
UNIVERSITY OF CALIFORNIA

Los Angeles

Statistical Methods for Multivariate Genetic Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Biostatistics

by

Soo Min Ji

2022

© Copyright by

Soo Min Ji

2022

ABSTRACT OF THE DISSERTATION

Statistical Methods for Multivariate Genetic Analysis

by

Soo Min Ji

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Hua Zhou, Co-Chair

Professor Kenneth L. Lange, Co-Chair

This dissertation develops statistical and computational methods for human genetics. We consider

modern solutions to estimate the power of proposed genetic studies, and propose an alternative to the

mixed model framework for analysis on non-Gaussian distributions. The methods we develop are

designed for multivariate simulation and analysis in high dimensions. We implement our methods

in individual, open-sourced Julia packages. They are freely available to the scientific community

through the OpenMendel platform.

ii

The dissertation of Soo Min Ji is approved.

Eric M. Sobel

Donatello Telesca

Kenneth L. Lange, Committee Co-Chair

Hua Zhou, Committee Co-Chair

University of California, Los Angeles

2022

iii

To my mom and dad, who loved me so much

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Realistic Trait Simulation: TraitSimulation.jl . 3

2.1 Motivation . 3

2.2 Implementation . 4

2.2.1 Julia . 4

2.2.2 SNP Data . 5

2.2.3 Trait Simulation . 5

2.3 Results . 10

2.3.1 Statistical Power . 12

2.3.2 Benchmarks . 15

2.4 Conclusions . 15

2.5 Availability of source code . 17

3 A Flexible Quasi-Copula Distribution for Statistical Modeling: QuasiCopula.jl 19

3.1 Motivation . 19

3.1.1 GLMM Framework . 21

3.1.2 Tonda’s Framework . 21

3.2 Definitions . 22

3.3 Moments . 24

3.4 Marginal and Conditional Distributions . 26

3.5 Generation of Random Deviates . 27

v

3.6 Parameter Estimation . 29

3.6.1 Mean Components . 29

3.6.2 Structured Covariance . 30

3.6.3 MM Algorithm for the VC Model Parameters 31

3.6.4 Initialization . 33

3.7 Statistical Properties . 33

3.7.1 Compound Symmetric Covariance . 33

3.8 Results . 34

3.8.1 Simulation Studies . 34

3.8.2 Bivariate Mixed Outcome Model . 44

3.8.3 NHANES Data Example . 46

3.9 Discussion . 47

3.10 Supplemental Material . 49

3.10.1 Tonda’s Approximation Details . 49

3.10.2 Generate Random Deviates . 50

3.10.3 Parameter Estimation: . 64

3.10.4 Quasi-Newton Algorithm . 69

3.10.5 Negative Binomial . 71

3.10.6 Compound Symmetric Covariance . 74

3.10.7 Gaussian Base . 75

3.10.8 Additional Simulation Study Results . 82

3.11 Availability of source code . 104

vi

4 Genome-Wide Association Analysis with Quasi-Copula 105

4.1 Motivation . 105

4.2 Genetic Model . 105

4.3 Score Test for Individual SNPs or SNP-sets . 106

4.3.1 Score and Approximate Observed Information 106

4.3.2 Score Test Statistic . 108

5 Conclusions and Future Research . 109

5.1 Quasi-Copula model for Random Sample GWAS 110

5.1.1 Steepest Ascent Estimation of an Unstructured Covariance 110

5.2 GWAS on Pedigree and Structured Population Data 111

5.2.1 Quasi-Copula model for Pedigree GWAS 112

5.2.2 Pedigree GWAS Example: Bivariate Trait 112

5.2.3 An MM-Algorithm for Variance Component Matrices 113

5.2.4 Surrogate Function . 114

vii

LIST OF FIGURES

2.1 OpenMendel Pipeline Example: Illustrates how TraitSimulation.jl fits within the

OpenMendel software pipeline to assess the statistical power of different association

studies. 10

2.2 Case Study 1: Power under an Ordinal Multinomial Model. This example shows the

power to detect a single causal SNP in UK Biobank data with four outcome categories

for disease status. Using an ordinal multinomial simulation model and the OpenMendel

module for ordinal trait regression [11], we assume a single SNP as a fixed effect and

control for sex and standardized age. The figure compares analysis results for three

SNPs of varying MAF over 1000 simulation replicates each. For each SNP, the graph

depicts the power to detect that SNP at significance level α = 5×10−8. For each SNP,

the effect size varies from 0 to 0.05 in increments of 0.001. On the x-axis, we exponen-

tiate effect sizes to covert to odds ratios. See the text for a detailed description of the

model. 11

2.3 Case Study 2: Power under Univariate and Bivariate Variance Components Models.

This example shows the power to detect a single causal SNP using both univariate and

bivariate variance components simulation models and the OpenMendel module for vari-

ance components analysis [34]. For each anlysis, each line in the graph depicts the

power to detect a SNP with MAF = 0.23 using 1000 simulations at significance level

α = 5× 10−8. The SNP effect size varies from 0 to 0.065 in increments of 0.002 in

the center range (0.016 – 0.032) and increments of 0.005 in the two end ranges. On

the x-axis, we convert the SNP MAF and effect sizes into the proportion of variation

explained by the SNP. See the text for a detailed description of the model. 11

viii

3.1 Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the

Poisson base distribution with log link function and a single VC versus a random inter-

cept GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates. . . . 36

3.2 Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the

negative binomial base distribution with log link function and a single VC versus a

random intercept GLMM fit via MixedModels.jl. Each scenario result includes 100

replicates. 37

3.3 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under

the Poisson base distribution with log link function and a single VC versus a random

intercept GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. 38

3.4 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under

the negative binomial base distribution with log link function and a single VC versus a

random intercept GLMM fit via MixedModels.jl. Each scenario result includes 100

replicates. 39

3.5 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under

the Poisson base distribution with log link function and a single VC versus a random

intercept GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates. . 40

3.6 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under

the negative binomial base distribution with log link function and a single VC versus a

random intercept GLMM fit via MixedModels.jl. Each scenario result includes 100

replicates. 41

3.7 Simulation I: Mean squared errors (MSE) of MLE estimates β and θ = 0.1 under the

Bivariate Mixed Outcome model with Poisson and Bernoulli base distributions and their

canonical link functions. Each scenario reports involves 100 replicates. 45

ix

3.8 Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covariance

for the Poisson base distribution with log link function. Each scenario reports involves

100 replicates. 84

3.9 Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covariance

for the negative binomial base distribution with log link function. Each scenario reports

involves 100 replicates. 85

3.10 Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covari-

ance for the Bernoulli base distribution with logit link function. Each scenario reports

involves 100 replicates. 86

3.11 Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covari-

ance for the Normal base distribution with Identity link function. Each scenario reports

involves 100 replicates. 87

3.12 Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance

for the Poisson base distribution with log link function. Each scenario reports involves

100 replicates. 88

3.13 Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance

for the negative binomial base distribution with log link function. Each scenario reports

involves 100 replicates. 89

3.14 Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance for

the Bernoulli base distribution with logit link function. Each scenario reports involves

100 replicates. 90

3.15 Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance for

the Normal base distribution with Identity link function. Each scenario reports involves

100 replicates. 91

x

3.16 Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the

Bernoulli base distribution with logit link function and a single VC versus a random

intercept GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. 92

3.17 Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the

Normal base distribution with Identity link function and a single VC versus a random

intercept LMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. . 93

3.18 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under

the Bernoulli base distribution with logit link function and a single VC versus a random

intercept GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. 94

3.19 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under

the Bernoulli base distribution with logit link function and a single VC versus a random

intercept GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. 95

3.20 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under

the Normal base distribution with Identity link function and a single VC versus a random

intercept LMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. . 96

3.21 Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under

the Normal base distribution with Identity link function and a single VC versus a random

intercept LMM fit via MixedModels.jl. Each scenario reports involves 100 replicates. . 97

xi

LIST OF TABLES

2.1 Simulation Models Included in TraitSimulation.jl. 6

2.2 Syntax for Model Construction and for the simulate Function. (See text for variable

definitions.) . 6

2.3 For the Ordered Multinomial Model, Power Calculation Runtimes in Seconds. A total

of 1000 replications were performed for each combination (k,n) of the number of causal

SNPs and the sample size. This was repeated for several SNP effect sizes (see Figure

2.2) and the median runtimes are recorded here. 14

2.4 For the Univariate and Bivariate Variance Components Model, Power Calculation Run-

times in Seconds. A total of 1000 replications were performed for each combination

(k,n) of the number of causal SNPs and the sample size. This was repeated for several

SNP effect sizes (see Figure 2.3) and the median runtimes are recorded here. 15

3.1 Run times and (standard error of run times) in seconds based on 100 replicates under

simulation II with Poisson and negative binomial (NB) Base, θtrue = 0.01, sampling unit

size di and sample size n. 43

3.2 MLE’s and (confidence intervals) based on a single replicate under simulation II with

negative binomial Base, θtrue = 0.01, sampling unit size di = 5 and sample size n = 10000. 44

3.3 Run times and (confidence interval run times) in seconds based on a single replicate

under simulation II with negative binomial Base, θtrue = 0.01, sampling unit size di = 5

and sample size n = 10000. 44

3.4 Random intercept MLEs, loglikelihoods, and run times for for the NHEFS data under

the quasi-copula (QC) model and GLMM. All n = 1537 sampling units are of size di = 2. 47

xii

3.5 Run times and (standard error of run times) in seconds based on 100 replicates for Pois-

son Base under AR(1) and CS covariance structure with sampling unit size di and sample

size n. 98

3.6 Run times and (standard error of run times) in seconds based on 100 replicates for neg-

ative binomial (NB) Base under AR(1) and CS covariance structure with sampling unit

size di and sample size n. 99

3.7 Run times and (standard error of run times) in seconds based on 100 replicates for

Bernoulli Base under AR(1) and CS covariance structure with sampling unit size di

and sample size n. 100

3.8 Run times and (standard error of run times) in seconds based on 100 replicates for Gaus-

sian Base under AR(1) and CS covariance structure with sampling unit size di and sam-

ple size n. 101

3.9 Run times and (standard error of run times) in seconds based on 100 replicates under

simulation II with Bernoulli Base, θtrue = 0.01, sampling unit size di and sample size n. . 102

3.10 Run times and (standard error of run times) in seconds based on 100 replicates under

simulation II with Gaussian Base, θtrue = 0.01, sampling unit size di and sample size n. . 103

xiii

ACKNOWLEDGMENTS

Let me begin by expressing my immeasurable gratitude to my advisors Janet Sinsheimer, Hua Zhou

and Kenneth Lange. Janet has been the best academic advisor and role model for the entirety of

my time at graduate school. Her dedication to science across a broad range of disciplines, charisma,

creativity, and enthusiasm are both inspiring and infectious. Hua has been the best technical mentor I

could have hoped for, knowledgeable, patient, caring, and leads by example. He has taught me every-

thing I know about scientific computing and julia, and has set a lasting precedent for proper coding

practices and reproducible research. Ken has been equally supportive to me, brilliant, charming,

humorous, and undeniably talented in mathematics. Despite his numerous academic contributions

and achievements, I admire his wit and humility the most. Their academic expertise and compassion

have provided a safe learning environment for me to grow both personally and professionally, for

which I am forever grateful.

I also met wonderful mentors who profoundly guided my growth. I thank Donatello Telesca for

his enthusiasm and support in and out of classes. I thank Eric Sobel and Jeanette Papp not only for

their mentorship as directors under the Genomic Analysis Training Program and faculty members

of the OpenMendel group, but also for believing in me and encouraging me through difficult times.

During my time as a PhD student, I was also lucky to have met many of my closest friends

with whom I hope to remain lifelong friends. I have met great companions throughout my graduate

school journey in my cohort, and I also thoroughly enjoyed the research banter with students I met

in the Biomath department. I also want to thank the student members of the OpenMendel group, for

giving me such a wonderful group to belong to and learn from. Your company has not only inspired

me to be a better student and researcher, but also made this journey enjoyable.

In the end, let me thank my family and partner for their never-ending encouragement and support.

Mom and Dad, thank you for all the sacrifices you both made for the sake of our education.

xiv

VITA

2011–2015 B.S. Applied Mathematics, University of California, San Diego

2016–2020 Graduate student researcher

2020–2022 Genomic Analysis Training Program (T32 HG002536), UCLA

PUBLICATIONS

Ji SS, Chu BB, Sinsheimer JS, Zhou H, Zhou JJ, Lange K. “A flexible quasi-copula distribution for

statistical modeling" Journal of Multivariate Analysis. To be submitted 2022 May

Ji SS, German CA, Lange K, Sinsheimer JS, Zhou H, Zhou JJ, Sobel EM. “Modern simulation

utilities for genetic analysis" BMC Bioinformatics. 2021 May

Levine AJ, Soontornniyomkij V, Masliah E, Sinsheimer JS, Ji SS, Horvath S, Singer EJ, Kallian-

pur A, Moore DJ. “A candidate gene study of intermediate histopathological phenotypes in HIV-

associated neurocognitive disorders" J Neurovirol. 2020 Aug

Zhou H, Sinsheimer JS, Bates DM, Chu BB, German CA, Ji SS, Keys K, Mosher G, Papp J, Sobel

EM, Zhai J, Zhou J, Lange K (2020). “OpenMendel: a cooperative programming project for statis-

tical genetics" Human genetics 139.1 2020 Jan

vonHoldt BM, Ji SS, Aardema ML, Stahler DR, Udell MAR, Sinsheimer JS. “Activity of Genes

xv

with Functions in Human Williams-Beuren Syndrome Is Impacted by Mobile Element Insertions in

the Gray Wolf Genome" Genome Biol Evol 2018 June

xvi

CHAPTER 1

Introduction

It is important for geneticists to consider new computational tools that meet all the challenges of con-

temporary studies, especially when modeling random effects in genetic data. Statistical geneticists

employ simulation to estimate the power of proposed studies, test new analysis tools, and evalu-

ate the implications of different model specifications. Although there are existing trait simulators,

there is ample room to modernize available simulation models and computing platforms. Project

I aims to address this challenge by giving users the ability to easily simulate phenotypic traits un-

der generalized linear models (GLMs), linear mixed models (LMMs), and generalized linear mixed

models (GLMMs), conditional on PLINK formatted genotype data. Project I provides customized

simulation utilities that accompany specific genetic analysis options in OpenMendel; for example,

ordered, multinomial traits. For random effects, we provide simulation utilities both under the LMM

and GLMM framework. This project has been completed and approved for publication with BMC

Bioinformatics on March 25, 2021.

The last two projects are motivated by the genetic community’s pressing need for an alternative to

the mixed model framework for analysis on non-Gaussian distributions. Many genome-wide associ-

ation study (GWAS) tools are limited to independent observations and single phenotype analysis. As

genomic data sets are growing in size and complexity, more flexible GWAS tools are needed to better

accommodate modern problems. Existing algorithms for fitting GLMM in modern genomic studies

are not scalable since integration over the random effects has proven intractable [5] [8]. Generalized

estimating equations (GEEs) have since become the go-to alternative to GLMMs, despite their draw-

backs which our second project aims to address: (1) GEEs lack a well-defined likelihood and (2)

1

GEE estimation searches often fail to converge. Project II aims to introduce a new class of models

as a viable alternative to GLMMs and GEEs for efficient analysis in the presence of non-Gaussian

distributions and random effects. For this project, I am working on a methods article “A Flexible

Quasi-Copula Distribution for Statistical Modeling” that will provide the theoretical underpinnings

as well as show the computational advantages of the approach. This project has been completed and

submitted for publication to Annals of Applied Statistics on April 13, 2022. Project III will expand

upon Project II, demonstrating how the new class of models has useful qualities in a contemporary

genomic context. Specifically, we aim to find an extension of the model in Project II to allow for

multivariate GWAS using the computationally efficient score test. In all of these projects, we focus

on ensuring the methods developed scale to large sample sizes so they can be applied to modern scale

problems. Each method is implemented in individual open-source Julia packages, freely available

to the scientific community through the OpenMendel statistical genetics ecosystem [35].

2

CHAPTER 2

Realistic Trait Simulation: TraitSimulation.jl

2.1 Motivation

There is a lack of software available to geneticists who wish to calculate power and sample sizes in

designing a study on genetics data. Typically, the study power depends on assumptions about the

underlying disease model. Many power calculating software tools operate as a black box and do

not allow for customization. To develop custom tests, researchers can develop their own simulation

procedures to carry out power calculations. One limitation with many existing methods for simu-

lating traits conditional on genotypes is that these methods are limited to normally distributed traits

and to fixed effects. The TraitSimulation.jl package gives users the ability to easily simulate pheno-

typic traits under GLMs or LMMs conditional on PLINK formatted genotype data [5]. We include

customized simulation utilities that accompany specific genetic analysis options in OpenMendel; for

example, ordered, multinomial traits. For random effects, we currently limit the user to linear mixed

models although we are exploring the possibility of generalized linear mixed models as these will be

needed in my copula work. A single simulate function allows for the simulation of both independent

traits and multiple correlated traits under a fixed effect model or a mixed effect model. The program

also uses standard PLINK data format.

Many power calculating software tools operate as a black box and do not allow for customization.

Another limitation with many existing methods for simulating traits conditional on genotypes is that

these methods are limited to normally distributed traits and to fixed effects. For example, most

phenotype simulators are limited to Gaussian traits or traits transformable to normality, ignoring

3

qualitative traits and realistic, non-normal trait distributions.

In the sections below, we first explain the advantages of using Julia to develop the OpenMendel

project and demonstrate some of its key language features. We then present OpenMendel’s efficient

SNP data management tool SnpArrays. Finally, we outline the trait simulation procedure with

example data and results in various case studies that critically employ the simulated phenotypes in

downstream analyses. The realistic trait simulation models used in these case studies are not all

available in any other simulation software that we are aware of. Users are not limited to the analysis

options provided in OpenMendel or Julia. After simulating the desired trait, they can call other

analysis program, including popular R, C++ or Python packages, while staying within the Julia or

Jupyter notebook environments. Alternatively, they can output the simulated traits to files for more

customizable downstream analyses.

2.2 Implementation

This section sketches our implementation of the TraitSimulation.jl package.

2.2.1 Julia

The Julia programming language provides an excellent computing environment for genetic associ-

ation studies. Among Julia’s many features is its just-in-time compiler that allows the language to

combine the speed and efficiencies of low-level languages such as C or C++ with the ease-of-use and

understandable syntax of high-level languages such as R or Python. Julia’s speed is also enhanced

by its automatic use of the tremendous parallelization built into modern CPUs. For example, Julia

includes automatic instruction-level parallelism, vectorization (to carry out many mathematical op-

erations simultaneously), and multi-threading (to have whole sections of code run in parallel); Julia

even includes tools for distributed computing across massive computing clusters [16, 15, 14]. To

make coding easier and more efficient, Julia also has automatic type checking (to ensure variable

consistency) and multiple dispatch (in which a single function can be used with different types and

4

amounts of data as input and still have optimal efficiency). In addition, Julia ships with a native pack-

age manager, which improves portability, ease of deployment, and reproducibility. Julia also allows

users to easily maneuver between shared and distributed memory environments, including graphics

processing units (GPUs). Julia’s efficiency and versatility solves the long-standing two-language

problem, in which developers could quickly prototype software in higher-level languages such as R

or Python but then must rewrite their prototype code in lower-level languages such as C or C++ to

handle larger, real-world data sets. As genetic data evolves and grows, and more resource-intensive

tools are required to perform analyses, these design features make Julia a compelling language for

computational genetics.

2.2.2 SNP Data

Our Julia-based package SnpArrays.jl [30] is a versatile interface to SNP data for all of our

OpenMendel modules, and potentially for other packages. Users can specify SNPs of interest by

name, position, minor allele frequency (MAF), or other filtering criterion provided by SnpArrays.jl.

A remarkable feature is that after reading in compressed SNP data files, SnpArrays.jlkeeps all of

the genotype data compressed during its computations, such as estimation of genetic relationship

matrices (GRMs) and principal components (PCs). This feature reduces RAM requirements by or-

ders of magnitude while maintaining extremely fast performance. This is all possible because Julia

allows for operations such as matrix-matrix multiplication to be defined on BitArrays, which are

arrays where each element is one or two bits. This permits real analysis of biobank-scale data on

commodity-level computers, which was accomplished with our software in [11].

2.2.3 Trait Simulation

Our new TraitSimulation.jl program provides the broad range of underlying models listed in

Table 2.1, including ordered multinomial models, generalized linear models (GLMs), and general-

ized linear mixed models (GLMM). TraitSimulation.jl allows users to easily modify the models

5

Simulation Model Relatedness Data Typical Application

(1) Generalized Linear Models - Exponential-Family Traits
(2) Case/Control Models - Disease Status Traits
(3) Proportional Hazards/Odds Models - Ordinal Traits
(4) Variance Component Models GRM Correlated Normal Traits
(5) Generalized Linear Mixed Models GRM Correlated Non-Normal Traits

Table 2.1: Simulation Models Included in TraitSimulation.jl.

