ1,1 · · · e−jγN,1 ]T ,

which when applied to (2) leads to

Var(θ̂ML) ≤

∑N
i=1

σ2

v,i

d2αi
+ σ2

n
(

∑N
i=1

1
dαi

)2 . (21)

WhenN → ∞, both the upper and lower bounds converge to0, but the ratio of the lower bound

in (20) to the upper bound in (21) converges to

lim
N→∞

(

∑N
i=1

1
dαi

)2

N
∑N

i=1
1

d2αi

=

(

E

{

1
dαi

})2

E

{

1
d2α
i

} = 1−
Var

{

1
dαi

}

E

{

1
d2α
i

} . (22)

Interestingly, we see that ifVar
{

1
dαi

}

≪ E

{

1
d2αi

}

, the gap between the upper and lower bound

is very small, and the availability of multiple antennas at the FC does not provide much benefit

compared with the single antenna system whenN → ∞. On the other hand, ifVar
{

1
dαi

}

→

E

{

1
d2αi

}

, the potential exists for multiple antennas to significantly lower the estimate variance.

B. Estimation Performance for Large M

Using the matrix inversion lemma, we have

HH(HVHH + σ2
nIM)−1H = HH

(

1

σ2
n

IM−
1

σ4
n

H

(

V−1 +
1

σ2
n

HHH

)−1

HH

)

H

=
1

σ2
n

HHH−
1

σ4
n

HHH

(

V−1 +
1

σ2
n

HHH

)−1

HHH . (23)

Furthermore, the(m,n)th element ofHHH is given by

(

HHH
)

m,n
=

1

dαmd
α
n

M
∑

i=1

ej(γn,i−γm,i) . (24)

Similar to (16), asM → ∞ we have

lim
M→∞

1

M

M
∑

i=1

ej(γn,i−γm,i) =







1 m = n

0 m 6= n ,
(25)

and thus

lim
M→∞

HHH = Mdiag

{

1

d2α1
· · ·

1

d2αN

}

. (26)
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Substituting (26) into (23), we have

lim
M→∞

HH(HVHH + σ2
nIM)−1H = diag

{

M

d2α1 σ2
n +Mσ2

v,i

, · · · ,
M

d2αN σ2
n +Mσ2

v,N

}

,

and thus

lim
M→∞

Var(θ̂ML) =
1

M
∑N

i=1
1

d2αi σ2
n+Mσ2

v,i

. (27)

Note that this asymptotic expression is independent of the choice of a. Here, for largeM ,

the benefit of having multiple antennas at the FC hinges on therelative magnitude ofMσ2
v,i

versusd2αi σ2
n. If Mσ2

v,i ≪ d2αi σ2
n, a reduction in variance by a factor ofM is possible. In this

case, where the SNR at the FC is low but the signals sent from the sensors are high quality,

the coherent gain from the combination of the relatively noise-free sensor signals helps increase

the SNR at the FC. On the other hand, whenMσ2
v,i ≫ d2αi σ2

n, performance is asymptotically

independent ofM . Here, the coherent gain not only applies toθ but also to the sensor noise,

which is stronger in this case.

V. IMPACT OF IMPERFECTPHASE

The previous sections have assumed that the FC can calculatethe vectora and feed the phase

information back to the sensors error free. Whether the feedback channel is digital or analog,

there are about to be errors either in the received feedback at the sensors or in how the phase

shift is actually implemented. Furthermore, the wireless channel may change during the time

required for calculation and feedback ofa, so even if the phase shifts are implemented perfectly

at the sensors, they may no longer be valid for the current channel. In this section, we evaluate

the impact of errors in the sensor phase shifts on the estimation accuracy.

