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ARTICLE

Density of states prediction for materials discovery
via contrastive learning from probabilistic
embeddings
Shufeng Kong 1,6, Francesco Ricci2,6, Dan Guevarra3, Jeffrey B. Neaton 2,4,5✉, Carla P. Gomes 1✉ &

John M. Gregoire 3✉

Machine learning for materials discovery has largely focused on predicting an individual

scalar rather than multiple related properties, where spectral properties are an important

example. Fundamental spectral properties include the phonon density of states (phDOS) and

the electronic density of states (eDOS), which individually or collectively are the origins of a

breadth of materials observables and functions. Building upon the success of graph attention

networks for encoding crystalline materials, we introduce a probabilistic embedding gen-

erator specifically tailored to the prediction of spectral properties. Coupled with supervised

contrastive learning, our materials-to-spectrum (Mat2Spec) model outperforms state-of-the-

art methods for predicting ab initio phDOS and eDOS for crystalline materials. We demon-

strate Mat2Spec’s ability to identify eDOS gaps below the Fermi energy, validating predic-

tions with ab initio calculations and thereby discovering candidate thermoelectrics and

transparent conductors. Mat2Spec is an exemplar framework for predicting spectral prop-

erties of materials via strategically incorporated machine learning techniques.
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Spectral properties are ubiquitous in materials science,
characterizing properties ranging from crystal structure
(e.g., X-ray absorption and Raman spectroscopy), the

interactions of material with external stimuli (e.g., dielectric
function and spectral absorption), and fundamental character-
istics of its quasi-particles (e.g., phonon and electronic densities of
states)1. Matching the breadth of spectral properties is the
breadth of methods to characterize them, traditionally experi-
mental and ab initio computational techniques, which are central
to materials discovery and fundamental research. Materials dis-
covery efforts are largely defined by searching for materials that
exhibit specific properties, and acceleration of materials discovery
has been realized with automation of both experiments and
computational workflows2,3. These high throughput techniques
have been effectively deployed in a tiered screening strategy
wherein high-speed methods that may sacrifice some accuracy
and/or precision can effectively down-select materials that merit
detailed attention from more resource-intensive methods4–6. The
recent advent of machine learning prediction of materials prop-
erties has introduced the possibility of even higher throughput
primary screening due to the minuscule expense of making a
prediction for a candidate material using an already-trained
model7–10. Toward this vision, we introduce the materials to
spectrum (Mat2Spec) framework for predicting spectral proper-
ties of crystalline materials, demonstrated herein for the predic-
tion of the ab initio phonon and electronic densities of state.

Successful development of machine learning models for
materials property prediction hinges upon encoding of structure-
property relationships to provide predictive models that serve as
primary screening tools and/or provide scientific insights via
inspection of the trained model9,11,12. Accelerated screening of
candidate materials is especially important when a dilute fraction
of materials exhibits the desired properties, as is inherently the
case when searching for exemplary materials. Primary screening
constitutes a great opportunity for machine learning (ML)-
accelerated materials discovery but is challenged by the need for
models to generalize, both in predicting the properties of never-
before-seen materials and in predicting property values for which
there are few training examples13,14.

Most of the ML models developed in computational materials
science to date have been focused on individual scalar quantities.
Common properties are those directly computed ab initio, such as
the formation energy11,15,16, the shear- and bulk-moduli11,15,17,18,
the band gap energy11,16,18,19, and the Fermi energy11. Additional
targets include properties calculated from the ab initio output,
which are typically performance metrics for a target application
such as Seebeck coefficient20,21. For a complete review of target
properties predicted via ML, see ref. 22. Efforts to featurize
materials for use in any prediction task started with an engineered
featurizer algorithm23 and evolved to automatic generation of
features via aggregation from multiple sources24. This evolution
mirrors the best practices in machine learning that have evolved
from feature engineering to internalizing feature representation in
a model trained for a specific prediction task. This is reflected in
materials property prediction with models that generate a latent
representation of a material from its composition and structure,
for which graph neural networks (GNN) are the state of the art
due to their high representation learning capabilities25.

CGCNN26 is among the first graph neural networks proposed
for materials property prediction. CGCNN encodes the crystal
structures as graphs where the unit cell of the crystal material is
represented as a graph such that nodes would represent the atoms
and connecting edges would represent the bonds shared among
the atoms. MEGNet12 expanded this concept by introducing a
global state input including temperature, pressure, and entropy.
The state of the art is well represented by GATGNN9, which uses

local attention layers to capture properties of local atomic
environments and then a global attention layer for weighted
aggregation of all these atom environment vectors. The expres-
siveness of this model allows it to outperform previous models in
single-property prediction. Lastly, another different approach is
demonstrated by AMDNet16 which uses structure motifs and
their connections as input of a GNN to predict electronic prop-
erties in metal oxides.

While multi-property prediction has been addressed only
recently, rapid progress has been made by building upon the
foundation of the single-target prediction models. De Breuck
et al.27 presented MODNet and highlighted the benefit of using
feature selection and joint learning in materials multi-property
prediction with a small dataset.

Broderick and Rajan28 used principle component analysis to
generate low-dimensional representations of eDOS enabling its
prediction for elemental metals. Yeo et al.29 expanded this
approach to metal alloys and their surfaces using engineered
features to interpolate from simple metals to their alloys. Del Rio
et al.30 proposed a deep learning architecture to predict the eDOS
for carbon allotropes. Mahmoud et al.31 presented a ML frame-
work based on sparse Gaussian process regression, a SOAP-based
representation of local environment, and an additive decom-
position of the electronic density of states to learn and predict the
eDOS for silicon structures. Bang et al.32 applied CGCNN to
eDOS, compressed via principle component analysis, of metal
nanoparticles.

These initial demonstrations of eDOS prediction focus on
specific classes of materials with a limited structural and chemical
diversity, making them ill-suited for the present task of generally-
applicable prediction of phDOS and eDOS. The state of the art
method that is most pertinent to the present work is the E3NN
model that was recently demonstrated for predicting phDOS14.
E3NNs are Euclidean neural networks, which by construction
include 3D rotations, translations, and inversion and thereby
capture full crystal symmetry, and achieve high-quality prediction
using a small training set of ~ 103 examples. E3NN obtains very
good performance in predicting the computed phDOS from only
the crystal structure of materials. To the best of our knowledge,
GNN-based methods have not been reported for phDOS or eDOS
prediction of any crystalline material. To create a baseline GNN
model in the present work, we adapt GATGNN9 for spectrum
prediction. We recently reported a multi-property prediction
model H-CLMP7 for the prediction of experimental optical
absorption spectra from only materials composition. H-CLMP
implements hierarchical correlation learning by coupling multi-
variate Gaussian representation learning in the encoder with
graph attention in the decoder.