Simulation Model in Table 2.1 Model Construction Syntax

(1) model = GLMTrait(X ,β , dist, link)
model = GLMTrait(X ,β ,G,γ , dist, link)

(2, 3) model = OrderedMultinomialTrait(X ,β ,θ , link)
(4) model = VCMTrait(X ,β ,vc)

model = VCMTrait(formula, d f ,vc)
model = VCMTrait(X ,β ,G,γ,Σ,V)

(5) model = GLMMTrait(X ,β ,vc, dist, link)

Simulation Model in Table 2.1 simulate Function Syntax

(1, 3, 4, 5) simulate(model)
(2) simulate(model, Logistic = true, cutoff = 2)

Table 2.2: Syntax for Model Construction and for the simulate Function. (See text for variable
definitions.)

in Table 2.1 to fit their needs or to create entirely new simulation models. Table 2.2, whose variables

are defined below, conveys the basic syntax for model construction and running the simulation under

that model. This flexibility allows users to relax strict distributional assumptions imposed by many

existing packages and simulate traits that do not conform to normality restrictions. Greater fidelity

to trait distributions is bound to improve analysis results. Users interested in studying the robustness

of their model can assess the effects of model misspecification by simulating the trait data under the

hypothesized model and then analyzing the data under different models. An explicit example of the

use of our software for this purpose can be seen in [11] where they found a decrease in power when

analyzing ordered multinomial phenotypes under a linear or logistic regression model.

6

To run our TraitSimulation.jl package the typical five steps are:

1. Load the required packages: SnpArrays.jland TraitSimulation.jl.

2. Read in PLINK data files via SnpArrays.jland estimate the GRM, if applicable.

3. Construct the simulation model, including relevant parameters such as the genetic and non-

genetic predictors, the variance components, etc.

4. Call the simulation routine to sample from the constructed model.

5. Output the simulated phenotypes to a file or pass them to other analyses.

The following Julia code snippet is an example of commands used to perform the above steps

for model (4) in Table 2.1, based on genotype data in an existing compressed file. Prospective users

may interact with a comprehensive online tutorial with step-by-step instructions and sample code at

[13].

1 # Load the packages

2 using SnpArrays , TraitSimulation

3

4 # Read the genetic data into a SNPArray

5 snps = SnpArray("genotypefile.bed", n) # sample size n

6 GRM = grm(snps , minmaf = 0.05) # filter on frequency to

7 # estimate the Genetic Relationship Matrix (GRM)

8 locus = convert(Vector{Float64}, # load model genotypes

9 @view snps[:, snp_index]; impute = true)

10

11 # Specify the genetic and non -genetic predictors

12 X = [intercept sex locus] # predictor matrix for model

13 B = [[12.0; 2.0; 0.005;] [20.0; 2.0; 0.01]]

14 # corresponding regression coefficients matrix

15

7

16 # Specify the variance components for simulation

17 In = Matrix(I, n, n) # the n x n identity matrix

18 variance_formula = @vc ΣA ⊗ 2GRM + ΣE ⊗ In;

19

20 # Construct the model variable via the desired framework

21 trait_model = VCMTrait(X, B, variance_formula)

22 # see Table 2 for more details on VCMTrait

23

24 # Simulate the trait under the constructed model

25 y = simulate(trait_model) # create a single replicate

Here X is the matrix of predictors and B is the corresponding matrix of regression coefficients.

The @vc macro provides a convenient way to specify the variance components of the model. ΣA

is the additive genetic covariance matrix, ΣE is the environmental covariance matrix, ⊗ denotes a

Kronecker product and In is the n×n identity matrix.

Table 2.2 uses the same variables definitions as the above code. For each model in Table 2.2

the simulation procedure is also similar to the above code. Julia implements multiple dispatch that

allows our simulate function to run the appropriate simulation routine even when we specify dra-

matically different models.

More details on running TraitSimulation.jl under various settings, and additional step-by-

step instructions for model specification, can be found in our interactive Jupyter notebooks at [13].

TraitSimulation.jl provides users with a variety of different ways to specify the simulation

model of choice. The following alternative commands to specify the genetic model may be more

convenient.

1 # Alternate code for model specification

2 mean_formula = ["12 + 2.0* sex + 0.005* locus",

3 "20 + 2.0* sex + 0.01* locus"]

8

4 trait_model = VCMTrait(mean_formula , DataFrame(X),

5 variance_formula)

In this alternative specification, the regression coefficients in B are provided as a 2-element vector

of formulas, one for each trait. The matrix of predictors is specified as a DataFrame with column

names coordinated with those appearing in the formulas.

Another model specification mechanism provides greater flexibility for users who wish to include

many SNPs without having to convert the model genotypes from the compressed SnpArray. Here,

the genetic and non-genetic predictors (G,X) and the corresponding regression coefficients (γ,B)

are provided separately.

1 # Alternate code for model specification

2 G = SnpArray("snps_for_simulation.bed", n) # load SNPs

3 γ = [0.005 0.01] # regression coefficients for SNPs

4 trait_model = VCMTrait(X, B, G, γ, variance_formula)

Users with many variance components may choose not to use the @vc macro and instead provide a

list of the variance components and variance/covariance matrices:

1 # Alternate code for model specification

2 G = SnpArray("snps_for_simulation.bed", n) # load SNPs

3 γ = [0.005 0.01] # regression coefficients for SNPs

4 Σ = [ΣA ΣE] # collect all variance components

5 V = [VA VE] # collect all variance/covariance matrices

6 trait_model = VCMTrait(X, B, G, γ, Σ, V)

9

2.3 Results

Readers can reproduce our results by accessing the software, documentation, and Jupyter notebooks

at:

https://github.com/OpenMendel/TraitSimulation.jl

In the two case studies we present below, all the generative models for trait simulation that we

employ, univariate and bivariate variance components models and an ordinal multinomial model,

could not currently have been built into any other trait simulation package we know. As we describe

in the case studies, these are clearly the correct models for simulation given the respective data sets.

Thus, TraitSimulation.jl’s flexible model specification permits analyses that would not other-

wise be available. Step-by-step, interactive Jupyter notebooks that walk the user through these case

studies are available at [13]. We begin by describing the statistics behind these power analysis stud-

ies and how TraitSimulation.jl fits into the software pipeline in concert with other OpenMendel

modules.

Estimate
Kinship

Simulate
Genotypes

Simulate Phenotypes
under Genetic Model

Example Software Pipeline in OpenMendel

MendelGeneDropping.jl

TraitSimulation.jl

VarianceComponentModels.jl

OrdinalMultinomialModels.jl

Fit Genetic Models

MendelKinship.jlMendelKinshp.jl

 Construct Genetic Model

SnpArrays.jl INPUT
Genetic
Data

SnpArrays.jl

Power Analysis

Figure 2.1: OpenMendel Pipeline Example: Illustrates how TraitSimulation.jl fits within the
OpenMendel software pipeline to assess the statistical power of different association studies.

10

Figure 2.2: Case Study 1: Power under an Ordinal Multinomial Model. This example shows the
power to detect a single causal SNP in UK Biobank data with four outcome categories for disease
status. Using an ordinal multinomial simulation model and the OpenMendel module for ordinal
trait regression [11], we assume a single SNP as a fixed effect and control for sex and standardized
age. The figure compares analysis results for three SNPs of varying MAF over 1000 simulation
replicates each. For each SNP, the graph depicts the power to detect that SNP at significance level
α = 5× 10−8. For each SNP, the effect size varies from 0 to 0.05 in increments of 0.001. On the
x-axis, we exponentiate effect sizes to covert to odds ratios. See the text for a detailed description of
the model.

0.0000 0.0002 0.0004 0.0006 0.0008
0.00

0.25

0.50

0.75

1.00

Variance Component Model Power

Proportion of Variation Explained by SNP rs11240779 for Each Trait

Univariate VCM Trait
Bivariate VCM Trait
power = 80%, p-value threshold = 5*10^-8

Figure 2.3: Case Study 2: Power under Univariate and Bivariate Variance Components Models. This
example shows the power to detect a single causal SNP using both univariate and bivariate variance
components simulation models and the OpenMendel module for variance components analysis [34].
For each anlysis, each line in the graph depicts the power to detect a SNP with MAF = 0.23 using
1000 simulations at significance level α = 5× 10−8. The SNP effect size varies from 0 to 0.065
in increments of 0.002 in the center range (0.016 – 0.032) and increments of 0.005 in the two end
ranges. On the x-axis, we convert the SNP MAF and effect sizes into the proportion of variation
explained by the SNP. See the text for a detailed description of the model.

11

2.3.1 Statistical Power

For a trait Y with predictor matrix X and genotype vector Gs, we now illustrate how to estimate

the power to detect an associated SNP with effect size γ at the pre-specified significance level α .

Specifically, we set α = 5×10−8 and test the hypothesis

H0 : γ = 0 versus HA : γ ̸= 0

in our two subsequent case studies. The user also needs to specify the number of simulation repli-

cates. In the examples presented in this article, we commence by simulating 1000 replicates of an

n-vector of phenotypes Y with the specified SNP effect size γ . For each simulated trait vector, we

perform a likelihood ratio test of the above hypothesis test and reject the null when the p-value falls

below α . The power for the model is estimated as the proportion of the 1000 tests rejecting the null.

2.3.1.1 Case Study 1: Power Analysis for an Ordinal Disease

When modeling complex diseases where a binary phenotype for disease status is suboptimal, an or-

dered multinomial model is a powerful alternative. Our group recently demonstrated the application

of an ordinal multinomial model to assess markers for association to diabetes and hypertension in the

UK Biobank data [11]. Ordinal phenotypes were simulated and then fit using one of three analyses

models, linear regression, logistic regression and ordered multinomial regression, to assess effects

of model misspecification and show increased power under the ordered multinomial model. For the

current case study, we determine the power to detect a SNP that influences an ordered categorical

phenotype representing the stages of disease progression in the UK Biobank data with n = 185,565

subjects after data cleaning. Specifically, consider a trait y that takes ordered discrete values at one

of J = 4 levels:

(1) undiagnosed < (2) mild < (3) moderate < (4) severe .

12

Under the GLM framework, the cumulative probabilities αi j = Pr(yi ≤ j) are linked to the linear

predictors via the logit link g(αi j) = η = log
(

αi j
1−αi j

)
. The link itself is determined by the formula

g(αi j) = θ j − (XT
i β + γGs), j = 1, . . . ,J−1,

where the intercept parameters θ1 ≤ ·· · ≤ θJ−1 enforce the order between the categories and β

reflects the effects of the linear predictors under the proportional hazards model. The effect sizes

can be interpreted as the expected change of the response variable on an ordered log-odds scale for

each unit increase in the predictor. Figure 2.2 shows the resulting power curves for three SNPs with

varying MAF.

2.3.1.2 Case Study 2: Power Analysis for Multivariate Continuous Traits

In this case study, we carry out heritability estimation on simulated data with two variance compo-

nents, one for the additive genetic variance and one for the environmental variance. TraitSimulation.jl

allows users to simulate multiple traits and more than two variance components by changing a few

pertinent commands. For multivariate traits, two theoretical covariance matrices must be substituted

for the additive genetic and environmental variances. Here we demonstrate how power calculations

for the mixed model scale on a subset of n = 20,000 individuals from the same UK Biobank data

used in Case Study 1. For both the univariate model (d = 1) and multivariate (d > 1) mixed effect

model (listed as model type (4) in Table 2.1), we invoke SnpArrays.jl to estimate the kinship

matrix Φ̂GRM via the standard GRM formula

Φ̂GRMi j =
1

2S

S

∑
k=1

(Gik −2pk)(G jk −2pk)

2pk(1− pk)
.

Here i and j are two generic individuals, S is the number of typed SNPs in the data, pk is the MAF of

the kth SNP, and Gik ∈{0,1,2} is the number of copies of the minor allele at the kth SNP of individual

i. Missing genotypes are simplistically imputed on the fly as the most likely genotype given a SNP’s

MAF. Finally, we make the common assumption that the residual covariance between two relatives

13

n = 185,565

k = 1 707.8
k = 20 14350.2

Table 2.3: For the Ordered Multinomial Model, Power Calculation Runtimes in Seconds. A total of
1000 replications were performed for each combination (k,n) of the number of causal SNPs and the
sample size. This was repeated for several SNP effect sizes (see Figure 2.2) and the median runtimes
are recorded here.

is well approximated via the additive genetic variance times twice their kinship coefficient. The

latter is taken as the corresponding entry of the GRM matrix.

Our univariate and bivariate power calculation results under the variance components model

(VCM) framework appear in Figure 2.3. In the univariate model, β and γ represent the non-genetic

and genetic regression coefficients, respectively. We assigned 20 different values to the effect size

γ of the associated SNP or SNPs during phenotype simulation. At each γ value, for each of 1000

replications, we tested for association using a likelihood ratio test (LRT) with significance level

α = 5×10−8. Symbolically, the univariate and bivariate models are

Yn×1 = Xβ +Gsγ+g+ ε;
g ∼ N(0,σ2

A ×Φ)

ε ∼ N(0,σ2
E × In)

vec(Yn×d) = vec(XB+Gsγ)+g+ ε;
g ∼ N(0,ΣA ⊗Φ)

ε ∼ N(0,ΣE ⊗ In)

Here σ2
A and ΣA are the additive genetic variance and matrix, σ2

E and ΣE are the environmental

variance and matrix, Φ is the kinship matrix, and In is the n× n identity matrix. The multivariate

trait model is presented in its vectorized form using the multivariate normal density, where B and

γ are the matrix of regression coefficients for the non-genetic and genetic predictors, respectively.

Kronecker products ⊗ are required as explained in [17].

14

n = 5,000 n = 10,000 n = 20,000

Univariate k = 1 72.4 202.7 815.4
k = 20 1422.6 4122.1 16018.4

Bivariate k = 1 215.5 354.7 978.7
k = 20 4207.8 7007.2 19644.8

Table 2.4: For the Univariate and Bivariate Variance Components Model, Power Calculation Run-
times in Seconds. A total of 1000 replications were performed for each combination (k,n) of the
number of causal SNPs and the sample size. This was repeated for several SNP effect sizes (see
Figure 2.3) and the median runtimes are recorded here.

2.3.2 Benchmarks

Tables 2.3 and 2.4 record the median total runtimes in seconds over all 1000 replications across

k specified SNP predictors for a sample size of n people, for Case Studies 1 and 2, respectively,

as reported by the Julia BenchmarkTools.jlpackage. All computer runs were performed on a

standard 3.5 GHz Intel i9 CPU with 12 cores; they were run under Linux but we find the operating

system has no appreciable effect on runtimes. As mentioned above, these power calculation runtimes

are dominated by the post-simulation analyses. Thus, for variance component analyses, the runtimes

scale linearly in k, but not in n, as is usual for a variance components statistical analysis. Of course,

overall runtimes are linear in the number of replications chosen to perform. However, since each

replication is an independent process and our programs can easily be distributed across multiple

machines, using even extremely large numbers of replications, for example, for precise type 1 error

estimation, is certainly feasible on a computational cluster or in the cloud.

2.4 Conclusions

Genetic epidemiology and computational statistics are inexorably linked. The increasing size and

complexity of genetic data drive improvements in algorithm design, and statistical advances push

new genetic analyses. To continue this progress, we have introduced TraitSimulation.jl, a

15

software package that employs the Julia language to achieve impressive computational efficiencies

and easy coding for a broad range of trait simulation models, including many unavailable in other

simulation packages.

Simulation is a vital step in estimating the power of a proposed study to map genetic influences.

To obtain the best power estimates, one must exploit all available study subjects (unrelated, sibships,

parent-offspring pairs, and extended pedigrees), impute realistic genotypes (based on ethnically cor-

rect MAF, linkage disequilibrium (LD), and possibly recombination events), incorporate pertinent

non-genetic predictors, and critically, simulate realistic trait values.

For example, if one is planning a family-based study and wanted to do a power analysis before

collecting any data, then one would start with a collection of pedigree structures, including possibly

singletons, that mimicked to the best of one’s knowledge the potential sample collection. At the

founders of each pedigree one would want to simulate the genetic data using ethnic-specific allelic

frequencies based on the admixture of the target population. The correct LD structure should also

be maintained within these founder genomes. One way to accomplish this is to find a real geno-

typing or sequencing study, for example, the International Genome Sample Resource (IGSR)[12],

that includes subjects in the specified ethnicities, and use the real genomes of unrelated individuals

as the data for the founders of the pedigrees. Then use gene-dropping software, for example, from

the OpenMendel suite, and the real human recombination map to mimic recombination events that

would occur as genomes are passed from parent to child through the pedigrees. The result will be

simulated but realistic genetic data for all individuals in all pedigrees, because the data reflects the

appropriate allelic frequencies, LD patterns, recombination map, and relationship structure. Our

TraitSimulation.jl package can then use this data and whichever trait model you wish to study

to repeatedly generate trait values. Finally, each set of simulated data would be subject to the statis-

tical analyses that constitutes the power analysis.

The model generality, ease of use, and speed of TraitSimulation.jl, and indeed OpenMendel

as a whole, promote the agenda of modern epidemiology. TraitSimulation.jl’s wide range of

generating models improves model realism and therefore power estimation. This generality allows

16

statistical analysis to escape the straitjacket of the Gaussian assumption by allowing case/control

and ordinal disease models, and more profoundly, any GLM or GLMM structure. Our choice of the

Julia computer language makes it straightforward to code software and for users to adapt existing

code to fit their modeling needs. Julia enhances the speed, flexibility, and overall ease-of-use of

TraitSimulation.jl. Julia’s speed stems from its just-in-time compiler, thorough use of paral-

lelization, and its promotion of bit-wise linear algebra operations.

TraitSimulation.jl is part of the OpenMendel family of Julia packages [34]. OpenMendel

provides an integrated suite of genetic analysis tools that rely on the standard data structure provided

by SnpArrays.jl. TraitSimulation.jl can access other downstream analysis packages in esti-

mating parameters and the power of new statistical tests. However, such pipeline strategies introduce

extra layers of complexity and ultimately hamper analysis reproducibility. All of OpenMendel’s

packages are fast, memory efficient, and user- and developer-friendly. The open-source nature of

OpenMendel encourages other statisticians to extend its code base. In adding TraitSimulation.jl

to the OpenMendel family, we enable trait simulation within an integrated robust analysis pipeline.

In our view, OpenMendel represents a unique and unified state-of-the-art environment for statistical

genetics. We ask for your feedback and the help of the entire genetics community in perfecting

OpenMendel. It or something very similar will be necessary as we face ever more massive and

complex modern data sets.

2.5 Availability of source code

Project name: TraitSimulation

Project home page:

https://github.com/OpenMendel/TraitSimulation.jl

Operating systems: Mac OS, Linux, Windows

Programming language: Julia 1.0, 1.2

License: MIT

17

https://github.com/OpenMendel/TraitSimulation.jl

The code to generate simulated data, as well as their subsequent power analyses, are available in our

github repository. Notably, TraitSimulation.jl interfaces with the OpenMendel [35] packages

SnpArrays.jl [33], OrdinalMultinomialModels.jl [11], VarianceComponentModels.jl [34],

and JuliaStats’s packages Distribution.jl [4] and GLM.jl [22]. We used the Julia package

Plots.jl to obtain all our graphs.

18

CHAPTER 3

A Flexible Quasi-Copula Distribution for Statistical Modeling:

QuasiCopula.jl

3.1 Motivation

The analysis of correlated data is stymied by the lack of flexible multivariate distributions with fixed

margins. Once one ventures beyond the confines of multivariate Gaussian distributions, analysis

choices are limited. [21] launched the highly influential method of generalized estimating equations

(GEEs). This advance allows generalized linear models (GLMs) to accommodate the correlated

traits encountered in panel and longitudinal data and effectively broke the stranglehold of Gaussian

distributions in analysis. The competing method of statistical copulas introduced earlier by Sklar

is motivated by the same consideration [26]. Finally, generalized linear mixed models (GLMMs)

[6, 29] attacked the same problem. GLMMs are effective tools for modeling overdispersion and

capturing the correlations of multivariate discrete data.

However, none of these three modeling approaches is a panacea. GEEs lack a well-defined

likelihood, and estimation searches can fail to converge. For copula models, likelihoods exist, but

are unwieldy, particularly for discrete outcomes. Copula calculations scale extremely poorly in

high dimensions. Computing with GLMMs is problematic since their densities have no closed form

and require evaluation of multidimensional integrals. Gaussian quadratures scale exponentially in

the dimension of the parameter space. Markov Chain Monte Carlo (MCMC) can be harnessed in

Bayesian versions of GLMMs, but even MCMC can be costly. For these reasons alone, it is worth

pursuing alternative modeling approaches.

19

This brings us to an obscure paper by the Japanese mathematical statistician Tonda. Working

within the framework of Gaussian copulas [27] and generalized linear models, Tonda introduces a

device for relaxing independence assumptions while preserving computable likelihoods [28]. He

succeeds brilliantly except for the presence of an annoying constraint on the parameter space of the

new distribution class. The fact that his construction perturbs marginal distributions is forgivable.

The current paper has several purposes. First, by adopting a slightly different working definition, we

show how to extend his construction to lift the awkward parameter constraint. Our new definition

allows explicit calculation of (a) moments, (b) marginal and conditional distributions, and (c) the

score and observed information of the loglikelihood and allows (d) generation of random deviates.

Tonda tackles item (a), omits items (b) and (c), and mentions item (d) only in passing. For maximum

likelihood estimation (MLE), he relies on a non-standard derivative-free algorithm [23] that scales

poorly in high dimensions. We present two gradient-based algorithms designed for high-dimensional

MLEs. The first is a block ascent algorithm that updates fixed effects by Newton’s method and

updates variance components by a minorization-maximization (MM) algorithm. The second is a

standard quasi-Newton algorithm that updates fixed effects and variance components jointly.

In contrast to other multivariate outcome models, our loglikelihoods contain no determinants or

matrix inverses. These features resolve computational bottlenecks in parameter estimation. We ad-

vocate gradient based estimation methods that avoid computationally intensive second derivatives.