Define the phase shift for theith sensor asai = ejαi, and assume that

αi = α∗
i +∆i ,

whereα∗
i is the optimal phase and∆i is a Gaussian perturbation (in radians) with zero mean

and varianceσ2
p. DefineE = HH(HVHH + σ2

nI)
− 1

2 , so thatV ar(θ̂ML) can be expressed as

V ar(θ̂ML) =
1

‖aHE‖2
=

1
∑M

i=1 |a
Hei|2

, (28)
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whereei is the ith column ofE. Let ei,jejβj be a polar coordinate representation of thejth

element ofei, so that

|aHei|
2 =

∣

∣

∣

∣

∣

M
∑

j=1

ei,je
α∗

j+∆j+βj

∣

∣

∣

∣

∣

2

=
M
∑

j=1

e2i,j +
M
∑

l=1

M
∑

m=1
m6=l

ei,lei,m cos(α∗
l +∆l + βl − α∗

m −∆m − βm) . (29)

Define δil,m = ∆l − ∆m and τ il,m = α∗
l + βl − α∗

m − βm. If we assumeσ2
p ≪ 1, (29) may be

approximated via a 2nd order Taylor series as follows:

|aHei|
2 ≈

N
∑

j=1

e2i,j +
N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m

(

cos(τ il,m)− sin(τ il,m)δil,m −
cos(τ il,m)

2

(

δil,m
)2

)

=

N
∑

j=1

e2i,j+

N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m cos(τ il,m)−

N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m

(

sin(τ il,m)δil,m+
cos(τ il,m)

2

(

δil,m
)2

)

. (30)

Substituting (30) into (28), we have

V ar(θ̂ML)≈
1

∑M

i=1

(

∑N

j=1 e
2
i,j+

∑N

l=1

∑N
m=1
m 6=l

ei,lei,m cos(τ il,m)−
∑N

l=1

∑N
m=1
m 6=1

ei,lei,m

(

sin(τ il,m)δil,m+
cos(τ i

l,m
)

2

(

δil,m

)2
)) .

In the previous equation, the effect of the phase error is confined to the second double sum

inside the outermost parentheses. If we defineθ̂PML to be the estimate obtained with no phase

errors, then

V ar(θ̂PML) =
1

∑M
i=1

(

∑N
j=1 e

2
i,j+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ il,m)

) , (31)

which is deterministic and does not depend on the random phase errors. We can then obtain the

following approximation

V ar(θ̂ML)
(f)
≈ V ar(θ̂PML)









1 +

∑M
i=1

(

∑N
l=1

∑N
m=1
m6=l

ei,lei,m

(

sin(τ il,m)δ
i
l,m +

cos(τ i
l,m

)

2

(

δil,m
)2
)

)

∑M
i=1

(

∑N
j=1 e

2
i,j+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ il,m)

)









,

where (f ) is due to the first order Taylor approximation(1− x
y
)−1 ≈ 1 + x

y
for x ≪ y. We use

the ratio ofV ar(θ̂ML) to V ar(θ̂PML) to measure the effect of the phase error, which yields

V ar(θ̂ML)

V ar(θ̂PML)
≈









1 +

∑M
i=1

(

∑N
l=1

∑N
m=1
m6=l

ei,lei,m

(

sin(τ il,m)δ
i
l,m +

cos(τ i
l,m

)

2

(

δil,m
)2
)

)

∑M
i=1

(

∑N
j=1 e

2
i,j+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ il,m)

)









.
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Note that the only term in the above expression that is randomis the numerator on the right-hand

side.