In the present work, we introduce Mat2Spec, which builds
upon the concepts of H-CLMP to address the open challenge of
spectral property prediction with a GNN materials encoder
coupled to probabilistic embedding generation and contrastive
learning. Mat2Spec is demonstrated herein for eDOS and phDOS
spectra prediction for a broad set of materials with periodic
crystal structures from the Materials Project33. These densities of
states represent the most fundamental spectra from ab initio
computation and characterize the vibrational and electronic
properties of materials. We use the phDOS dataset from ref. 34

and analyze the ability to extract thermodynamic properties from
phDOS predictions. We use a computational eDOS dataset
acquired from the Materials Project and focus on eDOS within 4
eV of band edges due to its importance for a breadth of materials
properties. Given the computational expense of generating these
spectra, the ability to predict these spectra, even in an approx-
imate way, represents a valuable tool to perform materials
screening to guide ab initio computation. We demonstrate such
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acceleration of materials discovery with a use case based on the
identification of band gaps below but near the Fermi energy in
metallic systems, which have been shown to be pertinent to
thermoelectrics and transparent conductors35,36.

Results
Material-to-spectrum model architecture. Mat2Spec is a model
for predicting a spectrum (output labels) for a given crystalline
material (input features) by: (i) encoding the labels and features
onto a latent Gaussian mixture space, with the alignment of the
feature and label embeddings to exploit underlying correlations;
and (ii) contrastive learning to maximize agreement between the
feature and label representations to learn a label-aware feature
representation. These 2 modules can be considered as a multi-
component encoder and decoder, respectively, that collectively
form an end-to-end model whose architecture is detailed in Fig. 1.

Conceptually, Mat2Spec commences with a feature encoder
whose high-level strategy is similar to that of E3NN and
GATGNN, where each model aims to learn a materials
representation that accurately captures how structure and
composition relate to the properties being predicted. The first
component of Mat2Spec’s encoder is a graph neural network
(GNN) that is based on previously-reported approaches to
materials property prediction in which the GNN is the entirety
of the encoder9,25,26. The remainder of the Mat2Spec framework
introduces a new approach to learning from the GNN encodings
and comprises our contribution to the design of machine learning
models for materials property prediction. For deploying the
trained model, we note that model inference only uses the feature
encoder, representation translator, and predictor, where the
feature encoder takes the input materials and produces
probabilistic embeddings, the translator translates the probabil-
istic embeddings into deterministic representations, and the
predictor reconstructs the final spectrum properties.

Compared to single-property prediction, spectrum prediction
offers additional structure that may be captured through careful
design of the model architecture. We consider discretized spectra
where the input features that are important for the prediction of
the intensity at one point in the spectrum are likely related to
those of other points in the spectrum. While prior models such as

E3NN and GATGNN have no mechanism to explicitly encode
these relationships, Mat2Spec captures this structure of the task
with a probabilistic feature and label embedding generator built
with multivariate Gaussians. During training, the generator
operates on both the material (input features) and its spectrum
(input label). In the process of label embedding, each point i in
the spectrum with dimension L is embedded as a parameterized
multivariate Gaussian Ni with learned mixing coefficient αi, where
∑iαi= 1. The spectrum for a material is thus embedded as a
multivariate Gaussian mixture ∑iαiNi. The mixing coefficients
capture relationships among the points in the spectrum where
related points tend to have similar weights. To capture the
common label structure among different materials, the set of
multivariate Gaussians fNigLi¼1 is shared across all materials.

For feature embedding from the GNN encoding of the
material, we learn a set of K multivariate Gaussians fMjgKj¼1

as

well as a set of K mixing coefficients fβjgKj¼1
, and the features of a

material is thus embedded as a multivariate Gaussian mixture
∑jβjMj. Note that K is a hyperparameter that is not required to be
equal to the number of points in the spectrum. While the only
input to the multivariate Gaussian for feature embedding is the
output of the GNN, we leverage the learned structure of label
embedding by promoting alignment of the two multivariate
Gaussian mixtures, which both have dimension D, a hyperpara-
meter. Specifically, the training loss includes the Kullback–Leibler
(KL) divergence between the two multivariate Gaussian mixtures
∑iαiNi and ∑jβjMj. We want to note that, to reduce the
computational overhead, all multivariate Gaussians have diagonal
covariance matrices (which is similar to the variational
autoencoders37). The label correlation is in fact modeled by the
learned mixing coefficients. The number of Gaussians is equal to
the number of points in each spectrum (K 0), and the mixing
coefficients capture relationships among the points in the
spectrum where related points tend to have similar weights.

The probabilistic embedding generator provides the inputs to
the contrastive learning decoder. The decoder commences with a
shared multi-layer perceptron (MLP) Representation Translator,
which during model training is evaluated once with the feature
embedding to generate the feature representation and again with

Fig. 1 The Mat2Spec model architecture. The prediction task of material (Input Features) to spectrum (Predicted Labels) proceeds with 2 primary
modules, a probabilistic embedding generator (Encoder) to learn a suitable representation (ZF) of the material and a Decoder trained via supervised
contrastive learning to predict the spectrum from that embedding. The solid arrows show the flow of information for making predictions with the trained
model, and the dashed arrows show the additional flow of information during model training, where the ground truth spectrum (Input Labels) is an
additional input for which the Encoder produces the embedding ZL. Alignment of the multivariate Gaussian mixture model parameters during training
conditions the probabilistic generator of the embeddings. Both the input material (Feature projection) and input spectrum (Label projection) are
reconstructed to train the model via contrastive learning. The Representation Translator is shared by the prediction and reconstruction tasks, resulting in
parallel latent representations that are transformed into the final outputs by the Predictor and Projector, respectively. Note that the output dimension of
each component is noted in blue, where K0 is 51 for phDOS and 128 for eDOS.
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the label embedding to generate the label representation. Using
these representations, the Predictor and Projector are shallow
MLP models that produce the predicted spectrum and feature/
label projections, respectively. While only the Predictor is used
when making new predictions, the Projector maps representa-
tions to the space where the contrastive loss is applied during
training. The Representation Translator and Projector are trained
to maximize agreement between representations using a con-
trastive loss, making the feature representation label-aware. We
follow the empirical evidence that the contrastive loss is best
defined on the projection space rather than the representation
space38.

For spectral data that is akin to a probability distribution for
each material, the prediction task has additional structure, for
example, that an increased intensity in one portion of the
spectrum predisposes other portions of the spectrum to have
lower intensity. The Mat2Spec strategy of learning relationships
among how input features maps to multiple labels supports this
aspect of distribution prediction, although deployment of
Mat2Spec for distribution learning is ultimately achieved by
training using either the Wasserstein distance (WD) or KL loss,
which each quantify the difference in 2 probability distributions,
as the primary training loss function. Combined with more
traditional loss functions, we compare Mat2Spec with baseline
models E3NN and GATGNN with three different settings, i.e.,
different combinations of data scaling and training loss function.
Note that our adaptions of E3NN and GATGNN for distribution-
based training constitute models beyond those previously
reported that are referred to herein by the respective name of
the reported model architecture.