Approximate Hessians can be computed after estimation to provide asymptotic standard errors and

confidence intervals. The range of potential applications of our quasi-copula model is enormous.

Panel, longitudinal, time series, and all of GLM modeling stand to benefit. In addition to relaxing

independence assumptions, our models offer a simple way to capture over-dispersion. Our simula-

tion studies and real data examples highlight not only the virtues of the quasi-copula model but also

its limitations. For reasons to be explained, we find that the model reflects reality best when the

size of the independent sampling units is low or the correlations between responses within a unit are

small.

We first address the inspiration from Tonda’s paper to illustrate the GLMM approximation pro-

20

cedure and address why we call the model a "Quasi-Copula" model.

3.1.1 GLMM Framework

Let Y = (Y1, ...,Yd) be a d-dimensional multivariate random vector response, θ = (θ1, ...,θd) denote

a d-dimensional unknown parameter vector. Recall that for a GLM outcome, the distribution of Y is

from the exponential family of distributions of the form

fexp(Y |θ) =
d

∏
j=1

exp
[

Yjθ j −b j(θ j)

φ j
+ c j(y j,φ j)

]
.

where if we use the canonical link function, θ = g(µ) = η + z where η is the fixed systematic

component and z = (z1, ...,zd) ∼ h(z|Σ) is the random effects. Typically we assume the random

effects follow a multivariate normal with mean 0 and covariance matrix Σ.

h(z|Σ)∼ Nd(0,Σ)

Then the likelihood is

f (Y |η ,Σ) =
∫
Rd

fexp(Y |θ)h(z | Σ)dz

3.1.2 Tonda’s Framework

In order to avoid calculating the multi-dimensional integral, Tonda derives an approximation of the

GLMM density based on a Taylor Series expansion about the mean of the random effect, zi = 0, up

to the second order. Detailed derivations are found in the text [28] and in the supplemental material

at the end of this chapter.

˜f (Y;η ,Σ) ≊ Ez

[
fexp(Y|η + z)+

(
∂ fexp(Y|η + z)

∂z
|z=0

)t
z+

1
2

zt
(

∂ 2 fexp(Y|η + zi)

∂z2 |z=0

)t
z
]

=
[
1+

1
2

tr(WΣ)
]

fexp(Y|η)

21

where W = (wab) is a p× p matrix whose elements are functions of Y given by

waa =
∂ 2

∂ z2
a

fexp(Y|η + z)|z=0

wab =
∂ 2

∂ za∂ zb
fexp(Y|η + z)|z=0

Tonda notes in Theorem 3.1 of the paper is only a proper pdf if Σ is a positive definite matrix and

the following condition holds
d

∑
j=1

1
φ j

v j(µ j)σ j j ≤ 2.

Recall the form of the copula loglikelihood for continuous distributions with parametric models

FY1(y1|θ1), ...,FYd(yd|θd) as the marginal CDFs.

fY(y) = fY(y1, ...,yd) = cY(FY1(y1), ...,FYd(yd))
d

∏
j=1

fY j(y j)

We call this denisty a "Quasi-Copula" model because it takes a similar form as the general copula

density above. The density uses a scalar valued function of Y as the "copula" to induce covariation

between the independent exponential family densities. We note the main difference is that this

approximation is more general than the traditional copula framework in that it does not depend on

CDF’s or inverse quantiles of the marginal distributions.

3.2 Definitions

Consider d independent random variables X1, . . . ,Xd with densities fi(xi) relative to measures αi,

with means µi, variances σ2
i , third central moments ci3, and fourth central moments ci4. Let Γ= (γi j)

be an d × d positive semidefinite matrix, and α be the product measure α1 ×·· ·×αd . Inspired by

[28], we let D be the diagonal matrix with ith diagonal entry σi and consider the nonnegative function

1+
1
2
(x−µ)tD−1ΓD−1(x−µ).

22

Its average value is

∫ d

∏
i=1

fi(xi)
[
1+

1
2
(x−µ)tD−1ΓD−1(x−µ)

]
dα(x)

= 1+
1
2 ∑

i
∑

j
E
[(xi −µi)(x j −µ j)

σiσ j

]
γi j

= 1+
1
2 ∑

i
γii.

It follows that the function

g(x) =
[
1+

1
2

tr(Γ)
]−1 d

∏
i=1

fi(xi)
[
1+

1
2
(x−µ)tD−1ΓD−1(x−µ)

]
(3.1)

is a probability density with respect to the measure α . The virtue of the density is that it over-

comes the independence restriction and steers the sample matrix of the residuals toward the target

covariance matrix Γ. Note that g(x) is technically not a copula since it fails to preserve the marginal

distributions fi(xi). For instance, we will see later that g(x) tends to inflate marginal variances.

Tonda replaces the ith diagonal entry of 1
2(x−µ)tD−1ΓD−1(x−µ) by 1

2 [
(xi−µi)

2

σ2
i

− 1]γii. This

yields

∫ m

∏
i=1

fi(xi)
[
1+

1
2
(x−µ)tD−1ΓD−1(x−µ)

]
dα(x) = 1+

1
2 ∑

i
(1−1)γii = 1.

As long as 1− 1
2 ∑i γii ≥ 0, we have a proper nonnegative density, and no normalization is necessary.

Unfortunately, this sufficient condition for nonnegativity is restrictive and awkward to maintain in

maximum likelihood estimation.

23

3.3 Moments

Let Y = (Y1, . . . ,Yd)
t be a random vector distributed as g(x). To calculate the mean of Yk, note that

our independence assumption implies

∫
(xk −µk)g(x)α(x)

=
[
1+

1
2

tr(Γ)
]−1 1

2 ∑
i

∑
j
E
[
(xk −µk)

(xi −µi)(x j −µ j)

σiσ j

]
γi j

=
[
1+

1
2

tr(Γ)
]−1 ck3γkk

2σ2
k
.

Hence, if κk3 is the skewness of Xk, then

E(Yk) = µk +
[
1+

1
2

tr(Γ)
]−1 ck3γkk

2σ2
k

= µk +
[
1+

1
2

tr(Γ)
]−1 σkκk3γkk

2

= µk +
σkκk3γkk

2
+O(∥Γ∥2)

for any matrix norm ∥Γ∥. The mean E(Yk) is close to µk when the diagonal entries of Γ and, hence

|Γ∥ itself, are small.

To calculate the covariance matrix of Y, note that

∫
(xk −µk)(xl −µl)g(x)dα(x)

=
[
1+

1
2

tr(Γ)
]−1

1{k=l}σ
2
k +
[
1+

1
2

tr(Γ)
]−1

×1
2 ∑

i
∑

j
E
[
(xk −µk)(xl −µl)

(xi −µi)(x j −µ j)

σiσ j

]
γi j.

24

The indicated expectations relative to ∏
d
i=1 fi(xi) reduce to

E[(xk −µk)(xl −µl)(xi −µi)(x j −µ j)]

=



ck4 k = l = i = j

σ2
k σ2

i k = l ̸= i = j

σ2
k σ2

l k = i ̸= l = j

σ2
k σ2

l k = j ̸= l = i

0 otherwise .

When k = l and κk4 is the kurtosis of Xk,

∫
(xk −µk)

2g(x)dα(x)

=
[
1+

1
2

tr(Γ)
]−1[

σ
2
k +

1
2

ck4γkk

σ2
k

+
1
2

σ
2
k ∑

i ̸=k
γii

]
=

[
1+

1
2

tr(Γ)
]−1

σ
2
k

[
1+

κk4γkk

2
+

1
2 ∑

i ̸=k
γii

]
= σ

2
k +

σ2
k κk4γkk

2
+

σ2
k

2 ∑
i̸=k

γii +O(∥Γ∥2)

= σ
2
k

[
1+

(κk4 −1)γkk

2
+

1
2 ∑

i
γii

]
+O(∥Γ∥2)

= σ
2
k

[
1+

(κk4 −1)γkk

2

]
+O(∥Γ∥2).

Because [E(Yk −µk)]
2 = O(∥Γ∥2), we find that

Var(Yk) = E[(Yk −µk)
2]− [E(Yk −µk)]

2

= σ
2
k

[
1+

(κk4 −1)γkk

2

]
+O(∥Γ∥2).

Because the kurtosis κk4 ≥ 1, the multiplier κk4−1 of γkk is nonnegative, and the variance is inflated

for ∥Γ∥ small.

25

When k ̸= l,

∫
(xk −µk)(xl −µl)g(x)dα(x) =

[
1+

1
2

tr(Γ)
]−1 1

2
2σkσlγkl

= σkσlγkl +O(∥Γ∥2).

Hence, the covariance and correlation satisfy

Cov(Yk,Yl) = Cov(Yk −µk,Yl −µl)

= E[(Yk −µk)(Yl −µl)]−E(Yk −µk)E(Yl −µl)

= σkσlγkl +O(∥Γ∥2)

Corr(Yk,Yl) =
γkl√

1+ (κk4−1)γkk
2 +O(|Γ∥2)

√
1+ (κl4−1)γll

2 +O(|Γ∥2)
.

As a check, the quantities E(Yk), Var(Yk), and Cov(Yk,Yl) reduce to the correct values µk, σ2
k , and 0,

respectively, when Γ= 0.

3.4 Marginal and Conditional Distributions

Let S be a subset of {1, . . . ,d} with complement T . To simplify notation, suppose S = {1,2, . . . ,s}.

Now write

Y =

YS

YT

 , r =

rS

rT

 , Γ =

 ΓS ΓST

Γt
ST ΓT

 , α = αS ×αT ,

where r is the vector D−1(Y−µ) of standardized residuals. The marginal density of YS is

[
1+

1
2

tr(Γ)
]−1

∏
i∈S

fi(yi)
∫

∏
i∈T

fi(yi)
[
1+

1
2

rtΓr
]

dαT (yT)

=
[
1+

1
2

tr(Γ)
]−1

∏
i∈S

fi(yi)
[
1+

1
2

rt
SΓSrS +

1
2

tr(ΓT)
]
.

26

To derive the conditional density of YS given by YT , we divide the joint density by the marginal

density of YT . This action produces the conditional density

dS ∏
i∈S

fi(yi)
[
1+

1
2

rtΓr
]

with normalizing constant dS =
[
1+ 1

2rt
TΓT rT + 1

2 tr(ΓS)
]−1

. From this density, our well-rehearsed

arguments lead to the conditional mean

E(Yk | YT) = µk +dS

[ck3γkk

2σ2
k

+
1
σk

∑
j∈T

r jγ jk

]
= µk +

ck3γkk

2σ2
k

+O(∥Γ∥2)

for k ∈ S. The corresponding conditional variance is

Var(Yk | YT) = σ
2
k +

1
2

(ck4

σ2
k
−σ

2
k

)
γkk + ∑

j∈T

ck3r jγk j

σk
+O(∥Γ∥2).

and the corresponding conditional covariances are

Cov(Yk,Yl | YT) = σkσlγkl +O(∥Γ∥|2)

for k ∈ S, l ∈ S, and k ̸= l. It is noteworthy that to order O(∥Γ∥2), the conditional and marginal

means agree, and the conditional and marginal covariances agree.

3.5 Generation of Random Deviates

To generate a random vector from the density (3.1), we first sample Y1 from its marginal density

[
1+

1
2

tr(Γ)
]−1

f1(y1)
(

1+
γ11

2
r2

1 +
1
2

d

∑
j=2

γ j j

)
,

27

and then sample the subsequent components Yi from their conditional distributions, Yi | Y1, . . . ,Yi−1

for all i ∈ [1,d]. If we denote the set {1, . . . , i−1} by [i−1], then the conditional density of yi given

the previous components is

d−1
[i−1] fi(yi)

[
d[i−1]+ ri

i−1

∑
j=1

r jγi j +
γii

2
(r2

i −1)
]
,

where d[i−1] = 1+ 1
2rt

[i−1]Γ[i−1]r[i−1]+
1
2 ∑

d
j=i γ j j.

When the densities fi(yi) are discrete, each stage of sampling is straightforward. Consider any

random variable Z with nonnegative integer values, discrete density pi = Pr(Z = i), and mean ν . The

inverse method of random sampling reduces to a sequence of comparisons. We partition the interval

[0,1] into subintervals with the ith subinterval of length pi. To sample Z, we draw a uniform random

deviate U from [0,1] and return the deviate j determined by the conditions ∑
j−1
i=1 pi ≤ U < ∑

j
i=1 pi.

The process is most efficient when the largest pi occur first. This suggests that we let k denote the

least integer ⌊ν⌋ and rearrange the probabilities in the order pk, pk+1, pk−1, pk+2, pk−2, . . . This tactic

is apt put most of the probability mass first and render sampling efficient.

When the densities fi(yi) are continuous, each stage of sampling is probably best performed

by inverse transform sampling. This requires calculating distribution functions and forming their

inverses, either analytically or by Newton’s method. The required distribution functions assume the

form

∫ x

−∞

f (y)[a0 +a1(y−µ)+a2(y−µ)2]dy =
∫ x

−∞

f (y)[b0 +b1y+b2y2]dy.

The integrals
∫ x
−∞

f (y)y j dy are available as special functions for Gaussian, beta, and gamma densi-

ties f (y). For instance, if φ(y) = 1
2π

e−y2/2 is the standard normal density and Φ(x) is the standard

normal distribution, then

∫ x

−∞

yφ(y)dy = −φ(x) and
∫ x

−∞

y2
φ(y)dy = Φ(x)− xφ(x).

28

To avoid overburdening the text with classical mathematics, we omit further details. Additional

derivations can be found in the supplemental material.

3.6 Parameter Estimation

3.6.1 Mean Components

Consider n independent realizations yi from the quasi-copula density (3.1). Each of these may be

of a different dimension di and possess a different mean vector µi(β), covariance matrice Γi(θ) =

[γi jk(θ)], and component densities fi j(yi j | β). If ri(β) denotes the vector D−1
i (yi −µi) of standard-

ized residuals for sampling unit i, then the loglikelihood of the sample is

L(β,θ) = −
n

∑
i=1

ln
[
1+

1
2

tr(Γi(θ))
]
+

n

∑
i=1

di

∑
j=1

ln fi j(yi j | β)

+
n

∑
i=1

ln
{

1+
1
2

ri(β)
tΓi(θ)ri(β)

}
.

The score (gradient of the loglikelihood) with respect to β is clearly

∇βL(β,θ) =
n

∑
i=1

di

∑
j=1

∇ ln fi j(yi j | β)+
n

∑
i=1

∇ri(β)
tΓi(θ)ri(β)

1+ 1
2ri(β)tΓi(θ)ri(β)

,

where ∇ri(β)
t = dri(β) is the differential (Jacobi matrix) of the vector ri(β). An easy calculation

shows that ∇ri(β) has entries

∇ri j(β) = − 1
σi j(β)

∇µi j(β)−
1
2

yi j −µi j(β)

σ3
i j(β)

∇σ
2
i j(β).

In searching the likelihood surface, it is best to approximate the observed information by a pos-

itive definite matrix. This suggests replacing −d2 ln fi j(yi j | β) by the expected information matrix

Ji j(β) under the independence model and dropping indefinite matrices in the exact Hessian. These

29

steps give the approximate Hessian

d2
βL ≈ −

n

∑
i=1

di

∑
j=1

Ji j(β)−
n

∑
i=1

[∇ri(β)Γi(θ)ri(β)][∇ri(β)Γi(θ)ri(β)]
t[

1+ 1
2ri(β)tΓiri(β)

]2 ,

which is clearly negative semidefinite. As partial justification for this approximation, we expect

residuals to be small on average. The score and approximate Hessian provide the ingredients for an

approximate Newton’s method for improving β.

3.6.2 Structured Covariance

Maximization of the loglikelihood also involves finding optimal values for the covariance parame-

ters θ determining the structured covariance matrices Γi. Assuming there are no shared mean and

covariance parameters, the relevant part of the loglikelihood is

−
n

∑
i=1

ln
[
1+

1
2

tr(Γi(θ))
]
+

n

∑
i=1

ln
[
1+

1
2

ri(β)
tΓi(θ)ri(β)

]
.

To simplify estimation of Γi, we investigate just three covariance scenarios, namely, an autoregres-

sive AR(1) model, a compound symmetric (CS) model, and a variance components (VC) model.

Under the AR(1) and CS models, Γi(θ) is parameterized by θ = (σ2,ρ), a total variance σ2 and a

correlation ρ . For the AR(1) model this leads to the representation

Γi(θ) = σ
2 ×



1 ρ ρ2 ρ3 ... ρdi−1

ρ 1 ρ ρ2 ...

...

... ρ 1 ρ

ρdi−1 ρdi−2 ... ρ2 ρ 1


= σ

2 ×Vi(ρ).

30

For the CS model this leads to the representation

Γi = σ
2 ×
[
ρ1di1

t
di
+(1−ρ)Idi

]
= σ

2 ×Vi(ρ)

The relevant part of the loglikelihood can be rewritten as

f (σ2,ρ) = −
n

∑
i=1

ln
[
1+

diσ
2

2

]
+

n

∑
i=1

ln
[
1+

σ2

2
ri(β)

tVi(ρ)ri(β)
]

A typical variance components problem depends on the decomposition Γi(θ) =∑
m
k=1 θkΩik of Γi

into a linear combination of known covariance matrices Ωik = (ωik jl) against unknown nonnegative

variance components θk arranged in a vector θ = (θk). Now the relevant part of the loglikelihood

amounts to

f (θ) =
n

∑
i=1

ln(1+θtbi)−
n

∑
i=1

ln(1+θtci),

where the vectors bi and ci have the nonnegative components

bik =
1
2

ri(β)
t
Ωikri(β) and cik =

1
2

tr(Ωik).

Derivation of the scores ∇θL and approximate observed information matrices −d2
θL for the AR(1),

CS and VC models is relegated to the Supplemental Material. The gradients alone provide the raw

material for a quasi-Newton search of parameter space.

3.6.3 MM Algorithm for the VC Model Parameters

One can construct an iterative MM algorithm for updating θ holding β fixed. There exists a sub-

stantial literature on the MM principle for optimization [20, 19, 32]. The idea in maximization is to

concoct a surrogate function g(θ | θr) that is easy to maximize and hugs the objective f (θ) tightly.

31

Here θr is the current value of θ. Construction of the surrogate is guided by two minorization

requirements:

f (θ) ≥ g(θ | θr) ∀ θ (dominance condition)

f (θr) = g(θr | θr) (tangent condition).

The next iterate is determined by θr+1 = argmax g(θ | θr).

The MM principle guarantees that f (θr+1) ≥ f (θr), with strict inequality being the rule. In

practice, minorization is carried out piecemeal on a sum of terms defining the objective.

For our particular problem we capitalize on the convexity of the function − ln(s). The supporting

hyperplane inequality implies the linear minorization

−
n

∑
i=1

ln(1+θtci) ≥ −
n

∑
i=1

1
1+θt

rci
(1+θtci −1−θt

rci).

On the other hand, Jensen’s inequality gives the minorization

n

∑
i=1

ln(1+θtbi) ≥
n

∑
i=1

1
1+θt

rbi
ln
(

1+θt
rbi

1
1
)

+
n

∑
i=1

∑
j

θr jbi j

1+θt
rbi

ln
(

1+θt
rbi

θr jbi j
θ jbi j

)
.

The sum of these two minorizations constitutes the overall minorization g(θ | θr). The stationary

condition ∇g(θ | θr) = 0 can be solved to yield the updates

θr+1, j = θr j
∑

n
i=1

bri
1+θt

rbi

∑
n
i=1

ci j
1+θt

rci

.

Note that the update θr+1, j remains nonnegative if θr j is nonnegative and equals 0 if and only if

θr j = 0. However, convergence of θr j to 0 is possible. More importantly, the MM updates drive the

loglikelihood uphill.

32

3.6.4 Initialization

Most optimization algorithms benefit from good starting values. The obvious candidate for β is the

maximum likelihood estimate delivered by the independence model using GLM.jl. Under the VC

framework, we use the MM algorithm to initialize variance components. Under the CS and AR(1)

framework, we initialize the variance component σ2 by the crude estimate from the MM algorithm

treating ρ = 1.

3.7 Statistical Properties

Because the likelihood is a smooth function of the parameters in the quasi-copula model, we ex-

pect the maximum likelihood estimates (β̂, θ̂) to be consistent and asymptotically efficient. One

can estimate the asymptotic covariance matrix by the inverse of the observed information matrix.

The expected information matrix is probably unavailable in closed form. It is straightforward to

implement likelihood ratio tests on the mean components β. Likelihood ratio testing on the vari-

ance components θ is complicated by the same nonnegativity constraints implicit in all variance

components models.

3.7.1 Compound Symmetric Covariance

Under the Compound Symmetric (CS) parameterization of Γi, one can test hypotheses involving the

correlation parameter ρ . To ensure that the covariance matrix Γi is positive semi-definite, we bound

ρ ∈ (− 1
di−1 ,1). Additional details on this derivation can be found in the supplemental materials. For

example, in the bivariate case, di = 2, ρ ∈ (−1,1) and

Γi = σ
2 ×
[
ρ121t

2 +(1−ρ)I2

]
= σ

2 ×

1 ρ

ρ 1



33

We are interested in the hypothesis H0 : ρ = 0, which represents an independent univariate general-

ized linear mixed model with with a single variance component proportional to the identity matrix.

The additional noise component captures overdispersion.

3.8 Results

3.8.1 Simulation Studies

To assess estimation accuracy of the quasi-copula model, we first present simulation studies for the

Poisson and negative binomial base distributions with log link function, under the VC parameteri-

zation of Γi. We then demonstrate the flexibility of the model in analyzing mixed discrete outcomes

under a bivariate model with Poisson and Bernoulli base distributions and canonical link functions.