Taking the expectation of the ratio with respect to the phaseperturbations∆i, we have

E

{

V ar(θ̂ML)

V ar(θ̂PML)

}

=









1 +

∑M

i=1

(

∑N

l=1

∑N
m=1
m 6=l

ei,lei,m

(

sin(τ il,m)E
{

δil,m

}

+
cos(τ i

l,m)

2 E

{

(

δil,m

)2
}))

∑M

i=1

(

∑N

j=1 e
2
i,j+

∑N

l=1

∑N
m=1
m 6=l

ei,lei,m cos(τ il,m)

)









(h)
=









1 +

∑M

i=1

∑N

l=1

∑N
m=1
m 6=l

ei,lei,m cos(τ il,m)σ2
p

∑M

i=1

(

∑N

j=1 e
2
i,j+

∑N

l=1

∑N
m=1
m 6=l

ei,lei,m cos(τ il,m)

)









, (32)

where in (h) we exploit the fact thatE
{

δil,m
}

= 0 andE
{

(

δil,m
)2
}

= 2σ2
p . Since

N
∑

l=1

N
∑

m=1
m6=l

ei,lei,m cos(τ il,m) ≤ (N − 1)

N
∑

l=1

e2i,l ,

the ratio in (32) is approximately upper bounded by

E

{

V ar(θ̂ML)

V ar(θ̂PML)

}

≤ 1 +

(

1−
1

N

)

σ2
p . (33)

We see from (33) that the impact of the phase errors increaseswith N , but in all cases the

degradation in the estimate variance is approximately bounded above by a factor of1 + σ2
p.

VI. SENSORSELECTION

As mentioned earlier, in situations where it is desired to use only a subset of the sensors to

estimate the parameter (e.g., in order to conserve power at the sensors), the FC needs a method

to perform the sensor selection. Assuming onlyK < N of the sensors are to be selected for

transmission to the FC, an optimal solution to the problem would require solving the following

maximization:

max
a,x

xTDHHH
(

HVXHH + σ2
nIM

)−1
HDx (34)

s.t.
N
∑

i=1

xi = K

xi = {0, 1}

|ai| = 1 ,

whereD = diag{a1, · · · , aN}, x = [x1, · · · , xN ]
T is the selection vector andX = diag{x1, · · · , xN}.

Even if one chooses one of the suboptimal approaches described in Section III for estimatinga,
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solving forx in (34) requires an exhaustive search over all possibleK-sensor combinations and

is in general NP-hard. Instead, in this section we derive conditions under which much simpler

selection strategies can be applied. We consider the following two cases: (1) low sensor noise

relative to the noise at the FC,σ2
v,i ≪ σ2

n, and (2) relatively high sensor noiseσ2
v,i ≫ σ2

n. For

(1), we derive a LP solution as well as a simpler greedy algorithm, and for (2) we show that

the problem reduces to choosing the sensors with the lowest measurement noise.

A. Algorithms for High FC Noise

Let a be the phase vector obtained using one of the algorithms in Section III assuming all

N sensors are active. Whenσ2
v,i ≪ σ2

n, we ignore the termHVXHH in (34), and the problem

simplifies to

max
x

xTDHHHHDx (35)

s.t.

N
∑

i=1

xi = K

xi = {0, 1} .

DefineF = DHHHHD so that (35) can be rewritten as

max
x

xTRe{F}x (36)

s.t.
N
∑

i=1

xi = K

xi = {0, 1} .

Sincex2
i = xi, (36) is equivalent to

max
xi

N
∑

i=1

Fi,ixi + 2

N−1
∑

i=1

N
∑

j=i+1

Re{Fi,j}xixj (37)

s.t.
N
∑

i=1

xi = K

xi = {0, 1} ,
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whereFi,j denotes the(i, j)th element of matrixF. By linearizing the termxixj [34], (37) is

equivalent to

max
xi,yij

N
∑

i=1

Fi,ixi + 2

N−1
∑

i=1

N
∑

j=i+1

Re{Fi,j}yij (38a)

s.t.

N
∑

i=1

xi = K (38b)

1− xi − xj + yij ≥ 0 (38c)

xi − yij ≥ 0 (38d)

xj − yij ≥ 0 (38e)

yij ≥ 0 (38f)

xi = {0, 1} , (38g)

where the constraints (38c)-(38g) lead toyij = xixj .