Predicting phonon density of states. The task of phDOS pre-
diction of crystalline materials was recently addressed by E3NN14.
To provide the most direct comparison to that work, we com-
mence with their setting wherein each phDOS is scaled to a
maximum value of 1 (MaxNorm), and mean squared error (MSE)
loss function is used for model training. An important attribute of
phDOS is that the integral of the phDOS can be approximated as
3 times the number of sites in the unit cell. As a result, not only
are data scaled for model training, but the output of a ML model
can be similarly scaled as the final step in spectrum prediction.
Since our ground truth knowledge about scaling is with regards to
the sum of the phDOS as opposed to the maximum value, we also
consider scaling data by its sum (NormSum). This scaling make

phDOS mathematically equivalent to a probability distribution,
motivating incorporation of ML models for learning distribu-
tions, i.e., predicting the distribution of phonon energies in a
material with a known number of phonons. Our 2 corresponding
settings for phDOS prediction use NormSum scaling paired with
each of WD and KL loss functions. The combination of 3 ML
models and 3 settings provides 9 distinct models for phDOS
prediction whose performance is summarized in Table 1 using 4
complementary prediction metrics: the coefficient of determina-
tion (R2 score, which is typically between 0 and 1 but can be
negative when the sum of squares of the model’s prediction
residuals are larger than the total sum of squares of difference of
the observation values from their mean), mean absolute error
(MAE), MSE, and WD. In each of the 3 settings, Mat2Spec
outperforms E3NN and GATGNN for all 4 of these metrics. The
results are most comparable among the 3 ML models in the
MaxNorm-MSE setting, and the best value for each metric is
obtained with one of the Mat2Spec models.

To highlight the value of phDOS prediction, Chen et al.14

noted the importance of calculating properties such as the average
phonon frequency �ω and the heat capacity CV at 300 K. Table 1
shows the MAE and MSE loss for these quantities calculated from
the test set of each of the 9 phDOS prediction models. Mat2Spec
in the SumNorm-WD setting provides the best performance for
both metrics and for both physical quantities. Figure 2 sum-
marizes the range of prediction errors for these quantities,
demonstrating that in each setting, Mat2Spec is not only optimal
in the aggregate metrics but also has a lower incidence of extreme
outliers, further highlighting how this model facilitates general-
ization to accurate spectral prediction for all materials.

Predicting electronic density of states. We consider the pre-
diction of the total electronic DOS (eDOS) of nonmagnetic
materials, which is more complex than phDOS prediction in a
variety of ways. While a full-energy density of occupied states
would share the phDOS attribute of having a known sum for each
material due to the known electron count of the constituent
elements, the eDOS is of greatest interest in a relatively small
energy range near the band edges and including both unoccupied
and occupied states. In the present work, we consider an energy
grid of 128 points spanning −4 to 4 eV with respect to band edges
with 63 meV intervals. On this energy grid, the Fermi energy, as
well as the band edges where applicable, are all set to 0 eV; in
what follow, we remove the zero-valued eDOS region between the

Table 1 Results of phDOS prediction on the test set.

ML model Setting phDOS prediction Calculated CV
(300 K)

Calculated
--
ω

Scaling Loss R2 MAE MSE WD MAE MSE MAE MSE

E3NN MaxNorm MSE 0.56 0.094 0.034 39 3.58 56 30.9 3161
GATGNN MaxNorm MSE 0.45 0.105 0.042 44 4.66 80 35.1 3392
Mat2Spec MaxNorm MSE 0.63 0.086 0.029 33 3.30 49 26.2 2284
E3NN SumNorm WD −0.48 0.339 1.884 132 11.7 393 90.0 17343
GATGNN SumNorm WD −2.78 0.185 0.065 194 19.6 591 183 42753
Mat2Spec SumNorm WD 0.57 0.085 0.026 21 1.32 10 10.6 348
E3NN SumNorm KL 0.48 0.105 0.036 50 4.88 77 41.1 3718
GATGNN SumNorm KL −1.05 0.177 0.057 215 22.4 756 205 51609
Mat2Spec SumNorm KL 0.62 0.078 0.023 24 1.96 11 17.1 625

For each combination of 3 ML models and 3 settings, the performance metrics include 4 measures of the prediction of the 51-D phDOS and 2 measures each for the properties CV (heat capacity at 300
K, J/K ⋅ mol) at 300K and �ω (average phonon frequeny, cm−1) calculated from each material’s phDOS. Each loss metric is aggregated over all materials in the test set. Note that for phDOS predictions
with MaxNorm scaling, each prediction is re-scaled to a maximum value of 1 prior to evaluating prediction loss, and analogously the predictions with SumNorm scaling are re-scaled to a sum of 1 prior to
evaluating prediction loss. MAE and MSE metrics for phDOS prediction inherit the arbitrary units from the respective scaling and should not be directly compared across scaling. R2 (unitless) and WD
(units of cm−1 from the energy axis) are insensitive to this difference in scaling. The best value in each column is noted in bold. In each setting and for each loss metric, Mat2Spec provides the best
predictions.
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valence band maximum (VBM) and conduction band minimum
(CBM) for materials with a finite bandgap. While predicting the
bandgap energy is also important, this task is the subject of major
effort in the community11,18,19, and we focus here on the pre-
diction of eDOS surrounding the band edges of greatest value.

As a traditional setting for eDOS prediction, we use zero-mean,
unit-variance (Standard) scaling for each energy point in the 128-
D grid with MAE training loss. The SumNorm scaling with both
WD and KL loss remain important settings, and when each ML
employs one of these distribution-learning settings, the predictions
are re-scaled to the native eDOS units of states/eV using the sum
of the prediction from the Standard-MAE setting. As a result, each
ML model in each setting produces eDOS prediction in the native
units such that the metrics for eDOS prediction can be compared
across the set of 9 eDOS prediction results. Note that per its
definition, the computational of the WD metric involves
SumNorm scaling of all ground truth and predicted eDOS.

Figure 3 shows representative examples of phDOS and eDOS
ground truth and predictions, with additional examples provided
in Supplementary Figs. 1 and 2. For each ML model, the test set
materials are split into 5 equal-sized groups based on the quintiles
of MAE loss. For each quintile, the intersection over the 3 ML
models provides a set of materials with comparable relative
prediction quality. Selection from each quintile set enables
visualization of good (left) to poor (right) predictions. In phDOS
prediction, models can take advantage of the broad range of
materials with similar phDOS patterns, as evidenced in the lower
quintiles of Fig. 3 and Supplementary Fig. 1. The eDOS,
particularly with an appreciable energy window, exhibits more
high-frequency features with fewer analogous characteristic
patterns. For both phDOS and eDOS, Mat2Spec consistently
predicts the correct general shape of each pattern with regression
errors arising mostly from the imperfect prediction of the
magnitude of sharp peaks.

Table 2 provides the eDOS performance metrics from each
combination of 3 ML models and 3 settings using the same 4
regression metrics as shown for phDOS prediction. Here, the WD
metric is calculated using SumNorm scaling and thus measures

the quality of distribution prediction under an assumption that
the sum of each material’s eDOS is known. While the best
performance against the WD metric in phDOS prediction was
achieved using WD as training loss, Mat2Spec in the SumNorm-
KL setting provides the best eDOS results with respect to the WD,
R2, and MSE metrics. We anticipate that model training with the
WD loss function is compromised by the many sharp peaks in
eDOS data, although a full diagnosis of the relatively poor
performance in eDOS compared to phDOS prediction for the
SumNorm-WD setting may be pursued in future work.

The SumNorm-KL setting improves the eDOS prediction for
each ML model compared to the Standard-MAE setting for nearly
all of the prediction metrics, with the only exception being a slight
increase in MAE for Mat2Spec. While these results highlight the
general value of using distribution learning with any ML model,
the superior performance of Mat2Spec with respect to the
baseline models in the SumNorm-KL setting highlights the
particular advantages of distribution learning when using
probabilistic embedding generation and contrastive learning to
condition the model.