Additional simulation studies with different base distributions under the AR(1), CS and VC param-

eterizations of Γi are included in the supplemental material.

In each simulation scenario, the non-intercept entries of the predictor matrix Xi are indepen-

dent standard normal deviates. True regression coefficients βtrue ∼ Uniform(−0.2,0.2). For the

negative binomial base, all dispersion parameters are rtrue = 10. Each simulation scenario was

run on 100 replicates for each sample size n ∈ {100,1000,10000} and number of observations

di ∈ {2,5,10,15,20,25} per independent sampling unit.

Under the VC parameterization of Γi, the choice Γi,true = θtrue ×1di1
t
di

allows us to compare to

the random intercept GLMM fit using MixedModels.jl. When the random effect term is a scalar,

MixedModels.jl uses Gaussian quadrature for parameter estimation. We compare estimates and

run-times to the random intercept GLMM fit of MixedModels.jl with 25 Gaussian quadrature

points. We conduct simulation studies under two scenarios (simulation I and II). In simulation I, it

is assumed that the data are generated by the quasi-copula model with θtrue = 0.1, and in simulation

II, it is assumed that the true distribution is the random intercept GLMM with θtrue = 0.01,0.05.

34

Simulation I: In this scenario, we simulate datasets under the quasi-copula model as outlined in

Section 3.5 and compare MLE fits under the quasi-copula model and GLMM. Figures 3.1 - 3.2 help

us assess estimation accuracy and how well the GLMM density approximates the quasi-copula den-

sity. As anticipated, the MSE’s across all base distributions decrease as sample size increases. For

data simulated under the quasi-copula model, quasi-copula mean squared errors (MSE) are generally

lower than GLMM MSE’s. GLMM estimated variance components are often zero and stay relatively

constant across sample sizes. This confirms the fact that the two models are different in how they

handle random effects, particularly with larger sampling units (di > 2).

Simulation II: In the second simulation scenario, we generate datasets under the random intercept

Poisson GLMM and compare MLE fits delivered by the two models. Figures 3.3 - 3.6 now shed light

on how well the quasi-copula density approximates the GLMM density under different magnitudes

of the variance components. As expected, MSE’s under GLMM analysis are now generally lower

than those under quasi-copula analysis. For the Poisson and negative binomial base distributions

with θtrue = 0.05, Figures 3.3 - 3.4 indicate biases for the quasi-copula estimates of (β,θ) for larger

sampling units (di > 2) up to sample size n = 10,000. However in Figures 3.5 - 3.6, where the

variance component θtrue = 0.01 is smaller, we no longer observe biased estimates for (β,θ).

35

Figure 3.1: Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the
Poisson base distribution with log link function and a single VC versus a random intercept GLMM
fit via MixedModels.jl. Each scenario result includes 100 replicates.

36

Figure 3.2: Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the
negative binomial base distribution with log link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates.

37

Figure 3.3: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ = 0.05 under
the Poisson base distribution with log link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

38

Figure 3.4: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ = 0.05 under
the negative binomial base distribution with log link function and a single VC versus a random
intercept GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates.

39

Figure 3.5: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ = 0.01 under
the Poisson base distribution with log link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates.

40

Figure 3.6: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ = 0.01 under
the negative binomial base distribution with log link function and a single VC versus a random
intercept GLMM fit via MixedModels.jl. Each scenario result includes 100 replicates.

3.8.1.1 Run Times

Run times under simulation I and II are comparable. Table 3.1 presents average run times and

their standard errors in seconds for 100 replicates under simulation II with θtrue = 0.01. All com-

puter runs were performed on a standard 2.3 GHz Intel i9 CPU with 8 cores. Runtimes for the

quasi-copula model are presented given multi-threading across 8 cores. We note the current ver-

sion of MixedModels.jl does not allow for multi-threading across multiple cores. Because in

contrast to MixedModels.jl the quasi-copula loglikelihoods contain no determinants or matrix

inverses, QuasiCopula.jl experiences less pronounced increases in computation time as sam-

ple and sampling unit sizes grow. Run times for the quasi-copula model are faster than those of

MixedModels.jl for discrete outcomes (Table 3.1, Supplementary Table 3.9) and slower for Gaus-

sian distributed outcomes (Supplementary Table 3.10). This general trend also holds on a per core

41

basis. This discrepancy is hardly surprising since MixedModels.jl takes into account the low-rank

structure of the covariance matrix Ωi in the random intercept linear mixed model (LMM). This tactic

reduces the computational complexity per sample from O(d3
i) to O(d2

i). More detailed comparisons

appear in the supplement.

For the negative binomial base distribution, MixedModels.jl explicitly warns the user against

fitting GLMM’s with unknown dispersion parameter r. Our software updates r iteratively by New-

ton’s method, holding the other parameters (β,θ) fixed. Our restriction to MixedModels.jl makes

for a fair comparison within the Julia language universe. We also compared our negative binomial

fits with those delivered by the three popular R packages for GLMM estimation in Table 3.2. On a

single dataset with di = 5, and n = 10,000 simulated under simulation II, the lme4 package [2] takes

an inordinately long time to fit the model. Obtaining confidence intervals takes a significant amount

of additional time, and inference of r is impossible. The glmmTMB package [7] allows for inference

of r and takes much less time to form confidence intervals than lme4, but it is still significantly

slower than quasi-copula fitting. Both lme4 and glmmTMB fit the negative binomial GLMM using

Laplace Approximation, while the GLMMadaptive package [24] uses adaptive Gaussian quadrature.

In Tables 3.2 and 3.3, we use GLMMadaptive to fit the data with 25 Gaussian quadrature points.

GLMMadaptive allows for inference of r and takes no additional time to form confidence intervals,

but is still significantly slower than quasi-copula fitting. Run times in seconds for obtaining the

estimates and confidence intervals in Table 3.2 appear in Table 3.3.

42

n di Poisson QC time Poisson GLMM time NB QC time NB GLMM time

100 2 0.021 (<0.001) 0.022 (0.003) 0.125 (0.008) 0.037 (0.003)

100 5 0.020 (<0.001) 0.045 (0.003) 0.095 (0.005) 0.068 (0.004)

100 10 0.023 (0.001) 0.080 (0.004) 0.105 (0.004) 0.187 (0.011)

100 15 0.024 (0.001) 0.148 (0.006) 0.105 (0.004) 0.282 (0.017)

100 20 0.025 (0.001) 0.186 (0.007) 0.112 (0.002) 0.394 (0.017)

100 25 0.026 (<0.001) 0.265 (0.009) 0.119 (0.003) 0.461 (0.019)

1000 2 0.025 (<0.001) 0.192 (0.007) 0.163 (0.009) 0.365 (0.013)

1000 5 0.030 (<0.001) 0.516 (0.016) 0.167 (0.004) 0.857 (0.033)

1000 10 0.035 (0.001) 1.011 (0.022) 0.243 (0.003) 1.972 (0.050)

1000 15 0.040 (<0.001) 1.402 (0.030) 0.303 (0.002) 2.854 (0.064)

1000 20 0.042 (<0.001) 1.887 (0.036) 0.371 (0.002) 3.722 (0.077)

1000 25 0.051 (0.001) 2.531 (0.046) 0.435 (0.002) 4.815 (0.089)

10000 2 0.128 (0.001) 1.896 (0.032) 1.169 (0.040) 3.902 (0.079)

10000 5 0.154 (0.001) 4.333 (0.075) 1.375 (0.020) 8.598 (0.140)

10000 10 0.232 (0.002) 9.545 (0.143) 2.154 (0.007) 20.499 (0.303)

10000 15 0.272 (0.002) 14.844 (0.249) 2.78 (0.007) 29.003 (0.465)

10000 20 0.336 (0.002) 21.423 (0.356) 3.314 (0.007) 42.952 (0.679)

10000 25 0.429 (0.003) 29.324 (0.528) 4.111 (0.011) 54.676 (0.861)

Table 3.1: Run times and (standard error of run times) in seconds based on 100 replicates under
simulation II with Poisson and negative binomial (NB) Base, θtrue = 0.01, sampling unit size di and
sample size n.

43

Parameter Truth QC fit lme4 fit glmmTMB fit GLMMadaptive fit

β1 0.036 0.033 0.032 0.033 0.032

(0.028, 0.037) (0.022, 0.042) (0.023, 0.043) (0.023, 0.042)

β2 0.107 0.106 0.106 0.106 0.106

(0.101, 0.111) (0.097, 0.115) (0.097, 0.115) (0.097, 0.115)

β3 0.026 0.026 0.026 0.026 0.026

(0.017, 0.035) (0.017, 0.035) (0.017, 0.035) (0.017, 0.035)

θ 0.01 0.007 0.009 0.008 0.009

(0.003, 0.011) (0.002, 0.015) (0.003, 0.019) (0.005, 0.018)

r 10 10.002 10.147 10.101 9.996

(9.094, 10.910) (NA, NA) (8.640, 11.809) (8.612, 11.602)

Table 3.2: MLE’s and (confidence intervals) based on a single replicate under simulation II with
negative binomial Base, θtrue = 0.01, sampling unit size di = 5 and sample size n = 10000.

n di QC time lme4 time glmmTMB time GLMMadaptive time

10000 5 1.247 (0.046) 75.774 (158.034) 98.944 (0.472) 84.471 (<0.001)

Table 3.3: Run times and (confidence interval run times) in seconds based on a single replicate under
simulation II with negative binomial Base, θtrue = 0.01, sampling unit size di = 5 and sample size
n = 10000.

3.8.2 Bivariate Mixed Outcome Model

Let yi = (yi1,yi2)
t denote the ith bivariate mixed discrete outcome from n bivariate sampling units.

For purposes of illustration we assume that yi1 follows a Poisson base distribution and yi2 follows a

Bernoulli base distribution under their canonical link functions. Thus,

yi1 ∼ Poisson [µi1(β1)], where Log[µi1(β1)] = xt
iβ1

yi2 ∼ Bernoulli [µi1(β2)], where Logit[µi2(β2)] = xt
iβ2.

For each independent realization yi, we postulate a vector of covariates xi and a corresponding

vector of fixed effects, both of length p. An intercept is included among the fixed effects. The fixed

44

effects β =

β1

β2

 for both responses are jointly estimated under the design matrix Xi =

xt
i 0t

p

0t
p xt

i

.

Estimation of the variance components θ is unchanged. As expected, Figure 3.7 shows that all MSEs

decrease as the sample size n increases.

Figure 3.7: Simulation I: Mean squared errors (MSE) of MLE estimates β and θ = 0.1 under the
Bivariate Mixed Outcome model with Poisson and Bernoulli base distributions and their canonical
link functions. Each scenario reports involves 100 replicates.

45

3.8.3 NHANES Data Example

For many repeated measurement problems, a simple random intercept model is sufficient to account

for correlations between different responses on the same subject. To illustrate this point and the

performance of the quasi-copula model, we now turn to a bivariate example from the NHANES I

Epidemiologic Followup Study (NHEFS) dataset [9]. In this example, we group the data by subject

ID and jointly model the number of cigarettes smoked per day in 1971 and the number of cigarettes

smoked per day in 1982 as a bivariate outcome. For fixed effects, we include an intercept and

control for sex, age in 1971, and the average price of tobacco in the state of residence. The average

price of tobacco is a time-dependent covariate that is adjusted for inflation using the 2008 U.S.

consumer price index (CPI). Participants with missing responses or predictors were excluded from

the model cohort. A total of n = 1537 NHANES I participants constitute the cohort. Table 3.4

compares the estimates, loglikelihoods and run times in seconds of the random intercept regression

model with Poisson, negative binomial, and Bernoulli base distributions under QuasiCopula.jl

and MixedModels.jl. For the Bernoulli base distribution, we transformed each count outcome to a

binary indicator with value 1 if the number of cigarettes smoked per day is greater than the sample

average and value 0 otherwise.

Because overdispersion is a feature of this dataset, the Poisson base distribution represents a case

of model misspecification; the negative binomial base distribution is a better choice for analysis. Un-

der the Poisson base distribution, the quasi-copula model inflates the variance component to account

for the overdispersion. Under the negative binomial base distribution, both QuasiCopula.jl and

MixedModels.jl estimate the variance component to be 0. This suggests that no additional overdis-

persion exists in the data. The estimates for β under the quasi-copula model with Poisson base are

closer to the more realistic estimates under the negative binomial base than those of GLMM. The

maximum loglikelihood of the quasi-copula model is lower than that of GLMM for the Poisson base

and higher than that of GLMM for the negative binomial and Bernoulli bases. Run times favor the

quasi-copula model.

46

Parameter QC Poisson GLMM Poisson QC NB GLMM NB QC Bernoulli GLMM Bernoulli

βIntercept 2.509 2.039 2.580 2.580 -1.768 -1.411

βsex -0.210 -0.225 -0.187 -0.187 -0.793 -0.761

βage -0.009 -0.009 -0.009 -0.009 -0.040 -0.034

βprice 0.434 0.597 0.402 0.402 2.238 1.891

θ 7.080 0.458 0.0 0.0 0.666 3.461

r - - 1.141 1.395 - -

loglikehood -20690.797 -15499.537 -12037.587 -12047.504 -1938.712 -1980.893

time (seconds) 0.268 0.749 0.160 0.978 0.109 1.030

Table 3.4: Random intercept MLEs, loglikelihoods, and run times for for the NHEFS data under the
quasi-copula (QC) model and GLMM. All n = 1537 sampling units are of size di = 2.

3.9 Discussion

We propose a new model for analyzing multivariate data based on Tonda’s Gaussian copula approx-

imation. Our quasi-copula model enables the analysis of correlated responses and handles random

effects needed in applications such as panel and repeated measures data. The quasi-copula model

trades Tonda’s awkward parameter space constraint for a simple normalizing constant. This allows

one to engage in full likelihood analysis under a tractable probability density function with no im-

plicit integrations or matrix inverses. The quasi-copula model is relatively easy to fit and friendly

to likelihood ratio hypothesis testing. Additionally, it easily extends to accommodate mixtures of

different base distributions.

For maximum likelihood estimation, we recommend a combination of two numerical methods.

The first is a block ascent algorithm that alternates between updating the mean parameters β by a

version of Newton’s method and updating the variance components by a minorization-maximization

(MM) algorithm. The second method jointly updates β and the variances components by a standard

quasi-Newton algorithm. The MM algorithm converges quickly to a neighborhood of the MLE but

then slows. In contrast, the quasi-Newton struggles at first and then converges quickly. Thus, we start

with the block ascent algorithm and then switch to the quasi-Newton algorithm. Both algorithms and

their combination are available in our QuasiCopula.jl Julia package.

47

On balance our numerical tests suggest limitations of the quasi-copula model in handling strongly

correlated responses and large sampling units. The presence and size of the normalizing constant

1+ tr(Γ) in the quasi-copula density may well be the culprit. When the true distribution follows

the random intercept GLMM, the quasi-copula estimates are most accurate for small sampling units.

When sampling units are large, the quasi-copula estimates are reasonably accurate for smaller mag-

nitudes of variance components. In actual practice many statisticians simply assume the validity of

their underlying statistical model.

48

3.10 Supplemental Material

3.10.1 Tonda’s Approximation Details

Let x be a random vector with exponential density f (x | ν) = eT(x)tν−A(ν). Note that T(x) has mean

µ(ν) = ∇A(ν) and covariance matrix d2A(ν). Let us shift ν by adding a random Gaussian z with

mean 0 and covariance Σ. The new density E[eT(x)t(ν+z)−A(ν+z)] can be approximated by expanding

the integrand to second order around z = 0 and integrating. This yields

E[eT(x)t(ν+z)−A(ν+z)] ≈ E
(

eT(x)t(ν)−A(ν){1+[T(x)−∇A(ν)]tz

+
1
2

zt [T(x)−∇A(ν)][T(x)−∇A(ν)]tz

−1
2

ztd2A(ν)z}
)

= eT(x)t(ν)−A(ν)
(

1+
1
2

tr{[T(x)−∇A(ν)][T(x)−∇A(ν)]tΣ}

−1
2

tr[d2A(ν)Σ]
)

= eT(x)t(ν)−A(ν)
(

1+
1
2

tr{[T(x)−µ(ν)][T(x)−µ(ν)]tΣ}

−1
2

tr[d2A(ν)Σ]
)

= eT(x)t(ν)−A(ν)
{

1+
1
2

Wt
√

d2A(ν)Σ
√

d2A(ν)W

−1
2

tr[
√

d2A(ν)Σ
√

d2A(ν)]
}
,

where W is the standardized version [T(x)−µ(ν)]d2A(ν)−1/2 of the base sufficient statistic T(x).

The condition 1−−1
2 tr[
√

d2A(ν)Σ
√

d2A(ν)] > 0 is sufficient but not necessary for the approx-

imate density to be nonnegative. When this condition holds, the approximate density has mass

1. In our quasi-copula density, we drop the offending term −1
2 tr[
√

d2A(ν)Σ
√

d2A(ν)], replace√
d2A(ν)Σ

√
d2A(ν) by Γ, assume T (x) = x, and normalize.

49

3.10.2 Generate Random Deviates

We can construct the d dimensional multivariate vector, y from the multivariate density gy(y) ele-

ment wise using conditional densities. We recognize the joint density can be represented as a product

of conditional densities:

gy(y) = gy1(y1)×gy2|y1(y2|y1)× ...×gyd |y1,...,yd−1
(yd|y1, ...,yd−1)

Thus we can first sample y1 from its marginal density gy1(y1), and then sample y2 from the

conditional density gy2|y1(y2|y1). The resulting set is a sample from the joint density of gy1,y2(y1,y2).

Continuing this process for all n values of the multivariate vector, y, we can sample from it’s joint

density gy(y). First we derive the form of the marginal densities gy1(y1), and then show the derivation

of the conditional density gyd |y1,...,yd−1
(yd|y1, ...,yd−1).

3.10.2.1 Marginal Distribution

For every univariate base distribution, the required probability density functions (PDFs) gy(y) are of

the same form, where c0,c1 and c2 are constants that depend on the parameters of the specified base

distribution fy(y).

gy(y) = c fy(y)[a0 +a1(y−µ)+a2(y−µ)2] (3.2)

= c fy(y)×
[
c0 + c1y+ c2y2

]
, (3.3)

50

We can re-arrange the PDF to derive the constants c0,c1,c2 in the marginal PDF gy(y) as follows:

gy(y) =

(
1+

1
2

trΓ
)−1

fy(y)
[
1+

γ11

2

(y−µ

σ

)2
+

1
2

d

∑
j=2

γ j j

]
=

(
1+

1
2

trΓ
)−1

fy(y)
[
1+

γ11

2

(
y2 −2yµ +µ2

σ2

)
+

1
2

d

∑
j=2

γ j j

]
=

(
1+

1
2

trΓ
)−1

fy(y)
[
1+

γ11

2

(
y2

σ2

)
+

γ11

2

(
−2yµ

σ2

)
+

γ11

2

(
µ2

σ2

)
+

1
2

d

∑
j=2

γ j j

]
=

(
1+

1
2

trΓ
)−1

fy(y)

[(
1+

γ11

2

(
µ2

σ2

)
+

1
2

d

∑
j=2

γ j j

)
+

(
γ11

2

(−2µ

σ2

))
y+

(
γ11

2

(1
σ2

))
y2

]

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2
]
,

• c =
[
1+ 1

2 tr(Γ)
]−1

, for all base distributions fy(y).

• c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
,

• c1 =

(
γ11
2

(
−2µ

σ2

))
,

• c2 =

(
γ11
2

(
1

σ2

))
Thus, the required marginal Cumulative Distribution Function (CDF) Gy(x) takes the following

form. We will derive the CDF by finding the appropriate scaled cumulative distributions of the three

51

terms.

Gy(x) =
∫

∞

0
gy(y)dy

= c
∫ x

−∞

f (y)[c0 + c1y+ c2y2]dy

= c× c0

∫ x

−∞

fy(y)dy

+ c× c1

∫ x

−∞

y fy(y)dy

+ c× c2

∫ x

−∞

y2 fy(y)dy

= term1+ term2+ term3

The first term is a scalar multiple of the base distribution CDF, Fy(y), and d1,d2 are normalizing

constants for random variables v1,v2 from named distributions fv1(v1), fv2(v2) with CDFs Fv1(x)

and Fv2(x) in terms 2 and 3, respectively.

• term1 = c× c0
∫ x
−∞

fy(y)dy = c× (c0)×Fy(x),

• term2 = c× c1
∫ x
−∞

y∗ fy(y)dy = c× c1 ×d1 ×
∫ x
−∞

fv1(y)dy = c× (c1)×d1 ×Fv1(x)

• term3 = c× c2
∫ x
−∞

y2 fy(y)dy = c× c2 ×d2 ×
∫ x
−∞

fv2(y)dy = c× (c2)×d2 ×Fv2(x)

For every base distribution, to satisfy properties of a proper distribution function we require

c× [c0 + c1 ×d1 + c2 ×d2] = 1.