Note that all of the constraints in (38) are linear, except for (38g). If we relax the constraint

in (38g), the condition0 ≤ xi ≤ 1 is implicitly included in (39c)-(39f), and we are left with a

LP problem in standard form [34]:

max
xi,yij

N
∑

i=1

Fi,ixi + 2
N−1
∑

i=1

N
∑

j=i+1

Re{Fi,j}yij (39a)

s.t.
N
∑

i=1

xi = K (39b)

1− xi − xj + yij ≥ 0 (39c)

xi − yij ≥ 0 (39d)

xj − yij ≥ 0 (39e)

yij ≥ 0 . (39f)

To find thexi = {0, 1} solution needed for sensor selection, one can take the result of (39) and

simply set theK largest elements to one and the rest to zero. If desired, oncetheK sensors have

been selected, the phase vectora for theseK sensors can be recomputed based on a reduced

dimension version of the algorithms in Section III.
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The above LP problem hasN(N−1)
2

+ N variables and2N(N − 1) + 1 constraints, and thus

will require on the order of
(

N(N−1)
2

+N
)2

(2N(N − 1) + 1) arithmetic operations [29]. A

simpler greedy algorithm is presented below that only requires O(KN) operations, and that

achieves performance close to the LP approach. The greedy algorithm is based on the following

observation:

xTDHHHHDx =
K
∑

i=1

K
∑

j=1

āiajh
H
i hj

=

K−1
∑

i=1

K−1
∑

j=1

āiajh
H
i hj + ‖hK‖

2 + 2Re

{

K−1
∑

j=1

āKajh
H
Khj

}

.

The idea behind the greedy algorithm is to add sensors one at atime based on those for which

the last two terms in the above sum are the largest. The steps of the algorithm are detailed below.

Greedy Sensor Selection Algorithm

1) Select the first sensor as the one with the strongest channel: i = argmaxk ‖hk‖
2, and

initialize the active sensor set asS = {i} .

2) While |S| ≤ K, perform the following:

a) Solve

i = argmax
k/∈S

‖hk‖
2 + 2Re

{

∑

j∈S

ākajh
H
k hj

}

.

b) UpdateS = S
⋃

i .

As with the LP algorithm, once theK sensors are selected, an updated solution for the associated

K elements ofa can be obtained.

B. Algorithm for High Sensor Noise

When σ2
v,i ≫ σ2

n and assuming thatN > M (the case of interest when sensor selection is

necessary), the original criterion can be simplified to

aHHH
(

HVHH
)−1

Ha = aHV− 1

2V
1

2HH
(

HVHH
)−1

HV
1

2V− 1

2a

= aHV− 1

2PV HV
− 1

2a ,

wherePV H = V
1

2HH
(

HVHH
)−1

HV
1

2 is a rankM projection matrix. Ideally, to maximize

the criterion function, one should attempt to find a vector ofthe formV− 1

2a that lies in the
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subspace defined byPV H . Assuming the vectora can approximately achieve this goal, the lower

bound on variance is approximately achieved and we have

1

aHV− 1

2PV HV
− 1

2a
≈

1

aHV−1a
=

1
∑N

i=1
1

σ2

v,i

. (40)

With respect to the sensor selection problem, this suggeststhat whenσ2
v,i ≫ σ2

n, theK sensors

with the smallest values ofσ2
v,i should be chosen.

VII. SIMULATION RESULTS

Here we present the results of several simulation examples to illustrate the performance of

the proposed algorithms. In all cases, the path loss exponent α was set to1, and each result is

obtained by averaging over 300 channel realizations. The sensors are assumed to lie in a plane

at random angles with respect to the FC, uniformly distributed over[0, 2π). The distances of

the sensors to the FC will be specified separately below. To evaluate the performance without

feedback,a is set to a vector of all ones. In some of the simulations, we will compare the

performance of the proposed algorithms with that obtained by (7), where both the sensor gain

and phase can be adjusted. In these simulations, we use the active-set method to optimize (7),

and we use several different initializations in order to have a better chance of obtaining the

global optimum. When the ACMA algorithm is implemented, thesubspace dimension was set

at m = 2.