In the Supplementary Figures, we explore the underpinnings of
the distribution in prediction accuracy of Mat2Spec in the
SumNorm-KL setting. Intuitively, the prediction task is harder
and the MAE is generally larger when (i) the material’s structure
is more complicated, (ii) there are few examples of similar
materials in the training set, and/or (iii) the eDOS contains high
frequency features, which are all demonstrated in Supplementary
Figs. 3, 4, 5, and 6. Supplementary Figure 5 illustrates that the
distribution of prediction quality can vary substantially with
materials class, which is likely due to a convolution of the
aforementioned effects with the chemical complexity of a given
subclass of materials.

The probabilistic embedding generator, as well as the
contrastive learning, are intended to amplify knowledge extrac-
tion from data. One way to assess success toward this goal is to
study the prediction performance with decreasing training size, as
shown in Fig. 4. For the complementary prediction loss metrics
MAE and WD, Mat2Spec has relatively little degradation in

Fig. 2 Comparison of metrics calculated from phDOS in the test set. For each of 3 settings (horizontal shaded bars), the results of the CV (heat capacity at
300 K, left) and �ω (average phonon frequency, right) calculations from the predicted phDOS in the test set are shown as the relative error with respect to
the ground truth value for each material in the test set. For each of the 3 settings, 3 models, and 2 properties, the relative errors are shown with a box plot
(center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers). In the MaxNorm-MSE setting, all 3 ML
models have similar median relative losses for both CV and �ω, with Mat2Spec providing a smaller interquartile range and less extreme outliers. In the other
settings, Mat2Spec outperforms the other ML models with respect to median, interquartile range, and outliers.
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performance with decreasing training data, providing better
predictions when using 1/8 of the training data than the baseline
models that use the full training data. The ability to make
meaningful predictions with data sizes on the order of 103

materials is critical for predicting spectral properties that are
much more expensive to acquire, where the increased expense
typically corresponds to less available training data than the
eDOS dataset used in the present work. The increased expense
also expands the opportunity for accelerating materials discovery
with Mat2Spec.

The excellent performance with relatively small training size
can also be transformative for materials discovery campaigns
conducted within a specific subclass of materials. Using 2
example subclasses from Supplementary Fig. 5, 3-element oxides
without rare earths and materials with spacegroup 225, we show
that Mat2Spec can be fine-tuned to improve the predictions

within each subclass (see Supplementary Fig. 8), which enables
Mat2Spec to more accurately model specific eDOS features, as
shown in Supplementary Fig. 9. Even when ones research is
confined to a specific subclass, training Mat2Spec on a broader set
of materials helps Mat2Spec encode materials chemistry, as
demonstrated by a substantial degradation in performance when
using only the data from a specific subclass (see Supplementary
Fig. 8).

While our focus on phDOS and eDOS prediction is precisely
motivated by their transcendence of specific uses of materials,
evaluating eDOS prediction for a specific use case provides a
complementary mechanism for gauging the quality and value of
the predictions. For a use case, we choose a classification of
materials based on a desirable feature in the eDOS for certain
materials. We consider the presence of energy gaps (or near-
energy gaps) in occupied states close to the Fermi energy, which

Fig. 3 Example phDOS and eDOS predictions in the test set. Ground truth and ML predictions are shown for five representative materials chosen from
the 5 quintiles from low MAE loss (Q1, left) to high MAE loss (Q5, right) for both phDOS (top) and eDOS (bottom). The best overall setting for each model
is used, which is SumNorm-KL except for phDOS prediction by E3NN and GATGNN that use MaxNorm-MSE. From Q1 to Q5 the ground truth phDOS is
increasingly complex. For Q1 to Q3, Mat2Spec predicts each phDOS feature, where the other models are less consistent. In Q4, E3NN and Mat2Spec are
comparable with their prediction of three primary peaks in the phDOS. In Q5, the presence of substantial density above 600 cm−1 is quite rare, and
Mat2Spec is the only model to make the correct qualitative prediction. For eDOS, there is no analogous change in the shape of the eDOS across the
quintiles. In Q1 and Q2, Mat2Spec provides the only qualitatively correct predictions. In Q3, each model predicts a smoothed version of the ground truth. In
Q4, Mat2Spec prediction is far from perfect but is the only prediction to capture the series of localized states near the Fermi energy. In Q5, each model has
qualitatively comparable predictions in the conduction band, but Mat2Spec is the only model to capture the primary structure of the valence band.
Mat2Spec’s under-prediction of one localized state makes this one of its highest MAE predictions, which is far lower than the worst predictions from other
models. The ability of Mat2Spec to globally capture the qualitative patterns for both phDOS and eDOS leads to its superior performance for each metric in
Tables 1 and 2.

Table 2 Results of eDOS prediction.

ML model Setting eDOS prediction VB gap identification VB gap discovery

Scaling Loss R2 MAE MSE WD F1 Precision Recall Precision Recall

E3NN Standard MAE 0.39 5.24 105.1 0.48 0.035 0.333 0.019 – 0
GATGNN Standard MAE 0.30 4.89 120.9 0.42 0.182 0.263 0.139 0 0
Mat2Spec Standard MAE 0.53 3.64 80.4 0.27 0.352 0.509 0.269 0.67 0.27
E3NN SumNorm WD −2.1 9.81 542.8 0.40 0 0 0 – 0
GATGNN SumNorm WD 0.19 6.41 140.1 0.26 0.018 0.200 0.009 0 0
Mat2Spec SumNorm WD 0.38 5.23 107.7 0.29 0.018 0.250 0.009 – 0
E3NN SumNorm KL 0.41 5.01 101.9 0.47 0 0 0 – 0
GATGNN SumNorm KL 0.32 4.89 118.2 0.35 0.243 0.450 0.167 0.13 0.20
Mat2Spec SumNorm KL 0.57 3.8 74.5 0.21 0.397 0.698 0.278 0.47 1.00

For each combination of 3 ML models and 3 settings, the performance metrics include 4 measures of the prediction of the full 128-D eDOS (evaluated on the test set), 3 measures of the classification
accuracy for identification of gaps in the eDOS in the VB (evaluated on the test set), and 2 measures of the classification accuracy for 100 materials with no prior available eDOS. Note that the
predictions from SumNorm scaling are re-scaled to the original eDOS units using the normalization factor provided by the Standard scaling prediction from the respective ML model. As a result, MAE
loss is in native eDOS units of states/eV, and MSE has the square of these units; WD has units of eV from the energy axis, and the remainder of the metrics are unitless. For the metrics calculated on the
test set, the best value is in bold and worst value is in italics, and Mat2Spec exhibits the best value for each metric. The 100 materials for which we performed DFT calculations include 49 random
selections as well as predicted positives from GATGNN and Mat2Spec in the SumNorm-KL setting. Precision values are missing for 4 models with no positive predictions among the 100 materials.
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corresponds to an intrinsic eDOS that is similar to that of a
degenerate semiconductor. Correspondingly, the metals exhibiting
an energy gap in occupied states may exhibit transport-related
properties such as electronic conductivity and a Seebeck coefficient
that mimic a doped semiconductor35, broadening the materials
search space. Indeed, this concept of metallic system having a gap
close to the Fermi energy was introduced and studied in the
research of potential transparent conductive materials36,39–41, for
applications in low-loss plasmonics42, and in catalysis43.