3.10.2.2 Conditional Distribution

Let y[i−1] indicate elements y1, ...,yi−1,∀i ∈ [1,d]. Then the conditional density of yi given the pre-

vious components y[i−1] is:

52

gyi|y[i−1]
(yi|y[i−1]) = d−1

[i−1] fi(yi)
[
d[i−1]+ ri

i−1

∑
j=1

r jγi j +
γii

2
(r2

i −1)
]

= d−1
[i−1] fi(yi)

[
d[i−1]+

(yi −µi

σi

) i−1

∑
j=1

r jγi j +
γii

2
(r2

i −1)
]

= d−1
[i−1] fi(yi)

[(
d−1
[i−1]−

γii

2

)
+
(∑

i−1
j=1 r jγi j

σi

)
yi −µi

(∑
i−1
j=1 r jγi j

σi

)
+

γii

2
(yi −µi)

2

σ2
i

]
= d−1

[i−1] fi(yi)
[(

d−1
[i−1]−

γii

2
−µi

(∑
i−1
j=1 r jγi j

σi

))
+
(∑

i−1
j=1 r jγi j

σi

)
yi +

γii

2
(yi −µi)

2

σ2
i

]
= d−1

[i−1] fi(yi)
[(

d−1
[i−1]−

γii

2
−µi

(∑
i−1
j=1 r jγi j

σi

)
+

γii

2
µ2

i

σ2
i

)
+

(∑
i−1
j=1 r jγi j

σi
+

γii

2

(−2µi

σ2
i

))
yi

+
(

γii

2

(1
σ2

i

))
y2

i

]
= c fi(yi)

[
c0 + c1yi + c2y2

i

]
where d[i−1] = 1+ 1

2rt
[i−1]Γ[i−1]r[i−1]+

1
2 ∑

d
j=i γ j j.

• c = d−1
[i−1]

• c0 =
(

d−1
[i−1]−

γii
2 −µi

(
∑

i−1
j=1 r jγi j

σi

)
+ γii

2
µ2

i
σ2

i

)
• c1 =

(
∑

i−1
j=1 r jγi j

σi
+ γii

2

(
−2µi
σ2

i

))
• c2 =

(
γii
2

(
1

σ2
i

))
We can construct each conditional density given the previously sampled elements as a combination

of three constants, just as in the marginal density.

53

3.10.2.3 Continuous Outcomes

When marginal densities f (y) are continuous, each stage of sampling is probably best performed by

inverse transform sampling.

Gamma distribution

This note considers the special case of Gamma base in the copula framework outlined in Ken’s notes,

where f1(y)∼ Γ(α,θ). We will simulate y directly from its marginal density, gy(y), which can also

be represented as a mixture distribution.

y ∼ Γ(α,θ); fy(y) =
1

Γ(α)θ α
yα−1e

−y
θ

• µ = E[y] = αθ , and σ2 =Var(y) = αθ 2.

gy(y) =
[
1+

1
2

tr(Γ)
]−1[1

Γ(α)θ α
yα−1e

−y
θ

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

d

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[1

Γ(α)θ α
yα−1e

−y
θ

]((
1+

1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
=

(
1+ γ11

2

(
α

)
+ 1

2 ∑
d
j=2 γ j j

)

• c1 =

(
γ11
2

(
−2µ

σ2

))
=

(
γ11
2

(
−2
θ

))

• c2 =

(
γ11
2

(
1

σ2

))
=

(
γ11
2

(
1

αθ 2

))
We will use the given information here: y ∼ Γ(α,θ), where FY (x) = P(y ≤ x) to derive the CDF

54

GY (x) term by term.

term1 = c× (c0)
∫ x

0
fy(y)dy

= c× (c0)×FY (Y = x)

= c×

(
1+

γ11

2

(
α

)
+

1
2

m

∑
j=2

γ j j

)
×FY (Y = x)

Define a new random variable v1 ∼ Γ(α +1,θ), where Fv1(x) = P(v1 ≤ x).

term2 = c× (c1)×
∫ x

0
y fy(y)dy

= c×

(
γ11

2

(−2
θ

))
×
∫ x

0
y fy(y)dy

= c×

(
γ11

2

(−2
θ

))
×θ

∫ x

0

y
θ

fy(y)dy

= c×

(
γ11

2

(−2
θ

))
×θ ×

∫ x

0

[1
Γ(α)θ α+1 y(α+1)−1e

−y
θ

]
dy

= c×

(
γ11

2

(−2
θ

))
×θ × Γ(α +1)

Γ(α)
×
∫ x

0

[1
Γ(α +1)θ α+1 y(α+1)−1e

−y
θ

]
dy

= c×

(
γ11

2

(−2
θ

))
×θ × Γ(α +1)

Γ(α)
×Fv1(x)

55

Define another random variable v2 ∼ Γ(α +2,θ); with CDF Fv2(x) = P(v2 ≤ x).

term 3 = c× (c2)×
∫ x

0
y2 fy(y)dy

= c×

(
γ11

2

(1
αθ 2

))
×
∫ x

0
y2 fy(y)dy

= c×

(
γ11

2

(1
αθ 2

))
×θ

2
∫ x

0

y2

θ 2 fy(y)dy

= c×

(
γ11

2

(1
αθ 2

))
×θ

2 ×
∫ x

0

[1
Γ(α)θ α+2 y(α+2)−1e

−y
θ

]
dy

= c×

(
γ11

2

(1
αθ 2

))
×θ

2 × Γ(α +2)
Γ(α)

×
∫ x

0

[1
Γ(α +2)θ α+2 y(α+2)−1e

−y
θ

]
dy

= c×

(
γ11

2

(1
αθ 2

))
×θ

2 × Γ(α +2)
Γ(α)

×Fv2(x)

Exponential distribution

Next, we consider when fy(y) ∼ Exponential(1
θ
). To find the appropriate CDF function under this

exponential base, we make note of the relationship between the exponential and gamma densities.

y ∼ Exponetial
(1

θ

)
⇐⇒ y ∼ Γ(α = 1,θ ≥ 0);

fy(y) =
1
θ

e
−y
θ =

1
Γ(1)θ 1 y1−1e

−y
θ ;y,θ ≥ 0

56

• µ = E[y] = θ , and σ2 =Var(y) = θ 2.

gy(y) =
[
1+

1
2

tr(Γ)
]−1[1

Γ(1)θ 1 y1−1e
−y
θ

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

d

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[1

Γ(1)θ 1 y1−1e
−y
θ

]((
1+

1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
=

(
1+ γ11

2 + 1
2 ∑

d
j=2 γ j j

)
• c1 =

γ11
2

(
−2µ

σ2

)
= γ11

2

(
−2
θ

)
• c2 =

γ11
2

(
1

σ2

)
= γ11

2

(
1

θ 2

)
y ∼ Exponential(1

θ
) = Γ(α = 1,θ), with CDF FY (Y = x) = P(Y ≤ x)

term1 = c× (c0)
∫ x

0
fy(y)dy

= c× (c0)×Fy(x)

= c×

(
1+

γ11

2
+

1
2

d

∑
j=2

γ j j

)
×Fy(x)

57

Define a new random variable v1 ∼ Γ(α +1,θ) = Γ(2,θ), with CDF Fv1(x) = P(v1 ≤ x).

term2 = c× (c1)×
∫ x

0
y fy(y)dy

= c×

(
γ11

2

(−2
θ

))
×
∫ x

0
y fy(y)dy

= c×

(
γ11

2

(−2
θ

))
×
∫ x

0

[1
Γ(1)θ 1 y(1+1)−1e

−y
θ

]
dy

= c×

(
γ11

2

(−2
θ

))
× θ 2

θ
× Γ(2)

Γ(1)
×
∫ x

0

[1
Γ(2)θ 2 y(2)−1e

−y
θ

]
dy

= c×

(
γ11

2

(−2
θ

))
×θ × Γ(2)

Γ(1)
×Fv1(x)

Define another random variable v2 ∼ Γ(1+2,θ) = Γ(3,θ); with CDF Fv2(x) = P(v2 ≤ x).

term 3 = c× (c2)×
∫ x

0
y2 fy(y)dy

= c×

(
γ11

2

(1
θ 2

))
×
∫ x

0
y2 fy(y)dy

= c×

(
γ11

2

(1
θ 2

))
×
∫ x

0

[1
Γ(1)θ 1 y(1+2)−1e

−y
θ

]
dy

= c×

(
γ11

2

(1
θ 2

))
× θ 3

θ
× Γ(3)

Γ(1)
×
∫ x

0

[1
Γ(3)θ 3 y(3)−1e

−y
θ

]
dy

= c×

(
γ11

2

(1
θ 2

))
×θ

2 × Γ(3)
Γ(1)

×Fv2(x)

Beta distribution

Next, we consider when fy(y)∼ Beta(α,β).

y ∼ f (y;α,β) =
1

B(α,β)
yα−1(1− y)β−1 =

Γ(α +β)

Γ(α)Γ(β)
yα−1(1− y)β−1, y ∈ [0,1]

58

• µ = E[y] = α

α+β
, and σ2 =Var(y) = αβ

(α+β)2(α+β+1)

gy(y) =
[
1+

1
2

tr(Γ)
]−1
[

Γ(α +β)

Γ(α)Γ(β)
yα−1(1− y)β−1

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

m

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1
[

Γ(α +β)

Γ(α)Γ(β)
yα−1(1− y)β−1

]((
1+

1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
=

(
1+ γ11

2

(
α(α+β+1)

β

)
+ 1

2 ∑
d
j=2 γ j j

)
• c1 =

γ11
2

(
−2µ

σ2

)
= γ11

2

(
−2(α+β)(α+β+1)

β

)
• c2 =

γ11
2

(
1

σ2

)
= γ11

2

(
(α+β)2(α+β+1)

αβ

)
y ∼ Beta(α,β) with CDF FY (Y = x) = P(Y ≤ x)

term1 = c× (c0)
∫ x

0
fy(y)dy

= c× (c0)×Fy(x)

= c×

(
1+

γ11

2

(
α(α +β +1)

β

)
+

1
2

d

∑
j=2

γ j j

)
×Fy(x)

Define a new random variable v1 ∼ Beta(α +1,β) with CDF Fv1(x) = P(v1 ≤ x).

term2 = c× (c1)×
∫ x

0
y fy(y)dy

= c× γ11

2

(−2(α +β)(α +β +1)
β

)
×
∫ x

0
y fy(y)dy

= c× γ11

2

(−2(α +β)(α +β +1)
β

)
×
∫ x

0

[
Γ(α +β)

Γ(α)Γ(β)
y(α+1)−1(1− y)β−1

]
dy

= c× γ11

2

(−2(α +β)(α +β +1)
β

)
× Γ(α +β)

Γ(α)

Γ(α +1)
Γ(α +β +1)

×
∫ x

0
fv1(y)dy

= c× γ11

2

(−2(α +β)(α +β +1)
β

)
× Γ(α +β)

Γ(α)

Γ(α +1)
Γ(α +β +1)

×Fv1(x)

59

Define another random variable v2 ∼ Beta(α +2,β) with CDF Fv2(x) = P(v2 ≤ x).

term 3 = c× (c2)×
∫ x

0
y2 fy(y)dy

= c× γ11

2

((α +β)2(α +β +1)
αβ

)
×
∫ x

0
y2 fy(y)dy

= c× γ11

2

((α +β)2(α +β +1)
αβ

)
×
∫ x

0

[
Γ(α +β)

Γ(α)Γ(β)
y(α+2)−1(1− y)β−1

]
dy

= c× γ11

2

(−2(α +β)(α +β +2)
β

)
× Γ(α +β)

Γ(α)

Γ(α +2)
Γ(α +2+β)

×
∫ x

0
fv2(y)dy

= c× γ11

2

((α +β)2(α +β +2)
αβ

)
× Γ(α +β)

Γ(α)

Γ(α +2)
Γ(α +2+β)

×Fv2(x)

3.10.2.4 Discrete Outcomes

When the densities fi(yi) are discrete, it may be necessary to compute infinite sums involving these

probabilities. For example, such sums occur naturally in numerical algorithms developed for Pois-

son, Geometric, negative binomial variate generation. From a practical standpoint, it is necessary to

truncate these infinite sums after a finite number of terms.

Consider any random variable Z with nonnegative integer values, discrete density pi = Pr(Z = i),

and mean ν . The inverse method of random sampling reduces to a sequence of comparisons. We

partition the interval [0,1] into subintervals with the ith subinterval of length pi. To sample Z, we

draw a uniform random deviate U from [0,1] and return the deviate j determined by the conditions

∑
j−1
i=1 pi ≤ U < ∑

j
i=1 pi. There is no need to invoke the distribution of Z. The process is most

efficient when the largest pi occur first. This suggests that we let k denote the least integer ⌊ν⌋ and

rearrange the probabilities in the order pk, pk+1, pk−1, pk+2, pk−2, . . . This tactic is apt put most of

the probability mass first and render sampling efficient.

Poisson Distribution

A Poisson distribution describes the number of independent events occurring within a unit time

interval, given the average rate of occurrence θ .

60

y ∼ Poisson(θ); fy(y) =
θ ye−θy

y!
,y = 0,1,2,3, ...

• µ = E[y] = θ = σ2 =Var(y)

gy(y) =
[
1+

1
2

tr(Γ)
]−1[θ ye−θy

y!

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

d

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[θ ye−θy

y!

]((
1+

1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
m
j=2 γ j j

)
=

(
1+ γ11

2

(
1
)
+ 1

2 ∑
d
j=2 γ j j

)

• c1 =

(
γ11
2

(
−2µ

σ2

))
=

(
γ11
2

(
−2
))

• c2 =

(
γ11
2

(
1

σ2

))
=

(
γ11
2

(
1
θ

))
Binomial Distribution

A Binomial distribution characterizes the number of successes in a sequence of independent trials.

It has two parameters: ‘n‘, the number of trials, and ‘p‘, the probability of success in an individual

trial, with the distribution:

y ∼ Binomial(N, p); fy(y) =
(

N
y

)
py(1− p)N−y,y = 0,1,2, ...,N

61

• µ = E[y] = N p;σ2 =Var(y) = N p(1− p)

gy(y) =
[
1+

1
2

tr(Γ)
]−1[(N

y

)
py(1− p)N−y

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

m

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[(N

y

)
py(1− p)N−y

]((
1+

1
2

m

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
m
j=2 γ j j

)
=

(
1+ γ11

2

(
(N p)2

N p(1−p)

)
+ 1

2 ∑
m
j=2 γ j j

)

• c1 =

(
γ11
2

(
−2µ

σ2

))
=

(
γ11
2

(
−2N p

N p(1−p)

))

• c2 =

(
γ11
2

(
1

σ2

))
=

(
γ11
2

(
1

N p(1−p)

))
Geometric Distribution

A Geometric distribution characterizes the number of failures before the first success in a sequence

of independent Bernoulli trials with success rate p.

y ∼ Geometric(p); fy(y) = (1− p)y p,y = 0,1,2, ...

• µ = E[y] = 1
p ;σ2 =Var(y) = 1−p

p2

gy(y) =
[
1+

1
2

tr(Γ)
]−1[

(1− p)y p
](

1+
γ11

2

[
(y−µ)2

σ2

]
+

1
2

d

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[

(1− p)y p
]((

1+
1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

62

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
=

(
1+ γ11

2

(1
p

1−p
p2

)
+ 1

2 ∑
d
j=2 γ j j

)

• c1 =

(
γ11
2

(
−2µ

σ2

))
=

(
γ11
2

(−2
p

1−p
p2

))

• c2 =

(
γ11
2

(
1

σ2

))
=

(
γ11
2

(
p2

1−p

))
Negative Binomial Distribution

A negative binomial distribution describes the number of failures before the ‘r‘th success in a se-

quence of independent Bernoulli trials. It is parameterized by ‘r‘, the number of successes, and ‘p‘,

the probability of success in an individual trial.

y ∼ Negative Binomial(r, p); fy(y) =
(

y+ r−1
y

)
pr(1− p)y,y = 0,1,2, ...

• µ = E[y] = pr
1−p ;σ2 =Var(y) = pr

(1−p)2

gy(y) =
[
1+

1
2

tr(Γ)
]−1[(y+ r−1

y

)
pr(1− p)y

](
1+

γ11

2

[
(y−µ)2

σ2

]
+

1
2

d

∑
j=2

γ j j

)
=

[
1+

1
2

tr(Γ)
]−1[(y+ r−1

y

)
pr(1− p)y

]((
1+

1
2

d

∑
j=2

γ j j

)
+

γ11

2

[
y2 −2yµ +µ2

σ2

])

= c× fy(y)
[(

c0

)
+

(
c1

)
y+

(
c2

)
y2

2

]

• Here c0 =

(
1+ γ11

2

(
µ2

σ2

)
+ 1

2 ∑
d
j=2 γ j j

)
=

(
1+ γ11

2

(pr
1−p

pr
(1−p)2

)
+ 1

2 ∑
d
j=2 γ j j

)

• c1 =

(
γ11
2

(
−2µ

σ2

))
=

(
γ11
2

(−2pr
1−p

pr
(1−p)2

))

• c2 =

(
γ11
2

(
1

σ2

))
=

(
γ11
2

(
(1−p)2

pr

))

63

3.10.3 Parameter Estimation:

We extend the Gaussian Base Model to accommodate densities in exponential family of distributions

under the generalized linear model (GLM) framework. In this note, we pay close attention to the

density-specific quantities which facilitate parameter estimation, and illustrate using the Poisson and

Bernoulli density.

3.10.3.1 Fisher Scoring to Estimate Beta

L(β) =−
n

∑
i=1

ln
[
1+

1
2

tr(Γi)
]
+

n

∑
i=1

ln
{

1+
1
2

ri(β)
tΓiri(β)

}
+

n

∑
i=1

ni

∑
j=1

ln fi j(yi j | β) (3.4)

For each distribution, the objective function is the loglikelihood (1), and can be viewed as three

separate pieces. The last term of the loglikelihood is specific to the hypothesized density, and has first

derivative, ∑
n
i=1 ∑ j ∇ ln fi j(yi j |β), and second derivative ∇2Ln(β), that generalize to the exponential

family of distributions.

The score (gradient of the loglikelihood) with respect to β is:

∇Ln(β) =
n

∑
i=1

∑
j

∇ ln fi j(yi j | β)+
n

∑
i=1

∇ri(β)Γiri(β)

1+ 1
2ri(β)tΓiri(β)

, (3.5)

The first term in the gradient, ∑
n
i=1 ∑ j ∇ ln fi j(yi j | β), corresponds to the first derivative of the

piece of the loglikelihood, specific to the hypothesized density. We can write this first term as a

function of W1i, a diagonal matrix of "working weights".

n

∑
i=1

∑
j

∇ ln fi j(yi j | β) =
n

∑
i=1

ni

∑
j=1

(yi j −µi j)µ
′
i j(ηi j)

σ2
i j

xi j =
n

∑
i=1

Xi
T W1i(Yi −µi)

64

W1i = Diagonal
(

g′(XT
i β)

var(Yi|µi)

)
=



µ ′
i1(ηi1)

σ2
i1

0 · · · 0

0 µ ′
i2(ηi2)

σ2
i2

· · · 0
...

...

0 0 · · ·
µ ′

ini
(ηini)

σ2
ini


Instead of using the exact Hessian, we will use the expected Fisher Information to get an approx-

imation of the Hessian, which is clearly negative semi-definite.

−
n

∑
i=1

Xi
T W2iXi −

n

∑
i=1

[∇ri(β)
tΓiri(β)][∇ri(β)

tΓiri(β)]
t[

1+ 1
2ri(β)tΓiri(β)

]2 (3.6)

Specifically, we approximate the second derivative of the piece of the loglikelihood particular to

the hypothesized density, ∇2Ln(β). Using the Expected Fisher Information Matrix, we present this

term as a function of another diagonal weight matrix, W2i.

∇
2Ln(β) =

n

∑
i=1

n

∑
j=1

[µ ′
i j(ηi j)]

2

σ2
i j

xi jxT
i j −

n

∑
i=1

n

∑
j=1

(yi j −µi j)µ
′′
i j(ηi j)

σ2
i j

xi jxT
i j

+
n

∑
i=1

n

∑
j=1

(yi j −µi j)[µ
′
i j(ηi j)]

2(dσ2
i j/dµi j)

σ4
i j

xi jxT
i j

FIMn(β) = E[−∇
2Ln(β)] =−

n

∑
i=1

ni

∑
j=1

[µ ′
i j(ηi j)]

2

σ2
i j

xi jxT
i j =−

n

∑
i=1

Xi
T W2iXi.

W2i = Diagonal
(

g′(XT
i β)2

var(Yi|µi)

)
=



(µ ′
i1(ηi1))

2

σ2
i1

0 · · · 0

0 (µ ′
i2(ηi2))

2

σ2
i2

· · · 0
...

...

0 0 · · ·
(µ ′

ini
(ηini))

2

σ2
ini


The score and approximate Hessian provide the ingredients for a kind of scoring algorithm for im-

65

proving β in our model. For each Newton update of the fixed effect parameter, β, in addition to

updating the residual vector, ri(β), we must also update these weight matrices, W1i and W2i, in the

update of the Score and Hessian. We can find these quantities easily by making the appropriate calls

to the GLM package, GLM.jl.

Let yi j represent the jth outcome for person i, hypothesized to come from a non-normal density in

the exponential family of distributions, fi j(yi j | β). For each hypothesized density under the GLM

framework, we have mean parameter µi j(β) = g−1(ηi j(β)) = g−1(xijβ), and variance parameter

σ2
i j(β). Using these quantities, we define ri j(β), j ∈ [1,di] as the jth entry in the standardized residual

vector for observation or group i.

ri j(β) =
√

τ(yi j −µi j(β)) =
(yi j −µi j(β))√

σ2
i j(β)

∈ R (3.7)

Let ∇ri(β) ∈Rdi×p denote the matrix of differentials of all ni observations for the ith individuals

standardized residual vector ri(β). This quantity is important for our score and hessian computation,

which really helps the optimization algorithm to speed up convergence.