In the first two examples, we study the estimation performance for M = 4 FC antennas with

increasingN for a case where the sensor measurement noiseσ2
v,i is uniformly distributed over

[0.01, 0.1] and the FC noiseσ2
n is set to0.1. Fig. 1 shows the results assuming that the sensor

distancesdi are uniformly distributed in the interval[3, 20], while in Fig. 2 di = 11.5 for all

sensors. In both cases, even though the lower bound of (3) is not achievable, we see that the

performance of the proposed SDP and ACMA methods is nonetheless reasonably close to the

bound, and not significantly worse than the performance obtained by optimizing both the phase

and gain. AsN gets larger in Fig. 1, the estimation error for all of the methods (except the

no-feedback case) falls within the asymptotic lower and upper bounds of (20) and (21). When

N = 50, the ratioVar
{

1
dαi

}

/E
{

1
d2αi

}

is 0.304 for Fig. 1, and the ratio between the lower and

upper bound is0.702, which is in excellent agreement with the value of1− 0.304 predicted by

Eq. (22). Since the upper bound in (21) corresponds to the case ofM = 1, one may suppose that
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the gap in Fig. 1 between the bounds of (20) and (21) indicatesthat the presence of multiple

antennas at the FC could provide a benefit for largeN . However, the performance of SDP

and ACMA is approaching the upper bound more tightly, indicating that there is no benefit

from having multiple antennas in this case. In Fig. 2 where the di are all equal, the asymptotic

bounds in (20) and (21) are identical, and asymptotically weexpect no benefit from multiple

antennas at the FC. We see again that for largeN the performance of the SDP and ACMA

methods is essentially at the predicted bound. When thedi are equal and
σ2

v,i

dαi
≪ σ2

n, the matrix

HH(HVHH + σ2
nIM)−1H asymptotically approaches a scaled identity matrix, so in this case

the performance of the proposed phase-shift only algorithms even approaches the lower bound

of Eq. (3).

Fig. 3 illustrates the performance forN = 4 with an increasing number of FC antennasM

whenσ2
v,i is uniformly distributed over[0.001, 0.01] andσ2

n = 0.1. In this example, for most of

the sensors we haveMσ2
v,i ≪ d2αi σ2

n, so in this case we see an improvement as the number of

FC antennas increases. However, the benefit of optimizing the transmit phase (and gain for that

matter) is reduced asM increases.

In Fig. 4, we investigate the effect of phase errors for two cases,σ2
p = 0.1 and σ2

p = 0.2

assuming the same noise parameter settings as in the first twoexamples. For each channel

realization, results for 3000 different phase error realizations were obtained and averaged to

obtain the given plot. The ratio of the variance obtained by the SDP algorithm with and without

phase errors is plotted forM = 2, 4, 6 for both values ofσ2
p , and the approximate bound of (33)

is also shown. The results show that the performance degradation increases withN , and that (33)

provides a reasonable indication of performance for largeN . Fig. 4 also shows that increasing

the number of FC antennas improves the robustness of the algorithm to imprecise sensor phase.

In Fig. 5, we compare the performance of the three different sensor selection algorithms

discussed in the paper (LP, greedy and min-sensor-noise) asa function ofσ2
n assumingM = 4

antennas,N = 35 sensors and the sensor noise is uniformly distributed over[0.001, 0.01]. The

sensor distancesdi are uniformly distributed in the interval[3, 20]. Three sets of curves are

plotted, one forK = 5 selected sensors, one forK = 10, and one corresponding to when all

the sensor nodes are used (the solid curve, obtained using the SDP algorithm). After the sensor

selection, the proposed SDP is used to re-optimize the selected sensor nodes’ phase parameters.