Recently, a high-throughput search for “gapped metals”
exploited this key feature of the eDOS to find new potential
thermoelectric materials35. For the present use case we focus on
materials with a single energy gap below but near the Fermi
energy, hereafter called the “VB gap”, and we evaluate the ability
to recognize this feature in a broad range of materials, considering
the entire test set (containing metals and semiconductors). We
note that a similar approach can be applied for gaps in the
conduction band. For a VB gap to be sufficiently interesting to
merit follow-up study of the material, (i) the eDOS must be
sufficiently low in intensity throughout the VB gap, for which we
use a threshold of 1 state/eV; and (ii) the energy gap must be
sufficiently wide in energy, for which we use a 1 eV minimum gap
width, (iii) sufficiently close to the VB edge, for which we require
that the high-energy edge of the gap is no smaller than −1 eV,
and (iv) sufficiently far the Fermi energy so that there are
available carriers, for which we require that the high-energy edge
of the gap is no larger than −0.25 eV. This stringent set of criteria
corresponds to a low positivity rate, in particular only 2.8% of
materials in the test set meet all four criteria, highlighting the
inherent challenge of discovering such materials.

To ascertain the ability of each prediction model to identify
such materials, the binary classification for the presence of a VB
gap was evaluated, as summarized by the precision, recall, and
F1 scores in Table 2. The requirement for eDOS to remain below
the threshold for a wide, contiguous energy range requires the
predictions to be simultaneously accurate for many energies,
which is aligned with our strategy for distribution-based learning.
At the same time, any over-prediction of eDOS in the relevant
energy range disrupts the detection of a VB gap, and since KL loss
penalizes errors in small eDOS values to a greater extent than

WD, the SumNorm-KL setting is intuitively the best approach for
this use case, which is reflected in its improved classification
scores for both the GATGNN and Mat2Spec models compared to
other settings. Each model in the SumNorm-WD setting, as well
as E3NN in all settings, provide poor performance for this
classification task, highlighting that this is an aggressive use case
that is emblematic of materials discovery efforts wherein one
seeks a select set of materials exhibiting unique properties. In
order to highlight the importance of each part of the model in
achieving the best accuracy, we also performed ablation studies in
which (i) the label probabilistic embedding generator was
removed to eliminate model alignment during Mat2Spec training,
and (ii) the projector was removed to eliminate the supervised
contrastive learning. Therefore, the model alignment loss and
supervised contrastive loss were also removed, respectively. We
performed ablation studies with the eDOS prediction and
SumNorm-KL setting. The resulting MAEs are 4.05 and 4.20,
which are 6.6 and 10.5% higher, respectively, than that of the
original Mat2Spec with the SumNorm-KL setting. The resulting
WDs are 0.24 and 0.27, which are 14.3 and 28.6% higher,
respectively, than that of the original Mat2Spec with the
SumNorm-KL setting, demonstrating that removing these key
components of Mat2Spec substantially degrades performance.

Figure 5 summarizes, for both eDOS prediction and the VB
gap use case, the relative performance across the 3 ML models
and 3 settings using radar plots in which each axis is scaled by the
minimum and maximum value (or vice versa for loss metrics
where lower is better) observed over the 9 prediction models. An
eDOS model that is accurate with respect to each regression
metric from eDOS prediction, as well as the use case classification
scores, will appear as the largest shaded region in the radar plot.
In the Standard-MAE setting, Mat2Spec clearly outperforms the
other models, and its performance is further enhanced in the
SumNorm-KL setting.

Guiding discovery of materials with tailored electronic prop-
erties. To further demonstrate the importance of eDOS predic-
tion for materials discovery, we extend the VB gap use case to the
set of nonmagnetic materials in the Materials Project for which
no eDOS has been calculated. The primary computational
screening for materials with specific properties includes the eva-
luation of performance-related properties as well as basic prop-
erties of the materials. In addition to the VB gap requirements, we
consider materials that are relatively near the hull while also
considering enough materials to generate meaningful results,
prompting an upper limit of 0.5 eV/atom of the free energy hull.
For simplicity, we only consider materials with fewer than five
elements. To make the search specific to gapped metals, we also
require the band gap to be zero, which for materials with no
available eDOS corresponds to the estimated band gap from the
Materials Project structural relaxation calculation.

Querying the Materials Project for materials that lack eDOS
and meet the energy above hull, number of elements, and band
gap requirements produced 8,106 candidate materials. DFT
calculations were performed on 100 of these materials, including
49 randomly-selected materials as well as the 51 materials
predicted to have a VB gap by either the Mat2Spec SumNorm-KL
or GATGNN SumNorm-KL models. Table 2 shows the excellent
performance of Mat2Spec with precision and recall of 0.47 and
1.0, respectively, both exceeding the GATGNN values of 0.13 and
0.2, respectively. There are 4 materials for which both Mat2Spec
and GATGNN predict a VB gap, with 3 of these validated as TP
by DFT. There are 19 materials predicted positive by GATGNN
but negative by Mat2Spec, and none of these were found to have a
VB gap via DFT, i.e., Mat2Spec correctly predicted all of these as

Fig. 4 Data size dependence of eDOS prediction. Using a static test set,
random down-selection of the train set by factors of 2, 4, and 8 enables
characterization of how the prediction loss varies with size of the training
set. This study was performed for each ML model in the Standard-MAE
setting as well as for Mat2Spec in the SumNorm-KL setting. As expected,
prediction loss generally increases with decreasing training size. Using only
1/8 of the training data, Mat2Spec (in either setting) provides lower MAE
and WD losses compared to the baseline models that use the full training
set. Achieving better results with an 8-fold reduction in data size highlights
how the structure of Mat2Spec conditions the model to learn more with
less data.
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negatives. Of the 28 materials predicted positive by Mat2Spec but
negative by GATGNN, 12 were found to have a VB gap via DFT,
i.e., only Mat2Spec enabled discovery of these 12 gapped metals.
Of the randomly selected materials, none were found to have a
VB gap, which is commensurate with the expectation that the
positivity rate in the set of candidate materials is similarly low as
that of the test set. Collectively the results show the excellent
performance of Mat2Spec for the discovery of these rare
materials, where 15 discoveries were validated by DFT from
Mat2Spec’s predicted positives. This down-selection by a factor of
253 from the set of candidates corresponds to a proportional
savings in the computation time for discovering gapped metals.