∇ri(β)
t =

(
∇ri1(β) ∇ri2(β) ... ∇ridi(β)

)
For each of the j ∈ [1,ni] observations for the ith individual, ∇ri(β)

t can be formed column by col-

umn, where ∇ri j(β) denotes the jth column. ∇µi j(β) and ∇σ2
i j(β) respectively reflect the derivative

of the mean and variance of the hypothesized density, with respect to β.

∇ri j(β) = − 1
σi j(β)

∇µi j(β)−
1
2

yi j −µi j(β)

σ3
i j(β)

∇σ
2
i j(β) ∈ Rp (3.8)

66

∇µi j(β) =
∂ µi j(β)

∂ηi j(β)
∗

∂ηi j(β)

∂β
=


∂ µi j(β)
∂ηi j(β)

∗ ∂xijβ
∂β1

...
∂ µi j(β)
∂ηi j(β)

∗ ∂xijβ
∂βp

=
∂ µi j(β)

∂ηi j(β)
∗


xi j1

xi j2
...

xi jp

=
∂ µi j(β)

∂ηi j(β)
∗xij ∈ Rp

∇σ
2
i j(β) =

∂σ2
i j(β)

∂ µi j(β)

∂ µi j(β)

∂ηi j(β)

∂ηi j(β)

∂β
=

∂σ2
i j(β)

∂ µi j(β)

∂ µi j(β)

∂ηi j(β)
∗xij ∈ Rp

For the Gaussian base model, since the identity function is the appropriate canonical link, we

have that µi j(β)=ηi j(β)= xijβ= xi j1 ∗β1+ ...+xi jp ∗βp where xij denotes the vector of p covariate

values for jth measurement of the ith person.

∇µi j(β) =
∂ηi j(β)

∂β
=


∂xijβ
∂β1
...

∂xijβ
∂βp

=


Xi j1

Xi j2
...

Xi jp

= xij ∈ Rp

∇σ
2
i j(β) =

∂σ2
i j(β)

∂ µi j(β)

∂ µi j(β)

∂ηi j(β)

∂ηi j(β)

∂β
= 0∗1∗xij = 0 ∈ Rp

In the table below, we derive the same quantities for the Normal, Poisson, Bernoulli and negative

binomial distributions, under the appropriate canonical link function. The details of the derivation

for the above table is below.

Distribution g(µi j(β)) = ηi j(β) µi j(β) ∈ R σ2
i j(β) ∈ R ∇µi j(β) ∈ Rp ∇σ2

i j(β) ∈ Rp

Normal Identity Link ηi j(β) σ2
i j xi 0

Poisson Log Link eηi j(β) µi j(β) eηi j(β) ∗xi eηi j(β) ∗xij

Bernoulli Logit Link eηi j(β)

1+eηi j(β)
eηi j(β)

(1+eηi j(β)
)2

eηi j(β)
)

(1+eηi j(β)
)2
∗xij

eηi j(β)
(1−eηi j(β)

)2

(1+eηi j(β)
)2

∗xi

Negative Binomial Log Link eηi j(β) eηi j(β) ∗ (1+ eηi j(β)

r) eηi j(β) ∗xi (eηi j(β)

r +(1+ eηi j(β)

r))∗ eηi j(β) ∗xi

67

3.10.3.2 MM-Algorithm to Update Variance Components

To update the variance components θ = {θk,k ∈ [1,m]}, the relevant part of the loglikelihood is

f (θ) =
n

∑
i=1

ln(1+θtbi)−
n

∑
i=1

ln(1+θtci) (3.9)

by defining the vectors bi and ci with nonnegative components

bik =
1
2

ri(β)
t
Ωikri(β)

cik =
1
2

tr(Ωik).

If f is a convex function of a vector x, f (x)≥ f (x0)+(x−x0)∇ f (x0)

n

∑
i=1

−ln(1+θt
rci) ≥ −

n

∑
i=1

ln(1+θt
rci)+(1+θtci − (1+θt

rci)∗
−1

1+θt
rci

= c1
(t)−

n

∑
i=1

1
1+θt

rci
(θtci −θt

rci)

= −
n

∑
i=1

1
1+θt

rci
(θtci)+ c(t)

The first term is minorized by the Jensen’s function

n

∑
i=1

[
1

1+θt
rbi

ln
(

1+θt
rbi

1

)
+

m

∑
k=1

θrkbik

1+θt
rbi

ln
(

1+θt
rb

θrkbik
θr+1,kbik

)]
.

68

Proof: f (a) is a concave vector function if for any vectors a1,a2,λ ∈ [0,1]

f (λa1 +(1−λ)a2)

= f
(1

1+θt
rbi

(1+θt
rbi)+

θt
rbi

1+θt
rbi

1+θt
rbi

θt
rbi

θtbi

)
= f

(
1+θtbi

)
≥ λ f (a1)+(1−λ) f (a2)

=
1

1+θt
rbi

ln(1+θt
rbi)+

θt
rbi

1+θt
rbi

ln(
1+θt

rbi

θt
rbi

θtbi)

n

∑
i=1

ln(1+θtbi)≥
n

∑
i=1

[
1

1+θt
rbi

ln
(

1+θt
rbi

1

)
+

m

∑
k=1

θrkbik

1+θt
rbi

ln
(

1+θt
rb

θrkbik
θr+1,kbik

)]
.

The sum of these two minorizations constitutes the surrogate h(a | ar).

h(θ |θr)=−
n

∑
i=1

1
1+θt

rci
(θtci)+

[
1

1+θt
rbi

ln
(

1+θt
rbi

1

)
+

m

∑
k=1

thetarkbik

1+θt
rbi

ln
(

1+θt
rb

θrkbik
θr+1,kbik

)]
.

We can maximize the surrogate function by taking a derivative with respect to ak,k ∈ [1,m]. The

stationarity condition ∇h(a | ar) = 0 has components

∂

∂θk
h(θ | θr) =

n

∑
i=1

−cik

1+at
rbi

+
θrkbik

1+θt
rbi

1
θr+1,k

:= 0

with solution

θr+1,k = θrk

(
∑

n
i=1

bik
1+θt

rbi

∑
n
i=1

cik
1+θt

rci

)
.

3.10.4 Quasi-Newton Algorithm

Alternatively, we can estimate the mean and variance parameters joinly using the Quasi-Newton

algorithm.

69

3.10.4.1 Score and Hessian

For the AR(1) model, θ = {σ2,ρ}, the score (gradient of loglikelihood function) is

∇σ2L = −
n

∑
i=1

di
2

1+ diσ2

2

+
n

∑
i=1

1
2ri(β)

tVi(ρ)ri(β)

1+ σ2

2 ri(β)tVi(ρ)ri(β)

∇ρL =
n

∑
i=1

1

1+ σ2

2 ri(β)tVi(ρ)ri(β)
∗ σ2

2
ri(β)

t
∇Vi(ρ)ri(β).

The approximate Hessian is

d2
σ2L =

n

∑
i=1

(di
2)

2

(1+ di
2 σ2)2

−
n

∑
i=1

(1
2ri(β)

tVi(ρ)ri(β))
2

(1+ σ2

2 ri(β)tVi(ρ)ri(β))2

d2
ρL =

n

∑
i=1

1

1+ σ2

2 ri(β)tVi(ρ)ri(β)
∗ σ2

2
ri(β)

t
∇

2Vi(ρ)ri(β)

−
n

∑
i=1

1

(1+ σ2

2 ri(β)tVi(ρ)ri(β))2
∗
(

σ2

2
ri(β)

t
∇Vi(ρ)ri(β)

)2
,

For the CS model, θ = (σ2,ρ), and the gradient is

∇σ2L = −
n

∑
i=1

di
2

1+ diσ2

2

+
n

∑
i=1

1
2ri(β)

tVi(ρ)ri(β)

1+ σ2

2 ri(β)tVi(ρ)ri(β)

∇ρL =
n

∑
i=1

1

1+ σ2

2 ri(β)tVi(ρ)ri(β)
∗ σ2

2
ri(β)

t
∇Vi(ρ)ri(β).

The approximate Hessian is

d2
σ2L =

n

∑
i=1

(di
2)

2

(1+ di
2 σ2)2

−
n

∑
i=1

(1
2ri(β)

tVi(ρ)ri(β))
2

(1+ σ2

2 ri(β)tVi(ρ)ri(β))2

d2
ρL = −

n

∑
i=1

1

(1+ σ2

2 ri(β)tVi(ρ)ri(β))2
∗
(

σ2

2
ri(β)

t
∇Vi(ρ)ri(β)

)2
,

where ∇Vi(ρ) and ∇2Vi(ρ) are, respectively, the element-wise first and second derivatives of the

matrix Vi(ρ) with respect to ρ .

70

For the VM model the gradient is

∇θ f (θ) =
n

∑
i=1

1
(1+θtbi)

∗bi −
n

∑
i=1

1
1+θtci

∗ ci.

The approximate Hessian is

∇
2
θ ,θ f (θ) = −

n

∑
i=1

1
(1+θtbi)

∗bibt
i +

n

∑
i=1

1
1+θtci

∗ cict
i.

3.10.5 Negative Binomial

3.10.5.1 Estimating Nuisance Parameter

To estimate the nuisance parameter r in a Negative Binomial model, we use maximum likelihood.

Because we are dealing with 1 parameter optimization, Newton’s method is a good candidate due to

its quadratic rate of convergence. The full loglikelihood is

−
n

∑
i=1

ln
(

1+
1
2

tr(Γi)

)
+

n

∑
i=1

di

∑
i= j

ln fi j(yi j | β)+
n

∑
i=1

ln
(

1+
1
2

ri(β)
tΓiri(β)

)

where only the 2nd and 3rd term depends on r. First consider the 2nd term. Because µi j =

r(1−pi j)
pi j

, pi j =
r

r+µi j
, the 2nd term of the loglikelihood is

n

∑
i=1

di

∑
j=1

ln
[(

yi j + r−1
yi j

)
pr

i j(1− pi j)
yi j

]

=
n

∑
i=1

di

∑
j=1

ln
(

yi j + r−1
yi j

)
+ r ln

(
r

µi j + r

)
+ yi j ln

(
µi j

µi j + r

)

=
n

∑
i=1

di

∑
j=1

ln((yi j + r−1)!)− ln(yi j!)− ln((r−1)!)+ r ln(r)− (r+ yi j) ln(µi j + r)+ yi j ln(µi j)

71

Let Ψ(0) be the digamma function and Ψ(1) the trigamma function, then the first and second deriva-

tive is

n

∑
i=1

di

∑
j=1

Ψ
(0)(yi j + r)−Ψ

(0)(r)+1+ ln(r)−
r+ yi j

µi j + r
− ln(µi j + r),

n

∑
i=1

di

∑
j=1

Ψ
(1)(yi j + r)−Ψ

(0)(r)+
1
r
− 2

µi j + r
+

r+ yi j

(µi j + r)2 .

Now consider the 3rd term of the full loglikelihood. First recall

Di = diagonal(
√

var(yi))

var(yi j) =
r(1− pi j)

p2
i j

=
eηi j(eηi j + r)

r
.

Using multiple chain rules,

d
dr

ln
(

1+
1
2

ri(β)
tΓiri(β)

)
=

n

∑
i=1

ri(β)
tΓidri

1+ 1
2ri(β)tΓiri(β)

d2

dr2 ln
(

1+
1
2

ri(β)
tΓiri(β)

)
=

n

∑
i=1

−[ri(β)
tΓidri]

2

[1+ 1
2ri(β)tΓiri(β)]2

+
dr(β)tΓidri(β)+ r(β)tΓidr2

i (β)

1+ 1
2ri(β)tΓiri(β)

where

ri(β) = D−1
i (yi −µi)

dri(β) =−D−1
i dDiD−1

i (yi −µi)

dr2
i (β) = [2D−1

i dDiD−1
i dDiD−1

i −D−1
i d2DiD−1

i](yi −µi)

dDi = diagonal

(
d
dr

√
eηi j(eηi j + r)

r

)
= diagonal

(
−e2ηi j

2r1.5
√

eηi j(eηi j + r)

)

d2Di = diagonal
(

e3η

4r1.5(eη(eη + r))1.5 +
3e2η

4r2.5(eη(eη + r))0.5

)
.

72

Note we used the identity d f (X)−1 =− f (X)−1d f (X) f (X)−1 for obtaining dri(β) and for obtaining

dr2
i (β), chain rule implies

d(f (X)−1d f (X) f (X)−1)

=[− f (X)−1d f (X) f (X)−1]d f (X) f (X)−1 + f (X)−1d(d f (X) f (X)−1)

=− f (X)−1d f (X) f (X)−1d f (X) f (X)−1+

f (X)−1 [d f (X)(− f (X)−1d f (X) f (X)−1)+d2 f (X) f (X)−1]
=−2 f (X)−1d f (X) f (X)−1d f (X) f (X)−1 + f (X)−1d2 f (X) f (X)−1

In summary, we update the nuisance parameter r using Newton’s update

rn+1 = rn −
d
dr L(r | µ,Γ,y)
d2

dr2 L(r | µ,Γ,y)

where

d
dr

L(r | µ,Γ,y) =
n

∑
i=1

ni

∑
j=1

Ψ
(0)(yi j + r)−Ψ

(0)(r)+1+ ln(r)−
r+ yi j

µi j + r
− ln(µi j + r)

+
n

∑
i=1

ri(β)
tΓidri

1+ 1
2ri(β)tΓiri(β)

d2

dr2 L(r | µ,Γ,y) =
n

∑
i=1

ni

∑
j=1

Ψ
(1)(yi j + r)−Ψ

(0)(r)+
1
r
− 2

µi j + r
+

r+ yi j

(µi j + r)2

−
n

∑
i=1

[ri(β)
tΓidri]

2

[1+ 1
2ri(β)tΓiri(β)]2

+
dri(β)

tΓidri(β)+ ri(β)
tΓidr2

i (β)

1+ 1
2ri(β)tΓiri(β)

For stability, we need to (1) perform line-search and (2) set the second derivative equal to 1 if it is

negative. By default, we allow for a maximum of 10 block iterations; In each block iteration, we

allow for a maximum of 15 iterations for the quasi-newton update of β and θ, and a maximum of

10 newton iterations for the update of r.

73

3.10.6 Compound Symmetric Covariance

Under the Compound Symmetric (CS) parameterization of Γi,

Γi = σ
2 ×
[
ρ1di1

t
di
+(1−ρ)Idi

]
= σ

2 ×Vi(ρ)

3.10.6.1 Bounding Correlation Parameter

To ensure that the covariance matrix Γi is positive semi-definite, we will focus on Vi(ρ) and use an

eigenvalue argument to bound ρ ∈ (− 1
di−1 ,1). Let v be a vector of dimension di such that < v,v >=

1. We will find the conditions on ρ such that vtVi(ρ)v ≥ 0.

vtVi(ρ)v = vt
[
ρ1di1

t
di
+(1−ρ)Idi

]
v

= ρvt1di1
t
di

v+(1−ρ)vtv

= ρ(1t
di

v)2 +1−ρ

= ρ

(
(1t

di
v)2 −1

)
+1

≥ 0

Now solving for ρ and using the Cauchy-Schwartz Inequality, we get

ρ ≥ −1(
(1t

di
v)2 −1

)
≥ −1

(1t
di

1di)∗ (vtv)−1

=
−1

di −1

74

3.10.7 Gaussian Base

This section considers the special case of Gaussian base in the quasi-copula framework, and presents

detailed derivations of data generation and estimation methods. The joint density of y ∈ Rd is

(
c+

1
2

trΓ
)−1(1√

2πσ0

)d

e
− ∥y−µ∥2

2
2σ2

0

[
c+

1
2σ2

0
(y−µ)T

Γ(y−µ)

]
. (3.10)

The parameter c ≥ 0 tips the balance between the independent and dependent components.

3.10.7.1 Moments

In the Gaussian case, we have

E(yi) = µi

Var(yi) = σ
2
0

(
1+

γii

c+ 1
2 tr(Γ)

)
Cov(yi,y j) = σ

2
0

γi j

c+ 1
2 tr(Γ)

,

Cor(yi,y j) =
γi j√

(c+ 1
2 tr(Γ)+ γii)(c+ 1

2 tr(Γ)+ γ j j)
.

In summary,

Cov(y) = σ
2
0

[
I+

(
1

c+ 1
2 trΓ

)
Γ

]
.

In the special case of Γ = σ2
1 I, we have

Var(yi) = σ
2
0

(
1+

σ2
1

c+ n
2σ2

1

)
I

Cov(yi,y j) = 0, i ̸= j.

In the regression model, we would keep the variance σ2
0 parameter for more flexibility in modeling

the variance.

75

3.10.7.2 Random number generation

If we are able to generate a residual vector R from the (standardized) Gaussian copula model

[
1+

1
2

tr(Γ)
]−1(1√

2π

)d

e−
∥r∥2

2
2

(
1+

1
2

rT
Γr
)
,

then Y = σ0R+µ is a desired sample from density (3.10).

To generate a sample from the standardized Gaussian copula model, we first sample R1 from

its marginal distribution and then generate remaining components sequentially from the conditional

distributions Rk | R1, . . . ,Rk−1 for k = 2, . . . ,d.

• To generate R1 from its marginal density

[
1+

1
2

tr(Γ)
]−1 1√

2π
e−

r2
1
2

[
1+

γ11

2
r2

1 +
1
2

d

∑
i=2

γii

]
, (3.11)

we recognize it as a mixture of three distributions Normal(0,1),
√

χ2
3 and −

√
χ2

3 with mixing

probabilities 1+0.5∑
d
i=2 γii

1+0.5∑
d
i=1 γii

, 0.25γ11
1+0.5∑

d
i=1 γii

and 0.25γ11
1+0.5∑

d
i=1 γii

respectively.

• Next we consider generating R2 from the conditional distribution R2 |R1. Dividing the marginal

distribution of (R1,R2)

[
1+

1
2

tr(Γ)
]−1(1√

2π

)2

e−
r2
1+r2

2
2

(
1+

γ22

2
r2

2 + γ12r1r2 +
γ11

2
r2

1 +
1
2

d

∑
i=3

γii

)

by the marginal distribution of R1 (3.11) yields the conditional density

1√
2π

e−
r2
2
2
(
1+ γ11

2 r2
1 +

1
2 ∑

d
i=3 γii + γ12r1r2 +

γ22
2 r2

2
)

1+ γ11
2 r2

1 +
1
2 ∑

d
i=2 γii

,

which unfortunately is not a mixture of standard distributions. However we can evaluate its

76

cumulative distribution function (CDF)

F(x) =

(
1+ γ11

2 r2
1 +

1
2 ∑

d
i=3 γii

)
Φ(x)− γ12r1φ(x)+ γ22

2

[
1
2 +

sgn(x)
2 F

χ2
3
(x2)

]
1+ γ11

2 r2
1 +

1
2 ∑

d
i=2 γii

in terms of the density φ and CDF Φ of standard normal and the CDF F
χ2

3
of chi-squared

distribution with degree of freedom 3. This suggests the inverse CDF approach. To generate

one sample from R2 | R1, we draw a uniform variate U and use nonlinear root finding to locate

R2 such that F(R2) =U .

• In general, the conditional distribution Rk | R1, . . . ,Rk−1 has density

1√
2π

e−
r2
k
2

(
1+ 1

2rT
[k−1]Γ[k−1],[k−1]r[k−1]+

1
2 ∑

n
i=k+1 γii +(∑k−1

i=1 riγik)rk +
γkk
2 r2

k

)
1+ 1

2rT
[k−1]Γ[k−1],[k−1]r[k−1]+

1
2 ∑

d
i=k γii

and CDF(
1+ 1

2rT
[k−1]Γ[k−1],[k−1]r[k−1]+

1
2 ∑

d
i=k+1 γii

)
Φ(x)− (∑k−1

i=1 riγik)φ(x)+
γkk
2

[
1
2 +

sgn(x)
2 F

χ2
3
(x2)

]
1+ 1

2rT
[k−1]Γ[k−1],[k−1]r[k−1]+

1
2 ∑

d
i=k γii

.

We apply the inverse CDF approach to sample Rk given R1, . . . ,Rk−1.

For a general GLM model, we need to sample from conditional densities of form c f (y)(a0 +

a1y+ a2y2) where ai, i = 1,2,3, are constants and c is a normalizing constant. For most continu-

ous distributions, e.g., exponential, gamma, beta, chi-squared, and beta, the CDF can be expressed

conveniently using special functions.

3.10.7.3 Parameter Estimation

Suppose we have n independent realizations yi from the quasi-copula density. Each of these may

be of different dimensions, di. Assuming the component distribution yi ∼ Normal(Xiβ ,σ
2
0 Idi), the

77

component densities take form

ln fi(yi | β ,σ2
0) =−di

2
ln2π − di

2
lnσ

2
0 −

1
2
∥yi −Xiβ∥2

2
σ2

0

and the joint loglikelihood of the sample is

−∑
i

ln
(

c+
1
2

tr(Γi)

)
− ∑i di

2
ln2π − ∑i di

2
lnσ

2
0 −

1
2

∑i ∥yi −Xiβ∥2
2

σ2
0

+∑
i

ln
[

c+
1

2σ2
0
(yi −Xiβ)

T
Γi(yi −Xiβ)

]
= −∑

i
ln
(

c+
1
2

tr(Γi)

)
− ∑i di

2
ln2π +

∑i di

2
lnτ − τ

2 ∑
i
∥yi −Xiβ∥2

2

+∑
i

ln
[
c+

τ

2
(yi −Xiβ)

T
Γi(yi −Xiβ)

]
where Γi = ∑

m
k=1 θkVik are parameterized via variance components θ = (θ1, . . . ,θm). We work with

the parameterization τ = σ
−2
0 because the loglikelihood is concave in τ .