For smallσ2
n such thatσ2

v,i ≫ σ2
n, we see as predicted that the best performance is obtained by
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simply selecting theK sensors with the smaller measurement noise. On the other hand, again in

agreement with our analysis, the LP and greedy algorithms achieve the lowest estimation error

for larger values ofσ2
n. Interestingly, the greedy algorithm provides performance essentially

identical to the LP approach at a significantly reduced computational cost.

VIII. C ONCLUSIONS

In this paper, we investigated a distributed network of single antenna sensors employing a

phase-shift and forward strategy for sending their noisy parameter observations to a multi-antenna

FC. We presented two algorithms for finding the sensor phase shifts that minimize the variance of

the estimated parameter, one based on a relaxed SDP and a closed-form heuristic algorithm based

on the ACMA approach. We analyzed the asymptotic performance of the phase-shift and forward

scheme for both large numbers of sensors and FC antennas, andwe derived conditions under

which increasing the number of FC antennas will significantly benefit the estimation performance.

We also analyzed the performance degradation that results when sensor phase errors of variance

σ2
p are present, and we showed that for largeN the variance will approximately increase by

a factor of 1 + σ2
p provided thatσ2

p ≪ 1 square radian. The sensor selection problem was

studied assuming either low or high sensor noise with respect to the noise at the FC. For low

sensor noise, two algorithms were proposed, one based on linear programming with a relaxed

integer constraint, and a computationally simpler greedy approach. For high sensor noise, we

showed that choosing the sensors with the smallest noise variances was approximately optimal.

Simulation studies of the proposed algorithms illustrate their advantages and the validity of the

asymptotic analyses.
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Fig. 1. Performance of the proposed algorithms with an increasing number of sensors for a low measurement noise scenario

(σ2

n = 0.1, σ2

v,i uniformly distributed over[0.01, 0.1], di uniformly distributed over[3, 20] andM = 4).
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Fig. 2. Performance of the proposed algorithms with an increasing number of sensors for a low measurement noise scenario

(σ2

n = 0.1, σ2

v,i uniformly distributed over[0.01, 0.1], di = 11.5 andM = 4).
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Fig. 3. Performance of the proposed algorithms with an increasing number of antennas (σ2

n = 0.1, σ2

v,i uniformly distributed

over [0.001, 0.01], di uniformly distributed over[3, 20] andN = 4).

5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

1.25

Number of Sensors, N

V
ar

ia
nc

e 
R

at
io

 in
 E

q.
 (

32
)

 

 

Approximate Upper Bound
M=2
M=4
M=6

σ
p
2=0.2

σ
p
2=0.1

Fig. 4. Effect of phase errors on algorithm performance (σ2

n = 0.1, σ2

v,i uniformly distributed over[0.01, 0.1] anddi uniformly

distributed over[3, 20]).

August 21, 2018 DRAFT



28

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

FC Noise Variance, σ
n
2

E
st

im
at

io
n 

V
ar

ia
nc

e

 

 

Greedy
LP
Min−sensor−noise

K=5

K=10

N=35, Proposed SDP

Fig. 5. Performance comparison between different sensor selection algorithms (N = 35, M = 4, σ2

v,i uniformly distributed

over [0.001, 0.01] anddi uniformly distributed over[3, 20]).

August 21, 2018 DRAFT


	I Introduction
	I-A Background
	I-B Approach and Contributions
	I-C Organization

	II System Model
	III Optimizing the Sensor Phase
	III-A SDP Formulation
	III-B ACMA Formulation
	III-C Comparison of Computational Complexity

	IV Asymptotic Performance Analysis
	IV-A Estimation Performance for Large N
	IV-B Estimation Performance for Large M

	V Impact of Imperfect Phase
	VI Sensor Selection
	VI-A Algorithms for High FC Noise
	VI-B Algorithm for High Sensor Noise

	VII Simulation Results
	VIII Conclusions
	References