Figure 6 shows the DFT calculation and Mat2Spec prediction
for each of the 15 TP materials, revealing excellent qualitative
agreement and leading to the identification of a family of
fluorides Li2AMF6 (A= Al, Sc, Ga; M=Hg, Cu) and a family of
oxides ARNb2O6 (A=Na, K; R= La, Nd, and Pr) that are of
particular interest. To assess these materials as potential
thermoelectrics, we note that thermoelectric candidates should
maximize the power factor (PF), PF= S2σ, where S is the Seebeck
coefficient and σ is the electrical conductivity. According to
Mott’s formula44 a rapid variation of the eDOS would increase
the Seebeck coefficient; since the presence of a band gap close to
the Fermi energy makes the DOS sharply decrease, the Seebeck

Fig. 5 Summary of loss metrics for eDOS prediction in the test set. The three panels correspond to 3 eDOS settings, and each shows results for the 3 ML
models for a total of 9 radar plots corresponding to the 9 rows in Table 2. In the table, the worst and best values are shown in italics and bold, respectively,
providing the minimum and maximum values for each axis of the radar plots so that maximum value on each axis corresponds to the best performance.
Since each axis uses the same scaling, all 9 radar plots are directly comparable. The axes include 4 metrics for 128-D eDOS prediction (R2, MAE, MSE,
WD) and 3 metrics for the classification of gaps in the VB. For each metric, Mat2Spec provides the best value in either the Standard-MAE or SumNorm-KL
settings, with Mat2Spec predictions in the SumNorm-KL setting providing the best collective performance as visualized by its maximal area among the
radar plots.

Fig. 6 Discovered materials with VB gaps. Of the 32 predictions of materials with a VB gap according to the results of the Mat2Spec eDOS predictions in
the SumNorm-KL setting, the 15 TP predictions are shown. For each material, the eDOS calculated from DFT is shown with the Mat2Spec prediction, and
the energy range of the VB gap is also shown. MgAl and LiMg have a VB gap but the inherently low electron density of the material and the persistence of a
small but finite eDOS to below -3 eV limits the interest in these materials. LiRAu2 (where R=Nd, Pr, and Yb) have low eDOS considering the presence of
heavy elements, although the eDOS does not reach zero in the energy range of interest. Zero density in the energy range of interest is observed in the 10
other materials that fall within 2 families of candidate thermoelectrics. In the family of fluorides with formula Li2AMF6 (where A=Al, Sc, Ga; M=Hg, Cu),
each material exhibits a gap of 3–4 eV starting near 0.5 eV below Fermi energy. The eDOS of each material in this family also exhibits a near-gap above the
Fermi energy, which motivates their further study for applications such as transparent conductors. A family of oxides with formula ARNb2O6 (where
A=Na, K; R= La, Nd, Pr) share a similar eDOS with a VB gap that is 2–3 eV wide starting near 1 eV below Fermi energy.
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coefficient increases significantly and the PF presents a distinct
peak in this case.

Known high-PF thermoelectric are indeed gapped metals, such
as La3Te4, Mo3Sb7, Yb14MnSb11, and NbCoSb, along with
others35, and present an eDOS similar to those shown in Figure 6.
This similarity allows us to use the presence of the gap combined
with the fast rise of the eDOS as a means for identifying systems
with large Seebeck coefficients. In particular, looking at Fig. 6, the
flourides possess both characteristics. Also, a high carrier
concentration (~1023 cm−1) associated with the partially filled
bands between the gap and the Fermi energy may lead to high
electrical conductivity. In contrast, for oxides, since the rise of the
eDOS is less rapid than in the flourides, the Seebeck coefficient is
expected to be lower.

Another potential use of materials with large VB gaps would be
as transparent conductors. As defined in refs. 36,39 (i) metals with
large VB gaps can reduce the interband absorption in the visible
range; if they also possess (ii) a high enough carrier density in the
CB to provide conductivity, and (iii) sufficiently low carrier
density to limit the interband transition in the CB and plasma
frequency (ωp �

ffiffiffiffiffiffiffiffiffiffiffi
ne=m

p
, where m is an effective carrier mass),

free-electron absorption will not interfere with the needed optical
transparency. Inspecting the eDOS of the flourides and oxides
suggested by our models, we observe that they firmly meet
criterion (i) with eDOS similar to that of the materials investigated
in ref. 36 such as Ba–Nb–O and Ca–A–O systems. Regarding
criterion (ii), as mentioned before, the fluorides and oxides in
Fig. 6 have a carrier density of approximately 1023 cm−1, which is
comparable to that of known intrinsic transparent conductors.
The assessment of the plasma frequency for criterion (iii) requires
an estimation of the carrier effective mass, which is beyond the
scope of this work. Also, the flourides have a eDOS close to those
referred to as Type-1 transparent conductors in ref. 39 that are
metals with the Fermi energy located in an intermediate band
which is energetically isolated from the bands below and above it.

While these qualitative assessments require a quantitative
validation via detailed computation in future work, the fact that
the eDOS compare well to established literature for thermo-
electric and transparent conductor materials strongly motivates
future detailed studies of these systems. Since the oxide family
includes transition metals and the fluoride family includes rare
earth elements, initial steps could include validation of the
position of the d-electron and f-electron states, respectively, as
well as the absence of a band gap with techniques more accurate
than standard DFT. Future assessment of the electronic and
thermal transport properties can confirm their potential as
thermoelectrics, and optical properties including the dielectric
function can be used to gauge their suitability as transparent
conductors. The most promising materials from these computa-
tional assessments would then be prime candidates for assessing
synthesizability, where the experimentally realized materials can
then be analyzed to further validate the computed properties.

Discussion
Mat2Spec brings together several machine learning techniques to
exploit prior knowledge and problem structure and to compen-
sate for the relatively small amount of training data compared to
the breadth of possible materials and DOS patterns. Specifically,
Mat2Spec’s feature encoder was inspired by the GATGNN9,
CGCNN26, and MEGNet12 models in which GNNs are used to
encode the crystal structures. The encoding of the labels and
features onto a latent Gaussian mixture space to exploit under-
lying correlations was inspired by the DMVP45,46, DHN47, and
H-CLMP7 models in which the latent Gaussian spaces learn
multiple properties’ correlations. Integrating correlation learning

with neural networks was initially motivated by computational
sustainability applications48. The learning of a label-aware feature
representation with contrastive learning was inspired by the
SimSiam49 model in which contrastive learning is used to max-
imize mutual information between two latent representations.
Generalization of ML models is facilitated by incorporating
techniques from disparate domains that share commonalities in
the types of relationships that need to be harnessed by the
models.

Our design of Mat2Spec focused on encoding label and feature
relationships and how composition and structure give rise to
intensity in different portions of a given type of spectrum.
Interpretability of ML models remains a key challenge for
advancing the fundamental understanding, and the information-
rich embeddings generated by the Mat2Spec encoder motivate
future work in analyzing them and their probabilistic generator to
reveal the materials features that give rise to specific spectral
properties. Such studies are increasingly fruitful with improved
prediction capabilities50, furthering the importance of Mat2Spec’s
improved performance compared to baseline models. The
Mat2Spec prediction capabilities are further emphasized by the
demonstrated identification of relevant and rare features, such as
the presence of a VB gap in the eDOS, where an initial down-
selection of candidate materials is particularly impactful for
accelerating discovery. Our demonstration of discovering gapped
metals can be extended in future work by coupling to crystal
structure generators51,52 to predict the eDOS and the phDOS of
thousands of hypothetical compounds at a computational time
that is orders of magnitude smaller than performing standard
DFT computations. In Supplementary Figure 7 we show that for
many materials, comparable eDOS predictions can be made using
unrelaxed structures, indicating that Mat2Spec may be deployed
for predicting the eDOS of any hypothetical material provided the
atomic coordinates of each generated structure are sufficiently
similar to those of a DFT-relaxed structure to capture the
materials chemistry. This mode of deployment of Mat2Spec
motivates the future study of the sensitivity of eDOS to atomic
coordinates and lattice parameters for both DFT-calculated and
Mat2Spec-predicted eDOS. Our results also indicate that Mat2-
Spec can provide greater computational savings when applied to
small but higher quality spectral datasets, which are typically
more expensive to compute ab initio or to measure experimen-
tally. Mat2Spec can also be extended to different energy ranges
and energy resolutions, or even to spectra obtained from form-
alisms beyond DFT, as required for a given materials discovery
effort.