3.10.7.4 Score and Hessian

The score (gradient of loglikelihood function) is

∇β = σ
−2
0 ∑

i
XT

i (yi −Xiβ)−∑
i

XT
i Γi(yi −Xiβ)

cσ2
0 +

1
2(yi −Xiβ)T Γi(yi −Xiβ)

= τ ∑
i

XT
i (yi −Xiβ)− τ ∑

i

XT
i Γi(yi −Xiβ)

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)

∇τ =
∑i di

2τ
− 1

2 ∑
i
∥yi −Xiβ∥2

2 +∑
i

1
2(yi −Xiβ)

T Γi(yi −Xiβ)

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)

∇c = ∑
i

1
c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)

∇θ = −∑
i

(
c+∑

k
θktik

)−1

ti + τ ∑
i

(
c+∑

k
θkqik

)−1

qi

78

where

tik =
1
2

tr(Vik), ti = (ti1, . . . , tim)T

qik =
1
2
(yi −Xiβ)

T Vik(yi −Xiβ), qi = (qi1, . . . ,qim)
T .

The Hessian is

∇
2
β ,β = −τ ∑

i
XT

i Xi +∑
i

τXT
i ΓiXi

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)

−∑
i

τ2[XT
i Γi(yi −Xiβ)][XT

i Γi(yi −Xiβ)]
T[

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)
]2

≈ −τ ∑
i

XT
i Xi − τ ∑

i

τ[XT
i Γi(yi −Xiβ)][XT

i Γi(yi −Xiβ)]
T[

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)
]2

∇
2
β ,τ = ∑

i
XT

i (yi −Xiβ)−∑
i

XT
i Γi(yi −Xiβ)[

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)
]2

∇
2
β ,θ = ∑

i

XT
i Γi(yi −Xiβ)qT

i[
c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)
]2

∇
2
τ,τ = −∑i di

2τ2 −∑
i

[
1
2(yi −Xiβ)

T Γi(yi −Xiβ)

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)

]2

∇
2
τ,θ = −∑

i

XT
i Γi(yi −Xiβ)[

c+ τ

2(yi −Xiβ)T Γi(yi −Xiβ)
]2 qT

i

∇
2
θ ,θ = ∑

i

(
c+∑

k
θktik

)−2

titT
i − τ ∑

i

(
c+∑

k
θkqik

)−2

qiqT
i .

Note E[∇2
β ,τ], E[∇

2
β ,θ], and E[∇2

τ,θ] are approximately zero.

3.10.7.5 MM algorithm

Because the MM update of θ and τ is cheap, we maximize the profiled likelihood. That is, after

each Newton update of β , we update (τ,θ) conditional on current β using the MM algorithm and

evaluate the gradient and (approximate) Hessian using the newest (τ,θ). To update τ and θ given

79

β , the relevant objective function is

−∑
i

ln

(
c+∑

k
θktik

)
+

∑i di

2
lnτ − ∑i r2

i
2

τ +∑
i

ln

(
c+ τ ∑

k
θkqik

)
,

which is minorized by

− ∑
i

∑
k

tik
c(t)+∑k θ

(t)
k tik

θk −∑
i

1

c(t)+∑k θ
(t)
k tik

c

+
∑i di

2
lnτ − ∑i r2

i
2

τ

+ ∑
i

∑
k

τ(t)θ
(t)
k qik

c(t)+ τ(t)∑k θ
(t)
k qik

(lnτ + lnθk)

+ ∑
i

c(t)

c(t)+ τ(t)∑k θ
(t)
k qik

lnc

+ const.

The resultant updates are

τ
(t+1) =

∑i di +2∑i
τ(t)q(t)i

c(t)+τ(t)q(t)i

∑i r2
i

c(t+1) = c(t)
∑i

1
c(t)+τ(t)q(t)i

∑i
1

c(t)+t(t)
(3.12)

θ
(t+1)
k = θ

(t)
k

∑i
τ(t)qik

c(t)+τ(t)q(t)i

∑i
tik

c(t)+t(t)i

, k = 1, . . . ,m, (3.13)

where q(t)i = ∑k θ
(t)
k qik and t(t)i = ∑k θ

(t)
k tik.

If we opt to use the optimal quadratic minorization

ln(1+ x)≥ ln(1+ x(t))+(x− x(t))− x2 − x2(t)

2(1+ x(t))
,

80

the minorization function becomes

−∑
i

∑
k

tik
1+∑k θ

(t)
k tik

θk +
∑i di

2
lnτ +

(
∑

i
∑
k

θkqik −
∑i r2

i
2

)
τ − τ2

2 ∑
i

(∑k θkqik)
2

1+ τ(t)∑k θ
(t)
k qik

+ c(t).

To update τ given θk, let

a(t) = ∑
i

(∑k θ
(t)
k qik)

2

1+ τ(t)∑k θ
(t)
k qik

b(t) = ∑
i

∑
k

θ
(t)
k qik −

∑i r2
i

2

c(t) =
∑i di

2

then

τ
(t+1) =

b(t)+
√

b2(t)+4a(t)c(t)

2a(t)
.

To update θk given τ , we minimize quadratic function

1
2

σ
2T QT W(t)Qσ

2 − c(t)T σ
2

subject to nonnegativity constraint θk ≥ 0, where W(t) = diag(w(t)
1 , . . . ,w(t)

n) with

w(t)
i =

τ2(t)

1+ τ(t)∑k θ
(t)
k qik

and c(t) has entries

c(t)k = τ
(t)

∑
i

qik −∑
i

tik
1+∑k θ

(t)
k tik

.

It turns out this update based on quadratic minorization converges slower than the update (3.13)

based on Jensen’s inequality.

81

3.10.8 Additional Simulation Study Results

In each simulation scenario, the non-intercept entries of the predictor matrix Xi are independent

standard normal deviates. When simulating under our model for the CS and AR(1) covariance

structures, the true regression coefficients βtrue ∼ Uniform(−2,2). When comparing estimates with

MixedModels.jl under the random intercept model for the Poisson, Bernoulli and negative bino-

mial base, smaller regression coefficients βtrue ∼ Uniform(−0.2,0.2) hold. For Gaussian base, all

precisions τtrue = 100. For the negative binomial base, all dispersion parameters are rtrue = 10. Un-

der both CS and AR(1) parameterizations of Γi, σ2
true = 0.5 and ρtrue = 0.5. Each simulation scenario

was run on 100 replicates for each sample size n ∈ {100,1000,10000} and number of observations

di ∈ {2,5,10,15,20,25} per independent sampling unit. By default, convergence tolerances are set

to 10−6.

Under the VC parameterization of Γi, the choice Γi,true = θtrue ×1di1
t
di

allows us to compare to

the random intercept GLMM fit using MixedModels.jl. When the random effect term is a scalar,

MixedModels.jl uses Gaussian quadrature for parameter estimation. We compare estimates and

run-times to the random intercept GLMM fit of MixedModels.jl with 25 Gaussian quadrature

points. We conduct simulation studies under two scenarios (simulation I and II). In simulation I, it

is assumed that the data are generated by the quasi-copula model with θtrue = 0.1, and in simulation

II, it is assumed that the true distribution is the random intercept GLMM with θtrue = 0.01,0.05.

Figures 3.8 - 3.11 summarize the performance of the MLEs using mean squared errors (MSE)

under the AR(1) parameterization of Γi. Figures 3.12 - 3.15 summarize the same under the CS pa-

rameterization of Γi. Figures 3.16 - 3.17 help us assess estimation accuracy and how well the GLMM

density approximates the quasi-copula density under simulation I for the Bernoulli and Gaussian

base. Under simulation II, Figures 3.18 - 3.21 shed light on how well the quasi-copula density ap-

proximates the GLMM density under different magnitudes of variance components. Figure 3.18

shows that for the Bernoulli base distribution with θtrue = 0.05, the quasi-copula estimates of the

variance component has average MSE of about 10−3. Figure 3.19 shows that for the Bernoulli base

82

distribution with θtrue = 0.01, the quasi-copula estimates of the variance component improves to an

average MSE of about 10−4. Figure 3.20 shows for the Gaussian base distribution with θtrue = 0.05,

the quasi-copula estimates of the variance component has an average MSE around 10−4, and the

quasi-copula estimates of the precision has an average MSE around 10−2. Figure 3.21 shows that

for the Gaussian base distribution with θtrue = 0.01, the quasi-copula estimates of the variance com-

ponent improves to an average MSE of about 10−6, and the quasi-copula estimates of the precision

improves to an average MSE of about 10−4. The QC model accurately estimates the mean compo-

nents even with large cluster sizes (di = 25) and small sample sizes (n = 100), even when the true

density is that of the GLMM and LMM.

83

3.10.8.1 AR(1) Covariance

Figure 3.8: Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covari-
ance for the Poisson base distribution with log link function. Each scenario reports involves 100
replicates.

84

Figure 3.9: Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covariance
for the negative binomial base distribution with log link function. Each scenario reports involves
100 replicates.

85

Figure 3.10: Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covari-
ance for the Bernoulli base distribution with logit link function. Each scenario reports involves 100
replicates.

86

Figure 3.11: Mean squared errors (MSE) of parameter estimates β and θ under the AR(1) covariance
for the Normal base distribution with Identity link function. Each scenario reports involves 100
replicates.

87

3.10.8.2 CS Covariance

Figure 3.12: Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance for
the Poisson base distribution with log link function. Each scenario reports involves 100 replicates.

88

Figure 3.13: Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance
for the negative binomial base distribution with log link function. Each scenario reports involves
100 replicates.

89

Figure 3.14: Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance for
the Bernoulli base distribution with logit link function. Each scenario reports involves 100 replicates.

90

Figure 3.15: Mean squared errors (MSE) of parameter estimates β and θ under the CS covariance
for the Normal base distribution with Identity link function. Each scenario reports involves 100
replicates.

91

3.10.8.3 VC Covariance

Figure 3.16: Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under
the Bernoulli base distribution with logit link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

92

Figure 3.17: Simulation I: Mean squared errors (MSE) of parameter estimates β and θ under the
Normal base distribution with Identity link function and a single VC versus a random intercept LMM
fit via MixedModels.jl. Each scenario reports involves 100 replicates.

93

Figure 3.18: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under
the Bernoulli base distribution with logit link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

94

Figure 3.19: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under
the Bernoulli base distribution with logit link function and a single VC versus a random intercept
GLMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

95

Figure 3.20: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.05 under
the Normal base distribution with Identity link function and a single VC versus a random intercept
LMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

96

Figure 3.21: Simulation II: Mean squared errors (MSE) of parameter estimates β and θ= 0.01 under
the Normal base distribution with Identity link function and a single VC versus a random intercept
LMM fit via MixedModels.jl. Each scenario reports involves 100 replicates.

3.10.8.4 Run Times

Run times under simulation I and II are comparable. Tables 3.5 - 3.8 presents average run times and

their standard errors in seconds, for 100 replicates under the AR(1) and CS covariance structures.

Tables 3.9 - 3.10 present average run times and their standard errors in seconds, for 100 replicates

under simulation II with θtrue = 0.01. All computer runs were performed on a standard 2.3 GHz

Intel i9 CPU with 8 cores. Runtimes for the quasi-copula model are presented using multi-threading

across 8 cores.

97

n di Poisson AR(1) time Poisson CS time

100 2 0.057 (0.001) 0.065 (0.002)

100 5 0.069 (0.002) 0.079 (0.002)

100 10 0.112 (0.008) 0.133 (0.011)

100 15 0.214 (0.021) 0.212 (0.019)

100 20 0.238 (0.023) 0.234 (0.020)

100 25 0.307 (0.025) 0.289 (0.023)

1000 2 0.060 (0.001) 0.066 (0.001)

1000 5 0.074 (0.001) 0.081 (0.001)

1000 10 0.096 (0.001) 0.108 (0.002)

1000 15 0.112 (0.002) 0.125 (0.002)

1000 20 0.153 (0.012) 0.158 (0.008)

1000 25 0.153 (0.003) 0.180 (0.011)

10000 2 0.201 (0.002) 0.199 (0.002)

10000 5 0.271 (0.002) 0.302 (0.003)

10000 10 0.358 (0.002) 0.446 (0.004)

10000 15 0.447 (0.004) 0.564 (0.006)

10000 20 0.543 (0.005) 0.651 (0.006)

10000 25 0.703 (0.008) 0.757 (0.007)

Table 3.5: Run times and (standard error of run times) in seconds based on 100 replicates for Poisson
Base under AR(1) and CS covariance structure with sampling unit size di and sample size n.98

n di NB AR(1) time NB CS time

100 2 0.323 (0.009) 0.300 (0.009)

100 5 0.339 (0.007) 0.311 (0.008)

100 10 0.320 (0.008) 0.337 (0.012)

100 15 0.334 (0.011) 0.391 (0.016)

100 20 0.364 (0.013) 0.372 (0.015)

100 25 0.376 (0.016) 0.362 (0.016)

1000 2 0.445 (0.004) 0.381 (0.004)

1000 5 0.499 (0.003) 0.429 (0.004)

1000 10 0.564 (0.004) 0.520 (0.009)

1000 15 0.654 (0.010) 0.700 (0.021)

1000 20 0.798 (0.019) 0.864 (0.030)

1000 25 0.938 (0.022) 0.864 (0.030)

10000 2 2.656 (0.012) 2.297 (0.017)

10000 5 3.161 (0.013) 2.706 (0.012)

10000 10 3.875 (0.015) 4.001 (0.059)

10000 15 4.924 (0.016) 5.302 (0.140)

10000 20 6.353 (0.028) 6.073 (0.142)

10000 25 7.449 (0.109) 6.987 (0.144)

Table 3.6: Run times and (standard error of run times) in seconds based on 100 replicates for negative
binomial (NB) Base under AR(1) and CS covariance structure with sampling unit size di and sample
size n.

99

n di Bernoulli AR(1) time Bernoulli CS time

100 2 0.052 (0.002) 0.051 (0.002)

100 5 0.062 (0.002) 0.069 (0.003)

100 10 0.176 (0.019) 0.123 (0.012)

100 15 0.218 (0.021) 0.213 (0.017)

100 20 0.253 (0.022) 0.310 (0.021)

100 25 0.299 (0.024) 0.339 (0.021)

1000 2 0.080 (0.002) 0.056 (0.002)

1000 5 0.081 (0.001) 0.069 (0.002)

1000 10 0.096 (0.006) 0.088 (0.001)

1000 15 0.121 (0.006) 0.119 (0.007)

1000 20 0.179 (0.016) 0.179 (0.015)

1000 25 0.226 (0.020) 0.232 (0.020)

10000 2 0.183 (0.002) 0.171 (0.003)

10000 5 0.256 (0.002) 0.264 (0.003)

10000 10 0.304 (0.002) 0.356 (0.003)

10000 15 0.432 (0.004) 0.450 (0.004)

10000 20 0.507 (0.005) 0.535 (0.007)

10000 25 0.614 (0.005) 0.673 (0.007)

Table 3.7: Run times and (standard error of run times) in seconds based on 100 replicates for
Bernoulli Base under AR(1) and CS covariance structure with sampling unit size di and sample
size n.

100

n di Gaussian AR(1) time Gaussian CS time

100 2 0.213 (0.008) 0.214 (0.008)

100 5 0.305 (0.021) 0.338 (0.022)

100 10 0.392 (0.025) 0.432 (0.027)

100 15 0.507 (0.028) 0.441 (0.029)

100 20 0.533 (0.027) 0.448 (0.031)

100 25 0.590 (0.027) 0.429 (0.030)

1000 2 0.236 (0.006) 0.236 (0.006)

1000 5 0.272 (0.005) 0.309 (0.006)

1000 10 0.365 (0.011) 0.415 (0.010)

1000 15 0.461 (0.024) 0.547 (0.021)

1000 20 0.548 (0.028) 0.628 (0.026)

1000 25 0.561 (0.030) 0.669 (0.026)

10000 2 0.604 (0.013) 0.582 (0.011)

10000 5 0.753 (0.016) 0.793 (0.017)

10000 10 0.871 (0.015) 1.053 (0.015)

10000 15 1.032 (0.018) 1.300 (0.022)

10000 20 1.233 (0.030) 1.718 (0.025)

10000 25 1.437 (0.033) 2.191 (0.042)

Table 3.8: Run times and (standard error of run times) in seconds based on 100 replicates for Gaus-
sian Base under AR(1) and CS covariance structure with sampling unit size di and sample size n.

101

n di Bernoulli QC time Bernoulli GLMM time

100 2 0.048 (<0.001) 0.022 (0.002)

100 5 0.049 (0.001) 0.041 (0.001)

100 10 0.050 (0.001) 0.086 (0.004)

100 15 0.049 (0.001) 0.125 (0.005)

100 20 0.047 (0.001) 0.167 (0.005)

100 25 0.047 (0.001) 0.203 (0.008)

1000 2 0.045 (0.001) 0.166 (0.003)

1000 5 0.045 (0.001) 0.446 (0.013)

1000 10 0.043 (0.001) 0.899 (0.022)

1000 15 0.044 (0.001) 1.435 (0.038)

1000 20 0.054 (0.002) 1.888 (0.041)

1000 25 0.077 (0.002) 2.461 (0.057)

10000 2 0.138 (0.003) 1.726 (0.034)

10000 5 0.160 (0.003) 4.711 (0.099)

10000 10 0.189 (0.003) 10.389 (0.221)

10000 15 0.232 (0.003) 15.958 (0.327)

10000 20 0.276 (0.003) 21.609 (0.313)

10000 25 0.349 (0.003) 28.723 (0.494)

Table 3.9: Run times and (standard error of run times) in seconds based on 100 replicates under
simulation II with Bernoulli Base, θtrue = 0.01, sampling unit size di and sample size n.

102

n di Gaussian QC time LMM time

100 2 0.112 (0.002) 0.003 (0.003)

100 5 0.106 (0.003) 0.001 (<0.001)

100 10 0.097 (0.002) 0.001 (<0.001)

100 15 0.099 (0.004) 0.001 (<0.001)

100 20 0.105 (0.008) 0.001 (<0.001)

100 25 0.109 (0.008) 0.003 (0.002)

1000 2 0.110 (0.002) 0.004 (0.002)

1000 5 0.103 (0.002) 0.002 (<0.001)

1000 10 0.100 (0.002) 0.006 (0.002)

1000 15 0.095 (0.001) 0.006 (0.001)

1000 20 0.094 (0.002) 0.008 (0.001)

1000 25 0.099 (0.002) 0.011 (0.002)

10000 2 0.200 (0.005) 0.018 (0.003)

10000 5 0.192 (0.004) 0.029 (0.003)

10000 10 0.216 (0.004) 0.050 (0.004)

10000 15 0.219 (0.003) 0.067 (0.003)

10000 20 0.239 (0.003) 0.091 (0.003)

10000 25 0.258 (0.002) 0.099 (0.003)

Table 3.10: Run times and (standard error of run times) in seconds based on 100 replicates under
simulation II with Gaussian Base, θtrue = 0.01, sampling unit size di and sample size n.

103

3.11 Availability of source code

Project name: QuasiCopula.jl

Project home page: https://github.com/OpenMendel/QuasiCopula.jl

Supported operating systems: Mac OS, Linux, Windows

Programming language: Julia 1.6

License: MIT

All commands needed to reproduce the following results are available at the QuasiCopula site

in the manuscript sub-folder. The NHANES data is available in the ‘causaldata‘ R package at

https://cran.r-project.org/web/packages/causaldata/causaldata.pdf.

104

https://github.com/OpenMendel/QuasiCopula.jl
https://cran.r-project.org/web/packages/causaldata/causaldata.pdf

CHAPTER 4

Genome-Wide Association Analysis with Quasi-Copula

4.1 Motivation

Genetic epidemiological studies typically collect data on multiple correlated traits. However, most

analysis software for genome-wide association studies (GWAS) currently restricts researchers to

single-trait analysis as the likelihood function for correlated phenotypes can be difficult to specify,

particularly for mixed outcomes. When appropriate, there are considerable advantages for analyzing

multiple correlated phenotypes jointly rather than separately [10, 3, 25]. The advantages of per-

forming a true joint analysis of correlated traits include the ability to (a) better detect pleiotropy (one

locus influencing multiple correlated traits), (b) incorporate extra information on cross-trait covari-

ances, (c) reduce the burden of multiple testing, and (d) ultimately increase statistical power. These

advantages have been shown to hold even if the correlation among traits is weak [10].

Motivated by the previous chapter, we are interested in applying the quasi-copula model to

genome-wide association studies (GWAS) of correlated phenotypes. First, we present the quasi-

copula model in a genetic context. Second, we derive an efficient testing strategy that makes the

quasi-copula model computationally feasible for biobank scale GWAS.

4.2 Genetic Model

Consider n independent realizations yi from the quasi-copula density. Following the notation from

the previous chapter, let Xi denote the design matrix and µi denote the mean vector for the ith

105

sampling unit. Under the alternative model, the mean components µi are a function of both genetic

and non-genetic covariates. The design matrix can be written as Xi = (Ni,Gi), where Ni is the design

matrix under the null model that contains p non-genetic covariates (i.e. age, sex) and Gi contains

the set of q genotypes to be tested. Using the inverse link function g(·), the mean vector for the ith

observation takes the form µi(β,γ) = g(Niβ) under the null model, and µi(β,γ) = g(Niβ+Giγ)

under the full model.