Our focus on predicting fundamental spectral properties of
materials is meant to demonstrate the generality of the Mat2Spec
framework. Demonstration of the model’s learning of appropriate
materials embeddings for prediction of both phDOS and eDOS
indicates that the model will also be suitable for spectral prop-
erties calculated from the phDOS or eDOS, such as phonon
scattering and spectral absorption. We hope that the community
will participate in the extension of Mat2Spec to these other
domains of materials property prediction. We also want to note
that our model architecture and distribution-based learning are
applicable to scientific domains beyond materials science. Mat2-
Spec’s probabilistic embedding generator affords significant
control over how we model our latent distribution via a prior
distribution. Therefore, our model can be generalized to other
domains by choosing appropriated prior distributions, model
alignment losses, and prediction losses. For example, we can
choose Poisson loss for counting problems, such as the species’
abundance prediction47, and binary cross entropy loss for clas-
sification problems, such as the species’ present and absent
prediction45. As a consequence of these underlying connections
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among different domains, the Mat2Spec architecture can address
a broader family of problems within and beyond materials sci-
ence, an exemplar of our recently-described opportunity to
exploit computational synergies between materials science and
other scientific domains53.

Methods
Mat2Spec model. The pseudocode of Mat2Spec is in Table 3. Given input features
F and its corresponding input labels L, Mat2Spec first embeds them into two latent
embeddings ZF and ZL via the feature and label encoders, respectively. These two
embeddings are designed to exploit feature and label correlations implicitly. This is
inspired by the label embedding technique54 where both instances and their labels
are encoded onto a structured latent space to align the instance embedding with the
corresponding label embedding. While the traditional label embedding techniques
assume a deterministic latent space, which lacks feature and label representation
smoothness and thus increases sensitivity to input noise, Mat2Spec learns a
probabilistic latent space where we can have significant control over the design of
the latent space via a prior distribution.

Crystal structure feature encoder and label encoder. For an input crystal structure,
we have not only element composition but also spatial information about the
atoms. To leverage the spatial information, each element in the input is represented
by an initial unique vector. These initial unique element embeddings capture some
prior knowledge about correlations between elements26,55. These initial repre-
sentations are then multiplied by a N byM learnable weight matrix where N= 92 is
the size of the initial vector and M= 128 is the size of the internal representations
of elements used in the model. The graph attention networks (GATs)56 is then used
to update these initial internal representations by propagating contextual infor-
mation about the different elements present in the material between the nodes in
the graph. GATs are constructed by stacking a number of graph attention layers in
which nodes are able to attend over their neighborhoods’ features via the self-
attention mechanism. Specifically for each atom i, we first get its set of neighbors
Mi ¼ fjjdði; jÞ≤ γg where d(i, j) denotes the Euclidean distance between i and j in
angstroms and γ ¼ 8 2 Rþ is a predefined threshold. Then for each j 2 Mi , the
distance d(i, j) is encoded as a vector uij= 〈f(T[0]),⋯ , f(T[m])〉 where T 2 Nm is
any predefined vector, T[k] is the k-th element of T, and f is the Gaussian prob-
ability density function:

f ðxÞ ¼ 1

σ
ffiffiffiffiffi
2π

p exp � 1
2

x � dði; jÞ
σ

� �2
 !

; ð1Þ

where σ= 0.2 is a predefined standard deviation parameter.
Furthermore, we use the element composition vector as a global context vector

characterizing the entire crystal graph and concatenate the global context vector
with each node feature vector and its corresponding edge feature vector. Therefore,
the attention coefficient between every pair of neighbor nodes is updated as

eij ¼ aðWðhi � uij � cÞ;Wðhj � uij � cÞÞ; ð2Þ

where⊕ denotes the concatenation operation, hi; hj 2 Rd are node features, uij 2
Rm denotes an edge feature, c 2 Rn denotes element composition, W 2
Rd ´ ðdþmþnÞ is a weight matrix, and a is single-layer feed-forward neural network.
Then the attention weight αij for nodes j 2 N i is computed as

αij ¼
exp ðeijÞ

∑k2N i
exp ðeikÞ

; ð3Þ

where N i is the neighborhood of node i in the graph. At last, node i’s feature h0i is
updated as

h0i ¼ f ∑
j2N i

αijWhj

 !
; ð4Þ

where f is the SoftPlus function which is a smooth approximation to the ReLU
function. Multi-head attention57 is also used where K independent attention
mechanisms are executed and their feature vectors are averaged as

h0i ¼ f
1
K

∑
K

k¼1
∑
j2N i

αkijW
khj

 !
: ð5Þ

The final feature embedding vectors of the structure feature encoders are
obtained by applying global mean pooling operation on node features.

In this work, we use an MLP as the label encoder.

Probabilistic feature and label embeddings. In this work, both features and labels are
embedded into a latent Gaussian mixture space and the feature and label
embeddings are aligned to exploit feature and label correlations. Therefore, latent
variables ZF and ZL are assumed to follow some mixture of multivariate Gaussian
distributions:

ZF � ∑
K

i¼1
πiN iðZF jμi; diagðσ2i ÞÞ and

ZL � ∑
K 0

j¼1
π0 jN 0

jðZLjμ0j; diagðσ 0j2ÞÞ;
ð6Þ

where K and K 0 are the presumed number of clusters in the latent space and πi and
π0j are the learned prior probabilities of related clusters. In this work, K is 10 and K 0

equals the dimension of label vectors, and the dimensionality of the Gaussians is set
to be 128. Since both ZF and ZL are assumed to follow a mixture of multivariate
Gaussian distributions, we use KL divergence to align them, which is not analy-
tically tractable. However, we can optimize the KL divergence between two
Gaussian mixtures by optimizing the following upper bound LKL

58:

KL ðZF jjZLÞ≤LKL ¼ ∑
i;j
πiπ

0
j KL ðN i;N 0

jÞ: ð7Þ
Supervised contrastive learning. A shared translator fd( ⋅ ) extracts representation
vectors HF and HL from embeddings ZF and ZL, respectively. In order to further
facilitate learning a label-aware feature representation HF, we adopt supervised
contrastive learning:

(i) Maximizing agreement between feature and label representations: a
projector, denoted as fh, transforms the feature and label representations and
matches them with each other using a contrastive loss, where the projector is an
MLP with one hidden layer. Concretely, let BF= fh(HF) and BL= fh(HL).