For a single SNP, Gi is the scalar genotype value and for a SNP-set, Gi is the genotype vector

of q SNPs. We will test H0 :γ = 0 to assess the significance of the SNP or SNP-set. In either

case, practical association testing strategies scalable to biobank data must be considered. Using the

likelihood ratio test (LRT) becomes computationally challenging in biobank scale data, as the full

model needs to be re-fitted at every single SNP or SNP-set. In contrast, the score test only requires

fitting the null model once and updating a score test statistic. A sensible strategy when running a

GWAS on biobank scale data is to first use the score test to screen all the SNPs, and then re-analyze

only the most significant SNPs using the more powerful, but slower, LRT.

4.3 Score Test for Individual SNPs or SNP-sets

4.3.1 Score and Approximate Observed Information

In implementing the score test, we assume that the observed information matrix is approximately

block diagonal in the mean and variance parameters. We further approximate the observed infor-

mation matrix by the sum of cross products of the scores from the individual sampling units. The

106

pertinent quantities are then

∇L(β,γ,θ) =
n

∑
i=1

∇Li(β,γ,θ)

=
n

∑
i=1

Xi
tWi(β,γ)[Yi −µi(β,γ)]+

n

∑
i=1

dri(β,γ)
tΓi(θ)ri(β,γ)

1+ 1
2ri(β,γ)tΓi(θ)ri(β,γ)

=
n

∑
i=1

Nt
i

Gt
i

Wi(β,γ)[Yi −µi(β,γ)]+
n

∑
i=1

dri(β,γ)
tΓi(θ)ri(β,γ)

1+ 1
2ri(β,γ)tΓi(θ)ri(β,γ)

=


∑

n
i=1 Nt

iWi(β,γ)[Yi −µi(β,γ)]

∑
n
i=1 Gt

iWi(β,γ)[Yi −µi(β,γ)]

+


∑
n
i=1

dβri(β,γ)
tΓi(θ)ri(β,γ)

1+ 1
2 ri(β,γ)tΓi(θ)ri(β,γ)

∑
n
i=1

dγri(β,γ)
tΓi(θ)ri(β,γ)

1+ 1
2 ri(β,γ)tΓi(θ)ri(β,γ)


and

−d2L(β,γ,θ) ≈
n

∑
i=1

∇Li(β,γ,θ)dLi(β,γ,θ),

where ∇ and d produce a gradient and differential, respectively, with respect to the mean parameters

β and γ, Wi(β,γ) is a diagonal matrix of "working weights"

Wi(β,γ) =



g′(ηi1)

σ2
i1

0 · · · 0

0 g′(ηi2)

σ2
i2

· · · 0
...

...

0 0 · · · g′(ηidi)

σ2
idi


,

and ηi j is the jth entry of Niβ+Giγ.

107

4.3.2 Score Test Statistic

To test the SNP-set hypothesis

H0 :γ1 = · · ·= γq = 0,

we partition the approximate observed information under the null model into the block matrix

β1 · · · βp γ1 · · · γq



β1
... P R

βp

γ1
... RT Q

γq

and denote the score vector (gradient) with respect to γ at the null by ∇γL. The score test statistic

S = ∇γLt(Q−RTP−1R)−1
∇γL ∼ χ

2
q

is calculated from estimated parameters under the null model (keeping γ = 0). The various quantities

defining the mean vector, including residuals, standardized residual vectors, and working weight

matrices Wi(β,γ), do not change when we expand the null model to the alternative model. As

indicated, the test statistic S follows a χ2
q distribution asymptotically.

108

CHAPTER 5

Conclusions and Future Research

This dissertation presented three distinct projects with different applications in human genetics.

Each of these projects aims to develop methods and tools that scale to large sample sizes. The

first project provides the genetic community with flexible simulation tools that easily simulate phe-

notypic traits conditional on PLINK formatted genotype data. We illustrate through two case studies,

how TraitSimulation.jl cooperates with specific genetic analysis options in OpenMendel for ef-

ficient statistical power analyses. The second project presents a new class of multivariate models,

the quasi-copula model, in which the loglikelihoods contain no integrals, determinants, or matrix

inverses. In addition to relaxing independence assumptions, the quasi-copula model offers another

avenue for analysis of correlated data and a simple way to capture over-dispersion. In our opinion,

its speed and versatility make up for its defects. The final project presents the quasi-copula model in

a genetic context, and outlines an efficient testing procedure that can scale to biobank size data.

In the remaining chapter, we discuss potential extensions of the quasi-copula model. Specifically,

we will we present two different applications of the quasi-copula model for GWAS under unstruc-

tured and structured covariance matrices. For testing individual SNP’s or SNP-sets, we can use the

efficient testing procedure from the previous chapter regardless of the covariance structure. We first

present the application of the quasi-copula model to random sample population data and derive the

steepest ascent algorithm for parameter estimation under an unstructured covariance matrix. We then

discuss a potential application of the quasi-copula model for pedigree-based GWAS, accounting for

kinships. For the pedigree GWAS application of the model, we also present the bivariate trait model

and derive another MM-Algorithm that hinges on convexity arguments.

109

5.1 Quasi-Copula model for Random Sample GWAS

For the application of the quasi-copula model on random sample data, consider the case where

each independent realization from the model yi represents the di phenotypes from the ith subject

in our sample of n total independent subjects. The unstructured covariance matrix gives consid-

erable flexibility in capturing dependencies between phenotypes measured from the same subject.

In the following section, we derive a steepest ascent algorithm for parameter estimation under an

unstructured covariance matrix.

5.1.1 Steepest Ascent Estimation of an Unstructured Covariance

When Γi = Γ is unstructured for every sampling unit i, one can also implement steepest ascent. We

can parameterize each di ×di positive semi-definite covariance matrix Γ by its Cholesky decompo-

sition C. The directional derivative of the loglikelihood of the data along the direction specified by

the lower triangular matrix V is

dVL(C) =− n tr(CVt)

1+ 1
2 tr(CCt)

+
n

∑
i=1

tr[ri(β)ri(β)
tCVt]

1+ 1
2ri(β)tΓri(β)

.

Hence, the corresponding gradient G = ∇L(C) is the lower triangle of the matrix

G =− nC
1+ 1

2 tr(CCt)
+

n

∑
i=1

ri(β)ri(β)
tC

1+ 1
2ri(β)tCCtri(β)

.

The quadratic form generated by the second directional derivative is

d2
VL(C) =

−n tr(VVt)

1+ 1
2 tr(CCt)

+
n tr(CVt)2

[1+ 1
2 tr(CCt)]2

+
n

∑
i=1

ri(β)
tVVtri(β)

1+ 1
2ri(β)tCCtri(β)

−
n

∑
i=1

[ri(β)
tCVtri(β)]

2

[1+ 1
2ri(β)tCCtri(β)]2

At each iteration, r, the gradient direction Vr = Gr maximizes tr(VrGr) among all matrices with

110

the same Frobenius norm. The direction of steepest ascent consequently updates Cr at iteration r by

Cr+1 = Cr + srGr for some well chosen scalar sr > 0. The choice of sr is dictated by the competing

desires of improving the loglikelihood and keeping the update positive semidefinite. To reduce the

error at each iteration, the optimal step size sr can be selected by minimizing the second-order Taylor

expansion

L(Cr+1)≈ L(Cr)+ sr tr(Gt
rGr)+

s2
r
2

tr(Gt
rd

2
VL(C)Gr)

with respect to sr. The maximum occurs at the step size

sr =− tr(G⊤
r Gr)

tr[G⊤
r d2

VL(C)Gr]
.

5.2 GWAS on Pedigree and Structured Population Data

Family designs are better equipped to detect rare variants and control for population stratification.

Even in population-based association studies, not taking into account estimated identity-by-descent

(IBD) information can lead to false positives and decreases in statistical power [31]. Unfortunately,

pedigree likelihoods are notoriously hard to compute.

Existing methods for GWAS on pedigree or structured populations build on the linear mixed

model framework and are often limited to continuous phenotypes. Once one ventures beyond the

confines of multivariate Gaussian distributions, analysis choices are limited. To our knowledge,

there are no scalable likelihood-based methods for multivariate-trait GWAS when the phenotype is

discrete or of mixed types. In contrast, the quasi-copula model is relatively easy to fit and friendly

to likelihood ratio hypothesis testing. Additionally, it easily extends to accommodate mixtures of

different base distributions and a variety of covariance structures.

111

5.2.1 Quasi-Copula model for Pedigree GWAS

Following the notation from the previous chapter, for each independent sampling unit i, we can

use the quasi-copula density to jointly model a trait vector yi =


yi,1

...

yi,di

 with covariance Γi. Under

the blanket assumptions of additivity and independence, let observations yi have covariance matrix

structured under the variance component model (VCM) framework

Γi = 2σ
2
g Φi +σ

2
e Idi.

Here σ2
g is the polygenic additive variance, σ2

e is the random environmental variance, and Φi is an

estimate of the kinship coefficients in the ith pedigree. When family structures are known, these

kinship coefficients are easily calculated [18]. When pedigrees are unknown or suspect, kinship

coefficients can be estimated empirically from dense markers. One popular estimate is the genetic

relationship matrix (GRM). Within the OpenMendel platform, MendelKinship.jl [35] provides a

number of options to estimate the kinship matrix Φi.

5.2.2 Pedigree GWAS Example: Bivariate Trait

Suppose we want to consider matrix outcomes realized from the quasi-copula model. For instance,

a bivariate trait from n pedigrees under the quasi-copula model gives rises to the matrix response

Yi =
[
y1i y2i

]
, where y1i =


y1,1

...

y1,di

 and y2i =


y2,1

...

y2,di

 are the corresponding trait vectors for the

di members of pedigree i. It is convenient stack the columns of the matrix outcome Yi, to form the

response vector yi =

y1i

y2i

 for pedigree i. Under the assumptions of additivity and independence,

112

yi has the structured covariance matrix

Γi = Σg ⊗2Φi +Σe ⊗ Idi

in the VCM framework. Here Σg is the additive genetic covariance matrix, Σe is the environmental

covariance matrix, Φi is the estimate of the kinship matrix, and Idi is the di × di identity matrix.

Kronecker products ⊗ are required as explained in [17]. The estimation procedure for mean effects

β stays relatively unchanged. However, to update variance component matrices Σg and Σe, we

exploit another MM algorithm.

5.2.3 An MM-Algorithm for Variance Component Matrices

For m sources of variation, we can decompose the variance of yi as

Γi =
m

∑
k=1

Σk ⊗Vik,

where Vik represents a known covariance matrix such as Φi and Idi , and Σk represents an unknown

covariance matrix to be estimated. In the bivariate example presented above, each Σk is of dimension

2×2. The following derivation holds only for a single independent realization from the quasi-copula

density.

To derive the MM-update, we will use two identities involving Kronecker products. The first

is tr(A⊗B) = tr(A) tr(B) [1]. The second, Roth’s Kronecker Lemma, is rt(A⊗B)r = tr(ARtBR),

where r = vec(R). In our case r is the stacked vector of standardized residuals.

For a single observation, the relevant parts of the loglikelihood are

L(Σk | β) =− ln
[
1+

1
2

tr
(m

∑
k=1

Σk ⊗Vk

)]
+ ln

[
1+

1
2

r(β)t
m

∑
k=1

Σk ⊗Vk r(β)
]
.

Since − lnx is convex, the supporting hyperplane inequality applied to the first term of the log-

113

likelihood gives the minorization

− ln
[
1+

1
2

tr
(m

∑
k=1

Σk ⊗Vk

)]
≥ −

m

∑
k=1

zrk tr(Σk)+ cr

at iteration r, where cr is an irrelevant constant and zrk =
1
2 tr(Vk)

1+ 1
2 ∑

m
k=1 tr(Vk) tr(Σrk)

. Since lnx is concave,

Jensen’s Inequality yields the minorization

ln
[
1+

1
2

r(β)t
m

∑
k=1

(Σk ⊗Vk)r(β)
]

≥
m

∑
k=1

wrk ln
[
r(β)t(Σk ⊗Vk)r(β)

]
+br

=
m

∑
k=1

wrk ln tr[ΣkR(β)tVkR(β)]+br,

where br is an irrelevant constant and wrk =
1
2 tr[ΣrkR(β)tVkR(β)]

1+ 1
2 ∑

m
k=1 tr[ΣrkR(β)tVkR(β))]

.

5.2.4 Surrogate Function

Thus, to update Σk, we maximize

l(Σk|β) = −zrk tr(Σk)+wrk ln[tr(ΣkR(β)tVkR(β)].

The Fan-Von Neuman inequality [19] states that

tr(ΣkR(β)tVkR(β)) ≤ ∑
l

λklσkl

where the λkl are the ordered eigenvalues of Σk and the σkl are the ordered eigenvalues of the

matrix R(β)tVkR(β). Equality holds when the ordered eigenvectors of Σk are the same as those of

114

R(β)tVkR(β). Thus, we maximize the surrogate function

h(λ |Σrk) = −zrk ∑
l

λkl +wrk ln
(
∑

l
λklσkl

)
subject to the constraint λkl ≥ 0.

To tackle this maximkzation problem we drop the subscripts r and k and write the Karush-

Kuhn-Tucker stationary condition for λl ≥ 0 as 0 =−z+w σl
∑ j λ jσ j

+µl , where µl ≥ 0 and µlλl = 0.

Multiplying the stationary condition by λl and summing on l give 0 = −z∑l λl +w or ∑l λl =
w
z .

The MM update problem reduces to maximizing −w+w ln
(

∑l λlσl

)
subject to ∑l λl =

w
z . If the

σl are unique and in decreasing order, then the obvious solution is to take λ1 = w
z . This leads to

the paradoxical conclusion that Σk has rank 1 and suggests that amalgamating all pedigrees into a

single pedigree is possibly a bad idea. It might be better to optimize the surrogate by steepest ascent

via Cholesky decompositions. When several σl are maximal, the solution to the KKT equations is

nonunique because one can arbitrarily divide the mass w
z among the top λl .

115

Bibliography

[1] S. Banerjee and A. Roy. Linear algebra and matrix analysis for statistics, volume 181. Crc

Press Boca Raton, FL, USA:, 2014.

[2] D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using

lme4. Journal of Statistical Software, 67(1):1–48, 2015.

[3] L. E. Bauman, L. Almasy, J. Blangero, R. Duggirala, J. S. Sinsheimer, and K. Lange. Fishing

for pleiotropic qtls in a polygenic sea. Annals of human genetics, 69(5):590–611, 2005.

[4] M. Besançon, D. Anthoff, A. Arslan, S. Byrne, D. Lin, T. Papamarkou, and J. Pearson. Dis-

tributions.jl: Definition and modeling of probability distributions in the juliastats ecosystem.

arXiv e-prints, page arXiv:1907.08611, Jul 2019.

[5] N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models.

Journal of the American Statistical Association, 88(421):9–25, 1993.

[6] N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models.

Journal of the American statistical Association, 88(421):9–25, 1993.

[7] M. E. Brooks, K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen,

H. J. Skaug, M. Maechler, and B. M. Bolker. glmmTMB balances speed and flexibility among

packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2):378–400,

2017.

[8] H. Chen, C. Wang, M. P. Conomos, A. M. Stilp, Z. Li, T. Sofer, A. A. Szpiro, W. Chen, J. M.

Brehm, J. C. Celedon, S. Redline, G. J. Papanicolaou, T. A. Hornton, C. C. Laurie, K. Rice, and

X. Lin. Control for population structure and relatedness for binary traits in genetic association

studies via logistic mixed models. American Journal of Human Genetics, 98:653–666, 2017.

116

[9] B. B. Cohen, H. E. Barbano, C. S. Cox, J. J. Feldman, F. F. Finucane, J. C. Kleinman, and J. H.

Madans. Plan and operation of the NHANES I Epidemiologic Followup Study: 1982-84. Vital

and Health Statistics, Series 1, 22:1–142, 1987.

[10] T. E. Galesloot, K. Van Steen, L. A. Kiemeney, L. L. Janss, and S. H. Vermeulen. A comparison

of multivariate genome-wide association methods. PloS one, 9(4):e95923, 2014.

[11] C. A. German, J. S. Sinsheimer, Y. C. Klimentidis, H. Zhou, and J. J. Zhou. Ordered multino-

mial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genetic

Epidemiology, 44:248–260, 2020.

[12] IGSR. International genome sample resource, 2020.

[13] S. S. Ji, C. A. German, K. Lange, J. S. Sinsheimer, H. Zhou, J. Zhou, and E. M. Sobel. Modern

simulation utilities for genetic analysis. BMC bioinformatics, 22(1):1–13, 2021.

[14] JuliaComputing. Distibuted computing.

[15] JuliaComputing. Multi-threading.

[16] JuliaComputing. Parallel computing.

[17] K. Lange. Mathematical and Statistical Methods for Genetic Analysis. Springer, New York,

2nd edition, 2002.

[18] K. Lange. Mathematical and statistical methods for genetic analysis, volume 488. Springer,

2002.

[19] K. Lange. MM Optimization Algorithms. SIAM, 2016.

[20] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions.

Journal of Computational and Graphical Statistics, 9(1):1–20, 2000.

[21] K.-Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models.

Biometrika, 73(1):13–22, 1986.

117

[22] D. Lin, J. M. White, S. Byrne, D. Bates, A. Noack, J. Pearson, A. Arslan, K. Squire, D. An-

thoff, T. Papamarkou, M. Besançon, and et al. JuliaStats/Distributions.jl: a Julia package for

probability distributions and associated functions, may 2019.

[23] M. Ohtaki. Globally convergent algorithm without derivatives for maximizing a multivariate

function. Proceedings of Development of Statistical Theories and their Application for Com-

plex Nonlinear Data, 1999.

[24] J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear

mixed-effects model. Journal of Computational and Graphical Statistics, 4(1):12–35, 1995.

[25] H. F. Porter and P. F. O’Reilly. Multivariate simulation framework reveals performance of

multi-trait gwas methods. Scientific reports, 7(1):1–12, 2017.

[26] M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ.

Paris, 8:229–231, 1959.

[27] P. X.-K. Song, M. Li, and Y. Yuan. Joint regression analysis of correlated data using gaussian

copulas. Biometrics, 65(1):60–68, 2009.

[28] T. Tonda. A class of multivariate discrete distributions based on an approximate density in

{GLMM}. Hiroshima Mathematical Journal, 35(2):327–349, 2005.

[29] S. L. Zeger and M. R. Karim. Generalized linear models with random effects; a gibbs sampling

approach. Journal of the American statistical association, 86(413):79–86, 1991.

[30] H. Zhou. Snparrays.jl.

[31] H. Zhou, J. Blangero, T. D. Dyer, K.-h. K. Chan, K. Lange, and E. M. Sobel. Fast genome-wide

qtl association mapping on pedigree and population data. Genetic epidemiology, 41(3):174–

186, 2017.

[32] H. Zhou, L. Hu, J. Zhou, and K. Lange. Mm algorithms for variance components models.

Journal of Computational and Graphical Statistics, 28(2):350–361, 2019.

118

[33] H. Zhou, J. C. Papp, S. Ko, C. A. German, J. Day, M. A. Suchard, A. Landeros, and A. Noack.

SnpArrays.jl: Julia package for compressed storage of SNP data, Feb. 2020.

[34] H. Zhou, J. Sinsheimer, D. Bates, B. Chu, C. German, S. Ji, K. Keys, J. Kim, S. Ko, G. Mosher,

J. Papp, E. Sobel, J. Zhai, J. Zhou, and K. Lange. OPENMENDEL: A cooperative program-

ming project for statistical genetics. Human Genetics, 139:61–71, 2020.

[35] H. Zhou, J. S. Sinsheimer, D. M. Bates, B. B. Chu, C. A. German, S. S. Ji, K. L. Keys, J. Kim,

S. Ko, G. D. Mosher, et al. OpenMendel: a cooperative programming project for statistical

genetics. Human Genetics, 139(1):61–71, 2020.

119

	Introduction
	Realistic Trait Simulation: TraitSimulation.jl
	Motivation
	Implementation
	Julia
	SNP Data
	Trait Simulation

	Results
	Statistical Power
	Benchmarks

	Conclusions
	Availability of source code

	A Flexible Quasi-Copula Distribution for Statistical Modeling: QuasiCopula.jl
	Motivation
	GLMM Framework
	Tonda's Framework

	Definitions
	Moments
	Marginal and Conditional Distributions
	Generation of Random Deviates
	Parameter Estimation
	Mean Components
	Structured Covariance
	MM Algorithm for the VC Model Parameters
	Initialization

	Statistical Properties
	Compound Symmetric Covariance

	Results
	Simulation Studies
	Bivariate Mixed Outcome Model
	NHANES Data Example

	Discussion
	Supplemental Material
	Tonda's Approximation Details
	Generate Random Deviates
	Parameter Estimation:
	Quasi-Newton Algorithm
	Negative Binomial
	Compound Symmetric Covariance
	Gaussian Base
	Additional Simulation Study Results

	Availability of source code

	Genome-Wide Association Analysis with Quasi-Copula
	Motivation
	Genetic Model
	Score Test for Individual SNPs or SNP-sets
	Score and Approximate Observed Information
	Score Test Statistic

	Conclusions and Future Research
	Quasi-Copula model for Random Sample GWAS
	Steepest Ascent Estimation of an Unstructured Covariance

	GWAS on Pedigree and Structured Population Data
	Quasi-Copula model for Pedigree GWAS
	Pedigree GWAS Example: Bivariate Trait
	An MM-Algorithm for Variance Component Matrices
	Surrogate Function