We define a batch of samples’ feature and label representation pairs as
B ¼ fðBX ;BY Þg. We then train the decoder and projector and use the following
contrastive loss to maximize agreement between feature and label representations:

LD ¼ � 1
jBj ∑

ðBX ;BY Þ2B
log

exp
�
B>
X BY=τ

�
∑ðB0

X ;B
0
Y Þ2B0 exp

�
B>
X B

0
Y=τ
� ð8Þ

where B0 ¼ fB n fðBX ;BY Þgg and τ ≥ 0 is the temperature. Note that it is
empirically beneficial to define the contrastive loss on the projections BX and BY
rather than the representations HX and HY

38.
(ii) Label prediction: A predictor, denoted as fp, transforms the feature and label

representations and matches them to the label L. Let AF= fp(ZF) and AL= fp(ZL).
We define a symmetrical loss to learn a multi-property regressor:

LC ¼ 1
2
LOSSðAF ; LÞ þ

1
2
LOSS ðAL; LÞ; ð9Þ

Table 3 Mat2Spec Pseudocode.

Input: fðXi;YiÞgNi¼1, λ1, λ2, and λ3.
Output: Feature encoder fe( ⋅ ), decoder fd( ⋅ ), and predictor fp( ⋅ ).
1: for (X, Y) in dataloader do
2: ZF, ZL= fe(X), fl(Y). ⊳latent codes
3: HF,HL= fd(ZF), fd(ZL). ⊳ representations
4: AF, AL= fp(HF), fp(HL). ⊳ predictions
5: BF, BL= fh(HF), fh(HL). ⊳projections
6: Compute the contrastive loss LD according to equation (8).
7: Compute the symmetrical loss LC according to equation (9).
8: Compute the KL loss LKL according to equation (7).
9: L ¼ λ1LD þ λ2LC þ λ3LKL. ⊳ combine losses
10: L: backward ðÞ. ⊳ compute gradient
11: updatefe( ⋅ ), fl( ⋅ ), fd( ⋅ ), fp( ⋅ ), and fh( ⋅ ). ⊳ update parameters
12: Returnfe( ⋅ ), fd( ⋅ ), and fp( ⋅ ).
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where LOSS( ⋅ ) denotes the loss function for the given setting: KL, MSE,
MAE, or WD.

The final loss function used in Mat2Spec is a combination of LD , LC , and LKL,
which is defined as follows:

L ¼ λ1LD þ λ2LC þ λ3LKL; ð10Þ
where λ1= 1, λ2= 0.1, and λ3= 1.1 control the weights of the three loss terms.

Implementation and hyperparameters. The crystal feature encoder has two four-
head attention layers. Each layer of the crystal feature encoder has 103 nodes where
each node corresponds to an element and is represented by a 128-dimensional
vector. The label encoder for learning mixing coefficients is a two-layer MLP, and
the two layers have 128 and K 0 neurons, respectively, where K 0 is the length of the
label vector (K 0 ¼ 51 for the phDOS and K 0 ¼ 128 for the eDOS). The translator is
a two-layer MLP, and the 2 layers have 512 and 512 neurons, respectively. The
projector is a two-layer MLP, and the two layers have 512 and 1024 neurons,
respectively. The predictor is a two-layer MLP, and the two layers have 256 and K 0

neurons, respectively. The number of multivariate Gaussians K produced by the
feature encoder is 10 and the dimension D of each multivariate Gaussian is 128.
The dimensions of representation and projection vectors are 128 and 1024,
respectively.

We used grid search for hyperparameter optimization, where we set the batch size
and the number of training epochs to 128 and 200, respectively, for all experiments.
The learning rate was chosen from 0.0005 to 0.01 in steps of 0.0005, dropout ratio
from [0.3, 0.5, 0.7], and weight decay ratio from [0, 0.01, 0.001, 0.0001]. In this work,
we use the same set of hyperparameters for all experiments where learning rate,
dropout ratio, and weight decay ratio are set to be 0.001, 0.5, and 0.01, respectively.
Our model was implemented with the Pytorch deep learning framework and the
whole model was trained with the AdamW optimizer using a 0.01 weight decay ratio
in an end-to-end fashion in a machine with NVIDIA RTX 2080 10GB GPUs.

Data generation. The phDOS dataset was replicated from ref. 14 to facilitate direct
comparison between the models. The dataset is randomly divided into 1220, 152,
and 152 samples for training, validation, and test sets, respectively. The original
phDOS is presented in ref. 34 publicly available through the MP website. We remind
here that the phDOS from this dataset were cut at a frequency of 1000 cm−1,
smoothed via a Savitzky–Golay filter, and interpolated on a common 51-frequencies
grid. The calculation of CV and �ω similarly proceeded in the same way as this prior
work by using the correspondent functions present in pymatgen59.

The eDOS dataset was acquired from the Materials Project (version 2021-03-
22), where the eDOS values are computed according to a DFT recipe reported in
the MP documentation60. The dataset contains eDOS and crystal structures of non-
magnetic materials, both metallic and semiconductors/insulators, with an energy
grid of 2001 points (VASP NEDOS set to 2001). This dataset has been randomly
divided into training, validation, and test sets, containing 80,10,10% of the samples,
respectively. Another dataset that contains only the structures of materials with no
available eDOS in the MP was acquired for prediction. Only materials which are
flagged as non-magnetic by MP were considered. These two datasets contain about
30,000 and 24,000 entries, respectively.

The energy range of the eDOS can be very large and varies among the MP
entries. To consider a consistent energy grid the eDOS from MP was resampled.
The energy range taken into account is the first 4 eV below the valence bands
maximum and above the CBM, a range chosen based on common uses of eDOS for
studying related material properties. Also, for the reasons mentioned above, we
removed the band gap from the eDOS, when present, making the conduction band
start just after the valence band. Upon this cutting step, the energy range was
divided into 128 bins and the average of the eDOS values in each bin was taken.

Calculation of eDOS. The eDOS was calculated for materials with no available
eDOS in the MP that were predicted to have a band gap in the valence band. The
32 Materials Project entries are as follows: mp-1236246, mp-1236485, mp-1222301,
mp-1227246, mp-1227245, mp-1217599, mp-1187874, mp-1222008, mp-1185617,
mp-1206725, mp-1184817, mp-1185314, mp-1220591, mp-1184222, mp-1180477,
mp-1147636, mp-1094477, mp-1519062, mp-1518752, mp-1518664, mp-1222270,
mp-1185435, mp-1185407, mp-1185397, mp-1111899, mp-1111898, mp-1111559,
mp-1094298, mp-1039010, mp-1522162, mp-1519126, mp-1520737. The DFT
computations were performed following the MP recipe by means of the atomate
package61 so that the eDOS are computed in the same way as those used for model
training.

The criteria outlined in the eDOS VB gap use case were applied to the
computed DFT eDOS to verify the predictions. We note that the same criteria with
different parameters can be applied to find gaps in the conduction band.

Data availability
The input data as well as the predicted phDOS and eDOS data generated in this study
have been deposited in the CaltechData database under accession code 8975 and https://
doi.org/10.22002/D1.8975, and are available at https://data.caltech.edu/records/8975and
https://www.cs.cornell.edu/gomes/udiscoverit/?tag=materials.

Code availability
Source code for Mat2Spec62 is available from https://github.com/gomes-lab/
Mat2Spec(https://doi.org/10.5281/zenodo.5863471) and from https://
www.cs.cornell.edu/gomes/udiscoverit/?tag=materials.
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